NASA Astrophysics Data System (ADS)
De Wit, P.; Durland, E.; Ventura, A.; Waldbusser, G. G.; Langdon, C. J.
2016-02-01
The high larval mortalities in oyster hatcheries on the US west coast have gotten large media coverage in the past few years, and the link has been made between occurrences of coastal upwelling of deep water with low carbonate ion availability and abnormal shell formation in hatchery larvae. However, the mechanism by which this happens is still not well understood. In the Pacific oyster, numerous genes are known to be involved in biomineralization but little is known about the timing of gene expression in relation to formation of the initial larval shell. In order to study this process, we scanned all expressed larval genes using an RNA-Seq approach over the time interval of initial shell formation in both control and pCO2-stressed conditions. Scanning the expression data for patterns matching observed shell formation rates (see Fig 1), we identified a number of genes potentially involved in shell nucleation, most of which are involved in transmembrane transport or protein binding. In addition, we also identified a set of co-expressed genes likely to be involved in the cellular early shell formation machinery. This study is the first to investigate the genes involved in the initial larval shell formation in the Pacific oyster. We discover a set of 149 genes that are likely involved in this process from a combination of CPL microscopy and RNA-Seq, most of which are involved in ion transport or protein binding. These are the two main processes involved in shell formation. Additionally, we observe an increase in the relative content of wax esters in control larvae after 18 hours, something not seen in the treatment larvae. The reason for this is not quite clear at this point, but it could be speculated that stressed larvae develop slower, thus consuming lipids at a slower rate. Thus, follow-up experiments that study the long-term effects of changed carbonate chemistry on the genetics of Pacific oysters will be critical for future aquaculture efforts.
Matsumoto, Kouichi; Fujie, Shunsuke; Suga, Seiji; Nokami, Toshiki; Yoshida, Jun-ichi
2009-09-28
A catalytic amount of electrochemically generated "ArS+" ("ArS+" = ArS(ArSSAr)+) initiates a cation chain reaction of dienes that involves the addition of ArSSAr associated with stereoselective intramolecular carbon-carbon bond formation, and the direct (in-cell) electrolysis of a mixture of a diene and ArSSAr with a catalytic amount of electricity also effectively initiates the reaction.
Bustillo-Avendaño, Estefano; Ibáñez, Sergio; Sanz, Oscar; Sousa Barros, Jessica Aline; Gude, Inmaculada; Perianez-Rodriguez, Juan; Micol, José Luis; Del Pozo, Juan Carlos
2018-01-01
Body regeneration through formation of new organs is a major question in developmental biology. We investigated de novo root formation using whole leaves of Arabidopsis (Arabidopsis thaliana). Our results show that local cytokinin biosynthesis and auxin biosynthesis in the leaf blade followed by auxin long-distance transport to the petiole leads to proliferation of J0121-marked xylem-associated tissues and others through signaling of INDOLE-3-ACETIC ACID INDUCIBLE28 (IAA28), CRANE (IAA18), WOODEN LEG, and ARABIDOPSIS RESPONSE REGULATORS1 (ARR1), ARR10, and ARR12. Vasculature proliferation also involves the cell cycle regulator KIP-RELATED PROTEIN2 and ABERRANT LATERAL ROOT FORMATION4, resulting in a mass of cells with rooting competence that resembles callus formation. Endogenous callus formation precedes specification of postembryonic root founder cells, from which roots are initiated through the activity of SHORT-ROOT, PLETHORA1 (PLT1), and PLT2. Primordia initiation is blocked in shr plt1 plt2 mutant. Stem cell regulators SCHIZORIZA, JACKDAW, BLUEJAY, and SCARECROW also participate in root initiation and are required to pattern the new organ, as mutants show disorganized and reduced number of layers and tissue initials resulting in reduced rooting. Our work provides an organ regeneration model through de novo root formation, stating key stages and the primary pathways involved. PMID:29233938
Bustillo-Avendaño, Estefano; Ibáñez, Sergio; Sanz, Oscar; Sousa Barros, Jessica Aline; Gude, Inmaculada; Perianez-Rodriguez, Juan; Micol, José Luis; Del Pozo, Juan Carlos; Moreno-Risueno, Miguel Angel; Pérez-Pérez, José Manuel
2018-02-01
Body regeneration through formation of new organs is a major question in developmental biology. We investigated de novo root formation using whole leaves of Arabidopsis ( Arabidopsis thaliana ). Our results show that local cytokinin biosynthesis and auxin biosynthesis in the leaf blade followed by auxin long-distance transport to the petiole leads to proliferation of J0121-marked xylem-associated tissues and others through signaling of INDOLE-3-ACETIC ACID INDUCIBLE28 (IAA28), CRANE (IAA18), WOODEN LEG, and ARABIDOPSIS RESPONSE REGULATORS1 (ARR1), ARR10, and ARR12. Vasculature proliferation also involves the cell cycle regulator KIP-RELATED PROTEIN2 and ABERRANT LATERAL ROOT FORMATION4, resulting in a mass of cells with rooting competence that resembles callus formation. Endogenous callus formation precedes specification of postembryonic root founder cells, from which roots are initiated through the activity of SHORT-ROOT, PLETHORA1 (PLT1), and PLT2. Primordia initiation is blocked in shr plt1 plt2 mutant. Stem cell regulators SCHIZORIZA, JACKDAW, BLUEJAY, and SCARECROW also participate in root initiation and are required to pattern the new organ, as mutants show disorganized and reduced number of layers and tissue initials resulting in reduced rooting. Our work provides an organ regeneration model through de novo root formation, stating key stages and the primary pathways involved. © 2018 American Society of Plant Biologists. All Rights Reserved.
An Undergraduate Study of Two Transcription Factors that Promote Lateral Root Formation
ERIC Educational Resources Information Center
Bargmann, Bastiaan O. R.; Birnbaum, Kenneth D.; Brenner, Eric D.
2014-01-01
We present a lab that enables students to test the role of genes involved in the regulation of lateral roots growth in the model plant "Arabidopsis thaliana." Here, students design an experiment that follows the effects of the hormone auxin on the stimulation of genes involved in the formation of lateral root initials. These genes, known…
USDA-ARS?s Scientific Manuscript database
Tuber wound-healing processes are complex, and the associated regulation and modulation of these processes are poorly understood. Polyamines (PA) have been shown to be involved in modulating a variety of responses to biotic and abiotic plant stresses and have been suggested to be involved in tuber ...
Li, Mingjie; Yang, Yanhui; Li, Xinyu; Gu, Li; Wang, Fengji; Feng, Fajie; Tian, Yunhe; Wang, Fengqing; Wang, Xiaoran; Lin, Wenxiong; Chen, Xinjian; Zhang, Zhongyi
2015-09-01
All tuberous roots in Rehmannia glutinosa originate from the expansion of fibrous roots (FRs), but not all FRs can successfully transform into tuberous roots. This study identified differentially expressed genes and proteins associated with the expansion of FRs, by comparing the tuberous root at expansion stages (initiated tuberous root, ITRs) and FRs at the seedling stage (initiated FRs, IFRs). The role of miRNAs in the expansion of FRs was also explored using the sRNA transcriptome and degradome to identify miRNAs and their target genes that were differentially expressed between ITRs and FRs at the mature stage (unexpanded FRs, UFRs, which are unable to expand into ITRs). A total of 6032 genes and 450 proteins were differentially expressed between ITRs and IFRs. Integrated analyses of these data revealed several genes and proteins involved in light signalling, hormone response, and signal transduction that might participate in the induction of tuberous root formation. Several genes related to cell division and cell wall metabolism were involved in initiating the expansion of IFRs. Of 135 miRNAs differentially expressed between ITRs and UFRs, there were 27 miRNAs whose targets were specifically identified in the degradome. Analysis of target genes showed that several miRNAs specifically expressed in UFRs were involved in the degradation of key genes required for the formation of tuberous roots. As far as could be ascertained, this is the first time that the miRNAs that control the transition of FRs to tuberous roots in R. glutinosa have been identified. This comprehensive analysis of 'omics' data sheds new light on the mechanisms involved in the regulation of tuberous roots formation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Polybenzoxazole via aromatic nucleophilic displacement
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor)
1993-01-01
Polybenzoxazoles (PBO) are heterocyclic macromolecules which were first synthesized in a two-step process by the initial formation of aromatic diacid chlorides with bis(o-aminophenol)s through solution condensation of aromatic diacid chlorides with bis(o-aminophenol)s followed by thermal cyclodehydration. Since then several methods were utilized in their synthesis. The most common synthetic method for PBO involves a polycondensation of bis(o-aminophenol)s with aromatic diacid diphenyl esters. Another preparative route involves the solution polycondensation of the hydrochloride salts of bis(o-amino phenol)s with aromatic diacids in polyphosphoric acid. Another synthetic method involves the initial formation of poly(o-hydroxy amide)s from silylated bis(o-aminophenol)s with aromatic diacid chlorides followed by thermal cyclodehydration to PBO. A recent preparative route involves the reaction of aromatic bisphenols with bis(fluorophenyl) benzoxazoles by the displacement reaction to form PBO. The novelty of the present invention is that high molecular weight PBO of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.
Formative Experiences of Primary Geography Educators
ERIC Educational Resources Information Center
Catling, Simon; Greenwood, Richard; Martin, Fran; Owens, Paula
2010-01-01
This paper reports the initial findings of a study in the UK and the Republic of Ireland of teacher educators and teachers who are involved in promoting geography education in primary schooling. Following research by Buttimer, Chawla, McPartland, Palmer and others, it sought to investigate the connections between early formative life experiences…
NASA Astrophysics Data System (ADS)
Pan, A. F.; Wang, W. J.; Mei, X. S.; Yang, H. Z.; Sun, X. F.
2017-01-01
We report the formation and evolution mechanisms of HSFLs (high-spatial-frequency laser-induced periodic surface structures) on the commercial pure titanium under 10-ps 532-nm-wavelength laser irradiation. At a lower peak laser fluence, HSFLs in the rough zone are first formed along the surface texture. Subsequently, HSFLs in the flat zone are formed with an orientation parallel to the laser polarization direction. The formation of HSFLs can be attributed to the parallel orientation of the initial periodic modulation of the electron plasma concentration to the laser polarization direction. In particular, the formation of HSFLs along the surface texture occurs because the absorbed laser energy density is along the surface texture. At a higher peak laser fluence, two types of HSFLs appear together with LSFLs. The first type involves HSFLs that initially cover the concave part of the LSFL (low-spatial-frequency laser-induced periodic surface structures) and penetrate inward as the number of spot overlaps increases. This formation mechanism can be attributed to cavitation instability. The second type involves HSFLs that are initially in the convex part of the LSFL, and they are transformed into oxidized nanodots as the number of spot overlaps increases. The oxidized nanodots increase the absorption of laser energy in titanium, which leads to the ablation and removal of the oxidized material. Therefore, the surface of the LSFL becomes smooth.
A network architecture for precision formation flying using the IEEE 802.11 MAC Protocol
NASA Technical Reports Server (NTRS)
Clare, Loren P.; Gao, Jay L.; Jennings, Esther H.; Okino, Clayton
2005-01-01
Precision Formation Flying missions involve the tracking and maintenance of spacecraft in a desired geometric formation. The strong coupling of spacecraft in formation flying control requires inter-spacecraft communication to exchange information. In this paper, we present a network architecture that supports PFF control, from the initial random deployment phase to the final formation. We show that a suitable MAC layer for the application protocol is IEEE's 802.11 MAC protocol. IEEE 802.11 MAC has two modes of operations: DCF and PCF. We show that DCF is suitable for the initial deployment phase while switching to PCF when the spacecraft are in formation improves jitter and throughput. We also consider the effect of routing on protocol performance and suggest when it is profitable to turn off route discovery to achieve better network performance.
Arai, Toshiaki; Ochiai, Kuniyasu; Senpuku, Hidenobu
2015-02-01
Actinomyces naeslundii is an early colonizer with important roles in the development of the oral biofilm. The effects of butyric acid, one of short chain fatty acids in A. naeslundii biofilm formation was observed using a flow cell system with Tryptic soy broth without dextrose and with 0.25% sucrose (TSB sucrose). Significant biofilms were established involving live and dead cells in TSB sucrose with 60mM butyric acid but not in concentrations of 6, 30, 40, and 50mM. Biofilm formation failed in 60mM sodium butyrate but biofilm level in 60mM sodium butyrate (pH4.7) adjusted with hydrochloric acid as 60mM butyric media (pH4.7) was similar to biofilm levels in 60mM butyric acid. Therefore, butyric acid and low pH are required for significant biofilm formation in the flow cell. To determine the mechanism of biofilm formation, we investigated initial A. naeslundii colonization in various conditions and effects of anti-GroEL antibody. The initial colonization was observed in the 60mM butyric acid condition and anti-GroEL antibody inhibited the initial colonization. In conclusion, we established a new biofilm formation model in which butyric acid induces GroEL-dependent initial colonization of A. naeslundii resulting in significant biofilm formation in a flow system. Copyright © 2014 Elsevier B.V. All rights reserved.
Program Evaluation of a School District's Multisensory Reading Initiative
ERIC Educational Resources Information Center
Asip, Michael Patrick
2012-01-01
The purpose of this study was to conduct a formative program evaluation of a school district's multisensory reading initiative. The mixed methods study involved semi-structured interviews, online survey, focus groups, document review, and analysis of extant special education student reading achievement data. Participants included elementary…
Kahvejian, Avak; Svitkin, Yuri V; Sukarieh, Rami; M'Boutchou, Marie-Noël; Sonenberg, Nahum
2005-01-01
Translation initiation is a multistep process involving several canonical translation factors, which assemble at the 5'-end of the mRNA to promote the recruitment of the ribosome. Although the 3' poly(A) tail of eukaryotic mRNAs and its major bound protein, the poly(A)-binding protein (PABP), have been studied extensively, their mechanism of action in translation is not well understood and is confounded by differences between in vivo and in vitro systems. Here, we provide direct evidence for the involvement of PABP in key steps of the translation initiation pathway. Using a new technique to deplete PABP from mammalian cell extracts, we show that extracts lacking PABP exhibit dramatically reduced rates of translation, reduced efficiency of 48S and 80S ribosome initiation complex formation, and impaired interaction of eIF4E with the mRNA cap structure. Supplementing PABP-depleted extracts with wild-type PABP completely rectified these deficiencies, whereas a mutant of PABP, M161A, which is incapable of interacting with eIF4G, failed to restore translation. In addition, a stronger inhibition (approximately twofold) of 80S as compared to 48S ribosome complex formation (approximately 65% vs. approximately 35%, respectively) by PABP depletion suggests that PABP plays a direct role in 60S subunit joining. PABP can thus be considered a canonical translation initiation factor, integral to initiation complex formation at the 5'-end of mRNA.
Kahvejian, Avak; Svitkin, Yuri V.; Sukarieh, Rami; M'Boutchou, Marie-Noël; Sonenberg, Nahum
2005-01-01
Translation initiation is a multistep process involving several canonical translation factors, which assemble at the 5′-end of the mRNA to promote the recruitment of the ribosome. Although the 3′ poly(A) tail of eukaryotic mRNAs and its major bound protein, the poly(A)-binding protein (PABP), have been studied extensively, their mechanism of action in translation is not well understood and is confounded by differences between in vivo and in vitro systems. Here, we provide direct evidence for the involvement of PABP in key steps of the translation initiation pathway. Using a new technique to deplete PABP from mammalian cell extracts, we show that extracts lacking PABP exhibit dramatically reduced rates of translation, reduced efficiency of 48S and 80S ribosome initiation complex formation, and impaired interaction of eIF4E with the mRNA cap structure. Supplementing PABP-depleted extracts with wild-type PABP completely rectified these deficiencies, whereas a mutant of PABP, M161A, which is incapable of interacting with eIF4G, failed to restore translation. In addition, a stronger inhibition (approximately twofold) of 80S as compared to 48S ribosome complex formation (∼65% vs. ∼35%, respectively) by PABP depletion suggests that PABP plays a direct role in 60S subunit joining. PABP can thus be considered a canonical translation initiation factor, integral to initiation complex formation at the 5′-end of mRNA. PMID:15630022
Activities involving aeronautical, space science, and technology support for minority institutions
NASA Technical Reports Server (NTRS)
1993-01-01
The Final Report addressed the activities with which the Interracial Council for Business Opportunity (ICBO) was involved over the past 12 months. ICBO was involved in the design and development of a CARES Student Tracking System Software (CARES). Cares is intended to provide an effective means of maintaining relevant current and historical information on NASA-funded students through a range of educational program initiatives. ICBP was extensively involved in the formation of a minority university consortium amd implementation of collaborative research activities by the consortium as part of NASA's Mission to Planet Earth/Earth Observing System. ICBO was involved in the formation of an HBCU/MI Consortium to facilitate technology transfer efforts to the small and minority business community in their respective regions.
New particle formation and growth from methanesulfonic acid, trimethylamine and water.
Chen, Haihan; Ezell, Michael J; Arquero, Kristine D; Varner, Mychel E; Dawson, Matthew L; Gerber, R Benny; Finlayson-Pitts, Barbara J
2015-05-28
New particle formation from gas-to-particle conversion represents a dominant source of atmospheric particles and affects radiative forcing, climate and human health. The species involved in new particle formation and the underlying mechanisms remain uncertain. Although sulfuric acid is commonly recognized as driving new particle formation, increasing evidence suggests the involvement of other species. Here we study particle formation and growth from methanesulfonic acid, trimethylamine and water at reaction times from 2.3 to 32 s where particles are 2-10 nm in diameter using a newly designed and tested flow system. The flow system has multiple inlets to facilitate changing the mixing sequence of gaseous precursors. The relative humidity and precursor concentrations, as well as the mixing sequence, are varied to explore their effects on particle formation and growth in order to provide insight into the important mechanistic steps. We show that water is involved in the formation of initial clusters, greatly enhancing their formation as well as growth into detectable size ranges. A kinetics box model is developed that quantitatively reproduces the experimental data under various conditions. Although the proposed scheme is not definitive, it suggests that incorporating such mechanisms into atmospheric models may be feasible in the near future.
Critical Fusion--Technology and Equity in Secondary Education
ERIC Educational Resources Information Center
Magolda, Peter
2006-01-01
This manuscript reports on the first year of a formative, external program evaluation of the Critical Fusion Initiative (CFI), which involved a higher education institution, a public high school, a corporation, and two nonprofit organizations. The initiative fused technology and education to address the issue of equity by assisting 16 high school…
Evaluation of the Michigan Public School Academy Initiative: Final Report [and] Executive Summary.
ERIC Educational Resources Information Center
Horn, Jerry; Miron, Gary
This is the final report of a one-year evaluation of the Michigan Public School Academy (PSA) initiative. The evaluation involved both formative and summative evaluations and used both qualitative and quantitative methods. The study was conducted between October 1997 and December 1998. Data-collection methods included a charter-school survey and a…
CD73 Regulates Stemness and Epithelial-Mesenchymal Transition in Ovarian Cancer-Initiating Cells.
Lupia, Michela; Angiolini, Francesca; Bertalot, Giovanni; Freddi, Stefano; Sachsenmeier, Kris F; Chisci, Elisa; Kutryb-Zajac, Barbara; Confalonieri, Stefano; Smolenski, Ryszard T; Giovannoni, Roberto; Colombo, Nicoletta; Bianchi, Fabrizio; Cavallaro, Ugo
2018-04-10
Cancer-initiating cells (CICs) have been implicated in tumor development and aggressiveness. In ovarian carcinoma (OC), CICs drive tumor formation, dissemination, and recurrence, as well as drug resistance, thus accounting for the high death-to-incidence ratio of this neoplasm. However, the molecular mechanisms that underlie such a pathogenic role of ovarian CICs (OCICs) remain elusive. Here, we have capitalized on primary cells either from OC or from its tissues of origin to obtain the transcriptomic profile associated with OCICs. Among the genes differentially expressed in OCICs, we focused on CD73, which encodes the membrane-associated 5'-ectonucleotidase. The genetic inactivation of CD73 in OC cells revealed that this molecule is causally involved in sphere formation and tumor initiation, thus emerging as a driver of OCIC function. Furthermore, functional inhibition of CD73 via either a chemical compound or a neutralizing antibody reduced sphere formation and tumorigenesis, highlighting the druggability of CD73 in the context of OCIC-directed therapies. The biological function of CD73 in OCICs required its enzymatic activity and involved adenosine signaling. Mechanistically, CD73 promotes the expression of stemness and epithelial-mesenchymal transition-associated genes, implying a regulation of OCIC function at the transcriptional level. CD73, therefore, is involved in OCIC biology and may represent a therapeutic target for innovative treatments aimed at OC eradication. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Bas-Orth, Carlos; Tan, Yan-Wei; Oliveira, Ana M. M.; Bengtson, C. Peter; Bading, Hilmar
2016-01-01
The formation of long-term memory requires signaling from the synapse to the nucleus to mediate neuronal activity-dependent gene transcription. Synapse-to-nucleus communication is initiated by influx of calcium ions through synaptic NMDA receptors and/or L-type voltage-gated calcium channels and involves the activation of transcription factors by…
Learning and memory: Steroids and epigenetics.
Colciago, Alessandra; Casati, Lavinia; Negri-Cesi, Paola; Celotti, Fabio
2015-06-01
Memory formation and utilization is a complex process involving several brain structures in conjunction as the hippocampus, the amygdala and the adjacent cortical areas, usually defined as medial temporal lobe structures (MTL). The memory processes depend on the formation and modulation of synaptic connectivity affecting synaptic strength, synaptic plasticity and synaptic consolidation. The basic neurocognitive mechanisms of learning and memory are shortly recalled in the initial section of this paper. The effect of sex hormones (estrogens, androgens and progesterone) and of adrenocortical steroids on several aspects of memory processes are then analyzed on the basis of animal and human studies. A specific attention has been devoted to the different types of steroid receptors (membrane or nuclear) involved and on local metabolic transformations when required. The review is concluded by a short excursus on the steroid activated epigenetic mechanisms involved in memory formation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hou, Li; Xie, Jianchun; Zhao, Jian; Zhao, Mengyao; Fan, Mengdie; Xiao, Qunfei; Liang, Jingjing; Chen, Feng
2017-10-01
To explore initial Maillard reaction pathways and mechanisms for maximal formation of meaty flavors in heated cysteine-xylose-glycine systems, model reactions with synthesized initial Maillard intermediates, Gly-Amadori, TTCA (2-threityl-thiazolidine-4-carboxylic acids) and Cys-Amadori, were investigated. Relative relativities were characterized by spectrophotometrically monitoring the development of colorless degradation intermediates and browning reaction products. Aroma compounds formed were determined by solid-phase microextraction combined with GC-MS and GC-olfactometry. Gly-Amadori showed the fastest reaction followed by Cys-Amadori then TTCA. Free glycine accelerated reaction of TTCA, whereas cysteine inhibited that of Gly-Amadori due to association forming relatively stable thiazolidines. Cys-Amadori/Gly had the highest reactivity in development of both meaty flavors and brown products. TTCA/Gly favored yielding meaty flavors, whereas Gly-Amadori/Cys favored generation of brown products. Conclusively, initial formation of TTCA and pathway involving TTCA with glycine were more applicable to efficiently produce processed-meat flavorings in a cysteine-xylose-glycine system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Baesso, B; Chiatante, D; Terzaghi, M; Zenga, D; Nieminen, K; Mahonen, A P; Siligato, R; Helariutta, Y; Scippa, G S; Montagnoli, A
2018-05-01
The spatial deployment of lateral roots determines the ability of a plant to interact with the surrounding environment for nutrition and anchorage. This paper shows that besides the pericycle, the vascular cambium becomes active in Arabidopsis thaliana taproot at a later stage of development and is also able to form new lateral roots. To demonstrate the above, we implemented a two-step approach in which the first step leads to development of a secondary structure in A. thaliana taproot, and the second applies a mechanical stress on the vascular cambium to initiate formation of a new lateral root primordium. GUS staining showed PRE3, DR5 and WOX11 signals in the cambial zone of the root during new lateral root formation. An advanced level of wood formation, characterized by the presence of medullar rays, was achieved. Preliminary investigations suggest the involvement of auxin and two transcription factors (PRE3/ATBS1/bHLH135/TMO7 and WOX11) in the transition of some vascular cambium initials from a role as producers of xylem/phloem mother cells to founder cells of a new lateral root primordium. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
The founder-cell transcriptome in the Arabidopsis apetala1 cauliflower inflorescence meristem.
Frerichs, Anneke; Thoma, Rahere; Abdallah, Ali Taleb; Frommolt, Peter; Werr, Wolfgang; Chandler, John William
2016-11-03
Although the pattern of lateral organ formation from apical meristems establishes species-specific plant architecture, the positional information that confers cell fate to cells as they transit to the meristem flanks where they differentiate, remains largely unknown. We have combined fluorescence-activated cell sorting and RNA-seq to characterise the cell-type-specific transcriptome at the earliest developmental time-point of lateral organ formation using DORNRÖSCHEN-LIKE::GFP to mark founder-cell populations at the periphery of the inflorescence meristem (IM) in apetala1 cauliflower double mutants, which overproliferate IMs. Within the lateral organ founder-cell population at the inflorescence meristem, floral primordium identity genes are upregulated and stem-cell identity markers are downregulated. Additional differentially expressed transcripts are involved in polarity generation and boundary formation, and in epigenetic and post-translational changes. However, only subtle transcriptional reprogramming within the global auxin network was observed. The transcriptional network of differentially expressed genes supports the hypothesis that lateral organ founder-cell specification involves the creation of polarity from the centre to the periphery of the IM and the establishment of a boundary from surrounding cells, consistent with bract initiation. However, contrary to the established paradigm that sites of auxin response maxima pre-pattern lateral organ initiation in the IM, auxin response might play a minor role in the earliest stages of lateral floral initiation.
Vascular Calcification and Stone Disease: A New Look towards the Mechanism
Yiu, Allen J.; Callaghan, Daniel; Sultana, Razia; Bandyopadhyay, Bidhan C.
2015-01-01
Calcium phosphate (CaP) crystals are formed in pathological calcification as well as during stone formation. Although there are several theories as to how these crystals can develop through the combined interactions of biochemical and biophysical factors, the exact mechanism of such mineralization is largely unknown. Based on the published scientific literature, we found that common factors can link the initial stages of stone formation and calcification in anatomically distal tissues and organs. For example, changes to the spatiotemporal conditions of the fluid flow in tubular structures may provide initial condition(s) for CaP crystal generation needed for stone formation. Additionally, recent evidence has provided a meaningful association between the active participation of proteins and transcription factors found in the bone forming (ossification) mechanism that are also involved in the early stages of kidney stone formation and arterial calcification. Our review will focus on three topics of discussion (physiological influences—calcium and phosphate concentration—and similarities to ossification, or bone formation) that may elucidate some commonality in the mechanisms of stone formation and calcification, and pave the way towards opening new avenues for further research. PMID:26185749
Method for forming pyrrone molding powders and products of said method
NASA Technical Reports Server (NTRS)
Hughes, C. T.; Mchenry, R. J. (Inventor)
1972-01-01
The formation of pyrrone resins of the ladder or semiladder structure is described. The technique involves initial formation of fully cyclized prepolymers having an average degree of polymerization of about 1.5, one with acidic terminal groups, another with amine terminal groups. Thereafter the prepolymers are intimately admixed on a 1:1 stoichiometric basis. The resulting powder mixture is molded at elevated pressures and temperatures to form a fully cyclized resin.
Rh(II)-catalyzed Reactions of Diazoesters with Organozinc Reagents
Panish, Robert; Selvaraj, Ramajeyam; Fox, Joseph M.
2015-01-01
Rh(II)-catalyzed reactions of diazoesters with organozinc reagents are described. Diorganozinc reagents participate in reactions with diazo compounds by two distinct, catalyst-dependent mechanisms. With bulky diisopropylethylacetate ligands, the reaction mechanism is proposed to involve initial formation of a Rh-carbene and subsequent carbozincation to give a zinc enolate. With Rh2(OAc)4, it is proposed that initial formation of an azine precedes 1,2-addition by an organozinc reagent. This straightforward route to the hydrazone products provides a useful method for preparing chiral quaternary α-aminoesters or pyrazoles via the Paul-Knorr condensation with 1,3-diketones. Crossover and deuterium labeling experiments provide evidence for the mechanisms proposed. PMID:26241081
Rh(II)-Catalyzed Reactions of Diazoesters with Organozinc Reagents.
Panish, Robert; Selvaraj, Ramajeyam; Fox, Joseph M
2015-08-21
Rh(II)-catalyzed reactions of diazoesters with organozinc reagents are described. Diorganozinc reagents participate in reactions with diazo compounds by two distinct, catalyst-dependent mechanisms. With bulky diisopropylethyl acetate ligands, the reaction mechanism is proposed to involve initial formation of a Rh-carbene and subsequent carbozincation to give a zinc enolate. With Rh2(OAc)4, it is proposed that initial formation of an azine precedes 1,2-addition by an organozinc reagent. This straightforward route to the hydrazone products provides a useful method for preparing chiral quaternary α-aminoesters or pyrazoles via the Paul-Knorr condensation with 1,3-diketones. Crossover and deuterium labeling experiments provide evidence for the mechanisms proposed.
Falibene, Agustina; Roces, Flavio; Rössler, Wolfgang
2015-01-01
Long-term behavioral changes related to learning and experience have been shown to be associated with structural remodeling in the brain. Leaf-cutting ants learn to avoid previously preferred plants after they have proved harmful for their symbiotic fungus, a process that involves long-term olfactory memory. We studied the dynamics of brain microarchitectural changes after long-term olfactory memory formation following avoidance learning in Acromyrmex ambiguus. After performing experiments to control for possible neuronal changes related to age and body size, we quantified synaptic complexes (microglomeruli, MG) in olfactory regions of the mushroom bodies (MBs) at different times after learning. Long-term avoidance memory formation was associated with a transient change in MG densities. Two days after learning, MG density was higher than before learning. At days 4 and 15 after learning—when ants still showed plant avoidance—MG densities had decreased to the initial state. The structural reorganization of MG triggered by long-term avoidance memory formation clearly differed from changes promoted by pure exposure to and collection of novel plants with distinct odors. Sensory exposure by the simultaneous collection of several, instead of one, non-harmful plant species resulted in a decrease in MG densities in the olfactory lip. We hypothesize that while sensory exposure leads to MG pruning in the MB olfactory lip, the formation of long-term avoidance memory involves an initial growth of new MG followed by subsequent pruning. PMID:25904854
An open initiative involving cross-disciplinary contributors of computer-assisted structure elucidation (CASE), including methodology specialists, software and database developers and the editorial board of Magnetic Resonance in Chemistry, is addressing the old problem of reporti...
Naryshkin, Nikolai; Druzhinin, Sergei; Revyakin, Andrei; Kim, Younggyu; Mekler, Vladimir; Ebright, Richard H.
2009-01-01
Static site-specific protein-DNA photocrosslinking permits identification of protein-DNA interactions within multiprotein-DNA complexes. Kinetic site-specific protein-DNA photocrosslinking--involving rapid-quench-flow mixing and pulsed-laser irradiation--permits elucidation of pathways and kinetics of formation of protein-DNA interactions within multiprotein-DNA complexes. We present detailed protocols for application of static and kinetic site-specific protein-DNA photocrosslinking to bacterial transcription initiation complexes. PMID:19378179
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekanayake, Nagitha; Nairat, Muath; Kaderiya, Balram
Strong-field laser-matter interactions often lead to exotic chemical reactions. Trihydrogen cation formation from organic molecules is one such case that requires multiple bonds to break and form. Here, we present evidence for the existence of two different reaction pathways for H 3 + formation from organic molecules irradiated by a strong-field laser. Assignment of the two pathways was accomplished through analysis of femtosecond time-resolved strong-field ionization and photoion-photoion coincidence measurements carried out on methanol isotopomers, ethylene glycol, and acetone. Ab initio molecular dynamics simulations suggest the formation occurs via two steps: the initial formation of a neutral hydrogen molecule, followedmore » by the abstraction of a proton from the remaining CHOH 2+ fragment by the roaming H 2 molecule. This reaction has similarities to the H 2+H 2 + mechanism leading to formation of H 3 + in the universe. These exotic chemical reaction mechanisms, involving roaming H 2 molecules, are found to occur in the ~100 fs timescale. Roaming molecule reactions may help to explain unlikely chemical processes, involving dissociation and formation of multiple chemical bonds, occurring under strong laser fields.« less
Ekanayake, Nagitha; Nairat, Muath; Kaderiya, Balram; ...
2017-07-05
Strong-field laser-matter interactions often lead to exotic chemical reactions. Trihydrogen cation formation from organic molecules is one such case that requires multiple bonds to break and form. Here, we present evidence for the existence of two different reaction pathways for H 3 + formation from organic molecules irradiated by a strong-field laser. Assignment of the two pathways was accomplished through analysis of femtosecond time-resolved strong-field ionization and photoion-photoion coincidence measurements carried out on methanol isotopomers, ethylene glycol, and acetone. Ab initio molecular dynamics simulations suggest the formation occurs via two steps: the initial formation of a neutral hydrogen molecule, followedmore » by the abstraction of a proton from the remaining CHOH 2+ fragment by the roaming H 2 molecule. This reaction has similarities to the H 2+H 2 + mechanism leading to formation of H 3 + in the universe. These exotic chemical reaction mechanisms, involving roaming H 2 molecules, are found to occur in the ~100 fs timescale. Roaming molecule reactions may help to explain unlikely chemical processes, involving dissociation and formation of multiple chemical bonds, occurring under strong laser fields.« less
Solid-particle jet formation under shock-wave acceleration.
Rodriguez, V; Saurel, R; Jourdan, G; Houas, L
2013-12-01
When solid particles are impulsively dispersed by a shock wave, they develop a spatial distribution which takes the form of particle jets whose selection mechanism is still unidentified. The aim of the present experimental work is to study particle dispersal with fingering effects in an original quasi-two-dimensional experiment facility in order to accurately extract information. Shock and blast waves are generated in the carrier gas at the center of a granular medium ring initially confined inside a Hele-Shaw cell and impulsively accelerated. With the present experimental setup, the particle jet formation is clearly observed. From fast flow visualizations, we notice, in all instances, that the jets are initially generated inside the particle ring and thereafter expelled outward. This point has not been observed in three-dimensional experiments. We highlight that the number of jets is unsteady and decreases with time. For a fixed configuration, considering the very early times following the initial acceleration, the jet size selection is independent of the particle diameter. Moreover, the influence of the initial overpressure and the material density on the particle jet formation have been studied. It is shown that the wave number of particle jets increases with the overpressure and with the decrease of the material density. The normalized number of jets as a function of the initial ring acceleration shows a power law valid for all studied configurations involving various initial pressure ratios, particle sizes, and particle materials.
Structure and formation of ant transportation networks
Latty, Tanya; Ramsch, Kai; Ito, Kentaro; Nakagaki, Toshiyuki; Sumpter, David J. T.; Middendorf, Martin; Beekman, Madeleine
2011-01-01
Many biological systems use extensive networks for the transport of resources and information. Ants are no exception. How do biological systems achieve efficient transportation networks in the absence of centralized control and without global knowledge of the environment? Here, we address this question by studying the formation and properties of inter-nest transportation networks in the Argentine ant (Linepithema humile). We find that the formation of inter-nest networks depends on the number of ants involved in the construction process. When the number of ants is sufficient and networks do form, they tend to have short total length but a low level of robustness. These networks are topologically similar to either minimum spanning trees or Steiner networks. The process of network formation involves an initial construction of multiple links followed by a pruning process that reduces the number of trails. Our study thus illuminates the conditions under and the process by which minimal biological transport networks can be constructed. PMID:21288958
Minami, Ryunosuke; Sato, Chiaki; Yamahama, Yumi; Kubo, Hideo; Hariyama, Takahiko; Kimura, Ken-Ichi
2016-12-01
The "moth-eye" structure, which is observed on the surface of corneal lens in several insects, supports anti-reflective and self-cleaning functions due to nanoscale protrusions known as corneal nipples. Although the morphology and function of the "moth-eye" structure, are relatively well studied, the mechanism of protrusion formation from cell-secreted substances is unknown. In Drosophila melanogaster, a compound eye consists of approximately 800 facets, the surface of which is formed by the corneal lens with nanoscale protrusions. In the present study, we sought to identify genes involved in "moth-eye" structure, formation in order to elucidate the developmental mechanism of the protrusions in Drosophila. We re-examined the aberrant patterns in classical glossy-eye mutants by scanning electron microscope and classified the aberrant patterns into groups. Next, we screened genes encoding putative structural cuticular proteins and genes involved in cuticular formation using eye specific RNAi silencing methods combined with the Gal4/UAS expression system. We identified 12 of 100 candidate genes, such as cuticular proteins family genes (Cuticular protein 23B and Cuticular protein 49Ah), cuticle secretion-related genes (Syntaxin 1A and Sec61 ββ subunit), ecdysone signaling and biosynthesis-related genes (Ecdysone receptor, Blimp-1, and shroud), and genes involved in cell polarity/cell architecture (Actin 5C, shotgun, armadillo, discs large1, and coracle). Although some of the genes we identified may affect corneal protrusion formation indirectly through general patterning defects in eye formation, these initial findings have encouraged us to more systematically explore the precise mechanisms underlying the formation of nanoscale protrusions in Drosophila.
Authoring a CAI Lesson in Nutrition Education.
ERIC Educational Resources Information Center
Ries, Carol P.; And Others
1984-01-01
A nutrition lesson on vegetarianism (focusing on vegetarian types, complementary protein, special-care nutrients, and diet planning) that uses a pre-developed plan which concentrates on lesson content and design has been developed. Initial planning and procedures involved in developing the unit (selecting teaching modes, text writing, formatting,…
A Proposal for Urban Policy in the 1990s.
ERIC Educational Resources Information Center
Fainstein, Susan S.; Fainstein, Norman
1995-01-01
Argues that urban policy should entail a unifying mix of economic, physical, and social initiatives that emphasize job creation and retention and social equity. The author explores a proposal for urban policy involving neighborhood-based planning, regulation of capital flight, local development funding, human capital formation, physical…
SATWG networked quality function deployment
NASA Technical Reports Server (NTRS)
Brown, Don
1992-01-01
The initiative of this work is to develop a cooperative process for continual evolution of an integrated, time phased avionics technology plan that involves customers, technologists, developers, and managers. This will be accomplished by demonstrating a computer network technology to augment the Quality Function Deployment (QFD). All results are presented in viewgraph format.
Fitzgerald, M M; Kirk, G D; Bristow, C A
2011-05-01
Service user involvement in all levels of healthcare provision is the expectation of UK government policy. Involvement should not only include participation in the planning and delivery of health care but also the exercise of choice and opinions about that care. In practice, however, service user engagement is most often tokenistic, involving post hoc consultation over plans already committed to by services. This paper explores an Occupational Therapy-led initiative to use the Serious Game format to engage low secure service users with serious mental illness in the design, layout and refurbishment of their unit. Among other things how medication was to be dispensed on the new unit was explored by this game and led to significant replanning in response to service user involvement. The game format was found to be a useful tool in facilitating communication between professionals and a traditionally marginalized and powerless client group. It enabled service users to have a voice, it provided a format for that voice to be heard and made possible service-led change in the planning process. © 2010 Blackwell Publishing.
A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation.
Massberg, Steffen; Brand, Korbinian; Grüner, Sabine; Page, Sharon; Müller, Elke; Müller, Iris; Bergmeier, Wolfgang; Richter, Thomas; Lorenz, Michael; Konrad, Ildiko; Nieswandt, Bernhard; Gawaz, Meinrad
2002-10-07
The contribution of platelets to the process of atherosclerosis remains unclear. Here, we show in vivo that platelets adhere to the vascular endothelium of the carotid artery in ApoE(-)(/)(-) mice before the development of manifest atherosclerotic lesions. Platelet-endothelial cell interaction involved both platelet glycoprotein (GP)Ibalpha and GPIIb-IIIa. Platelet adhesion to the endothelium coincides with inflammatory gene expression and preceded atherosclerotic plaque invasion by leukocytes. Prolonged blockade of platelet adhesion in ApoE(-)(/)(-) mice profoundly reduced leukocyte accumulation in the arterial intima and attenuated atherosclerotic lesion formation in the carotid artery bifurcation, the aortic sinus, and the coronary arteries. These findings establish the platelet as a major player in initiation of the atherogenetic process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavado, Ramon; Rimoldi, John M.; Schlenk, Daniel
2009-03-01
Previous studies in rainbow trout have shown that acclimation to hypersaline environments enhances the toxicity to thioether organophosphate and carbamate pesticides. In order to determine the role of biotransformation in this process, the metabolism of the thioether organophosphate biocide, fenthion was evaluated in microsomes from gills, liver and olfactory tissues in rainbow trout (Oncorhynchus mykiss) acclimated to freshwater and 17 per mille salinity. Hypersalinity acclimation increased the formation of fenoxon and fenoxon sulfoxide from fenthion in liver microsomes from rainbow trout, but not in gills or in olfactory tissues. NADPH-dependent and independent hydrolysis was observed in all tissues, but onlymore » NADPH-dependent fenthion cleavage was differentially modulated by hypersalinity in liver (inhibited) and gills (induced). Enantiomers of fenthion sulfoxide (65% and 35% R- and S-fenthion sulfoxide, respectively) were formed in liver and gills. The predominant pathway of fenthion activation in freshwater appears to be initiated through initial formation of fenoxon which may be subsequently converted to the most toxic metabolite fenoxon R-sulfoxide. However, in hypersaline conditions both fenoxon and fenthion sulfoxide formation may precede fenoxon sulfoxide formation. Stereochemical evaluation of sulfoxide formation, cytochrome P450 inhibition studies with ketoconazole and immunoblots indicated that CYP3A27 was primarily involved in the enhancement of fenthion activation in hypersaline-acclimated fish with limited contribution of FMO to initial sulfoxidation.« less
Wang, Haode; Ma, Zhoujie; Gai, Xiaotong; Sun, Yanqiu; He, Shidao; Liu, Xian; Wang, Yanfeng; Xuan, Yuanhu
2018-01-01
Rhizoctonia solani AG1 IA is a soil-borne fungal phytopathogen that can significantly harm crops resulting in economic loss. This species overwinters in grass roots and diseased plants, and produces sclerotia that infect future crops. R. solani AG1 IA does not produce spores; therefore, understanding the molecular mechanism of sclerotia formation is important for crop disease control. To identify the genes involved in this process for the development of disease control targets, the transcriptomes of this species were determined at three important developmental stages (mycelium, sclerotial initiation, and sclerotial maturation) using an RNA-sequencing approach. A total of 5,016, 6,433, and 5,004 differentially expressed genes (DEGs) were identified in the sclerotial initiation vs. mycelial, sclerotial maturation vs. mycelial, and sclerotial maturation vs. sclerotial initiation stages, respectively. Moreover, gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analyses showed that these DEGs were enriched in diverse categories, including oxidoreductase activity, carbohydrate metabolic process, and oxidation-reduction processes. A total of 12 DEGs were further verified using reverse transcription quantitative PCR. Among the genes examined, NADPH oxidase 1 (NOX1) and superoxide dismutase (SOD) were highly induced in the stages of sclerotial initiation and maturation. In addition, the highest reactive oxygen species (ROS) production levels were detected during sclerotial initiation, and enzyme activities of NOX1, SOD, and catalase (CAT) matched with the gene expression profiles. To further evaluate the role of ROS in sclerotial formation, R. solani AG1 IA was treated with the CAT inhibitor aminotriazole and H2O2, resulting in the early differentiation of sclerotia. Taken together, this study provides useful information toward understanding the molecular basis of R. solani AG1 IA sclerotial formation and maturation, and identified the important role of ROS in these processes. PMID:29938140
Two families with MYH7 distal myopathy associated with cardiomyopathy and core formations.
Naddaf, Elie; Waclawik, Andrew J
2015-03-01
Laing distal myopathy is caused by MYH7 gene mutations. Multiple families have been reported with varying patterns of skeletal and cardiac involvement as well as histopathological findings. We report 2 families with p.Glu1508del mutation with detailed electrophysiological and muscle pathology findings. All patients displayed the classic phenotype with weakness starting in the anterior compartment of the legs with a "hanging great toe." It was followed by finger extensors involvement, relatively sparing the extensor indicis proprius, giving the appearance of a "pointing index" finger. All the affected individuals had a dilated cardiomyopathy and core formations on muscle biopsy. Unexpectedly, neurogenic changes were also observed in some individuals. Both families were initially misdiagnosed with either central core disease or hereditary neuropathy. Recognizing the classic phenotype, screening for cardiac involvement that may be clinically silent, and determining the mode of inheritance help with selecting the appropriate genetic test.
Fhaner, Mathew; Zhao, Hong; Bian, Xiaochun; Galligan, James J.; Swain, Greg M.
2010-01-01
In order to increase the initial nucleation density for the growth of boron-doped diamond on platinum wires, we employed the novel nucleation process (NNP) originally developed by Rotter et al. and discussed by others [1–3]. This pretreatment method involves (i) the initial formation of a thin carbon layer over the substrate followed by (ii) ultrasonic seeding of this “soft” carbon layer with nanoscale particles of diamond. This two-step pretreatment is followed by the deposition of boron-doped diamond by microwave plasma-assisted CVD. Both the diamond seed particles and sites on the carbon layer itself function as the initial nucleation zones for diamond growth from an H2-rich source gas mixture. We report herein on the characterization of the pre-growth carbon layer formed on Pt as well as boron-doped films grown for 2, 4 and 6 h post NNP pretreatment. Results from scanning electron microscopy, Raman spectroscopy and electrochemical studies are reported. The NNP method increases the initial nucleation density on Pt and leads to the formation of a continuous diamond film in a shorter deposition time than is typical for wires pretreated by conventional ultrasonic seeding. The results indicate that the pregrowth layer itself consists of nanoscopic domains of diamond and functions well to enhance the initial nucleation of diamond without any diamond powder seeding. PMID:21617759
Contact formation during fibroblast locomotion: involvement of membrane ruffles and microtubules
1988-01-01
We have correlated the motility of the leading edge of fibroblasts, monitored by phase-contrast cinematography, with the relative distributions of several cytoskeletal elements (vinculin, tubulin, and actin) as well as with the contact patterns determined by interference reflection microscopy. This analysis has revealed the involvement of both ruffles and microspikes, as well as microtubules in the initiation of focal contact formation. Nascent vinculin sites within the leading edge or at its base, taken as primordial cell-substrate contacts, were invariably colocalized with sites that showed a history of transient, prolonged, or cyclic ruffling activity. Extended microspike structures, often preceded the formation of ruffles. Immunofluorescent labeling indicated that some of these primordial contacts were in close apposition to the ends of microtubules that penetrated into the leading edge. By fluorescence and electron microscopy short bundles of actin filaments found at the base of the leading edge were identified as presumptive, primordial contacts. It is concluded that ruffles and microspikes, either independently or in combination, initiate and mark the sites for future contact. Plaque proteins then accumulate (within 10-30 s) at the contract site and, beneath ruffles, induce localized bundling of actin filaments. We propose that all primordial contacts support traction for leading edge protrusion but that only some persist long enough to nucleate stress fiber assembly. Microtubules are postulated as the elements that select, stabilize, and potentiate the formation of these latter, long-lived contacts. PMID:3126193
The Audiovisual Vocational Preferences Test: A Research Note on Test Development.
ERIC Educational Resources Information Center
Wilgosh, Lorraine
1992-01-01
This paper reports on the development of the Audiovisual Vocational Preferences Test to facilitate career planning for adolescents and young adults with mild to moderate intellectual impairments. The strategies involved in test construction, data on initial use of the test, and improvements in format and content after pilot testing are discussed.…
Norepinephrine Triggers Metaplasticity of LTP by Increasing Translation of Specific mRNAs
ERIC Educational Resources Information Center
Maity, Sabyasachi; Rah, Sean; Sonenberg, Nahum; Gkogkas, Christos G.; Nguyen, Peter V.
2015-01-01
Norepinephrine (NE) is a key modulator of synaptic plasticity in the hippocampus, a brain structure crucially involved in memory formation. NE boosts synaptic plasticity mostly through initiation of signaling cascades downstream from beta (ß)-adrenergic receptors (ß-ARs). Previous studies demonstrated that a ß-adrenergic receptor agonist,…
BRAIN MECHANISMS AND INTELLIGENCE, A QUANTITATIVE STUDY OF INJURIES TO THE BRAIN.
ERIC Educational Resources Information Center
LASHLEY, K.S.
SEVERAL EXPERIMENTS WITH RATS INVOLVING THE INFLUENCE OF CEREBRAL DESTRUCTION ON LEARNING ABILITY ARE DESCRIBED. THE TWO MAJOR EXPERIMENTS STUDY THE RETENTION OF THE MAZE HABIT AFTER CEREBRAL LESIONS AND THE INFLUENCE OF CEREBRAL LESIONS ON THE CAPACITY TO LEARN (INITIAL FORMATION OF HABITS). THEORECTICAL ANALYSIS OF THE LEARNING (BEHAVIOR)…
Blowup with vorticity control for a 2D model of the Boussinesq equations
NASA Astrophysics Data System (ADS)
Hoang, V.; Orcan-Ekmekci, B.; Radosz, M.; Yang, H.
2018-06-01
We propose a system of equations with nonlocal flux in two space dimensions which is closely modeled after the 2D Boussinesq equations in a hyperbolic flow scenario. Our equations involve a vorticity stretching term and a non-local Biot-Savart law and provide insight into the underlying intrinsic mechanisms of singularity formation. We prove stable, controlled finite time blowup involving upper and lower bounds on the vorticity up to the time of blowup for a wide class of initial data.
The epigenetic basis of memory formation and storage.
Jarome, Timothy J; Thomas, Jasmyne S; Lubin, Farah D
2014-01-01
The formation of long-term memory requires a series of cellular and molecular changes that involve transcriptional regulation of gene expression. While these changes in gene transcription were initially thought to be largely regulated by the activation of transcription factors by intracellular signaling molecules, epigenetic mechanisms have emerged as an important regulator of transcriptional processes across multiple brain regions to form a memory circuit for a learned event or experience. Due to their self-perpetuating nature and ability to bidirectionally control gene expression, these epigenetic mechanisms have the potential to not only regulate initial memory formation but also modify and update memory over time. This chapter focuses on the established, but poorly understood, role for epigenetic mechanisms such as posttranslational modifications of histone proteins and DNA methylation at the different stages of memory storage. Additionally, this chapter emphasizes how these mechanisms interact to control the ideal epigenetic environment for memory formation and modification in neurons. The reader will gain insights into the limitations in our current understanding of epigenetic regulation of memory storage, especially in terms of their cell-type specificity and the lack of understanding in the interactions of various epigenetic modifiers to one another to impact gene expression changes during memory formation.
Eisman, Robert C.; Phelps, Melissa A. S.; Kaufman, Thomas
2015-01-01
The formation of the pericentriolar matrix (PCM) and a fully functional centrosome in syncytial Drosophila melanogaster embryos requires the rapid transport of Cnn during initiation of the centrosome replication cycle. We show a Cnn and Polo kinase interaction is apparently required during embryogenesis and involves the exon 1A-initiating coding exon, suggesting a subset of Cnn splice variants is regulated by Polo kinase. During PCM formation exon 1A Cnn-Long Form proteins likely bind Polo kinase before phosphorylation by Polo for Cnn transport to the centrosome. Loss of either of these interactions in a portion of the total Cnn protein pool is sufficient to remove native Cnn from the pool, thereby altering the normal localization dynamics of Cnn to the PCM. Additionally, Cnn-Short Form proteins are required for polar body formation, a process known to require Polo kinase after the completion of meiosis. Exon 1A Cnn-LF and Cnn-SF proteins, in conjunction with Polo kinase, are required at the completion of meiosis and for the formation of functional centrosomes during early embryogenesis. PMID:26447129
Eisman, Robert C; Phelps, Melissa A S; Kaufman, Thomas
2015-10-01
The formation of the pericentriolar matrix (PCM) and a fully functional centrosome in syncytial Drosophila melanogaster embryos requires the rapid transport of Cnn during initiation of the centrosome replication cycle. We show a Cnn and Polo kinase interaction is apparently required during embryogenesis and involves the exon 1A-initiating coding exon, suggesting a subset of Cnn splice variants is regulated by Polo kinase. During PCM formation exon 1A Cnn-Long Form proteins likely bind Polo kinase before phosphorylation by Polo for Cnn transport to the centrosome. Loss of either of these interactions in a portion of the total Cnn protein pool is sufficient to remove native Cnn from the pool, thereby altering the normal localization dynamics of Cnn to the PCM. Additionally, Cnn-Short Form proteins are required for polar body formation, a process known to require Polo kinase after the completion of meiosis. Exon 1A Cnn-LF and Cnn-SF proteins, in conjunction with Polo kinase, are required at the completion of meiosis and for the formation of functional centrosomes during early embryogenesis. Copyright © 2015 by the Genetics Society of America.
NASA Astrophysics Data System (ADS)
Liu, Tengyu; Huang, Dan Dan; Li, Zijun; Liu, Qianyun; Chan, ManNin; Chan, Chak K.
2018-04-01
The formation of secondary organic aerosol (SOA) has been widely studied in the presence of dry seed particles at low relative humidity (RH). At higher RH, initially dry seed particles can exist as wet particles due to water uptake by the seeds as well as the SOA. Here, we investigated the formation of SOA from the photooxidation of toluene using an oxidation flow reactor in the absence of NOx under a range of OH exposures on initially wet or dry ammonium sulfate (AS) seed particles at an RH of 68 %. The ratio of the SOA yield on wet AS seeds to that on dry AS seeds, the relative SOA yield, decreased from 1.31 ± 0.02 at an OH exposure of 4.66 × 1010 molecules cm-3 s to 1.01 ± 0.01 at an OH exposure of 5.28 × 1011 molecules cm-3 s. This decrease may be due to the early deliquescence of initially dry AS seeds after being coated by highly oxidized toluene-derived SOA. SOA formation lowered the deliquescence RH of AS and resulted in the uptake of water by both AS and SOA. Hence the initially dry AS seeds contained aerosol liquid water (ALW) soon after SOA formed, and the SOA yield and ALW approached those of the initially wet AS seeds as OH exposure and ALW increased, especially at high OH exposure. However, a higher oxidation state of the SOA on initially wet AS seeds than that on dry AS seeds was observed at all levels of OH exposure. The difference in mass fractions of m / z 29, 43 and 44 of SOA mass spectra, obtained using an aerosol mass spectrometer (AMS), indicated that SOA formed on initially wet seeds may be enriched in earlier-generation products containing carbonyl functional groups at low OH exposures and later-generation products containing acidic functional groups at high exposures. Our results suggest that inorganic dry seeds become at least partially deliquesced particles during SOA formation and hence that ALW is inevitably involved in the SOA formation at moderate RH. More laboratory experiments conducted with a wide variety of SOA precursors and inorganic seeds under different NOx and RH conditions are warranted.
NASA Astrophysics Data System (ADS)
Gunawardhana, M. L. P.; Hopkins, A. M.; Sharp, R. G.; Brough, S.; Taylor, E.; Bland-Hawthorn, J.; Maraston, C.; Tuffs, R. J.; Popescu, C. C.; Wijesinghe, D.; Jones, D. H.; Croom, S.; Sadler, E.; Wilkins, S.; Driver, S. P.; Liske, J.; Norberg, P.; Baldry, I. K.; Bamford, S. P.; Loveday, J.; Peacock, J. A.; Robotham, A. S. G.; Zucker, D. B.; Parker, Q. A.; Conselice, C. J.; Cameron, E.; Frenk, C. S.; Hill, D. T.; Kelvin, L. S.; Kuijken, K.; Madore, B. F.; Nichol, B.; Parkinson, H. R.; Pimbblet, K. A.; Prescott, M.; Sutherland, W. J.; Thomas, D.; van Kampen, E.
2011-08-01
The stellar initial mass function (IMF) describes the distribution in stellar masses produced from a burst of star formation. For more than 50 yr, the implicit assumption underpinning most areas of research involving the IMF has been that it is universal, regardless of time and environment. We measure the high-mass IMF slope for a sample of low-to-moderate redshift galaxies from the Galaxy and Mass Assembly survey. The large range in luminosities and galaxy masses of the sample permits the exploration of underlying IMF dependencies. A strong IMF-star formation rate dependency is discovered, which shows that highly star-forming galaxies form proportionally more massive stars (they have IMFs with flatter power-law slopes) than galaxies with low star formation rates. This has a significant impact on a wide variety of galaxy evolution studies, all of which rely on assumptions about the slope of the IMF. Our result is supported by, and provides an explanation for, the results of numerous recent explorations suggesting a variation of or evolution in the IMF.
García García, Tránsito; Ventroux, Magali; Derouiche, Abderahmane; Bidnenko, Vladimir; Correia Santos, Sara; Henry, Céline; Mijakovic, Ivan; Noirot-Gros, Marie-Françoise; Poncet, Sandrine
2018-01-01
Bacillus subtilis cells can adopt different life-styles in response to various environmental cues, including planktonic cells during vegetative growth, sessile cells during biofilm formation and sporulation. While switching life-styles, bacteria must coordinate the progression of their cell cycle with their physiological status. Our current understanding of the regulatory pathways controlling the decision-making processes and triggering developmental switches highlights a key role of protein phosphorylation. The regulatory mechanisms that integrate the bacterial chromosome replication status with sporulation involve checkpoint proteins that target the replication initiator DnaA or the kinase phosphorelay controlling the master regulator Spo0A. B. subtilis YabA is known to interact with DnaA to prevent over-initiation of replication during vegetative growth. Here, we report that YabA is phosphorylated by YabT, a Ser/Thr kinase expressed during sporulation and biofilm formation. The phosphorylation of YabA has no effect on replication initiation control but hyper-phosphorylation of YabA leads to an increase in sporulation efficiency and a strong inhibition of biofilm formation. We also provide evidence that YabA phosphorylation affects the level of Spo0A-P in cells. These results indicate that YabA is a multifunctional protein with a dual role in regulating replication initiation and life-style switching, thereby providing a potential mechanism for cross-talk and coordination of cellular processes during adaptation to environmental change. PMID:29619013
García García, Tránsito; Ventroux, Magali; Derouiche, Abderahmane; Bidnenko, Vladimir; Correia Santos, Sara; Henry, Céline; Mijakovic, Ivan; Noirot-Gros, Marie-Françoise; Poncet, Sandrine
2018-01-01
Bacillus subtilis cells can adopt different life-styles in response to various environmental cues, including planktonic cells during vegetative growth, sessile cells during biofilm formation and sporulation. While switching life-styles, bacteria must coordinate the progression of their cell cycle with their physiological status. Our current understanding of the regulatory pathways controlling the decision-making processes and triggering developmental switches highlights a key role of protein phosphorylation. The regulatory mechanisms that integrate the bacterial chromosome replication status with sporulation involve checkpoint proteins that target the replication initiator DnaA or the kinase phosphorelay controlling the master regulator Spo0A. B. subtilis YabA is known to interact with DnaA to prevent over-initiation of replication during vegetative growth. Here, we report that YabA is phosphorylated by YabT, a Ser/Thr kinase expressed during sporulation and biofilm formation. The phosphorylation of YabA has no effect on replication initiation control but hyper-phosphorylation of YabA leads to an increase in sporulation efficiency and a strong inhibition of biofilm formation. We also provide evidence that YabA phosphorylation affects the level of Spo0A-P in cells. These results indicate that YabA is a multifunctional protein with a dual role in regulating replication initiation and life-style switching, thereby providing a potential mechanism for cross-talk and coordination of cellular processes during adaptation to environmental change.
Epigenetic mechanisms of memory formation and reconsolidation.
Jarome, Timothy J; Lubin, Farah D
2014-11-01
Memory consolidation involves transcriptional control of genes in neurons to stabilize a newly formed memory. Following retrieval, a once consolidated memory destabilizes and again requires gene transcription changes in order to restabilize, a process referred to as reconsolidation. Understanding the molecular mechanisms of gene transcription during the consolidation and reconsolidation processes could provide crucial insights into normal memory formation and memory dysfunction associated with psychiatric disorders. In the past decade, modifications of epigenetic markers such as DNA methylation and posttranslational modifications of histone proteins have emerged as critical transcriptional regulators of gene expression during initial memory formation and after retrieval. In light of the rapidly growing literature in this exciting area of research, we here examine the most recent and latest evidence demonstrating how memory acquisition and retrieval trigger epigenetic changes during the consolidation and reconsolidation phases to impact behavior. In particular we focus on the reconsolidation process, where we discuss the already identified epigenetic regulators of gene transcription during memory reconsolidation, while exploring other potential epigenetic modifications that may also be involved, and expand on how these epigenetic modifications may be precisely and temporally controlled by important signaling cascades critical to the reconsolidation process. Finally, we explore the possibility that epigenetic mechanisms may serve to regulate a system or circuit level reconsolidation process and may be involved in retrieval-dependent memory updating. Hence, we propose that epigenetic mechanisms coordinate changes in neuronal gene transcription, not only during the initial memory consolidation phase, but are triggered by retrieval to regulate molecular and cellular processes during memory reconsolidation. Copyright © 2014 Elsevier Inc. All rights reserved.
Epigenetic Mechanisms of Memory Formation and Reconsolidation
Jarome, Timothy J.; Lubin, Farah D.
2014-01-01
Memory consolidation involves transcriptional control of genes in neurons to stabilize a newly formed memory. Following retrieval, a once consolidated memory destabilizes and again requires gene transcription changes in order to restabilize, a process referred to as reconsolidation. Understanding the molecular mechanisms of gene transcription during the consolidation and reconsolidation processes could provide crucial insights into normal memory formation and memory dysfunction associated with psychiatric disorders. In the past decade, modifications of epigenetic markers such as DNA methylation and posttranslational modifications of histone proteins have emerged as critical transcriptional regulators of gene expression during initial memory formation and after retrieval. In light of the rapidly growing literature in this exciting area of research, we here examine the most recent and latest evidence demonstrating how memory acquisition and retrieval trigger epigenetic changes during the consolidation and reconsolidation phases to impact behavior. In particular we focus on the reconsolidation process, where we discuss the already identified epigenetic regulators of gene transcription during memory reconsolidation, while exploring other potential epigenetic modifications that may also be involved, and expand on how these epigenetic modifications may be precisely and temporally controlled by important signaling cascades critical to the reconsolidation process. Finally, we explore the possibility that epigenetic mechanisms may serve to regulate a system or circuit level reconsolidation process and may be involved in retrieval-dependent memory updating. Hence, we propose that epigenetic mechanisms coordinate changes in neuronal gene transcription, not only during the initial memory consolidation phase, but are triggered by retrieval to regulate molecular and cellular processes during memory reconsolidation. PMID:25130533
Shear-Induced Amyloid Formation in the Brain: I. Potential Vascular and Parenchymal Processes.
Trumbore, Conrad N
2016-09-06
Shear distortion of amyloid-beta (Aβ) solutions accelerates amyloid cascade reactions that may yield different toxic oligomers than those formed in quiescent solutions. Recent experiments indicate that cerebrospinal fluid (CSF) and interstitial fluid (ISF) containing Aβ flow through narrow brain perivascular pathways and brain parenchyma. This paper suggests that such flow causes shear distortion of Aβ molecules involving conformation changes that may be one of the initiating events in the etiology of Alzheimer's disease. Aβ shearing can occur in or around brain arteries and arterioles and is suggested as the origin of cerebral amyloid angiopathy deposits in cerebrovascular walls. Comparatively low flow rates of ISF within the narrow extracellular spaces (ECS) of the brain parenchyma are suggested as a possible initiating factor in both the formation of neurotoxic Aβ42 oligomers and amyloid fibrils. Aβ42 in slow-flowing ISF can gain significant shear energy at or near the walls of tortuous brain ECS flow paths, promoting the formation of a shear-distorted, excited state hydrophobic Aβ42* conformation. This Aβ42* molecule could possibly be involved in one of two paths, one involving rapid adsorption to a brain membrane surface, ultimately forming neurotoxic oligomers on membranes, and the other ultimately forming plaque within the ECS flow pathways. Rising Aβ concentrations combined with shear at or near critical brain membranes are proposed as contributing factors to Alzheimer's disease neurotoxicity. These hypotheses may be applicable in other neurodegenerative diseases, including tauopathies and alpha-synucleinopathies, in which shear-distorted proteins also may form in the brain ECS.
A Critical Role of Platelet Adhesion in the Initiation of Atherosclerotic Lesion Formation
Massberg, Steffen; Brand, Korbinian; Grüner, Sabine; Page, Sharon; Müller, Elke; Müller, Iris; Bergmeier, Wolfgang; Richter, Thomas; Lorenz, Michael; Konrad, Ildiko; Nieswandt, Bernhard; Gawaz, Meinrad
2002-01-01
The contribution of platelets to the process of atherosclerosis remains unclear. Here, we show in vivo that platelets adhere to the vascular endothelium of the carotid artery in ApoE − / − mice before the development of manifest atherosclerotic lesions. Platelet–endothelial cell interaction involved both platelet glycoprotein (GP)Ibα and GPIIb-IIIa. Platelet adhesion to the endothelium coincides with inflammatory gene expression and preceded atherosclerotic plaque invasion by leukocytes. Prolonged blockade of platelet adhesion in ApoE − / − mice profoundly reduced leukocyte accumulation in the arterial intima and attenuated atherosclerotic lesion formation in the carotid artery bifurcation, the aortic sinus, and the coronary arteries. These findings establish the platelet as a major player in initiation of the atherogenetic process. PMID:12370251
Molecular requirements for actin-based lamella formation in Drosophila S2 cells
Rogers, Stephen L.; Wiedemann, Ursula; Stuurman, Nico; Vale, Ronald D.
2003-01-01
Cell migration occurs through the protrusion of the actin-enriched lamella. Here, we investigated the effects of RNAi depletion of ∼90 proteins implicated in actin function on lamella formation in Drosophila S2 cells. Similar to in vitro reconstitution studies of actin-based Listeria movement, we find that lamellae formation requires a relatively small set of proteins that participate in actin nucleation (Arp2/3 and SCAR), barbed end capping (capping protein), filament depolymerization (cofilin and Aip1), and actin monomer binding (profilin and cyclase-associated protein). Lamellae are initiated by parallel and partially redundant signaling pathways involving Rac GTPases and the adaptor protein Nck, which stimulate SCAR, an Arp2/3 activator. We also show that RNAi of three proteins (kette, Abi, and Sra-1) known to copurify with and inhibit SCAR in vitro leads to SCAR degradation, revealing a novel function of this protein complex in SCAR stability. Our results have identified an essential set of proteins involved in actin dynamics during lamella formation in Drosophila S2 cells. PMID:12975351
Chiang, Hsien-Hsien
2015-06-01
Although the free-floating discussion format is widely used in group therapy, the application of this format in the context of supervisory groups has yet to be clarified. The purpose of this study was to explore the mechanisms involved in facilitating and learning the free-floating discussion format in a supervisory group. A phenomenological approach was used to investigate the group content and personal feedback of a psychiatric-nurse supervisory group. The group held on 12 sessions. Each session was conducted once weekly and lasting 150 minutes. The findings identified the functions of free-floating discussions in the context of supervisory groups as: embodied interaction and initiation by handling. Embodied interaction included: reflection on the experience of the other, sense of body, and present action. Initiation by handling included: facilitating the self-narrative, following the lead of the group, and reflecting in accordance with the group. The role of the facilitator is to parallel process rather than to lead in order to produce practical wisdom. Free-floating discussion and self-evidence from initiation by handling has the potential to promote spontaneity, creativity, and self-confidence in clinical practice and to promote deep learning.
Evolutionary aspects of the development of teeth and baleen in the bowhead whale.
Thewissen, J G M; Hieronymus, Tobin L; George, John C; Suydam, Robert; Stimmelmayr, Raphaela; McBurney, Denise
2017-04-01
In utero, baleen whales initiate the development of several dozens of teeth in upper and lower jaws. These tooth germs reach the bell stage and are sometimes mineralized, but toward the end of prenatal life they are resorbed and no trace remains after birth. Around the time that the germs disappear, the keratinous baleen plates start to form in the upper jaw, and these form the food-collecting mechanism. Baleen whale ancestors had two generations of teeth and never developed baleen, and the prenatal teeth of modern fetuses are usually interpreted as an evolutionary leftover. We investigated the development of teeth and baleen in bowhead whale fetuses using histological and immunohistochemical evidence. We found that upper and lower dentition initially follow similar developmental pathways. As development proceeds, upper and lower tooth germs diverge developmentally. Lower tooth germs differ along the length of the jaw, reminiscent of a heterodont dentition of cetacean ancestors, and lingual processes of the dental lamina represent initiation of tooth bud formation of replacement teeth. Upper tooth germs remain homodont and there is no evidence of a secondary dentition. After these germs disappear, the oral epithelium thickens to form the baleen plates, and the protein FGF-4 displays a signaling pattern reminiscent of baleen plates. In laboratory mammals, FGF-4 is not involved in the formation of hair or palatal rugae, but it is involved in tooth development. This leads us to propose that the signaling cascade that forms teeth in most mammals has been exapted to be involved in baleen plate ontogeny in mysticetes. © 2017 Anatomical Society.
2010-01-01
The neurodegenerative potential of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and underlying mechanisms are under debate. Here, we show that MDMA is a substrate for CNS prostaglandin H synthase (PHS)-catalyzed bioactivation to a free radical intermediate that causes reactive oxygen species (ROS) formation and neurodegenerative oxidative DNA damage. In vitro PHS-1-catalyzed bioactivation of MDMA stereoselectively produced free radical intermediate formation and oxidative DNA damage that was blocked by the PHS inhibitor eicosatetraynoic acid. In vivo, MDMA stereoselectively caused gender-independent DNA oxidation and dopaminergic nerve terminal degeneration in several brain regions, dependent on regional PHS-1 levels. Conversely, MDMA-initiated striatal DNA oxidation, nerve terminal degeneration, and motor coordination deficits were reduced in PHS-1 +/− and −/− knockout mice in a gene dose-dependent fashion. These results confirm the neurodegenerative potential of MDMA and provide the first direct evidence for a novel molecular mechanism involving PHS-catalyzed formation of a neurotoxic MDMA free radical intermediate. PMID:22778832
Hammond, Karl D.; Wirth, Brian D.
2014-10-09
Here, we present atomistic simulations that show the effect of surface orientation on helium depth distributions and surface feature formation as a result of low-energy helium plasma exposure. We find a pronounced effect of surface orientation on the initial depth of implanted helium ions, as well as a difference in reflection and helium retention across different surface orientations. Our results indicate that single helium interstitials are sufficient to induce the formation of adatom/substitutional helium pairs under certain highly corrugated tungsten surfaces, such as {1 1 1}-orientations, leading to the formation of a relatively concentrated layer of immobile helium immediately belowmore » the surface. The energies involved for helium-induced adatom formation on {1 1 1} and {2 1 1} surfaces are exoergic for even a single adatom very close to the surface, while {0 0 1} and {0 1 1} surfaces require two or even three helium atoms in a cluster before a substitutional helium cluster and adatom will form with reasonable probability. This phenomenon results in much higher initial helium retention during helium plasma exposure to {1 1 1} and {2 1 1} tungsten surfaces than is observed for {0 0 1} or {0 1 1} surfaces and is much higher than can be attributed to differences in the initial depth distributions alone. Lastly, the layer thus formed may serve as nucleation sites for further bubble formation and growth or as a source of material embrittlement or fatigue, which may have implications for the formation of tungsten “fuzz” in plasma-facing divertors for magnetic-confinement nuclear fusion reactors and/or the lifetime of such divertors.« less
Dynamic chromatin changes associated with de novo centromere formation in maize euchromatin.
Su, Handong; Liu, Yalin; Liu, Yong-Xin; Lv, Zhenling; Li, Hongyao; Xie, Shaojun; Gao, Zhi; Pang, Junling; Wang, Xiu-Jie; Lai, Jinsheng; Birchler, James A; Han, Fangpu
2016-12-01
The inheritance and function of centromeres are not strictly dependent on any specific DNA sequence, but involve an epigenetic component in most species. CENH3, a centromere histone H3 variant, is one of the best-described epigenetic factors in centromere identity, but the chromatin features required during centromere formation have not yet been revealed. We previously identified two de novo centromeres on Zea mays (maize) minichromosomes derived from euchromatic sites with high-density gene distributions but low-density transposon distributions. The distribution of gene location and gene expression in these sites indicates that transcriptionally active regions can initiate de novo centromere formation, and CENH3 seeding shows a preference for gene-free regions or regions with no gene expression. The locations of the expressed genes detected were at relatively hypomethylated loci, and the altered gene expression resulted from de novo centromere formation, but not from the additional copy of the minichromosome. The initial overall DNA methylation level of the two de novo regions was at a low level, but increased substantially to that of native centromeres after centromere formation. These results illustrate the dynamic chromatin changes during euchromatin-originated de novo centromere formation, which provides insight into the mechanism of de novo centromere formation and regulation of subsequent consequences. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Unraveling the role of liquids during chondrule formation processes
NASA Astrophysics Data System (ADS)
Varela, Maria Eugenia; Zinner, Ernst
2018-01-01
The process/es involved in chondrule formation cover a wide range of mechanisms whose nature is still unknown. Our attention is focused on solar nebula processes mainly in untangling the origin of the initial liquid droplets that turn into chondrules. To do this, we start deciphering the processes under which the chondritic constituents of glass-rich, PO and POP chondrules from the Unequilibrated Ordinary Chondrite (UOC) Tieschitz L/H3.6 could have been formed. One constituent is the initial refractory liquid. This chilled liquid, presented as primary glass inclusions in olivine or as glass mesostasis, has trace element abundances with unfractionated patterns and lacks the chemical signature that is expected from a geochemical (liquid-crystal) fractionation. The unfractionated crystal-liquid distribution coefficients observed in the glass-rich, PO and POP chondrules indicate that formation of these objects was not dominated by an igneous process. In addition, the good correlation of elements with different geochemical and cosmochemical properties (e.g., Yb and La-Ce) that spread around the primordial ratio, indicate that a cosmochemical (condensation) instead of a geochemical process may have been involved in the origin of this refractory liquid. We end up discussing a secondary process: the alkali-Ca exchange reaction that could have taken place within a cooling nebula at sub-solidus temperatures. The extent to which these solid/gas exchange reactions took place will determine the final composition of the chondrules.
Waveguide coupling in the few-cycle regime
NASA Astrophysics Data System (ADS)
Leblond, Hervé; Terniche, Said
2016-04-01
We consider the coupling of two optical waveguides in the few-cycle regime. The analysis is performed in the frame of a generalized Kadomtsev-Petviashvili model. A set of two coupled modified Korteweg-de Vries equations is derived, and it is shown that three types of coupling can occur, involving the linear index, the dispersion, or the nonlinearity. The linear nondispersive coupling is investigated numerically, showing the formation of vector solitons. Separate pulses may be trapped together if they have not initially the same location, size, or phase, and even if their initial frequencies differ.
Involvement of Semaphorin (Sema4D) in T-Dependent Activation of B Cells.
Kuklina, Е М; Nekrasova, I V; Valieva, Yu V
2017-08-01
The involvement of endogenous semaphorin (Sema4D) into the key stage of T-dependent differentiation of B cells, formation of plasmoblasts, was demonstrated in vitro in T/B cell co-culture under conditions of polyclonal activation of T cells. The effect of semaphorin was not associated with activation of high-affinity Sema4D receptor plexin B1, but involves lowaffinity receptor CD72. These data indicate that Sema4D-dependent signal regulates not only the initial stage of B-cell activation, proliferative response to the antigen, but also further differentiation of B cells into plasma cells.
The Origin of Scales and Scaling Laws in Star Formation
NASA Astrophysics Data System (ADS)
Guszejnov, David; Hopkins, Philip; Grudich, Michael
2018-01-01
Star formation is one of the key processes of cosmic evolution as it influences phenomena from the formation of galaxies to the formation of planets, and the development of life. Unfortunately, there is no comprehensive theory of star formation, despite intense effort on both the theoretical and observational sides, due to the large amount of complicated, non-linear physics involved (e.g. MHD, gravity, radiation). A possible approach is to formulate simple, easily testable models that allow us to draw a clear connection between phenomena and physical processes.In the first part of the talk I will focus on the origin of the IMF peak, the characteristic scale of stars. There is debate in the literature about whether the initial conditions of isothermal turbulence could set the IMF peak. Using detailed numerical simulations, I will demonstrate that not to be the case, the initial conditions are "forgotten" through the fragmentation cascade. Additional physics (e.g. feedback) is required to set the IMF peak.In the second part I will use simulated galaxies from the Feedback in Realistic Environments (FIRE) project to show that most star formation theories are unable to reproduce the near universal IMF peak of the Milky Way.Finally, I will present analytic arguments (supported by simulations) that a large number of observables (e.g. IMF slope) are the consequences of scale-free structure formation and are (to first order) unsuitable for differentiating between star formation theories.
Akiyama, Takuya; Inouye, Sumiko; Komano, Teruya
2003-01-01
Myxococcus xanthus is a gram-negative soil bacterium that undergoes multicellular development upon nutrient starvation. In the present study, two novel developmental genes, fruC and fruD, of M. xanthus were identified and characterized. The FruD protein has significant amino acid sequence similarity to the DivIVA proteins of many bacteria including Bacillus subtilis. Vegetative cells of the fruD mutant exhibited a filamentous phenotype. The fruC and fruD mutants displayed similar delayed-development phenotypes. The formation of tightly aggregated mounds by fruC and fruD mutants was slower than that by the wild-type strain. Spore formation by the fruC and fruD mutants initiated after 30 h poststarvation, whereas wild-type M. xanthus initiated spore formation after 18 h. The fruCD genes were constitutively expressed as an operon during vegetative growth and development. S1 mapping revealed that transcription initiation sites of the fruCD operon were located 114 (P1) and 55 bp (P2) upstream of the fruC initiation codon. Only the P1 promoter was active during vegetative growth, while both the P1 and P2 promoters were active during development. The FruD protein was produced as a cytoplasmic protein and formed an oligomer during vegetative growth and development. PMID:12754229
Carduner, L; Leroy-Dudal, J; Picot, C R; Gallet, O; Carreiras, F; Kellouche, S
2014-08-01
At least one-third of patients with epithelial ovarian cancer (OC) present ascites at diagnosis and almost all have ascites at recurrence. The presence of ascites, which acts as a dynamic reservoir of active molecules and cellular components, correlates with the OC peritoneal metastasis and is associated with poor prognosis. Since epithelial-mesenchymal transition (EMT) is involved in different phases of OC progression, we have investigated the effect of the unique ascitic tumor microenvironment on the EMT status and the behavior of OC cells. The exposure of three OC cell lines to ascites leads to changes in cellular morphologies. Within ascites, OC cells harboring an initial intermediate epithelial phenotype are characterized by marked dislocation of epithelial markers (E-cadherin, ZO-1 staining) while OC cells initially harboring an intermediate mesenchymal phenotype strengthen their mesenchymal markers (N-cadherin, vimentin). Ascites differentially triggers a dissemination phenotype related to the initial cell features by either allowing the proliferation and the formation of spheroids and the extension of colonies for cells that present an initial epithelial intermediate phenotype, or favoring the migration of cells with a mesenchymal intermediate phenotype. In an ascitic microenvironment, a redeployment of αv integrins into cells was observed and the ascites-induced accentuation of the two different invasive phenotypes (i.e. spheroids formation or migration) was shown to involve αv integrins. Thus, ascites induces a shift toward an unstable intermediate state of the epithelial-mesenchymal spectrum and confers a more aggressive cell behavior that takes on a different pathway based on the initial epithelial-mesenchymal cell features.
Electron Microscope Study of Sporulation and Parasporal Crystal Formation in Bacillus thuringiensis
Bechtel, Donald B.; Bulla, Lee A.
1976-01-01
A comprehensive ultrastructural analysis of sporulation and parasporal crystal development is described for Bacillus thuringiensis. The insecticidal crystal of B. thuringiensis is initiated at the start of engulfment and is nearly complete by the time the exosporium forms. The crystal and a heretofore unobserved ovoid inclusion develop without any clear association with the forespore septum, exosporium, or mesosomes. These observations contradict previous hypotheses that the crystal is synthesized on the forespore membrane, exosporium, or mesosomes. Formation of forespore septa involves densely staining, double-membrane-bound, vesicular mesosomes that have a bridged appearance. Forespore engulfment is subpolar and also involves mesosomes. Upon completion of engulfment the following cytoplasmic changes occur: decrease in electron density of the incipient forespore membrane; loss of bridged appearance of incipient forespore membrane; change in stainability of incipient forespore, forespore, and mother cell cytoplasms; and alteration in staining quality of plasma membrane. These changes are involved in the conversion of the incipient forespore into a forespore and reflect “commitment” to sporulation. Images PMID:182671
Functional divergence of MYB-related genes, WEREWOLF and AtMYB23 in Arabidopsis.
Tominaga-Wada, Rumi; Nukumizu, Yuka; Sato, Shusei; Kato, Tomohiko; Tabata, Satoshi; Wada, Takuji
2012-01-01
Epidermal cell differentiation in Arabidopsis is studied as a model system to understand the mechanisms that determine the developmental end state of plant cells. MYB-related transcription factors are involved in cell fate determination. To examine the molecular basis of this process, we analyzed the functional relationship of two R2R3-type MYB genes, AtMYB23 (MYB23) and WEREWOLF (WER). MYB23 is involved in leaf trichome formation. WER represses root-hair formation. Swapping domains between MYB23 and WER, we found that a low homology region of MYB23 might be involved in ectopic trichome initiation on hypocotyls. MYB23 and all MYB23-WER (MW) chimeric transgenes rescued the increased root-hair phenotype of the wer-1 mutant. Although WER did not rescue the gl1-1 no-trichome phenotype, MYB23 and all MW chimeric transgenes rescued gl1-1. These results suggest that MYB23 acquired a specific function for trichome differentiation during evolution.
BetaPIX and GIT1 regulate HGF-induced lamellipodia formation and WAVE2 transport.
Morimura, Shigeru; Suzuki, Katsuo; Takahashi, Kazuhide
2009-05-08
Formation of lamellipodia is the first step during cell migration, and involves actin reassembly at the leading edge of migrating cells through the membrane transport of WAVE2. However, the factors that regulate WAVE2 transport to the cell periphery for initiating lamellipodia formation have not been elucidated. We report here that in human breast cancer MDA-MB-231 cells, the hepatocyte growth factor (HGF) induced the association between the constitutive complex of betaPIX and GIT1 with WAVE2, which was concomitant with the induction of lamellipodia formation and WAVE2 transport. Although depletion of betaPIX by RNA interference abrogated the HGF-induced WAVE2 transport and lamellipodia formation, GIT1 depletion caused HGF-independent WAVE2 transport and lamellipodia formation. Collectively, we suggest that betaPIX releases cells from the GIT1-mediated suppression of HGF-independent responses and recruits GIT1 to WAVE2, thereby facilitating HGF-induced WAVE2 transport and lamellipodia formation.
NASA Astrophysics Data System (ADS)
Philippot, C.; Bellavoine, M.; Dumont, M.; Hoummada, K.; Drillet, J.; Hebert, V.; Maugis, P.
2018-01-01
Compared with other dual-phase (DP) steels, initial microstructures of cold-rolled martensite-ferrite have scarcely been investigated, even though they represent a promising industrial alternative to conventional ferrite-pearlite cold-rolled microstructures. In this study, the influence of the heating rate (over the range of 1 to 10 K/s) on the development of microstructures in a microalloyed DP steel is investigated; this includes the tempering of martensite, precipitation of microalloying elements, recrystallization, and austenite formation. This study points out the influence of the degree of ferrite recrystallization prior to the austenite formation, as well as the importance of the cementite distribution. A low heating rate giving a high degree of recrystallization, leads to the formation of coarse austenite grains that are homogenously distributed in the ferrite matrix. However, a high heating rate leading to a low recrystallization degree, results in a banded-like structure with small austenite grains surrounded by large ferrite grains. A combined approach, involving relevant multiscale microstructural characterization and modeling to rationalize the effect of the coupled processes, highlights the role of the cold-worked initial microstructure, here a martensite-ferrite mixture: recrystallization and austenite formation commence in the former martensite islands before extending in the rest of the material.
Time-reversed, flow-reversed ballistics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zernow, L.; Chapyak, E. J.; Scheffler, D. R.
2001-01-01
Two-dimensional simulations of planar sheet jet formation are studied to examine the hydrodynamic issues involved when simulations are carried out in the inverse direction, that is, with reversed time and flow. Both a realistic copper equation of state and a shockless equation of state were used. These studies are an initial step in evaluating this technique as a ballistics design tool.
Formative Research and Teen SMART: Try, Try Again. Reports and Papers in Progress. Report No. 90-3.
ERIC Educational Resources Information Center
Ellis, Jan
"Teen SMART" is the working title of the high school age component of Operation SMART, a larger curriculum development project initiated by Girls Clubs of America, Inc. (GCA) to promote the participation of girls and young women in science, mathematics, and technology. Operation SMART seeks not only to attract and involve those girls who…
We've Come a Long Way Baby: Issues and Progress in National Collegiate Alcohol Awareness Week.
ERIC Educational Resources Information Center
Gonzalez, Gerardo M.
The initial planning of the first National Collegiate Alcohol Awareness Week is described, the formation of an official student group (BACCHUS) to confront the problem of alcohol abuse is noted, and the history of BACCHUS and of National Collegiate Alcohol Awareness Week is tracked. The controversy over the involvement of the alcoholic beverage…
NASA Astrophysics Data System (ADS)
Blawzdziewicz, Jerzy; Gao, Guo-Jie J.; Holcomb, Michael C.; Thomas, Jeffrey H.
The key process giving rise to ventral furrow formation (VFF) in Drosophila embryo is apical constriction of cells in the ventral region. The constriction produces negative spontaneous curvature of the cell layer. During the initial slower phase of VFF approximately 40% of cells constrict in a seemingly random order. We show that this initial phase of VFF does not depend on random uncorrelated events. Instead, constricted cell apices form well-defined correlated structures, i.e., cellular constriction chains (CCCs), indicative of strong spatial and directional correlations between the constriction events. We argue that this chain formation is a signature of mechanical signaling that coordinates apical constrictions through tensile stress. To gain insights into the mechanisms involved in this correlated constriction process, we propose an active granular fluid (AGF) model which considers a tissue as a collection of mechanically active, stress-responsive objects. Our AGF molecular dynamics simulations show that cell constriction sensitivity to tensile stress results in formation of CCCs whereas compressive-stress sensitivity leads to compact constricted cell clusters; the CCCs, which can penetrate less-active regions, increase the robustness of the VFF process.
Fujita, Hiroto; Kataoka, Yuka; Tobita, Seiji; Kuwahara, Masayasu; Sugimoto, Naoki
2016-07-19
We have developed a novel RNA detection method, termed signal amplification by ternary initiation complexes (SATIC), in which an analyte sample is simply mixed with the relevant reagents and allowed to stand for a short time under isothermal conditions (37 °C). The advantage of the technique is that there is no requirement for (i) heat annealing, (ii) thermal cycling during the reaction, (iii) a reverse transcription step, or (iv) enzymatic or mechanical fragmentation of the target RNA. SATIC involves the formation of a ternary initiation complex between the target RNA, a circular DNA template, and a DNA primer, followed by rolling circle amplification (RCA) to generate multiple copies of G-quadruplex (G4) on a long DNA strand like beads on a string. The G4s can be specifically fluorescence-stained with N(3)-hydroxyethyl thioflavin T (ThT-HE), which emits weakly with single- and double-stranded RNA/DNA but strongly with parallel G4s. An improved dual SATIC system, which involves the formation of two different ternary initiation complexes in the RCA process, exhibited a wide quantitative detection range of 1-5000 pM. Furthermore, this enabled visual observation-based RNA detection, which is more rapid and convenient than conventional isothermal methods, such as reverse transcription-loop-mediated isothermal amplification, signal mediated amplification of RNA technology, and RNA-primed rolling circle amplification. Thus, SATIC methodology may serve as an on-site and real-time measurement technique for transcriptomic biomarkers for various diseases.
Sojikul, Punchapat; Kongsawadworakul, Panida; Viboonjun, Unchera; Thaiprasit, Jittrawan; Intawong, Burapat; Narangajavana, Jarunya; Svasti, Mom Rajawong Jisnuson
2010-10-01
Cassava (Manihot esculenta Crantz) is a root crop that accumulates large quantities of starch, and it is an important source of carbohydrate. Study on gene expressions during storage root development provides important information on storage root formation and starch accumulation as well as unlock new traits for improving of starch yield. cDNA-Amplified Fragment Length Polymorphism (AFLP) was used to compare gene expression profiles in fibrous and storage roots of cassava cultivar Kasetsart 50. Total of 155 differentially expressed transcript-derived fragments with undetectable or low expression in leaves were characterized and classified into 11 groups regarding to their functions. The four major groups were no similarity (20%), hypothetical or unknown proteins (17%), cellular metabolism and biosynthesis (17%) and cellular communication and signaling (14%). Interestingly, sulfite reductase (MeKD82), calcium-dependent protein kinase (CDPK) (MeKD83), ent-kaurene synthase (KS) (MeKD106) and hexose transporter (HT) (MeKD154) showed root-specific expression patterns. This finding is consistent with previously reported genes involved in the initiation of potato tuber. Semi-quantitative reverse transcription polymerase chain reaction of early-developed root samples confirmed that those four genes exhibited significant expression with similar pattern in the storage root initiation and early developmental stages. We proposed that KS and HT may involve in transient induction of CDPK expression, which may play an important role in the signaling pathway of storage root initiation. Sulfite reductase, on the other hand, may involve in storage root development by facilitating sulfur-containing protein biosynthesis or detoxifying the cyanogenic glucoside content through aspartate biosynthesis. Copyright © Physiologia Plantarum 2010.
The Recruitment of Shifting and Inhibition in On-line Science and Mathematics Tasks.
Vosniadou, Stella; Pnevmatikos, Dimitrios; Makris, Nikos; Lepenioti, Despina; Eikospentaki, Kalliopi; Chountala, Anna; Kyrianakis, Giorgos
2018-06-13
Prior research has investigated the recruitment of inhibition in the use of science/mathematics concepts in tasks that require the rejection of a conflicting, nonscientific initial concept. The present research examines if inhibition is the only EF skill recruited in such tasks and investigates whether shifting is also involved. It also investigates whether inhibition and/or shifting are recruited in tasks in which the use of science/mathematics concepts does not require the rejection of an initial concept, or which require only the use of initial concepts. One hundred and thirty-three third- and fifth-grade children participated in two inhibition and shifting tasks and two science and mathematics conceptual understanding and conceptual change (CU&C) tasks. All the tasks were on-line, and performance was measured in accuracy and RTs. The CU&C tasks involved the use of initial concepts and of science/mathematics concepts which required conceptual changes for their initial formation. Only in one of the tasks the use of the science/mathematics concepts required the concurrent rejection of an initial concept. The results confirmed that in this task inhibition was recruited and also showed that the speed of shifting was a significant predictor of performance. Shifting was a significant predictor of performance in all the tasks, regardless of whether they involved science/mathematics or initial concepts. It is argued that shifting is likely to be recruited in complex tasks that require multiple comparisons of stimuli and the entertainment of different perspectives. Inhibition seems to be a more selective cognitive skill likely to be recruited when the use of science/mathematics concepts requires the rejection of a conflicting initial concept. © 2018 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Brown, James W. P.; Buell, Alexander K.; Michaels, Thomas C. T.; Meisl, Georg; Carozza, Jacqueline; Flagmeier, Patrick; Vendruscolo, Michele; Knowles, Tuomas P. J.; Dobson, Christopher M.; Galvagnion, Céline
2016-11-01
α-Synuclein is an intrinsically disordered protein that is associated with the pathogenesis of Parkinson’s disease through the processes involved in the formation of amyloid fibrils. α and β-synuclein are homologous proteins found at comparable levels in presynaptic terminals but β-synuclein has a greatly reduced propensity to aggregate and indeed has been found to inhibit α-synuclein aggregation. In this paper, we describe how sequence differences between α- and β-synuclein affect individual microscopic processes in amyloid formation. In particular, we show that β-synuclein strongly suppresses both lipid-induced aggregation and secondary nucleation of α-synuclein by competing for binding sites at the surfaces of lipid vesicles and fibrils, respectively. These results suggest that β-synuclein can act as a natural inhibitor of α-synuclein aggregation by reducing both the initiation of its self-assembly and the proliferation of its aggregates.
Cook, Troy A.
2013-01-01
Estimated ultimate recoveries (EURs) are a key component in determining productivity of wells in continuous-type oil and gas reservoirs. EURs form the foundation of a well-performance-based assessment methodology initially developed by the U.S. Geological Survey (USGS; Schmoker, 1999). This methodology was formally reviewed by the American Association of Petroleum Geologists Committee on Resource Evaluation (Curtis and others, 2001). The EUR estimation methodology described in this paper was used in the 2013 USGS assessment of continuous oil resources in the Bakken and Three Forks Formations and incorporates uncertainties that would not normally be included in a basic decline-curve calculation. These uncertainties relate to (1) the mean time before failure of the entire well-production system (excluding economics), (2) the uncertainty of when (and if) a stable hyperbolic-decline profile is revealed in the production data, (3) the particular formation involved, (4) relations between initial production rates and a stable hyperbolic-decline profile, and (5) the final behavior of the decline extrapolation as production becomes more dependent on matrix storage.
Independent modulation of collagen fibrillogenesis by decorin and lumican.
Neame, P J; Kay, C J; McQuillan, D J; Beales, M P; Hassell, J R
2000-05-01
The leucine-rich proteoglycans (also known as "small, leucine-rich proteoglycans," or SLRPs) lumican and decorin are thought to be involved in the regulation of collagen fibril assembly. Preparation of these proteoglycans in chemical amounts without exposure to denaturants has recently been achieved by infecting HT-1080 cells with vaccinia virus that contains an expression cassette for these molecules. Addition of lumican and decorin to a collagen fibrillogenesis assay based on turbidity demonstrated that lumican accelerated initial fibril formation while decorin retarded initial fibril formation. At the end of fibrillogenesis, both proteoglycans resulted in an overall reduced turbidity, suggesting that fibril diameter was lower. The presence of both proteoglycans had a synergistic effect, retarding fibril formation to a greater degree than either proteoglycan individually. Competitive binding studies showed that lumican did not compete for decorin-binding sites on collagen fibrils. Both proteoglycans increased the stability of fibrils to thermal denaturation to approximately the same degree. These studies show that lumican does not compete for decorin-binding sites on collagen, that decorin and lumican modulate collagen fibrillogenesis, and that, in the process, they also enhance collagen fibril stability.
Control of Glucose- and NaCl-Induced Biofilm Formation by rbf in Staphylococcus aureus
Lim, Yong; Jana, Malabendu; Luong, Thanh T.; Lee, Chia Y.
2004-01-01
Both Staphylococcus aureus and S. epidermidis are capable of forming biofilm on biomaterials. We used Tn917 mutagenesis to identify a gene, rbf, affecting biofilm formation in S. aureus NCTC8325-4. Sequencing revealed that Rbf contained a consensus region signature of the AraC/XylS family of regulators, suggesting that Rbf is a transcriptional regulator. Insertional duplication inactivation of the rbf gene confirmed that the gene was involved in biofilm formation on polystyrene and glass. Phenotypic analysis of the wild type and the mutant suggested that the rbf gene mediates the biofilm formation of S. aureus at the multicellular aggregation stage rather than at initial attachment. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated that the mutation resulted in the loss of an ∼190-kDa protein. Biofilm production by the mutant could be restored by complementation with a 2.5-kb DNA fragment containing the rbf gene. The rbf-specific mutation affected the induction of biofilm formation by glucose and a high concentration of NaCl but not by ethanol. The mutation did not affect the transcription of the ica genes previously shown to be required for biofilm formation. Taken together, our results suggest that the rbf gene is involved in the regulation of the multicellular aggregation step of S. aureus biofilm formation in response to glucose and salt and that this regulation may be mediated through the 190-kDa protein. PMID:14729698
An, Seong Jin; Li, Jianlin; Daniel, Claus; ...
2016-04-09
An in-depth review is presented on the science of lithium-ion battery (LIB) solid electrolyte interphase (SEI) formation on the graphite anode, including structure, morphology, chemical composition, electrochemistry, formation mechanism, and LIB formation cycling. During initial operation of LIBs, the SEI layer forms on the graphite surfaces, the most commonly used anode material, due to side reactions with the electrolyte solvent/salt at low electro-reduction potentials. It is accepted that the SEI layer is essential to the long-term performance of LIBs, and it also has an impact on its initial capacity loss, self-discharge characteristics, cycle life, rate capability, and safety. While themore » presence of the anode SEI layer is vital, it is difficult to control its formation and growth, as the chemical composition, morphology, and stability depend on several factors. These factors include the type of graphite, electrolyte composition, electrochemical conditions, and cell temperature. Thus, SEI layer formation and electrochemical stability over long-term operation should be a primary topic of future investigation in the development of LIB technology. We review the progression of knowledge gained about the anode SEI, from its discovery in 1979 to the current state of understanding, and covers its formation process, differences in the chemical and structural makeup when cell materials and components are varied, methods of characterization, and associated reactions with the liquid electrolyte phase. It also discusses the relationship of the SEI layer to the LIB formation step, which involves both electrolyte wetting and subsequent slow charge-discharge cycles to grow the SEI.« less
A Simple, Powerful Method for Optimal Guidance of Spacecraft Formations
NASA Technical Reports Server (NTRS)
Hughes, Steven P.
2005-01-01
One of the most interesting and challenging aspects of formation guidance law design is the coupling of the orbit design and the science return. The analyst s role is more complicated than simply to design the formation geometry and evolution. He or she is also involved in designing a significant portion of the science instrument itself. The effectiveness of the formation as a science instrument is intimately coupled with the relative geoniet,ry and evolution of the collection of spacecraft. Therefore, the science return can be maximized by optimizing the orbit design according to a performance metric relevant to the science mission goals. In this work, we present a simple method for optimal formation guidance that is applicable to missions whose performance metric, requirements, and constraints can be cast as functions that are explicitly dependent upon the orbit states and spacecraft relative positions and velocities. We present a general form for the cost and constraint functions, and derive their semi-analytic gradients with respect to the formation initial conditions. The gradients are broken down into two types. The first type are gradients of the mission specific performance metric with respect to formation geometry. The second type are derivatives of the formation geometry with respect to the orbit initial conditions. The fact that these two types of derivatives appear separately allows us to derive and implement a general framework that requires minimal modification to be applied to different missions or mission phases. To illustrate the applicability of the approach, we conclude with applications to twc missims: the Magnetospheric Mu!tiscale mission (MMS), a,nd the TJaser Interferometer Space Antenna (LISA).
A Simple, Powerful Method for Optimal Guidance of Spacecraft Formations
NASA Technical Reports Server (NTRS)
Hughes, Steven P.
2006-01-01
One of the most interesting and challenging aspects of formation guidance law design is the coupling of the orbit design and the science return. The analyst's role is more complicated than simply to design the formation geometry and evolution. He or she is also involved in designing a significant portion of the science instrument itself. The effectiveness of the formation as a science instrument is intimately coupled with the relative geometry and evolution of the collection of spacecraft. Therefore, the science return can be maximized by optimizing the orbit design according to a performance metric relevant to the science mission goals. In this work, we present a simple method for optimal formation guidance that is applicable to missions whose performance metric, requirements, and constraints can be cast as functions that are explicitly dependent upon the orbit states and spacecraft relative positions and velocities. We present a general form for the cost and constraint functions, and derive their semi-analytic gradients with respect to the formation initial conditions. The gradients are broken down into two types. The first type are gradients of the mission specific performance metric with respect to formation geometry. The second type are derivatives of the formation geometry with respect to the orbit initial conditions. The fact that these two types of derivatives appear separately allows us to derive and implement a general framework that requires minimal modification to be applied to different missions or mission phases. To illustrate the applicability of the approach, we conclude with applications to two missions: the Magnetospheric Multiscale mission (MMS) , and the Laser Interferometer Space Antenna (LISA).
Cancers develop when cells accumulate DNA mutations that allow them to grow and divide inappropriately. Thus, proteins involved in repairing DNA damage are generally suppressors of cancer formation, and their expression is often lost in the early stages of cancer initiation. In contrast, cancer stem cells, like their normal counterparts, must retain their ability to
Li, Hui; Xu, Fangying; Li, Si; Zhong, Anjing; Meng, Xianwen; Lai, Maode
2016-01-01
ABSTRACT Tumor budding occurs at the invasive front of cancer; the tumor cells involved have metastatic and stemness features, indicating a poor prognosis. Tumor budding is partly responsible for cancer metastasis, and its initiation is based on the epithelial-mesenchymal transition (EMT) process. The EMT process involves the conversion of epithelial cells into migratory and invasive cells, and is a profound event in tumorigenesis. The EMT, associated with the formation of cancer stem cells (CSCs) and resistance to therapy, results from a combination of gene mutation, epigenetic regulation, and microenvironmental control. Tumor budding can be taken to represent the EMT in vivo. The EMT process is under the influence of the tumor microenvironment as well as tumor cells themselves. Here, we demonstrate that the tumor microenvironment dominates EMT development and impacts cancer metastasis, as well as promotes CSC formation and mediates drug resistance. In this review, we mainly discuss components of the microenvironment, such as the extracellular matrix (ECM), inflammatory cytokines, metabolic products, and hypoxia, that are involved in and impact on the acquisition of tumor-cell motility and dissemination, the EMT, metastatic tumor-cell formation, tumor budding and CSCs, and cancer metastasis, including subsequent chemo-resistance. From our point of view, the tumor microenvironment now constitutes a promising target for cancer therapy. PMID:26743180
Abdel-Halim, H I; Natarajan, A T; Mullenders, L H F; Boei, J J W A
2005-04-15
Chromatid interchanges induced by the DNA cross-linking agent mitomycin C (MMC) are over-represented in human chromosomes containing large heterochromatic regions. We found that nearly all exchange breakpoints of chromosome 9 are located within the paracentromeric heterochromatin and over 70% of exchanges involving chromosome 9 are between its homologues. We provide evidence that the required pairing of chromosome 9 heterochromatic regions occurs in G(0)/G(1) and S-phase cells as a result of an active cellular process initiated upon MMC treatment. By contrast, no pairing was observed for a euchromatic paracentromeric region of the equal-sized chromosome 8. The MMC-induced pairing of chromosome 9 heterochromatin is observed in a subset of cells; its percentage closely mimics the frequency of homologous interchanges found at metaphase. Moreover, the absence of pairing in cells derived from XPF patients correlates with an altered spectrum of MMC-induced exchanges. Together, the data suggest that the heterochromatin-specific pairing following MMC treatment reflects the initiation of DNA cross-link repair and the formation of exchanges.
Wang, Chia-Fang; Hsing, Hsiang-Wei; Zhuang, Zi-Hui; Wen, Meng-Hsuan; Chang, Wei-Jen; Briz, Carlos G; Nieto, Marta; Shyu, Bai Chuang; Chou, Shen-Ju
2017-01-24
Cortical neurons must be specified and make the correct connections during development. Here, we examine a mechanism initiating neuronal circuit formation in the barrel cortex, a circuit comprising thalamocortical axons (TCAs) and layer 4 (L4) neurons. When Lhx2 is selectively deleted in postmitotic cortical neurons using conditional knockout (cKO) mice, L4 neurons in the barrel cortex are initially specified but fail to form cellular barrels or develop polarized dendrites. In Lhx2 cKO mice, TCAs from the thalamic ventral posterior nucleus reach the barrel cortex but fail to further arborize to form barrels. Several activity-regulated genes and genes involved in regulating barrel formation are downregulated in the Lhx2 cKO somatosensory cortex. Among them, Btbd3, an activity-regulated gene controlling dendritic development, is a direct downstream target of Lhx2. We find that Lhx2 confers neuronal competency for activity-dependent dendritic development in L4 neurons by inducing the expression of Btbd3. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Simonetti, Angelita; Marzi, Stefano; Billas, Isabelle M. L.; Tsai, Albert; Fabbretti, Attilio; Myasnikov, Alexander G.; Roblin, Pierre; Vaiana, Andrea C.; Hazemann, Isabelle; Eiler, Daniel; Steitz, Thomas A.; Puglisi, Joseph D.; Gualerzi, Claudio O.; Klaholz, Bruno P.
2013-01-01
Translation initiation factor 2 (IF2) promotes 30S initiation complex (IC) formation and 50S subunit joining, which produces the 70S IC. The architecture of full-length IF2, determined by small angle X-ray diffraction and cryo electron microscopy, reveals a more extended conformation of IF2 in solution and on the ribosome than in the crystal. The N-terminal domain is only partially visible in the 30S IC, but in the 70S IC, it stabilizes interactions between IF2 and the L7/L12 stalk of the 50S, and on its deletion, proper N-formyl-methionyl(fMet)-tRNAfMet positioning and efficient transpeptidation are affected. Accordingly, fast kinetics and single-molecule fluorescence data indicate that the N terminus promotes 70S IC formation by stabilizing the productive sampling of the 50S subunit during 30S IC joining. Together, our data highlight the dynamics of IF2-dependent ribosomal subunit joining and the role played by the N terminus of IF2 in this process. PMID:24029017
Ahkami, Amirhossein; Scholz, Uwe; Steuernagel, Burkhard; Strickert, Marc; Haensch, Klaus-Thomas; Druege, Uwe; Reinhardt, Didier; Nouri, Eva; von Wirén, Nicolaus; Franken, Philipp; Hajirezaei, Mohammad-Reza
2014-01-01
To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.
Ahkami, Amirhossein; Scholz, Uwe; Steuernagel, Burkhard; Strickert, Marc; Haensch, Klaus-Thomas; Druege, Uwe; Reinhardt, Didier; Nouri, Eva; von Wirén, Nicolaus; Franken, Philipp; Hajirezaei, Mohammad-Reza
2014-01-01
To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase. PMID:24978694
Endocrinology of human parturition.
Vannuccini, Silvia; Bocchi, Caterina; Severi, Filiberto M; Challis, John R; Petraglia, Felice
2016-06-01
The mechanisms involved in human pregnancy maintenance and parturition are highly complex and involve mother, fetus and placenta. The "final common pathway" to delivery is composed by inflammatory and endocrine interactive paths that tip the balance in favor of coordinated uterine contractility and cervical dilation. These mechanisms involve a shift from progesterone to estrogen dominance, CRH action, increased sensitivity to oxytocin, gap junction formation, and increased prostaglandins activity. Complementary changes in the cervix involve a decrease in progesterone dominance and the actions of prostaglandins and relaxin, via connective tissue alterations, leading to cervical softening and dilation. Neuronal, hormonal, inflammatory and immune pathways participate in initiation of labor and the utero-placental unit plays a major role in the synthesis and release of parturition mediators. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Decomposition of the polycyclic nitramine explosive, CL-20, by Fe(0).
Balakrishnan, Vimal K; Monteil-Rivera, Fanny; Halasz, Annamaria; Corbeanu, Aurelian; Hawari, Jalal
2004-12-15
CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane), C6H6N12O12, is an emerging energetic chemical that may replace RDX, but its degradation pathways are not well-known. In the present study, zerovalent iron was used to degrade CL-20 with the aim of determining its products and degradation pathways. In the absence of O2, CL-20 underwent a rapid decomposition with the concurrent formation of nitrite to ultimately produce nitrous oxide, ammonium, formate, glyoxal, and glycolate. LC/MS (ES-) showed the presence of several key products carrying important information on the initial reactions involved in the degradation of CL-20. For instance, a doubly denitrated intermediate of CL-20 was detected together with the mono- and dinitroso derivatives of the energetic chemical. Two other intermediates with [M-H]- at 392 and 376 Da, matching empirical formulas of C6H7N11O10 and C6H7N11O9, respectively, were detected. Using 15N-labeled CL-20, the two intermediates were tentatively identified as the denitrohydrogenated products of CL-20 and its mononitroso derivative, respectively. The present experimental findings suggest that CL-20 degraded via at least two initial routes: one involving denitration and the second involving sequential reduction of the N-NO2 to the corresponding nitroso (N-NO) derivatives prior to denitration and ring cleavage.
Fritzsche, Marco; Fernandes, Ricardo A.; Chang, Veronica T.; Colin-York, Huw; Clausen, Mathias P.; Felce, James H.; Galiani, Silvia; Erlenkämper, Christoph; Santos, Ana M.; Heddleston, John M.; Pedroza-Pacheco, Isabela; Waithe, Dominic; de la Serna, Jorge Bernardino; Lagerholm, B. Christoffer; Liu, Tsung-li; Chew, Teng-Leong; Betzig, Eric; Davis, Simon J.; Eggeling, Christian
2017-01-01
T cell activation and especially trafficking of T cell receptor microclusters during immunological synapse formation are widely thought to rely on cytoskeletal remodeling. However, important details on the involvement of actin in the latter transport processes are missing. Using a suite of advanced optical microscopes to analyze resting and activated T cells, we show that, following contact formation with activating surfaces, these cells sequentially rearrange their cortical actin across the entire cell, creating a previously unreported ramifying actin network above the immunological synapse. This network shows all the characteristics of an inward-growing transportation network and its dynamics correlating with T cell receptor rearrangements. This actin reorganization is accompanied by an increase in the nanoscale actin meshwork size and the dynamic adjustment of the turnover times and filament lengths of two differently sized filamentous actin populations, wherein formin-mediated long actin filaments support a very flat and stiff contact at the immunological synapse interface. The initiation of immunological synapse formation, as highlighted by calcium release, requires markedly little contact with activating surfaces and no cytoskeletal rearrangements. Our work suggests that incipient signaling in T cells initiates global cytoskeletal rearrangements across the whole cell, including a stiffening process for possibly mechanically supporting contact formation at the immunological synapse interface as well as a central ramified transportation network apparently directed at the consolidation of the contact and the delivery of effector functions. PMID:28691087
Yuan, Jun; Zhang, Nan; Huang, Qiwei; Raza, Waseem; Li, Rong; Vivanco, Jorge M.; Shen, Qirong
2015-01-01
The successful colonization of plant growth promoting rhizobacteria (PGPR) in the rhizosphere is an initial and compulsory step in the protection of plants from soil-borne pathogens. Therefore, it is necessary to evaluate the role of root exudates in the colonization of PGPR. Banana root exudates were analyzed by high pressure liquid chromatography (HPLC) which revealed exudates contained several organic acids (OAs) including oxalic, malic and fumaric acid. The chemotactic response and biofilm formation of Bacillus amyloliquefaciens NJN-6 were investigated in response to OA’s found in banana root exudates. Furthermore, the transcriptional levels of genes involved in biofilm formation, yqxM and epsD, were evaluated in response to OAs via quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Results suggested that root exudates containing the OAs both induced the chemotaxis and biofilm formation in NJN-6. In fact, the strongest chemotactic and biofilm response was found when 50 μM of OAs were applied. More specifically, malic acid showed the greatest chemotactic response whereas fumaric acid significantly induced biofilm formation by a 20.7–27.3% increase and therefore biofilm formation genes expression. The results showed banana root exudates, in particular the OAs released, play a crucial role in attracting and initiating PGPR colonization on the host roots. PMID:26299781
Yan, Dan; He, Yujuan; Dai, Jun; Yang, Lili; Wang, Xiaoyan; Ruan, Qiurong
2017-06-30
Macrophages are largely involved in the whole process of atherosclerosis from an initiation lesion to an advanced lesion. Endothelial disruption is the initial step and macrophage-derived foam cells are the hallmark of atherosclerosis. Promotion of vascular integrity and inhibition of foam cell formation are two important strategies for preventing atherosclerosis. How can we inhibit even the reverse negative role of macrophages in atherosclerosis? The present study was performed to investigate if overexpressing endogenous human vascular endothelial growth factor (VEGF) could facilitate transdifferentiation of macrophages into endothelial-like cells (ELCs) and inhibit foam cell formation. We demonstrated that VEGF-modified macrophages which stably overexpressed human VEGF (hVEGF 165 ) displayed a high capability to alter their phenotype and function into ELCs in vitro Exogenous VEGF could not replace endogenous VEGF to induce the transdifferentiation of macrophages into ELCs in vitro We further showed that VEGF-modified macrophages significantly decreased cytoplasmic lipid accumulation after treatment with oxidized LDL (ox-LDL). Moreover, down-regulation of CD36 expression in these cells was probably one of the mechanisms of reduction in foam cell formation. Our results provided the in vitro proof of VEGF-modified macrophages as atheroprotective therapeutic cells by both promotion of vascular repair and inhibition of foam cell formation. © 2017 The Author(s).
Microarray Analyses of Gene Expression during Adventitious Root Development in Pinus contorta1[w
Brinker, Monika; van Zyl, Leonel; Liu, Wenbin; Craig, Deborah; Sederoff, Ronald R.; Clapham, David H.; von Arnold, Sara
2004-01-01
In order to investigate the gene expression pattern during adventitious root development, RNA of Pinus contorta hypocotyls, pulse-treated with the auxin indole-3-butyric acid and harvested at distinct developmental time points of root development, was hybridized to microarrays containing 2,178 cDNAs from Pinus taeda. Over the period of observation of root development, the transcript levels of 220 genes changed significantly. During the root initiation phase, genes involved in cell replication and cell wall weakening and a transcript encoding a PINHEAD/ZWILLE-like protein were up-regulated, while genes related to auxin transport, photosynthesis, and cell wall synthesis were down-regulated. In addition, there were changes in transcript abundance of genes related to water stress. During the root meristem formation phase the transcript abundances of genes involved in auxin transport, auxin responsive transcription, and cell wall synthesis, and of a gene encoding a B-box zinc finger-like protein, increased, while those encoding proteins involved in cell wall weakening decreased. Changes of transcript abundance of genes related to water stress during the root meristem formation and root formation phase indicate that the plant roots had become functional in water transport. Simultaneously, genes involved in auxin transport were up-regulated, while genes related to cell wall modification were down-regulated. Finally, during the root elongation phase down-regulation of transcripts encoding proteins involved in cell replication and stress occurred. Based on the observed changes in transcript abundances, we suggest hypotheses about the relative importance of various physiological processes during the auxin-induced development of roots in P. contorta. PMID:15247392
The intimate genetics of Drosophila fertilization
Loppin, Benjamin; Dubruille, Raphaëlle; Horard, Béatrice
2015-01-01
The union of haploid gametes at fertilization initiates the formation of the diploid zygote in sexually reproducing animals. This founding event of embryogenesis includes several fascinating cellular and nuclear processes, such as sperm–egg cellular interactions, sperm chromatin remodelling, centrosome formation or pronuclear migration. In comparison with other aspects of development, the exploration of animal fertilization at the functional level has remained so far relatively limited, even in classical model organisms. Here, we have reviewed our current knowledge of fertilization in Drosophila melanogaster, with a special emphasis on the genes involved in the complex transformation of the fertilizing sperm nucleus into a replicated set of paternal chromosomes. PMID:26246493
Some issues associated with the formation of the Saturnian system
NASA Technical Reports Server (NTRS)
Lunine, Jonathan I.
1992-01-01
Three of the current issues associated with the formation of the Saturn system which involve significant controversy and uncertainty and which bear on the formation of Titan itself are outlined: the notion that the formation of Jupiter and Saturn are well constrained is challenged by recent internal models, which suggest possible significant differences in the composition of planetesimals which formed the two bodies; the composition of volatile ices which was the source of the Saturnian satellites was likely a complex mix of relatively pristine solids from the collapsing interstellar cloud, gas and solid material processed in the solar nebula and material chemically processed in a nebula around Saturn or in the primitive Saturn atmosphere itself; the deuterium enhancement in Titan's atmosphere, which initially appeared to be sufficiently large that it must be a signature of pristine interstellar material, could in fact be largely due to photochemical evolution of Titan's atmosphere.
Mechanisms of Bone Mineralization and Effects of Mechanical Loading
NASA Technical Reports Server (NTRS)
Babich, Michael
1996-01-01
The data suggest that PTH and PKC inhibit nodule formation, and that alternative energy sources are utilized by osteoblasts in the process of mineralization. The conditions and techniques to grow, fix, photograph, and measure bone mineralization in vitro were defined. The results are presently in preliminary form and require further assessment as follows; quantitate the surface area of nodules + treatments via computer-aided image analysis; use PTH + inhibitors of signaling pathways to determine the mechanism of nodule formation; determine how protein kinase C is involved as a promotor of nodule formation; cell proliferation vs. cell death affected by modulation of signal transduction (i.e., PTH, enzyme inhibitors and activators); identify mRNA induced or decreased in response to PTH and signaling modulators that encode proteins that regulate cell morphology, proliferation, and nodule formation. Therefore, several follow-up studies between the laboratories at NASA-Ames Research Center and my laboratory at the University of Illinois have been initiated.
Xing, Li-Bo; Zhang, Dong; Li, You-Mei; Shen, Ya-Wen; Zhao, Cai-Ping; Ma, Juan-Juan; An, Na; Han, Ming-Yu
2015-10-01
Flower induction in apple (Malus domestica Borkh.) is regulated by complex gene networks that involve multiple signal pathways to ensure flower bud formation in the next year, but the molecular determinants of apple flower induction are still unknown. In this research, transcriptomic profiles from differentiating buds allowed us to identify genes potentially involved in signaling pathways that mediate the regulatory mechanisms of flower induction. A hypothetical model for this regulatory mechanism was obtained by analysis of the available transcriptomic data, suggesting that sugar-, hormone- and flowering-related genes, as well as those involved in cell-cycle induction, participated in the apple flower induction process. Sugar levels and metabolism-related gene expression profiles revealed that sucrose is the initiation signal in flower induction. Complex hormone regulatory networks involved in cytokinin (CK), abscisic acid (ABA) and gibberellic acid pathways also induce apple flower formation. CK plays a key role in the regulation of cell formation and differentiation, and in affecting flowering-related gene expression levels during these processes. Meanwhile, ABA levels and ABA-related gene expression levels gradually increased, as did those of sugar metabolism-related genes, in developing buds, indicating that ABA signals regulate apple flower induction by participating in the sugar-mediated flowering pathway. Furthermore, changes in sugar and starch deposition levels in buds can be affected by ABA content and the expression of the genes involved in the ABA signaling pathway. Thus, multiple pathways, which are mainly mediated by crosstalk between sugar and hormone signals, regulate the molecular network involved in bud growth and flower induction in apple trees. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
Constitutional abnormalities of chromosome 21 predispose to iAMP21-acute lymphoblastic leukaemia.
Harrison, Christine J; Schwab, Claire
2016-03-01
In addition to Down syndrome, individuals with other constitutional abnormalities of chromosome 21 have an increased risk of developing childhood acute lymphoblastic leukaemia (ALL). Specifically, carriers of the Robertsonian translocation between chromosomes 15 and 21, rob(15;21) (q10; q10)c, have ∼2,700 increased risk of developing ALL with iAMP21 (intrachromosomal amplification of chromosome 21). In these patients, chromosome 15 as well as chromosome 21 is involved in the formation of iAMP21, referred to here as der(21)(15;21). Individuals with constitutional ring chromosomes involving chromosome 21, r(21)c, are also predisposed to iAMP21-ALL, involving the same series of mutational processes as seen in sporadic- and der(21)(15;21)-iAMP21 ALL. Evidence is accumulating that the dicentric nature of the Robertsonian and ring chromosome is the initiating factor in the formation of the complex iAMP21 structure. Unravelling these intriguing predispositions to iAMP21-ALL may provide insight into how other complex rearrangements arise in cancer. Copyright © 2016. Published by Elsevier Masson SAS.
Potential Chemical Systems for Intramolecular Cycloaddition Cures
1979-05-01
allowed electrocyclic photochemical ring closure of stilbene to dihydrophenanthrene is well known (Reference 12). The presence of an oxidant , e.g...CH (c) R 3 0 00 > 0 I I (42) The keto-diynes 36 follow a uniform reaction pathway with chlorotris- ( triphenylphosphine )rhodium[I] to yield the...Irradiation of 36b similarly gives 49. The mechanism proposed for the photochemical reaction involves an initial formation of the reactive cyclobutadiene by
Francis, J L; Biggerstaff, J; Amirkhosravi, A
1998-01-01
There is considerable evidence that the hemostatic system is involved in the growth and spread of malignant disease. There is an increased incidence of thromboembolic disease in patients with cancers and hemostatic abnormalities are extremely common in such patients. Antihemostatic agents have been successfully used to treat a variety of experimental tumors, and several clinical trials in humans have been initiated. Although metastasis is undoubtedly multifactorial, intravascular coagulation activation and peritumor fibrin deposition seem to be important. The mechanisms by which hemostatic activation facilitates the malignant process remain to be completely elucidated. Of central importance may be the presence on malignant cells of tissue factor and urokinase receptor. Recent studies have suggested that these proteins, and others, may be involved at several stages of metastasis, including the key event of neovascularization. Tissue factor, the principal initiator of coagulation, may have additional roles, outside of fibrin formation, that are central to the biology of some solid tumors.
NASA Astrophysics Data System (ADS)
Zhao, Qiangli; Wang, Weina; Liu, Fengyi; Lü, Jian; Wang, Wenliang
2017-10-01
To better understand the formation mechanism of oligomeric hydroxyalkyl hydroperoxides HOROO(SCI)nH composed of stabilized Criegee intermediate (SCI) as a chain unit, the reactions of SCI with hydroxyalkyl hydroperoxides (HOROOH) and hydroxyalkylperoxy radical (HORO2) as well as HO2 radical were investigated. For the reactions of HORO2 + SCI, two preferred pathways involving a SCI insertion in HOROOH hydroperoxide bond can be found, and the formation of HOROO(SCI)H is the dominant pathway in the reaction of HOCH2(CH3)2COOH + (CH3)2COO. The structures of the HORO2, HOROOH as well as the SCIs play a crucial role in determining the reactivity of the oligomerization. Both the reactions of HORO2 + SCI + HO2 and HOROOH + SCI could be the source of the processors to the formation of secondary organic aerosol (SOA). But from the point of free energy barriers, the formation of HOROO(SCI)H prefers to follow the mechanism involving initiation by the reaction of a HORO2 and a SCI, sequential addition of SCIs, and termination by reaction with the HO2 radical. The rate coefficients show negative temperature dependence and vary in different systems depending on the reactants. The reaction process and constituents of the products can be regulated by temperature and reactants.
Biogenic amines in fish: roles in intoxication, spoilage, and nitrosamine formation--a review.
Al Bulushi, Ismail; Poole, Susan; Deeth, Hilton C; Dykes, Gary A
2009-04-01
Biogenic amines are non-volatile amines formed by decarboxylation of amino acids. Although many biogenic amines have been found in fish, only histamine, cadaverine, and putrescine have been found to be significant in fish safety and quality determination. Despite a widely reported association between histamine and scombroid food poisoning, histamine alone appears to be insufficient to cause food toxicity. Putrescine and cadaverine have been suggested to potentiate histamine toxicity. With respect to spoilage on the other hand, only cadaverine has been found to be a useful index of the initial stage of fish decomposition. The relationship between biogenic amines, sensory evaluation, and trimethylamine during spoilage are influenced by bacterial composition and free amino acid content. A mesophilic bacterial count of log 6-7 cfu/g has been found to be associated with 5 mg histamine/100 g fish, the Food and Drug Administration (FDA) maximum allowable histamine level. In vitro studies have shown the involvement of cadaverine and putrescine in the formation of nitrosamines, nitrosopiperidine (NPIP), and nitrosopyrrolidine (NPYR), respectively. In addition, impure salt, high temperature, and low pH enhance nitrosamine formation, whereas pure sodium chloride inhibits their formation. Understanding the relationships between biogenic amines and their involvement in the formation of nitrosamines could explain the mechanism of scombroid poisoning and assure the safety of many fish products.
Nakamura, M; Saito, K; Wakabayashi, M
1990-04-01
The purpose of this study was to investigate how attitude change is generated by the recipient's degree of attitude formation, evaluative-emotional elements contained in the persuasive messages, and source expertise as a peripheral cue in the persuasion context. Hypotheses based on the Attitude Formation Theory of Mizuhara (1982) and the Elaboration Likelihood Model of Petty and Cacioppo (1981, 1986) were examined. Eighty undergraduate students served as subjects in the experiment, the first stage of which involving manipulating the degree of attitude formation with respect to nuclear power development. Then, the experimenter presented persuasive messages with varying combinations of evaluative-emotional elements from a source with either high or low expertise on the subject. Results revealed a significant interaction effect on attitude change among attitude formation, persuasive message and the expertise of the message source. That is, high attitude formation subjects resisted evaluative-emotional persuasion from the high expertise source while low attitude formation subjects changed their attitude when exposed to the same persuasive message from a low expertise source. Results exceeded initial predictions based on the Attitude Formation Theory and the Elaboration Likelihood Model.
Trajectories of Identity Formation Modes and Their Personality Context in Adolescence.
Topolewska-Siedzik, Ewa; Cieciuch, Jan
2018-04-01
Identity formation is a dynamic process during adolescence. Trajectories of identity formation were assessed longitudinally in early and middle adolescents, taking into account the personality underpinnings of this process. Identity formation was conceptualized according to the circumplex of identity formation modes. The model distinguishes basic modes rooted in Marcia's categories of exploration and commitment. Plasticity and stability, the two higher order Big Five meta-traits, were used to assess personality underpinnings. This study includes five measurement waves over 1.5 years and involves 1,839 Polish participants; 914 early adolescents (53.9% girls) and 925 middle adolescents (63.8% girls). The results suggest that (1) the four identity formation modes change dynamically, showing linear and curvilinear growth and that (2) identity formation mode trajectories are more dynamic in middle adolescence than in early adolescence. The results also showed that, in the conditional model, (3) the higher-order personality factors and gender affect the growth factors of identity formation modes. Overall, trajectories of identity formation modes are more linear during early adolescence and more curvilinear during middle adolescence. The initial levels in identity trajectories are influenced by the personality metatraits but only plasticity is related to change among early adolescents.
Generic equilibration dynamics of planar defects in trapped atomic superfluids
Scherpelz, Peter; Padavić, Karmela; Murray, Andy; ...
2015-03-18
Here, we investigate equilibration processes shortly after sudden perturbations are applied to ultracold trapped superfluids. We show the similarity of phase imprinting and localized density depletion perturbations, both of which initially are found to produce “phase walls”. These planar defects are associated with a sharp gradient in the phase. Importantly they relax following a quite general sequence. Our studies, based on simulations of the complex time-dependent Ginzburg-Landau equation, address the challenge posed by these experiments: how a superfluid eventually eliminatesa spatially extended planar defect. The processes involved are necessarily more complex than equilibration involving simpler line vortices. An essential mechanismmore » form relaxation involves repeated formation and loss of vortex rings near the trap edge.« less
DehydroalanylGly, a new post translational modification resulting from the breakdown of glutathione.
Friedrich, Michael G; Wang, Zhen; Schey, Kevin L; Truscott, Roger J W
2018-04-01
The human body contains numerous long-lived proteins which deteriorate with age, typically by racemisation, deamidation, crosslinking and truncation. Previously we elucidated one reaction responsible for age-related crosslinking, the spontaneous formation of dehydroalanine (DHA) intermediates from phosphoserine and cysteine. This resulted in non-disulphide covalent crosslinks. The current paper outlines a novel posttranslational modification (PTM) in human proteins, which involves the addition of dehydroalanylglycine (DHAGly) to Lys residues. Human lens digests were examined by mass spectrometry for the presence of (DHA)Gly (+144.0535 Da) adducts to Lys residues. Peptide model studies were undertaken to elucidate the mechanism of formation. In the lens, this PTM was detected at 18 lysine sites in 7 proteins. Using model peptides, a pathway for its formation was found to involve initial formation of the glutathione degradation product, γ-Glu(DHA)Gly from oxidised glutathione (GSSG). Once the Lys adduct formed, the Glu residue was lost in a hydrolytic mechanism apparently catalysed by the ε-amino group of the Lys. This discovery suggests that within cells, the functional groups of amino acids in proteins may be susceptible to modification by reactive metabolites derived from GSSG. Our finding demonstrates a novel +144.0535 Da PTM arising from the breakdown of oxidised glutathione. Copyright © 2018. Published by Elsevier B.V.
EVOLUTIONARY MODELS OF SUPER-EARTHS AND MINI-NEPTUNES INCORPORATING COOLING AND MASS LOSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, Alex R.; Burrows, Adam, E-mail: arhowe@astro.princeton.edu, E-mail: burrows@astro.princeton.edu
We construct models of the structural evolution of super-Earth- and mini-Neptune-type exoplanets with H{sub 2}–He envelopes, incorporating radiative cooling and XUV-driven mass loss. We conduct a parameter study of these models, focusing on initial mass, radius, and envelope mass fractions, as well as orbital distance, metallicity, and the specific prescription for mass loss. From these calculations, we investigate how the observed masses and radii of exoplanets today relate to the distribution of their initial conditions. Orbital distance and the initial envelope mass fraction are the most important factors determining planetary evolution, particularly radius evolution. Initial mass also becomes important belowmore » a “turnoff mass,” which varies with orbital distance, with mass–radius curves being approximately flat for higher masses. Initial radius is the least important parameter we study, with very little difference between the hot start and cold start limits after an age of 100 Myr. Model sets with no mass loss fail to produce results consistent with observations, but a plausible range of mass-loss scenarios is allowed. In addition, we present scenarios for the formation of the Kepler-11 planets. Our best fit to observations of Kepler-11b and Kepler-11c involves formation beyond the snow line, after which they moved inward, circularized, and underwent a reduced degree of mass loss.« less
Loncle, C; Molejon, M I; Lac, S; Tellechea, J I; Lomberk, G; Gramatica, L; Fernandez Zapico, M F; Dusetti, N; Urrutia, R; Iovanna, J L
2016-07-14
Both clinical and experimental evidence have firmly established that chronic pancreatitis, in particular in the context of Kras oncogenic mutations, predisposes to pancreatic ductal adenocarcinoma (PDAC). However, the repertoire of molecular mediators of pancreatitis involved in Kras-mediated initiation of pancreatic carcinogenesis remains to be fully defined. In this study we demonstrate a novel role for vacuole membrane protein 1 (VMP1), a pancreatitis-associated protein critical for inducible autophagy, in the regulation of Kras-induced PDAC initiation. Using a newly developed genetically engineered model, we demonstrate that VMP1 increases the ability of Kras to give rise to preneoplastic lesions, pancreatic intraepithelial neoplasias (PanINs). This promoting effect of VMP1 on PanIN formation is due, at least in part, by an increase in cell proliferation combined with a decrease in apoptosis. Using chloroquine, an inhibitor of autophagy, we show that this drug antagonizes the effect of VMP1 on PanIN formation. Thus, we conclude that VMP1-mediated autophagy cooperate with Kras to promote PDAC initiation. These findings are of significant medical relevance, molecules targeting autophagy are currently being tested along chemotherapeutic agents to treat PDAC and other tumors in human trials.
Bhushan, Bharat; Halasz, Annamaria; Spain, Jim; Thiboutot, Sonia; Ampleman, Guy; Hawari, Jalal
2002-07-15
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) can be efficiently mineralized with anaerobic domestic sludge, but the initial enzymatic processes involved in its transformation are unknown. To test the hypothesis that the initial reaction involves reduction of nitro group(s), we designed experiments to test the ability of a nitrate reductase (EC 1.6.6.2) to catalyze the initial reaction leading to ring cleavage and subsequent decomposition. A nitrate reductase from Aspergillus niger catalyzed the biotransformation of RDX most effectively at pH 7.0 and 30 degrees C under anaerobic conditions using NADPH as electron donor. LC/MS (ES-) chromatograms showed the formation of hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and methylenedinitramine as key initial products of RDX, but neither the dinitroso neither (DNX) nor trinitroso (TNX) derivatives were observed. None of the above detected products persisted, and their disappearance was accompanied by the accumulation of nitrous oxide (N20), formaldehyde (HCHO), and ammonium ion (NH4+). Stoichiometric studies showed that three NADPH molecules were consumed, and one molecule of methylenedinitramine was produced per RDX molecule. The carbon and nitrogen mass balances were 96.14% and 82.10%, respectively. The stoichiometries and mass balance measurements supported a mechanism involving initial transformation of RDX to MNX via a two-electron reduction mechanism. Subsequent reduction of MNX followed by rapid ring cleavage gave methylenedinitramine which in turn decomposed in water to produce quantitatively N2O and HCHO. The results clearly indicate that an initial reduction of a nitro group by nitrate reductase is sufficient for the decomposition of RDX.
Novel Sessile Drop Software for Quantitative Estimation of Slag Foaming in Carbon/Slag Interactions
NASA Astrophysics Data System (ADS)
Khanna, Rita; Rahman, Mahfuzur; Leow, Richard; Sahajwalla, Veena
2007-08-01
Novel video-processing software has been developed for the sessile drop technique for a rapid and quantitative estimation of slag foaming. The data processing was carried out in two stages: the first stage involved the initial transformation of digital video/audio signals into a format compatible with computing software, and the second stage involved the computation of slag droplet volume and area of contact in a chosen video frame. Experimental results are presented on slag foaming from synthetic graphite/slag system at 1550 °C. This technique can be used for determining the extent and stability of foam as a function of time.
Singh, Gurmeet; Jain, Vivek; Gupta, Dheeraj
2015-03-01
Drilling through the bone is a complicated process in orthopaedic surgery. It involves human as a part of the work so it needs better perfection and quality which leads to the sustainability. Different studies were carried out on this curious topic and some interesting results were obtained, which help the orthopaedic surgeon on the operation table. Major problems faced during bone drilling were crack initiation, thermal necrosis and burr formation. The surface topography of the bone is an indirect indication for the sustainability of bone joint. In this study, a comparison is made between conventional and a loose abrasive unconventional drilling technique for the surface characterization of the bone. The attempt has been made to show the feasibility of bone drilling with non-conventional technique and its aftereffect on the bone structure. The burr formation during conventional bone drilling was found to be more which leads to problems such as crack initiation and thermal necrosis. Scanning electrode microscope and surface roughness tester were used to characterize the surface of the fine drilled bone specimen and the results testified quite better surface finish and least crack formation while drilling with loose abrasive unconventional technique. © IMechE 2015.
Castillo, Virginia; Ventura, Salvador
2009-01-01
Protein aggregation underlies a wide range of human disorders. The polypeptides involved in these pathologies might be intrinsically unstructured or display a defined 3D-structure. Little is known about how globular proteins aggregate into toxic assemblies under physiological conditions, where they display an initially folded conformation. Protein aggregation is, however, always initiated by the establishment of anomalous protein-protein interactions. Therefore, in the present work, we have explored the extent to which protein interaction surfaces and aggregation-prone regions overlap in globular proteins associated with conformational diseases. Computational analysis of the native complexes formed by these proteins shows that aggregation-prone regions do frequently overlap with protein interfaces. The spatial coincidence of interaction sites and aggregating regions suggests that the formation of functional complexes and the aggregation of their individual subunits might compete in the cell. Accordingly, single mutations affecting complex interface or stability usually result in the formation of toxic aggregates. It is suggested that the stabilization of existing interfaces in multimeric proteins or the formation of new complexes in monomeric polypeptides might become effective strategies to prevent disease-linked aggregation of globular proteins. PMID:19696882
Natural Environments Definition for Design
NASA Technical Reports Server (NTRS)
Justh, H. L.; Altino, K. M.; Decker, R. K.; Koehler, H. M.; Leahy, F. B.; Minow, J. I.; Roberts, B. C.; Suggs, R. M.; Suggs, R. J.; White, P. W.;
2016-01-01
Planning for future National Aeronautics and Space Administration (NASA) missions will encompass a variety of operational and engineering activities that involve a multitude of issues, constraints, and influences derived from the natural environment. This Technical Memorandum (TM) presents a definition of the natural environment, i.e., a description in engineering handbook format of models and data specifically selected to support the architecture development, engineering design, and technology development for NASA's Exploration Systems Development (ESD) initiatives.
Resonant recombination and autoionization in electron-ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, A.
1990-06-01
The occurence of resonances in elastic and inelastic electron-ion collisions is discussed. Resonant processes involve excitation of the ion with simultaneous capture of the initially free electron. The decay mechanism subsequent to the formation of the intermediate multiply excited state determines whether a resonance is found in recombination, excitation, elastic scattering, in single or even in multiple ionization. This review concentrates on resonances in the ionization channel. Correlated two-electron transitions are considered.
[The receptor theory of atherosclerosis].
Likhoded, V G; Bondarenko, V M; Gintsburg, A L
2010-01-01
Lipopolysaccharides of Gram-negative bacteria can interact with Toll-like receptor 4 (TLR4) and induce atheroma formation. The risk of atherosclerosis is decreased in case of TLR4 mutation. Other bacterial ligands and endogenous ligands of TLRs can also be involved in induction of atherogenesis. The general concept of atherosclerosis pathogentsis is presented. According to this concept atherogenesis can be initiated by some reactions resulting from interaction of exogenous and endogenous microbial ligands with Toll-like receptors.
A generic multibody simulation
NASA Technical Reports Server (NTRS)
Hopping, K. A.; Kohn, W.
1986-01-01
Described is a dynamic simulation package which can be configured for orbital test scenarios involving multiple bodies. The rotational and translational state integration methods are selectable for each individual body and may be changed during a run if necessary. Characteristics of the bodies are determined by assigning components consisting of mass properties, forces, and moments, which are the outputs of user-defined environmental models. Generic model implementation is facilitated by a transformation processor which performs coordinate frame inversions. Transformations are defined in the initialization file as part of the simulation configuration. The simulation package includes an initialization processor, which consists of a command line preprocessor, a general purpose grammar, and a syntax scanner. These permit specifications of the bodies, their interrelationships, and their initial states in a format that is not dependent on a particular test scenario.
The detection of distant cooling flows and the formation of dark matter
NASA Technical Reports Server (NTRS)
Fabian, A. C.; Arnaud, K. A.; Nulsen, P. E. J.; Mushotzky, R. F.
1986-01-01
Cooling flows involving substantial mass inflow rates appear to be common in many nearby rich and poor clusters and in isolated galaxies. The extensive optical and ultraviolet filaments produced by the thermal instability of large flows are detectable out to redshifts greater than 1. It is proposed that this may explain the extended optical line emission reported in, and around, many distant radio galaxies, narrow-line quasars, and even nearby normal and active galaxies. An important diagnostic to distinguish cooling flows from other possible origins of emission line filaments is the presence of extensive regions at high thermal pressure. Other evidence for distant cooling flows and the resultant star formation is further discussed, together with the implications of cooling flow initial-mass functions for galaxy formation and the nature of 'dark' matter.
Creating structure for continuation of initiatives.
McClave, Stephen A; Mechanick, Jeffrey I; Kushner, Robert F; DeLegge, Mark H
2010-01-01
The Summit for Increasing Physician Nutrition Experts brought nutrition leaders from North America together to forge new strategies for promoting greater physician involvement in clinical nutrition. The initiatives derived from the Summit address issues related to education, board certification, research, and clinical practice. To seek consensus from participating societies and to establish a format for the implementation of these initiatives, a council of representatives needs to be formed. The council must be noncompetitive, promote collaboration and facilitation of nutrition activities for participating societies, and ultimately provide service to the healthcare system and individual practitioners. The structure of this council may evolve from a temporary task force to an enduring committee. Participating societies will be asked to fund expenses for their representative and host council meetings on a rotating basis. The council will assume responsibility for pursuing Summit initiatives and providing ongoing communication and collaboration between participant groups.
Welander, Margareta; Geier, Thomas; Smolka, Anders; Ahlman, Annelie; Fan, Jing; Zhu, Li-Hua
2014-02-01
Adventitious root (AR) formation is indispensable for vegetative propagation, but difficult to achieve in many crops. Understanding its molecular mechanisms is thus important for such species. Here we aimed at developing a rooting protocol for direct AR formation in stems, locating cellular AR origins in stems and exploring molecular differences underlying adventitious rooting in hypocotyls and stems. In-vitro-grown hypocotyls or stems of wild-type and transgenic ecotype Columbia (Col-0) of Arabidopsis thaliana were rooted on rooting media. Anatomy of AR formation, qRT-PCR of some rooting-related genes and in situ GUS expression were carried out during rooting from hypocotyls and stems. We developed a rooting protocol for AR formation in stems and traced back root origins in stems by anatomical and in situ expression studies. Unlike rooting in hypocotyls, rooting in stems was slower, and AR origins were mainly from lateral parenchyma of vascular bundles and neighboring starch sheath cells as well as, to a lesser extent, from phloem cap and xylem parenchyma. Transcript levels of GH3-3, LBD16, LBD29, and LRP1 in hypocotyls and stems were similar, but transcript accumulation was delayed in stems. In situ expression signals of DR5::GUS, LBD16::GUS, LBD29::GUS, and rolB::GUS reporters in stems mainly occurred at the root initiation sites, suggesting their involvement in AR formation. We have developed an efficient rooting protocol using half-strength Lepoivre medium for studying AR formation in stems, traced back the cellular AR origins in stems, and correlated expression of rooting-related genes with root initiation sites.
Format and basic geometry of a perspective display of air traffic for the cockpit
NASA Technical Reports Server (NTRS)
Mcgreevy, Michael Wallace; Ellis, Stephen R.
1991-01-01
The design and implementation of a perspective display of air traffic for the cockpit is discussed. Parameters of the perspective are variable and interactive so that the appearance of the projected image can be widely varied. This approach makes allowances for exploration of perspective parameters and their interactions. The display was initially used to study the cases of horizontal maneuver biases found in experiments involving a plan view air traffic display format. Experiments to determine the effect of perspective geometry on spatial judgements have evolved from the display program. Several scaling techniques and other adjustments to the perspective are used to tailor the geometry for effective presentation of 3-D traffic situations.
NASA Astrophysics Data System (ADS)
Our studies of reactions of metal carbonyl cations and anions have shown that metal carbonyl cations can catalyze CO exchange reactions on metal carbonyl anions. This result provides further evidence for a mechanism involving attack of the metal carbonyl anion on a carbon of the metal carbonyl cation in CO(exp 2+) transfer reactions. Reaction of metal carbonyl anions with metal carbonyl halides is a common approach to formation of metal-metal bonds. We have begun to use kinetic data and product analysis to understand the formation of homobimetallic versus heterobimetallic products in such reactions. Initial data indicate a nucleophilic attack, possibly through a ring-slippage mechanism.
Fossé, P; Motté, N; Roumier, A; Gabus, C; Muriaux, D; Darlix, J L; Paoletti, J
1996-12-24
Retroviral genomes consist of two identical RNA molecules joined noncovalently near their 5'-ends. Recently, two models have been proposed for RNA dimer formation on the basis of results obtained in vitro with human immunodeficiency virus type 1 RNA and Moloney murine leukemia virus RNA. It was first proposed that viral RNA dimerizes by forming an interstrand quadruple helix with purine tetrads. The second model postulates that RNA dimerization is initiated by a loop-loop interaction between the two RNA molecules. In order to better characterize the dimerization process of retroviral genomic RNA, we analyzed the in vitro dimerization of avian sarcoma-leukosis virus (ASLV) RNA using different transcripts. We determined the requirements for heterodimer formation, the thermal dissociation of RNA dimers, and the influence of antisense DNA oligonucleotides on dimer formation. Our results strongly suggest that purine tetrads are not involved in dimer formation. Data show that an autocomplementary sequence located upstream from the splice donor site and within a major packaging signal plays a crucial role in ASLV RNA dimer formation in vitro. This sequence is able to form a stem-loop structure, and phylogenetic analysis reveals that it is conserved in 28 different avian sarcoma and leukosis viruses. These results suggest that dimerization of ASLV RNA is initiated by a loop-loop interaction between two RNA molecules and provide an additional argument for the ubiquity of the dimerization process via loop-loop interaction.
Grotthuss Transport of Iodide in EMIM/I3 Ionic Crystal.
McDaniel, Jesse G; Yethiraj, Arun
2018-01-11
Highly ionic environments can mediate unusual chemical reactions that would otherwise be considered impossible based on chemical intuition. For example, the formation of a chemical bond between two iodide anions to form a divalent polyiodide anion is seemingly prohibited due to Coulombic repulsion. Using ab initio molecular dynamics simulations, we show that in the 1-ethyl-3-methylimidazolium (EMIM)/I 3 ionic crystal, the reactive formation of divalent and even trivalent polyiodide anions occurs with extremely small energetic barriers, due to the electrostatic field of the ionic lattice. A practical consequence of this anomalous reactivity is that iodide anions are efficiently transported within the crystal through a "Grotthuss-exchange" mechanism involving bond-breaking and forming events. We characterize two distinct transport pathways, involving both I 4 2- and I 7 3- intermediates, with fast transport of iodide resulting from the release of an I - anion on the opposite side of the intermediate species from the initial bond formation. The ordered cation arrangement in the crystal provides the necessary electrostatic screening for close approach of anions, suggesting a new counterintuitive approach to obtain high ionic conductivity. This new design principle could be used to develop better solid-state electrolytes for batteries, fuel cells, and supercapacitors.
Cano, David A; Murcia, Noel S; Pazour, Gregory J; Hebrok, Matthias
2004-07-01
Polycystic kidney disease (PKD) includes a group of disorders that are characterized by the presence of cysts in the kidney and other organs, including the pancreas. Here we show that in orpk mice, a model system for PKD that harbors a mutation in the gene that encodes the polaris protein, pancreatic defects start to occur at the end of gestation, with an initial expansion of the developing pancreatic ducts. Ductal dilation continues rapidly after birth and results in the formation of large, interconnected cysts. Expansion of pancreatic ducts is accompanied by apoptosis of neighboring acinar cells, whereas endocrine cell differentiation and islet formation appears to be unaffected. Polaris has been shown to co-localize with primary cilia, and these structures have been implicated in the formation of renal cysts. In the orpk pancreas, cilia numbers are reduced and cilia length is decreased. Expression of polycystin-2, a protein involved in PKD, is mislocalized in orpk mice. Furthermore, the cellular localization of beta-catenin, a protein involved in cell adhesion and Wnt signaling, is altered. Thus, polaris and primary cilia function are required for the maturation and maintenance of proper tissue organization in the pancreas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klonis, Nectarios; Dilanian, Ruben; Hanssen, Eric
The malaria parasite pigment, hemozoin, is a crystal of ferriprotoporphyrin IX (FP-Fe(III)), a product of hemoglobin digestion. Hemozoin formation is essential for FP-Fe(III) detoxification in the parasite; it is the main target of quinoline antimalarials and can modulate immune and inflammation responses. To gain further insight into the likely mechanisms of crystal formation and hemozoin reactivity, we have reanalyzed the crystal structure data for {beta}-hematin and solved the crystal structure of Plasmodium falciparum hemozoin. The analysis reveals that the structures are very similar and highlights two previously unexplored modes of FP-Fe(III) self-association involving {pi}-{pi} interactions that may initiate crystal formationmore » and help to stabilize the extended structure. Hemozoin can be considered to be a crystal composed of {pi}-{pi} dimers stabilized by iron-carboxylate linkages. As a result, it is predicted that two surfaces of the crystal would consist of {pi}-{pi} dimers with Fe(III) partly exposed to solvent and capable of undergoing redox reactions. Accordingly, we demonstrate that the crystal possesses both general peroxidase activity and the ability to cause lipid oxidation.« less
P-body components, Dhh1 and Pat1, are involved in tRNA nuclear-cytoplasmic dynamics
Hurto, Rebecca L.; Hopper, Anita K.
2011-01-01
The nuclear-cytoplasmic distribution of tRNA depends on the balance between tRNA nuclear export/re-export and retrograde tRNA nuclear import in Saccharomyces cerevisiae. The distribution of tRNA is sensitive to nutrient availability as cells deprived of various nutrients exhibit tRNA nuclear accumulation. Starvation induces numerous events that result in translational repression and P-body formation. This study investigated the possible coordination of these responses with tRNA nuclear-cytoplasmic distribution. Dhh1 and Pat1 function in parallel to promote translation repression and P-body formation in response to starvation. Loss of both, Dhh1 and Pat1, results in a failure to repress translation and to induce P-body formation in response to glucose starvation. This study reports that nutrient deprived dhh1 pat1 cells also fail to accumulate tRNA within nuclei. Conversely, inhibition of translation initiation and induction of P-body formation by overproduction of Dhh1 or Pat1 cause tRNA nuclear accumulation in nutrient-replete conditions. Also, loss of the mRNA decapping activator, Lsm1, causes tRNA nuclear accumulation. However, the coordination between P-body formation, translation repression, and tRNA distribution is limited to the early part of the P-body formation/translation repression pathway as loss of mRNA decapping or 5′ to 3′ degradation does not influence tRNA nuclear-cytoplasmic dynamics. The data provide the first link between P-body formation/translation initiation and tRNA nuclear-cytoplasmic dynamics. The current model is that Dhh1 and Pat1 function in parallel to promote starvation-induced tRNA nuclear accumulation. PMID:21398402
The origin of multiple clones in the parthenogenetic lizard species Darevskia rostombekowi.
Ryskov, Alexey P; Osipov, Fedor A; Omelchenko, Andrey V; Semyenova, Seraphima K; Girnyk, Anastasiya E; Korchagin, Vitaly I; Vergun, Andrey A; Murphy, Robert W
2017-01-01
The all-female Caucasian rock lizard Darevskia rostombekowi and other unisexual species of this genus reproduce normally via true parthenogenesis. Typically, diploid parthenogenetic reptiles exhibit some amount of clonal diversity. However, allozyme data from D. rostombekowi have suggested that this species consists of a single clone. Herein, we test this hypothesis by evaluating variation at three variable microsatellite loci for 42 specimens of D. rostombekowi from four populations in Armenia. Analyses based on single nucleotide polymorphisms of each locus reveal five genotypes or presumptive clones in this species. All individuals are heterozygous at the loci. The major clone occurs in 24 individuals and involves three populations. Four rare clones involve one or several individuals from one or two populations. Most variation owes to parent-specific single nucleotide polymorphisms, which occur as heterozygotes. This result fails to reject the hypothesis of a single hybridization founder event that resulted in the initial formation of one major clone. The other clones appear to have originated via post-formation microsatellite mutations of the major clone.
Influence of Arrestin on the Photodecay of Bovine Rhodopsin.
Chatterjee, Deep; Eckert, Carl Elias; Slavov, Chavdar; Saxena, Krishna; Fürtig, Boris; Sanders, Charles R; Gurevich, Vsevolod V; Wachtveitl, Josef; Schwalbe, Harald
2015-11-09
Continued activation of the photocycle of the dim-light receptor rhodopsin leads to the accumulation of all-trans-retinal in the rod outer segments (ROS). This accumulation can damage the photoreceptor cell. For retinal homeostasis, deactivation processes are initiated in which the release of retinal is delayed. One of these processes involves the binding of arrestin to rhodopsin. Here, the interaction of pre-activated truncated bovine visual arrestin (Arr(Tr)) with rhodopsin in 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC) micelles is investigated by solution NMR techniques and flash photolysis spectroscopy. Our results show that formation of the rhodopsin-arrestin complex markedly influences partitioning in the decay kinetics of rhodopsin, which involves the simultaneous formation of a meta II and a meta III state from the meta I state. Binding of Arr(Tr) leads to an increase in the population of the meta III state and consequently to an approximately twofold slower release of all-trans-retinal from rhodopsin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The formation of the dolomite-analogue norsethite: Reaction pathway and cation ordering
NASA Astrophysics Data System (ADS)
Pimentel, Carlos; Pina, Carlos M.
2014-10-01
Reaction pathways and cation ordering mechanisms involved in the formation of the mineral dolomite in nature still remain poorly understood. This is mainly due to the experimental problems posed by the synthesis of dolomite at ambient conditions, which preclude monitoring its formation in reasonable time scales. However, processes leading to the crystallization of fully-ordered dolomite-like structures can be studied by conducting experiments with mineral analogues, which are more readily precipitated. In this paper we present a study of the formation of the dolomite-analogue norsethite [BaMg(CO3)2] from a slurry which was aged at room temperature during 14 days. We found that norsethite forms by two dissolution-crystallization reactions from an initial amorphous nano-sized precipitate. The first reaction produces a mineral assemblage composed by witherite [BaCO3], northupite [Na3Mg(CO3)2Cl] and norsethite. The second dissolution-crystallization process leads to the almost complete depletion of witherite and northupite in favor of norsethite. While the composition of norsethite crystals rapidly reaches a Ba/Mg = 1 ratio, X-ray diffraction peaks indicate an increase in the crystallinity of those crystals during the first 48 h of reaction. Simultaneously, Ba-Mg cation ordering increases, as shown by the evolution of intensity ratios of certain superstructure and structure reflections. Altogether, these results demonstrate that the formation of fully-ordered norsethite occurs by a sequence of solvent-mediated processes which involve a number of precursors. Our study also suggests that similar processes might lead to the formation of dolomite in natural environments.
Jäckel, Sven; Saffarzadeh, Mona; Langer, Florian
2017-01-01
Expanding evidence indicates multiple interactions between the hemostatic system and innate immunity, and the coagulation and complement cascades. Here we show in a tissue factor (TF)–dependent model of flow restriction-induced venous thrombosis that complement factors make distinct contributions to platelet activation and fibrin deposition. Complement factor 3 (C3) deficiency causes prolonged bleeding, reduced thrombus incidence, thrombus size, fibrin and platelet deposition in the ligated inferior vena cava, and diminished platelet activation in vitro. Initial fibrin deposition at the vessel wall over 6 hours in this model was dependent on protein disulfide isomerase (PDI) and TF expression by myeloid cells, but did not require neutrophil extracellular trap formation involving peptidyl arginine deiminase 4. In contrast to C3−/− mice, C5-deficient mice had no apparent defect in platelet activation in vitro, and vessel wall platelet deposition and initial hemostasis in vivo. However, fibrin formation, the exposure of negatively charged phosphatidylserine (PS) on adherent leukocytes, and clot burden after 48 hours were significantly reduced in C5−/− mice compared with wild-type controls. These results delineate that C3 plays specific roles in platelet activation independent of formation of the terminal complement complex and provide in vivo evidence for contributions of complement-dependent membrane perturbations to prothrombotic TF activation on myeloid cells. PMID:28223279
Surface of the comet 67P from PHILAE/CIVA images as clues to the formation of the comet nucleus
NASA Astrophysics Data System (ADS)
Poulet, Francois; Bibring, Jean-Pierre; Carter, John; Eng, Pascal; Gondet, Brigitte; Jorda, Laurent; Langevin, Yves; Le Mouélic, Stéphane; Pilorget, Cédric
2015-04-01
The CIVA cameras onboard PHILAE provided the first ever in situ images of the surface of a comet (Bibring et al., this conf). The panorama acquired by CIVA at the landing site reveals a rough terrain dominated by agglomerates of consolidated materials similar to cm-sized pebbles. While the composition of these materials is unknown, their nature will be discussed in relation to both endogenic and exogenic processes that may sculpted the landscape of the landing site. These processes includes erosion (spatially non-uniform) by sublimation, redeposition of particles after ejection, fluidization and transport of cometary material on the surface, sintering effect, thermal fatigue, thermal stress, size segregation due to shaking, eolian erosion due to local outflow of cometary vapor and impact cratering at various scales. Recent advancements in planet formation theory suggest that the initial planetesimals (or cometestimals) may grow directly from the gravitational collapse of aerodynamically concentrated small particles, often referred to as "pebbles" (Johansen et al. 2007, Nature 448, 1022; Cuzzi et al. 2008, AJ 687, 1432). We will then discuss the possibility that the observed pebble pile structures are indicative of the formation process from which the initial nucleus formed, and how we can use this idea to learn about protoplanetary disks and the early processes involved in the Solar System formation.
Kinetics of silicide formation over a wide range of heating rates spanning six orders of magnitude
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molina-Ruiz, Manel; Lopeandía, Aitor F.; Gonzalez-Silveira, Marta
Kinetic processes involving intermediate phase formation are often assumed to follow an Arrhenius temperature dependence. This behavior is usually inferred from limited data over narrow temperature intervals, where the exponential dependence is generally fully satisfied. However, direct evidence over wide temperature intervals is experimentally challenging and data are scarce. Here, we report a study of silicide formation between a 12 nm film of palladium and 15 nm of amorphous silicon in a wide range of heating rates, spanning six orders of magnitude, from 0.1 to 10{sup 5 }K/s, or equivalently more than 300 K of variation in reaction temperature. The calorimetric traces exhibit severalmore » distinct exothermic events related to interdiffusion, nucleation of Pd{sub 2}Si, crystallization of amorphous silicon, and vertical growth of Pd{sub 2}Si. Interestingly, the thickness of the initial nucleation layer depends on the heating rate revealing enhanced mass diffusion at the fastest heating rates during the initial stages of the reaction. In spite of this, the formation of the silicide strictly follows an Arrhenius temperature dependence over the whole temperature interval explored. A kinetic model is used to fit the calorimetric data over the complete heating rate range. Calorimetry is complemented by structural analysis through transmission electron microscopy and both standard and in-situ synchrotron X-ray diffraction.« less
TIF-IC, a factor involved in both transcription initiation and elongation of RNA polymerase I.
Schnapp, G; Schnapp, A; Rosenbauer, H; Grummt, I
1994-09-01
We have characterized a transcription factor from Ehrlich ascites cells that is required for ribosomal gene transcription by RNA polymerase I (Pol I). This factor, termed TIF-IC, has a native molecular mass of 65 kDa, associates with Pol I, and is required both for the assembly of Sarkosyl-resistant initiation complexes and for the formation of the first internucleotide bonds. In addition to its function in transcription initiation, TIF-IC also plays a role in elongation of nascent RNA chains. At suboptimal levels of TIF-IC, transcripts with heterogeneous 3' ends are formed which are chased into full-length transcripts by the addition of more TIF-IC. Moreover, on a tailed template, which allows initiation in the absence of auxiliary factors, TIF-IC was found to stimulate the overall rate of transcription elongation and suppress pausing of Pol I. Thus TIF-IC appears to serve a function similar to the Pol II-specific factor TFIIF which is required for Pol II transcription initiation and elongation.
Mechanism of vacuum breakdown in radio-frequency accelerating structures
NASA Astrophysics Data System (ADS)
Barengolts, S. A.; Mesyats, V. G.; Oreshkin, V. I.; Oreshkin, E. V.; Khishchenko, K. V.; Uimanov, I. V.; Tsventoukh, M. M.
2018-06-01
It has been investigated whether explosive electron emission may be the initiating mechanism of vacuum breakdown in the accelerating structures of TeV linear electron-positron colliders (Compact Linear Collider). The physical processes involved in a dc vacuum breakdown have been considered, and the relationship between the voltage applied to the diode and the time delay to breakdown has been found. Based on the results obtained, the development of a vacuum breakdown in an rf electric field has been analyzed and the main parameters responsible for the initiation of explosive electron emission have been estimated. The formation of craters on the cathode surface during explosive electron emission has been numerically simulated, and the simulation results are discussed.
Growth regulation in tip-growing cells that develop on the epidermis.
Honkanen, Suvi; Dolan, Liam
2016-12-01
Plants develop tip-growing extensions-root hairs and rhizoids-that initiate as swellings on the outer surface of individual epidermal cells. A conserved genetic mechanism controls the earliest stages in the initiation of these swellings. The same mechanism controls the formation of multicellular structures that develop from swellings on epidermal cells in early diverging land plants. Details of the molecular events that regulate the positioning of the swellings involve sterols and phosphatidylinositol phosphates. The final length of root hairs is determined by the intensity of a pulse of transcription factor synthesis. Genes encoding similar transcription factors control root hair development in cereals and are potential targets for crop improvement. Copyright © 2016. Published by Elsevier Ltd.
Santos, Clelton A; Saraiva, Antonio M; Toledo, Marcelo A S; Beloti, Lilian L; Crucello, Aline; Favaro, Marianna T P; Horta, Maria A C; Santiago, André S; Mendes, Juliano S; Souza, Alessandra A; Souza, Anete P
2013-01-01
The 5'-nucleotidases constitute a ubiquitous family of enzymes that catalyze either the hydrolysis or the transfer of esterified phosphate at the 5' position of nucleoside monophosphates. These enzymes are responsible for the regulation of nucleotide and nucleoside levels in the cell and can interfere with the phosphorylation-dependent activation of nucleoside analogs used in therapies targeting solid tumors and viral infections. In the present study, we report the initial biochemical and functional characterization of a 5'-nucleotidase from Xylella fastidiosa that is related to the human cytosolic 5'-nucleotidase I. X. fastidiosa is a plant pathogenic bacterium that is responsible for numerous economically important crop diseases. Biochemical assays confirmed the phosphatase activity of the recombinant purified enzyme and revealed metal ion dependence for full enzyme activity. In addition, we investigated the involvement of Xf5'-Nt in the formation of X. fastidiosa biofilms, which are structures that occlude the xylem vessels of susceptible plants and are strictly associated with bacterial pathogenesis. Using polyclonal antibodies against Xf5'-Nt, we observed an overexpression of Xf5'-Nt during the initial phases of X. fastidiosa biofilm formation that was not observed during X. fastidiosa planktonic growth. Our results demonstrate that the de/phosphorylation network catalyzed by 5'-nucleotidases may play an important role in bacterial biofilm formation, thereby contributing novel insights into bacterial nucleotide metabolism and pathogenicity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Neutrophil Extracellular Trap-Related Extracellular Histones Cause Vascular Necrosis in Severe GN.
Kumar, Santhosh V R; Kulkarni, Onkar P; Mulay, Shrikant R; Darisipudi, Murthy N; Romoli, Simone; Thomasova, Dana; Scherbaum, Christina R; Hohenstein, Bernd; Hugo, Christian; Müller, Susanna; Liapis, Helen; Anders, Hans-Joachim
2015-10-01
Severe GN involves local neutrophil extracellular trap (NET) formation. We hypothesized a local cytotoxic effect of NET-related histone release in necrotizing GN. In vitro, histones from calf thymus or histones released by neutrophils undergoing NETosis killed glomerular endothelial cells, podocytes, and parietal epithelial cells in a dose-dependent manner. Histone-neutralizing agents such as antihistone IgG, activated protein C, or heparin prevented this effect. Histone toxicity on glomeruli ex vivo was Toll-like receptor 2/4 dependent, and lack of TLR2/4 attenuated histone-induced renal thrombotic microangiopathy and glomerular necrosis in mice. Anti-glomerular basement membrane GN involved NET formation and vascular necrosis, whereas blocking NET formation by peptidylarginine inhibition or preemptive anti-histone IgG injection significantly reduced all aspects of GN (i.e., vascular necrosis, podocyte loss, albuminuria, cytokine induction, recruitment or activation of glomerular leukocytes, and glomerular crescent formation). To evaluate histones as a therapeutic target, mice with established GN were treated with three different histone-neutralizing agents. Anti-histone IgG, recombinant activated protein C, and heparin were equally effective in abrogating severe GN, whereas combination therapy had no additive effects. Together, these results indicate that NET-related histone release during GN elicits cytotoxic and immunostimulatory effects. Furthermore, neutralizing extracellular histones is still therapeutic when initiated in established GN. Copyright © 2015 by the American Society of Nephrology.
Mitochondrial β-Cyanoalanine Synthase Is Essential for Root Hair Formation in Arabidopsis thaliana[W
García, Irene; Castellano, José María; Vioque, Blanca; Solano, Roberto; Gotor, Cecilia; Romero, Luis C.
2010-01-01
Cyanide is stoichiometrically produced as a coproduct of the ethylene biosynthesis pathway and is detoxified by β-cyanoalanine synthase enzymes. The molecular and phenotypical analysis of T-DNA insertion mutants of the mitochondrial β-cyanoalanine synthase CYS-C1 suggests that discrete accumulation of cyanide is not toxic for the plant and does not alter mitochondrial respiration rates but does act as a strong inhibitor of root hair development. The cys-c1 null allele is defective in root hair formation and accumulates cyanide in root tissues. The root hair defect is phenocopied in wild-type plants by the exogenous addition of cyanide to the growth medium and is reversed by the addition of hydroxocobalamin or by genetic complementation with the CYS-C1 gene. Hydroxocobalamin not only recovers the root phenotype of the mutant but also the formation of reactive oxygen species at the initial step of root hair tip growth. Transcriptional profiling of the cys-c1 mutant reveals that cyanide accumulation acts as a repressive signal for several genes encoding enzymes involved in cell wall rebuilding and the formation of the root hair tip as well as genes involved in ethylene signaling and metabolism. Our results demonstrate that mitochondrial β-cyanoalanine synthase activity is essential to maintain a low level of cyanide for proper root hair development. PMID:20935247
NASA Astrophysics Data System (ADS)
Le Bars, M.; Wacheul, J. B.
2015-12-01
Telluric planet formation involved the settling of large amounts of liquid iron coming from impacting planetesimals into an ambient viscous magma ocean. The initial state of planets was mostly determined by exchanges of heat and elements during this iron rain. Up to now, most models of planet formation simply assume that the metal rapidly equilibrated with the whole mantle. Other models account for simplified dynamics of the iron rain, involving the settling of single size drops at the Stokes velocity. But the fluid dynamics of iron sedimentation is much more complex, and influenced by the large viscosity ratio between the metal and the ambient fluid, as shown in studies of rising gas bubbles (e.g. Bonometti and Magnaudet 2006). We aim at developing a global understanding of the iron rain dynamics. Our study relies on a model experiment, consisting in popping a balloon of heated metal liquid at the top of a tank filled with viscous liquid. The experiments reach the relevant turbulent planetary regime, and tackle the whole range of expected viscosity ratios. High-speed videos allow determining the dynamics of drop clouds, as well as the statistics of drop sizes, shapes, and velocities. We also develop an analytical model of turbulent diffusion during settling, validated by measuring the temperature decrease of the metal blob. We finally present consequences for models of planet formation.
Multivesicular body formation enhancement and exosome release during endoplasmic reticulum stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanemoto, Soshi; Nitani, Ryota; Murakami, Tatsuhiko
The endoplasmic reticulum (ER) plays a pivotal role in maintaining cellular homeostasis. However, numerous environmental and genetic factors give rise to ER stress by inducing an accumulation of unfolded proteins. Under ER stress conditions, cells initiate the unfolded protein response (UPR). Here, we demonstrate a novel aspect of the UPR by electron microscopy and immunostaining analyses, whereby multivesicular body (MVB) formation was enhanced after ER stress. This MVB formation was influenced by inhibition of ER stress transducers inositol required enzyme 1 (IRE1) and PKR-like ER kinase (PERK). Furthermore, exosome release was also increased during ER stress. However, in IRE1 ormore » PERK deficient cells, exosome release was not upregulated, indicating that IRE1- and PERK-mediated pathways are involved in ER stress-dependent exosome release. - Highlights: • Endoplasmic reticulum (ER) stress induces multivesicular body (MVB) formation. • ER stress transducers IRE1 and PERK mediate MVB formation. • Exosome release is enhanced after ER stress. • IRE1 or PERK deficiency blocks upregulation of ER stress-dependent exosome release.« less
Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells.
Zhang, Weijia; Kai, Kazuharu; Choi, Dong Soon; Iwamoto, Takayuki; Nguyen, Yen H; Wong, Helen; Landis, Melissa D; Ueno, Naoto T; Chang, Jenny; Qin, Lidong
2012-11-13
Here we report a microfluidics method to enrich physically deformable cells by mechanical manipulation through artificial microbarriers. Driven by hydrodynamic forces, flexible cells or cells with high metastatic propensity change shape to pass through the microbarriers and exit the separation device, whereas stiff cells remain trapped. We demonstrate the separation of (i) a mixture of two breast cancer cell types (MDA-MB-436 and MCF-7) with distinct deformabilities and metastatic potentials, and (ii) a heterogeneous breast cancer cell line (SUM149), into enriched flexible and stiff subpopulations. We show that the flexible phenotype is associated with overexpression of multiple genes involved in cancer cell motility and metastasis, and greater mammosphere formation efficiency. Our observations support the relationship between tumor-initiating capacity and cell deformability, and demonstrate that tumor-initiating cells are less differentiated in terms of cell biomechanics.
Proteolysis-a characteristic of tumor-initiating cells in murine metastatic breast cancer
Hillebrand, Larissa E.; Bengsch, Fee; Hochrein, Jochen; Hülsdünker, Jan; Bender, Julia; Follo, Marie; Busch, Hauke; Boerries, Melanie; Reinheckel, Thomas
2016-01-01
Tumor initiating cells (TICs) have been identified and functionally characterized in hematological malignancies as well as in solid tumors such as breast cancer. In addition to their high tumor-initiating potential, TICs are founder cells for metastasis formation and are involved in chemotherapy resistance. In this study we explored molecular pathways which enable this tumor initiating potential for a cancer cell subset of the transgenic MMTV-PyMT mouse model for metastasizing breast cancer. The cell population, characterized by the marker profile CD24+CD90+CD45−, showed a high tumorigenicity compared to non-CD24+CD90+CD45− cancer cells in colony formation assays, as well as upon orthotopic transplantation into the mammary fat pad of mice. In addition, these orthotopically grown CD24+CD90+CD45− TICs metastasized to the lungs. The transcriptome of TICs freshly isolated from primary tumors by cell sorting was compared with that of sorted non-CD24+CD90+CD45− cancer cells by RNA-seq. In addition to more established TIC signatures, such as epithelial-to-mesenchymal transition or mitogen signaling, an upregulated gene set comprising several classes of proteolytic enzymes was uncovered in the TICs. Accordingly, TICs showed high intra- and extracellular proteolytic activity. Application of a broad range of protease inhibitors to TICs in a colony formation assay reduced anchorage independent growth and had an impact on colony morphology in 3D cell culture assays. We conclude that CD24+CD90+CD45− cells of the MMTV- PyMT mouse model possess an upregulated proteolytic signature which could very well represent a functional hallmark of metastatic TICs from mammary carcinomas. PMID:27542270
Initial reactive sticking coefficient of O 2 on Si(111)-7 × 7 at elevated temperatures
NASA Astrophysics Data System (ADS)
Shklyaev, A. A.; Suzuki, Takanori
1996-05-01
Kinetics of the initial stage of oxide growth in the reaction of oxygen with Si(111)-7 × 7 at temperatures from room temperature to Ttr, and pressures from 5 × 10 -9 to 2 × 10 -7 Torr are investigated with optical second-harmonic generation, here temperature from oxide growth to Si etching without oxide growth. At a fixed pressure, the initial reactive sticking coefficient ( S0), obtained from the rate of oxide growth, decreases with increasing temperature to S0=0 at Ttr. We have found that the initial reacti sticking coefficient depends on the O 2 pressure. At temperatures above 320°C, the whole temperature dependence of S0 is situated in the region of higher temperatures for higher O 2 pressures ( Pox). Moreover, an additional bend in the temperature dependence of S0 is observed for Pox>1 × 10 -8 Torr near Ttr. A precursor-mediated adsorption model involving the reaction of formation is considered. The parameters of this model, obtained from the best fits to the experimental data, show that oxide growth rate constant increases and volatile SiO formation rate constant decreases as a function of O 2 pressure. At zero oxide coverage, the pressure dependence of the reaction rate constants is suggested to originate from interaction in the layer of the chemisorbed precursor species, whose coverage depends on the O 2 pressure. The volatile SiO formation is described by a three-step sequential two-channel process through the chemisorbed O 2 precursor species, whereas one of the channels with a larger activation energy is suggested to induce the additional bend in S0( T) near Ttr at higher O 2 pressures.
E-cadherin junction formation involves an active kinetic nucleation process
Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng-han; Harrison, Oliver J.; Song, Hang; Smith, Adam W.; Huang, William Y. C.; Lin, Wan-Chen; Guo, Zhenhuan; Padmanabhan, Anup; Troyanovsky, Sergey M.; Dustin, Michael L.; Shapiro, Lawrence; Honig, Barry; Zaidel-Bar, Ronen; Groves, Jay T.
2015-01-01
Epithelial (E)-cadherin-mediated cell−cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin (E-cad-ECD) in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role. PMID:26290581
E-cadherin junction formation involves an active kinetic nucleation process
Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng -han; ...
2015-08-19
Epithelial (E)-cadherin-mediated cell–cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest thatmore » the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.« less
E-cadherin junction formation involves an active kinetic nucleation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng -han
Epithelial (E)-cadherin-mediated cell–cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest thatmore » the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.« less
The kinetics of thermal generation of flavour.
Parker, Jane K
2013-01-01
Control and optimisation of flavour is the ultimate challenge for the food and flavour industry. The major route to flavour formation during thermal processing is the Maillard reaction, which is a complex cascade of interdependent reactions initiated by the reaction between a reducing sugar and an amino compound. The complexity of the reaction means that researchers turn to kinetic modelling in order to understand the control points of the reaction and to manipulate the flavour profile. Studies of the kinetics of flavour formation have developed over the past 30 years from single- response empirical models of binary aqueous systems to sophisticated multi-response models in food matrices, based on the underlying chemistry, with the power to predict the formation of some key aroma compounds. This paper discusses in detail the development of kinetic models of thermal generation of flavour and looks at the challenges involved in predicting flavour. Copyright © 2012 Society of Chemical Industry.
The formation of blobs from a pure interchange process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, P., E-mail: pzhu@ustc.edu.cn; Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706; Sovinec, C. R.
2015-02-15
In this work, we focus on examining a pure interchange process in a shear-less slab configuration as a prototype mechanism for blob formation. We employ full magnetohydrodynamic simulations to demonstrate that the blob-like structures can emerge through the nonlinear development of a pure interchange instability originating from a pedestal-like transition region. In the early nonlinear stage, filamentary structures develop and extend in the direction of the effective gravity. The blob-like structures appear when the radially extending filaments break off and disconnect from the core plasma. The morphology and the dynamics of these filaments and blobs vary dramatically with a sensitivemore » dependence on the dissipation mechanisms in the system and the initial perturbation. Despite the complexity in morphology and dynamics, the nature of the entire blob formation process in the shear-less slab configuration remains strictly interchange without involving any change in magnetic topology.« less
Role of IκB kinase β in regulating the remodeling of the CARMA1-Bcl10-MALT1 complex.
Karim, Zubair A; Hensch, Nicole R; Qasim, Hanan; Alshbool, Fatima Z; Khasawneh, Fadi T
2018-06-02
The current work investigates the notion that inducible clustering of signaling mediators of the IKK pathway is important for platelet activation. Thus, while the CARMA1, Bcl10, and MALT1 (CBM) complex is essential for triggering IKK/NF-κB activation upon platelet stimulation, the signals that elicit its formation and downstream effector activation remain elusive. We demonstrate herein that IKKβ is involved in membrane fusion, and serves as a critical protein kinase required for initial formation and the regulation of the CARMA1/MALT1/Bcl10/CBM complex in platelets. We also show that IKKβ regulates these processes via modulation of phosphorylation of Bcl10 and IKKγ polyubiquitination. Collectively, our data demonstrate that IKKβ regulates membrane fusion and the remodeling of the CBM complex formation. Copyright © 2018 Elsevier Inc. All rights reserved.
Initiation and growth of gypsum piercement structures in the Zechstein Basin
Williams-Stroud, S. C.; Paul, J.
1997-01-01
The importance of tectonic processes in initiating halite diapirs has become much better understood in recent years. Less well understood is the development of diapiric structures involving rocks composed predominantly of gypsum. Below about 1000 m, gypsum dehydrates to anhydrite, which often obscures primary sedimentary textures. If the strain associated with diapiric rise in the rock induces the transition to anhydrite, obliteration of primary features in the gypsum can be expected. In our study, we infer that the diapiric movement in the Werra Anhydrite member of cycle 1 of the Zechstein Formation of Europe occurred before the initial transition of gypsum to anhydrite based on the presence of pseudomorphs of bedded primary gypsum crystals, the overburden lithologies and depositional environment, and the mechanical properties of gypsum, anhydrite and carbonate rocks. Faulting and differential loading of a shallow overburden were the key components in initiating the gypsum diapirism. The transition to anhydrite occurred after burial and after cessation of diapirism. In comparison, the diapirism of calcium sulfate of the Leine Anhydrite into the Leine Halite members of cycle 3 of the Zechstein Formation probably occurred much later after burial and appears to have been triggered by halite diapirism, which in turn triggered the dehydration reaction, causing the calcium sulfate to become the incompetent phase relative to the halite. Published by Elsevier Science Ltd.
Morimoto, Hisanori; Wada, Jun; Font, Bernard; Mott, Joni D; Hulmes, David J S; Ookoshi, Tadakazu; Naiki, Hironobu; Yasuhara, Akihiro; Nakatsuka, Atsuko; Fukuoka, Kousuke; Takatori, Yuji; Ichikawa, Haruo; Akagi, Shigeru; Nakao, Kazushi; Makino, Hirofumi
2008-04-01
Dialysis related amyloidosis (DRA) is a progressive and serious complication in patients under long-term hemodialysis and mainly leads to osteo-articular diseases. Although beta(2)-microglobulin (beta2-m) is the major structural component of beta2-m amyloid fibrils, the initiation of amyloid formation is not clearly understood. Here, we have identified procollagen C-proteinase enhancer-1 (PCPE-1) as a new interacting protein with beta2-m by screening a human synovium cDNA library. The interaction of beta2-m with full-length PCPE-1 was confirmed by immunoprecipitation, solid-phase binding and pull-down assays. By yeast two-hybrid analysis and pull-down assay, beta2-m appeared to interact with PCPE-1 via the NTR (netrin-like) domain and not via the CUB (C1r/C1s, Uegf and BMP-1) domain region. In synovial tissues derived from hemodialysis patients with DRA, beta2-m co-localized and formed a complex with PCPE-1. beta2-m did not alter the basal activity of bone morphogenetic protein-1/procollagen C-proteinase (BMP-1/PCP) nor BMP-1/PCP activity enhanced by PCPE-1. PCPE-1 did not stimulate beta2-m amyloid fibril formation from monomeric beta2-m in vitro under acidic and neutral conditions as revealed by thioflavin T fluorescence spectroscopy and electron microscopy. Since PCPE-1 is abundantly expressed in connective tissues rich in type I collagen, it may be involved in the initial accumulation of beta2-m in selected tissues such as tendon, synovium and bone. Furthermore, since such preferential deposition of beta2-m may be linked to subsequent beta2-m amyloid fibril formation, the disruption of the interaction between beta2-m and PCPE-1 may prevent beta2-m amyloid fibril formation and therefore PCPE-1 could be a new target for the treatment of DRA.
Shigeta, S; Toyoshima, M; Kitatani, K; Ishibashi, M; Usui, T; Yaegashi, N
2016-07-07
Fallopian tubal epithelium is a candidate for the origin of high-grade serous ovarian cancer. Transferrin-containing follicular fluid and/or retrograde menstrual blood are possible risk factors for carcinogenesis. Accumulation of DNA double-strand breaks (DNA-DSBs) in the fallopian tubal epithelium is considered to play an important role in the development of cancer. However, the mechanisms by which DNA-DSBs accumulate have not yet been fully elucidated. The hydroxyl radical, which is produced in a Fenton reaction catalyzed by an iron ion, serves as a potent DNA-DSB-inducing molecule, raising the potential of an iron ion transporter of transferrin in the formation of DNA-DSBs. We studied the potential involvement of transferrin in DNA damage and the development of ovarian cancer. Treatment with transferrin facilitated the formation of histone 2AX phosphorylated at Serine 139 (γH2AX), which is known as a DNA-DSB marker, in human fallopian tube secretory epithelial cells and A2780 ovarian cancer cells. Knockdown of transferrin receptor 1 (TfR1), but not transferrin receptor 2, suppressed the transferrin uptake and consequent formation of γH2AX. As hydroxyl radicals in reactive oxygen species (ROS) are involved in DNA-DSBs, the formation of ROS was determined. Treatment with TfR1-specific small interference RNAs significantly diminished transferrin-induced formation of ROS. Moreover, TfR1-dependent uptake of transferrin was revealed to augment the formation of DNA-DSBs in the presence of hydrogen peroxide, which served as a substrate for the Fenton reaction. An ex vivo study with murine fallopian tubes further demonstrated that transferrin treatment introduced DNA-DSBs in the fallopian tubal epithelium. Collectively, these data suggested that the transferrin-TfR1 axis accounts for the induction of DNA-DSBs that potentially lead to DNA damage/genome instability. These findings also suggested that exposure to transferrin initiates and promotes the development of ovarian cancer by aiding the accumulation of DNA-DSBs in the fallopian tubal epithelium.
Initial stage of atomic layer deposition of 2D-MoS2 on a SiO2 surface: a DFT study.
Shirazi, M; Kessels, W M M; Bol, A A
2018-06-20
In this study, we investigate the reactions involving Atomic Layer Deposition (ALD) of 2D-MoS2 from the heteroleptic precursor Mo(NMe2)2(NtBu)2 and H2S as the co-reagent on a SiO2(0001) surface by means of density functional theory (DFT). All dominant reaction pathways from the early stage of adsorption of each ALD reagent to the formation of bulk-like Mo and S at the surface are identified. In the metal pulse, proton transfer from terminal OH groups on the SiO2 to the physisorbed metal precursor increases the Lewis acidity of Mo and Lewis basicity of O, which gives rise to the chemical adsorption of the metal precursor. Proton transfer from the surface to the dimethylamido ligands leads to the formation and desorption of dimethylamine. In contrast, the formation and desorption of tert-butylamine is not energetically favorable. The tert-butylimido ligand can only be partially protonated in the metal pulse. In the sulphur pulse, co-adsorption and dissociation of H2S molecules give rise to the formation and desorption of tert-butylamine. Through the calculated activation energies, the cooperation between H2S molecules ('cooperative' mechanism) is shown to have a profound influence on the formation and desorption of tert-butylamine, which are crucial steps in the initial ALD deposition of 2D-MoS2 on SiO2. The cyclic ALD reactions give rise to the formation of a buffer layer which might have important consequences for the electrical and optical properties on the 2D layer formed in the subsequent homodeposition.
[Biofilm: set-up and organization of a bacterial community].
Filloux, Alain; Vallet, Isabelle
2003-01-01
Bacterial attachment on various surfaces mostly takes place in the form of specialised bacterial communities, referred to as biofilm. The biofilm is formed through series of interactions between cells and adherence to surface, resulting in an organised structure. In this review we have been using Pseudomonas aeruginosa as a model microorganism to describe the series of events that occurred during this developmental process. P. aeruginosa is an opportunistic pathogen that has a wide variety of hosts and infectious sites. In addition to biofilm formation in certain tissues, inert surfaces, such as catheters, are also target for bacterial biofilm development. The use of convenient genetic screens has made possible the identification of numerous biofilm-defective mutants, which have been characterised further. These studies have allowed the proposal for a global model, in which key events are described for the different stages of biofilm formation. Briefly, flagellar mobility is crucial for approaching the surface, whereas type IV pili motility is preponderant for surface colonisation and microcolonies formation. These microcolonies are finally packed together and buried in an exopolysaccharide matrix to form the differentiated bio-film. It is obvious that the different stages of biofilm formation also involved perception of environmental stimuli. These stimuli, and their associated complex regulatory networks, have still to be fully characterised to understand the bacterial strategy, which initiates biofilm formation. One such regulatory system, called Quorum sensing, is one of the key player in the initial differentiation of biofilm. Finally, a better understanding, at the molecular level, of biofilm establishment and persistence should help for the design of antimicrobials that prevent bacterial infections.
Gold(I)-catalyzed diazo coupling: strategy towards alkene formation and tandem benzannulation.
Zhang, Daming; Xu, Guangyang; Ding, Dong; Zhu, Chenghao; Li, Jian; Sun, Jiangtao
2014-10-06
A gold(I)-catalyzed cross-coupling of diazo compounds to afford tetrasubstituted alkenes has been developed by taking advantage of a trivial electronic difference between two diazo substrates. A N-heterocyclic-carbene-derived gold complex is the most effective catalyst for this transformation. Based on this new strategy, a gold(I)-initiated benzannulation has been achieved through a tandem reaction involving a diazo cross-coupling, 6π electrocyclization, and oxidative aromatization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Prakash, Dhan; Kumar, Ravi; Jain, R. K.; Tiwary, B. N.
2011-01-01
The organism Acinetobacter sp. RKJ12 is capable of utilizing 2-chloro-4-nitrobenzoic acid (2C4NBA) as a sole source of carbon, nitrogen, and energy. In the degradation of 2C4NBA by strain RKJ12, various metabolites were isolated and identified by a combination of chromatographic, spectroscopic, and enzymatic activities, revealing a novel assimilation pathway involving both oxidative and reductive catabolic mechanisms. The metabolism of 2C4NBA was initiated by oxidative ortho dehalogenation, leading to the formation of 2-hydroxy-4-nitrobenzoic acid (2H4NBA), which subsequently was metabolized into 2,4-dihydroxybenzoic acid (2,4-DHBA) by a mono-oxygenase with the concomitant release of chloride and nitrite ions. Stoichiometric analysis indicated the consumption of 1 mol O2 per conversion of 2C4NBA to 2,4-DHBA, ruling out the possibility of two oxidative reactions. Experiments with labeled H218O and 18O2 indicated the involvement of mono-oxygenase-catalyzed initial hydrolytic dechlorination and oxidative denitration mechanisms. The further degradation of 2,4-DHBA then proceeds via reductive dehydroxylation involving the formation of salicylic acid. In the lower pathway, the organism transformed salicylic acid into catechol, which was mineralized by the ortho ring cleavage catechol-1,2-dioxygenase to cis, cis-muconic acid, ultimately forming tricarboxylic acid cycle intermediates. Furthermore, the studies carried out on a 2C4NBA− derivative and a 2C4NBA+ transconjugant demonstrated that the catabolic genes for the 2C4NBA degradation pathway possibly reside on the ∼55-kb transmissible plasmid present in RKJ12. PMID:21803909
Keyamura, Kenji; Katayama, Tsutomu
2011-08-19
Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis.
Keyamura, Kenji; Katayama, Tsutomu
2011-01-01
Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis. PMID:21708944
Tumor formation initiated by nondividing epidermal cells via an inflammatory infiltrate.
Arwert, Esther N; Lal, Rohit; Quist, Sven; Rosewell, Ian; van Rooijen, Nico; Watt, Fiona M
2010-11-16
In mammalian epidermis, integrin expression is normally confined to the basal proliferative layer that contains stem cells. However, in epidermal hyperproliferative disorders and tumors, integrins are also expressed by suprabasal cells, with concomitant up-regulation of Erk mitogen-activated protein kinase (MAPK) signaling. In transgenic mice, expression of activated MAPK kinase 1 (MEK1) in the suprabasal, nondividing, differentiated cell layers (InvEE transgenics) results in epidermal hyperproliferation and skin inflammation. We now demonstrate that wounding induces benign tumors (papillomas and keratoacanthomas) in InvEE mice. By generating chimeras between InvEE mice and mice that lack the MEK1 transgene, we demonstrate that differentiating, nondividing cells that express MEK1 stimulate adjacent transgene-negative cells to divide and become incorporated into the tumor mass. Dexamethasone treatment inhibits tumor formation, suggesting that inflammation is involved. InvEE skin and tumors express high levels of IL1α; treatment with an IL1 receptor antagonist delays tumor onset and reduces incidence. Depletion of γδ T cells and macrophages also reduces tumor incidence. Because a hallmark of cancer is uncontrolled proliferation, it is widely assumed that tumors arise only from dividing cells. In contrast, our studies show that differentiated epidermal cells can initiate tumor formation without reacquiring the ability to divide and that they do so by triggering an inflammatory infiltrate.
Carbon Nanotubes: On the Origin of Helicity
NASA Astrophysics Data System (ADS)
Harutyunyan, Avetik
2015-03-01
The mechanism of helicity formation of carbon nanotubes still remains elusive that hinders their applications. Current explanations mainly rely on the planar interrelationship between the structure of nanotube and corresponding facet of catalyst in 2D geometry that could amend the structure of grown carbon layer, specifically due to the epitaxial interaction. Yet, the structure of carbon nanotube and circumference of the rims assume involvement of more than one facet i.e. it is 3D problem. By aiming this problem we find that the nanotube nucleation is initiated by cap formation via evolving of graphene embryo across the adjacent facets of catalyst particle. As a result the graphene embryos incorporate in their hexagonic network various polygons to accommodate the curved 3D geometry that initiates cap formation following by elongation of the circumferential rims. Based on these results, also on the census of nanotube caps and the fact that given cap fit only one nanotube wall, we consider carbon cap responsible for the helicity of carbon nanotube. This understanding could provide new avenues towards engineering particles to explicitly accommodate certain helicities via exploitation of the angular distribution of catalyst adjacent facets. Our recent progresses in production of carbon nanotubes, nanotube reinforced composites and their potential applications also will be presented.
Nucleation by rRNA Dictates the Precision of Nucleolus Assembly.
Falahati, Hanieh; Pelham-Webb, Bobbie; Blythe, Shelby; Wieschaus, Eric
2016-02-08
Membrane-less organelles are intracellular compartments specialized to carry out specific cellular functions. There is growing evidence supporting the possibility that such organelles form as a new phase, separating from cytoplasm or nucleoplasm. However, a main challenge to such phase separation models is that the initial assembly, or nucleation, of the new phase is typically a highly stochastic process and does not allow for the spatiotemporal precision observed in biological systems. Here, we investigate the initial assembly of the nucleolus, a membrane-less organelle involved in different cellular functions including ribosomal biogenesis. We demonstrate that the nucleolus formation is precisely timed in D. melanogaster embryos and follows the transcription of rRNA. We provide evidence that transcription of rRNA is necessary for overcoming the highly stochastic nucleation step in the formation of the nucleolus, through a seeding mechanism. In the absence of rDNA, the nucleolar proteins studied are able to form high-concentration assemblies. However, unlike the nucleolus, these assemblies are highly variable in number, location, and time at which they form. In addition, quantitative study of the changes in the nucleoplasmic concentration and distribution of these nucleolar proteins in the wild-type embryos is consistent with the role of rRNA in seeding the nucleolus formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Simulation of hot spots formation and evolution in HMX
NASA Astrophysics Data System (ADS)
Wang, Cheng; Yang, Tonghui
2017-06-01
In order to study the formation and evolution of hot spots under shock loading, HMX explosives were selected as the object of study for the two-dimensional finite difference numerical simulation. A fifth order finite difference weighted essentially non-oscillatory (WENO) scheme and a third order TVD Runge-Kutta method are utilized for the spatial discretization and the time advance, respectively. The governing equations are based on the fluid elasto-plastic control equations. The Mie-Gruneisen equation of state and the ideal gas equation of state are selected to use in the state equation of the solid explosives and gas material. In order to simplify the calculation of the model, the reaction can be considered to complete in one step. The calculated area is [ 3.0 ×10-5 m ] × [ 3.0 ×10-5 m ] . The radius is 0.6 ×10-5 m, and the internal gas is not involved in the reaction. The calculation area is divided into 300×300 grids and 10 grids are selected from the bottom of each column to give the particle velocity u as the initial condition. In the selected grid, different initial velocity 100m/s and 200m/s are loaded respectively to study the influence of hot spot formation and evolution in different impact intensity.
Wang, Zhengrui; Shen, Jianbo; Ludewig, Uwe; Neumann, Günter
2015-07-01
Apart from substrate functions, a signaling role of sucrose in root growth regulation is well established. This raised the question whether sucrose signals might also be involved in formation of cluster-roots (CRs) under phosphate (Pi) limitation, mediating exudation of phosphorus (P)-mobilizing root exudates, e.g. in Lupinus albus and members of the Proteaceae. Earlier studies demonstrated that CR formation in L. albus was mimicked to some extent by external application of high sucrose concentrations (25 mM) in the presence of extremely high P supply (1-10 mM), usually suppressing CR formation. In this study, we re-addressed this question using an axenic hydroponic culture system with normal P supply (0.1 mM) and a range of sucrose applications (0.25-25 mM). The 2.5 mM sucrose concentration was comparable with internal sucrose levels in the zone of CR initiation in first-order laterals of P-deficient plants (3.4 mM) and induced the same CR morphology. Similar to earlier studies, high sucrose concentrations (25 mM) resulted in root thickening and inhibition of root elongation, associated with a 10-fold increase of the internal sucrose level. The sucrose analog palatinose and a combination of glucose/fructose failed to stimulate CR formation under P-sufficient conditions, demonstrating a signal function of sucrose and excluding osmotic or carbon source effects. In contrast to earlier findings, sucrose was able to induce CR formation but had no effect on CR functioning with respect to citrate exudation, in vitro activity and expression of genes encoding phosphoenolpyruvate carboxylase, secretory acid phosphatase and MATE transporters, mediating P-mobilizing functions of CRs. © 2014 Scandinavian Plant Physiology Society.
Radiative Feedback of Forming Star Clusters on Their GMC Environments: Theory and Simulation
NASA Astrophysics Data System (ADS)
Howard, C. S.; Pudritz, R. E.; Harris, W. E.
2013-07-01
Star clusters form from dense clumps within a molecular cloud. Radiation from these newly formed clusters feeds back on their natal molecular cloud through heating and ionization which ultimately stops gas accretion into the cluster. Recent studies suggest that radiative feedback effects from a single cluster may be sufficient to disrupt an entire cloud over a short timescale. Simulating cluster formation on a large scale, however, is computationally demanding due to the high number of stars involved. For this reason, we present a model for representing the radiative output of an entire cluster which involves randomly sampling an initial mass function (IMF) as the cluster accretes mass. We show that this model is able to reproduce the star formation histories of observed clusters. To examine the degree to which radiative feedback shapes the evolution of a molecular cloud, we use the FLASH adaptive-mesh refinement hydrodynamics code to simulate cluster formation in a turbulent cloud. Unlike previous studies, sink particles are used to represent a forming cluster rather than individual stars. Our cluster model is then coupled with a raytracing scheme to treat radiative transfer as the clusters grow in mass. This poster will outline the details of our model and present preliminary results from our 3D hydrodynamical simulations.
D'Andreta, Daniela; Scarbrough, Harry; Evans, Sarah
2013-10-01
We contribute to existing knowledge translation (KT) literature by developing the notion of 'enactment' and illustrate this through an interpretative, comparative case-study analysis of three Collaborations for Leadership in Applied Health Research and Care (CLAHRC) initiatives. We argue for a focus on the way in which the CLAHRC model has been 'enacted' as central to the different KT challenges and capabilities encountered. A comparative, mixed method study created a typology of enactments (Classical, Home-grown and Imported) using qualitative analysis and social network analysis. We identify systematic differences in the enactment of the CLAHRC model. The sources of these different enactments are subsequently related to variation in formative interpretations and leadership styles, the implementation of different governance structures, and the relative epistemic differences between the professional groups involved. Enactment concerns the creative agency of individuals and groups in constituting a particular context for their work through their local interpretation of a particular KT model. Our theory of enactment goes beyond highlighting variation between CLAHRCs, to explore the mechanisms that influence the way a particular model is interpreted and acted upon. We thus encourage less focus on conceptual models and more on the formative role played by leaders of KT initiatives.
Roycewicz, Peter S; Malamy, Jocelyn E
2014-05-01
Plants adapt to their unique soil environments by altering the number and placement of lateral roots post-embryonic. Mutants were identified in Arabidopsis thaliana that exhibit increased lateral root formation. Eight mutants were characterized in detail and were found to have increased lateral root formation due to at least three distinct mechanisms. The causal mutation in one of these mutants was found in the XEG113 gene, recently shown to be involved in plant cell wall biosynthesis. Lateral root primordia initiation is unaltered in this mutant. In contrast, synchronization of lateral root initiation demonstrated that mutation of XEG113 increases the rate at which lateral root primordia develop and emerge to form lateral roots. The effect of the XEG113 mutation was specific to the root system and had no apparent effect on shoot growth. Screening of 17 additional cell wall mutants, altering a myriad of cell wall components, revealed that many (but not all) types of cell wall defects promote lateral root formation. These results suggest that proper cell wall biosynthesis is necessary to constrain lateral root primordia emergence. While previous reports have shown that lateral root emergence is accompanied by active remodelling of cell walls overlying the primordia, this study is the first to demonstrate that alteration of the cell wall is sufficient to promote lateral root formation. Therefore, inherent cell wall properties may play a previously unappreciated role in regulation of root system architecture.
SEA and strategy formation theories: From three Ps to five Ps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherp, Aleh; Watt, Alan; Vinichenko, Vadim
2007-10-15
A transition to environmentally sustainable societies should involve a significant and comprehensive - strategic - change. Much of the promise of SEA is associated precisely with its perceived capacity to facilitate such a strategic transformation by influencing selected 'strategic decisions'. This paper examines the potential effectiveness and limitations of such an approach in light of contemporary organizational strategy theories. Most of these theories separate 'strategies' from 'decisions' and also transcend the notion of strategies as formal plans, policies and programs (PPPs). Instead, they consider strategies as 'five Ps', adding 'Position', 'Perspective', 'Pattern' and 'Ploy' to the 'Plan'. Lessons from organizationalmore » strategy formation give rise to the following challenges for SEA theory and practice: 1.How to assess and influence informal as well as formal aspects of strategic initiatives? 2.How to extend SEA 'beyond decisions' to address 'emergent strategies' where strategic action is not necessarily preceded by a decision? 3.How to ensure that knowledge provided as a result of SEA is strategically relevant and communicated to key players in strategy formation? 4.How to deal with an uncontrollable and unpredictable environment in which strategic initiatives unfold? 5.How to recognize those situations when SEA can have most strategic influence? This paper takes a step towards examining these challenges by exploring the intellectual history of SEA in light of the main strategy formation theories and by identifying directions in which the SEA discourse may be further enhanced to meet these five challenges.« less
Friedrich, Manuela; Friederici, Angela D
2017-03-01
The present study explored the origins of word learning in early infancy. Using event-related potentials (ERP) we monitored the brain activity of 3-month-old infants when they were repeatedly exposed to several initially novel words paired consistently with each the same initially novel objects or inconsistently with different objects. Our results provide strong evidence that these young infants extract statistic regularities in the distribution of the co-occurrences of objects and words extremely quickly. The data suggest that this ability is based on the rapid formation of associations between the neural representations of objects and words, but that the new associations are not retained in long-term memory until the next day. The type of brain response moreover indicates that, unlike in older infants, in 3-month-olds a semantic processing stage is not involved. Their ability to combine words with meaningful information is caused by a primary learning mechanism that enables the formation of proto-words and acts as a precursor for the acquisition of genuine words. © 2015 John Wiley & Sons Ltd.
Plasma chemical conversion of sulphur hexafluoride initiated by a pulsed electron beam
NASA Astrophysics Data System (ADS)
Kholodnaya, Galina; Sazonov, Roman; Ponomarev, Denis; Guzeeva, Tatiana
2017-01-01
This paper presents the results of the experimental investigation of plasma chemical conversion of sulphur hexafluoride initiated by a pulsed electron beam (TEA-500 pulsed electron accelerator) with the following characteristics: 400-450 keV electron energy, 60 ns pulse duration, up to 200 J pulse energy, and 5 cm beam diameter. Experiments were conducted on the effect of the pulsed electron beam on SF6 and on mixtures of SF6 with O2, Ar, or N2. For the mixture of SF6 and oxygen, the results indicated chemical reactions involving the formation of a number of products of which one is sulphur, confirming the Wray - Fluorescence Analysis. The plasma chemical conversion of SF6 initiated by the pulsed electron beam was not detected when SF6 was mixed with Ar or N2, suggesting a possible mechanism for the reaction of SF6 in the presence of O2.
Alibardi, Lorenzo
2018-06-08
The formation of the regenerating tail blastema of lizards occurs by the multiplication of stem cells but also some dedifferentiation from adult cells may take place after tail loss by autotomy, as it is suggested in the present study. Using 5BrdU-immunocytochemistry and transmission electron microscopy it is shown that part of the damaged tissues undergo progressive cytological de-differentiation (cell reprogramming). This occurs for muscle, fibrocytes, chondrocytes, adipocytes, and cells derived from the spinal cord during the initial 3-8 days post-autotomy of the tail in the wall lizard Podarcis muralis. Dedifferentiating cells loose most endoplasmic reticulum, sarcomeres in myocells, lipid droplets in adipocytes, extracellular matrix in chondrocytes. Numerous cytoplasmic vesicles are formed, perhaps reflecting an initial sufferance of dedifferentiating cells. These cells are not dying because they incorporate 5BrdU and proliferate. Nuclei of small fibrocytes present in the dermis and inter-muscle connective tissues, initially heterochromatic, become euchromatic and their cytoplasm increases in volume although the endoplasmic reticulum remains limited, as it is typical for mesenchymal cells. The present study, supported by previous transcriptome and 5BrdU-labeling data, and from recent tracing studies, suggests that aside stem cells present in different tissues of the tail, also cell dedifferentiation occurs in the injured tail of lizards. The relative contribution between de-differentiation and stem cells for the formation of the regenerating lizard blastema likely depends from the extension of the trauma. © 2018 Wiley Periodicals, Inc.
Dong, Qian; Fang, Mingxu; Roychowdhury, Sugata; Bauer, Carl E
2015-12-16
Several Gram-negative species undergo development leading to the formation of metabolically dormant desiccation resistant cysts. Recent analysis of cyst development has revealed that ~20 % of the Rhodospirillum centenum transcriptome undergo temporal changes in expression as cells transition from vegetative to cyst forms. It has also been established that one trigger for cyst formation is the synthesis of the signaling nucleotide 3', 5'- cyclic guanosine monophosphate (cGMP) that is sensed by a homolog of the catabolite repressor protein called CgrA. CgrA in the presence of cGMP initiate a cascade of gene expression leading to the development of cysts. In this study, we have used RNA-seq and chromatin immunoprecipitation (ChIP-Seq) techniques to define the CgrA-cGMP regulon. Our results indicate that disruption of CgrA leads to altered expression of 258 genes, 131 of which have been previously reported to be involved in cyst development. ChIP-seq analysis combined with transcriptome data also demonstrates that CgrA directly regulates the expression of numerous sigma factors and transcription factors several of which are known to be involved in cyst cell development. This analysis reveals the presence of CgrA binding sites upstream of many developmentally regulated genes including many transcription factors and signal transduction components. CgrA thus functions as master controller of the cyst development by initiating a hierarchal cascade of downstream transcription factors that induces temporal expression of encystment genes.
Memory processes during sleep: beyond the standard consolidation theory.
Axmacher, Nikolai; Draguhn, Andreas; Elger, Christian E; Fell, Juergen
2009-07-01
Two-step theories of memory formation suggest that an initial encoding stage, during which transient neural assemblies are formed in the hippocampus, is followed by a second step called consolidation, which involves re-processing of activity patterns and is associated with an increasing involvement of the neocortex. Several studies in human subjects as well as in animals suggest that memory consolidation occurs predominantly during sleep (standard consolidation model). Alternatively, it has been suggested that consolidation may occur during waking state as well and that the role of sleep is rather to restore encoding capabilities of synaptic connections (synaptic downscaling theory). Here, we review the experimental evidence favoring and challenging these two views and suggest an integrative model of memory consolidation.
Toledo-Arana, Alejandro; Merino, Nekane; Vergara-Irigaray, Marta; Débarbouillé, Michel; Penadés, José R.; Lasa, Iñigo
2005-01-01
The biofilm formation capacity of Staphylococcus aureus clinical isolates is considered an important virulence factor for the establishment of chronic infections. Environmental conditions affect the biofilm formation capacity of S. aureus, indicating the existence of positive and negative regulators of the process. The majority of the screening procedures for identifying genes involved in biofilm development have been focused on genes whose presence is essential for the process. In this report, we have used random transposon mutagenesis and systematic disruption of all S. aureus two-component systems to identify negative regulators of S. aureus biofilm development in a chemically defined medium (Hussain-Hastings-White modified medium [HHWm]). The results of both approaches coincided in that they identified arlRS as a repressor of biofilm development under both steady-state and flow conditions. The arlRS mutant exhibited an increased initial attachment as well as increased accumulation of poly-N-acetylglucosamine (PNAG). However, the biofilm formation of the arlRS mutant was not affected when the icaADBC operon was deleted, indicating that PNAG is not an essential compound of the biofilm matrix produced in HHWm. Disruption of the major autolysin gene, atl, did not produce any effect on the biofilm phenotype of an arlRS mutant. Epistatic experiments with global regulators involved in staphylococcal-biofilm formation indicated that sarA deletion abolished, whereas agr deletion reinforced, the biofilm development promoted by the arlRS mutation. PMID:16030226
Growth of High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation
Rusli, Nurul Izni; Tanikawa, Masahiro; Mahmood, Mohamad Rusop; Yasui, Kanji; Hashim, Abdul Manaf
2012-01-01
The formation of high-density zinc oxide (ZnO) nanorods on porous silicon (PS) substrates at growth temperatures of 600–1000 °C by a simple thermal evaporation of zinc (Zn) powder in the presence of oxygen (O2) gas was systematically investigated. The high-density growth of ZnO nanorods with (0002) orientation over a large area was attributed to the rough surface of PS, which provides appropriate planes to promote deposition of Zn or ZnOx seeds as nucleation sites for the subsequent growth of ZnO nanorods. The geometrical morphologies of ZnO nanorods are determined by the ZnOx seed structures, i.e., cluster or layer structures. The flower-like hexagonal-faceted ZnO nanorods grown at 600 °C seem to be generated from the sparsely distributed ZnOx nanoclusters. Vertically aligned hexagonal-faceted ZnO nanorods grown at 800 °C may be inferred from the formation of dense arrays of ZnOx clusters. The formation of disordered ZnO nanorods formed at 1000 °C may due to the formation of a ZnOx seed layer. The growth mechanism involved has been described by a combination of self-catalyzed vapor-liquid-solid (VLS) and vapor-solid (VS) mechanism. The results suggest that for a more precise study on the growth of ZnO nanostructures involving the introduction of seeds, the initial seed structures must be taken into account given their significant effects.
Comparative assessment of techniques for initial pose estimation using monocular vision
NASA Astrophysics Data System (ADS)
Sharma, Sumant; D`Amico, Simone
2016-06-01
This work addresses the comparative assessment of initial pose estimation techniques for monocular navigation to enable formation-flying and on-orbit servicing missions. Monocular navigation relies on finding an initial pose, i.e., a coarse estimate of the attitude and position of the space resident object with respect to the camera, based on a minimum number of features from a three dimensional computer model and a single two dimensional image. The initial pose is estimated without the use of fiducial markers, without any range measurements or any apriori relative motion information. Prior work has been done to compare different pose estimators for terrestrial applications, but there is a lack of functional and performance characterization of such algorithms in the context of missions involving rendezvous operations in the space environment. Use of state-of-the-art pose estimation algorithms designed for terrestrial applications is challenging in space due to factors such as limited on-board processing power, low carrier to noise ratio, and high image contrasts. This paper focuses on performance characterization of three initial pose estimation algorithms in the context of such missions and suggests improvements.
TIF-IC, a factor involved in both transcription initiation and elongation of RNA polymerase I.
Schnapp, G; Schnapp, A; Rosenbauer, H; Grummt, I
1994-01-01
We have characterized a transcription factor from Ehrlich ascites cells that is required for ribosomal gene transcription by RNA polymerase I (Pol I). This factor, termed TIF-IC, has a native molecular mass of 65 kDa, associates with Pol I, and is required both for the assembly of Sarkosyl-resistant initiation complexes and for the formation of the first internucleotide bonds. In addition to its function in transcription initiation, TIF-IC also plays a role in elongation of nascent RNA chains. At suboptimal levels of TIF-IC, transcripts with heterogeneous 3' ends are formed which are chased into full-length transcripts by the addition of more TIF-IC. Moreover, on a tailed template, which allows initiation in the absence of auxiliary factors, TIF-IC was found to stimulate the overall rate of transcription elongation and suppress pausing of Pol I. Thus TIF-IC appears to serve a function similar to the Pol II-specific factor TFIIF which is required for Pol II transcription initiation and elongation. Images PMID:8076598
Hwang, Wei-Chin
2010-01-01
How do we culturally adapt psychotherapy for ethnic minorities? Although there has been growing interest in doing so, few therapy adaptation frameworks have been developed. The majority of these frameworks take a top-down theoretical approach to adapting psychotherapy. The purpose of this paper is to introduce a community-based developmental approach to modifying psychotherapy for ethnic minorities. The Formative Method for Adapting Psychotherapy (FMAP) is a bottom-up approach that involves collaborating with consumers to generate and support ideas for therapy adaptation. It involves 5-phases that target developing, testing, and reformulating therapy modifications. These phases include: (a) generating knowledge and collaborating with stakeholders (b) integrating generated information with theory and empirical and clinical knowledge, (c) reviewing the initial culturally adapted clinical intervention with stakeholders and revising the culturally adapted intervention, (d) testing the culturally adapted intervention, and (e) finalizing the culturally adapted intervention. Application of the FMAP is illustrated using examples from a study adapting psychotherapy for Chinese Americans, but can also be readily applied to modify therapy for other ethnic groups. PMID:20625458
Chen, Lujun; Lu, Yahua; Chu, Yang; Xie, Jun; Ding, Wen'ge; Wang, Fengming
2013-09-01
Angiogenesis, as well as pannus formation within the joint, plays an important role in the erosion of articular cartilage and bone in the pathological process of rheumatoid arthritis (RA). Tissue factor (TF), an essential initiator of the extrinsic pathway of blood coagulation, is also involved in the angiogenesis and the pannus formation of RA progression. In the present study, we used immunofluorescence and confocal scanning methods to characterize TF immunolocalization in RA synovium. We showed that positive staining of TF could be immunolocalized in synoviocytes, CD19(+) B cells and CD68(+) macrophages, whereas weak or negative staining of tissue factor could be found in CD34(+) endothelial cells of neo-vessels, CD3(+) T cells and CD14(+) monocytes in RA synovium tissues. Our study demonstrates a detailed local expression of TF in the rheumatoid synovium, and supports the notion that TF, expressed not only by the synoviocytes themselves, but also the infiltrating CD19(+) B cells and CD68(+) macrophages, is involved in the pannus invasion in the progression of rheumatoid arthritis. Copyright © 2013 Elsevier GmbH. All rights reserved.
Principles in redox signaling: from chemistry to functional significance.
Bindoli, Alberto; Rigobello, Maria Pia
2013-05-01
Reactive oxygen and nitrogen species are currently considered not only harmful byproducts of aerobic respiration but also critical mediators of redox signaling. The molecules and the chemical principles sustaining the network of cellular redox regulated processes are described. Special emphasis is placed on hydrogen peroxide (H(2)O(2)), now considered as acting as a second messenger, and on sulfhydryl groups, which are the direct targets of the oxidant signal. Cysteine residues of some proteins, therefore, act as sensors of redox conditions and are oxidized in a reversible reaction. In particular, the formation of sulfenic acid and disulfide, the initial steps of thiol oxidation, are described in detail. The many cell pathways involved in reactive oxygen species formation are reported. Central to redox signaling processes are the glutathione and thioredoxin systems controlling H(2)O(2) levels and, hence, the thiol/disulfide balance. Lastly, some of the most important redox-regulated processes involving specific enzymes and organelles are described. The redox signaling area of research is rapidly expanding, and future work will examine new pathways and clarify their importance in cellular pathophysiology.
NASA Technical Reports Server (NTRS)
deBoer, Gary; Scott, Carl
2003-01-01
Carbon nanotubes, elongated molecular tubes with diameters of nanometers and lengths in microns, hold great promise for material science. Hopes for super strong light-weight material to be used in spacecraft design is the driving force behind nanotube work at JSC. The molecular nature of these materials requires the appropriate tools for investigation of their structure, properties, and formation. The mechanism of nanotube formation is of particular interest because it may hold keys to controlling the formation of different types of nanotubes and allow them to be produced in much greater quantities at less cost than is currently available. This summer's work involved the interpretation of data taken last summer and analyzed over the academic year. The work involved diagnostic studies of carbon nanotube formation processes occurring in a laser-produced plume. Laser ablation of metal doped graphite to produce a plasma plume in which carbon nanotubes self assemble is one method of making carbon nanotube. The laser ablation method is amenable to applying the techniques of laser spectroscopy, a powerful tool for probing the energies and dynamics of atomic and molecular species. The experimental work performed last summer involved probing one of the metal catalysts, nickel, by laser induced fluorescence. The nickel atom was studied as a function of oven temperature, probe laser wavelength, time after ablation, and position in the laser produced plume. This data along with previously obtained data on carbon was analyzed over the academic year. Interpretations of the data were developed this summer along with discussions of future work. The temperature of the oven in which the target is ablated greatly influences the amount of material ablated and the propagation of the plume. The ablation conditions and the time scale of atomic and molecular lifetimes suggest that initial ablation of the metal doped carbon target results in atomic and small molecular species. The metal atoms survive for several milliseconds while the gaseous carbon atoms and small molecules nucleate more rapidly. Additional experiments and the development of in situ methods for carbon nanotube detection would allow these results to be interpreted from the perspective of carbon nanotube formation.
A strontium-incorporated nanoporous titanium implant surface for rapid osseointegration
NASA Astrophysics Data System (ADS)
Zhang, Wenjie; Cao, Huiliang; Zhang, Xiaochen; Li, Guanglong; Chang, Qing; Zhao, Jun; Qiao, Yuqin; Ding, Xun; Yang, Guangzheng; Liu, Xuanyong; Jiang, Xinquan
2016-02-01
Rapid osseointegration of dental implants will shorten the period of treatment and enhance the comfort of patients. Due to the vital role of angiogenesis played during bone development and regeneration, it might be feasible to promote rapid osseointegration by modifying the implant surface to gain a combined angiogenesis/osteogenesis inducing capacity. In this study, a novel coating (MAO-Sr) with strontium-incorporated nanoporous structures on titanium implants was generated via a new micro-arc oxidation, in an attempt to induce angiogenesis and osteogenesis to enhance rapid osseointegration. In vitro, the nanoporous structure significantly enhanced the initial adhesion of canine BMSCs. More importantly, sustained release of strontium ions also displayed a stronger effect on the BMSCs in facilitating their osteogenic differentiation and promoting the angiogenic growth factor secretion to recruit endothelial cells and promote blood vessel formation. Advanced mechanism analyses indicated that MAPK/Erk and PI3K/Akt signaling pathways were involved in these effects of the MAO-Sr coating. Finally, in the canine dental implantation study, the MAO-Sr coating induced faster bone formation within the initial six weeks and the osseointegration effect was comparable to that of the commercially available ITI implants. These results suggest that the MAO-Sr coating has the potential for future use in dental implants.Rapid osseointegration of dental implants will shorten the period of treatment and enhance the comfort of patients. Due to the vital role of angiogenesis played during bone development and regeneration, it might be feasible to promote rapid osseointegration by modifying the implant surface to gain a combined angiogenesis/osteogenesis inducing capacity. In this study, a novel coating (MAO-Sr) with strontium-incorporated nanoporous structures on titanium implants was generated via a new micro-arc oxidation, in an attempt to induce angiogenesis and osteogenesis to enhance rapid osseointegration. In vitro, the nanoporous structure significantly enhanced the initial adhesion of canine BMSCs. More importantly, sustained release of strontium ions also displayed a stronger effect on the BMSCs in facilitating their osteogenic differentiation and promoting the angiogenic growth factor secretion to recruit endothelial cells and promote blood vessel formation. Advanced mechanism analyses indicated that MAPK/Erk and PI3K/Akt signaling pathways were involved in these effects of the MAO-Sr coating. Finally, in the canine dental implantation study, the MAO-Sr coating induced faster bone formation within the initial six weeks and the osseointegration effect was comparable to that of the commercially available ITI implants. These results suggest that the MAO-Sr coating has the potential for future use in dental implants. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08580b
Medial prefrontal cortex dopamine controls the persistent storage of aversive memories
Gonzalez, María C.; Kramar, Cecilia P.; Tomaiuolo, Micol; Katche, Cynthia; Weisstaub, Noelia; Cammarota, Martín; Medina, Jorge H.
2014-01-01
Medial prefrontal cortex (mPFC) is essential for initial memory processing and expression but its involvement in persistent memory storage has seldom been studied. Using the hippocampus dependent inhibitory avoidance learning task and the hippocampus-independent conditioned taste aversion paradigm together with specific dopamine receptor agonists and antagonists we found that persistence but not formation of long-term aversive memories requires dopamine D1/D5 receptors activation in mPFC immediately after training and, depending on the task, between 6 and 12 h later. Our results indicate that besides its well-known participation in retrieval and early consolidation, mPFC also modulates the endurance of long-lasting aversive memories regardless of whether formation of the aversive mnemonic trace requires the participation of the hippocampus. PMID:25506318
Photodissociation of methyl formate: Conical intersections, roaming and triple fragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, King-Chuen; Tsai, Po-Yu; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
2015-12-31
The photodissociation channels of methyl formate have been extensively investigated by two different advanced experimental techniques, ion imaging and Fourier-Transform-Infrared emission spectroscopy, combined with quantum chemical calculations and molecular dynamics simulations. Our aim is to characterize the role of alternative routes to the conventional transition-state mediated pathway: the roaming and the triple fragmentation processes. The photolysis experiments, carried out at a range of laser wavelengths in the vicinity of the triple fragmentation threshold, beside the simulation of large bunches of classical trajectories with different initial conditions, have shown that both mechanisms share a common path that involves a conical intersectionmore » during the relaxation process from the electronic excited state S{sub 1} to the ground state S{sub 0}.« less
Yamauchi, Takaki; Tanaka, Akihiro; Mori, Hitoshi; Takamure, Itsuro; Kato, Kiyoaki; Nakazono, Mikio
2016-10-01
In roots of gramineous plants, lysigenous aerenchyma is created by the death and lysis of cortical cells. Rice (Oryza sativa) constitutively forms aerenchyma under aerobic conditions, and its formation is further induced under oxygen-deficient conditions. However, maize (Zea mays) develops aerenchyma only under oxygen-deficient conditions. Ethylene is involved in lysigenous aerenchyma formation. Here, we investigated how ethylene-dependent aerenchyma formation is differently regulated between rice and maize. For this purpose, in rice, we used the reduced culm number1 (rcn1) mutant, in which ethylene biosynthesis is suppressed. Ethylene is converted from 1-aminocyclopropane-1-carboxylic acid (ACC) by the action of ACC oxidase (ACO). We found that OsACO5 was highly expressed in the wild type, but not in rcn1, under aerobic conditions, suggesting that OsACO5 contributes to aerenchyma formation in aerated rice roots. By contrast, the ACO genes in maize roots were weakly expressed under aerobic conditions, and thus ACC treatment did not effectively induce ethylene production or aerenchyma formation, unlike in rice. Aerenchyma formation in rice roots after the initiation of oxygen-deficient conditions was faster and greater than that in maize. These results suggest that the difference in aerenchyma formation in rice and maize is due to their different mechanisms for regulating ethylene biosynthesis. © 2016 John Wiley & Sons Ltd.
High-frequency promoter firing links THO complex function to heavy chromatin formation.
Mouaikel, John; Causse, Sébastien Z; Rougemaille, Mathieu; Daubenton-Carafa, Yves; Blugeon, Corinne; Lemoine, Sophie; Devaux, Frédéric; Darzacq, Xavier; Libri, Domenico
2013-11-27
The THO complex is involved in transcription, genome stability, and messenger ribonucleoprotein (mRNP) formation, but its precise molecular function remains enigmatic. Under heat shock conditions, THO mutants accumulate large protein-DNA complexes that alter the chromatin density of target genes (heavy chromatin), defining a specific biochemical facet of THO function and a powerful tool of analysis. Here, we show that heavy chromatin distribution is dictated by gene boundaries and that the gene promoter is necessary and sufficient to convey THO sensitivity in these conditions. Single-molecule fluorescence in situ hybridization measurements show that heavy chromatin formation correlates with an unusually high firing pace of the promoter with more than 20 transcription events per minute. Heavy chromatin formation closely follows the modulation of promoter firing and strongly correlates with polymerase occupancy genome wide. We propose that the THO complex is required for tuning the dynamic of gene-nuclear pore association and mRNP release to the same high pace of transcription initiation. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Adhesion and removal kinetics of Bacillus cereus biofilms on Ni-PTFE modified stainless steel.
Huang, Kang; McLandsborough, Lynne A; Goddard, Julie M
2016-01-01
Biofilm control remains a challenge to food safety. A well-studied non-fouling coating involves codeposition of polytetrafluoroethylene (PTFE) during electroless plating. This coating has been reported to reduce foulant build-up during pasteurization, but opportunities remain in demonstrating its efficacy in inhibiting biofilm formation. Herein, the initial adhesion, biofilm formation, and removal kinetics of Bacillus cereus on Ni-PTFE-modified stainless steel (SS) are characterized. Coatings lowered the surface energy of SS and reduced biofilm formation by > 2 log CFU cm(-2). Characterization of the kinetics of biofilm removal during cleaning demonstrated improved cleanability on the Ni-PTFE coated steel. There was no evidence of biofilm after cleaning by either solution on the Ni-PTFE coated steel, whereas more than 3 log and 1 log CFU cm(-2) of bacteria remained on the native steel after cleaning with water and an alkaline cleaner, respectively. This work demonstrates the potential application of Ni-PTFE non-fouling coatings on SS to improve food safety by reducing biofilm formation and improving the cleaning efficiency of food processing equipment.
Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea1[C][W][OA
Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B.; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne
2012-01-01
Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation. PMID:22323776
Strigolactones suppress adventitious rooting in Arabidopsis and pea.
Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne
2012-04-01
Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.
NASA Astrophysics Data System (ADS)
Jiang, Xiaoxu; Liu, Guorui; Wang, Mei; Zheng, Minghui
2015-09-01
Emission of unintentionally formed polychlorinated biphenyls (PCBs) from industrial thermal processes is a global issue. Because the production and use of technical PCB mixtures has been banned, industrial thermal processes have become increasingly important sources of PCBs. Among these processes, secondary copper smelting is an important PCB source in China. In the present study, the potential for fly ash-mediated formation of PCBs in the secondary copper industry, and the mechanisms involved, were studied in laboratory thermochemical experiments. The total PCB concentrations were 37-70 times higher than the initial concentrations. Thermochemical reactions on the fly ash amplified the potential toxic equivalents of PCBs. The formation of PCBs over time and the effect of temperature were investigated. Based on analyses of PCB homologue profiles with different reaction conditions, a chlorination mechanism was proposed for forming PCBs in addition to a de novo synthesis mechanism. The chlorination pathway was supported by close correlations between each pair of adjacent homologue groups. Formation of PCBs and multiple persistent organic pollutants, including polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated naphthalenes, occurred during the tests, indicating that these compounds may share similar formation mechanisms.
Autoimmunity-Basics and link with periodontal disease.
Kaur, Gagandeep; Mohindra, Kanika; Singla, Shifali
2017-01-01
Autoimmune reactions reflect an imbalance between effector and regulatory immune responses, typically develop through stages of initiation and propagation, and often show phases of resolution (indicated by clinical remissions) and exacerbations (indicated by symptomatic flares). The fundamental underlying mechanism of autoimmunity is defective elimination and/or control of self-reactive lymphocytes. Periodontal diseases are characterized by inflammatory conditions that directly affect teeth-supporting structures, which are the major cause of tooth loss. Several studies have demonstrated the involvement of autoimmune responses in periodontal disease. Evidence of involvement of immunopathology has been reported in periodontal disease. Bacteria in the dental plaque induce antibody formation. Autoreactive T-cells, natural killer cells, ANCA, heat shock proteins, autoantibodies, and genetic factors are reported to have an important role in the autoimmune component of periodontal disease. The present review describes the involvement of autoimmune responses in periodontal diseases and also the mechanisms underlying these responses. Copyright © 2016 Elsevier B.V. All rights reserved.
Hill, Clara E
2006-01-01
Reports an error in "Therapist Techniques, Client Involvement, and the Therapeutic Relationship: Inextricably Intertwined in the Therapy Process" by Clara E. Hill (Psychotherapy: Theory, Research, Practice, Training, 2005 Win, Vol 42(4), 431-442). An author's name was incorrectly spelled in a reference. The correct reference is presented. (The following abstract of the original article appeared in record 2006-03309-003.) I propose that therapist techniques, client involvement, and the therapeutic relationship are inextricably intertwined and need to be considered together in any discussion of the therapy process. Furthermore, I present a pantheoretical model of how these three variables evolve over four stages of successful therapy: initial impression formation, beginning the therapy (involves the components of facilitating client exploration and developing case conceptualization and treatment strategies), the core work of therapy (involves the components of theory-relevant tasks and overcoming obstacles), and termination. Theoretical propositions as well as implications for training and research are presented. (PsycINFO Database Record (c) 2010 APA, all rights reserved).
A Community Standard Format for the Representation of Protein Affinity Reagents*
Gloriam, David E.; Orchard, Sandra; Bertinetti, Daniela; Björling, Erik; Bongcam-Rudloff, Erik; Borrebaeck, Carl A. K.; Bourbeillon, Julie; Bradbury, Andrew R. M.; de Daruvar, Antoine; Dübel, Stefan; Frank, Ronald; Gibson, Toby J.; Gold, Larry; Haslam, Niall; Herberg, Friedrich W.; Hiltke, Tara; Hoheisel, Jörg D.; Kerrien, Samuel; Koegl, Manfred; Konthur, Zoltán; Korn, Bernhard; Landegren, Ulf; Montecchi-Palazzi, Luisa; Palcy, Sandrine; Rodriguez, Henry; Schweinsberg, Sonja; Sievert, Volker; Stoevesandt, Oda; Taussig, Michael J.; Ueffing, Marius; Uhlén, Mathias; van der Maarel, Silvère; Wingren, Christer; Woollard, Peter; Sherman, David J.; Hermjakob, Henning
2010-01-01
Protein affinity reagents (PARs), most commonly antibodies, are essential reagents for protein characterization in basic research, biotechnology, and diagnostics as well as the fastest growing class of therapeutics. Large numbers of PARs are available commercially; however, their quality is often uncertain. In addition, currently available PARs cover only a fraction of the human proteome, and their cost is prohibitive for proteome scale applications. This situation has triggered several initiatives involving large scale generation and validation of antibodies, for example the Swedish Human Protein Atlas and the German Antibody Factory. Antibodies targeting specific subproteomes are being pursued by members of Human Proteome Organisation (plasma and liver proteome projects) and the United States National Cancer Institute (cancer-associated antigens). ProteomeBinders, a European consortium, aims to set up a resource of consistently quality-controlled protein-binding reagents for the whole human proteome. An ultimate PAR database resource would allow consumers to visit one on-line warehouse and find all available affinity reagents from different providers together with documentation that facilitates easy comparison of their cost and quality. However, in contrast to, for example, nucleotide databases among which data are synchronized between the major data providers, current PAR producers, quality control centers, and commercial companies all use incompatible formats, hindering data exchange. Here we propose Proteomics Standards Initiative (PSI)-PAR as a global community standard format for the representation and exchange of protein affinity reagent data. The PSI-PAR format is maintained by the Human Proteome Organisation PSI and was developed within the context of ProteomeBinders by building on a mature proteomics standard format, PSI-molecular interaction, which is a widely accepted and established community standard for molecular interaction data. Further information and documentation are available on the PSI-PAR web site. PMID:19674966
Rhodotorula Keratitis: A Rarely Encountered Ocular Pathogen
Giovannini, Joseph; Lee, Rick; Zhang, Sean X.; Jun, Albert S.; Bower, Kraig S.
2014-01-01
Purpose To describe a case of fungal keratitis involving an atypical organism with confirmatory in vivo confocal microscopy and to review the literature on Rhodotorula keratitis. Methods Case report and review of the medical literature. Results A 22-year-old college student was struck in the left eye with a tree branch and subsequently developed pain, redness and photophobia. Upon presentation, visual acuity was 20/200 and there was a large epithelial defect with diffuse stromal inflammation involving the anterior one-third of the cornea. Cultures of the infiltrate were performed for bacterial, viral and fungal organisms that resulted in a positive culture for Rhodotorula mucilaginosa. Fungal elements were confirmed in vivo by confocal microscopy. The patient was treated with voriconazole initially and had amphotericin added once Rhodotorula infection was confirmed. The patient responded well clinically, and one month after therapy was initiated, the corneal infiltrate had resolved leaving mild anterior stromal haze. Upon completion of therapy at three months, the patient was asymptomatic, had a clear cornea and had a best corrected visual acuity of 20/20 in the involved eye. There was no measurable change in his manifest refraction. Conclusions Prior cases of Rhodotorula keratitis most often required surgical intervention and were associated with poor outcomes. This case shows that Rhodotorula keratitis can be successfully treated with topical antifungal agents if diagnosed early and appropriate treatment is initiated promptly. We report the first case of Rhodotorula keratitis confirmed by in vivo confocal microscopy. This is also the first description of pseudomycelium formation that has not been previously described in vivo, a morphological structure that this organism rarely demonstrates. Finally, this case shows that confocal microscopy may aid in the early diagnosis and management of fungal keratitis involving this rare but potentially damaging organism. PMID:25408670
Corrigan, Damion K; Vezza, Vincent; Schulze, Holger; Bachmann, Till T; Mount, Andrew R; Walton, Anthony J; Terry, Jonathan G
2018-06-09
For analytical applications involving label-free biosensors and multiple measurements, i.e., across an electrode array, it is essential to develop complete sensor systems capable of functionalization and of producing highly consistent responses. To achieve this, a multi-microelectrode device bearing twenty-four equivalent 50 µm diameter Pt disc microelectrodes was designed in an integrated 3-electrode system configuration and then fabricated. Cyclic voltammetry and electrochemical impedance spectroscopy were used for initial electrochemical characterization of the individual working electrodes. These confirmed the expected consistency of performance with a high degree of measurement reproducibility for each microelectrode across the array. With the aim of assessing the potential for production of an enhanced multi-electrode sensor for biomedical use, the working electrodes were then functionalized with 6-mercapto-1-hexanol (MCH). This is a well-known and commonly employed surface modification process, which involves the same principles of thiol attachment chemistry and self-assembled monolayer (SAM) formation commonly employed in the functionalization of electrodes and the formation of biosensors. Following this SAM formation, the reproducibility of the observed electrochemical signal between electrodes was seen to decrease markedly, compromising the ability to achieve consistent analytical measurements from the sensor array following this relatively simple and well-established surface modification. To successfully and consistently functionalize the sensors, it was necessary to dilute the constituent molecules by a factor of ten thousand to support adequate SAM formation on microelectrodes. The use of this multi-electrode device therefore demonstrates in a high throughput manner irreproducibility in the SAM formation process at the higher concentration, even though these electrodes are apparently functionalized simultaneously in the same film formation environment, confirming that the often seen significant electrode-to-electrode variation in label-free SAM biosensing films formed under such conditions is not likely to be due to variation in film deposition conditions, but rather kinetically controlled variation in the SAM layer formation process at these microelectrodes.
Alajarin, Mateo; Bonillo, Baltasar; Ortin, Maria-Mar; Sanchez-Andrada, Pilar; Vidal, Angel; Orenes, Raul-Angel
2010-10-21
The ability of triarylmethane and diarylmethane fragments to behave as hydride donors participating in thermal [1,5]-H shift/6π-ERC tandem processes involving ketenimine and carbodiimide functions is disclosed. C-Alkyl-C-phenyl ketenimines N-substituted by a triarylmethane substructure convert into a variety of 3,3,4,4-tetrasubstituted-3,4-dihydroquinolines, as structurally related carbodiimides transform into 3,4,4-trisubstituted-3,4-dihydroquinazolines via transient ortho-azaxylylenes. The first step of these one-pot conversions, the [1,5]-H shift, is considered to be a hydride migration on the basis of the known hydricity of the tri(di)arylmethane fragment and the electrophilicity of the central heterocumulenic carbon atom, whereas the final electrocyclization involves the formation of a sterically congested C-C or C-N bond. In the cases of C,C-diphenyl substituted triarylmethane-ketenimines the usual 6π-ERC becomes prohibited by the presence of two phenyl rings at each end of the azatrienic system. This situation opens new reaction channels: (a) following the initial hydride shift, the tandem sequence continues with an alternative electrocyclization mode to give 9,10-dihydroacridines, (b) the full sequence is initiated by a rare 1,5 migration of an electron-rich aryl group, followed by a 6π-ERC which leads to 2-aryl-3,4-dihydroquinolines, or (c) a different [1,5]-H shift/6π-ERC sequence involving the initial migration of a hydrogen atom from a methyl group at the ortho position to the nitrogen atom of the ketenimine function. Diarylmethane-ketenimines bearing a methyl group at the benzylic carbon atom experience a tandem double [1,5]-H shift, the first one being the usual benzylic hydride transfer whereas the second one involves the methyl group at the initial benzylic carbon atom, the reaction products being 2-aminostyrenes. Diarylmethane-ketenimines lacking such a methyl group convert into 3,4-dihydroquinolines by the habitual tandem [1,5]-H shift/6π-ERC processes.
2009-01-01
HPV infection in cervical carcinoma cells . However, this effect is E6 dependent, as p53 could only be degraded by the formation of E6 and E6-AP...and prostate cancer cell proliferation. E6-AP by itself can modulate p53 levels in prostate cancer cells independent of E6. Our data also indicates...p53 levels in prostate glands and prostate cancer cells : E6-AP was initially identified as an E3 ligase which promotes the degradation of p53 during
Bruneau, Christian; Dixneuf, Pierre H
2006-03-27
The involvement of a catalytic metal vinylidene species was proposed for the first time in 1986 to explain the regioselective formation of vinyl carbamates directly from terminal alkynes, carbon dioxide, and amines. Since this initial report, various metal vinylidenes and allenylidenes, which are key activation intermediates, have proved extremely useful for many alkyne transformations. They have contributed to the rational design of new catalytic reactions. This 20th anniversary is a suitable occasion to present the advancement of organometallic vinylidenes and allenylidenes in catalysis.
ERIC Educational Resources Information Center
Louie, Josephine; Sanchez, Maria Teresa; North, Charlotte; Cazabon, Mary; Melo, Daniel; Kagle, Melissa
2011-01-01
This study examines two state-supported formative assessment initiatives that promote a consensus definition of formative assessment endorsed by the Council of Chief State School Officers. It describes the primary components of the two initiatives and the strategies that state, district, and school leaders report using to support implementation of…
ERIC Educational Resources Information Center
Louie, Josephine; Sanchez, Maria Teresa; North, Charlotte; Cazabon, Mary; Melo, Daniel; Kagle, Melissa
2011-01-01
This study examines two state-supported formative assessment initiatives that promote a consensus definition of formative assessment endorsed by the Council of Chief State School Officers. It describes the primary components of the two initiatives and the strategies that state, district, and school leaders report using to support implementation of…
Thermal barrier coating life prediction model development
NASA Technical Reports Server (NTRS)
Sheffler, K. D.; Demasi, J. T.
1985-01-01
A methodology was established to predict thermal barrier coating life in an environment simulative of that experienced by gas turbine airfoils. Specifically, work is being conducted to determine failure modes of thermal barrier coatings in the aircraft engine environment. Analytical studies coupled with appropriate physical and mechanical property determinations are being employed to derive coating life prediction model(s) on the important failure mode(s). An initial review of experimental and flight service components indicates that the predominant mode of TBC failure involves thermomechanical spallation of the ceramic coating layer. This ceramic spallation involves the formation of a dominant crack in the ceramic coating parallel to and closely adjacent to the metal-ceramic interface. Initial results from a laboratory test program designed to study the influence of various driving forces such as temperature, thermal cycle frequency, environment, and coating thickness, on ceramic coating spalling life suggest that bond coat oxidation damage at the metal-ceramic interface contributes significantly to thermomechanical cracking in the ceramic layer. Low cycle rate furnace testing in air and in argon clearly shows a dramatic increase of spalling life in the non-oxidizing environments.
The contraction/expansion history of Charon with implications for its planetary-scale tectonic belt
NASA Astrophysics Data System (ADS)
Malamud, Uri; Perets, Hagai B.; Schubert, Gerald
2017-06-01
The New Horizons mission to the Kuiper belt has recently revealed intriguing features on the surface of Charon, including a network of chasmata, cutting across or around a series of high topography features, conjoining to form a belt. It is proposed that this tectonic belt is a consequence of contraction/expansion episodes in the moon's evolution associated particularly with compaction, differentiation and geochemical reactions of the interior. The proposed scenario involves no need for solidification of a vast subsurface ocean and/or a warm initial state. This scenario is based on a new, detailed thermo-physical evolution model of Charon that includes multiple processes. According to the model, Charon experiences two contraction/expansion episodes in its history that may provide the proper environment for the formation of the tectonic belt. This outcome remains qualitatively the same, for several different initial conditions and parameter variations. The precise orientation of Charon's tectonic belt, and the cryovolcanic features observed south of the tectonic belt may have involved a planetary-scale impact, that occurred only after the belt had already formed.
Taghiyev, Agshin F; Guseva, Natalya V; Glover, Rebecca A; Rokhlin, Oskar W; Cohen, Michael B
2006-09-01
The histone deacetylase inhibitor Trichostatin A (TSA) has previously been found to induce caspase activity in the human prostate cancer cell lines DU145 and LNCaP. TSA treatment resulted in the release of cytochrome c and Smac/DIABLO from mitochondria in DU145, and activation of caspase-9 in both cell lines. We concluded that TSA mediated its effect via the mitochondrial pathway. The aim of the current study was to determine how TSA initiated the caspase cascade. The results revealed that caspase-2 plays an important role in TSA-induced apoptosis. Inhibition of caspase-2 by siRNA or expression of caspase-2dn substantially decreased caspase activity after TSA treatment in both cell lines, siRNA caspase-2 also inhibited TSA-induced cell death. Caspase-2 acts upstream of caspase-8 and -9 and mediates mitochondrial cytochrome c release. Coimmunoprecipitation experiments show that caspase-2 formed protein complexes with RADD/RAIDD and PIDD. Together, these data indicate that caspase-2 initiates caspase cascade after TSA treatment and involves the formation of the PIDDosome.
Nuclear Condensation during Mouse Erythropoiesis Requires Caspase-3-Mediated Nuclear Opening.
Zhao, Baobing; Mei, Yang; Schipma, Matthew J; Roth, Eric Wayne; Bleher, Reiner; Rappoport, Joshua Z; Wickrema, Amittha; Yang, Jing; Ji, Peng
2016-03-07
Mammalian erythropoiesis involves chromatin condensation that is initiated in the early stage of terminal differentiation. The mechanisms of chromatin condensation during erythropoiesis are unclear. Here, we show that the mouse erythroblast forms large, transient, and recurrent nuclear openings that coincide with the condensation process. The opening lacks nuclear lamina, nuclear pore complexes, and nuclear membrane, but it is distinct from nuclear envelope changes that occur during apoptosis and mitosis. A fraction of the major histones are released from the nuclear opening and degraded in the cytoplasm. We demonstrate that caspase-3 is required for the nuclear opening formation throughout terminal erythropoiesis. Loss of caspase-3 or ectopic expression of a caspase-3 non-cleavable lamin B mutant blocks nuclear opening formation, histone release, chromatin condensation, and terminal erythroid differentiation. We conclude that caspase-3-mediated nuclear opening formation accompanied by histone release from the opening is a critical step toward chromatin condensation during erythropoiesis in mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Scar Management of the Burned Hand
Sorkin, Michael; Cholok, David; Levi, Benjamin
2017-01-01
Unimpaired hand function is critical in almost all activities of daily living. Burn injury can result in hypertrophic scar formation that can lead to debilitating functional deficits and poor aesthetic outcomes. Initial algorithms of acute burn management involve early debridement and skin grafting and early mobilization to prevent formation of hypertrophic scarring and ultimately digit contractures. While non-operative modalities in the early phase of scar maturation are critical to minimize hypertrophic scar formation, surgical management is often indicated in order to restore hand function. The essential tenant of operative scar management is release of tension, which can often be achieved through local tissue rearrangement. Laser therapy has emerged as a central pillar of subsequent scar rehabilitation with several modalities that address scar texture, color, pruritis and thickness. These can be utilized in conjunction with local corticosteroid treatment and other emerging modalities to modulate the scar and achieve optimal hand function. These treatment tools provide an effective resource for the reconstructive surgeon to treat hypertrophic hand scars. PMID:28363297
Nuclear condensation during mouse erythropoiesis requires caspase-3-mediated nuclear opening
Zhao, Baobing; Mei, Yang; Schipma, Matthew J; Roth, Eric Wayne; Bleher, Reiner; Rappoport, Joshua Z.; Wickrema, Amittha; Yang, Jing; Ji, Peng
2016-01-01
SUMMARY Mammalian erythropoiesis involves chromatin condensation that is initiated in the early stage of terminal differentiation. The mechanisms of chromatin condensation during erythropoiesis are unclear. Here, we show that the mouse erythroblast forms large, transient, and recurrent nuclear openings that coincide with the condensation process. The opening lacks nuclear lamina, nuclear pore complexes, and nuclear membrane, but it is distinct from nuclear envelope changes that occur during apoptosis and mitosis. A fraction of the major histones are released from the nuclear opening and degraded in the cytoplasm. We demonstrate that caspase-3 is required for the nuclear opening formation throughout terminal erythropoiesis. Loss of caspase-3 or ectopic expression of a caspase-3 non-cleavable lamin B mutant blocks nuclear opening formation, histone release, chromatin condensation, and terminal erythroid differentiation. We conclude that caspase-3-mediated nuclear opening formation accompanied by histone release from the opening is a critical step towards chromatin condensation during erythropoiesis in mice. PMID:26954545
Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects.
Usui, Yuki; Aoki, Kaoru; Narita, Nobuyo; Murakami, Narumichi; Nakamura, Isao; Nakamura, Koichi; Ishigaki, Norio; Yamazaki, Hiroshi; Horiuchi, Hiroshi; Kato, Hiroyuki; Taruta, Seiichi; Kim, Yoong Ahm; Endo, Morinobu; Saito, Naoto
2008-02-01
Carbon nanotubes (CNTs) have been used in various fields as composites with other substances or alone to develop highly functional materials. CNTs hold great interest with respect to biomaterials, particularly those to be positioned in contact with bone such as prostheses for arthroplasty, plates or screws for fracture fixation, drug delivery systems, and scaffolding for bone regeneration. Accordingly, bone-tissue compatibility of CNTs and CNT influence on bone formation are important issues, but the effects of CNTs on bone have not been delineated. Here, it is found that multi-walled CNTs adjoining bone induce little local inflammatory reaction, show high bone-tissue compatibility, permit bone repair, become integrated into new bone, and accelerate bone formation stimulated by recombinant human bone morphogenetic protein-2 (rhBMP-2). This study provides an initial investigational basis for CNTs in biomaterials that are used adjacent to bone, including uses to promote bone regeneration. These findings should encourage development of clinical treatment modalities involving CNTs.
Alpha-synuclein: relating metals to structure, function and inhibition.
McDowall, J S; Brown, D R
2016-04-01
Alpha-synuclein has long been studied due to its involvement in the progression of Parkinson's disease (PD), a common neurodegenerative disorder, although a consensus on the exact function of this protein is elusive. This protein shows remarkable structural plasticity and this property is important for both correct cellular function and pathological progression of PD. Formation of intracellular oligomeric species within the substantia nigra correlates with disease progression and it has been proposed that formation of a partially folded intermediate is key to the initiation of the fibrillisation process. Many factors can influence changes in the structure of alpha-synuclein such as disease mutations and interaction with metals and neurotransmitters. High concentrations of both dopamine and metals are present in the substantia nigra making this an ideal location for both the structural alteration of alpha-synuclein and the production of toxic oxygen species. The recent proposal that alpha-synuclein is a ferrireductase is important as it can possibly catalyse the formation of such reactive species and as a result exacerbate neurodegeneration.
Cooperation driven by success-driven group formation
NASA Astrophysics Data System (ADS)
Szolnoki, Attila; Chen, Xiaojie
2016-10-01
In the traditional setup of the public goods game all players are involved in every available group and the mutual benefit is shared among competing cooperator and defector strategies. However, in real life situations the group formation of players could be more sophisticated because not all players are attractive enough for others to participate in a joint venture. What if only those players who are successful enough to the neighbors can initiate a group formation and establish a game? To elaborate this idea we employ a modified protocol and demonstrate that a carefully chosen threshold to establish a joint venture could efficiently improve the cooperation level even if the synergy factor would suggest a full defector state otherwise. The microscopic mechanism that is responsible for this effect is based on the asymmetric consequences of competing strategies: while the success of a cooperator provides a long-time well-being for the neighborhood, the temporary advantage of defection cannot be maintained if the protocol is based on the success of leaders.
Bromine oxidation in volcanic plumes
NASA Astrophysics Data System (ADS)
Bobrowski, N.; Vogel, L.; Kern, C.; Giuffrida, G. B.; Delgado-Granados, H.; Platt, U.
2009-04-01
Volcanoes are very strong sources of hydrogen, carbon, sulphur and halogen compounds, as well as of particles. Some gases only behave as passive tracers; others interact and affect the formation, growth or chemical characteristics of aerosol particles in a complex system. Recent measurements of halogen radicals in volcanic plumes showed that volcanic plumes are chemically very active. Kinetic considerations (Oppenheimer et al., 2006) and detailed calculations with an atmospheric chemistry model (Bobrowski et al., 2007) explain the halogen chemistry mainly with photochemical reactions involving both, the gas and particle phase. They reproduce the measured gas-phase concentrations quite well. However, temporal evolution of BrO in the early plume is not well described in the models. The understanding of chemical kinetics of BrO formation is still not complete. Recent measurement results (Vogel et al., 2008) do not fit with initial model calculation. The new data lead to the suggestion that the BrO formation could be much faster during the first few minutes after emission than initially suggested. Old and recent data sets will be confronted, compared and possible causes of their differences discussed. The measurements considered were taken at Mt. Etna (Italy), Villarica (Chile), and Popocatépetl (Mexico) volcanoes. Additionally, at Mt Etna the emission consists of up to four individual plumes from four summit craters. The differences between the individual plumes have been investigated during the last years and will be presented.
Wu, Rentian; Wang, Jiafeng; Liang, Chun
2012-01-01
Regulation of DNA replication initiation is essential for the faithful inheritance of genetic information. Replication initiation is a multi-step process involving many factors including ORC, Cdt1p, Mcm2-7p and other proteins that bind to replication origins to form a pre-replicative complex (pre-RC). As a prerequisite for pre-RC assembly, Cdt1p and the Mcm2-7p heterohexameric complex accumulate in the nucleus in G1 phase in an interdependent manner in budding yeast. However, the nature of this interdependence is not clear, nor is it known whether Cdt1p is required for the assembly of the MCM complex. In this study, we provide the first evidence that Cdt1p, through its interaction with Mcm6p with the C-terminal regions of the two proteins, is crucial for the formation of the MCM complex in both the cytoplasm and nucleoplasm. We demonstrate that disruption of the interaction between Cdt1p and Mcm6p prevents the formation of the MCM complex, excludes Mcm2-7p from the nucleus, and inhibits pre-RC assembly and DNA replication. Our findings suggest a function for Cdt1p in promoting the assembly of the MCM complex and maintaining its integrity by interacting with Mcm6p.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiao, E-mail: liuxiao0105@163.com
2016-12-15
Uniaxial compression tests were carried out at 350 °C and a strain rate of 0.3 s{sup −1} on as-extruded AZ31 magnesium alloy samples. At a true strain of − 0.1, extension twin pairs in a grain and twin chains across adjacent grains were detected. The orientation of selected twins and their host grains were determined by electron backscattered diffraction (EBSD) techniques. The Schmid factors (SFs), accommodation strains and geometric compatibility factors (m{sup ′}) were calculated. Analysis of the data indicated that the formation of twin pair and twin chain was related to the SF and m{sup ′}. Regarding to twinmore » chain across adjacent grains, accommodation strain was also involved. The selection of twin variants in twin chain was generally determined by m{sup ′}. When the twins required the operation of pyramidal slip or twinning in adjacent grain, the corresponding connected twins with a relative high m{sup ′} were selected in this adjacent grain. - Highlights: •The formation of paired twins is studied during high temperature deformation. •The initiation of twinning in twin pair and twin chain obeys the Schmid law. •The twin variants' selection in twin chain is related to the geometric compatibility factor. •The accommodation strain plays an important role on the formation of twin chain.« less
Lipoxygenase is involved in the control of potato tuber development.
Kolomiets, M V; Hannapel, D J; Chen, H; Tymeson, M; Gladon, R J
2001-03-01
Plant lipoxygenases (LOXs) are a functionally diverse class of dioxygenases implicated in physiological processes such as growth, senescence, and stress-related responses. LOXs incorporate oxygen into their fatty acid substrates and produce hydroperoxide fatty acids that are precursors of jasmonic acid and related compounds. Here, we report the involvement of the tuber-associated LOXs, designated the Lox1 class, in the control of tuber growth. RNA hybridization analysis showed that the accumulation of Lox1 class transcripts was restricted to developing tubers, stolons, and roots and that mRNA accumulation correlated positively with tuber initiation and growth. In situ hybridization showed that Lox1 class transcripts accumulated in the apical and subapical regions of the newly formed tuber, specifically in the vascular tissue of the perimedullary region, the site of the most active cell growth during tuber enlargement. Suppression mutants produced by expressing antisense coding sequence of a specific tuber LOX, designated POTLX-1, exhibited a significant reduction in LOX activity in stolons and tubers. The suppression of LOX activity correlated with reduced tuber yield, decreased average tuber size, and a disruption of tuber formation. Our results indicate that the pathway initiated by the expression of the Lox1 class genes of potato is involved in the regulation of tuber enlargement.
Extracellular annexins and dynamin are important for sequential steps in myoblast fusion
Leikina, Evgenia; Melikov, Kamran; Sanyal, Sarmistha; Verma, Santosh K.; Eun, Bokkee; Gebert, Claudia; Pfeifer, Karl; Lizunov, Vladimir A.; Kozlov, Michael M.
2013-01-01
Myoblast fusion into multinucleated myotubes is a crucial step in skeletal muscle development and regeneration. Here, we accumulated murine myoblasts at the ready-to-fuse stage by blocking formation of early fusion intermediates with lysophosphatidylcholine. Lifting the block allowed us to explore a largely synchronized fusion. We found that initial merger of two cell membranes detected as lipid mixing involved extracellular annexins A1 and A5 acting in a functionally redundant manner. Subsequent stages of myoblast fusion depended on dynamin activity, phosphatidylinositol(4,5)bisphosphate content, and cell metabolism. Uncoupling fusion from preceding stages of myogenesis will help in the analysis of the interplay between protein machines that initiate and complete cell unification and in the identification of additional protein players controlling different fusion stages. PMID:23277424
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-28
...The Alliance for Nanotechnology in Cancer of the National Cancer Institute (NCI) is initiating a public private industry partnership called TONIC (Translation Of Nanotechnology In Cancer) to promote translational research and development opportunities of nanotechnology-based cancer solutions. An immediate consequence of this effort will be the formation of a consortium involving government and pharmaceutical, and biotechnology companies. This consortium will evaluate promising nanotechnology platforms and facilitate their successful translation from academic research to clinical environment, resulting in safe, timely, effective and novel diagnosis and treatment options for cancer patients. The purpose of this notice is to inform the community about the Alliance for Nanotechnology in Cancer of NCI's intention to form the consortium and to invite eligible companies (as defined in last paragraph) to participate.
A Hardware-in-the-Loop Testbed for Spacecraft Formation Flying Applications
NASA Technical Reports Server (NTRS)
Leitner, Jesse; Bauer, Frank H. (Technical Monitor)
2001-01-01
The Formation Flying Test Bed (FFTB) at NASA Goddard Space Flight Center (GSFC) is being developed as a modular, hybrid dynamic simulation facility employed for end-to-end guidance, navigation, and control (GN&C) analysis and design for formation flying clusters and constellations of satellites. The FFTB will support critical hardware and software technology development to enable current and future missions for NASA, other government agencies, and external customers for a wide range of missions, particularly those involving distributed spacecraft operations. The initial capabilities of the FFTB are based upon an integration of high fidelity hardware and software simulation, emulation, and test platforms developed at GSFC in recent years; including a high-fidelity GPS simulator which has been a fundamental component of the Guidance, Navigation, and Control Center's GPS Test Facility. The FFTB will be continuously evolving over the next several years from a too[ with initial capabilities in GPS navigation hardware/software- in-the- loop analysis and closed loop GPS-based orbit control algorithm assessment to one with cross-link communications and relative navigation analysis and simulation capability. Eventually the FFT13 will provide full capability to support all aspects of multi-sensor, absolute and relative position determination and control, in all (attitude and orbit) degrees of freedom, as well as information management for satellite clusters and constellations. In this paper we focus on the architecture for the FFT13 as a general GN&C analysis environment for the spacecraft formation flying community inside and outside of NASA GSFC and we briefly reference some current and future activities which will drive the requirements and development.
Ca Isotopes Fingerprinting the Earliest Crustal Evolution
NASA Astrophysics Data System (ADS)
Kreissig, K.; Elliott, T. R.
2001-12-01
The mechanisms of continent formation remain unclear and can be explained in two contrasting ways, using either a steady state crustal growth model involving massive crustal recycling or continuous crustal growth models. Recent developments in mass spectrometry manifest in the new Finnigan-Triton allow Ca isotopic measurements precise enough to use the K-Ca isotope system to address the problem of early Archaean crustal evolution. Due to a strong fractionation of 40K and 40Ca during continent formation and a non-linear growth of 40Ca, Archaean continental crust should show radiogenic initial Ca isotopic composition if large volumes of it have already been existed 3.6 Ga ago. Simple 15-step calculations predict a difference in 40Ca /44Ca of 9 epsilon units at 3.6 Ga between the two crustal growth models. To test this, as well as to study the earliest crust formation processes, plagioclase separates from Archaean provinces reflecting the initial Ca isotopic composition and a range of different whole rock samples have been analysed. Preliminary data for ~ 3.6 Ga old TTGs from Zimbabwe show 40Ca /44Ca indistinguishable from the mantle. This is in agreement with rather chondritic initial Sr and Nd data and might reflect a short residence time of the juvenile mafic oceanic crust before partial melting forming the first continental crust. In contrast, the first results for 3.65 Ga old samples from the Itsaq Gneiss Complex of southern West Greenland yield a more evolved radiogenic Ca signature. This can be interpreted in two different ways. Either as partial melting of juvenile mafic crust shortly after its formation but incorporating already existing crust as also suggested by the existence of older inherited zircons in these rocks and negative ɛ Hf values. Partial melting of mafic oceanic crust long after its formation so that 40K and 40Ca had time to evolve would be an alternative explanation. Importantly, there is no evidence so far for high growth and recycling rates prior to 3.6 Ga as required by the most extreme 'big bang' model.
Exocyst and autophagy-related membrane trafficking in plants.
Pecenková, Tamara; Markovic, Vedrana; Sabol, Peter; Kulich, Ivan; Žárský, Viktor
2017-12-18
Endomembrane traffic in eukaryotic cells functions partially as a means of communication; delivery of membrane in one direction has to be balanced with a reduction at the other end. This effect is typically the case during the defence against pathogens. To combat pathogens, cellular growth and differentiation are suppressed, while endomembrane traffic is poised towards limiting the pathogen attack. The octameric exocyst vesicle-tethering complex was originally discovered as a factor facilitating vesicle-targeting and vesicle-plasma membrane (PM) fusion during exocytosis prior to and possibly during SNARE complex formation. Interestingly, it was recently implicated both in animals and plants in autophagy membrane traffic. In animal cells, the exocyst is integrated into the mTOR-regulated energy metabolism stress/starvation pathway, participating in the formation and especially initiation of an autophagosome. In plants, the first functional link was to autophagy-related anthocyanin import to the vacuole and to starvation. In this concise review, we summarize the current knowledge of exocyst functions in autophagy and defence in plants that might involve unconventional secretion and compare it with animal conditions. Formation of different exocyst complexes during undisturbed cell growth, as opposed to periods of cellular stress reactions involving autophagy, might contribute to the coordination of endomembrane trafficking pathways. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Initiation of reflective frames in counseling for Huntingtons Disease predictive testing.
Sarangi, Srikant; Bennert, Kristina; Howell, Lucy; Clarke, Angus; Harper, Peter; Gray, Jonathon
2004-04-01
Genetic professionals and clients are likely to assign different meanings to the extended format of the counseling protocols for predictive testing. In order to facilitate informed, client-centered decisions about the possibility of predictive testing, counselors routinely use the question format to initiate what we call "reflective frames" that invite clients to discuss their feelings and encourage them to adopt introspective and self-reflective stances toward their own experience--spanning the past, the present, and the hypothetical future. We suggest that such initiations of reflective frames constitute a key element of counselors' nondirective stance, although the exact nature of their formulations can be complex and varied. Examining 24 Huntington's Disease (HD) clinic sessions involving 12 families in South Wales with the tools of discourse analysis, our focus in this paper is twofold: (i) to propose a classification of six types of reflective questions (e.g. nonspecific invites, awareness and anxiety, decision about testing, impact of result, dissemination, and other) and to examine their distribution across the various clinic appointments, and (ii) to investigate the scope of these questions in terms of temporal and social axes. We link our analysis to the current debate within the genetic counseling profession about the merits of reflection- versus information-focused counseling styles and the need to abide by professionally warranted and institutionally embedded counseling protocols.
D’Andreta, Daniela; Scarbrough, Harry; Evans, Sarah
2014-01-01
Objectives We contribute to existing knowledge translation (KT) literature by developing the notion of ‘enactment’ and illustrate this through an interpretative, comparative case-study analysis of three Collaborations for Leadership in Applied Health Research and Care (CLAHRC) initiatives. We argue for a focus on the way in which the CLAHRC model has been ‘enacted’ as central to the different KT challenges and capabilities encountered. Methods A comparative, mixed method study created a typology of enactments (Classical, Home-grown and Imported) using qualitative analysis and social network analysis. Results We identify systematic differences in the enactment of the CLAHRC model. The sources of these different enactments are subsequently related to variation in formative interpretations and leadership styles, the implementation of different governance structures, and the relative epistemic differences between the professional groups involved. Conclusions Enactment concerns the creative agency of individuals and groups in constituting a particular context for their work through their local interpretation of a particular KT model. Our theory of enactment goes beyond highlighting variation between CLAHRCs, to explore the mechanisms that influence the way a particular model is interpreted and acted upon. We thus encourage less focus on conceptual models and more on the formative role played by leaders of KT initiatives. PMID:24048695
Heyes, Derren J.; Ruban, Alexander V.; Wilks, Helen M.; Hunter, C. Neil
2002-01-01
The chlorophyll biosynthesis enzyme protochlorophyllide reductase (POR) catalyzes the light-dependent reduction of protochlorophyllide (Pchlide) into chlorophyllide in the presence of NADPH. As POR is light-dependent, catalysis can be initiated by illumination of the enzyme-substrate complex at low temperatures, making it an attractive model for studying aspects of biological proton and hydride transfers. The early stages in the photoreduction, involving Pchlide binding and an initial photochemical reaction, have been studied in vitro by using low-temperature fluorescence and absorbance measurements. Formation of the ternary POR-NADPH-Pchlide complex produces red shifts in the fluorescence and absorbance maxima of Pchlide, allowing the dissociation constant for Pchlide binding to be measured. We demonstrate that the product of an initial photochemical reaction, which can occur below 200 K, is a nonfluorescent intermediate with a broad absorbance band at 696 nm (A696) that is suggested to represent an ion radical complex. The temperature dependence of the rate of A696 formation has allowed the activation energy for the photochemical step to be calculated and has shown that POR catalysis can proceed at much lower temperatures than previously thought. Calculations of differences in free energy between various reaction intermediates have been calculated; these, together with the quantum efficiency for Pchlide conversion, suggest a quantitative model for the thermodynamics of the light-driven step of Pchlide reduction. PMID:12177453
Sato-Carlton, Aya; Li, Xuan; Crawley, Oliver; Testori, Sarah; Martinez-Perez, Enrique; Sugimoto, Asako; Carlton, Peter M.
2014-01-01
Prior to the meiotic divisions, dynamic chromosome reorganizations including pairing, synapsis, and recombination of maternal and paternal chromosome pairs must occur in a highly regulated fashion during meiotic prophase. How chromosomes identify each other's homology and exclusively pair and synapse with their homologous partners, while rejecting illegitimate synapsis with non-homologous chromosomes, remains obscure. In addition, how the levels of recombination initiation and crossover formation are regulated so that sufficient, but not deleterious, levels of DNA breaks are made and processed into crossovers is not understood well. We show that in Caenorhabditis elegans, the highly conserved Serine/Threonine protein phosphatase PP4 homolog, PPH-4.1, is required independently to carry out four separate functions involving meiotic chromosome dynamics: (1) synapsis-independent chromosome pairing, (2) restriction of synapsis to homologous chromosomes, (3) programmed DNA double-strand break initiation, and (4) crossover formation. Using quantitative imaging of mutant strains, including super-resolution (3D-SIM) microscopy of chromosomes and the synaptonemal complex, we show that independently-arising defects in each of these processes in the absence of PPH-4.1 activity ultimately lead to meiotic nondisjunction and embryonic lethality. Interestingly, we find that defects in double-strand break initiation and crossover formation, but not pairing or synapsis, become even more severe in the germlines of older mutant animals, indicating an increased dependence on PPH-4.1 with increasing maternal age. Our results demonstrate that PPH-4.1 plays multiple, independent roles in meiotic prophase chromosome dynamics and maintaining meiotic competence in aging germlines. PP4's high degree of conservation suggests it may be a universal regulator of meiotic prophase chromosome dynamics. PMID:25340746
Characterization of somatic embryogenesis initiated from the Arabidopsis shoot apex.
Kadokura, Satoshi; Sugimoto, Kaoru; Tarr, Paul; Suzuki, Takamasa; Matsunaga, Sachihiro
2018-04-28
Somatic embryogenesis is one of the best examples of the remarkable developmental plasticity of plants, in which committed somatic cells can dedifferentiate and acquire the ability to form an embryo and regenerate an entire plant. In Arabidopsis thaliana, the shoot apices of young seedlings have been reported as an alternative tissue source for somatic embryos (SEs) besides the widely studied zygotic embryos taken from siliques. Although SE induction from shoots demonstrates the plasticity of plants more clearly than the embryo-to-embryo induction system, the underlying developmental and molecular mechanisms involved are unknown. Here we characterized SE formation from shoot apex explants by establishing a system for time-lapse observation of explants during SE induction. We also established a method to distinguish SE-forming and non-SE-forming explants prior to anatomical SE formation, enabling us to identify distinct transcriptome profiles of these two explants at SE initiation. We show that embryonic fate commitment takes place at day 3 of SE induction and the SE arises directly, not through callus formation, from the base of leaf primordia just beside the shoot apical meristem (SAM), where auxin accumulates and shoot-root polarity is formed. The expression domain of a couple of key developmental genes for the SAM transiently expands at this stage. Our data demonstrate that SE-forming and non-SE-forming explants share mostly the same transcripts except for a limited number of embryonic genes and root genes that might trigger the SE-initiation program. Thus, SE-forming explants possess a mixed identity (SAM, root and embryo) at the time of SE specification. Copyright © 2018. Published by Elsevier Inc.
Margolis, Henry C.; Kwak, Seo-Young; Yamazaki, Hajime
2014-01-01
Vertebrate mineralized tissues, i.e., enamel, dentin, cementum, and bone, have unique hierarchical structures and chemical compositions. Although these tissues are similarly comprised of a crystalline calcium apatite mineral phase and a protein component, they differ with respect to crystal size and shape, level and distribution of trace mineral ions, the nature of the proteins present, and their relative proportions of mineral and protein components. Despite apparent differences, mineralized tissues are similarly derived by highly concerted extracellular processes involving matrix proteins, proteases, and mineral ion fluxes that collectively regulate the nucleation, growth and organization of forming mineral crystals. Nature, however, provides multiple ways to control the onset, rate, location, and organization of mineral deposits in developing mineralized tissues. Although our knowledge is quite limited in some of these areas, recent evidence suggests that hard tissue formation is, in part, controlled through the regulation of specific molecules that inhibit the mineralization process. This paper addresses the role of mineralization inhibitors in the regulation of biological mineralization with emphasis on the relevance of current findings to the process of amelogenesis. Mineralization inhibitors can also serve to maintain driving forces for calcium phosphate precipitation and prevent unwanted mineralization. Recent evidence shows that native phosphorylated amelogenins have the capacity to prevent mineralization through the stabilization of an amorphous calcium phosphate precursor phase, as observed in vitro and in developing teeth. Based on present findings, the authors propose that the transformation of initially formed amorphous mineral deposits to enamel crystals is an active process associated with the enzymatic processing of amelogenins. Such processing may serve to control both initial enamel crystal formation and subsequent maturation. PMID:25309443
NASA Astrophysics Data System (ADS)
Ruiz-Vargas, Jose
This thesis reports theoretical and experimental investigations carried out to understand the mechanisms of microstructure formation during isothermal brazing, produced by brazing Inconel 625 and MC2 nickel-based superalloys with filler metal BNi-2. Firstly, studies were made on pure Ni to interpret microstructure's formation with simplified alloy chemistry. Microstructure formation have been studied when varying time at constant temperature (isothermal kinetics), but also when varying temperature for constant hold time (isochronal kinetics). The chemical composition and crystallography of the present phases have been identified, with the following results : (i) the fraction of dissolved base metal has been found proportional to the initial thickness of the brazing alloy, so that the composition of the liquid remains homogeneous with a precise initial equilibrium composition during the whole brazing process, (ii) the melting of the joint occurs in two steps : at lower temperature, it involves only partially melting, and boron diffusion in pure Ni leads to the precipitation of fine Ni3B borides at the interface ; in a second stage, at higher temperature, melting is complete and thermodynamic equilibrium requires significant dissolution of nickel, which also involves the dissolution of part of borides already formed. Secondly, nickel plating technique was used on Inconel 625 nickel-based superalloy. A thin layer of Ni with varying thickness, has been electrodeposited to observe the gradual dissolution of Inconel and microstructural features formation due to the presence of superalloy alloying elements. It has been observed that the nickel coating does not prevent precipitation in the base metal as boron diffuse rapidly through the coating width. In the intermediate nickel plating width, fragile precipitates of nickel borides have been observed, because the contribution of Inconel alloying elements to the melt was very limited. In absence of nickel plating on the superalloy, the formation of Nb and Cr-Mo borides phase has been observed. Efforts have been made to evaluate the accuracy of Boron measurement by energy dispersion X-ray spectroscopy (EDS) in the MC2 superalloy and BNi-2 filler metal. The most accurate method to quantify Boron using EDS is by composition difference. A precision of 5 at.% has been reached when using optimized data acquisition and post processing schemes. Ultimately, Electron Backscatter Diffraction (EBSD) combined with localized EDS analysis has been proven invaluable in conclusively identifying micrometer sized boride precipitates ; thus further improving the characterization of brazed Ni-based superalloys.
Reconstruction of doses and deposition in the western trace from the Chernobyl accident.
Sikkeland, T; Skuterud, L; Goltsova, N I; Lindmo, T
1997-05-01
A model is presented for the explosive cloud of particulates that produced the western trace of high radioactive ground contamination in the Chernobyl accident on 26 April 1986. The model was developed to reproduce measured dose rates and nuclide contamination and to relate estimated doses to observed changes in: (1) infrared emission from the foliage and (2) morphological and histological structures of individual pines. Dominant factors involved in ground contamination were initial cloud shape, particle size distribution, and rate of particle fallout. At time of formation, the cloud was assumed to be parabolical and to contain a homogeneous distribution of spherically shaped fuel particulates having a log-normal size distribution. The particulates were dispersed by steady winds and diffusion that produced a straight line deposition path. The analysis indicates that two clouds, denoted by Cloud I and Cloud II, were involved. Fallout from the former dominated the far field region and fallout from latter the region near the reactor. At formation they had a full width at half maximum of 1800 m and 500 m, respectively. For wind velocities of 5-10 m s(-1) the particulates' radial distribution at formation had a standard deviation and mode of 1.8 microm and 0.5 microm, respectively. This distribution corresponds to a release of 390 GJ in the runaway explosion. The clouds' height and mass are not uniquely determined but are coupled together. For an initial height of 3,600 m, Cloud I contained about 400 kg fuel. For Cloud II the values were, respectively, 1,500 m and 850 kg. Loss of activities from the clouds is found to be small. Values are obtained for the rate of radionuclide migration from the deposit. Various types of biological damage to pines, as reported in the literature, are shown to be mainly due to ionizing radiation from the deposit by Cloud II. A formula is presented for the particulate size distribution in the trace area.
Laser photocoagulation stops diabetic retinopathy by controlling lactic acid formation
NASA Astrophysics Data System (ADS)
Wolbarsht, Myron L.
1994-08-01
Many different types of proliferative retinopathy induced by various types of initial disorders have a common pathology in their mid and terminal stages. Thus, proper therapy is devoted toward elimination of the initial cause as well as alleviation of the proliferative processes. Vasodilatation, which is an initial symptom of diabetes, is itself destructive to the retinal capillary bed and appears to be a constant feature in all stages of diabetic retinopathy. In the mid and late stages, the vasodilatation seems very dependent upon capillary dropout, whereas the initial vasodilatation may derive from quite different causes. The efficacy of photocoagulation as a therapy for all stages seems to derive from decreasing the metabolism in the photoreceptor layer sufficiently to result in vasoconstriction of the retinal vessels. A model is proposed to show how diabetes, by altering the metabolism in the photoreceptor layer to produce excess lactic acid, causes the initial vasodilatation. The lactic acid also induces free radical (superoxide) formation; both act together to destroy the retinal capillary bed followed by vasoproliferation. Photocoagulation, thus, is even more appropriate for this particular syndrome than previously had been thought, as it not only reduces potentially destructive vasodilatation but also removes the metabolic cause of the free radical induced destruction of the capillary endothelium which is the initial step in capillary drop-out. A review of the present data indicates that the best type of pan- retinal photocoagulation is a very light type affecting the photoreceptors only with a minimal amount of damage to other parts of retina and the vessels in the choroid. The possible use of photochemical types of destruction of the photoreceptor as a therapeutic modality is attractive, but it is certainly too speculative to use until more detailed investigations have been completed. However, the basic therapeutic approach of choice may be to prevent the initial vascular involvement by preventing lactic acid buildup (or keeping the tissue pH normal) or by blocking the generation of superoxide with Allopurinol or similar medication.
Mead, Emma J; Masterton, Rosalyn J; Feary, Marc; Obrezanova, Olga; Zhang, Lin; Young, Robert; Smales, C Mark
2015-12-15
Translation initiation is on the critical pathway for the production of monoclonal antibodies (mAbs) by mammalian cells. Formation of a closed loop structure comprised of mRNA, a number of eukaryotic initiation factors (eIFs) and ribosomal proteins has been proposed to aid re-initiation of translation and therefore increase global translational efficiency. We have determined mRNA and protein levels of the key components of the closed loop, eIFs (eIF3a, eIF3b, eIF3c, eIF3h, eIF3i and eIF4G1), poly(A)-binding protein (PABP) 1 and PABP-interacting protein 1 (PAIP1), across a panel of 30 recombinant mAb-producing GS-CHOK1SV cell lines with a broad range of growth characteristics and production levels of a model recombinant mAb. We have used a multi-level statistical approach to investigate the relationship between key performance indicators (cell growth and recombinant antibody productivity) and the intracellular amounts of target translation initiation factor proteins and the mRNAs encoding them. We show that high-producing cell lines maintain amounts of the translation initiation factors involved in the formation of the closed loop mRNA, maintaining these proteins at appropriate levels to deliver enhanced recombinant protein production. We then utilize knowledge of the amounts of these factors to build predictive models for and use cluster analysis to identify, high-producing cell lines. The present study therefore defines the translation initiation factor amounts that are associated with highly productive recombinant GS-CHOK1SV cell lines that may be targets for screening highly productive cell lines or to engineer new host cell lines with the potential for enhanced recombinant antibody productivity. © 2015 Authors; published by Portland Press Limited.
Suminski, Richard R; Petosa, Rick L; Jones, Larry; Hall, Lisa; Poston, Carlos W
2009-01-01
There is a scientific and practical need for high-quality effectiveness studies of physical activity interventions in "real-world" settings. To use a community-based participatory research (CBPR) approach to develop, implement, operate, and evaluate an intervention for promoting physical activity called Neighborhoods on the Move. Two communities with similar physical and social characteristics participated in this study. One community was involved in Neighborhoods on the Move; the other (comparison community) participated only in the assessments. Academic personnel and residents/organizations in the Neighborhoods on the Move community worked together to create a community environment that was more conducive for physical activity. Pre- and posttest data on new initiatives promoting physical activity, existing physical activity initiatives, and business policies supporting physical activity were collected simultaneously in both communities. The success of the CBPR approach was evidenced by several developments, including substantial resident involvement and the formation of a leadership committee, marketing campaign, and numerous community partnerships. The number of businesses with policies promoting physical activity and breadth of existing physical activity initiatives (participants, activities, hours) increased substantially more in the Neighborhoods on the Move community than in the comparison community. A total of sixty new initiatives promoting physical activity were implemented in the Neighborhoods on the Move community during the intervention. The CBPR approach is an effective strategy for inducing environmental changes that promote physical activity. Additional research is needed to assess the portability and sustainability of Neighborhoods on the Move.
Butler, William T; Brunn, Jan C; Qin, Chunlin
2003-01-01
Dentinogenesis involves the initial odontoblastic synthesis of a collagen-rich extracellular matrix (ECM) and predentin that is converted to dentin when the collagen fibrils become mineralized. Since the width of predentin is rather uniform, we postulate that extracellular events regulate dentinogenesis. Similarly, osteogenesis involves an initial unmineralized osteoid that is mineralized and converted to bone. To gain insights into these two processes, we compared ECM proteins in bone with those in dentin, focusing upon the sialic acid (SA)-rich proteins. We observed qualitative similarities between the SA-rich proteins, but distinct differences in the amounts of osteopontin (OPN) and dentin sialoprotein (DSP). OPN, a predominant protein in bone, was found in much smaller amounts in dentin. Conversely, DSP was abundant in dentin ECM, but found sparingly in bone. Molecular cloning experiments indicate that coding sequences for DSP and dentin phosphoprotein (DPP) are found on the same mRNA. We believe that the initial form of the precursor protein DSPP is inactive in influencing the mineralization process and that it must be activated by cleavage of peptide bonds in conserved regions. Thus, unknown proteinases would act on DSPP, possibly at the mineralization front, and liberate active DPP, which plays an initiation and regulatory role in the formation of apatite crystals. This post-translational processing reaction would represent an important control point in dentinogenesis. Recently, we identified uncleaved DSPP in dentin extracts, which should allow us to test portions of our hypothesis.
NASA Astrophysics Data System (ADS)
Salpeter, Edwin E.
I fled with my parents from Hitler's Austria to Australia and studied physics at Sydney University. I obtained my Ph.D. in quantum electrodynamics with Rudolf Peierls at Birmingham University and came to Cornell to work with Hans Bethe. I have stayed at Cornell ever since, and I have essentially had only a single job in my whole life, but have switched fields quite often. I worked in nuclear astrophysics and in late-stellar evolution, estimated the Initial Mass Function for star formation and the metal enrichment of the interstellar medium. I suggested black hole accretion as the energy source for quasars, worked on molecule formation on dust grain surfaces, and was involved in 21-cm studies of gas clouds and disk galaxies. I collaborated with my wife on the neurobiology of the neuromuscular junction and with one of my daughters on the epidemiology of tuberculosis.
Zhang, Mingyi; Shao, Changlu; Guo, Zengcai; Zhang, Zhenyi; Mu, Jingbo; Zhang, Peng; Cao, Tieping; Liu, Yichun
2011-07-01
The hierarchical tetranitro copper phthalocyanine (TNCuPc) hollow spheres were fabricated by a simple solvothermal method. The formation mechanism was proposed based on the evolution of morphology as a function of solvothermal time, which involved the initial formation of nanoparticles followed by their self-aggregation to microspheres and transformation into hierarchical hollow spheres by Ostwald ripening. Furthermore, the hierarchical TNCuPc hollow spheres exhibited high adsorption capacity and excellent simultaneously visible-light-driven photocatalytic performance for Rhodamine B (RB) under visible light. A possible mechanism for the "aqueous-solid phase transfer and in situ photocatalysis" was suggested. Repetitive tests showed that the hierarchical TNCuPc hollow spheres maintained high catalytic activity over several cycles, and it had a better regeneration capability under mild conditions.
Bacteria can mobilize nematode-trapping fungi to kill nematodes
Wang, Xin; Li, Guo-Hong; Zou, Cheng-Gang; Ji, Xing-Lai; Liu, Tong; Zhao, Pei-Ji; Liang, Lian-Ming; Xu, Jian-Ping; An, Zhi-Qiang; Zheng, Xi; Qin, Yue-Ke; Tian, Meng-Qing; Xu, You-Yao; Ma, Yi-Cheng; Yu, Ze-Fen; Huang, Xiao-Wei; Liu, Shu-Qun; Niu, Xue-Mei; Yang, Jin-Kui; Huang, Ying; Zhang, Ke-Qin
2014-01-01
In their natural habitat, bacteria are consumed by bacterivorous nematodes; however, they are not simply passive preys. Here we report a defensive mechanism used by certain bacteria to mobilize nematode-trapping fungi to kill nematodes. These bacteria release urea, which triggers a lifestyle switch in the fungus Arthrobotrys oligospora from saprophytic to nematode–predatory form; this predacious form is characterized by formation of specialized cellular structures or ‘traps’. The bacteria significantly promote the elimination of nematodes by A. oligospora. Disruption of genes involved in urea transport and metabolism in A. oligospora abolishes the urea-induced trap formation. Furthermore, the urea metabolite ammonia functions as a signal molecule in the fungus to initiate the lifestyle switch to form trap structures. Our findings highlight the importance of multiple predator–prey interactions in prey defense mechanisms. PMID:25514608
Aging and bone loss: new insights for the clinician
Demontiero, Oddom; Vidal, Christopher
2012-01-01
It is well known that the underlying mechanisms of osteoporosis in older adults are different than those associated with estrogen deprivation. Age-related bone loss involves a gradual and progressive decline, which is also seen in men. Markedly increased bone resorption leads to the initial fall in bone mineral density. With increasing age, there is also a significant reduction in bone formation. This is mostly due to a shift from osteoblastogenesis to predominant adipogenesis in the bone marrow, which also has a lipotoxic effect that affects matrix formation and mineralization. We review new evidence on the pathophysiology of age-related bone loss with emphasis upon the mechanism of action of current osteoporosis treatments. New potential treatments are also considered, including therapeutic approaches to osteoporosis in the elderly that focus on the pathophysiology and potential reversal of adipogenic shift in bone. PMID:22870496
Rousseau, Paul; Halvorson, Harlyn O.; Bulla, Lee A.; Julian, Grant St.
1972-01-01
Single spores of Saccharomyces cerevisiae were examined during germination and outgrowth by scanning electron and phase-contrast microscopy. Also determined were changes in cell weight and light absorbance, trehalose utilization, and synthesis of protein and KOH-soluble carbohydrates. These studies reveal that development of the vegetative cell from a spore follows a definite sequence of events involving dramatic physical and chemical modifications. These changes are: initial rapid loss in cellular absorbance followed later by an abrupt gain in absorbance; reduction in cell weight and a subsequent progressive increase; modification of the spore surface with concomitant diminution in refractility; elongation of the cell and augmentation of surface irregularities; rapid decline in trehalose content of the cell accompanied by extensive formation of KOH-soluble carbohydrates; and bud formation. Images PMID:4551750
Initiation of small-satellite formations via satellite ejector
NASA Astrophysics Data System (ADS)
McMullen, Matthew G
Small satellites can be constructed at a fraction of the cost of a full-size satellite. One full-size satellite can be replaced with a multitude of small satellites, offering expanded area coverage through formation flight. However, the shortcoming to the smaller size is usually a lack of thrusting capabilities. Furthermore, current designs for small satellite deployment mechanisms are only capable of love deployment velocities (on the order of meters per second). Motivated to address this shortcoming, a conceived satellite ejector would offer a significant orbit change by ejecting the satellite at higher deployment velocities (125-200 m/s). Focusing on the applications of the ejector, it is sought to bridge the gap in prior research by offering a method to initiate formation flight. As a precursor to the initiation, the desired orbit properties to initiate the formation are specified in terms of spacing and velocity change vector. From this, a systematic method is developed to find the relationship among velocity change vector, the desired orbit's orientation, and the spacing required to initiate the formation.
Bharti, Niharika; Bhatla, Satish C
2015-01-01
Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The diffusive distribution of PIN1 in the provascular cells in the differentiating zone of the roots in response to GR24, fluridone or NPA treatments further indicates the involvement of localized auxin accumulation in LR development responses. Inhibition of LR formation by GR24 treatment coincides with inhibition of ACC synthase activity. Profuse LR development by fluridone and NPA treatments correlates with enhanced [Ca2+]cyt in the apical region and differentiating zones of LR, indicating a critical role of [Ca2+] in LR development in response to the coordinated action of auxins, ethylene and SLs. Significant enhancement of carotenoid cleavage dioxygenase (CCD) activity (enzyme responsible for SL biosynthesis) in tissue homogenates in presence of cPTIO (NO scavenger) indicates the role of endogenous NO as a negative modulator of CCD activity. Differences in the spatial distribution of NO in the primary and lateral roots further highlight the involvement of NO in SL-modulated root morphogenesis in sunflower seedlings. Present work provides new report on the negative modulation of SL biosynthesis through modulation of CCD activity by endogenous nitric oxide during SL-modulated LR development. PMID:26076049
Bharti, Niharika; Bhatla, Satish C
2015-01-01
Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The diffusive distribution of PIN1 in the provascular cells in the differentiating zone of the roots in response to GR24, fluridone or NPA treatments further indicates the involvement of localized auxin accumulation in LR development responses. Inhibition of LR formation by GR24 treatment coincides with inhibition of ACC synthase activity. Profuse LR development by fluridone and NPA treatments correlates with enhanced [Ca(2+)]cyt in the apical region and differentiating zones of LR, indicating a critical role of [Ca(2+)] in LR development in response to the coordinated action of auxins, ethylene and SLs. Significant enhancement of carotenoid cleavage dioxygenase (CCD) activity (enzyme responsible for SL biosynthesis) in tissue homogenates in presence of cPTIO (NO scavenger) indicates the role of endogenous NO as a negative modulator of CCD activity. Differences in the spatial distribution of NO in the primary and lateral roots further highlight the involvement of NO in SL-modulated root morphogenesis in sunflower seedlings. Present work provides new report on the negative modulation of SL biosynthesis through modulation of CCD activity by endogenous nitric oxide during SL-modulated LR development.
Differentiation of endosperm transfer cells of barley: a comprehensive analysis at the micro-scale.
Thiel, Johannes; Riewe, David; Rutten, Twan; Melzer, Michael; Friedel, Swetlana; Bollenbeck, Felix; Weschke, Winfriede; Weber, Hans
2012-08-01
Barley endosperm cells differentiate into transfer cells (ETCs) opposite the nucellar projection. To comprehensively analyse ETC differentiation, laser microdissection-based transcript and metabolite profiles were obtained from laser microdissected tissues and cell morphology was analysed. Flange-like secondary-wall ingrowths appeared between 5 and 7 days after pollination within the three outermost cell layers. Gene expression analysis indicated that ethylene-signalling pathways initiate ETC morphology. This is accompanied by gene activity related to cell shape control and vesicle transport, with abundant mitochondria and endomembrane structures. Gene expression analyses indicate predominant formation of hemicelluloses, glucuronoxylans and arabinoxylans, and transient formation of callose, together with proline and 4-hydroxyproline biosynthesis. Activation of the methylation cycle is probably required for biosynthesis of phospholipids, pectins and ethylene. Membrane microdomains involving sterols/sphingolipids and remorins are potentially involved in ETC development. The transcriptional activity of assimilate and micronutrient transporters suggests ETCs as the main uptake organs of solutes into the endosperm. Accordingly, the endosperm grows maximally after ETCs are fully developed. Up-regulated gene expression related to amino acid catabolism, C:N balances, carbohydrate oxidation, mitochondrial activity and starch degradation meets high demands for respiratory energy and carbohydrates, required for cell proliferation and wall synthesis. At 10 days after pollination, ETCs undergo further differentiation, potentially initiated by abscisic acid, and metabolism is reprogrammed as shown by activated storage and stress-related processes. Overall, the data provide a comprehensive view of barley ETC differentiation and development, and identify candidate genes and associated pathways. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.
Evolution of the Orszag-Tang vortex system in a compressible medium. II - Supersonic flow
NASA Technical Reports Server (NTRS)
Picone, J. Michael; Dahlburg, Russell B.
1991-01-01
A study is presented on the effect of embedded supersonic flows and the resulting emerging shock waves on phenomena associated with MHD turbulence, including reconnection, the formation of current sheets and vortex structures, and the evolution of spatial and temporal correlations among physical variables. A two-dimensional model problem, the Orszag-Tang (1979) vortex system, is chosen, which involves decay from nonrandom initial conditions. The system is doubly periodic, and the initial conditions consist of single-mode solenoidal velocity and magnetic fields, each containing X points and O points. The initial mass density is flat, and the initial pressure fluctuations are incompressible, balancing the local forces for a magnetofluid of unit mass density. Results on the evolution of the local structure of the flow field, the global properties of the system, and spectral correlations are presented. The important dynamical properties and observational consequences of embedded supersonic regions and emerging shocks in the Orszag-Tang model of an MHD system undergoing reconnection are discussed. Conclusions are drawn regarding the effects of local supersonic regions on MHD turbulence.
Portfolios for determining initial licensure competency.
Chambers, David W
2004-02-01
Because attempts to improve initial licensure examinations have not been grounded in measurement theory, partial and inadequate remedies have led to a cycle of refutations, defenses and political polarization. The author reviewed the psychometric literature, focusing on high-stakes professional decisions. Editorials in the dental literature and position papers of involved organizations often use words from this literature without incorporating its fundamental concepts. The reliability of one-shot initial licensure examinations is estimated to be approximately r = .40, which is a value well under the standard for such tests in other professions. Validity has not been investigated rigorously, but the one-shot format and proposals to remove live patients certainly would reduce validity. The use of portfolios--a small number of evaluations in several realistic task domains--is a viable means of achieving psychometric standards for initial licensure decisions. Boards are charged with making valid and reliable licensure decisions, not with conducting examinations. At a minimum, they must define the competencies of beginning practitioners and establish the psychometric criteria for their decisions (neither of which are done currently). Gathering data then can be delegated to whoever is best qualified to meet these standards.
Oka, Yumiko; Sato, Yuki; Tsuda, Hokari; Hanaoka, Kazunori; Hirai, Yohei; Takahashi, Yoshiko
2006-03-01
Formation of vertebrae occurs via endochondral ossification, a process involving condensation of precartilaginous cells. Here, we provide the first molecular evidence of mechanism that underlies initiation of this process by showing that the extracellular factor, Epimorphin, plays a role during early steps in vertebral cartilage condensation. Epimorphin mRNA is predominantly localized in the vertebral primordium. When provided exogenously in ovo, it causes precocious differentiation of chondrocytes, resulting in the formation of supernumerary vertebral cartilage in chicken embryos. To further analyze its mode of action, we used an in vitro co-culture system in which labeled 10T1/2 or sclerotomal prechondrogenic cells were co-cultured with unlabeled Epimorphin-producing cells. In the presence of Epimorphin, the labeled cells formed tightly packed aggregates, and sclerotomal cells displayed augmented accumulation of NCAM and other early markers of chondrocyte differentiation. Finally, we found that the Epimorphin expression is initiated during vertebrogenesis by Sonic hedgehog from the notochord mediated by Sox 9. We present a model in which successive action of Epimorphin in recruiting and stacking sclerotomal cells leads to a sequential elongation of a vertebral primordium.
Aldai, Noelia; Delmonte, Pierluigi; Alves, Susana P; Bessa, Rui J B; Kramer, John K G
2018-01-31
Incubation of DHA with sheep rumen fluid resulted in 80% disappearance in 6 h. The products were analyzed as their fatty acid (FA) methyl esters by GC-FID on SP-2560 and SLB-IL111 columns. The GC-online reduction × GC and GC-MS techniques demonstrated that all DHA metabolites retained the C22 structure (no evidence of chain-shortening). Two new transient DHA products were identified: mono-trans methylene interrupted-DHA and monoconjugated DHA (MC-DHA) isomers. Identification of MC-DHA was confirmed by their predicted elution using equivalent chain length differences from C18 FA, their molecular ions, and the 22:5 products formed which were the most abundant at 6 h. The 22:5 structures were established by fragmentation of their 4,4-dimethyloxazoline derivatives, and all 22:5 products contained an isolated double bond, suggesting formation via MC-DHA. The most abundant c4,c7,c10,t14,c19-22:5 appeared to be formed by unknown isomerases. Results suggest that the initial biohydrogenation of DHA was analogous to that of C18 FA.
A DFT approach for methanol synthesis via hydrogenation of CO on gallia, ceria and ZnO surfaces
NASA Astrophysics Data System (ADS)
Reimers, Walter; Zubieta, Carolina; Baltanás, Miguel Angel; Branda, María Marta
2018-04-01
A systematic theoretical study of the consecutive hydrogenation reactions of the CO molecule for the methanol synthesis catalyzed by different oxides of Zn, Ce and Ga is reported in this work. First, the CO hydrogenation with the formation of formyl species (HCO) was analyzed, followed by the successive hydrogenations that lead to formaldehyde (H2CO), methoxy (H3CO) and, finally, methanol (H3COH). The co-adsorption with H, in almost all the intermediate species, allows the corresponding hydrogenation reaction. Oxygen vacancies promote the reactivity in the generation of both formaldehyde and methoxy species. The formation of these species involves an important geometric difference between the initial and the final states, leading to high activation barriers. Comparing the surfaces studied in this work, we found that ZnO (0001)vacO has shown to be of a greater interest for methanol synthesis. However, the foregoing is not the most relevant of our results, but, instead, that the Brönsted Evans Polanyi (BEP) relationships between the initial or the final states and the transition states (TS) allowed to find a very good correlation between surface structure and reactivity.
Akbareian, Sophia E; Pitsillides, Andrew A; Macharia, Raymond G; McGonnell, Imelda M
2015-01-01
Cranial foramina are holes within the skull, formed during development, allowing entry and exit of blood vessels and nerves. Once formed they must remain open, due to the vital structures they contain, i.e. optic nerves, jugular vein, carotid artery, and other cranial nerves and blood vessels. Understanding cranial foramina development is essential as cranial malformations lead to the stenosis or complete closure of these structures, resulting in blindness, deafness, facial paralysis, raised intracranial pressure and lethality. Here we focus on describing early events in the formation of the jugular, carotid and hypoglossal cranial foramina that form in the mesoderm-derived, endochondral occipital bones at the base of the embryonic chick skull. Whole-mount skeletal staining of skulls indicates the appearance of these foramina from HH32/D7.5 onwards. Haematoxylin & eosin staining of sections shows that the intimately associated mesenchyme, neighbouring the contents of these cranial foramina, is initially very dense and gradually becomes sparser as development proceeds. Histological examination also revealed that these foramina initially contain relatively large-diameter nerves, which later become refined, and are closely associated with the blood vessel, which they also innervate within the confines of the foramina. Interestingly cranial foramina in the base of the skull contain blood vessels lacking smooth muscle actin, which suggests these blood vessels belong to glomus body structures within the foramina. The blood vessel shape also appears to dictate the overall shape of the resulting foramina. We initially hypothesised that cranial foramina development could involve targeted proliferation and local apoptosis to cause ‘mesenchymal clearing’ and the creation of cavities in a mechanism similar to joint cavitation. We find that this is not the case, and propose that a mechanism reliant upon local nerve/blood vessel-derived restriction of ossification may contribute to foramina formation during cranial development. PMID:25994127
Chemistry of fuel deposits and sediments and their predursors
NASA Technical Reports Server (NTRS)
Mayo, F. R.; Lan, B. Y.; Buttrill, S. E., Jr.; St.john, G. A.
1984-01-01
The mechanism of solid deposit formation on hot engine parts from turbine fuels is investigated. Deposit formation is associated with oxidation of the hydrocarbon fuel. Therefore, oxidation rates and soluble gum formation were measured for several jet turbine fuels and pure hydrocarbon mixtures. Experiments were performed at 130 C using thermal initiation and at 100 C using ditertiary butyl peroxide as a chemical initiator. Correlation of the data shows that the ratio of rate of oxidation to rate of gum formation for a single fuel is not much affected by experimental conditions, even though there are differences in the abilities of different hydrocarbons to initiate and continue the oxidation. This indicates a close association of gum formation with the oxidation process. Oxidations of n-dodecane, tetralin and the more unstable jet fuels are autocatalytic, while those of 2-ethylnaphthalene and a stable jet fuel are self-retarding. However, the ratio of oxidation rate to gum formation rate appear to be nearly constant for each substrate. The effect of oxygen pressure on gum and oxidation formation was also studied. Dependence of gum formation on the concentration of initiator at 100 C is discussed and problems for future study are suggested.
Exosites in the substrate specificity of blood coagulation reactions.
Bock, P E; Panizzi, P; Verhamme, I M A
2007-07-01
The specificity of blood coagulation proteinases for substrate, inhibitor, and effector recognition is mediated by exosites on the surfaces of the catalytic domains, physically separated from the catalytic site. Some thrombin ligands bind specifically to either exosite I or II, while others engage both exosites. The involvement of different, overlapping constellations of exosite residues enables binding of structurally diverse ligands. The flexibility of the thrombin structure is central to the mechanism of complex formation and the specificity of exosite interactions. Encounter complex formation is driven by electrostatic ligand-exosite interactions, followed by conformational rearrangement to a stable complex. Exosites on some zymogens are in low affinity proexosite states and are expressed concomitant with catalytic site activation. The requirement for exosite expression controls the specificity of assembly of catalytic complexes on the coagulation pathway, such as the membrane-bound factor Xa*factor Va (prothrombinase) complex, and prevents premature assembly. Substrate recognition by prothrombinase involves a two-step mechanism with initial docking of prothrombin to exosites, followed by a conformational change to engage the FXa catalytic site. Prothrombin and its activation intermediates bind prothrombinase in two alternative conformations determined by the zymogen to proteinase transition that are hypothesized to involve prothrombin (pro)exosite I interactions with FVa, which underpin the sequential activation pathway. The role of exosites as the major source of substrate specificity has stimulated development of exosite-targeted anticoagulants for treatment of thrombosis.
Vasculogenic and Angiogenic Pathways in Moyamoya Disease.
Bedini, Gloria; Blecharz, Kinga G; Nava, Sara; Vajkoczy, Peter; Alessandri, Giulio; Ranieri, Michela; Acerbi, Francesco; Ferroli, Paolo; Riva, Daria; Esposito, Silvia; Pantaleoni, Chiara; Nardocci, Nardo; Zibordi, Federica; Ciceri, Elisa; Parati, Eugenio A; Bersano, Anna
2016-01-01
Moyamoya disease (MMD) is a slowly progressing steno-occlusive cerebrovascular disease. The typical moyamoya vessels, which originate from an initial stenosis of the internal carotid, highlight that increased and/or abnormal angiogenic, vasculogenic and arteriogenic processes are involved in the disease pathophysiology. Herein, we summarize the current knowledge on the most important signaling pathways involved in MMD vessel formation, particularly focusing on the expression of growth factors and function of endothelial progenitor cells (EPCs). Higher plasma concentrations of vascular endothelial growth factor, matrix metalloproteinase, hepatocyte growth factor, and interleukin-1β were reported in MMD. A specific higher level of basic fibroblast growth factor was also found in the cerebrospinal fluid of these patients. Finally, the number and the functionality of EPCs were found to be increased. In spite of the available data, the approaches and findings reported so far do not give an evident correlation between the expression levels of the aforementioned growth factors and MMD severity. Furthermore, the controversial results provided by studies on EPCs, do not permit to understand the true involvement of these cells in MMD pathophysiology. Further studies should thus be implemented to extend our knowledge on processes regulating both the arterial stenosis and the excessive formation of collateral vessels. Moreover, we suggest advances of integrated approaches and functional assays to correlate biological and clinical data, arguing for the development of new therapeutic applications for MMD.
ERIC Educational Resources Information Center
Clark, Steve Richard
2013-01-01
This quantitative study explored paternal intentional involvement in the relational spiritual formation of their children. The main research question was to what degree are Protestant Evangelical fathers intentionally involved in the relational spiritual formation of their children? The research was based on two domains: relational spiritual…
Understanding Gully Formation and Seasonal Flows on Recent and Current Mars
NASA Astrophysics Data System (ADS)
Gulick, Virginia C.; Glines, Natalie
2016-10-01
The discoveries of gullies and seasonal slope flows (RSL) have re-ignited the debate over various channel, valley, and gully formation mechanisms on Mars. The controversy over whether liquid water was involved with gully formation, harkens back to the mid-1970s to early 2000s, where catastrophic flooding, surface runnoff and ground-water sapping processes were strongly debated along with other mechanisms as the primary processes responsible for channel and valley formation on Mars. However, over the past decade, the value of multiple working hypotheses has again become apparent, this time in understanding the formation of Martian gullies and Recurring Slope Lineae. Various mechanisms put forth to explain these landforms include liquid H2O/ice erosion, CO2 ice/frost sublimation, CO2 ice block sliding, water and brine flows, salt deliquescence, and dry granular flows, among others.We carried out detailed morphologic/morphometric studies of gullies in various environmental settings on Mars to evaluate the potential formation processes. Using HiRISE images and DTMs, we mapped and generated detailed longitudinal and cross-sectional profiles of gully systems and estimated volumes for both the gullies and their debris aprons. Several gullies form highly integrated patterns similar to fluvial systems. Additionally, RSL are often found either in the tributaries of these integrated systems or in adjacent regions, implying that RSL may play a role in initiating gully formation or mark the last vestiges of water activity in these locations. We also find that the more highly integrated gullies have volumes significantly larger than their aprons, suggesting that the missing volumes (~40-60% or more) were likely the volatiles involved in gully formation. Additionally, THEMIS and TES surface temperatures of these integrated gully sites, many of which also contain RSL, are at or above freezing seasonally suggesting that the volatile component may be consistent with H2O although CO2 cannot be ruled out. Other less integrated systems have apron volumes that equal or exceed the gully volumes suggesting that dry flows, avalanching, gully infill, or other dry processes may have been more important in these environments.
Ludwig, Ryan M; Moore, David T
2014-09-04
Application of matrix isolation spectroscopy to ionic species is typically complicated by the presence of neutral contaminants during matrix deposition. Herein we demonstrate that simultaneous deposition of balanced currents of counterions with mass-selected ions of interest generates "clean" distributions of matrix-isolated metal carbonyl anions, where the only bands appearing in the CO-stretching region of the vibrational spectrum arise from ions. (Neutrals are initially absent.) Photodetachment by mild irradiation with visible light leads to complete conversion of the anions into their corresponding neutral species. The photodetached electrons, in turn, initiate covalent chemistry, inducing C-C bond formation following electron-capture by CO van der Waals dimers to produce trans-OCCO(-). The initial clean distribution of ions enables clear connections to be drawn between the spectral changes occurring at each experimental step, thus demonstrating the potential of the counterion codeposition technique to facilitate detailed studies of chemistry involving ions and electron transfer in cryogenic matrices.
NASA Astrophysics Data System (ADS)
Gaztanaga, Enrique; Fosalba, Pablo
1998-12-01
In Paper I of this series, we introduced the spherical collapse (SC) approximation in Lagrangian space as a way of estimating the cumulants xi_J of density fluctuations in cosmological perturbation theory (PT). Within this approximation, the dynamics is decoupled from the statistics of the initial conditions, so we are able to present here the cumulants for generic non-Gaussian initial conditions, which can be estimated to arbitrary order including the smoothing effects. The SC model turns out to recover the exact leading-order non-linear contributions up to terms involving non-local integrals of the J-point functions. We argue that for the hierarchical ratios S_J, these non-local terms are subdominant and tend to compensate each other. The resulting predictions show a non-trivial time evolution that can be used to discriminate between models of structure formation. We compare these analytic results with non-Gaussian N-body simulations, which turn out to be in very good agreement up to scales where sigma<~1.
Initialization of distributed spacecraft for precision formation flying
NASA Technical Reports Server (NTRS)
Hadaegh, F. Y.; Scharf, D. P.; Ploen, S. R.
2003-01-01
In this paper we present a solution to the formation initialization problem for N distributed spacecraft located in deep space. Our solution to the FI problem is based on a three-stage sky search procedure that reduces the FI problem for N spacecraft to the simpler problem of initializing a set of sub-formations. We demonstrate our FI algorithm in simulation using NASA's five spacecraft Terrestrial Planet Finder mission as an example.
The Molecular Basis of Hereditary Enamel Defects in Humans
Carrion, I.A.; Morris, C.
2015-01-01
The formation of human enamel is highly regulated at the molecular level and involves thousands of genes. Requisites for development of this highly mineralized tissue include cell differentiation; production of a unique extracellular matrix; processing of the extracellular matrix; altering of cell function during different stages of enamel formation; cell movement and attachment; regulation of ion and protein movement; and regulation of hydration, pH, and other conditions of the microenvironment, to name just a few. Not surprising, there is a plethora of hereditary conditions with an enamel phenotype. The objective of this review was to identify the hereditary conditions listed on Online Mendelian Inheritance in Man (OMIM) that have an associated enamel phenotype and whether a causative gene has been identified. The OMIM database was searched with the terms amelogenesis, enamel, dental, and tooth, and all results were screened by 2 individuals to determine if an enamel phenotype was identified. Gene and gene product function was reviewed on OMIM and from publications identified in PubMed. The search strategy revealed 91 conditions listed in OMIM as having an enamel phenotype, and of those, 71 have a known molecular etiology or linked genetic loci. The purported protein function of those conditions with a known genetic basis included enzymes, regulatory proteins, extracellular matrix proteins, transcription factors, and transmembrane proteins. The most common enamel phenotype was a deficient amount of enamel, or enamel hypoplasia, with hypomineralization defects being reported less frequently. Knowing these molecular defects allows an initial cataloging of molecular pathways that lead to hereditary enamel defects in humans. This knowledge provides insight into the diverse molecular pathways involved in enamel formation and can be useful when searching for the genetic etiology of hereditary conditions that involve enamel. PMID:25389004
The molecular basis of hereditary enamel defects in humans.
Wright, J T; Carrion, I A; Morris, C
2015-01-01
The formation of human enamel is highly regulated at the molecular level and involves thousands of genes. Requisites for development of this highly mineralized tissue include cell differentiation; production of a unique extracellular matrix; processing of the extracellular matrix; altering of cell function during different stages of enamel formation; cell movement and attachment; regulation of ion and protein movement; and regulation of hydration, pH, and other conditions of the microenvironment, to name just a few. Not surprising, there is a plethora of hereditary conditions with an enamel phenotype. The objective of this review was to identify the hereditary conditions listed on Online Mendelian Inheritance in Man (OMIM) that have an associated enamel phenotype and whether a causative gene has been identified. The OMIM database was searched with the terms amelogenesis, enamel, dental, and tooth, and all results were screened by 2 individuals to determine if an enamel phenotype was identified. Gene and gene product function was reviewed on OMIM and from publications identified in PubMed. The search strategy revealed 91 conditions listed in OMIM as having an enamel phenotype, and of those, 71 have a known molecular etiology or linked genetic loci. The purported protein function of those conditions with a known genetic basis included enzymes, regulatory proteins, extracellular matrix proteins, transcription factors, and transmembrane proteins. The most common enamel phenotype was a deficient amount of enamel, or enamel hypoplasia, with hypomineralization defects being reported less frequently. Knowing these molecular defects allows an initial cataloging of molecular pathways that lead to hereditary enamel defects in humans. This knowledge provides insight into the diverse molecular pathways involved in enamel formation and can be useful when searching for the genetic etiology of hereditary conditions that involve enamel. © International & American Associations for Dental Research 2014.
The Role of Actin Cytoskeleton in Dendritic Spines in the Maintenance of Long-Term Memory.
Basu, Sreetama; Lamprecht, Raphael
2018-01-01
Evidence indicates that long-term memory formation involves alterations in synaptic efficacy produced by modifications in neural transmission and morphology. However, it is not clear how such alterations induced by learning, that encode memory, are maintained over long period of time to preserve long-term memory. This is especially intriguing as the half-life of most of the proteins that underlie such changes is usually in the range of hours to days and these proteins may change their location over time. In this review we describe studies that indicate the involvement of dendritic spines in memory formation and its maintenance. These studies show that learning leads to changes in the number and morphology of spines. Disruption in spines morphology or manipulations that lead to alteration in their number after consolidation are associated with impairment in memory maintenance. We further ask how changes in dendritic spines morphology, induced by learning and reputed to encode memory, are maintained to preserve long-term memory. We propose a mechanism, based on studies described in the review, whereby the actin cytoskeleton and its regulatory proteins involved in the initial alteration in spine morphology induced by learning are also essential for spine structural stabilization that maintains long-term memory. In this model glutamate receptors and other synaptic receptors activation during learning leads to the creation of new actin cytoskeletal scaffold leading to changes in spines morphology and memory formation. This new actin cytoskeletal scaffold is preserved beyond actin and its regulatory proteins turnover and dynamics by active stabilization of the level and activity of actin regulatory proteins within these memory spines.
Madueño, Rafael; Pineda, Teresa; Sevilla, José Manuel; Blázquez, Manuel
2005-02-03
This is a report on the kinetics of the destruction and formation processes of the 6-thioguanine self-assembled monolayer (6TG SAM) on a mercury electrode from acid solutions by chronoamperometry. The destruction of the 6TG SAM that has been previously formed under open circuit potential conditions is carried out by stepping the potential from an initial value where the chemisorbed layer is stable up to potentials where the molecules are no longer chemisorbed. The destruction of the SAM has been described by a model that involves three types of contributions: (i) a Langmuir-type adsorption process, (ii) a 2D nucleation mechanism followed by a growth controlled by surface diffusion, and (iii) a 2D nucleation mechanism followed by a growth at a constant rate. The nonlinear fit of the experimental transients by using this procedure allows the quantitative determination of the individual contributions to the overall process. The kinetics of the formation process is studied under electrochemical conditions. The chronoamperometric experiment allows us to monitor the early stages of 6TG SAM formation. The implications of the physisorbed state at low potentials in the type of monolayer formation and destruction processes as well as the influence of temperature are also discussed.
Tsujimura, Atsushi; Taguchi, Katsutoshi; Watanabe, Yoshihisa; Tatebe, Harutsugu; Tokuda, Takahiko; Mizuno, Toshiki; Tanaka, Masaki
2015-01-01
The formation of intracellular aggregates containing α-synuclein (α-Syn) is one of the key steps in the progression of Parkinson's disease and dementia with Lewy bodies. Recently, it was reported that pathological α-Syn fibrils can undergo cell-to-cell transmission and form Lewy body-like aggregates. However, little is known about how they form α-Syn aggregates from fibril seeds. Here, we developed an assay to study the process of aggregate formation using fluorescent protein-tagged α-Syn-expressing cells and examined the aggregate forming activity of exogenous α-Syn fibrils. α-Syn fibril-induced formation of intracellular aggregates was suppressed by a cathepsin B specific inhibitor, but not by a cathepsin D inhibitor. α-Syn fibrils pretreated with cathepsin B in vitro enhanced seeding activity in cells. Knockdown of cathepsin B also reduced fibril-induced aggregate formation. Moreover, using LAMP-1 immunocytochemistry and live-cell imaging, we observed that these aggregates initially occurred in the lysosome. They then rapidly grew larger and moved outside the boundary of the lysosome within one day. These results suggest that the lysosomal protease cathepsin B is involved in triggering intracellular aggregate formation by α-Syn fibrils. Copyright © 2015. Published by Elsevier Inc.
Motility of Pseudomonas aeruginosa contributes to SOS-inducible biofilm formation.
Chellappa, Shakinah T; Maredia, Reshma; Phipps, Kara; Haskins, William E; Weitao, Tao
2013-12-01
DNA-damaging antibiotics such as ciprofloxacin induce biofilm formation and the SOS response through autocleavage of SOS-repressor LexA in Pseudomonas aeruginosa. However, the biofilm-SOS connection remains poorly understood. It was investigated with 96-well and lipid biofilm assays. The effects of ciprofloxacin were examined on biofilm stimulation of the SOS mutant and wild-type strains. The stimulation observed in the wild-type in which SOS was induced was reduced in the mutant in which LexA was made non-cleavable (LexAN) and thus SOS non-inducible. Therefore, the stimulation appeared to involve SOS. The possible mechanisms of inducible biofilm formation were explored by subproteomic analysis of outer membrane fractions extracted from biofilms. The data predicted an inhibitory role of LexA in flagellum function. This premise was tested first by functional and morphological analyses of flagellum-based motility. The flagellum swimming motility decreased in the LexAN strain treated with ciprofloxacin. Second, the motility-biofilm assay was performed, which tested cell migration and biofilm formation. The results showed that wild-type biofilm increased significantly over the LexAN. These results suggest that LexA repression of motility, which is the initial event in biofilm development, contributes to repression of SOS-inducible biofilm formation. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Attitude symbology issues for helmet-mounted displays
NASA Astrophysics Data System (ADS)
Davy, Eleanor C.; Dudfield, Helen J.; Hardiman, Thomas D.; Doyle, Anthony J. R.
1996-06-01
One of the major advantages of HMDs is the display of information wherever the pilot is looking. These displays, however, raise important human factor issues for the optimal method of presenting attitude information. For example, problems may occur when the pilot looks off- boresight and is provided with information that is based upon the forward view of the aircraft (i.e. aircraft-referenced) and is thus incongruent. An experiment was conducted to examine this issue in which a traditional pitch ladder format was compared against the novel 'cylinder' format in an off-boresight attitude control task on a simulated HMD. This task involved recovery from unusual positions (UPs) which were presented at various off-boresight angles. Subjects' initial response times were faster for the pitch ladder format than for the two formats for total recovery times, error rates, height deviations, situational awareness rating technique or the questionnaire data. It was concluded that the performance on the cylinder format may be explained by the subjects' past experience using the pitch ladder or by the lack of information available when the aircraft was slightly nose-up or nose-down. It was suggested that improvements should be made to the cylinder if it is to be further examined in future research. Finally, the implications of this research for future work are discussed.
DOT National Transportation Integrated Search
1996-02-01
This report describes the initial formative evaluation of the Federal Aviation Administration (FAA) College Training Initiative - Air Traffic Control Specialist (CTI-ATCS) Program. The purpose of the CTI-ATCS program is to test "the concept that non-...
Fazili, Naveed Ahmad; Bhat, Waseem Feeroze; Naeem, Aabgeena
2014-03-01
Physiological conditions corresponding to oxidative stress deplete the level of enzyme glyoxalase, facilitating a hike in the serum concentration of glyoxal. Simulating an elevated in vivo level of glyoxal, we tested (50%, v/v) concentration of glyoxal to interact with HEWL. Initially, docking study revealed that glyoxal binds in the hydrophobic core of the enzyme. The interaction between the dialdehyde (glyoxal) and the enzyme (HEWL) followed a three step transition involving pre-molten and molten globule states formed on days 7 and 15 of incubation respectively, which were characterised by an increase in the ANS fluorescence intensity compared to the native state. These molten globule states upon further incubation on day 20 resulted in the formation of aggregates which were characterised by an increase in ThT fluorescence intensity, red shift in Congo red absorbance, negative ellipticity peak at 217 nm in the far-UV CD and the loss of signals at 284, 290 and 294 nm in the near-UV CD spectra. Finally, TEM confirmed the authenticity of lysozyme fibril formation by displaying rod like fibrillar structure. Copyright © 2013 Elsevier B.V. All rights reserved.
Formation of MgO-B{sub 4}C composite via a thermite-based combustion reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L.L.; Munir, Z.A.; Holt, J.B.
1995-03-01
The combustion synthesis of MgO-B{sub 4}C composites was investigated by coupling a highly exothermic Mg-B{sub 2}O{sub 3} thermite reaction with a weakly exothermic B{sub 4}C formation reaction. Unlike the case of using Al as the reducing agent, the interaction between Mg and B{sub 2}O{sub 3} depends on the surrounding inert gas pressure due to the high vapor pressure of Mg. The interaction changes from one involving predominantly gaseous Mg and liquid B{sub 2}O{sub 3} to one involving liquid Mg and liquid B{sub 2}O{sub 3} as the pressure increases. At low inert gas pressure, the initiation temperature is found to bemore » just below the melting point of Mg (650 C). As the inert gas pressure increases, the vaporization loss of reactants is reduced, and this in turn increases the combustion temperature, which promotes greater grain growth of the product phases, MgO and B{sub 4}C. The particle size of B{sub 4}C increased from about 0.2 to 5 {mu}m as the pressure changed from 1 to 30 atm.« less
Reaction pathways towards the formation of dolomite-analogues at ambient conditions
NASA Astrophysics Data System (ADS)
Pimentel, Carlos; Pina, Carlos M.
2016-04-01
In this paper we present results of a study of the crystallisation behaviour of the dolomite-analogues norsethite and PbMg(CO3)2 at room temperature and atmospheric pressure. Whereas precipitation of norsethite was previously obtained by mixing solutions (Hood et al., 1974; Pimentel and Pina, 2014a,b), we report, for the first time, the synthesis of PbMg(CO3)2 by using the same method. The formation of both phases was promoted by ageing slurries for periods of time ranging from a few days (norsethite) up to 6 months (PbMg(CO3)2). The crystallisation of both norsethite and PbMg(CO3)2 occurs by sequences of dissolution-precipitation reactions involving several amorphous and crystalline precursor phases, which were identified and characterised by X-ray diffraction and scanning electron microscopy. Depending on the initial composition and Ba:Mg and Pb:Mg ratios in the slurries, different precursors and reaction kinetics were observed. This demonstrates the existence of different reaction pathways towards the formation of the investigated dolomite-analogues. Our experimental results provide new insights into the possible mechanisms of formation of dolomite and other double carbonates in nature.
Covalent modification of cytochrome c by reactive metabolites of furan.
Phillips, Martin B; Sullivan, Mathilde M; Villalta, Peter W; Peterson, Lisa A
2014-01-21
Metabolism of the hepatotoxicant furan leads to protein adduct formation in the target organ. The initial bioactivation step involves cytochrome P450-catalyzed oxidation of furan, generating cis-2-butene-1,4-dial (BDA). BDA reacts with lysine to form pyrrolin-2-one adducts. Metabolic studies indicate that BDA also reacts with glutathione (GSH) to generate 2-(S-glutathionyl)butanedial (GSH-BDA), which then reacts with lysine to form GSH-BDA-lysine cross-links. To explore the relative reactivity of these two reactive intermediates, cytochrome c was reacted with BDA in the presence and absence of GSH. As judged by MALDI-TOF mass spectrometry, BDA reacts extensively with cytochrome c to form adducts that add 66 Da to the protein, consistent with the formation of pyrrolinone adducts. Addition of GSH to the reaction mixture reduced the overall extent of adduct formation. The mass of the adducted protein was shifted by 355 Da as expected for GSH-BDA-protein cross-link formation. LC-MS/MS analysis of the tryptic digests of the alkylated protein indicated that the majority of adducts occurred on lysine residues, with BDA reacting less selectively than GSH-BDA. Both types of adducts may contribute to the toxic effects of furan.
Covalent Modification of Cytochrome C by Reactive Metabolites of Furan
Phillips, Martin B.; Sullivan, Mathilde M.; Villalta, Peter W.; Peterson, Lisa A.
2014-01-01
Metabolism of the hepatotoxicant furan leads to protein adduct formation in the target organ. The initial bioactivation step involves cytochrome P450-catalyzed oxidation of furan, generating cis-2-butene-1,4-dial (BDA). BDA reacts with lysine to form pyrrolin-2-one adducts. Metabolic studies indicate that BDA also reacts with glutathione (GSH) to generate 2-(S-glutathionyl)butanedial (GSH-BDA), which then reacts with lysine to form GSH-BDA-lysine cross-links. To explore the relative reactivity of these two reactive intermediates, cytochrome c was reacted with BDA in the presence and absence of GSH. As judged by MALDI-TOF mass spectrometry, BDA reacts extensively with cytochrome c to form adducts that add 66 Da to the protein, consistent with the formation of pyrrolinone adducts. Addition of GSH to the reaction mixture reduced the overall extent of adduct formation. The mass of the adducted protein was shifted by 355 Da as expected for GSH-BDA-protein cross-link formation. LC-MS/MS analysis of the tryptic digests of the alkylated protein indicated that the majority of adducts occurred on lysine residues, with BDA reacting less selectively than GSH-BDA. Both types of adducts may contribute to the toxic effects of furan. PMID:24364757
Ó'Maoiléidigh, Diarmuid S; Stewart, Darragh; Zheng, Beibei; Coupland, George; Wellmer, Frank
2018-02-13
As originally proposed by Goethe in 1790, floral organs are derived from leaf-like structures. The conversion of leaves into different types of floral organ is mediated by floral homeotic proteins, which, as described by the ABCE model of flower development, act in a combinatorial manner. However, how these transcription factors bring about this transformation process is not well understood. We have previously shown that floral homeotic proteins are involved in suppressing the formation of branched trichomes, a hallmark of leaf development, on reproductive floral organs of Arabidopsis Here, we present evidence that the activities of the C function gene AGAMOUS ( AG ) and the related SHATTERPROOF1 / 2 genes are superimposed onto the regulatory network that controls the distribution of trichome formation in an age-dependent manner. We show that AG regulates cytokinin responses and genetically interacts with the organ polarity gene KANADI1 to suppress trichome initiation on gynoecia. Thus, our results show that parts of the genetic program for leaf development remain active during flower formation but have been partially rewired through the activities of the floral homeotic proteins. © 2018. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Li, R.; Li, W. B.; Wang, X. M.; Li, W. B.
2018-03-01
The effects of the initiation diameter and synchronicity error on the formation of fins and stable-flight velocity of an explosively formed projectile (EFP) with three-point initiation are investigated. The pressure and area of the Mach wave acting on the metal liner at different initiation diameters are calculated employing the Whitham method. LS-DYNA software is used to investigate the asymmetric collision of detonation waves resulting from three-point initiation synchronicity error, the distortion characteristics of the liner resulting from the composite detonation waves, and the performance parameters of the EFP with fins. Results indicate that deviations of the Y-shaped high-pressure zone and central ultrahigh-pressure zone from the liner center can be attributed to the error of three-point initiation, which leads to the irregular formation of EFP fins. It is noted that the area of the Mach wave decreases, but the pressure of the Mach wave and the final speed and length-to-diameter ( L/ D) ratio of the EFP increase, benefiting the formation of the EFP fins, as the initiation diameter increases.
Opoku, Francis; Asare-Donkor, Noah Kyame; Adimado, Anthony A
2014-11-01
The chemistry of group II-VI semiconductors has spurred considerable interest in decomposition reaction mechanisms and has been exploited for various technological applications. In this work, computational chemistry was employed to investigate the possible gas-phase decomposition pathways of the mixed Cd[((i)Pr)2PSSe]2 single-source precursor for the chemical vapour deposition of cadmium chalcogenides as thin films. The geometries of the species involved were optimised by employing density functional theory at the MO6/LACVP* level. The results indicate that the steps that lead to CdS formation on the singlet potential energy surface are favoured kinetically over those that lead to CdSe and ternary CdSe(x)S(1-x) formation. On the doublet PES, the steps that lead to CdSe formation are favoured kinetically over those that lead to CdS and CdSe(x)S(1-x) formation. However, thermodynamically, the steps that lead to ternary CdSe(x)S(1-x) formation are more favourable than those that lead to CdSe and CdS formation on both the singlet and the doublet PESs. Density functional theory calculations revealed that the first steps exhibit huge activation barriers, meaning that the thermodynamically favourable process takes a very long time to initiate.
Hydrogen atom initiated chemistry. [chemical evolution in planetary atmospheres
NASA Technical Reports Server (NTRS)
Hong, J. H.; Becker, R. S.
1979-01-01
H Atoms have been created by the photolysis of H2S. These then initiated reactions in mixtures involving acetylene-ammonia-water and ethylene-ammonia-water. In the case of the acetylene system, the products consisted of two amino acids, ethylene and a group of primarily cyclic thio-compounds, but no free sulfur. In the case of the ethylene systems, seven amino acids, including an aromatic one, ethane, free sulfur, and a group of solely linear thio-compounds were produced. Total quantum yields for the production of amino acids were about 3 x 10 to the -5th and about 2 x 10 to the -4th with ethylene and acetylene respectively as carbon substrates. Consideration is given of the mechanism for the formation of some of the products and implications regarding planetary atmosphere chemistry, particularly that of Jupiter, are explored.
The formation of nickel sulfides has been examined experimentally over the temperature range from 25 to 60°C. At all conditions studied, hexagonal (α-NiS) was the initial precipitate from solution containing Ni2+ and dissolved sulfide. The formation of millerite (β- NiS, rhombo...
Methods and electrolytes for electrodeposition of smooth films
Zhang, Jiguang; Xu, Wu; Graff, Gordon L; Chen, Xilin; Ding, Fei; Shao, Yuyan
2015-03-17
Electrodeposition involving an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and/or film surface. For electrodeposition of a first conductive material (C1) on a substrate from one or more reactants in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second conductive material (C2), wherein cations of C2 have an effective electrochemical reduction potential in the solution lower than that of the reactants.
NASA Astrophysics Data System (ADS)
Tani, Kenichiro; Dunkley, Daniel J.; Chang, Qing; Nichols, Alexander R. L.; Shukuno, Hiroshi; Hirahara, Yuka; Ishizuka, Osamu; Arima, Makoto; Tatsumi, Yoshiyuki
2015-08-01
A widely held hypothesis is that modern continental crust of an intermediate (i.e. andesitic) bulk composition forms at intra-oceanic arcs through subduction zone magmatism. However, there is a critical paradox in this hypothesis: to date, the dominant granitic rocks discovered in these arcs are tonalite, rocks that are significantly depleted in incompatible (i.e. magma-preferred) elements and do not geochemically and petrographically represent those of the continents. Here we describe the discovery of a submarine knoll, the Daisan-West Sumisu Knoll, situated in the rear-arc region of the intra-oceanic Izu-Bonin-Mariana Arc. Remotely-operated vehicle surveys reveal that this knoll is made up entirely of a 2.6 million year old porphyritic to equigranular granodiorite intrusion with a geochemical signature typical of continental crust. We present a model of granodiorite magma formation that involves partial remelting of enriched mafic rear-arc crust during the initial phase of back-arc rifting, which is supported by the preservation of relic cores inherited from initial rear-arc source rocks within magmatic zircon crystals. The strong extensional tectonic regime at the time of intrusion may have allowed the granodioritic magma to be emplaced at an extremely shallow level, with later erosion of sediment and volcanic covers exposing the internal plutonic body. These findings suggest that rear-arc regions could be the potential sites of continental crust formation in intra-oceanic convergent margins.
Preferrential Concentration of Particles in Protoplanetary Nebula Turbulence
NASA Technical Reports Server (NTRS)
Hartlep, Thomas; Cuzzi, Jeffrey N.
2015-01-01
Preferential concentration in turbulence is a process that causes inertial particles to cluster in regions of high strain (in-between high vorticity regions), with specifics depending on their stopping time or Stokes number. This process is thought to be of importance in various problems including cloud droplet formation and aerosol transport in the atmosphere, sprays, and also in the formation of asteroids and comets in protoplanetary nebulae. In protoplanetary nebulae, the initial accretion of primitive bodies from freely-floating particles remains a problematic subject. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" [1] in turbulent nebulae. One scenario that can lead directly from independent nebula particulates to large objects, avoiding the problematic m-km size range, involves formation of dense clumps of aerodynamically selected, typically mm-size particles in protoplanetary turbulence. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles generally known as "chondrules" [2]. Thus, while it is arcane, turbulent preferential concentration acting directly on chondrule size particles are worthy of deeper study. Here, we present the statistical determination of particle multiplier distributions from numerical simulations of particle-laden isotopic turbulence, and a cascade model for modeling turbulent concentration at lengthscales and Reynolds numbers not accessible by numerical simulations. We find that the multiplier distributions are scale dependent at the very largest scales but have scale-invariant properties under a particular variable normalization at smaller scales.
IMMUNOREACTIONS INVOLVING PLATELETS
Shulman, N. Raphael
1958-01-01
A steric and kinetic model for the sequence and mechanism of reactions leading to formation of a complex from an antibody, a haptene (quinidine), and a cell membrane (platelets), and to fixation of complement by the complex was deduced from the effects of varying the initial concentration of each component of the complex on the amount of complement fixed, from kinetic aspects of the sequential reactions, and from other chemical and physical properties of the various components involved. Theoretical results calculated using equations based on the model, which were derived by Dr. Terrell L. Hill, were similar in all respects to experimental results. Results of this study were consistent with the possibilities that the protein moiety of a haptenic antigen involved in development of an antibody which attaches to a cell is not necessarily a component of the cell, and that the cell reacts with the antibody by virtue of having a surface favorable for non-specific adsorption of certain haptene-antibody complexes. PMID:13525578
"Extracting" the key fragment in ETS-10 crystallization and its application in AM-6 assembly.
Guo, Meiling; Feng, Zhaochi; Li, Guanna; Hofmann, Jan P; Pidko, Evgeny A; Magusin, Pieter C M M; Guo, Qiang; Weckhuysen, Bert M; Hensen, Emiel J M; Fan, Fengtao; Li, Can
2012-09-17
The mechanism of crystallization of microporous titanosilicate ETS-10 was investigated by Raman spectroscopy combined with (29)Si magic-angle spinning (MAS) NMR spectroscopy, DFT calculations, and SEM imaging. The formation of three-membered ring species is shown to be the key step in the hydrothermal synthesis of ETS-10. They are formed by means of a complex process that involves the interaction of silicate species in the reaction mixture, which promotes the dissolution of TiO(2) particles. These insights into the mechanism of ETS-10 growth led to the successful development of a new synthesis route to the vanadosilicate AM-6 that involves the use of intermediates that contain three-membered ring species as an initiator. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Shanwei; Sun, Tiantian; Ren, Haiyun
2015-01-01
In higher plants, microtubule (MT)-based, and actin filament (AF)-based structures play important roles in mitosis and cytokinesis. Besides the mitotic spindle, the evolution of a band comprising cortical MTs and AFs, namely, the preprophase band (PPB), is evident in plant cells. This band forecasts a specific division plane before the initiation of mitosis. During cytokinesis, another plant-specific cytoskeletal structure called the phragmoplast guides vesicles in the creation of a new cell wall. In addition, a number of cytoskeleton-associated proteins are reportedly involved in the formation and function of the PPB, mitotic spindle, and phragmoplast. This review summarizes current knowledge on the cytoskeleton-associated proteins that mediate the cytoskeletal arrays during mitosis and cytokinesis in plant cells and discusses the interaction between MTs and AFs involved in mitosis and cytokinesis. PMID:25964792
Li, Hui; Kling, Nora G; Förg, Benjamin; Stierle, Johannes; Kessel, Alexander; Trushin, Sergei A; Kling, Matthias F; Kaziannis, Spyros
2016-07-01
The dissociative ionization of toluene initiated by a few-cycle laser pulse as a function of the carrier envelope phase (CEP) is investigated using single-shot velocity map imaging. Several ionic fragments, CH3 (+), H2 (+), and H3 (+), originating from multiply charged toluene ions present a CEP-dependent directional emission. The formation of H2 (+) and H3 (+) involves breaking C-H bonds and forming new bonds between the hydrogen atoms within the transient structure of the multiply charged precursor. We observe appreciable intensity-dependent CEP-offsets. The experimental data are interpreted with a mechanism that involves laser-induced coupling of vibrational states, which has been found to play a role in the CEP-control of molecular processes in hydrocarbon molecules, and appears to be of general importance for such complex molecules.
Mechanism of organic aerosol formation and aging: Role of the precursor carbon skeleton
NASA Astrophysics Data System (ADS)
Hunter, J. F.; Carrasquillo, A. J.; Daumit, K. E.; Cross, E. S.; Worsnop, D. R.; Kroll, J. H.
2012-12-01
Oxidative aging of organic aerosol consists of a complex set of reactions coupled with gas-particle partitioning processes. Functionalization reactions involve adding oxygen containing functional groups onto a molecule, leading to reduced vapor pressures and promoting aerosol formation. In fragmentation reactions carbon-carbon bonds are broken as oxygen containing functional groups are added, which generally splits the parent molecule into two smaller and more volatile products. The initial structure of an aerosol-forming precursor molecule may influence what chemistry will occur both by changing the branching between fragmentation and functionalization processes as well as changing the effects of those processes. The fate of early generation oxidation products upon further aging is dependent on this initial chemistry, leading to a persistent effect of the precursor carbon skeleton. Aging experiments have been conducted using a high NOx smog chamber based aging technique. Long residence times and modestly elevated OH concentrations lead to typical maximum OH exposure of 3e11 molecule*seconds/cc, approaching several days equivalent exposure to ambient OH concentrations. A broad set of linear, branched and cyclic aliphatic hydrocarbons has been oxidized to determine the effects of carbon skeleton on the relative importance of fragmentation and functionalization and impacts on aerosol formation chemistry. Relative degree of fragmentation and functionalization is constrained by mass spectrometry of both the gas and particle phase. Measurements of the aerosol oxygen content and mass yield are reported, and structural effects on these properties are determined. Degree of unsaturation is hypothesized to have a significant impact on the effect of fragmentation reactions and to promote additional aerosol formation, extended aging and more oxygenated aerosol.
NASA Astrophysics Data System (ADS)
Alonso-Zarza, Ana M.; Bustamante, Leticia; Huerta, Pedro; Rodríguez-Berriguete, Álvaro; Huertas, María José
2016-05-01
This paper studies the weathering and soil formation processes operating on detrital sediments containing alkaline volcanic rock fragments of the Mirador del Río dolocrete profile. The profile consists of a lower horizon of removilised weathered basalts, an intermediate red sandy mudstones horizon with irregular carbonate layers and a topmost horizon of amalgamated carbonate layers with root traces. Formation occurred in arid to semiarid climates, giving place to a complex mineralogical association, including Mg-carbonates and chabazite, rarely described in cal/dolocretes profiles. Initial vadose weathering processes occurred in the basalts and in directly overlying detrital sediments, producing (Stage 1) red-smectites and dolomicrite. Dominant phreatic (Stage 2) conditions allowed precipitation of coarse-zoned dolomite and chabazite filling porosities. In Stages 3 and 4, mostly pedogenic, biogenic processes played an important role in dolomite and calcite accumulation in the profile. Overall evolution of the profile and its mineralogical association involved initial processes dominated by alteration of host rock, to provide silica and Mg-rich alkaline waters, suitable for chabazite and dolomite formation, without a previous carbonate phase. Dolomite formed both abiogenically and biogenically, but without a previous carbonate precursor and in the absence of evaporites. Dominance of calcite towards the profile top is the result of Mg/Ca decrease in the interstitial meteoric waters due to decreased supply of Mg from weathering, and increased supply of Ca in aeolian dust. Meteoric origin of the water is confirmed by C and O isotope values, which also indicate lack of deep sourced CO2. The dolocrete studied and its complex mineral association reveal the complex interactions that occur at surface during weathering and pedogenesis of basalt-sourced rocks.
Glycosylation: a hallmark of cancer?
Vajaria, Bhairavi N; Patel, Prabhudas S
2017-04-01
The hallmarks of cancer are characterized by functional capabilities that allow cancer cells to survive, proliferate and disseminate during the multistep tumorigenesis. Cancer being a cellular disease, changes in cellular glycoproteins play an important role in malignant transformation and cancer progression. The present review summarizes various studies that depicted correlation of glycosylation with tumor initiation, progression and metastasis, which are helpful in early diagnosis, disease monitoring and prognosis. The results are further strengthened by our reports, which depicted alterations in sialylation and fucosylation in different cancers. Alterations in glycosyltransferases are also involved in formation of various tumor antigens (e.g. Sialyl Lewis x) which serves as ligand for the cell adhesion molecule, selectin which is involved in adhesion of cancer cells to vascular endothelium and thus contributes to hematogenous metastasis. Increased glycosylation accompanied by alterations in glycosyltranferases, glycosidases, glycans and mucins (MUC)s are also involved in loss of E-cadherin, a key molecule implicated in metastatic dissemination of cells. The present review also summarizes the correlation of glycosylation with all the hallmarks of cancer. The enormous progress in the design of novel inhibitors of pathway intermediates of sialylation and fucosylation can prove wonders in combating the dreadful disease. The results provide the evidence that altered glycosylation is linked to tumor initiation, progression and metastasis. Hence, it can be considered as a new hallmark of cancer development and strategies to develop novel glycosylation targeted molecules should be strengthened.
Calcineurin inhibition blocks within-, but not between-session fear extinction in mice
Moulin, Thiago C.; Carneiro, Clarissa F. D.; Gonçalves, Marina M. C.; Junqueira, Lara S.; Amaral, Olavo B.
2015-01-01
Memory extinction involves the formation of a new associative memory that inhibits a previously conditioned association. Nonetheless, it could also depend on weakening of the original memory trace if extinction is assumed to have multiple components. The phosphatase calcineurin (CaN) has been described as being involved in extinction but not in the initial consolidation of fear learning. With this in mind, we set to study whether CaN could have different roles in distinct components of extinction. Systemic treatment with the CaN inhibitors cyclosporin A (CsA) or FK-506, as well as i.c.v. administration of CsA, blocked within-session, but not between-session extinction or initial learning of contextual fear conditioning. Similar effects were found in multiple-session extinction of contextual fear conditioning and in auditory fear conditioning, indicating that CaN is involved in different types of short-term extinction. Meanwhile, inhibition of protein synthesis by cycloheximide (CHX) treatment did not affect within-session extinction, but disrupted fear acquisition and slightly impaired between-session extinction. Our results point to a dissociation of within- and between-session extinction of fear conditioning, with the former being more dependent on CaN activity and the latter on protein synthesis. Moreover, the modulation of within-session extinction did not affect between-session extinction, suggesting that these components are at least partially independent. PMID:25691516
Patient involvement in rheumatology outpatient service design and delivery: a case study.
de Souza, Savia; Galloway, James; Simpson, Carol; Chura, Radka; Dobson, Joanne; Gullick, Nicola J; Steer, Sophia; Lempp, Heidi
2017-06-01
Patient involvement is increasingly recognized as important within the UK National Health Service to ensure that services delivered are relevant to users' needs. Organizations are encouraged to work with service users to achieve excellence in care. Patient education can improve health outcomes and reduce health-care costs. Mobile technologies could play a vital role in this. Patient-centred development of innovative strategies to improve the experience of rheumatology outpatients. The Group Rheumatology Initiative Involving Patients (GRIIP) project was set up in 2013 as a joint venture between patients, clinicians, academics and management at a London hospital. The project saw (i) the formation of an independent patient group which provided suggestions for service improvement - outcomes included clearer signs in the outpatient waiting area, extended phlebotomy opening hours and better access to podiatry; (ii) a rolling patient educational evening programme initiated in 2014 with topics chosen by patient experts - feedback has been positive and attendance continues to grow; and (iii) a mobile application (app) co-designed with patients launched in 2015 which provides relevant information for outpatient clinic attendees and data capture for clinicians - downloads have steadily increased as users adopt this new technology. Patients can effectively contribute to service improvement provided they are supported, respected as equals, and the organization is willing to undergo a cultural change. © 2016 The Authors. Health Expectations Published by John Wiley & Sons Ltd.
Not all Anchors Weigh Equally.
Greenstein, Michael; Velazquez, Alexandra
2017-11-01
The anchoring bias is a reliable effect wherein a person's judgments are affected by initially presented information, but it is unknown specifically why this effect occurs. Research examining this bias suggests that elements of both numeric and semantic priming may be involved. To examine this, the present research used a phenomenon wherein people treat numeric information presented differently in Arabic numeral or verbal formats. We presented participants with one of many forms of an anchor that represented the same value (e.g., twelve hundred or 1,200). Thus, we could examine how a concept's meaning and its absolute numeric value affect anchoring. Experiments 1 and 2 showed that people respond to Arabic and verbal anchors differently. Experiment 3 showed that these differences occurred largely because people tend to think of numbers in digit format. This suggests that one's conceptual understanding of the anchored information matters more than its strict numeric value.
Gädt, Torben; Ieong, Nga Sze; Cambridge, Graeme; Winnik, Mitchell A; Manners, Ian
2009-02-01
Block copolymers consist of two or more chemically distinct polymer segments, or blocks, connected by a covalent link. In a selective solvent for one of the blocks, core-corona micelle structures are formed. We demonstrate that living polymerizations driven by the epitaxial crystallization of a core-forming metalloblock represent a synthetic tool that can be used to generate complex and hierarchical micelle architectures from diblock copolymers. The use of platelet micelles as initiators enables the formation of scarf-like architectures in which cylindrical micelle tassels of controlled length are grown from specific crystal faces. A similar process enables the fabrication of brushes of cylindrical micelles on a crystalline homopolymer substrate. Living polymerizations driven by heteroepitaxial growth can also be accomplished and are illustrated by the formation of tri- and pentablock and scarf architectures with cylinder-cylinder and platelet-cylinder connections, respectively, that involve different core-forming metalloblocks.
Liao, Jen-Yu; Selvaraju, Manikandan; Chen, Chih-Hau; Sun, Chung-Ming
2013-04-21
An efficient, facile synthesis of structurally diverse benzimidazole integrated benzoxazole and benzothiazoles has been developed. In a multi-step synthetic sequence, 4-fluoro-3-nitrobenzoic acid was converted into benzimidazole bis-heterocycles, via the intermediacy of benzimidazole linked ortho-chloro amines. The amphiphilic reactivity of this intermediate was designed to achieve the title compounds by the reaction of various acid chlorides and isothiocyanates in a single step through the in situ formation of ortho-chloro anilides and thioureas under microwave irradiation. A versatile one pot domino annulation reaction was developed to involve the reaction of benzimidazole linked ortho-chloro amines with acid chlorides and isothiocyanates. The initial acylation and urea formation followed by copper catalyzed intramolecular C-O and C-S cross coupling reactions furnished the angularly oriented bis-heterocycles which bear a close resemblance to the streptomyces antibiotic UK-1.
Secondary ion emission from Ti, V, Cu, Ag and Au surfaces under KeV Cs + irradiation
NASA Astrophysics Data System (ADS)
van der Heide, P. A. W.
2005-02-01
Low energy mono-atomic singly charged secondary ion emissions from Ti, V, Cu, Ag and Au substrates during the initial stages of sputtering with Cs + primary ions have been studied. With the exception of the Ag - secondary ions, all exhibited exponential like correlations with the Cs induced work function changes. This, along with the lack of variations in the valence band structure around the Fermi edge, is consistent with resonance charge transfer to/from states located at the Fermi edge. The insensitivity of Ag - to work function appears to stem from the dominance of a separate ion formation process, namely charge transfer into vacant 4d states in the sputtered population, which themselves appear to be produced through collective oscillations. A similar excitation-mediated process involving different levels also appears to be active in the formation of other negatively charged transition metal ions, albeit to a much lesser degree.
Moroccan crustal response to continental drift.
Kanes, W H; Saadi, M; Ehrlich, E; Alem, A
1973-06-01
The formation and development of a zone of spreading beneath the continental crust resulted in the breakup of Pangea and formation of the Atlantic Ocean. The crust of Morocco bears an extremely complete record of the crustal response to this episode of mantle dynamics. Structural and related depositional patterns indicate that the African margin had stabilized by the Middle Jurassic as a marine carbonate environment; that it was dominated by tensile stresses in the early Mesozoic, resulting in two fault systems paralleling the Atlantic and Mediterranean margins and a basin and range structural-depositional style; and that it was affected by late Paleozoic metamorphism and intrusion. Mesozoic events record the latter portion of African involvement in the spreading episode; late Paleozoic thermal orogenesis might reflect the earlier events in the initiation of the spreading center and its development beneath significant continental crust. In that case, more than 100 million years were required for mantle dynamics to break up Pangea.
Electron density reactivity indexes of the tautomeric/ionization forms of thiamin diphosphate.
Jaña, Gonzalo A; Delgado, Eduardo J
2013-09-01
The generation of the highly reactive ylide in thiamin diphosphate catalysis is analyzed in terms of the nucleophilicity of key atoms, by means of density functional calculations at X3LYP/6-31++G(d,p) level of theory. The Fukui functions of all tautomeric/ionization forms are calculated in order to assess their reactivity. The results allow to conclude that the highly conserved glutamic residue does not protonate the N1' atom of the pyrimidyl ring, but it participates in a strong hydrogen bonding, stabilizing the eventual negative charge on the nitrogen, in all forms involved in the ylide generation. This condition provides the necessary reactivity on key atoms, N4' and C2, to carry out the formation of the ylide required to initiate the catalytic cycle of ThDP-dependent enzymes. This study represents a new approach for the ylide formation in ThDP catalysis.
Formative Assessment Jump-Starts a Middle Grades Differentiation Initiative
ERIC Educational Resources Information Center
Doubet, Kristina J.
2012-01-01
A rural middle level school had stalled in its third year of a district-wide differentiation initiative. This article describes the way teachers and the leadership team engaged in collaborative practices to put a spotlight on formative assessment. Teachers learned to systematically gather formative assessment data from their students and to use…
Wang, Wei; Liu, Weimin; Chang, I-Ya; Wills, Lindsay A.; Zakharov, Lev N.; Boettcher, Shannon W.; Cheong, Paul Ha-Yeon; Fang, Chong; Keszler, Douglas A.
2013-01-01
The selective synthesis and in situ characterization of aqueous Al-containing clusters is a long-standing challenge. We report a newly developed integrated platform that combines (i) a selective, atom-economical, step-economical, scalable synthesis of Al-containing nanoclusters in water via precision electrolysis with strict pH control and (ii) an improved femtosecond stimulated Raman spectroscopic method covering a broad spectral range of ca. 350–1,400 cm−1 with high sensitivity, aided by ab initio computations, to elucidate Al aqueous cluster structures and formation mechanisms in real time. Using this platform, a unique view of flat [Al13(μ3-OH)6(μ2-OH)18(H2O)24](NO3)15 nanocluster formation is observed in water, in which three distinct reaction stages are identified. The initial stage involves the formation of an [Al7(μ3-OH)6(μ2-OH)6(H2O)12]9+ cluster core as an important intermediate toward the flat Al13 aqueous cluster. PMID:24167254
Observing RAM Pressure Stripping and Morphological Transformation in the Coma Cluster
NASA Astrophysics Data System (ADS)
Gregg, Michael; West, Michael
2017-07-01
The two largest spirals in the Coma cluster, NGC4911 and NGC4921, are being vigorously ram-pressure stripped by the hot intracluster medium. Our HST ACS and WFC3 images have revealed galactic scale shock fronts, giant "Pillars of Creation", rivulets of dust, and spatially coherent star formation in these grand design spirals. We have now obtained HST WFC3 imaging of five additional large Coma spirals to search for and investigate the effects of ram pressure stripping across the wider cluster environment. The results are equally spectacular as the first two examples. The geometry of the interactions in some cases allows an estimation of the various time scales involved, including gas flows out of the disk leading to creation of the ICM, and the attendant triggered star formation in the galaxy disks. The global star formation patterns yield insights into the spatial and temporal ISM-ICM interactions driving cluster galaxy evolution and ultimately transforming morphologies from spiral to S0. These processes were much more common in the early Universe when the intergalactic and intracluster components were initially created from stripping and destruction of member galaxies.
Chung, Thomas D Y; Sergienko, Eduard; Millán, José Luis
2010-04-27
The tissue-nonspecific alkaline phosphatase (TNAP) isozyme is centrally involved in the control of normal skeletal mineralization and pathophysiological abnormalities that lead to disease states such as hypophosphatasia, osteoarthritis, ankylosis and vascular calcification. TNAP acts in concert with the nucleoside triphosphate pyrophosphohydrolase-1 (NPP1) and the Ankylosis protein to regulate the extracellular concentrations of inorganic pyrophosphate (PP(i)), a potent inhibitor of mineralization. In this review we describe the serial development of two miniaturized high-throughput screens (HTS) for TNAP inhibitors that differ in both signal generation and detection formats, but more critically in the concentrations of a terminal alcohol acceptor used. These assay improvements allowed the rescue of the initially unsuccessful screening campaign against a large small molecule chemical library, but moreover enabled the discovery of several unique classes of molecules with distinct mechanisms of action and selectivity against the related placental (PLAP) and intestinal (IAP) alkaline phosphatase isozymes. This illustrates the underappreciated impact of the underlying fundamental assay configuration on screening success, beyond mere signal generation and detection formats.
NASA Astrophysics Data System (ADS)
Gómez, José J. Arroyo; Zubieta, Carolina; Ferullo, Ricardo M.; García, Silvana G.
2016-02-01
The electrochemical formation of Au nanoparticles on a highly ordered pyrolytic graphite (HOPG) substrate using conventional electrochemical techniques and ex-situ AFM is reported. From the potentiostatic current transients studies, the Au electrodeposition process on HOPG surfaces was described, within the potential range considered, by a model involving instantaneous nucleation and diffusion controlled 3D growth, which was corroborated by the microscopic analysis. Initially, three-dimensional (3D) hemispherical nanoparticles distributed on surface defects (step edges) of the substrate were observed, with increasing particle size at more negative potentials. The double potential pulse technique allowed the formation of rounded deposits at low deposition potentials, which tend to form lines of nuclei aligned in defined directions leading to 3D ordered structures. By choosing suitable nucleation and growth pulses, one-dimensional (1D) deposits were possible, preferentially located on step edges of the HOPG substrate. Quantum-mechanical calculations confirmed the tendency of Au atoms to join selectively on surface defects, such as the HOPG step edges, at the early stages of Au electrodeposition.
Igamberdiev, Abir U; Kleczkowski, Leszek A
2018-01-01
Serine metabolism in plants has been studied mostly in relation to photorespiration where serine is formed from two molecules of glycine. However, two other pathways of serine formation operate in plants and represent the branches of glycolysis diverging at the level of 3-phosphoglyceric acid. One branch (the glycerate - serine pathway) is initiated in the cytosol and involves glycerate formation from 3-phosphoglycerate, while the other (the phosphorylated serine pathway) operates in plastids and forms phosphohydroxypyruvate as an intermediate. Serine formed in these pathways becomes a precursor of glycine, formate and glycolate accumulating in stress conditions. The pathways can be linked to GABA shunt via transamination reactions and via participation of the same reductase for both glyoxylate and succinic semialdehyde. In this review paper we present a hypothesis of the regulation of redox balance in stressed plant cells via participation of the reactions associated with glycerate and phosphorylated serine pathways. We consider these pathways as important processes linking carbon and nitrogen metabolism and maintaining cellular redox and energy levels in stress conditions.
Xiang, Liang; Kong, Wei; Su, Jingtan; Liang, Jian; Zhang, Guiyou; Xie, Liping; Zhang, Rongqing
2014-01-01
The growth of molluscan shell crystals is generally thought to be initiated from the extrapallial fluid by matrix proteins, however, the cellular mechanisms of shell formation pathway remain unknown. Here, we first report amorphous calcium carbonate (ACC) precipitation by cellular biomineralization in primary mantle cell cultures of Pinctada fucata. Through real-time PCR and western blot analyses, we demonstrate that mantle cells retain the ability to synthesize and secrete ACCBP, Pif80 and nacrein in vitro. In addition, the cells also maintained high levels of alkaline phosphatase and carbonic anhydrase activity, enzymes responsible for shell formation. On the basis of polarized light microscopy and scanning electron microscopy, we observed intracellular crystals production by mantle cells in vitro. Fourier transform infrared spectroscopy and X-ray diffraction analyses revealed the crystals to be ACC, and de novo biomineralization was confirmed by following the incorporation of Sr into calcium carbonate. Our results demonstrate the ability of mantle cells to perform fundamental biomineralization processes via amorphous calcium carbonate, and these cells may be directly involved in pearl oyster shell formation. PMID:25405357
NASA Astrophysics Data System (ADS)
Muñoz-Franco, Granada; Criado, Ana María; García-Carmona, Antonio
2018-04-01
This article presents the results of a qualitative study aimed at determining the effectiveness of the camera obscura as a didactic tool to understand image formation (i.e., how it is possible to see objects and how their image is formed on the retina, and what the image formed on the retina is like compared to the object observed) in a context of scientific inquiry. The study involved 104 prospective primary teachers (PPTs) who were being trained in science teaching. To assess the effectiveness of this tool, an open questionnaire was applied before (pre-test) and after (post-test) the educational intervention. The data were analyzed by combining methods of inter- and intra-rater analysis. The results showed that more than half of the PPTs advanced in their ideas towards the desirable level of knowledge in relation to the phenomena studied. The conclusion reached is that the camera obscura, used in a context of scientific inquiry, is a useful tool for PPTs to improve their knowledge about image formation and experience in the first person an authentic scientific inquiry during their teacher training.
Production from multiple zones of a tar sands formation
Karanikas, John Michael; Vinegar, Harold J
2013-02-26
A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. Fluids are produced from the formation through at least one production well that is located in at least two zones in the formation. The first zone has an initial permeability of at least 1 darcy. The second zone has an initial of at most 0.1 darcy. The two zones are separated by a substantially impermeable barrier.
Controlled drug delivery from composites of nanostructured porous silicon and poly(L-lactide).
McInnes, Steven J P; Irani, Yazad; Williams, Keryn A; Voelcker, Nicolas H
2012-07-01
Porous silicon (pSi) and poly(L-lactide) (PLLA) both display good biocompatibility and tunable degradation behavior, suggesting that composites of both materials are suitable candidates as biomaterials for localized drug delivery into the human body. The combination of a pliable and soft polymeric material with a hard inorganic porous material of high drug loading capacity may engender improved control over degradation and drug release profiles and be beneficial for the preparation of advanced drug delivery devices and biodegradable implants or scaffolds. In this work, three different pSi and PLLA composite formats were prepared. The first format involved grafting PLLA from pSi films via surface-initiated ring-opening polymerization (pSi-PLLA [grafted]). The second format involved spin coating a PLLA solution onto oxidized pSi films (pSi-PLLA [spin-coated]) and the third format consisted of a melt-cast PLLA monolith containing dispersed pSi microparticles (pSi-PLLA [monoliths]). The surface characterization of these composites was performed via infrared spectroscopy, scanning electron microscopy, atomic force microscopy and water contact angle measurements. The composite materials were loaded with a model cytotoxic drug, camptothecin (CPT). Drug release from the composites was monitored via fluorimetry and the release profiles of CPT showed distinct characteristics for each of the composites studied. In some cases, controlled CPT release was observed for more than 5 days. The PLLA spin coat on pSi and the PLLA monolith containing pSi microparticles both released a CPT payload in accordance with the Higuchi and Ritger-Peppas release models. Composite materials were also brought into contact with human lens epithelial cells to determine the extent of cytotoxicity. We observed that all the CPT containing materials were highly efficient at releasing bioactive CPT, based on the cytotoxicity data.
Al Alam, Denise; El Agha, Elie; Sakurai, Reiko; Kheirollahi, Vahid; Moiseenko, Alena; Danopoulos, Soula; Shrestha, Amit; Schmoldt, Carole; Quantius, Jennifer; Herold, Susanne; Chao, Cho-Ming; Tiozzo, Caterina; De Langhe, Stijn; Plikus, Maksim V.; Thornton, Matthew; Grubbs, Brendan; Minoo, Parviz; Rehan, Virender K.; Bellusci, Saverio
2015-01-01
Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10+ progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development. PMID:26511927
Correa, Loreto A; Zapata, Beatriz; Samaniego, Horacio; Soto-Gamboa, Mauricio
2013-09-01
Social life involves costs and benefits mostly associated with how individuals interact with each other. The formation of hierarchies inside social groups has evolved as a common strategy to avoid high costs stemming from social interactions. Hierarchical relationships seem to be associated with different features such as body size, body condition and/or age, which determine dominance ability ('prior attributes' hypothesis). In contrast, the 'social dynamic' hypothesis suggests that an initial social context is a determinant in the formation of the hierarchy, more so than specific individual attributes. Hierarchical rank places individuals in higher positions, which presumably increases resource accessibility to their benefit, including opportunities for reproduction. We evaluate the maintenance of hierarchy in a family group of guanacos (Lama guanicoe) and evaluate the possible mechanisms involved in the stability of these interactions and their consequences. We estimate the linearity of social hierarchy and their dynamics. We find evidence of the formation of a highly linear hierarchy among females with males positioned at the bottom of the hierarchy. This hierarchy is not affected by physical characteristics or age, suggesting that it is established only through intra-group interactions. Rank is not related with calves' weight gain either; however, subordinated females, with lower rank, exhibit higher rates of allosuckling. We found no evidence of hierarchical structure in calves suggesting that hierarchical relationship in guanacos could be established during the formation of the family group. Hence, our results suggest that hierarchical dynamics could be related more to social dynamics than to prior attributes. We finally discuss the importance of hierarchies established by dominance and their role in minimizing social costs of interactions. Copyright © 2013 Elsevier B.V. All rights reserved.
Mechanism of acetaldehyde-induced deactivation of microbial lipases
2011-01-01
Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the enzymes. Lyophilization of the enzymes from buffer at pH 6.0 can provide an easy and effective way to stabilize lipases toward inactivation by acetaldehyde. PMID:21342514
Ma, Xiqing; Xu, Qian; Meyer, William A.; Huang, Bingru
2016-01-01
Background and Aims Rhizomes are underground stems with meristematic tissues capable of generating shoots and roots. However, mechanisms controlling rhizome formation and growth are yet to be completely understood. The objectives of this study were to investigate whether rhizome development could be regulated by cytokinins (CKs) and gibberellic acids (GAs), and determine underlying mechanisms of regulation of rhizome formation and growth of tall fescue (Festuca arundinacea) by a CK or GA through proteomic and transcript analysis. Methods A rhizomatous genotype of tall fescue (‘BR’) plants were treated with 6-benzylaminopurine (BAP, a synthetic cytokinin) or GA3 in hydroponic culture in growth chambers. Furthermore, comparative proteomic analysis of two-dimensional electrophoresis and mass spectrometry were performed to investigate proteins and associated metabolic pathways imparting increased rhizome number by BAP and rhizome elongation by GA3. Key Results BAP stimulated rhizome formation while GA3 promoted rhizome elongation. Proteomic analysis identified 76 differentially expressed proteins (DEPs) due to BAP treatment and 37 DEPs due to GA3 treatment. Cytokinin-related genes and cell division-related genes were upregulated in the rhizome node by BAP and gibberellin-related and cell growth-related genes in the rhizome by GA3. Conclusions Most of the BAP- or GA-responsive DEPs were involved in respiratory metabolism and amino acid metabolism. Transcription analysis demonstrated that genes involved in hormone metabolism, signalling pathways, cell division and cell-wall loosening were upregulated by BAP or GA3. The CK and GA promoted rhizome formation and growth, respectively, by activating metabolic pathways that supply energy and amino acids to support cell division and expansion during rhizome initiation and elongation in tall fescue. PMID:27443301
Al Alam, Denise; El Agha, Elie; Sakurai, Reiko; Kheirollahi, Vahid; Moiseenko, Alena; Danopoulos, Soula; Shrestha, Amit; Schmoldt, Carole; Quantius, Jennifer; Herold, Susanne; Chao, Cho-Ming; Tiozzo, Caterina; De Langhe, Stijn; Plikus, Maksim V; Thornton, Matthew; Grubbs, Brendan; Minoo, Parviz; Rehan, Virender K; Bellusci, Saverio
2015-12-01
Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10(+) progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development. © 2015. Published by The Company of Biologists Ltd.
Developing Federated Services within Seismology: IRIS' involvement in the CoopEUS Project
NASA Astrophysics Data System (ADS)
Ahern, T. K.; Trabant, C. M.; Stults, M.
2014-12-01
As a founding member of the CoopEUS initiative, IRIS Data Services has partnered with five data centers in Europe and the UC Berkeley (NCEDC) in the US to implement internationally standardized web services to access seismological data using identical methodologies. The International Federation of Digital Seismograph Networks (FDSN) holds commission status within IASPEI/IUGG and as such is the international body that governs data exchange formats and access protocols within seismology. The CoopEUS project involves IRIS and UNAVCO as part of the EarthScope project and the European collaborators are all members of the European Plate Observing System (EPOS). CoopEUS includes one work package that attempts to coordinate data access between EarthScope and EPOS facilities. IRIS has worked with its partners in the FDSN to develop and adopt three key international service standards within seismology. These include 1) fdsn-dataselect, a service that returns time series data in a variety of standard formats, 2) fdsn-station, a service that returns related metadata about a seismic station in stationXML format, and 3) fdsn-event, a service that returns information about earthquakes and other seismic events in QuakeML format. Currently the 5 European data centers supporting these services include the ORFEUS Data Centre in the Netherlands, the GFZ German Research Centre for Geosciences in Potsdam, Germany, ETH Zurich in Switzerland, INGV in Rome, Italy, and the RESIF Data Centre in Grenoble France. Presently these seven centres can all be accessed using standardized web services with identical service calls and returns results in standardized ways. IRIS is developing an IRIS federator that will allow a client to seamlessly access information across the federated centers. Details and current status of the IRIS Federator will be presented.
Klar, Roland M; Duarte, Raquel; Dix-Peek, Therese; Dickens, Caroline; Ferretti, Carlo; Ripamonti, Ugo
2013-01-01
Coral-derived calcium carbonate/hydroxyapatite macroporous constructs of the genus Goniopora with limited hydrothermal conversion to hydroxyapatite (7% HA/CC) initiate the induction of bone formation. Which are the molecular signals that initiate pattern formation and the induction of bone formation? To evaluate the role of released calcium ions and osteoclastogenesis, 7% HA/CC was pre-loaded with either 500 μg of the calcium channel blocker, verapamil hydrochloride, or 240 μg of the osteoclast inhibitor, biphosphonate zoledronate, and implanted in the rectus abdominis muscle of six adult Chacma baboons Papio ursinus. Generated tissues on days 15, 60 and 90 were analysed by histomorphometry and qRT-PCR. On day 15, up-regulation of type IV collagen characterized all the implanted constructs correlating with vascular invasion. Zoledronate-treated specimens showed an important delay in tissue patterning and morphogenesis with limited bone formation. Osteoclastic inhibition yielded minimal, if any, bone formation by induction. 7% HA/CC pre-loaded with the Ca++ channel blocker verapamil hydrochloride strongly inhibited the induction of bone formation. Down-regulation of bone morphogenetic protein-2 (BMP-2) together with up-regulation of Noggin genes correlated with limited bone formation in 7% HA/CC pre-loaded with either verapamil or zoledronate, indicating that the induction of bone formation by coral-derived macroporous constructs is via the BMPs pathway. The spontaneous induction of bone formation is initiated by a local peak of Ca++ activating stem cell differentiation and the induction of bone formation. PMID:24106923
Is the Ordos Basin floored by a trapped oceanic plateau?
NASA Astrophysics Data System (ADS)
Kusky, Tim; Mooney, Walter
2015-11-01
The Ordos Basin in China has about 10 km of Neoarchean to Quaternary sediments covering an enigmatic basement of uncertain origin. The basement is tectonically stable, has a thick mantle root, low heat flow, few earthquakes, and has been slowly subsiding for billions of years. The basement has geophysical signatures that indicate it is dominantly intermediate to mafic in composition, and is similar to some other cratons world-wide, and also to several major oceanic plateaus. It was accreted to the amalgamated Eastern Block and Central Orogenic belt of the North China Craton (NCC) in the Paleoproterozoic, then involved in several Proterozoic tectonic events including being over-thrust by an accretionary orogen, and intruded by Andean arc-related magmas, and then involved in a continent-continent collision during amalgamation with the Columbia Supercontinent. Thus, the basement rocks are deformed, metamorphosed to granulite facies, and determining their initial origin is difficult. We suggest that the data is consistent with an origin as an oceanic plateau that accreted to the NCC and, later experienced different episodes of differentiation associated with later subduction and collisions. Formation of cratonic lithosphere by accretion of oceanic plateaus may be one mechanism to create stable cratons. Other cratons that apparently formed by partial melting of underplated and imbricated oceanic slabs are stable in some cases, but also re-activated and ;de-cratonized; in some cases in Asia, where they have been affected by younger subduction, hydration, slab roll-back, and melt-peridotite reactions. This suggests that the initial mode of craton formation may be a factor in the preservation of stable cratons, and de-cratonization is not only influenced by younger tectonic activity.
Darensbourg, Donald J; Mackiewicz, Ryan M; Rodgers, Jody L; Fang, Cindy C; Billodeaux, Damon R; Reibenspies, Joseph H
2004-09-20
A detailed mechanistic study into the copolymerization of CO2 and cyclohexene oxide utilizing CrIII(salen)X complexes and N-methylimidazole, where H2salen = N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-ethylenediimine and other salen derivatives and X = Cl or N3, has been conducted. By studying salen ligands with various groups on the diimine backbone, we have observed that bulky groups oriented perpendicular to the salen plane reduce the activity of the catalyst significantly, while such groups oriented parallel to the salen plane do not retard copolymer formation. This is not surprising in that the mechanism for asymmetric ring opening of epoxides was found to occur in a bimetallic fashion, whereas these perpendicularly oriented groups along with the tert-butyl groups on the phenolate rings produce considerable steric requirements for the two metal centers to communicate and thus initiate the copolymerization process. It was also observed that altering the substituents on the phenolate rings of the salen ligand had a 2-fold effect, controlling both catalyst solubility as well as electron density around the metal center, producing significant effects on the rate of copolymer formation. This and other data discussed herein have led us to propose a more detailed mechanistic delineation, wherein the rate of copolymerization is dictated by two separate equilibria. The first equilibrium involves the initial second-order epoxide ring opening and is inhibited by excess amounts of cocatalyst. The second equilibrium involves the propagation step and is enhanced by excess cocatalyst. This gives the [cocatalyst] both a positive and negative effect on the overall rate of copolymerization. Copyright 2004 American Chemical Society
Vandenbosch, Davy; De Canck, Evelien; Dhondt, Inne; Rigole, Petra; Nelis, Hans J; Coenye, Tom
2013-12-01
Infections related to fungal biofilms are difficult to treat due to the reduced susceptibility of sessile cells to most antifungal agents. Previous research has shown that 1-10% of sessile Candida cells survive treatment with high doses of miconazole (a fungicidal imidazole). The aim of this study was to identify genes involved in fungal biofilm formation and to unravel the mechanisms of resistance of these biofilms to miconazole. To this end, a screening of a Saccharomyces cerevisiae deletion mutant bank was carried out. Our results revealed that genes involved in peroxisomal transport and the biogenesis of the respiratory chain complex IV play an essential role in biofilm formation. On the other hand, genes involved in transcription and peroxisomal and mitochondrial organization seem to highly influence the susceptibility to miconazole of yeast biofilms. Additionally, our data confirm previous findings on genes involved in biofilm formation and in general stress responses. Our data suggest the involvement of peroxisomes in biofilm formation and miconazole resistance in fungal biofilms. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Lo, Hsiao-Chi; Wan, Lihong; Rosebrock, Adam; Futcher, Bruce
2008-01-01
In budding yeast, as in other eukaryotes, the Cdc7 protein kinase is important for initiation of DNA synthesis in vegetative cells. In addition, Cdc7 has crucial meiotic functions: it facilitates premeiotic DNA replication, and it is essential for the initiation of recombination. This work uses a chemical genetic approach to demonstrate that Cdc7 kinase has additional roles in meiosis. First, Cdc7 allows expression of NDT80, a meiosis-specific transcriptional activator required for the induction of genes involved in exit from pachytene, meiotic progression, and spore formation. Second, Cdc7 is necessary for recruitment of monopolin to sister kinetochores, and it is necessary for the reductional segregation occurring at meiosis I. The use of the same kinase to regulate several distinct meiosis-specific processes may be important for the coordination of these processes during meiosis. PMID:18768747
Song, Wenji; Zhao, Chen; Lercher, Johannes A
2013-07-22
Improved synthetic approaches for preparing small-sized Ni nanoparticles (d=3 nm) supported on HBEA zeolite have been explored and compared with the traditional impregnation method. The formation of surface nickel silicate/aluminate involved in the two precipitation processes are inferred to lead to the stronger interaction between the metal and the support. The lower Brønsted acid concentrations of these two Ni/HBEA catalysts compared with the parent zeolite caused by the partial exchange of Brønsted acid sites by Ni(2+) cations do not influence the hydrodeoxygenation rates, but alter the product selectivity. Higher initial rates and higher stability have been achieved with these optimized catalysts for the hydrodeoxygenation of stearic acid and microalgae oil. Small metal particles facilitate high initial catalytic activity in the fresh sample and size uniformity ensures high catalyst stability. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Study of the kinetics and mechanism of the thermal nitridation of SiO2
NASA Technical Reports Server (NTRS)
Vasquez, R. P.; Madhukar, A.; Grunthaner, F. J.; Naiman, M. L.
1985-01-01
X-ray photoelectron spectroscopy (XPS) has been used to study the nitridation time and temperature dependence of the nitrogen distribution in thermally nitrided SiO2 films. The XPS data show that the maximum nitrogen concentration near the (SiO(x)N(y)/Si interface is initially at the interface, but moves 20-25 A away from the interface with increasing nitridation time. Computer modeling of the kinetic processes involved is carried out and reveals a mechanism in which diffusing species, initially consisting primarily of nitrogen, react with the substrate, followed by formation of the oxygen-rich oxynitride due to reaction of the diffusing oxygen displaced by the slower nitridation of the SiO2. The data are consistent with this mechanism provided the influence of the interfacial strain on the nitridation and oxidation kinetics is explicitly accounted for.
Single-Molecule Probing the Energy Landscape of Enzymatic Reaction and Non-Covalent Interactions
NASA Astrophysics Data System (ADS)
Lu, H. Peter; Hu, Dehong; Chen, Yu; Vorpagel, Erich R.
2002-03-01
We have applied single-molecule spectroscopy under physiological conditions to study the mechanisms and dynamics of T4 lysozyme enzymatic reactions, characterizing mode-specific protein conformational dynamics. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time. The overall reaction rates were found to vary widely from molecule-to-molecule, and the initial non-specific binding of the enzyme to the substrate was seen to dominate this inhomogeneity. The reaction steps subsequent to the initial binding were found to have homogeneous rates. Molecular dynamics simulation has been applied to elucidate the mechanism and intermediate states of the single-molecule enzymatic reaction. Combining the analysis of single-molecule experimental trajectories, MD simulation trajectories, and statistical modeling, we have revealed the nature of multiple intermediate states involved in the active enzyme-substrate complex formation and the associated conformational change mechanism and dynamics.
Early time evolution of a localized nonlinear excitation in the β-FPUT chain
NASA Astrophysics Data System (ADS)
Kashyap, Rahul; Westley, Alexandra; Datta, Amitava; Sen, Surajit
2017-04-01
We present the detailed dynamics of the particles in the β-Fermi-Pasta-Ulam-Tsingou (FPUT) chain after the initiation of a localized nonlinear excitation (LNE) by squeezing a central bond in the monodispersed chain at time t = 0 while all other particles remain in their original relaxed positions. In the absence of phonons in the system, the LNE appears to initiate its relaxation process by symmetrically emitting two very weak solitary waves. The next stage involves the spreading of the LNE and the formation of nonsolitary wave-like objects to broaden the excitation region until a stage is reached when many weak solitary wave-like objects can be emitted as the system begins its journey to quasi-equilibrium and then to equilibrium. In addition to being of fundamental interest, these systems may be realized using cantilever systems and could well hold the key to constructing the next generation of broadband energy harvesting systems.
Analysis of compaction shock interactions during DDT of low density HMX
NASA Astrophysics Data System (ADS)
Rao, Pratap T.; Gonthier, Keith A.
2017-01-01
Deflagration-to-Detonation Transition (DDT) in confined, low density granular HMX occurs by a complex mechanism that involves compaction shock interactions within the material. Piston driven DDT experiments indicate that detonation is abruptly triggered by the interaction of a strong combustion-supported secondary shock and a piston-supported primary (input) shock, where the nature of the interaction depends on initial packing density and primary shock strength. These interactions influence transition by affecting dissipative heating within the microstructure during pore collapse. Inert meso-scale simulations of successive shock loading of low density HMX are performed to examine how dissipation and hot-spot formation are affected by the initial density, and the primary and secondary shock strengths. This information is used to formulate an ignition and burn model for low density HMX that accounts for the effect of shock densensitization on burn. Preliminary DDT predictions are presented that illustrate how primary shock strength affects the transition mechanism.
Shin, Marlena H; Rivard, Peter E; Shwartz, Michael; Borzecki, Ann; Yaksic, Enzo; Stolzmann, Kelly; Zubkoff, Lisa; Rosen, Amy K
2018-02-14
Given that patient safety measures are increasingly used for public reporting and pay-for performance, it is important for stakeholders to understand how to use these measures for improvement. The Agency for Healthcare Research and Quality (AHRQ) Patient Safety Indicators (PSIs) are one particularly visible set of measures that are now used primarily for public reporting and pay-for-performance among both private sector and Veterans Health Administration (VA) hospitals. This trend generates a strong need for stakeholders to understand how to interpret and use the PSIs for quality improvement (QI). The goal of this study was to develop an educational program and tailor it to stakeholders' needs. In this paper, we share what we learned from this program development process. Our study population included key VA stakeholders involved in reviewing performance reports and prioritizing and initiating quality/safety initiatives. A pre-program formative evaluation through telephone interviews and web-based surveys assessed stakeholders' educational needs/interests. Findings from the formative evaluation led to development and implementation of a cyberseminar-based program, which we tailored to stakeholders' needs/interests. A post-program survey evaluated program participants' perceptions about the PSI educational program. Interview data confirmed that the concepts we had developed for the interviews could be used for the survey. Survey results informed us on what program delivery mode and content topics were of high interest. Six cyberseminars were developed-three of which focused on two content areas that were noted of greatest interest: learning how to use PSIs for monitoring trends and understanding how to interpret PSIs. We also used snapshots of VA PSI reports so that participants could directly apply learnings. Although initial interest in the program was high, actual attendance was low. However, post-program survey results indicated that perceptions about the program were positive. Conducting a formative evaluation was a highly important process in program development. The useful information that we collected through the interviews and surveys allowed us to tailor the program to stakeholders' needs and interests. Our experiences, particularly with the formative evaluation process, yielded valuable lessons that can guide others when developing and implementing similar educational programs.
Suzuki, D A; Yamada, T; Hoedema, R; Yee, R D
1999-09-01
Anatomic and neuronal recordings suggest that the nucleus reticularis tegmenti pontis (NRTP) of macaques may be a major pontine component of a cortico-ponto-cerebellar pathway that subserves the control of smooth-pursuit eye movements. The existence of such a pathway was implicated by the lack of permanent pursuit impairment after bilateral lesions in the dorsolateral pontine nucleus. To provide more direct evidence that NRTP is involved with regulating smooth-pursuit eye movements, chemical lesions were made in macaque NRTP by injecting either lidocaine or ibotenic acid. Injection sites first were identified by the recording of smooth-pursuit-related modulations in neuronal activity. The resulting lesions caused significant deficits in both the maintenance and the initiation of smooth-pursuit eye movements. After lesion formation, the gain of constant-velocity, maintained smooth-pursuit eye movements decreased, on the average, by 44%. Recovery of the ability to maintain smooth-pursuit eye movements occurred over approximately 3 days when maintained pursuit gains attained normal values. The step-ramp, "Rashbass" task was used to investigate the effects of the lesions on the initiation of smooth-pursuit eye movements. Eye accelerations averaged over the initial 80 ms of pursuit initiation were determined and found to be decremented, on the average, by 48% after the administration of ibotenic acid. Impairments in the initiation and maintenance of smooth-pursuit eye movements were directional in nature. Upward pursuit seemed to be the most vulnerable and was impaired in all cases independent of lesioning agent and type of pursuit investigated. Downward smooth pursuit seemed more resistant to the effects of chemical lesions in NRTP. Impairments in horizontal tracking were observed with examples of deficits in ipsilaterally and contralaterally directed pursuit. The results provide behavioral support for the physiologically and anatomic-based conclusion that NRTP is a component of a cortico-ponto-cerebellar circuit that presumably involves the pursuit area of the frontal eye field (FEF) and projects to ocular motor-related areas of the cerebellum. This FEF-NRTP-cerebellum path would parallel a middle and medial superior temporal cerebral cortical area-dorsolateral pontine nucleus-cerebellum pathway also known to be involved with regulating smooth-pursuit eye movements.
Germic, Nina; Stojkov, Darko; Oberson, Kevin; Yousefi, Shida; Simon, Hans-Uwe
2017-11-01
The importance of extracellular traps (ETs) in innate immunity is well established, but the molecular mechanisms responsible for their formation remain unclear and in scientific dispute. ETs have been defined as extracellular DNA scaffolds associated with the granule proteins of eosinophils or neutrophils. They are capable of killing bacteria extracellularly. Based mainly on results with phosphoinositide 3-kinase (PI3K) inhibitors such as 3-methyladenine (3-MA) and wortmannin, which are commonly used to inhibit autophagy, several groups have reported that autophagy is required for neutrophil extracellular trap (NET) formation. We decided to investigate this apparent dependence on autophagy for ET release and generated genetically modified mice that lack, specifically in eosinophils or neutrophils, autophagy-related 5 (Atg5), a gene encoding a protein essential for autophagosome formation. Interestingly, neither eosinophils nor neutrophils from Atg5-deficient mice exhibited abnormalities in ET formation upon physiological activation or exposure to low concentrations of PMA, although we could confirm that human and mouse eosinophils and neutrophils, after pre-treatment with inhibitors of class III PI3K, show a block both in reactive oxygen species (ROS) production and in ET formation. The so-called late autophagy inhibitors bafilomycin A1 and chloroquine, on the other hand, were without effect. These data indicate that ET formation occurs independently of autophagy and that the inhibition of ROS production and ET formation in the presence of 3-MA and wortmannin is probably owing to their additional ability to block the class I PI3Ks, which are involved in signalling cascades initiated by triggers of ET formation. © 2017 John Wiley & Sons Ltd.
Martinazzo, Rocco; Tantardini, Gian Franco
2006-03-28
Following previous investigation of collision induced (CI) processes involving hydrogen atoms chemisorbed on graphite [R. Martinazzo and G. F. Tantardini, J. Chem. Phys. 124, 124702 (2006)], the case in which the target hydrogen atom is initially physisorbed on the surface is considered here. Several adsorbate-substrate initial states of the target H atom in the physisorption well are considered, and CI processes are studied for projectile energies up to 1 eV. Results show that (i) Eley-Rideal cross sections at low collision energies may be larger than those found in the H-chemisorbed case but they rapidly decrease as the collision energy increases; (ii) product hydrogen molecules are vibrationally very excited; (iii) collision induced desorption cross sections rapidly increase, reaching saturation values greater than 10 A2; (iv) trapping of the incident atoms is found to be as efficient as the Eley-Rideal reaction at low energies and remains sizable (3-4 A2) at high energies. The latter adsorbate-induced trapping results mainly in formation of metastable hot hydrogen atoms, i.e., atoms with an excess energy channeled in the motion parallel to the surface. These atoms might contribute in explaining hydrogen formation on graphite.
Processing Control Information in a Nominal Control Construction: An Eye-Tracking Study.
Kwon, Nayoung; Sturt, Patrick
2016-08-01
In an eye-tracking experiment, we examined the processing of the nominal control construction. Participants' eye-movements were monitored while they read sentences that included either giver control nominals (e.g. promise in Luke's promise to Sophia to photograph himself) or recipient control nominals (e.g. plea in Luke's plea to Sophia to photograph herself). In order to examine both the initial access of control information, and its later use in on-line processing, we combined a manipulation of nominal control with a gender match/mismatch paradigm. Results showed that there was evidence of processing difficulty for giver control sentences (relative to recipient control sentences) at the point where the control dependency was initially created, suggesting that control information was accessed during the early parsing stages. This effect is attributed to a recency preference in the formation of control dependencies; the parser prefers to assign a recent antecedent to PRO. In addition, readers slowed down after reading a reflexive pronoun that mismatched with the gender of the antecedent indicated by the control nominal (e.g. Luke's promise to Sophia to photograph herself). The mismatch cost suggests that control information of the nominal control construction was used to constrain dependency formation involving a controller, PRO and a reflexive, confirming the use of control information in on-line interpretation.
Yokoyama, Kenichi; Lilla, Edward A
2018-04-10
Covering: up to the end of 2017C-C bond formations are frequently the key steps in cofactor and natural product biosynthesis. Historically, C-C bond formations were thought to proceed by two electron mechanisms, represented by Claisen condensation in fatty acids and polyketide biosynthesis. These types of mechanisms require activated substrates to create a nucleophile and an electrophile. More recently, increasing number of C-C bond formations catalyzed by radical SAM enzymes are being identified. These free radical mediated reactions can proceed between almost any sp3 and sp2 carbon centers, allowing introduction of C-C bonds at unconventional positions in metabolites. Therefore, free radical mediated C-C bond formations are frequently found in the construction of structurally unique and complex metabolites. This review discusses our current understanding of the functions and mechanisms of C-C bond forming radical SAM enzymes and highlights their important roles in the biosynthesis of structurally complex, naturally occurring organic molecules. Mechanistic consideration of C-C bond formation by radical SAM enzymes identifies the significance of three key mechanistic factors: radical initiation, acceptor substrate activation and radical quenching. Understanding the functions and mechanisms of these characteristic enzymes will be important not only in promoting our understanding of radical SAM enzymes, but also for understanding natural product and cofactor biosynthesis.
NASA Technical Reports Server (NTRS)
Peterson, K. J.; Irvine, S. Q.; Cameron, R. A.; Davidson, E. H.
2000-01-01
A prediction from the set-aside theory of bilaterian origins is that pattern formation processes such as those controlled by the Hox cluster genes are required specifically for adult body plan formation. This prediction can be tested in animals that use maximal indirect development, in which the embryonic formation of the larva and the postembryonic formation of the adult body plan are temporally and spatially distinct. To this end, we quantitatively measured the amount of transcripts for five Hox genes in embryos of a lophotrochozoan, the polychaete annelid Chaetopterus sp. The polychaete Hox complex is shown not to be expressed during embryogenesis, but transcripts of all measured Hox complex genes are detected at significant levels during the initial stages of adult body plan formation. Temporal colinearity in the sequence of their activation is observed, so that activation follows the 3'-5' arrangement of the genes. Moreover, Hox gene expression is spatially localized to the region of teloblastic set-aside cells of the later-stage embryos. This study shows that an indirectly developing lophotrochozoan shares with an indirectly developing deuterostome, the sea urchin, a common mode of Hox complex utilization: construction of the larva, whether a trochophore or dipleurula, does not involve Hox cluster expression, but in both forms the complex is expressed in the set-aside cells from which the adult body plan derives.
NASA Astrophysics Data System (ADS)
Zhou, Haiou; Shi, Tiejun; Zhou, Xun
2013-02-01
In this paper, polystyrene (PS)/SiO2 microspheres were successfully prepared via Pickering emulsion polymerization stabilized solely by ethacryloxypropyltrimethoxysilane (MPTMS) modified SiO2 nanoparticles. The formation mechanisms of PS/SiO2 microspheres with different morphology were investigated under various Pickering emulsion polymerization conditions. The results showed that SiO2 concentrations and initiator sorts would synergistically impact on the morphology of products corresponding to distinct formation mechanisms. When SiO2 concentrations was low and water-solute initiator potassium persulfate (KPS) was used, aqueous nucleation was dominant, which was deduced to the formation of dispersive microspheres sparsely anchored by SiO2 particles. When SiO2 concentrations was increased and oil-solute initiator azobisisobutyronitrile (AIBN) was applied, nucleation in oil phase prevailed which lead to the formation of microspheres densely packed by SiO2 particles.
Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings
Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R.
2016-01-01
Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of jasmonic acid stimulate AR formation, while both pathways are linked to auxin. Future research on the function of candidate genes should consider their tissue-specific role and regulation by environmental factors. Furthermore, the whole cutting should be regarded as a system of physiological units with diverse functions specifically responding to the environment and determining the rooting response. PMID:27064322
Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings.
Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R
2016-01-01
Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of jasmonic acid stimulate AR formation, while both pathways are linked to auxin. Future research on the function of candidate genes should consider their tissue-specific role and regulation by environmental factors. Furthermore, the whole cutting should be regarded as a system of physiological units with diverse functions specifically responding to the environment and determining the rooting response.
Planet Formation in Binary Star Systems
NASA Astrophysics Data System (ADS)
Martin, Rebecca
About half of observed exoplanets are estimated to be in binary systems. Understanding planet formation and evolution in binaries is therefore essential for explaining observed exoplanet properties. Recently, we discovered that a highly misaligned circumstellar disk in a binary system can undergo global Kozai-Lidov (KL) oscillations of the disk inclination and eccentricity. These oscillations likely have a significant impact on the formation and orbital evolution of planets in binary star systems. Planet formation by core accretion cannot operate during KL oscillations of the disk. First, we propose to consider the process of disk mass transfer between the binary members. Secondly, we will investigate the possibility of planet formation by disk fragmentation. Disk self gravity can weaken or suppress the oscillations during the early disk evolution when the disk mass is relatively high for a narrow range of parameters. Thirdly, we will investigate the evolution of a planet whose orbit is initially aligned with respect to the disk, but misaligned with respect to the orbit of the binary. We will study how these processes relate to observations of star-spin and planet orbit misalignment and to observations of planets that appear to be undergoing KL oscillations. Finally, we will analyze the evolution of misaligned multi-planet systems. This theoretical work will involve a combination of analytic and numerical techniques. The aim of this research is to shed some light on the formation of planets in binary star systems and to contribute to NASA's goal of understanding of the origins of exoplanetary systems.
Sawada, Hitoshi; Satoh, Noriyuki
2016-01-01
Despite the importance of stony corals in many research fields related to global issues, such as marine ecology, climate change, paleoclimatogy, and metazoan evolution, very little is known about the evolutionary origin of coral skeleton formation. In order to investigate the evolution of coral biomineralization, we have identified skeletal organic matrix proteins (SOMPs) in the skeletal proteome of the scleractinian coral, Acropora digitifera, for which large genomic and transcriptomic datasets are available. Scrupulous gene annotation was conducted based on comparisons of functional domain structures among metazoans. We found that SOMPs include not only coral-specific proteins, but also protein families that are widely conserved among cnidarians and other metazoans. We also identified several conserved transmembrane proteins in the skeletal proteome. Gene expression analysis revealed that expression of these conserved genes continues throughout development. Therefore, these genes are involved not only skeleton formation, but also in basic cellular functions, such as cell-cell interaction and signaling. On the other hand, genes encoding coral-specific proteins, including extracellular matrix domain-containing proteins, galaxins, and acidic proteins, were prominently expressed in post-settlement stages, indicating their role in skeleton formation. Taken together, the process of coral skeleton formation is hypothesized as: 1) formation of initial extracellular matrix between epithelial cells and substrate, employing pre-existing transmembrane proteins; 2) additional extracellular matrix formation using novel proteins that have emerged by domain shuffling and rapid molecular evolution and; 3) calcification controlled by coral-specific SOMPs. PMID:27253604
Augmented Fish Health Monitoring; Volume I of II, Completion Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michak, Patty
1991-05-01
The Bonneville Power Administration (BPA) initiated the Augmented Fish Health Monitoring project in 1986. This project was a five year interagency project involving fish rearing agencies in the Columbia Basin. Historically, all agencies involved with fish health in the Columbia Basin were conducting various levels of fish health monitoring, pathogen screening and collection. The goals of this project were; to identify, develop and implement a standardized level of fish health methodologies, develop a common data collection and reporting format in the area of artificial production, evaluate and monitor water quality, improve communications between agencies and provide annual evaluation of fishmore » health information for production of healthier smolts. This completion report will contain a project evaluation, review of the goals of the project, evaluation of the specific fish health analyses, an overview of highlights of the project and concluding remarks. 8 refs., 1 fig., 4 tabs.« less
Doi, Shiori; Hashimoto, Yoshiteru; Tomita, Chiaki; Kumano, Takuto; Kobayashi, Michihiko
2016-01-01
Piperonal-catabolizing microorganisms were isolated from soil, the one (strain CT39-3) exhibiting the highest activity being identified as Burkholderia sp. The piperonal-converting enzyme involved in the initial step of piperonal metabolism was purified from strain CT39-3. Gene cloning of the enzyme and a homology search revealed that the enzyme belongs to the xanthine oxidase family, which comprises molybdoenzymes containing a molybdopterin cytosine dinucleotide cofactor. We found that the piperonal-converting enzyme acts on piperonal in the presence of O2, leading to formation of piperonylic acid and H2O2. The growth of strain CT39-3 was inhibited by higher concentrations of piperonal in the culture medium. Together with this finding, the broad substrate specificity of this enzyme for various aldehydes suggests that it would play an important role in the defense mechanism against antimicrobial compounds derived from plant species. PMID:27905507
Hutter, Russell R C; Allen, Richard J; Wood, Chantelle
2016-01-01
Recent research (e.g., Hutter, Crisp, Humphreys, Waters, & Moffit; Siebler) has confirmed that combining novel social categories involves two stages (e.g., Hampton; Hastie, Schroeder, & Weber). Furthermore, it is also evident that following stage 1 (constituent additivity), the second stage in these models involves cognitively effortful complex reasoning. However, while current theory and research has addressed how category conjunctions are initially represented to some degree, it is not clear precisely where we first combine or bind existing social constituent categories. For example, how and where do we compose and temporarily store a coherent representation of an individual who shares membership of "female" and "blacksmith" categories? In this article, we consider how the revised multi-component model of working memory (Baddeley) can assist in resolving the representational limitations in the extant two-stage theoretical models. This is a new approach to understanding how novel conjunctions form new bound "composite" representations.
Oxidative 1,2-carboamination of alkenes with alkyl nitriles and amines toward γ-amino alkyl nitriles
NASA Astrophysics Data System (ADS)
Liu, Yan-Yun; Yang, Xu-Heng; Song, Ren-Jie; Luo, Shenglian; Li, Jin-Heng
2017-04-01
Difunctionalization of alkenes has become a powerful tool for quickly increasing molecular complexity in synthesis. Despite significant progress in the area of alkene difunctionalization involving the incorporation of a nitrogen atom across the C-C double bonds, approaches for the direct 1,2-carboamination of alkenes to produce linear N-containing molecules are scarce and remain a formidable challenge. Here we describe a radical-mediated oxidative intermolecular 1,2-alkylamination of alkenes with alkyl nitriles and amines involving C(sp3)-H oxidative functionalization catalysed by a combination of Ag2CO3 with iron Lewis acids. This three-component alkene 1,2-alkylamination method is initiated by the C(sp3)-H oxidative radical functionalization, which enables one-step formation of two new chemical bonds, a C-C bond and a C-N bond, to selectively produce γ-amino alkyl nitriles.
Li, Hui; Kling, Nora G.; Förg, Benjamin; Stierle, Johannes; Kessel, Alexander; Trushin, Sergei A.; Kling, Matthias F.; Kaziannis, Spyros
2016-01-01
The dissociative ionization of toluene initiated by a few-cycle laser pulse as a function of the carrier envelope phase (CEP) is investigated using single-shot velocity map imaging. Several ionic fragments, CH3+, H2+, and H3+, originating from multiply charged toluene ions present a CEP-dependent directional emission. The formation of H2+ and H3+ involves breaking C-H bonds and forming new bonds between the hydrogen atoms within the transient structure of the multiply charged precursor. We observe appreciable intensity-dependent CEP-offsets. The experimental data are interpreted with a mechanism that involves laser-induced coupling of vibrational states, which has been found to play a role in the CEP-control of molecular processes in hydrocarbon molecules, and appears to be of general importance for such complex molecules. PMID:26958589
Hoxha, Eriola; Lippiello, Pellegrino; Scelfo, Bibiana; Tempia, Filippo; Ghirardi, Mirella; Miniaci, Maria Concetta
2017-01-01
The formation of the complex cerebellar cortical circuits follows different phases, with initial synaptogenesis and subsequent processes of refinement guided by a variety of mechanisms. The regularity of the cellular and synaptic organization of the cerebellar cortex allowed detailed studies of the structural plasticity mechanisms underlying the formation of new synapses and retraction of redundant ones. For the attainment of the monoinnervation of the Purkinje cell by a single climbing fiber, several signals are involved, including electrical activity, contact signals, homosynaptic and heterosynaptic interaction, calcium transients, postsynaptic receptors, and transduction pathways. An important role in this developmental program is played by serotonergic projections that, acting on temporally and spatially regulated postsynaptic receptors, induce and modulate the phases of synaptic formation and maturation. In the adult cerebellar cortex, many developmental mechanisms persist but play different roles, such as supporting synaptic plasticity during learning and formation of cerebellar memory traces. A dysfunction at any stage of this process can lead to disorders of cerebellar origin, which include autism spectrum disorders but are not limited to motor deficits. Recent evidence in animal models links impairment of Purkinje cell function with autism-like symptoms including sociability deficits, stereotyped movements, and interspecific communication by vocalization.
Lippiello, Pellegrino; Scelfo, Bibiana
2017-01-01
The formation of the complex cerebellar cortical circuits follows different phases, with initial synaptogenesis and subsequent processes of refinement guided by a variety of mechanisms. The regularity of the cellular and synaptic organization of the cerebellar cortex allowed detailed studies of the structural plasticity mechanisms underlying the formation of new synapses and retraction of redundant ones. For the attainment of the monoinnervation of the Purkinje cell by a single climbing fiber, several signals are involved, including electrical activity, contact signals, homosynaptic and heterosynaptic interaction, calcium transients, postsynaptic receptors, and transduction pathways. An important role in this developmental program is played by serotonergic projections that, acting on temporally and spatially regulated postsynaptic receptors, induce and modulate the phases of synaptic formation and maturation. In the adult cerebellar cortex, many developmental mechanisms persist but play different roles, such as supporting synaptic plasticity during learning and formation of cerebellar memory traces. A dysfunction at any stage of this process can lead to disorders of cerebellar origin, which include autism spectrum disorders but are not limited to motor deficits. Recent evidence in animal models links impairment of Purkinje cell function with autism-like symptoms including sociability deficits, stereotyped movements, and interspecific communication by vocalization. PMID:28894610
Thutupalli, Shashi; Sun, Mingzhai; Bunyak, Filiz; Palaniappan, Kannappan; Shaevitz, Joshua W.
2015-01-01
The formation of a collectively moving group benefits individuals within a population in a variety of ways. The surface-dwelling bacterium Myxococcus xanthus forms dynamic collective groups both to feed on prey and to aggregate during times of starvation. The latter behaviour, termed fruiting-body formation, involves a complex, coordinated series of density changes that ultimately lead to three-dimensional aggregates comprising hundreds of thousands of cells and spores. How a loose, two-dimensional sheet of motile cells produces a fixed aggregate has remained a mystery as current models of aggregation are either inconsistent with experimental data or ultimately predict unstable structures that do not remain fixed in space. Here, we use high-resolution microscopy and computer vision software to spatio-temporally track the motion of thousands of individuals during the initial stages of fruiting-body formation. We find that cells undergo a phase transition from exploratory flocking, in which unstable cell groups move rapidly and coherently over long distances, to a reversal-mediated localization into one-dimensional growing streams that are inherently stable in space. These observations identify a new phase of active collective behaviour and answer a long-standing open question in Myxococcus development by describing how motile cell groups can remain statistically fixed in a spatial location. PMID:26246416
Furzer, Gordon S; Veldhuis, Linda; Hall, J Christopher
2006-02-08
The currently accepted method of detection for azoxystrobin, a strobilurin fungicide, involves a labor-intensive organic solvent extraction and gas chromatography analysis. Three diagnostic assay formats, i.e., enzyme-linked immunosorbent assay (ELISA), fluorescence polarization (FP), and time-resolved fluorescence (TR-FIA), were developed and compared with regard to detection and quantification of azoxystrobin in grape extract and river, lake, and well water samples. These three assay formats require no initial sample extraction and were not affected by any of the environmental matrices tested, and each had a linear working range of 0-400 pg/mL. The polyclonal antibodies used for each of the immunoassays were specific to azoxystrobin; that is, the highest cross-reactivity to other pesticides observed was 5.7%. The limits of detection of the immunoassays were similar at 3 (ELISA), 46 (FP), and 28 (TR-FIA) pg/mL, as were the respective IC50 values of 306, 252, and 244 pg/mL. Each of the three immunoassays developed was less labor-intensive and approximately 100-fold more sensitive than the gas chromatographic method. While the three formats were comparable in terms of performance, the fluorescence polarization assay was the least labor-intensive and required the least time to perform.
Wang, Ning; Kinoshita, Shigeharu; Nomura, Naoko; Riho, Chihiro; Maeyama, Kaoru; Nagai, Kiyohito; Watabe, Shugo
2012-04-01
Recent researches revealed the regional preference of biomineralization gene transcription in the pearl oyster Pinctada fucata: it transcribed mainly the genes responsible for nacre secretion in mantle pallial, whereas the ones regulating calcite shells expressed in mantle edge. This study took use of this character and constructed the forward and reverse suppression subtractive hybridization (SSH) cDNA libraries. A total of 669 cDNA clones were sequenced and 360 expressed sequence tags (ESTs) greater than 100 bp were generated. Functional annotation associated 95 ESTs with specific functions, and 79 among them were identified from P. fucata at the first time. In the forward SSH cDNA library, it recognized mass amount of nacre protein genes, biomineralization genes dominantly expressed in the mantle pallial, calcium-ion-binding genes, and other biomineralization-related genes important for pearl formation. Real-time PCR showed that all the examined genes were distributed in oyster mantle tissues with a consistence to the SSH design. The detection of their RNA transcripts in pearl sac confirmed that the identified genes were certainly involved in pearl formation. Therefore, the data from this work will initiate a new round of pearl formation gene study and shed new insights into molluscan biomineralization.
Nelson, Emily V; Schmidt, Kristina M; Deflubé, Laure R; Doğanay, Sultan; Banadyga, Logan; Olejnik, Judith; Hume, Adam J; Ryabchikova, Elena; Ebihara, Hideki; Kedersha, Nancy; Ha, Taekjip; Mühlberger, Elke
2016-08-15
A hallmark of Ebola virus (EBOV) infection is the formation of viral inclusions in the cytoplasm of infected cells. These viral inclusions contain the EBOV nucleocapsids and are sites of viral replication and nucleocapsid maturation. Although there is growing evidence that viral inclusions create a protected environment that fosters EBOV replication, little is known about their role in the host response to infection. The cellular stress response is an effective antiviral strategy that leads to stress granule (SG) formation and translational arrest mediated by the phosphorylation of a translation initiation factor, the α subunit of eukaryotic initiation factor 2 (eIF2α). Here, we show that selected SG proteins are sequestered within EBOV inclusions, where they form distinct granules that colocalize with viral RNA. These inclusion-bound (IB) granules are functionally and structurally different from canonical SGs. Formation of IB granules does not indicate translational arrest in the infected cells. We further show that EBOV does not induce formation of canonical SGs or eIF2α phosphorylation at any time postinfection but is unable to fully inhibit SG formation induced by different exogenous stressors, including sodium arsenite, heat, and hippuristanol. Despite the sequestration of SG marker proteins into IB granules, canonical SGs are unable to form within inclusions, which we propose might be mediated by a novel function of VP35, which disrupts SG formation. This function is independent of VP35's RNA binding activity. Further studies aim to reveal the mechanism for SG protein sequestration and precise function within inclusions. Although progress has been made developing antiviral therapeutics and vaccines against the highly pathogenic Ebola virus (EBOV), the cellular mechanisms involved in EBOV infection are still largely unknown. To better understand these intracellular events, we investigated the cellular stress response, an antiviral pathway manipulated by many viruses. We show that EBOV does not induce formation of stress granules (SGs) in infected cells and is therefore unrestricted by their concomitant translational arrest. We identified SG proteins sequestered within viral inclusions, which did not impair protein translation. We further show that EBOV is unable to block SG formation triggered by exogenous stress early in infection. These findings provide insight into potential targets of therapeutic intervention. Additionally, we identified a novel function of the interferon antagonist VP35, which is able to disrupt SG formation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Spatiotemporal chaos involving wave instability.
Berenstein, Igal; Carballido-Landeira, Jorge
2017-01-01
In this paper, we investigate pattern formation in a model of a reaction confined in a microemulsion, in a regime where both Turing and wave instability occur. In one-dimensional systems, the pattern corresponds to spatiotemporal intermittency where the behavior of the systems alternates in both time and space between stationary Turing patterns and traveling waves. In two-dimensional systems, the behavior initially may correspond to Turing patterns, which then turn into wave patterns. The resulting pattern also corresponds to a chaotic state, where the system alternates in both space and time between standing wave patterns and traveling waves, and the local dynamics may show vanishing amplitude of the variables.
Secretin receptor involvement in prion-infected cells and animals.
Kimura, Tomohiro; Nishizawa, Keiko; Oguma, Ayumi; Nishimura, Yuki; Sakasegawa, Yuji; Teruya, Kenta; Nishijima, Ichiko; Doh-ura, Katsumi
2015-07-08
The cellular mechanisms behind prion biosynthesis and metabolism remain unclear. Here we show that secretin signaling via the secretin receptor regulates abnormal prion protein formation in prion-infected cells. Animal studies demonstrate that secretin receptor deficiency slightly, but significantly, prolongs incubation time in female but not male mice. This gender-specificity is consistent with our finding that prion-infected cells are derived from females. Therefore, our results provide initial insights into the reasons why age of disease onset in certain prion diseases is reported to occur slightly earlier in females than males. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
On the nature of photospheric magnetic fields beneath large coronal holes
NASA Technical Reports Server (NTRS)
Frankenthal, S.; Krieger, A. S.
1977-01-01
Proposed mechanisms for the formation of coronal holes are considered; the crucial issue appears to be whether the holes are permeated by rigidly rotating fields. It is suggested that the interaction between such a field and the differentially rotating, diffusive solar envelope will produce a fore aft asymmetry in the distribution of fields which emerge to the photosphere. An initial study is carried out in the context of an illustrative example, and the results indicate that the asymmetry may be observed for a certain range of parameters involving the properties of the solar envelope and the characteristic size of the emerging field pattern.
Real-time in situ nanoclustering during initial stages of artificial aging of Al-Cu alloys
NASA Astrophysics Data System (ADS)
Zatsepin, Nadia A.; Dilanian, Ruben A.; Nikulin, Andrei Y.; Gao, Xiang; Muddle, Barry C.; Matveev, Victor N.; Sakata, Osami
2010-01-01
We report an experimental demonstration of real-time in situ x-ray diffraction investigations of clustering and dynamic strain in early stages of nanoparticle growth in Al-Cu alloys. Simulations involving a simplified model of local strain are well correlated with the x-ray diffraction data, suggesting a redistribution of point defects and the formation of nanoscale clusters in the bulk material. A modal, representative nanoparticle size is determined subsequent to the final stage of artificial aging. Such investigations are imperative for the understanding, and ultimately the control, of nanoparticle nucleation and growth in this technologically important alloy.
Spatiotemporal chaos involving wave instability
NASA Astrophysics Data System (ADS)
Berenstein, Igal; Carballido-Landeira, Jorge
2017-01-01
In this paper, we investigate pattern formation in a model of a reaction confined in a microemulsion, in a regime where both Turing and wave instability occur. In one-dimensional systems, the pattern corresponds to spatiotemporal intermittency where the behavior of the systems alternates in both time and space between stationary Turing patterns and traveling waves. In two-dimensional systems, the behavior initially may correspond to Turing patterns, which then turn into wave patterns. The resulting pattern also corresponds to a chaotic state, where the system alternates in both space and time between standing wave patterns and traveling waves, and the local dynamics may show vanishing amplitude of the variables.
Vascularization strategies for tissue engineers.
Dew, Lindsey; MacNeil, Sheila; Chong, Chuh Khiun
2015-01-01
All tissue-engineered substitutes (with the exception of cornea and cartilage) require a vascular network to provide the nutrient and oxygen supply needed for their survival in vivo. Unfortunately the process of vascular ingrowth into an engineered tissue can take weeks to occur naturally and during this time the tissues become starved of essential nutrients, leading to tissue death. This review initially gives a brief overview of the processes and factors involved in the formation of new vasculature. It then summarizes the different approaches that are being applied or developed to overcome the issue of slow neovascularization in a range of tissue-engineered substitutes. Some potential future strategies are then discussed.
How to develop a proactive formulary system.
Crane, V S; Gonzalez, E R; Hull, B L
1994-10-01
To develop a quality formulary system, a proactive approach is necessary. This approach incorporates a prospective product and concurrent product analyses. A prospective product analysis, in turn, involves a review of current formulary agents, those likely to enter the marketplace shortly, and the formation of an expert review panel. This panel's tasks are to examine therapeutic, economic, and humanistic aspects of therapy and to set initial parameters for appropriate and cost-effective use of accepted products. Keys to a successful formulary system are to continuously monitor drug use and compliance with criteria and to work collaboratively with all institutional professionals in the development, implementation, and monitoring of the system.
Kozhemyakina, Elena; Lassar, Andrew B.; Zelzer, Elazar
2015-01-01
Decades of work have identified the signaling pathways that regulate the differentiation of chondrocytes during bone formation, from their initial induction from mesenchymal progenitor cells to their terminal maturation into hypertrophic chondrocytes. Here, we review how multiple signaling molecules, mechanical signals and morphological cell features are integrated to activate a set of key transcription factors that determine and regulate the genetic program that induces chondrogenesis and chondrocyte differentiation. Moreover, we describe recent findings regarding the roles of several signaling pathways in modulating the proliferation and maturation of chondrocytes in the growth plate, which is the ‘engine’ of bone elongation. PMID:25715393
The next level of distributed learning: the introduction of the personal digital assistant.
McKenney, Robert R
2004-01-01
Handheld technology has grown in both popularity and capabilities. Studies continue to be done on their impact in numerous fields. At The Ohio State University Medical Center, a handheld program was started in 2001, initially involving third- and fourth-year medical students and residents. The presence of these digital devices presented the opportunity to examine their use in taking traditional materials and delivering them in a personal digital assistant-friendly format. The objective was to offer these materials within an "anytime anywhere" set-up, thereby positively affecting the learning experience while also laying the foundation for other such uses.
Erosion of phosphor bronze under cavitation attack in a mineral oil
NASA Technical Reports Server (NTRS)
Rao, B. C. S.; Buckley, D. H.
1986-01-01
Experimental investigations on erosion of a copper alloy, phosphor bronze, under cavitation attack in a viscous mineral oil are presented. The details of pit formation and erosion were studied using scanning electron microscopy. The mean depth of penetration, the variations in surface roughness, and the changes in erosion pit size were studied. Cavitation pits formed initially over the grain boundaries while the surface grains were plastically deformed. Erosion of surface grains occurred largely by ductile fracture involving microcracking and removal in layers. The ratio h/a of the depth h to half width a of cavitation pits increased with test duration from 0.047 to 0.55.
NASA Technical Reports Server (NTRS)
1999-01-01
Through an initial SBIR contract with Langley Research Center, Stress Photonics, Inc. was able to successfully market their thermal strain measurement device, known as the Delta Therm 1000. The company was able to further its research on structural integrity analysis by signing another contract with Langley, this time a STTR contract, to develop its polariscope stress technology. Their commercial polariscope, the GFP 1000, involves a single rotating optical element and a digital camera for full-field image acquisition. The digital camera allows automated data to be acquired quickly and efficiently. Software analysis presents the data in an easy to interpret image format, depicting the magnitude of the shear strains and the directions of the principal strains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, Yuji; Kokubo, Eiichiro, E-mail: ymatsumoto@cfca.nao.ac.jp
Recent observations have revealed the eccentricity and inclination distributions of close-in super-Earths. These distributions have the potential to constrain their formation processes. In the in situ formation scenario, the eccentricities and inclinations of planets are determined by gravitational scattering and collisions between protoplanets on the giant impact stage. We investigate the effect of the initial eccentricities and inclinations of protoplanets on the formation of close-in super-Earths. We perform N -body simulations of protoplanets in gas-free disks, changing the initial eccentricities and inclinations systematically. We find that while the eccentricities of protoplanets are well relaxed through their evolution, the inclinations aremore » not. When the initial inclinations are small, they are not generally pumped up since scattering is less effective and collisions occur immediately after orbital crossing. On the other hand, when the initial inclinations are large, they tend to be kept large since collisional damping is less effective. Not only the resultant inclinations of planets, but also their number, eccentricities, angular momentum deficit, and orbital separations are affected by the initial inclinations of protoplanets.« less
Mitprasat, Mashamon; Roytrakul, Sittiruk; Jiemsup, Surasak; Boonseng, Opas; Yokthongwattana, Kittisak
2011-06-01
Tuberization in cassava (Manihot esculenta Crantz) occurs simultaneously with plant development, suggesting competition of photoassimilate partitioning between the shoot and the root organs. In potato, which is the most widely studied tuber crop, there is ample evidence suggesting that metabolism and regulatory processes in leaf may have an impact on tuber formation. To search for leaf proteins putatively involved in regulating tuber generation and/or development in cassava, comparative proteomic approaches have been applied to monitor differentially expressed leaf proteins during root transition from fibrous to tuberous. Stringent cross comparison and statistical analysis between two groups with different plant ages using Student's t test with 95% significance level revealed a number of protein spots whose abundance were significantly altered (P < 0.05) during week 4 to week 8 of growth. Of these, 39 spots were successfully identified by ion trap LC-MS/MS. The proteins span various functional categories from antioxidant and defense, carbohydrate metabolism, cyanogenesis, energy metabolism, miscellaneous and unknown proteins. Results suggested possible metabolic switches in the leaf that may trigger/regulate storage root initiation and growth. This study provides a basis for further functional characterization of differentially expressed leaf proteins, which can help understand how biochemical processes in cassava leaves may be involved in storage root development.
Destruction of 4-phenolsulfonic acid in water by anodic contact glow discharge electrolysis.
Yang, Haiming; An, Baigang; Wang, Shaoyan; Li, Lixiang; Jin, Wenjie; Li, Lihua
2013-06-01
Destruction of 4-phenolsulfonic acid (4-PSA) in water was carried out using anodic contact glow discharge electrolysis. Accompanying the decay of 4-PSA, the amount of total organic carbon (TOC) in water correspondingly decreased, while the sulfonate group of 4-PSA was released as sulfate ion. Oxalate and formate were obtained as minor by-products. Additionally, phenol, 1,4-hydroquinone, hydroxyquinol and 1,4-benzoquinone were detected as primary intermediates in the initial stages of decomposition of 4-PSA. A reaction pathway involving successive attacks of hydroxyl and hydrogen radicals was assumed on the basis of the observed products and kinetics. It was revealed that the decay of both 4-PSA and TOC obeyed a first-order rate law. The effects of different Fe ions and initial concentrations of 4-PSA on the degradation rate were investigated. It was found that the presence of Fe ions could increase the degradation rate of 4-PSA, while initial concentrations lower than 80 mmol/L had no significant effect on kinetic behaviour. The disappearance rate of 4-PSA was significantly affected by pH.
Identification and characterization of an SPO11 homolog in the mouse.
Metzler-Guillemain, C; de Massy, B
2000-01-01
The SPO11/TOPVIA family includes proteins from archaebacteria and eukaryotes. The protein member from the archaebacterium Sulfulobus shibatae is the catalytic subunit of TopoVI DNA topoisomerase. In Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans and Drosophila melanogaster, SPO11 is required for meiotic recombination, suggesting a conserved mechanism for the initiation step of this process. Indeed, S. cerevisiae SPO11 has been shown to be directly involved in the formation of meiotic DNA double-strand breaks that initiate meiotic recombination. Here, we report the identification of a Mus musculus Spo11 cDNA, which encodes a protein closely related to all members of the SPO11/TOPVIA family. cDNAs resulting from alternative splicing were detected, suggesting that there are potential variants of the mouse SPO11 protein. By RNA-blotting analysis, expression of the mouse Spo11 gene was detected only in the testis, in agreement with its predicted function in the initiation of meiotic recombination. We mapped the mouse Spo11 gene to chromosome 2, band H2-H4.
Community initiative: elementary and middle school students--a creative approach.
Sell, Sandra; Palmer, Laura
2004-04-01
Initiatives to increase the visibility and public awareness of nurse anesthetists have been an ongoing effort of the profession for years. In 2001, the Nurse Anesthesia Program at the University of Pittsburgh designed and implemented a large-scale initiative to target school-aged children. The purpose of the program was to educate the school-aged child about nurse anesthesia and the operating room. It was presented at elementary and middle schools and consisted of a classroom presentation, a mock operating room simulation, and hands-on activities. The program was viewed as a success by all those involved. Teachers were impressed with the school-aged students' interest and level of focus during the events. Many teachers reported that prior to the program they did not know that the nurse anesthesia profession existed. More than 1,000 children and teachers participated in the programs in a 2.5-year period. The ability to have an impact on the school-aged children during their formative years, in addition to educating the teachers about the nurse anesthesia profession, proved to be a dual reward in presenting the program.
Cytokinin signalling inhibitory fields provide robustness to phyllotaxis
NASA Astrophysics Data System (ADS)
Besnard, Fabrice; Refahi, Yassin; Morin, Valérie; Marteaux, Benjamin; Brunoud, Géraldine; Chambrier, Pierre; Rozier, Frédérique; Mirabet, Vincent; Legrand, Jonathan; Lainé, Stéphanie; Thévenon, Emmanuel; Farcot, Etienne; Cellier, Coralie; Das, Pradeep; Bishopp, Anthony; Dumas, Renaud; Parcy, François; Helariutta, Ykä; Boudaoud, Arezki; Godin, Christophe; Traas, Jan; Guédon, Yann; Vernoux, Teva
2014-01-01
How biological systems generate reproducible patterns with high precision is a central question in science. The shoot apical meristem (SAM), a specialized tissue producing plant aerial organs, is a developmental system of choice to address this question. Organs are periodically initiated at the SAM at specific spatial positions and this spatiotemporal pattern defines phyllotaxis. Accumulation of the plant hormone auxin triggers organ initiation, whereas auxin depletion around organs generates inhibitory fields that are thought to be sufficient to maintain these patterns and their dynamics. Here we show that another type of hormone-based inhibitory fields, generated directly downstream of auxin by intercellular movement of the cytokinin signalling inhibitor ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6), is involved in regulating phyllotactic patterns. We demonstrate that AHP6-based fields establish patterns of cytokinin signalling in the meristem that contribute to the robustness of phyllotaxis by imposing a temporal sequence on organ initiation. Our findings indicate that not one but two distinct hormone-based fields may be required for achieving temporal precision during formation of reiterative structures at the SAM, thus indicating an original mechanism for providing robustness to a dynamic developmental system.
Developmental roles of the BMP1/TLD metalloproteinases.
Ge, Gaoxiang; Greenspan, Daniel S
2006-03-01
The astacin family (M12A) of the metzincin subclan MA(M) of metalloproteinases has been detected in developing and mature individuals of species that range from hydra to humans. Functions of this family of metalloproteinase vary from digestive degradation of polypeptides, to biosynthetic processing of extracellular proteins, to activation of growth factors. This review will focus on a small subgroup of the astacin family; the bone morphogenetic protein 1 (BMP1)/Tolloid (TLD)-like metalloproteinases. In vertebrates, the BMP1/TLD-like metalloproteinases play key roles in regulating formation of the extracellular matrix (ECM) via biosynthetic processing of various precursor proteins into mature functional enzymes, structural proteins, and proteins involved in initiating mineralization of the ECM of hard tissues. Roles in ECM formation include: processing of the C-propeptides of procollagens types I-III, to yield the major fibrous components of vertebrate ECM; proteolytic activation of the enzyme lysyl oxidase, necessary to formation of covalent cross-links in collagen and elastic fibers; processing of NH2-terminal globular domains and C-propeptides of types V and XI procollagen chains to yield monomers that are incorporated into and control the diameters of collagen type I and II fibrils, respectively; processing of precursors for laminin 5 and collagen type VII, both of which are involved in securing epidermis to underlying dermis; and maturation of small leucine-rich proteoglycans. The BMP1/TLD-related metalloproteinases are also capable of activating the vertebrate transforming growth factor-beta (TGF-beta)-like "chalones" growth differentiation factor 8 (GDF8, also known as myostatin), and GDF11 (also known as BMP11), involved in negative feedback inhibition of muscle and neural tissue growth, respectively; by freeing them from noncovalent latent complexes with their cleaved prodomains. BMP1/TLD-like proteinases also liberate the vertebrate TGF-beta-like morphogens BMP2 and 4 and their invertebrate ortholog decapentaplegic, from latent complexes with the vertebrate extracellular antagonist chordin and its invertebrate ortholog short gastrulation (SOG), respectively. The result is formation of the BMP signaling gradients that form the dorsal-ventral axis in embryogenesis. Thus, BMP1/TLD-like proteinases appear to be key to regulating and orchestrating formation of the ECM and signaling by various TGF-beta-like proteins in morphogenetic and homeostatic events. Copyright 2006 Wiley-Liss, Inc.
Anwar, Shadab; Dikhit, Manas Ranjan; Singh, Krishn Pratap; Kar, Rajiv Kumar; Zaidi, Amir; Sahoo, Ganesh Chandra; Roy, Awadh Kishore; Nozaki, Tomoyoshi; Das, Pradeep; Ali, Vahab
2014-01-01
Iron-Sulfur (Fe-S) proteins are involved in many biological functions such as electron transport, photosynthesis, regulation of gene expression and enzymatic activities. Biosynthesis and transfer of Fe-S clusters depend on Fe-S clusters assembly processes such as ISC, SUF, NIF, and CIA systems. Unlike other eukaryotes which possess ISC and CIA systems, amitochondriate Entamoeba histolytica has retained NIF & CIA systems for Fe-S cluster assembly in the cytosol. In the present study, we have elucidated interaction between two proteins of E. histolytica CIA system, Cytosolic Fe-S cluster deficient 1 (Cfd1) protein and Nucleotide binding protein 35 (Nbp35). In-silico analysis showed that structural regions ranging from amino acid residues (P33-K35, G131-V135 and I147-E151) of Nbp35 and (G5-V6, M34-D39 and G46-A52) of Cfd1 are involved in the formation of protein-protein complex. Furthermore, Molecular dynamic (MD) simulations study suggested that hydrophobic forces surpass over hydrophilic forces between Nbp35 and Cfd1 and Van-der-Waal interaction plays crucial role in the formation of stable complex. Both proteins were separately cloned, expressed as recombinant fusion proteins in E. coli and purified to homogeneity by affinity column chromatography. Physical interaction between Nbp35 and Cfd1 proteins was confirmed in vitro by co-purification of recombinant Nbp35 with thrombin digested Cfd1 and in vivo by pull down assay and immunoprecipitation. The insilico, in vitro as well as in vivo results prove a stable interaction between these two proteins, supporting the possibility of its involvement in Fe-S cluster transfer to target apo-proteins through CIA machinery in E. histolytica. Our study indicates that initial synthesis of a Fe-S precursor in mitochondria is not necessary for the formation of Cfd1-Nbp35 complex. Thus, Cfd1 and Nbp35 with the help of cytosolic NifS and NifU proteins can participate in the maturation of non-mitosomal Fe-S proteins without any apparent assistance of mitosomes. PMID:25271645
Anwar, Shadab; Dikhit, Manas Ranjan; Singh, Krishn Pratap; Kar, Rajiv Kumar; Zaidi, Amir; Sahoo, Ganesh Chandra; Roy, Awadh Kishore; Nozaki, Tomoyoshi; Das, Pradeep; Ali, Vahab
2014-01-01
Iron-Sulfur (Fe-S) proteins are involved in many biological functions such as electron transport, photosynthesis, regulation of gene expression and enzymatic activities. Biosynthesis and transfer of Fe-S clusters depend on Fe-S clusters assembly processes such as ISC, SUF, NIF, and CIA systems. Unlike other eukaryotes which possess ISC and CIA systems, amitochondriate Entamoeba histolytica has retained NIF & CIA systems for Fe-S cluster assembly in the cytosol. In the present study, we have elucidated interaction between two proteins of E. histolytica CIA system, Cytosolic Fe-S cluster deficient 1 (Cfd1) protein and Nucleotide binding protein 35 (Nbp35). In-silico analysis showed that structural regions ranging from amino acid residues (P33-K35, G131-V135 and I147-E151) of Nbp35 and (G5-V6, M34-D39 and G46-A52) of Cfd1 are involved in the formation of protein-protein complex. Furthermore, Molecular dynamic (MD) simulations study suggested that hydrophobic forces surpass over hydrophilic forces between Nbp35 and Cfd1 and Van-der-Waal interaction plays crucial role in the formation of stable complex. Both proteins were separately cloned, expressed as recombinant fusion proteins in E. coli and purified to homogeneity by affinity column chromatography. Physical interaction between Nbp35 and Cfd1 proteins was confirmed in vitro by co-purification of recombinant Nbp35 with thrombin digested Cfd1 and in vivo by pull down assay and immunoprecipitation. The insilico, in vitro as well as in vivo results prove a stable interaction between these two proteins, supporting the possibility of its involvement in Fe-S cluster transfer to target apo-proteins through CIA machinery in E. histolytica. Our study indicates that initial synthesis of a Fe-S precursor in mitochondria is not necessary for the formation of Cfd1-Nbp35 complex. Thus, Cfd1 and Nbp35 with the help of cytosolic NifS and NifU proteins can participate in the maturation of non-mitosomal Fe-S proteins without any apparent assistance of mitosomes.
Class I KNOX genes are associated with organogenesis during bulbil formation in Agave tequilana.
Abraham-Juárez, María Jazmín; Martínez-Hernández, Aída; Leyva-González, Marco Antonio; Herrera-Estrella, Luis; Simpson, June
2010-09-01
Bulbil formation in Agave tequilana was analysed with the objective of understanding this phenomenon at the molecular and cellular levels. Bulbils formed 14-45 d after induction and were associated with rearrangements in tissue structure and accelerated cell multiplication. Changes at the cellular level during bulbil development were documented by histological analysis. In addition, several cDNA libraries produced from different stages of bulbil development were generated and partially sequenced. Sequence analysis led to the identification of candidate genes potentially involved in the initiation and development of bulbils in Agave, including two putative class I KNOX genes. Real-time reverse transcription-PCR and in situ hybridization revealed that expression of the putative Agave KNOXI genes occurs at bulbil initiation and specifically in tissue where meristems will develop. Functional analysis of Agave KNOXI genes in Arabidopsis thaliana showed the characteristic lobed phenotype of KNOXI ectopic expression in leaves, although a slightly different phenotype was observed for each of the two Agave genes. An Arabidopsis KNOXI (knat1) mutant line (CS30) was successfully complemented with one of the Agave KNOX genes and partially complemented by the other. Analysis of the expression of the endogenous Arabidopsis genes KNAT1, KNAT6, and AS1 in the transformed lines ectopically expressing or complemented by the Agave KNOX genes again showed different regulatory patterns for each Agave gene. These results show that Agave KNOX genes are functionally similar to class I KNOX genes and suggest that spatial and temporal control of their expression is essential during bulbil formation in A. tequilana.
Characterization of Unconventional Reservoirs: CO2 Induced Petrophysics
NASA Astrophysics Data System (ADS)
Verba, C.; Goral, J.; Washburn, A.; Crandall, D.; Moore, J.
2017-12-01
As concerns about human-driven CO2 emissions grow, it is critical to develop economically and environmentally effective strategies to mitigate impacts associated with fossil energy. Geologic carbon storage (GCS) is a potentially promising technique which involves the injection of captured CO2 into subsurface formations. Unconventional shale formations are attractive targets for GCS while concurrently improving gas recovery. However, shales are inherently heterogeneous, and minor differences can impact the ability of the shale to effectively adsorb and store CO2. Understanding GCS capacity from such endemic heterogeneities is further complicated by the complex geochemical processes which can dynamically alter shale petrophysics. We investigated the size distribution, connectivity, and type (intraparticle, interparticle, and organic) of pores in shale; the mineralogy of cores from unconventional shale (e.g. Bakken); and the changes to these properties under simulated GCS conditions. Electron microscopy and dual beam focused ion beam scanning electron microscopy were used to reconstruct 2D/3D digital matrix and pore structures. Comparison of pre and post-reacted samples gives insights into CO2-shale interactions - such as the mechanism of CO2 sorption in shales- intended for enhanced oil recovery and GCS initiatives. These comparisons also show how geochemical processes proceed differently across shales based on their initial diagenesis. Results show that most shale pore sizes fall within meso-macro pore classification (> 2 nm), but have variable porosity and organic content. The formation of secondary minerals (calcite, gypsum, and halite) may play a role in the infilling of fractures and pore spaces in the shale, which may reduce permeability and inhibit the flow of fluids.
Multi-Objective Online Initialization of Spacecraft Formations
NASA Technical Reports Server (NTRS)
Jeffrey, Matthew; Breger, Louis; How, Jonathan P.
2007-01-01
This paper extends a previously developed method for finding spacecraft initial conditions (ICs) that minimize the drift resulting from J2 disturbances while also minimizing the fuel required to attain those ICs. It generalizes the single spacecraft optimization to a formation-wide optimization valid for an arbitrary number of vehicles. Additionally, the desired locations of the spacecraft, separate from the starting location, can be specified, either with respect to a reference orbit, or relative to the other spacecraft in the formation. The three objectives (minimize drift, minimize fuel, and maintain a geometric template) are expressed as competing costs in a linear optimization, and are traded against one another through the use of scalar weights. By carefully selecting these weights and re-initializing the formation at regular intervals, a closed-loop, formation-wide control system is created. This control system can be used to reconfigure the formations on the fly, and creates fuel-efficient plans by placing the spacecraft in semi-invariant orbits. The overall approach is demonstrated through nonlinear simulations for two formations a GEO orbit, and an elliptical orbit.
Yan, Li; Ye, Jie; Zhang, Panyue; Xu, Dong; Wu, Yan; Liu, Jianbo; Zhang, Haibo; Fang, Wei; Wang, Bei; Zeng, Guangming
2018-07-01
High sulfur content in excess sludge impacts the production of biomethane during anaerobic digestion, meanwhile leads to hydrogen sulfide (H 2 S) formation in biogas. Effect of initial sludge pH on H 2 S formation during batch mesophilic anaerobic digestion of slaughterhouse wastewater sludge was studied in this paper. The results demonstrated that when the initial sludge pH increased from 6.5 to 8.0, the biogas production increased by 10.1%, the methane production increased by 64.1%, while the H 2 S content in biogas decreased by 44.7%. The higher initial sludge pH inhibited the competition of sulfate-reducing bacteria with methane-producing bacteria, and thus benefitted the growth of methanogens. Positive correlation was found between the relative abundance of Desulfomicrobium and H 2 S production, as well as the relative abundance of Methanosarcina and methane production. More sulfates and organic sulfur were transferred to solid and liquid rather than H 2 S formation at a high initial pH. Copyright © 2018 Elsevier Ltd. All rights reserved.
van de Kruijs, Bastiaan H P; Dressen, Mark H C L; Meuldijk, Jan; Vekemans, Jef A J M; Hulshof, Lumbertus A
2010-04-07
A detailed study regarding the influence of microwave irradiation on the formation of a series of Grignard reagents in terms of rates and selectivities has revealed that these heterogeneous reactions may display a beneficial microwave effect. The interaction between microwaves and magnesium turnings generates violent electrostatic discharges. These discharges on magnesium lead to melting of the magnesium surface, thus generating highly active magnesium particles. As compared to conventional operation the microwave-induced discharges on the magnesium surface lead to considerably shorter initiation times for the insertion of magnesium in selected substrates (i.e. halothiophenes, halopyridines, octyl halides, and halobenzenes). Thermographic imaging and surface characterization by scanning electron microscopy showed that neither selective heating nor a "specific" microwave effect was causing the reduction in initiation times. This novel and straightforward initiation method eliminates the use of toxic and environmentally adverse initiators. Thus, this initiation method limits the formation of by-products. We clearly demonstrated that microwave irradiation enables fast Grignard reagent formation. Therefore, microwave technology is promising for process intensification of Grignard based coupling reactions.
Luo, Jun; Cui, Xiuji; Gao, Lu; Hu, Jianming
2017-06-21
The hepatitis B virus (HBV) covalently closed circular (CCC) DNA functions as the only viral template capable of coding for all the viral RNA species and is thus essential to initiate and sustain viral replication. CCC DNA is converted, in a multi-step and ill-understood process, from a relaxed circular (RC) DNA, in which neither of the two DNA strands is covalently closed. To detect putative intermediates during RC to CCC DNA conversion, two 3' exonucleases Exo I and Exo III, in combination were used to degrade all DNA strands with a free 3' end, which would nevertheless preserve closed circular DNA, either single-stranded (SS) or double-stranded (DS). Indeed, a RC DNA species with a covalently closed minus strand but an open plus strand (closed minus-strand RC DNA or cM-RC DNA) was detected by this approach. Further analyses indicated that at least some of the plus strands in such a putative intermediate likely still retained the RNA primer that is attached to the 5' end of the plus strand in RC DNA, suggesting that minus strand closing can occur before plus strand processing. Furthermore, the same nuclease treatment proved to be useful for sensitive and specific detection of CCC DNA by removing all DNA species other than closed circular DNA. Application of these and similar approaches may allow the identification of additional intermediates during CCC DNA formation and facilitate specific and sensitive detection of CCC DNA, which should help elucidate the pathways of CCC DNA formation and factors involved. IMPORTANCE The hepatitis B virus (HBV) covalently closed circular (CCC) DNA is the molecular basis of viral persistence, by serving as the viral transcriptional template. CCC DNA is converted, in a multi-step and ill-understood process, from a relaxed circular (RC) DNA. Little is currently understood about the pathways or factors involved in CCC DNA formation. We have now detected a likely intermediate during the conversion of RC to CCC DNA, thus providing important clues to the pathways of CCC DNA formation. Furthermore, the same experimental approach that led to the detection of the intermediate could also facilitate specific and sensitive detection of CCC DNA, which has remained challenging. This and similar approaches will help identify additional intermediates during CCC DNA formation and elucidate the pathways and factors involved. Copyright © 2017 American Society for Microbiology.
Luo, Jun; Cui, Xiuji; Gao, Lu
2017-01-01
ABSTRACT Hepatitis B virus (HBV) covalently closed circular (CCC) DNA functions as the only viral template capable of coding for all the viral RNA species and is thus essential to initiate and sustain viral replication. CCC DNA is converted, in a multistep and ill-understood process, from a relaxed circular (RC) DNA, in which neither of the two DNA strands is covalently closed. To detect putative intermediates during RC DNA to CCC DNA conversion, two 3′ exonucleases, exonuclease I (Exo I) and Exo III, were used in combination to degrade all DNA strands with a free 3′ end, which would nevertheless preserve closed circular DNA in either single-stranded (SS) or double-stranded (DS) form. Indeed, an RC DNA species with a covalently closed minus strand but an open plus strand (closed minus-strand RC DNA [cM-RC DNA]) was detected by this approach. Further analyses indicated that at least some of the plus strands in such a putative intermediate likely still retained the RNA primer that is attached to the 5′ end of the plus strand in RC DNA, suggesting that minus-strand closing can occur before plus-strand processing. Furthermore, the same nuclease treatment proved to be useful for sensitive and specific detection of CCC DNA by removing all DNA species other than closed circular DNA. Application of these and similar approaches may allow the identification of additional intermediates during CCC DNA formation and facilitate specific and sensitive detection of CCC DNA, which should help elucidate the pathways of CCC DNA formation and the factors involved. IMPORTANCE The hepatitis B virus (HBV) covalently closed circular (CCC) DNA, by serving as the viral transcriptional template, is the molecular basis of viral persistence. CCC DNA is converted, in a multistep and ill-understood process, from relaxed circular (RC) DNA. Little is currently understood about the pathways or factors involved in CCC DNA formation. We have now detected a likely intermediate during the conversion of RC DNA to CCC DNA, thus providing important clues to the pathways of CCC DNA formation. Furthermore, the same experimental approach that led to the detection of the intermediate could also facilitate specific and sensitive detection of CCC DNA, which has remained challenging. This and similar approaches will help identify additional intermediates during CCC DNA formation and elucidate the pathways and factors involved. PMID:28637752
Barrett, Catherine E; Modi, Meera E; Zhang, Billy C; Walum, Hasse; Inoue, Kiyoshi; Young, Larry J
2014-10-01
The melanocortin receptor (MCR) system has been studied extensively for its role in feeding and sexual behavior, but effects on social behavior have received little attention. α-MSH interacts with neural systems involved in sociality, including oxytocin, dopamine, and opioid systems. Acute melanotan-II (MTII), an MC3/4R agonist, potentiates brain oxytocin (OT) release and facilitates OT-dependent partner preference formation in socially monogamous prairie voles. Here we examined the long-term impact of early-life MCR stimulation on hypothalamic neuronal activity and social development in prairie voles. Male and female voles were given daily subcutaneous injections of 10 mg/kg MTII or saline between postnatal days (PND) 1-7. Neonatally-treated males displayed a reduction in initiated play fighting bouts as juveniles compared to control males. Neonatal exposure to MTII facilitated partner preference formation in adult females, but not males, after a brief cohabitation with an opposite-sex partner. Acute MTII injection elicited a significant burst of the immediate early gene EGR-1 immunoreactivity in hypothalamic OT, vasopressin, and corticotrophin releasing factor neurons, when tested in PND 6-7 animals. Daily neonatal treatment with 1 mg/kg of a more selective, brain penetrant MC4R agonist, PF44687, promoted adult partner preferences in both females and males compared with vehicle controls. Thus, developmental exposure to MCR agonists lead to a persistent change in social behavior, suggestive of structural or functional changes in the neural circuits involved in the formation of social relationships. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ueno, Takafumi; Abe, Satoshi; Koshiyama, Tomomi; Ohki, Takahiro; Hikage, Tatsuo; Watanabe, Yoshihito
2010-03-01
Metal-ion accumulation on protein surfaces is a crucial step in the initiation of small-metal clusters and the formation of inorganic materials in nature. This event is expected to control the nucleation, growth, and position of the materials. There remain many unknowns, as to how proteins affect the initial process at the atomic level, although multistep assembly processes of the materials formation by both native and model systems have been clarified at the macroscopic level. Herein the cooperative effects of amino acids and hydrogen bonds promoting metal accumulation reactions are clarified by using porous hen egg white lysozyme (HEWL) crystals containing Rh(III) ions, as model protein surfaces for the reactions. The experimental results reveal noteworthy implications for initiation of metal accumulation, which involve highly cooperative dynamics of amino acids and hydrogen bonds: i) Disruption of hydrogen bonds can induce conformational changes of amino-acid residues to capture Rh(III) ions. ii) Water molecules pre-organized by hydrogen bonds can stabilize Rh(III) coordination as aqua ligands. iii) Water molecules participating in hydrogen bonds with amino-acid residues can be replaced by Rh(III) ions to form polynuclear structures with the residues. iv) Rh(III) aqua complexes are retained on amino-acid residues through stabilizing hydrogen bonds even at low pH (approximately 2). These metal-protein interactions including hydrogen bonds may promote native metal accumulation reactions and also may be useful in the preparation of new inorganic materials that incorporate proteins.
ERIC Educational Resources Information Center
Hamodi, Carolina; López-Pastor, Víctor Manuel; López-Pastor, Ana Teresa
2017-01-01
The aim of this article is to analyse whether having experience of formative assessment during their initial teacher education courses (ITE) influences graduates' subsequent practice as teachers. That is, if the assessment methods that university students are subject to during their learning process are then actually employed by them during their…
Takashina, Hirotsugu; Watanabe, Akira; Tsuneoka, Hiroshi
2017-01-01
To evaluate full-thickness macular hole (MH) formation in the postoperative period after initial vitrectomy for rhegmatogenous retinal detachment (rRD). We retrospectively reviewed the medical records of 4 consecutive eyes that required additional vitrectomy for full-thickness MH between April 2013 and March 2016 after undergoing an initial vitrectomy for rRD. Epiretinal membrane (ERM) was identified by preoperative optical coherence tomography or intraoperative dye staining in each case. Photocoagulation of retinal breaks prior to initial vitrectomy was performed in Cases 1, 2, and 3 (4-16 days), with yttrium-aluminum-garnet capsulotomy after cataract extraction also performed prior to the retinal break formation in Case 3. At the initial vitrectomy, there was a superior retinal break which crossed the equator in Case 2, and an intentional hole was created in Cases 1 and 4. The mean interval from the initial vitrectomy until MH formation was 27.5 ± 15.8 months. As with Case 2, the intervals in Cases 1 and 4, in which an intentional hole was created, were clearly shorter than in those in Case 3. Finally, MH closure was achieved after an additional vitrectomy (removal of the internal limiting membrane with ERM and gas tamponade) and best-corrected visual acuity improved in each case. ERM was identified in the cases examined in our study. The presence of an intentional hole might shorten the interval of MH formation after vitrectomy for rRD.
Epigenetic Transgenerational Effects of Endocrine Disruptors on Male Reproduction
Guerrero-Bosagna, Carlos M.; Skinner, Michael K.
2013-01-01
Endocrine-disrupting chemicals generally function as steroid receptor signaling antagonists or agonists that influence development to promote adult-onset disease. Exposure to the endocrine disruptors during the initiation of male reproductive tract development interferes with the normal hormonal signaling and formation of male reproductive organs. In particular, exposure to the endocrine disruptor vinclozolin promotes transgenerational transmission of adult-onset disease states such as male infertility, increased frequencies of tumors, prostate disease, kidney diseases, and immune abnormalities that develop as males age. An epigenetic change in the germ line would be involved in the transgenerational transmission of these induced phenotypes. Nevertheless, other studies have also reported transgenerational transmission of induced epigenetic changes, without altering the germ line. Here we propose a nomenclature to help clarify both cases of transgenerational epigenetic transmission. An intrinsic epigenetic transgenerational process would require a germ-line involvement, a permanent alteration in the germ cell epigenome, and only one exposure to the environmental factor. An extrinsic epigenetic transgenerational process would involve an epigenetic alteration in a somatic tissue and require exposure at each generation to maintain the transgenerational phenotype. PMID:19711250
Observability and Estimation of Distributed Space Systems via Local Information-Exchange Networks
NASA Technical Reports Server (NTRS)
Fathpour, Nanaz; Hadaegh, Fred Y.; Mesbahi, Mehran; Rahmani, Amirreza
2011-01-01
Spacecraft formation flying involves the coordination of states among multiple spacecraft through relative sensing, inter-spacecraft communication, and control. Most existing formation-flying estimation algorithms can only be supported via highly centralized, all-to-all, static relative sensing. New algorithms are proposed that are scalable, modular, and robust to variations in the topology and link characteristics of the formation exchange network. These distributed algorithms rely on a local information exchange network, relaxing the assumptions on existing algorithms. Distributed space systems rely on a signal transmission network among multiple spacecraft for their operation. Control and coordination among multiple spacecraft in a formation is facilitated via a network of relative sensing and interspacecraft communications. Guidance, navigation, and control rely on the sensing network. This network becomes more complex the more spacecraft are added, or as mission requirements become more complex. The observability of a formation state was observed by a set of local observations from a particular node in the formation. Formation observability can be parameterized in terms of the matrices appearing in the formation dynamics and observation matrices. An agreement protocol was used as a mechanism for observing formation states from local measurements. An agreement protocol is essentially an unforced dynamic system whose trajectory is governed by the interconnection geometry and initial condition of each node, with a goal of reaching a common value of interest. The observability of the interconnected system depends on the geometry of the network, as well as the position of the observer relative to the topology. For the first time, critical GN&C (guidance, navigation, and control estimation) subsystems are synthesized by bringing the contribution of the spacecraft information-exchange network to the forefront of algorithmic analysis and design. The result is a formation estimation algorithm that is modular and robust to variations in the topology and link properties of the underlying formation network.
GVE-Based Dynamics and Control for Formation Flying Spacecraft
NASA Technical Reports Server (NTRS)
Breger, Louis; How, Jonathan P.
2004-01-01
Formation flying is an enabling technology for many future space missions. This paper presents extensions to the equations of relative motion expressed in Keplerian orbital elements, including new initialization techniques for general formation configurations. A new linear time-varying form of the equations of relative motion is developed from Gauss Variational Equations and used in a model predictive controller. The linearizing assumptions for these equations are shown to be consistent with typical formation flying scenarios. Several linear, convex initialization techniques are presented, as well as a general, decentralized method for coordinating a tetrahedral formation using differential orbital elements. Control methods are validated using a commercial numerical propagator.
Choi, Byung-Wan; Baek, Dong-Hoon; Sheffler, Lindsey C; Chang, Han
2015-07-17
OBJECT The progression of cervical ossification of the posterior longitudinal ligament (OPLL) can lead to increase in the size of the OPLL mass and aggravation of neurological symptoms. In the present study, the authors aimed to analyze the progression of cervical OPLL by using CT imaging, elucidate the morphology of OPLL masses, and evaluate the factors associated with the progression of cervical OPLL. METHODS Sixty patients with cervical OPLL were included. All underwent an initial CT examination and had at least 24 months' follow-up with CT. The mean duration of follow-up was 29.6 months. Fourteen patients (Group A) had CT evidence of OPLL progression, and 46 (Group B) did not show evidence of progression on CT. The 2 groups were compared with respect to the following variables: sex, age, number of involved segments, type of OPLL, and treatment methods. The CT findings, such as the connection of an OPLL mass with the vertebral body and formation of trabeculation in the mass, were evaluated. RESULTS Sex and treatment modality were not associated with OPLL progression. The mean age of the patients in Group A was significantly lower than that in Group B (p = 0.03). The mean number of involved segments was 5.3 in Group A and 3.6 in Group B (p = 0.002). Group A had a higher proportion of cases with the mixed type of OPLL, whereas Group B had a higher proportion of cases with the segmental type (p = 0.02). A connection between the vertebral body and OPLL mass and trabeculation formation were more common in Group B (p < 0.01). CONCLUSIONS Progression of cervical OPLL is associated with younger age, involvement of multiple levels, and mixed-type morphology. OPLL masses that are contiguous with the vertebral body and have trabecular formation are useful findings for identifying masses that are less likely to progress.
Involvement of immune cells in the pathogenesis of endometriosis.
Izumi, Gentaro; Koga, Kaori; Takamura, Masashi; Makabe, Tomoko; Satake, Erina; Takeuchi, Arisa; Taguchi, Ayumi; Urata, Yoko; Fujii, Tomoyuki; Osuga, Yutaka
2018-02-01
Endometriosis is characterized by the implantation and growth of endometriotic tissues outside the uterus. It is widely accepted the theory that endometriosis is caused by the implantation of endometrial tissue from retrograde menstruation; however, retrograde menstruation occurs in almost all women and other factors are required for the establishment of endometriosis, such as cell survival, cell invasion, angiogenesis, and cell growth. Immune factors in the local environment may, therefore, contribute to the formation and progression of endometriosis. Current evidence supports the involvement of immune cells in the pathogenesis of endometriosis. Peritoneal neutrophils and macrophages secrete biochemical factors that help endometriotic cell growth and invasion, and angiogenesis. Peritoneal macrophages and NK cells in endometriosis have limited capability of eliminating endometrial cells in the peritoneal cavity. An imbalance of T cell subsets leads to aberrant cytokine secretions and inflammation that results in the growth of endometriosis lesions. It is still uncertain whether these immune cells have a role in the initial cause and/or stimulate actions that enhance disease; however, in either case, modulating the actions of these cells may prevent initiation or disease progression. Further studies are needed to deepen the understanding of the pathology of endometriosis and to develop novel management approaches of benefit to women suffering from this disease. © 2018 Japan Society of Obstetrics and Gynecology.
Leblanc, B; Read, C; Moss, T
1993-02-01
The interaction of the ribosomal transcription factor xUBF with the RNA polymerase I core promoter of Xenopus laevis has been studied both at the DNA and protein levels. It is shown that a single xUBF-DNA complex forms over the 40S initiation site (+1) and involves at least the DNA sequences between -20 and +60 bp. DNA sequences upstream of +10 and downstream of +18 are each sufficient to direct complex formation independently. HMG box 1 of xUBF independently recognizes the sequences -20 to -1 and +1 to +22 and the addition of the N-terminal dimerization domain to HMG box 1 stabilizes its interaction with these sequences approximately 10-fold. HMG boxes 2/3 interact with the DNA downstream of +22 and can independently position xUBF across the initiation site. The C-terminal segment of xUBF, HMG boxes 4, 5 or the acidic domain, directly or indirectly interact with HMG box 1, making the core promoter sequences between -11 and -15 hypersensitive to DNase. This interaction also requires the DNA sequences between +17 and +32, i.e. the HMG box 2/3 binding site. The data suggest extensive folding of the core promoter within the xUBF complex.
Probing Cosmic Infrared Sources: A Computer Modeling Approach
1992-06-01
developed to study various physical phenomena involving dust grains, e.g., molecule formation on grains, grain formation in expanding circumstellar...EVALUATION OF METHODS OF ANALYSIS IN INFRARED ASTR9?NOMY 16 4.0 THEORETICAL STUDIES INVOLVING DUST GRAINS., 16 4.1 Theory of Molecule Formation on Dust Grains...17 4.2 Modeling Grain Formation in Stellar Outflows 7 18 4.3 Infrared Emission from Fractal Grains * 19 4.4 Photochemistry in Circumstellar Envelopes
Genetics Home Reference: amelogenesis imperfecta
... these proteins are involved in the formation of enamel, which is the hard, calcium-rich material that ... believed to be involved in the formation of enamel. Mutations in any of these genes result in ...
Tops, Mattie; Koole, Sander L; IJzerman, Hans; Buisman-Pijlman, Femke T A
2014-04-01
The present article advances a neurobiological model of the reciprocal associations between social attachment and drug abuse, and social attachment and chronic stress, as overlapping systems are involved in stress coping and social attachment. In terms of coping, responding to a novel stressor or challenge involves initial novelty processing and activation of learning mechanisms that allow habituation to the stressor through familiarization. Similarly, social attachments are initially formed by being attracted by rewarding properties of an as-yet novel individual, and subsequently developing feelings of attachment towards the familiarized individual. Attachment and familiarization increase the availability of "internal working models" for the control of behavior and emotion, which may explain why secure attachments are associated with increased resilience in the face of stress, accompanied by less reactive reward responding (i.e., increased resilience against drug addiction). The present article seeks to illuminate the role of the neuropeptide oxytocin, which may be involved in the overlapping mechanisms of stable attachment formation and stress coping by shifting processing from novelty and reward seeking to appreciation of familiarity. Oxytocin may accomplish this by facilitating a ventral-to-dorsal shift in activation in corticostriatal loops, which produces a shift from a reactive reward drive (wanting) to stable appreciation of familiar social aspects ("liking" or "loving"). The authors suggest that through dopaminergic, serotonergic and endogenous opioid mechanisms, oxytocin is involved in shifting the balance between wanting and liking in corticostriatal loops by facilitating consolidation of social information from ventral reactive reward systems to dorsal internal working models that aid in prospectively selecting optimal actions in the future, increasing resilience in the face of stress and addiction. © 2013.
Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Yu; Romano, D.; Ivison, R. J.; Papadopoulos, Padelis P.; Matteucci, F.
2018-06-01
All measurements of cosmic star formation must assume an initial distribution of stellar masses—the stellar initial mass function—in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum1. The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time2. Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies2,3, especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths4,5. The 13C/18O isotope abundance ratio in the cold molecular gas—which can be probed via the rotational transitions of the 13CO and C18O isotopologues—is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13CO and C18O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13CO/C18O ratio for all our targets—alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way6—implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the `main sequence' of star-forming galaxies7, although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.
Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time.
Zhang, Zhi-Yu; Romano, D; Ivison, R J; Papadopoulos, Padelis P; Matteucci, F
2018-06-01
All measurements of cosmic star formation must assume an initial distribution of stellar masses-the stellar initial mass function-in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum 1 . The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time 2 . Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies 2,3 , especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths 4,5 . The 13 C/ 18 O isotope abundance ratio in the cold molecular gas-which can be probed via the rotational transitions of the 13 CO and C 18 O isotopologues-is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13 CO and C 18 O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13 CO/C 18 O ratio for all our targets-alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way 6 -implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the 'main sequence' of star-forming galaxies 7 , although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.
Park, Hyo-Jung; Kim, Jun-Kyum; Jeon, Hye-Min; Oh, Se-Yeong; Kim, Sung-Hak; Nam, Do-Hyun; Kim, Hyunggee
2010-11-01
A growing body of evidence indicates that deregulation of stem cell fate determinants is a hallmark of many types of malignancies. The neural stem cell fate determinant TLX plays a pivotal role in neurogenesis in the adult brain by maintaining neural stem cells. Here, we report a tumorigenic role of TLX in brain tumor initiation and progression. Increased TLX expression was observed in a number of glioma cells and glioma stem cells, and correlated with poor survival of patients with gliomas. Ectopic expression of TLX in the U87MG glioma cell line and Ink4a/Arf-deficient mouse astrocytes (Ink4a/Arf(-/-) astrocytes) induced cell proliferation with a concomitant increase in cyclin D expression, and accelerated foci formation in soft agar and tumor formation in in vivo transplantation assays. Furthermore, overexpression of TLX in Ink4a/Arf(-/-) astrocytes inhibited cell migration and invasion and promoted neurosphere formation and Nestin expression, which are hallmark characteristics of glioma stem cells, under stem cell culture conditions. Our results indicate that TLX is involved in glioma stem cell genesis and represents a potential therapeutic target for this type of malignancy.
NASA Astrophysics Data System (ADS)
Mitropoulos, A. C.; Stefanopoulos, K. L.; Favvas, E. P.; Vansant, E.; Hankins, N. P.
2015-06-01
Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of ‘ink-bottle’ pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary.
Khan, Saeed R; Pearle, Margaret S; Robertson, William G; Gambaro, Giovanni; Canales, Benjamin K; Doizi, Steeve; Traxer, Olivier; Tiselius, Hans-Göran
2016-02-25
Kidney stones are mineral deposits in the renal calyces and pelvis that are found free or attached to the renal papillae. They contain crystalline and organic components and are formed when the urine becomes supersaturated with respect to a mineral. Calcium oxalate is the main constituent of most stones, many of which form on a foundation of calcium phosphate called Randall's plaques, which are present on the renal papillary surface. Stone formation is highly prevalent, with rates of up to 14.8% and increasing, and a recurrence rate of up to 50% within the first 5 years of the initial stone episode. Obesity, diabetes, hypertension and metabolic syndrome are considered risk factors for stone formation, which, in turn, can lead to hypertension, chronic kidney disease and end-stage renal disease. Management of symptomatic kidney stones has evolved from open surgical lithotomy to minimally invasive endourological treatments leading to a reduction in patient morbidity, improved stone-free rates and better quality of life. Prevention of recurrence requires behavioural and nutritional interventions, as well as pharmacological treatments that are specific for the type of stone. There is a great need for recurrence prevention that requires a better understanding of the mechanisms involved in stone formation to facilitate the development of more-effective drugs.
NASA Technical Reports Server (NTRS)
Kumar, G. R. Ravindra; Chacko, Thomas
1988-01-01
The granulite terrain of southern India, of which the Kerala Khondalite belt (KKB) is a part, is unique in exposing crustal sections with arrested charnockite growth in different stages of transformation and in varied lithological association. The KKB with rocks of surficial origin and incipient charnockite development, poses several problems relating to the tectonics of burial of vast area and mechanisms involved in expelling initial H2O (causes of dryness) for granulite facies metamorphism. It is possible to infer the following sequence of events based on the field and laboratory studies: (1) derivation of protoliths of KKB from granitic uplands and deposition in fault bounded basin (cratonic rift); (2) subhorizontal deep burial of sediments; (3) intense deformation of infra and supracrustal rocks; (4) early granulite facies metamorphism predating F sub 2 - loss of primary structure in sediments and formation of charnockites from amphibole bearing gneisses and khondalites from pelites; (5) migmatisation and deformation of metasediments and gneisses; (6) second event of charnockite formation probably aided by internal CO2 build-up; and (7) isothermal uplift, entrapment of late CO2 and mixed CO2-H2O fluids, formation of second generation cordierites and cordierite symplectites.
Mitropoulos, A. C.; Stefanopoulos, K. L.; Favvas, E. P.; Vansant, E.; Hankins, N. P.
2015-01-01
Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of ‘ink-bottle’ pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary. PMID:26047466
Mitropoulos, A C; Stefanopoulos, K L; Favvas, E P; Vansant, E; Hankins, N P
2015-06-05
Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of 'ink-bottle' pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary.
Araujo, Leandro Dias; Vannevel, Sebastian; Buica, Astrid; Callerot, Suzanne; Fedrizzi, Bruno; Kilmartin, Paul A; du Toit, Wessel J
2017-08-01
Elemental sulfur is a fungicide traditionally used to control Powdery Mildew in the production of grapes. The presence of sulfur residues in grape juice has been associated with increased production of hydrogen sulfide during fermentation, which could take part in the formation of the varietal thiol 3-mercaptohexanol. This work examines whether elemental sulfur additions to Sauvignon blanc juice can increase the levels of sought-after varietal thiols. Initial trials were performed in South Africa and indicated a positive impact of sulfur on the levels of thiols. Further experiments were then carried out with New Zealand Sauvignon blanc and confirmed a positive relationship between elemental sulfur additions and wine varietal thiols. The formation of hydrogen sulfide was observed when the addition of elemental sulfur was made to clarified juice, along with an increase in further reductive sulfur compounds. When the addition of sulfur was made to pressed juice, prior to clarification, the production of reductive sulfur compounds was drastically decreased. Some mechanistic considerations are also presented, involving the reduction of sulfur to hydrogen sulfide prior to fermentation. Copyright © 2016. Published by Elsevier Ltd.
Nanoscale Controls on CO2-water-rock Interactions in Saline Reservoirs
NASA Astrophysics Data System (ADS)
Deyoreo, J.; Depaolo, D. J.
2009-12-01
It is becoming increasingly widely recognized that geologic sequestration of CO2, when combined with economical means of capture, may be one of the most effective approaches to reducing net CO2 emissions to the atmosphere over the next century. Injection of CO2 into saline geologic formations involves forcing a buoyant, low-viscosity fluid into a more dense, higher viscosity fluid. The difference in wetting properties of the two fluids, their partial miscibility, the fact that CO2 and H2O form an acid, and the heterogeneity of geologic formations combine to make the flow and transport details fascinating but difficult to fully characterize and predict. A major question is whether the flow of CO2 into subsurface formations, the efficiency of pore space filling, and the trapping efficiency can be not only predicted but controlled over the decades of injection that might be associated with the life of a power plant. The major technological gaps to controlling and ultimately sequestering subsurface CO2 can be traced to far-from-equilibrum processes that originate at the molecular and nanoscale, but are expressed as complex emergent behavior at larger scales. Essential knowledge gaps involve the effects of nanoscale confinement on material properties, flow and chemical reactions, the effects of nanoparticles, mineral surface dynamics, and microbiota on mineral dissolution/precipitation and fluid flow, and the dynamics of fluid-fluid and fluid-mineral interfaces. To address these scientific and technical challenges, the Energy Frontier Research Center recently established, involving collaboration between LBNL, ORNL, MIT, UC Berkeley, UC Davis and LLNL, will attempt to bring new approaches to the study of nanoscale phenomena in fluid-rock systems to bear on the problem of CO2 behavior in saline formations. The stated goal is to use molecular, nanoscale, and pore-network scale approaches to control flow, dissolution, and precipitation in deep subsurface rock formations to achieve the efficient filling of pore space while maximizing solubility and mineral trapping and reducing potential leakage. Advanced knowledge of these small-scale processes is an important step toward developing a next-generation predictive capability for reactive transport of CO2-brine systems. The Center involves scientists with expertise in hydrology, geochemistry, materials science, mineralogy, chemistry, microbiology, geophysics, and reactive transport modeling and simulation. This presentation will describe the initial stages of some of the research, which in total involves the use of synchrotron light sources, neutron scattering methods, NanoSIMS, molecular dynamics simulations, thermochemistry, molecular biology, nanotechnology, laboratory scale experiments, and advanced computation applied to flow and reactive transport in heterogeneous porous media. The Center for Nanoscale Control of Geologic CO2 key personnel: Director - D. DePaolo, Co-Director - J. DeYoreo; Research Area Leads - K. Knauss (LBNL), G. Waychunas (LBNL), J. Banfield (UCB/LBNL), A Navrotsky (UC Davis), F.J. Ryerson (LLNL); G. Sposito (UCB/LBNL), T. Tokunaga (LBNL), D. Cole (ORNL), C. Steefel (LBNL), D. Rothman (MIT), S. Pride (LBNL).
Quantitative Analysis of Adventitious Root Growth Phenotypes in Carnation Stem Cuttings
Birlanga, Virginia; Villanova, Joan; Cano, Antonio; Cano, Emilio A.; Acosta, Manuel; Pérez-Pérez, José Manuel
2015-01-01
Carnation is one of the most important species on the worldwide market of cut flowers. Commercial carnation cultivars are vegetatively propagated from terminal stem cuttings that undergo a rooting and acclimation process. For some of the new cultivars that are being developed by ornamental breeders, poor adventitious root (AR) formation limits its commercial scaling-up, due to a significant increase in the production costs. We have initiated a genetical-genomics approach to determine the molecular basis of the differences found between carnation cultivars during adventitious rooting. The detailed characterization of AR formation in several carnation cultivars differing in their rooting losses has been performed (i) during commercial production at a breeders’ rooting station and (ii) on a defined media in a controlled environment. Our study reveals the phenotypic signatures that distinguishes the bad-rooting cultivars and provides the appropriate set-up for the molecular identification of the genes involved in AR development in this species. PMID:26230608
Kim, Jin-A; Jo, In-Hwa; Han, Yeon Soo; Jo, Yong Hun; Kim, Kwang-Youn; Seo, Young-Kyo; Moon, Jae-Hak; Jung, Chang Hwa; Jeon, Tae-Il
2017-01-01
The natural, phenolic lipid urushiol exhibits both antioxidant and anticancer activities; however, its biological activity on hepatocellular carcinoma (HCC) has not been previously investigated. Here, we demonstrate that an urushiol derivative, 3-decylcatechol (DC), induces human HCC Huh7 cell death by induction of autophagy. DC initiates the autophagic process by activation of the mammalian target of rapamycin signaling pathway via Unc-51-like autophagy activating kinase 1, leading to autophagosome formation. The autophagy inhibitor, chloroquine, suppressed autolysosome formation and cell death induction by DC, indicating an autophagic cell death. Interestingly, DC also activated the endoplasmic reticulum (ER) stress response that promotes autophagy via p62 transcriptional activation involving the inositol-requiring enzyme 1α/c-Jun N-terminal kinase/c-jun pathway. We also show that cytosolic calcium mobilization is necessary for the ER stress response and autophagy induction by DC. These findings reveal a novel mechanism by which this urushiol derivative induces autophagic cell death in HCC. PMID:28938597
Molten-salt corrosion of silicon nitride. I - Sodium carbonate. II - Sodium sulfate
NASA Technical Reports Server (NTRS)
Fox, Dennis S.; Jacobson, Nathan S.
1988-01-01
An experimental study of the corrosion of Si3N4 under thin films of Na2CO3 at 1000 C has been conducted using both pure Si3N4 and Si3N4 with various additives. The reaction mechanism is shown to consist of: (1) the decomposition of Na2CO3 and the formation of Na2SiO3; (2) rapid oxidation; and (3) the formation of a protective silica layer below the silicate. In the second part, the corrosion mechanism of Si3N4 + Na2SO4/O2 at 1000 C was studied for both pure and additive-containing Si3N4. The reaction of Si3N4 + Na2SO4 was found to involve an initial period of slow weight loss (due to Na2SO4 vaporization and oxidation-dissolution) followed by further oxidation or the near termination of the reaction, depending on the Si3N4 additive.
Voelzmann, Andre; Okenve-Ramos, Pilar; Qu, Yue; Chojnowska-Monga, Monika; del Caño-Espinel, Manuela; Prokop, Andreas; Sanchez-Soriano, Natalia
2016-01-01
The mechanisms regulating synapse numbers during development and ageing are essential for normal brain function and closely linked to brain disorders including dementias. Using Drosophila, we demonstrate roles of the microtubule-associated protein Tau in regulating synapse numbers, thus unravelling an important cellular requirement of normal Tau. In this context, we find that Tau displays a strong functional overlap with microtubule-binding spectraplakins, establishing new links between two different neurodegenerative factors. Tau and the spectraplakin Short Stop act upstream of a three-step regulatory cascade ensuring adequate delivery of synaptic proteins. This cascade involves microtubule stability as the initial trigger, JNK signalling as the central mediator, and kinesin-3 mediated axonal transport as the key effector. This cascade acts during development (synapse formation) and ageing (synapse maintenance) alike. Therefore, our findings suggest novel explanations for intellectual disability in Tau deficient individuals, as well as early synapse loss in dementias including Alzheimer’s disease. DOI: http://dx.doi.org/10.7554/eLife.14694.001 PMID:27501441
Metal carboxylate formation during indoor atmospheric corrosion of Cu, Zn, and Ni
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persson, D.; Leygraf, C.
Chemical analyses of surface films and corrosion products formed on pure Cu, Zn, Ni, and Ag samples exposed up to 12 months in various mild indoor environments have been performed by infrared reflection-absorption spectroscopy (IRAS) and X-ray photoelectron spectroscopy. The analyses reveal metal carboxylates to be the main ingredients on the surface of Cu, Zn, and Ni. Other ions, such as sulfate, chloride, nitrate, and ammonium ions are also present but in smaller amounts.The surface region on Ag contains mainly silver sulfide with smaller amounts of sulfate, ammonium, and chloride ions. The growth of the carboxylate layers, as followed bymore » IRAS, exhibits an initial film formation with a thickness of a few nanometers for all exposure sites investigated. Subsequent growth to thicker layers was observed at sites with higher humidity levels. The unexpectedly high content of metal carboxylates found on Cu, Zn, and Ni may provide insight into possible processes involved in the atmospheric indoor corrosion of these metals.« less
Inflammation, Fracture and Bone Repair
Loi, Florence; Córdova, Luis A.; Pajarinen, Jukka; Lin, Tzu-hua; Yao, Zhenyu; Goodman, Stuart B.
2016-01-01
The reconstitution of lost bone is a subject that is germane to many orthopaedic conditions including fractures and non-unions, infection, inflammatory arthritis, osteoporosis, osteonecrosis, metabolic bone disease, tumors, and periprosthetic particle-associated osteolysis. In this regard, the processes of acute and chronic inflammation play an integral role. Acute inflammation is initiated by endogenous or exogenous adverse stimuli, and can become chronic in nature if not resolved by normal homeostatic mechanisms. Dysregulated inflammation leads to increased bone resorption and suppressed bone formation. Crosstalk amongst inflammatory cells (polymorphonuclear leukocytes and cells of the monocyte-macrophage-osteoclast lineage) and cells related to bone healing (cells of the mesenchymal stem cell-osteoblast lineage and vascular lineage) is essential to the formation, repair and remodeling of bone. In this review, the authors provide a comprehensive summary of the literature related to inflammation and bone repair. Special emphasis is placed on the underlying cellular and molecular mechanisms, and potential interventions that can favorably modulate the outcome of clinical conditions that involve bone repair. PMID:26946132
Formation of thin walled ceramic solid oxide fuel cells
Claar, Terry D.; Busch, Donald E.; Picciolo, John J.
1989-01-01
To reduce thermal stress and improve bonding in a high temperature monolithic solid oxide fuel cell (SOFC), intermediate layers are provided between the SOFC's electrodes and electrolyte which are of different compositions. The intermediate layers are comprised of a blend of some of the materials used in the electrode and electrolyte compositions. Particle size is controlled to reduce problems involving differential shrinkage rates of the various layers when the entire structure is fired at a single temperature, while pore formers are provided in the electrolyte layers to be removed during firing for the formation of desired pores in the electrode layers. Each layer includes a binder in the form of a thermosetting acrylic which during initial processing is cured to provide a self-supporting structure with the ceramic components in the green state. A self-supporting corrugated structure is thus formed prior to firing, which the organic components of the binder and plasticizer removed during firing to provide a high strength, high temperature resistant ceramic structure of low weight and density.
Electrocatalytic Oxidation of Formate by [Ni(P R 2 N R' 2 ) 2 (CH 3 CN)] 2+ Complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galan, Brandon R.; Schöffel, Julia; Linehan, John C.
2011-08-17
New [Ni(P R 2N R` 2) 2+(CH 3CN)] 2+ complexes with R = Ph, R` = 4-MeOPh; R = Cy, R` = Ph and a mixed ligand [Ni(P R 2N R` 2)(P R`` 2N R` 2)] 2+ with R = Cy, R` = Ph, R`` = Ph have been synthesized and characterized by single crystal X-ray crystallography. These complexes are shown to be electrocatalysts for the oxidation of formate in solution to produce CO 2, protons, and electrons with rates which are first order in catalyst and in formate at formate concentrations below approximately 0.05 M. For the catalysts studied,more » maximum observed turnover frequencies vary from <1.1 s -1 to 12.5 s -1 at room temperature, which are the highest rates yet reported for formate oxidation by homogeneous catalysts. A mechanistic scheme is proposed which involves an initial nickel complex bound <1-OC(O)H followed by a rate limiting hydride transfer step. An acetate complex demonstrating the η 1-OC(O)CH 3 binding mode to nickel has also been synthesized and characterized by single crystal X-ray crystallography. The pendant amines have been demonstrated to be essential for this electrocatalytic activity as no activity toward formate was found for the similar [Ni(depe) 2][BF 4] 2+ (depe = diethylphosphinoethane) complex. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
NASA Astrophysics Data System (ADS)
Floyd, J. G.; Beeler, S. R.; Mors, R. A.; Kraus, E. A.; 2016, G.; Piazza, O.; Frantz, C. M.; Loyd, S. J.; Berelson, W.; Stevenson, B. S.; Marenco, P. J.; Spear, J. R.; Corsetti, F. A.
2016-12-01
Hot spring environments exhibit unique redox/physical gradients that may create favorable conditions for the presence of life and commonly contain mineral precipitates that could provide a geologic archive of such ecosystems on Earth and potentially other planets. However, it is critical to discern biologic from abiotic formation mechanisms if hot spring-associated minerals are to be used as biosignatures. The study of modern hot spring environments where mineral formation can be directly observed is necessary to better interpret the biogenicity of ancient/extraterrestrial examples. Little Hot Creek (LHC), a hot spring located in the Long Valley Caldera, California, contains mineral precipitates composed of a carbonate base covered with amorphous silica and minor carbonate in close association with microbial mats/biofilms. Geological, geochemical, and microbiological techniques were integrated to investigate the role of biology in mineral formation at LHC. Geochemical measurements indicate that the waters of the spring are near equilibrium with respect to carbonate and undersaturated with respect to silica, implying additional processes are necessary to initiate cap formation. Geochemical modeling, integrating elemental and isotopic data from hot spring water and mineral precipitates, indicate that the abiotic processes of degassing and evaporation drive mineral formation at LHC, without microbial involvement. However, petrographic analysis of LHC caps revealed microbial microfabrics within silica mineral phases, despite the fact that microbial metabolism was not required for mineral precipitation. Our results show that microorganisms in hot spring environments can shape mineral precipitates even in the absence of a control on authigenesis, highlighting the need for structural as well as geochemical investigation in similar systems.
Shea, Patrick R; Virtaneva, Kimmo; Kupko, John J; Porcella, Stephen F; Barry, William T; Wright, Fred A; Kobayashi, Scott D; Carmody, Aaron; Ireland, Robin M; Sturdevant, Daniel E; Ricklefs, Stacy M; Babar, Imran; Johnson, Claire A; Graham, Morag R; Gardner, Donald J; Bailey, John R; Parnell, Michael J; Deleo, Frank R; Musser, James M
2010-03-09
Relatively little is understood about the dynamics of global host-pathogen transcriptome changes that occur during bacterial infection of mucosal surfaces. To test the hypothesis that group A Streptococcus (GAS) infection of the oropharynx provokes a distinct host transcriptome response, we performed genome-wide transcriptome analysis using a nonhuman primate model of experimental pharyngitis. We also identified host and pathogen biological processes and individual host and pathogen gene pairs with correlated patterns of expression, suggesting interaction. For this study, 509 host genes and seven biological pathways were differentially expressed throughout the entire 32-day infection cycle. GAS infection produced an initial widespread significant decrease in expression of many host genes, including those involved in cytokine production, vesicle formation, metabolism, and signal transduction. This repression lasted until day 4, at which time a large increase in expression of host genes was observed, including those involved in protein translation, antigen presentation, and GTP-mediated signaling. The interactome analysis identified 73 host and pathogen gene pairs with correlated expression levels. We discovered significant correlations between transcripts of GAS genes involved in hyaluronic capsule production and host endocytic vesicle formation, GAS GTPases and host fibrinolytic genes, and GAS response to interaction with neutrophils. We also identified a strong signal, suggesting interaction between host gammadelta T cells and genes in the GAS mevalonic acid synthesis pathway responsible for production of isopentenyl-pyrophosphate, a short-chain phospholipid that stimulates these T cells. Taken together, our results are unique in providing a comprehensive understanding of the host-pathogen interactome during mucosal infection by a bacterial pathogen.
Responses to the Standard for Exchange of Nonclinical Data (SEND) in non-US countries
Anzai, Takayuki; Kaminishi, Masamichi; Sato, Keizo; Kaufman, Laura; Iwata, Hijiri; Nakae, Dai
2015-01-01
The Standard for the Exchange of Nonclinical Data (SEND), adopted by the US FDA, is part of a set of regulations and guidances requiring the submission of standardized electronic study data for nonclinical and clinical data submissions. SEND is the nonclinical implementation of SDTM (Study Data Tabulation Model), the standard electronic format for clinical regulatory submissions to FDA. SEND, SDTM, and the associated Controlled Terminology have been developed by CDISC (Clinical Data Interchange Standards Consortium). In order to successfully implement SEND, interdisciplinary contributions between sponsors and CROs, need a model for task allocation. This is being undertaken by the Pharmaceutical Users Software Exchange (PhUSE). Because SEND is currently the preferred submission format of the US FDA only and will become required by it starting in December 2016, only American academic societies and companies are actively involved. An exception to this is the INHAND initiative, which leads the way in standardizing terminology for toxicological pathology. On the other hand, international globalization of other clinical and nonclinical practices is not feasible because there are substantial differences between the US and non-US countries in CRO involvement in drug development. Thus, non-US countries must consider and develop approaches to SEND that meet their needs. This paper summarizes the activities of the major organizations involved in SEND development and implementation, discusses the effective use of SEND, and details a compliance scheme (research material of the Showa University School of Medicine) illustrating how pharmaceutical companies can complete a large amount of work up to an FDA application with the effective utilization of CROs and solution providers. PMID:26028814
Xu, Jinfei; Cortellino, Salvatore; Tricarico, Rossella; Chang, Wen-Chi; Scher, Gabrielle; Devarajan, Karthik; Slifker, Michael; Moore, Robert; Bassi, Maria Rosaria; Caretti, Elena; Clapper, Margie; Cooper, Harry; Bellacosa, Alfonso
2017-10-27
Thymine DNA Glycosylase (TDG) is a base excision repair enzyme that acts as a thymine and uracil DNA N-glycosylase on G:T and G:U mismatches, thus protecting CpG sites in the genome from mutagenesis by deamination. In addition, TDG has an epigenomic function by removing the novel cytosine derivatives 5-formylcytosine and 5-carboxylcytosine (5caC) generated by Ten-Eleven Translocation (TET) enzymes during active DNA demethylation. We and others previously reported that TDG is essential for mammalian development. However, its involvement in tumor formation is unknown. To study the role of TDG in tumorigenesis, we analyzed the effects of its inactivation in a well-characterized model of tumor predisposition, the Apc Min mouse strain. Mice bearing a conditional Tdg flox allele were crossed with Fabpl ::Cre transgenic mice, in the context of the Apc Min mutation, in order to inactivate Tdg in the small intestinal and colonic epithelium. We observed an approximately 2-fold increase in the number of small intestinal adenomas in the test Tdg -mutant Apc Min mice in comparison to control genotypes (p=0.0001). This increase occurred in female mice, and is similar to the known increase in intestinal adenoma formation due to oophorectomy. In the human colorectal cancer (CRC) TCGA database, the subset of patients with TDG and APC expression in the lowest quartile exhibits an excess of female cases. We conclude that TDG inactivation plays a role in intestinal tumorigenesis initiated by mutation/underexpression of APC . Our results also indicate that TDG may be involved in sex-specific protection from CRC.
2010-01-01
Background Pseudomonas aeruginosa is commonly associated with contact lens (CL) -related eye infections, for which bacterial adhesion and biofilm formation upon hydrogel CLs is a specific risk factor. Whilst P. aeruginosa has been widely used as a model organism for initial biofilm formation on CLs, in-vitro models that closely reproduce in-vivo conditions have rarely been presented. Results In the current investigation, a novel in-vitro biofilm model for studying the adherence of P. aeruginosa to hydrogel CLs was established. Nutritional and interfacial conditions similar to those in the eye of a CL wearer were created through the involvement of a solid:liquid and a solid:air interface, shear forces and a complex artificial tear fluid. Bioburdens varied depending on the CL material and biofilm maturation occurred after 72 h incubation. Whilst a range of biofilm morphologies were visualised including dispersed and adherent bacterial cells, aggregates and colonies embedded in extracellular polymer substances (EPS), EPS fibres, mushroom-like formations, and crystalline structures, a compact and heterogeneous biofilm morphology predominated on all CL materials. Conclusions In order to better understand the process of biofilm formation on CLs and to test the efficacy of CL care solutions, representative in-vitro biofilm models are required. Here, we present a three-phase biofilm model that simulates the environment in the eye of a CL wearer and thus generates biofilms which resemble those commonly observed in-situ. PMID:21062489
NASA Technical Reports Server (NTRS)
Pedrozo, H. A.; Schwartz, Z.; Dean, D. D.; Harrison, J. L.; Campbell, J. W.; Wiederhold, M. L.; Boyan, B. D.
1997-01-01
To better understand the mechanisms that could modulate the formation of otoconia, calcium carbonate granules in the inner ear of vertebrate species, we examined statoconia formation in the gravity-sensing organ, the statocyst, of the gastropod mollusk Aplysia californica using an in vitro organ culture model. We determined the type of calcium carbonate present in the statoconia and investigated the role of carbonic anhydrase (CA) and urease in regulating statocyst pH as well as the role of protein synthesis and urease in statoconia production and homeostasis in vitro. The type of mineral present in statoconia was found to be aragonitic calcium carbonate. When the CA inhibitor, acetazolamide (AZ), was added to cultures of statocysts, the pH initially (30 min) increased and then decreased. The urease inhibitor, acetohydroxamic acid (AHA), decreased statocyst pH. Simultaneous addition of AZ and AHA caused a decrease in pH. Inhibition of urease activity also reduced total statoconia number, but had no effect on statoconia volume. Inhibition of protein synthesis reduced statoconia production and increased statoconia volume. In a previous study, inhibition of CA was shown to decrease statoconia production. Taken together, these data show that urease and CA play a role in regulating statocyst pH and the formation and maintenance of statoconia. CA produces carbonate ion for calcium carbonate formation and urease neutralizes the acid formed due to CA action, by production of ammonia.
Association between Randall's Plaque and Calcifying Nanoparticles
NASA Technical Reports Server (NTRS)
Citfcioglu, Neva; Vejdani, Kaveh; Lee, Olivia; Mathew, Grace; Aho, Katja M.; Kajander, Olavi; McKay, David S.; Jones, Jeffrey A.; Feiveson, Alan H.; Stoller, Marshall L.
2007-01-01
Randall initially described calcified subepithelial papillary plaques, which he hypothesized as nidi for kidney stone formation. The discovery of calcifying nanoparticles (CNP) in many calcifying processes of human tissues has raised another hypothesis about their possible involvement in urinary stone formation. This research is the first attempt to investigate the potential association of these two hypotheses. We collected renal papilla and blood samples from 17 human patients who had undergone laparoscopic nephrectomy due to neoplasia. Immunohistochemical staining (IHS) was applied on the tissue samples using monoclonal antibody 8D10 (mAb) against CNP. Homogenized papillary tissues and serum samples were cultured for CNP. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis were performed on fixed papillary samples. Randall's plaques were visible on gross inspection in 11 out of 17 collected samples. IHS was positive for CNP antigen in 8 of these 11 visually positive samples, but in only 1 of the remaining 6 samples. SEM revealed spherical apatite formations in 14 samples, all of which had calcium and phosphate peaks detected by EDS analysis. From this study, there was some evidence of a link between the presence of Randall's plaques and the detection of CNP, also referred to as nanobacteria. Although causality was not demonstrated, these results suggest that further studies with negative control samples should be made to explore the etiology of Randall's plaque formation, thus leading to a better understanding of the pathogenesis of stone formation.
Pandey, Shashank K; Nookaraju, Akula; Fujino, Takeshi; Pattathil, Sivakumar; Joshi, Chandrashekhar P
2016-11-01
Functional characterization of two tobacco genes, one involved in xylan synthesis and the other, a positive regulator of secondary cell wall formation, is reported. Lignocellulosic secondary cell walls (SCW) provide essential plant materials for the production of second-generation bioethanol. Therefore, thorough understanding of the process of SCW formation in plants is beneficial for efficient bioethanol production. Recently, we provided the first proof-of-concept for using virus-induced gene silencing (VIGS) approach for rapid functional characterization of nine genes involved in cellulose, hemicellulose and lignin synthesis during SCW formation. Here, we report VIGS-mediated functional characterization of two tobacco genes involved in SCW formation. Stems of VIGS plants silenced for both selected genes showed increased amount of xylem formation but thinner cell walls than controls. These results were further confirmed by production of stable transgenic tobacco plants manipulated in expression of these genes. Stems of stable transgenic tobacco plants silenced for these two genes showed increased xylem proliferation with thinner walls, whereas transgenic tobacco plants overexpressing these two genes showed increased fiber cell wall thickness but no change in xylem proliferation. These two selected genes were later identified as possible members of DUF579 family involved in xylan synthesis and KNAT7 transcription factor family involved in positive regulation of SCW formation, respectively. Glycome analyses of cell walls showed increased polysaccharide extractability in 1 M KOH extracts of both VIGS-NbDUF579 and VIGS-NbKNAT7 lines suggestive of cell wall loosening. Also, VIGS-NbDUF579 and VIGS-NbKNAT7 lines showed increased saccharification rates (74.5 and 40 % higher than controls, respectively). All these properties are highly desirable for producing higher quantities of bioethanol from lignocellulosic materials of bioenergy plants.
NASA Astrophysics Data System (ADS)
Youssefi, Somayeh; Waring, Michael S.
2015-07-01
The ozonolysis of reactive organic gases (ROG), e.g. terpenes, generates secondary organic aerosol (SOA) indoors. The SOA formation strength of such reactions is parameterized by the aerosol mass fraction (AMF), a.k.a. SOA yield, which is the mass ratio of generated SOA to oxidized ROG. AMFs vary in magnitude both among and for individual ROGs. Here, we quantified dynamic SOA formation from the ozonolysis of α-pinene with 'transient AMFs,' which describe SOA formation due to pulse emission of a ROG in an indoor space with air exchange, as is common when consumer products are intermittently used in ventilated buildings. We performed 19 experiments at low, moderate, and high (0.30, 0.52, and 0.94 h-1, respectively) air exchange rates (AER) at varying concentrations of initial reactants. Transient AMFs as a function of peak SOA concentrations ranged from 0.071 to 0.25, and they tended to increase as the AER and product of the initial reactant concentrations increased. Compared to our similar research on limonene ozonolysis (Youssefi and Waring, 2014), for which formation strength was driven by secondary ozone reactions, the AER impact for α-pinene was opposite in direction and weaker, while the initial reactant product impact was in the same direction but stronger for α-pinene than for limonene. Linear fits of AMFs for α-pinene ozonolysis as a function of the AER and initial reactant concentrations are provided so that future indoor models can predict SOA formation strength.
CAVIAR: an R package for checking, displaying and processing wood-formation-monitoring data.
Rathgeber, Cyrille B K; Santenoise, Philippe; Cuny, Henri E
2018-05-19
In the last decade, the pervasive question of climate change impacts on forests has revived investigations on intra-annual dynamics of wood formation, involving disciplines such as plant ecology, tree physiology and dendrochronology. This resulted in the creation of many research groups working on this topic worldwide and a rapid increase in the number of studies and publications. Wood-formation-monitoring studies are generally based on a common conceptual model describing xylem cell formation as the succession of four differentiation phases (cell division, cell enlargement, cell wall thickening and mature cells). They generally use the same sampling techniques, sample preparation methods and anatomical criteria to separate between differentiation zones and discriminate and count forming xylem cells, resulting in very similar raw data. However, the way these raw data are then processed, producing the elaborated data on which statistical analyses are performed, still remains quite specific to each individual study. Thereby, despite very similar raw data, wood-formation-monitoring studies yield results that are still quite difficult to compare. CAVIAR-an R package specifically dedicated to the verification, visualization and manipulation of wood-formation-monitoring data-can help to improve this situation. Initially, CAVIAR was built to provide efficient algorithms to compute critical dates of wood formation phenology for conifers growing in temperate and cold environments. Recently, we developed it further to check, display and process wood-formation-monitoring data. Thanks to new and upgraded functions, raw data can now be consistently verified, standardized and modelled (using logistic regressions and Gompertz functions), in order to describe wood phenology and intra-annual dynamics of tree-ring formation. We believe that CAVIAR will help strengthening the science of wood formation dynamics by effectively contributing to the standardization of its concepts and methods, making thereby possible the comparison between data and results from different studies.
Nugroho, Widyanto Dwi; Yamagishi, Yusuke; Nakaba, Satoshi; Fukuhara, Shiori; Begum, Shahanara; Marsoem, Sri Nugroho; Ko, Jae-Heung; Jin, Hyun-O; Funada, Ryo
2012-01-01
Background and Aims Angiosperm trees generally form tension wood on the upper sides of leaning stems. The formation of tension wood is an important response to gravitational stimulus. Gibberellin appears to be involved in the differentiation of secondary xylem, but it remains unclear whether gibberellin plays a key role in the formation of tension wood and plant gravitropism. Therefore, a study was designed to investigate the effects of gibberellin and of inhibitors of the synthesis of gibberellin, namely paclobutrazole and uniconazole-P, on the formation of tension wood and negative stem gravitropism in Acacia mangium seedlings. Methods Gibberellic acid (GA3), paclobutrazole and uniconazole-P were applied to seedlings via the soil in which they were growing. Distilled water was applied similarly as a control. Three days after such treatment, seedlings were tilted at an angle of 45° from the vertical, and samples of stems were collected for analysis 2 weeks, 2 months and 6 months after tilting. The effects of treatments on the stem recovery degree (Rº) were analysed as an index of the negative gravitropism of seedlings, together the width of the region of tension wood in the upper part of inclined stems. Key Results It was found that GA3 stimulated the negative gravitropism of tilted seedling stems of A. mangium, while paclobutrazole and uniconazole-P inhibited recovery to vertical growth. Moreover, GA3 stimulated the formation of tension wood in tilted A. mangium seedlings, while paclobutrazole and uniconazole-P strongly suppressed the formation of tension wood, as assessed 2 weeks after tilting. Conclusions The results suggest that gibberellin plays an important role at the initial stages of formation of tension wood and in stem gravitropism in A. mangium seedlings in response to a gravitational stimulus. PMID:22843341
INSIDE-OUT PLANET FORMATION. III. PLANET–DISK INTERACTION AT THE DEAD ZONE INNER BOUNDARY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Xiao; Tan, Jonathan C.; Chatterjee, Sourav
The Kepler mission has discovered more than 4000 exoplanet candidates. Many of them are in systems with tightly packed inner planets. Inside-out planet formation (IOPF) has been proposed as a scenario to explain these systems. It involves sequential in situ planet formation at the local pressure maximum of a retreating dead zone inner boundary (DZIB). Pebbles accumulate at this pressure trap, which builds up a pebble ring and then a planet. The planet is expected to grow in mass until it opens a gap, which helps to both truncate pebble accretion and also induce DZIB retreat that sets the location ofmore » formation of the next planet. This simple scenario may be modified if the planet undergoes significant migration from its formation location. Thus, planet–disk interactions play a crucial role in the IOPF scenario. Here we present numerical simulations that first assess the degree of migration for planets of various masses that are forming at the DZIB of an active accretion disk, where the effective viscosity is undergoing a rapid increase in the radially inward direction. We find that torques exerted on the planet by the disk tend to trap the planet at a location very close to the initial pressure maximum where it formed. We then study gap opening by these planets to assess at what mass a significant gap is created. Finally, we present a simple model for DZIB retreat due to penetration of X-rays from the star to the disk midplane. Overall, these simulations help to quantify both the mass scale of first (“Vulcan”) planet formation and the orbital separation to the location of second planet formation.« less
Nugroho, Widyanto Dwi; Yamagishi, Yusuke; Nakaba, Satoshi; Fukuhara, Shiori; Begum, Shahanara; Marsoem, Sri Nugroho; Ko, Jae-Heung; Jin, Hyun-O; Funada, Ryo
2012-09-01
Angiosperm trees generally form tension wood on the upper sides of leaning stems. The formation of tension wood is an important response to gravitational stimulus. Gibberellin appears to be involved in the differentiation of secondary xylem, but it remains unclear whether gibberellin plays a key role in the formation of tension wood and plant gravitropism. Therefore, a study was designed to investigate the effects of gibberellin and of inhibitors of the synthesis of gibberellin, namely paclobutrazole and uniconazole-P, on the formation of tension wood and negative stem gravitropism in Acacia mangium seedlings. Gibberellic acid (GA(3)), paclobutrazole and uniconazole-P were applied to seedlings via the soil in which they were growing. Distilled water was applied similarly as a control. Three days after such treatment, seedlings were tilted at an angle of 45° from the vertical, and samples of stems were collected for analysis 2 weeks, 2 months and 6 months after tilting. The effects of treatments on the stem recovery degree (Rº) were analysed as an index of the negative gravitropism of seedlings, together the width of the region of tension wood in the upper part of inclined stems. It was found that GA(3) stimulated the negative gravitropism of tilted seedling stems of A. mangium, while paclobutrazole and uniconazole-P inhibited recovery to vertical growth. Moreover, GA(3) stimulated the formation of tension wood in tilted A. mangium seedlings, while paclobutrazole and uniconazole-P strongly suppressed the formation of tension wood, as assessed 2 weeks after tilting. The results suggest that gibberellin plays an important role at the initial stages of formation of tension wood and in stem gravitropism in A. mangium seedlings in response to a gravitational stimulus.
Cheng, Tao; Xiao, Hai; Goddard, William A
2016-10-11
Copper is the only elemental metal that reduces a significant fraction of CO 2 to hydrocarbons and alcohols, but the atomistic reaction mechanism that controls the product distributions are not known because it has not been possible to detect the reaction intermediates on the electrode surface experimentally, or carry out Quantum Mechanics (QM) calculations with a realistic description of the electrolyte (water). Here, we carry out Quantum Mechanics (QM) calculations with an explicit description of water on the Cu(100) surface (experimentally shown to be stable under CO2RR conditions) to examine the initial reaction pathways to form CO and formate (HCOO - ) from CO 2 through free energy calculations at 298K and pH 7. We find that CO formation proceeds from physisorbed CO 2 to chemisorbed CO 2 (*CO 2 δ- ), with a free energy barrier of ΔG ‡ =0.43 eV, the rate determining step (RDS). The subsequent barriers of protonating *CO 2 δ- to form COOH* and then dissociating COOH* to form *CO are 0.37 eV and 0.30 eV, respectively. HCOO - formation proceeds through a very different pathway in which physisorbed CO 2 reacts directly with a surface H* (along with electron transfer), leading to ΔG ‡ = 0.80 eV. Thus, the competition between CO formation and HCOO - formation occurs in the first electron transfer step. On Cu(100), the RDS for CO formation is lower, making CO the predominant product. Thus, to alter the product distribution we need to control this first step of CO 2 binding, which might involve alloying or changing the structure at the nanoscale.
Inside-out Planet Formation. III. Planet-Disk Interaction at the Dead Zone Inner Boundary
NASA Astrophysics Data System (ADS)
Hu, Xiao; Zhu, Zhaohuan; Tan, Jonathan C.; Chatterjee, Sourav
2016-01-01
The Kepler mission has discovered more than 4000 exoplanet candidates. Many of them are in systems with tightly packed inner planets. Inside-out planet formation (IOPF) has been proposed as a scenario to explain these systems. It involves sequential in situ planet formation at the local pressure maximum of a retreating dead zone inner boundary (DZIB). Pebbles accumulate at this pressure trap, which builds up a pebble ring and then a planet. The planet is expected to grow in mass until it opens a gap, which helps to both truncate pebble accretion and also induce DZIB retreat that sets the location of formation of the next planet. This simple scenario may be modified if the planet undergoes significant migration from its formation location. Thus, planet-disk interactions play a crucial role in the IOPF scenario. Here we present numerical simulations that first assess the degree of migration for planets of various masses that are forming at the DZIB of an active accretion disk, where the effective viscosity is undergoing a rapid increase in the radially inward direction. We find that torques exerted on the planet by the disk tend to trap the planet at a location very close to the initial pressure maximum where it formed. We then study gap opening by these planets to assess at what mass a significant gap is created. Finally, we present a simple model for DZIB retreat due to penetration of X-rays from the star to the disk midplane. Overall, these simulations help to quantify both the mass scale of first (“Vulcan”) planet formation and the orbital separation to the location of second planet formation.
LAM-1 and FAT Genes Control Development of the Leaf Blade in Nicotiana sylvestris.
McHale, NA
1993-01-01
Leaf primordia of the lam-1 mutant of Nicotiana sylvestris grow normally in length but remain bladeless throughout development. The blade initiation site is established at the normal time and position in lam-1 primordia. Anticlinal divisions proceed normally in the outer L1 and L2 layers, but the inner L3 cells fail to establish the periclinal divisions that normally generate the middle mesophyll core. The lam-1 mutation also blocks formation of blade mesophyll from distal L2 cells. This suggests that LAM-1 controls a common step in initiation of blade tissue from the L2 and L3 lineage of the primordium. Another recessive mutation (fat) was isolated in N. sylvestris that induces abnormal periclinal divisions in the mesophyll during blade initiation and expansion. This generates a blade approximately twice its normal thickness by doubling the number of mesophyll cell layers from four to approximately eight. Presumably, the fat mutation defines a negative regulator involved in repression of periclinal divisions in the blade. The lam-1 fat double mutant shows radial proliferation of mesophyll cells at the blade initiation site. This produces a highly disorganized, club-shaped blade that appears to represent an additive effect of the lam-1 and fat mutations on blade founder cells. PMID:12271096
Bringing climate sciences to the general public with the Climanosco initiative
NASA Astrophysics Data System (ADS)
Bourqui, Michel; Bolduc, Cassandra; Charbonneau, Paul; Charrière, Marie; Hill, Daniel; Lòpez Gladko, Angélica; Loubet, Enrique; Roy, Philippe; Winter, Barbara
2016-04-01
This paper presents the first months of operation of the scientists-initiated Climanosco.org platform. The goal of this initiative is to bridge climate sciences with the general public by building a network of climate scientists and citizens around the world, by stimulating the writing of quality climate science articles in non-scientific language, and by publishing these articles in an open-access, multilingual format. For the climate scientist, this platform will offer a simple and reliable channel to disseminate research results to the general public. High standards are enforced by: a) requiring that the main author is an active climate scientist, and b) an innovative peer-review process involving scientific and non-scientific referees with distinct roles. Direct participation of non-scientists is allowed through co-authoring, peer-reviewing, language translation. Furthermore, public engagement is stimulated by allowing non-scientists to invite manuscripts to be written by scientists on topics of their concern. The targeted public includes journalists, teachers, students, local politicians, economists, members of the agriculture sector, and any other citizens from around the world with an interest in climate sciences. The initiative is now several months into operations. In this paper, I will discuss what we have achieved so far and what we plan for the next future.
Riley, Eammon P; Trinquier, Aude; Reilly, Madeline L; Durchon, Marine; Perera, Varahenage R; Pogliano, Kit; Lopez-Garrido, Javier
2018-04-01
Sporulation in Bacillus subtilis is a paradigm of bacterial development, which involves the interaction between a larger mother cell and a smaller forespore. The mother cell and the forespore activate different genetic programs, leading to the production of sporulation-specific proteins. A critical gap in our understanding of sporulation is how vegetative proteins, made before sporulation initiation, contribute to spore formation. Here we present a system, spatiotemporally regulated proteolysis (STRP), which enables the rapid, developmentally regulated degradation of target proteins, thereby providing a suitable method to dissect the cell- and developmental stage-specific role of vegetative proteins. STRP has been used to dissect the role of two major vegetative sigma factors, σ H and σ A , during sporulation. The results suggest that σ H is only required in predivisional cells, where it is essential for sporulation initiation, but that it is dispensable during subsequent steps of spore formation. However, evidence has been provided that σ A plays different roles in the mother cell, where it replenishes housekeeping functions, and in the forespore, where it plays an unexpected role in promoting spore germination and outgrowth. Altogether, the results demonstrate that STRP has the potential to provide a comprehensive molecular dissection of every stage of sporulation, germination and outgrowth. © 2018 John Wiley & Sons Ltd.
Enhanced Ionization of Embedded Clusters by Electron-Transfer-Mediated Decay in Helium Nanodroplets.
LaForge, A C; Stumpf, V; Gokhberg, K; von Vangerow, J; Stienkemeier, F; Kryzhevoi, N V; O'Keeffe, P; Ciavardini, A; Krishnan, S R; Coreno, M; Prince, K C; Richter, R; Moshammer, R; Pfeifer, T; Cederbaum, L S; Mudrich, M
2016-05-20
We report the observation of electron-transfer-mediated decay (ETMD) involving magnesium (Mg) clusters embedded in helium (He) nanodroplets. ETMD is initiated by the ionization of He followed by removal of two electrons from the Mg clusters of which one is transferred to the He ion while the other electron is emitted into the continuum. The process is shown to be the dominant ionization mechanism for embedded clusters for photon energies above the ionization potential of He. For Mg clusters larger than five atoms we observe stable doubly ionized clusters. Thus, ETMD provides an efficient pathway to the formation of doubly ionized cold species in doped nanodroplets.
de Souza, Wanderley; de Carvalho, Tecia M. Ulisses
2013-01-01
In the present short review, we analyze past experiments that addressed the interactions of intracellular pathogenic protozoa (Trypanosoma cruzi, Toxoplasma gondii, and Plasmodium) with host cells and the initial use of the term active penetration to indicate that a protozoan “crossed the host cell membrane, penetrating into the cytoplasm.” However, the subsequent use of transmission electron microscopy showed that, for all of the protozoans and cell types examined, endocytosis, classically defined as involving the formation of a membrane-bound vacuole, took place during the interaction process. As a consequence, the recently penetrated parasites are always within a vacuole, designated the parasitophorous vacuole (PV). PMID:23355838
Cancers develop when cells accumulate DNA mutations that allow them to grow and divide inappropriately. Thus, proteins involved in repairing DNA damage are generally suppressors of cancer formation, and their expression is often lost in the early stages of cancer initiation. In contrast, cancer stem cells, like their normal counterparts, must retain their ability to self-renew, which necessitates maintenance of DNA integrity. In hematopoietic stem cells (HSC), for example, double strand breaks and oxidative damage exhaust their regenerative ability. André Nussenzweig, Ph.D., Chief of CCR’s Laboratory of Genome Integrity and his colleagues wondered whether leukemic stem cells might be similarly constrained by DNA damage.
Genome-wide analysis reveals phytohormone action during cassava storage root initiation.
Sojikul, Punchapat; Saithong, Treenut; Kalapanulak, Saowalak; Pisuttinusart, Nuttapat; Limsirichaikul, Siripan; Tanaka, Maho; Utsumi, Yoshinori; Sakurai, Tetsuya; Seki, Motoaki; Narangajavana, Jarunya
2015-08-01
Development of storage roots is a process associated with a phase change from cell division and elongation to radial growth and accumulation of massive amounts of reserve substances such as starch. Knowledge of the regulation of cassava storage root formation has accumulated over time; however, gene regulation during the initiation and early stage of storage root development is still poorly understood. In this study, transcription profiling of fibrous, intermediate and storage roots at eight weeks old were investigated using a 60-mer-oligo microarray. Transcription and gene expression were found to be the key regulating processes during the transition stage from fibrous to intermediate roots, while homeostasis and signal transduction influenced regulation from intermediate roots to storage roots. Clustering analysis of significant genes and transcription factors (TF) indicated that a number of phytohormone-related TF were differentially expressed; therefore, phytohormone-related genes were assembled into a network of correlative nodes. We propose a model showing the relationship between KNOX1 and phytohormones during storage root initiation. Exogeneous treatment of phytohormones N (6) -benzylaminopurine and 1-Naphthaleneacetic acid were used to induce the storage root initiation stage and to investigate expression patterns of the genes involved in storage root initiation. The results support the hypothesis that phytohormones are acting in concert to regulate the onset of cassava storage root development. Moreover, MeAGL20 is a factor that might play an important role at the onset of storage root initiation when the root tip becomes swollen.
The life cycle of Phaeocystis (Prymnesiophycaea): evidence and hypotheses
NASA Astrophysics Data System (ADS)
Rousseau, V.; Vaulot, D.; Casotti, R.; Cariou, V.; Lenz, J.; Gunkel, J.; Baumann, M.
1994-04-01
The present paper reviews the literature related to the life cycle of the prymnesiophyte Phaeocystis and its controlling factors and proposes novel hypotheses based on unpublished observations in culture and in the field. We chiefly refer to P. globosa Scherffel as most of the observations concern this species. P. globosa exhibits a complex alternation between several types of free-living cells (non-motile, flagellates, microzoopores and possibly macrozoospores) and colonies for which neither forms nor pathways have been completely identified and described. The different types of Phaeocystis cells were reappraised on the basis of existing microscopic descriptions complemented by unpublished flow cytometric investigations. This analysis revealed the existence of at least three different types of free-living cells identified on the basis of a combination of size, motility and ploidy characteristics: non-motile cells, flagellates and microzoospores. Their respective function within Phaeocystis life cycle, and in particular their involvement in colony formation is not completely understood. Observational evidence shows that Phaeocystis colonies are initiated at the early stage of their bloom each by one free-living cell. The mechanisms controlling this cellular transformation are still uncertain due to the lack of information on the overwintering Phaeocystis fomms and on the cell type responsible for colony induction. The existence of haploid microzoospores released from senescent colonies gives however some support to sexuality involvement at some stages of colony formation. Once colonies are formed, at least two mechanisms were identified as responsible of the spreading of colony form: colony multiplication by colonial division or budding and induction of new colony from colonial cells released in the external medium after colony disruption. The latter mechanism was clearly identified, involving at least two successive cell differentiations in the following sequence: motility development, subsequent flagella loss and settlement to a surface, mucus secretion and colony formation, colonial cell division and colony growth. Aggregate formation, cell motility development and subsequent emigration from the colonies, release of non-motile cells after colony lysis on the other hand, were identified as characteristics for termination of Phaeocystis colony development. These pathways were shown to occur similarly in natural environments. In the early stages of the bloom however, many recently-formed colonies were found on the setae of Chaetoceros spp, suggesting this diatom could play a key-rôle in Phaeocystis bloom inception. Analysis of the possible environmental factors regulating the transition between the different phases of the life cycle, suggested that nutrient status and requirement of a substrate for attachment of free-living cells would be essential for initiation of the colonial form. Physical constraints obviously would be important in determining colony shape and fragmentation although autogenic factors cannot be excluded. Some evidence exists that nutrients regulate colony division, while temperature and nutrient stress would stimulate cell emigration from the colonies.
Are pre-crater mounds gas-inflated?
NASA Astrophysics Data System (ADS)
Leibman, Marina; Kizyakov, Alexandr; Khomutov, Artem; Dvornikov, Yury; Babkina, Elena; Arefiev, Stanislav; Khairullin, Rustam
2017-04-01
Gas-emission craters (GEC) on Yamal peninsula, which occupied minds of researches for the last couple of years since first discovered in 2014, appeared to form on the place of specifically shaped mounds. There was a number of hypotheses involving pingo as an origin of these mounds. This arouse an interest in mapping pingo thus marking the areas of GEC formation risk. Our field research allows us to suggest that remote-sensing-based mapping of pingo may result in mix up of mounds of various origin. Thus, we started with classification of the mounds based on remote-sensing, field observations and survey from helicopter. Then we compared indicators of mounds of various classes to the properties of pre-crater mounds to conclude on their origin. Summarizing field experience, there are three main mound types on Yamal. (1) Outliers (remnant hills), separated from the main geomorphic landform by erosion. Often these mounds comprise polygonal blocks, kind of "baydzherakh". Their indicators are asymmetry (short gentle slope towards the main landform, and steep slope often descending into a small pond of thermokarst-nivation origin), often quadrangle or conic shape, and large size. (2) Pingo, appear within the khasyrei (drain lake basin); often are characterized by open cracks resulting from expansion of polygonal network formed when re-freezing of lake talik prior to pingo formation; old pingo may bear traces of collapse on the top, with depression which differs from the GEC by absence of parapet. (3) Frost-heave mounds (excluding pingo) may form on deep active layer, reducing due to moss-peat formation and forming ice lenses from an active layer water, usually they appear in the drainage hollows, valley bottoms, drain-lake basins periphery. These features are smaller than the first two types of mounds. Their tops as a rule are well vegetated. We were unable to find a single or a set of indicators unequivocally defining any specific mound type, thus indicators of pre-crater mounds are still debatable. Our hypothesis initially does not involve pingo origin of pre-crater mounds for several reasons, among which were the initial depth (70 m) and width (18 m) of the crater void, frozen walls and bottom, no traces of sub-lake talik, an important control for pingo formation, and more. Pre-crater mounds are closer to frost-heave mounds in size (4-7 m high and 30-60 m in diameter). Yet frost-heave mounds like palsa or lithalsa have segregated ice lenses closer to the surface, total thickness of these lenses is equal to the height of the mound. Pre-crater mounds have at least 20 m of tabular ground ice in the section that has no manifestation in the mound height or diameter. All above-mentioned leads to the conclusion that pre-crater mounds form because of gas inflation rather than regular frost heave process involving moisture migration towards the freezing front. This research is supported by Russian Science Foundation Grant 16-17-10203.
Bellenberg, Sören; Díaz, Mauricio; Noël, Nanni; Sand, Wolfgang; Poetsch, Ansgar; Guiliani, Nicolas; Vera, Mario
2014-11-01
Bioleaching of metal sulfides is an interfacial process where biofilm formation is considered to be important in the initial steps of this process. Among the factors regulating biofilm formation, molecular cell-to-cell communication such as quorum sensing is involved. A functional LuxIR-type I quorum sensing system is present in Acidithiobacillus ferrooxidans. However, cell-to-cell communication among different species of acidophilic mineral-oxidizing bacteria has not been studied in detail. These aspects were the scope of this study with emphasis on the effects exerted by the external addition of mixtures of synthetic N-acyl-homoserine-lactones on pure and binary cultures. Results revealed that some mixtures had inhibitory effects on pyrite leaching. Some of them correlated with changes in biofilm formation patterns on pyrite coupons. We also provide evidence that A. thiooxidans and Acidiferrobacter spp. produce N-acyl-homoserine-lactones. In addition, the observation that A. thiooxidans cells attached more readily to pyrite pre-colonized by living iron-oxidizing acidophiles than to heat-inactivated or biofilm-free pyrite grains suggests that other interactions also occur. Our experiments show that pre-cultivation conditions influence A. ferrooxidans attachment to pre-colonized pyrite surfaces. The understanding of cell-to-cell communication may consequently be used to develop attempts to influence biomining/bioremediation processes. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Enzyme activity and AGE formation in a model of AST glycoxidation by D-fructose in vitro.
Bousova, Iva; Vukasović, Danka; Juretić, Dubravka; Palicka, Vladimir; Drsata, Jaroslav
2005-03-01
Non-enzymatic glycation as the chain reaction between reducing sugars and free amino groups of proteins has been shown to correlate with physiological ageing and severity of diabetes. The process involves oxidative steps (glycoxidation). In this paper, the effect of D-fructose as a reactive sugar on aspartate aminotransferase (AST) as a model protein was monitored by measurements of the enzyme activity and formation of fluorescent advanced glycation end products (AGEs). Change in the AST activity was considered as a measure of the overall protein damage caused by glycation, and total AGEs and pentosidine represent, at least partly, the formation of glycoxidation products. Catalytic activity of AST in an incubation mixture containing D-fructose (50 mmol L(-1)), decreased compared to control values to 42% (p < 0.05) and to 11% (p < 0.05) on the 5th and on 21st day of incubation, respectively. In the presence of fructose, total fluorescent AGEs concentration was significantly higher since 5th day of incubation (110%, p < 0.05) and the fluorescent pentosidine concentration from 15th day of incubation (117%, p < 0.05) compared to control values, respectively. Catalytic activity of AST clearly and quantitatively demonstrated functional changes in the enzyme molecule caused by structural modifications initiated by fructose, while the evaluation of AGE formation and especially that of pentosidine by fluorescence measurement was less reliable.
Oxygen Release Induced Chemomechanical Breakdown of Layered Cathode Materials
Mu, Linqin; Lin, Ruoqian; Xu, Rong; ...
2018-04-18
Chemical and mechanical properties interplay on the nanometric scale and collectively govern the functionalities of battery materials. Understanding the relationship between the two can inform the design of battery materials with optimal chemomechanical properties for long-life lithium batteries. Herein, we report a mechanism of nanoscale mechanical breakdown in layered oxide cathode materials, originating from oxygen release at high states of charge under thermal abuse conditions. Here, we observe that the mechanical breakdown of charged Li 1-xNi 0.4Mn 0.4Co 0.2O 2 materials proceeds via a two-step pathway involving intergranular and intragranular crack formation. Owing to the oxygen release, sporadic phase transformationsmore » from the layered structure to the spinel and/or rocksalt structures introduce local stress, which initiates microcracks along grain boundaries and ultimately leads to the detachment of primary particles; i.e., intergranular crack formation. Furthermore, intragranular cracks (pores and exfoliations) form, likely due to the accumulation of oxygen vacancies and continuous phase transformations at the surfaces of primary particles. Finally, finite element modeling confirms our experimental observation that the crack formation is attributable to formation of oxygen vacancies, oxygen release, and phase transformations. This study is designed to directly observe the chemomechanical behavior of layered oxide cathode materials and provides a chemical basis for strengthening primary and secondary particles by stabilizing the oxygen anions in the lattice.« less
The Small GTPase Rif Is Dispensable for Platelet Filopodia Generation in Mice
Goggs, Robert; Savage, Joshua S.; Mellor, Harry; Poole, Alastair W.
2013-01-01
Background Formation of filopodia and other shape change events are vital for platelet hemostatic function. The mechanisms regulating filopodia formation by platelets are incompletely understood however. In particular the small GTPase responsible for initiating filopodia formation by platelets remains elusive. The canonical pathway involving Cdc42 is not essential for filopodia formation in mouse platelets. The small GTPase Rif (RhoF) provides an alternative route to filopodia generation in other cell types and is expressed in both human and mouse platelets. Hypothesis/Objective We hypothesized that Rif might be responsible for generating filopodia by platelets and generated a novel knockout mouse model to investigate the functional role of Rif in platelets. Methodology/Principal Findings Constitutive RhoF−/− mice are viable and have normal platelet, leukocyte and erythrocyte counts and indices. RhoF−/− platelets form filopodia and spread normally on various agonist surfaces in static conditions and under arterial shear. In addition, RhoF−/− platelets have normal actin dynamics, are able to activate and aggregate normally and secrete from alpha and dense granules in response to collagen related peptide and thrombin stimulation. Conclusions The small GTPase Rif does not appear to be critical for platelet function in mice. Functional overlap between Rif and other small GTPases may be responsible for the non-essential role of Rif in platelets. PMID:23359340
Oxygen Release Induced Chemomechanical Breakdown of Layered Cathode Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Linqin; Lin, Ruoqian; Xu, Rong
Chemical and mechanical properties interplay on the nanometric scale and collectively govern the functionalities of battery materials. Understanding the relationship between the two can inform the design of battery materials with optimal chemomechanical properties for long-life lithium batteries. Herein, we report a mechanism of nanoscale mechanical breakdown in layered oxide cathode materials, originating from oxygen release at high states of charge under thermal abuse conditions. Here, we observe that the mechanical breakdown of charged Li 1-xNi 0.4Mn 0.4Co 0.2O 2 materials proceeds via a two-step pathway involving intergranular and intragranular crack formation. Owing to the oxygen release, sporadic phase transformationsmore » from the layered structure to the spinel and/or rocksalt structures introduce local stress, which initiates microcracks along grain boundaries and ultimately leads to the detachment of primary particles; i.e., intergranular crack formation. Furthermore, intragranular cracks (pores and exfoliations) form, likely due to the accumulation of oxygen vacancies and continuous phase transformations at the surfaces of primary particles. Finally, finite element modeling confirms our experimental observation that the crack formation is attributable to formation of oxygen vacancies, oxygen release, and phase transformations. This study is designed to directly observe the chemomechanical behavior of layered oxide cathode materials and provides a chemical basis for strengthening primary and secondary particles by stabilizing the oxygen anions in the lattice.« less
Review of osteoimmunology and the host response in endodontic and periodontal lesions
Graves, Dana T.; Oates, Thomas; Garlet, Gustavo P.
2011-01-01
Both lesions of endodontic origin and periodontal diseases involve the host response to bacteria and the formation of osteolytic lesions. Important for both is the upregulation of inflammatory cytokines that initiate and sustain the inflammatory response. Also important are chemokines that induce recruitment of leukocyte subsets and bone-resorptive factors that are largely produced by recruited inflammatory cells. However, there are differences also. Lesions of endodontic origin pose a particular challenge since that bacteria persist in a protected reservoir that is not readily accessible to the immune defenses. Thus, experiments in which the host response is inhibited in endodontic lesions tend to aggravate the formation of osteolytic lesions. In contrast, bacteria that invade the periodontium appear to be less problematic so that blocking arms of the host response tend to reduce the disease process. Interestingly, both lesions of endodontic origin and periodontitis exhibit inflammation that appears to inhibit bone formation. In periodontitis, the spatial location of the inflammation is likely to be important so that a host response that is restricted to a subepithelial space is associated with gingivitis, while a host response closer to bone is linked to bone resorption and periodontitis. However, the persistence of inflammation is also thought to be important in periodontitis since inflammation present during coupled bone formation may limit the capacity to repair the resorbed bone. PMID:21547019
Things fall apart: Fragmentation reactions in the oxidative aging of organic species
NASA Astrophysics Data System (ADS)
Kroll, J. H.; Isaacman-VanWertz, G. A.; Wilson, K. R.; Daumit, K. E.; Kessler, S. H.; Lim, C. Y.; Worsnop, D. R.
2016-12-01
The atmospheric oxidation of organic compounds involves a wide array of chemical transformations, including functionalization reactions (addition of polar functional groups to the carbon skeleton), fragmentation reactions (formation of lower carbon-number products via C-C bond scission), and accretion reactions (increases in molecular weight by the combination of two chemical species). Each of these reaction classes can lead to large changes in volatility, and hence can have major implications for atmospheric organic aerosol (OA). For example, the formation of OA is predominantly driven by functionalization and accretion reactions, which generally lead to decreases in volatility. Here we describe a series of laboratory studies of the subsequent organic "aging", the multiday oxidation processes that occur after the initial OA formation and growth. In these studies, the multigenerational oxidation of organic compounds in various phases (the gas phase, the condensed OA phase, and the aqueous phase) is carried out within either an environmental chamber or a flow reactor, and monitored using various high-resolution mass spectrometric techniques. In all cases it is found that fragmentation reactions play a major role in the observed aging chemistry, dominated by the formation of small, volatile oxidation products. These results suggest that multi-day oxidative aging processes do not lead to sustained aerosol growth, but rather may serve as a chemical sink for atmospheric OA.
Fernández, Tulio; Olave, Gilberto; Valencia, Carlos H; Arce, Sandra; Quinn, Julian M W; Thouas, George A; Chen, Qi-Zhi
2014-07-01
Vascularization of an artificial graft represents one of the most significant challenges facing the field of bone tissue engineering. Over the past decade, strategies to vascularize artificial scaffolds have been intensively evaluated using osteoinductive calcium phosphate (CaP) biomaterials in animal models. In this work, we observed that CaP-based biomaterials implanted into rat calvarial defects showed remarkably accelerated formation and mineralization of new woven bone in defects in the initial stages, at a rate of ∼60 μm/day (0.8 mg/day), which was considerably higher than normal bone growth rates (several μm/day, 0.1 mg/day) in implant-free controls of the same age. Surprisingly, we also observed histological evidence of primary osteon formation, indicated by blood vessels in early-region fibrous tissue, which was encapsulated by lamellar osteocyte structures. These were later fully replaced by compact bone, indicating complete regeneration of calvarial bone. Thus, the CaP biomaterial used here is not only osteoinductive, but vasculogenic, and it may have contributed to the bone regeneration, despite an absence of osteons in normal rat calvaria. Further investigation will involve how this strategy can regulate formation of vascularized cortical bone such as by control of degradation rate, and use of models of long, dense bones, to more closely approximate repair of human cortical bone.
Kaur, Harsimran; Sparvoli, Daniela; Osakada, Hiroko; Iwamoto, Masaaki; Haraguchi, Tokuko; Turkewitz, Aaron P.
2017-01-01
The ciliate Tetrahymena thermophila synthesizes large secretory vesicles called mucocysts. Mucocyst biosynthesis shares features with dense core granules (DCGs) in animal cells, including proteolytic processing of cargo proteins during maturation. However, other molecular features have suggested relatedness to lysosome-related organelles (LROs). LROs, which include diverse organelles in animals, are formed via convergence of secretory and endocytic trafficking. Here we analyzed Tetrahymena syntaxin 7-like 1 (Stx7l1p), a Qa-SNARE whose homologues in other lineages are linked with vacuoles/LROs. Stx7l1p is targeted to both immature and mature mucocysts and is essential in mucocyst formation. In STX7L1-knockout cells, the two major classes of mucocyst cargo proteins localize independently, accumulating in largely nonoverlapping vesicles. Thus initial formation of immature mucocysts involves heterotypic fusion, in which a subset of mucocyst proteins is delivered via an endolysosomal compartment. Further, we show that subsequent maturation requires AP-3, a complex widely implicated in LRO formation. Knockout of the µ-subunit gene does not impede delivery of any known mucocyst cargo but nonetheless arrests mucocyst maturation. Our data argue that secretory organelles in ciliates may represent a new class of LROs and reveal key roles of an endosomal syntaxin and AP-3 in the assembly of this complex compartment. PMID:28381425
Clark, Kevin D.; Strand, Michael R.
2013-01-01
The phenoloxidase (PO) cascade regulates the melanization of blood (hemolymph) in insects and other arthropods. Most studies indicate that microbial elicitors activate the PO cascade, which results in processing of the zymogen PPO to PO. PO is then thought to oxidize tyrosine and o-diphenols to quinones, which leads to melanin. However, different lines of investigation raise questions as to whether these views are fully correct. Here we report that hemolymph from the silkmoth, Bombyx mori, rapidly melanizes after collection from a wound site. Prior studies indicated that in vitro activated PPO hydroxylates Tyr inefficiently. Measurement of in vivo substrate titers, however, suggested that Tyr was the only PO substrate initially present in B. mori plasma and that it is rapidly metabolized by PO. Fractionation of plasma by gel filtration chromatography followed by bioassays indicated that melanization activity was primarily associated with a high mass complex (∼670 kDa) that contained PO. The prophenoloxidase-activating protease inhibitor Egf1.0 blocked formation of this complex and Tyr metabolism, but the addition of phenylthiourea to plasma before fractionation enhanced complex formation and Tyr metabolism. Mass spectrometry analysis indicated that the complex contained PO plus other proteins. Taken together, our results indicate that wounding alone activates the PO cascade in B. mori. They also suggest that complex formation is required for efficient use of Tyr as a substrate. PMID:23553628
Jia, Hanzhong; Nulaji, Gulimire; Gao, Hongwei; Wang, Fu; Zhu, Yunqing; Wang, Chuanyi
2016-06-21
Environmentally persistent free radicals (EPFRs) are occasionally detected in Superfund sites but the formation of EPFRs induced by polycyclic aromatic hydrocarbons (PAHs) is not well understood. In the present work, the formation of EPFRs on anthracene-contaminated clay minerals was quantitatively monitored via electron paramagnetic resonance (EPR) spectroscopy, and surface/interface-related environmental influential factors were systematically explored. The obtained results suggest that EPFRs are more readily formed on anthracene-contaminated Fe(III)-montmorillonite than in other tested systems. Depending on the reaction condition, more than one type of organic radicals including anthracene-based radical cations with g-factors of 2.0028-2.0030 and oxygenic carbon-centered radicals featured by g-factors of 2.0032-2.0038 were identified. The formed EPFRs are stabilized by their interaction with interlayer surfaces, and such surface-bound EPFRs exhibit slow decay with 1/e-lifetime of 38.46 days. Transformation pathway and possible mechanism are proposed on the basis of experimental results and quantum mechanical simulations. Overall, the formation of EPFRs involves single-electron-transfer from anthracene to Fe(III) initially, followed by H2O addition on formed aromatic radical cation. Because of their potential exposure in soil and atmosphere, such clay surface-associated EPFRs might induce more serious toxicity than PAHs and exerts significant impacts on human health.
Baba, Otto; Ota, Masato S; Terashima, Tatsuo; Tabata, Makoto J; Takano, Yoshiro
2015-05-01
Fibroblast growth factors (FGFs) regulate the proliferation and differentiation of various cells via their respective receptors (FGFRs). During the early stages of tooth development in fetal mice, FGFs and FGFRs have been shown to be expressed in dental epithelia and mesenchymal cells at the initial stages of odontogenesis and to regulate cell proliferation and differentiation. However, little is known about the expression patterns of FGFs in the advanced stages of tooth development. In the present study, we focused on FGF18 expression in the rat mandibular first molar (M1) during the postnatal crown and root formation stages. FGF18 signals by RT-PCR using cDNAs from M1 were very weak at postnatal day 5 and were significantly up-regulated at days 7, 9 and 15. Transcripts were undetectable by in situ hybridization (ISH) but could be detected by in situ RT-PCR in the differentiated odontoblasts and cells of the sub-odontoblastic layer in both crown and root portions of M1 at day 15. The transcripts of FGFR2c and FGFR3, possible candidate receptors of FGF18, were detected by RT-PCR and ISH in differentiated odontoblasts throughout postnatal development. These results suggest the continual involvement of FGF18 signaling in the regulation of odontoblasts during root formation where it may contribute to dentin matrix formation and/or mineralization.
Chun, Kyung-Soo; Lao, Huei-Chen; Trempus, Carol S.; Okada, Manabu; Langenbach, Robert
2009-01-01
Prostaglandin E2 (PGE2) is elevated in many tumor types, but PGE2's contributions to tumor growth are largely unknown. To investigate PGE2's roles, the contributions of one of its receptors, EP2, were studied using the mouse skin initiation/promotion model. Initial studies indicated that protein kinase A (PKA), epidermal growth factor receptor (EGFR) and several effectors—cyclic adenosine 3′,5′-monophosphate response element-binding protein (CREB), H-Ras, Src, protein kinase B (AKT) and extracellular signal-regulated kinase (ERK)1/2—were activated in 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted papillomas and that PKA and EGFR inhibition (H89 and AG1478, respectively) decreased papilloma formation. EP2's contributions to the activation of these pathways and papilloma development were determined by inhibiting endogenous TPA-induced PGE2 production with indomethacin (Indo) and concomitantly treating with the EP2 agonist, CAY10399 (CAY). CAY treatment restored papilloma formation in TPA/Indo-treated mice and increased cyclic adenosine 3′,5′-monophosphate and PKA activation as measured by p-CREB formation. CAY treatment also increased EGFR and Src activation and their inhibition by AG1478 and PP2 indicated that Src was upstream of EGFR. CAY also increased H-Ras, ERK1/2 and AKT activation, and AG1478 decreased their activation indicating EGFR being upstream. Supporting EP2's contribution, EP2−/− mice exhibited 65% fewer papillomas and reduced Src, EGFR, H-Ras, AKT and ERK1/2 activation. G protein-coupled receptor (GPCR) activation of EGFR has been reported to involve Src's activation via a GPCR–β-arrestin–Src complex. Indeed, immunoprecipitation of β-arrestin1 or p-Src indicated the presence of an EP2–β-arrestin1–p-Src complex in papillomas. The data indicated that EP2 contributed to tumor formation via activation of PKA and EGFR and that EP2 formed a complex with β-arrestin1 and Src that contributed to signaling and/or EP2 desensitization. PMID:19587094
Thermal evolution of a partially differentiated H chondrite parent body
NASA Astrophysics Data System (ADS)
Abrahams, J. N. H.; Bryson, J. F. J.; Weiss, B. P.; Nimmo, F.
2016-12-01
It has traditionally been assumed that planetesimals either melted entirely or remained completely undifferentiated as they accreted. The unmelted textures and cooling histories of chondrites have been used to argue that these meteorites originated from bodies that never differentiated. However, paleomagnetic measurements indicate that some chondrites (e.g., the H chondrite Portales Valley and several CV chondrites) were magnetized by a core dynamo magnetic field, implying that their parent bodies were partially differentiated. It has been unclear, however, whether planetesimal histories consistent with dynamo production can also be consistent with the diversity of chondrite cooling rates and ages. To address this, we modeled the thermal evolution of the H chondrite parent body, considering a variety of accretion histories and parent body radii. We considered partial differentiation using two-stage accretion involving the initial formation and differentiation of a small body, followed by the later addition of low thermal conductivity chondritic material that remains mostly unmelted. We were able to reproduce the measured thermal evolution of multiple H chondrites for a range of parent body parameters, including initial radii from 70-150 km, chondritic layer thicknesses from 50 km to over 100 km, and second stage accretion times of 2.5-3 Myr after solar system formation. Our predicted rates of core cooling and crystallization are consistent with dynamo generation by compositional convection beginning 60-200 Myr after solar system formation and lasting for at least tens of millions of years. This is consistent with magnetic studies of Portales Valley [Bryson et al., this meeting]. In summary, we find that thermal models of partial differentiation are consistent the radiometric ages, magnetization, and cooling rates of a diversity H chondrites.
NASA Astrophysics Data System (ADS)
Filas, Benjamen A.; Oltean, Alina; Majidi, Shabnam; Bayly, Philip V.; Beebe, David C.; Taber, Larry A.
2012-12-01
In the early embryo, the brain initially forms as a relatively straight, cylindrical epithelial tube composed of neural stem cells. The brain tube then divides into three primary vesicles (forebrain, midbrain, hindbrain), as well as a series of bulges (rhombomeres) in the hindbrain. The boundaries between these subdivisions have been well studied as regions of differential gene expression, but the morphogenetic mechanisms that generate these constrictions are not well understood. Here, we show that regional variations in actomyosin-based contractility play a major role in vesicle formation in the embryonic chicken brain. In particular, boundaries did not form in brains exposed to the nonmuscle myosin II inhibitor blebbistatin, whereas increasing contractile force using calyculin or ATP deepened boundaries considerably. Tissue staining showed that contraction likely occurs at the inner part of the wall, as F-actin and phosphorylated myosin are concentrated at the apical side. However, relatively little actin and myosin was found in rhombomere boundaries. To determine the specific physical mechanisms that drive vesicle formation, we developed a finite-element model for the brain tube. Regional apical contraction was simulated in the model, with contractile anisotropy and strength estimated from contractile protein distributions and measurements of cell shapes. The model shows that a combination of circumferential contraction in the boundary regions and relatively isotropic contraction between boundaries can generate realistic morphologies for the primary vesicles. In contrast, rhombomere formation likely involves longitudinal contraction between boundaries. Further simulations suggest that these different mechanisms are dictated by regional differences in initial morphology and the need to withstand cerebrospinal fluid pressure. This study provides a new understanding of early brain morphogenesis.
NASA Astrophysics Data System (ADS)
O'Rourke, J. G.; Stevenson, D. J.
2015-12-01
Abundances of siderophile elements in the primitive mantle constrain the conditions of Earth's core/mantle differentiation. Core growth occurred as Earth accreted from collisions between planetesimals and larger embryos of unknown original provenance, so geochemistry is directly related to the overall dynamics of Solar System formation. Recent studies claim that only certain conditions of equilibration (pressure, temperature, and oxygen fugacity) during core formation can reproduce the available data. Typical analyses, however, only consider the effects of varying a few out of tens of free parameters in continuous core formation models. Here we describe the Markov chain Monte Carlo method, which simultaneously incorporates the large uncertainties on Earth's composition and the parameterizations that describe elemental partitioning between metal and silicate. This Bayesian technique is vastly more computationally efficient than a simple grid search and is well suited to models of planetary accretion that involve a plethora of variables. In contrast to previous work, we find that analyses of siderophile elements alone cannot yield a unique scenario for Earth's accretion. Our models predict a wide range of possible light element contents for the core, encompassing all combinations permitted by seismology and mineral physics. Specifically, we are agnostic between silicon and oxygen as the dominant light element, and the addition of carbon or sulfur is also permissible but not well constrained. Redox conditions may have remained roughly constant during Earth's accretion or relatively oxygen-rich material could have been incorporated before reduced embryos. Pressures and temperatures of equilibration, likewise, may only increase slowly throughout accretion. Therefore, we do not necessarily expect a thick (>500 km), compositionally stratified layer that is stable against convection to develop at the top of the core of Earth (or, by analogy, Venus). A thinner stable layer might inhibit the initialization of the dynamo.
Heude, Églantine; Shaikho, Sarah; Ekker, Marc
2014-01-01
The Dlx5 and Dlx6 genes encode homeodomain transcription factors essential for the proper development of limbs in mammalian species. However, the role of their teleost counterparts in fin development has received little attention. Here, we show that dlx5a is an early marker of apical ectodermal cells of the pectoral fin buds and of the median fin fold, but also of cleithrum precursor cells during pectoral girdle development. We propose that early median fin fold establishment results from the medial convergence of dlx5a-expressing cells at the lateral edges of the neural keel. Expression analysis also shows involvement of dlx5a during appendage skeletogenesis. Using morpholino-mediated knock down, we demonstrate that disrupted dlx5a/6a function results in pectoral fin agenesis associated with misexpression of bmp4, fgf8a, and1 and msx genes. In contrast, the median fin fold presents defects in mesenchymal cell migration and actinotrichia formation, whereas the initial specification seems to occur normally. Our results demonstrate that the dlx5a/6a genes are essential for the induction of pectoral fin outgrowth, but are not required during median fin fold specification. The dlx5a/6a knock down also causes a failure of cleithrum formation associated with a drastic loss of runx2b and col10a1 expression. The data indicate distinct requirements for dlx5a/6a during median and pectoral fin development suggesting that initiation of unpaired and paired fin formation are not directed through the same molecular mechanisms. Our results refocus arguments on the mechanistic basis of paired appendage genesis during vertebrate evolution. PMID:24858471
CD44 in cancer progression: adhesion, migration and growth regulation.
Marhaba, R; Zöller, M
2004-03-01
It is well established that the large array of functions that a tumour cell has to fulfil to settle as a metastasis in a distant organ requires cooperative activities between the tumour and the surrounding tissue and that several classes of molecules are involved, such as cell-cell and cell-matrix adhesion molecules and matrix degrading enzymes, to name only a few. Furthermore, metastasis formation requires concerted activities between tumour cells and surrounding cells as well as matrix elements and possibly concerted activities between individual molecules of the tumour cell itself. Adhesion molecules have originally been thought to be essential for the formation of multicellular organisms and to tether cells to the extracellular matrix or to neighbouring cells. CD44 transmembrane glycoproteins belong to the families of adhesion molecules and have originally been described to mediate lymphocyte homing to peripheral lymphoid tissues. It was soon recognized that the molecules, under selective conditions, may suffice to initiate metastatic spread of tumour cells. The question remained as to how a single adhesion molecule can fulfil that task. This review outlines that adhesion is by no means a passive task. Rather, ligand binding, as exemplified for CD44 and other similar adhesion molecules, initiates a cascade of events that can be started by adherence to the extracellular matrix. This leads to activation of the molecule itself, binding to additional ligands, such as growth factors and matrix degrading enzymes, complex formation with additional transmembrane molecules and association with cytoskeletal elements and signal transducing molecules. Thus, through the interplay of CD44 with its ligands and associating molecules CD44 modulates adhesiveness, motility, matrix degradation, proliferation and cell survival, features that together may well allow a tumour cell to proceed through all steps of the metastatic cascade.
Establishment of spatial pattern.
Slack, Jonathan
2014-01-01
An overview and perspective are presented of mechanisms for the development of spatial pattern in animal embryos. It is intended both for new entrants to developmental biology and for specialists in other fields, with only a basic knowledge of animal life cycles being required. The first event of pattern formation is normally the localization of a cytoplasmic determinant in the egg, either during oogenesis or post-fertilization. Following cleavage to a multicellular stage, some cells contain the determinant and others do not. The determinant confers a specific developmental pathway on the cells that contain it, often making them the source of the first extracellular signal, or inducing factor. Inducing factors often form concentration gradients to which cells respond by up or downregulating genes at various concentration thresholds. This enables an initial situation consisting of two cell states (with or without the determinant) to generate a multistate pattern. Multiple rounds of gradient signaling, interspersed with phases of morphogenetic movements, can generate a complex pattern using a small number of signals and responding genes. Development proceeds in a hierarchical manner, with broad body subdivisions being specified initially, and becoming successively subdivided to give individual organs and tissues composed of multiple cell types in a characteristic arrangement. Double gradient models can account for embryonic regulation, whereby a similarly proportioned body pattern is formed following removal of material. Processes that are involved at the later stages include the formation of repeating structures by the combination of an oscillator with a gradient, and the formation of tissues with one cell type scattered in a background of another through a process called lateral inhibition. This set of processes make up a 'developmental toolkit' which can be deployed in various sequences and combinations to generate a very wide variety of structures and cell types. © 2014 Wiley Periodicals, Inc.
Where is the F in MCH? Father involvement in African American families.
Lu, Michael C; Jones, Loretta; Bond, Melton J; Wright, Kynna; Pumpuang, Maiteeny; Maidenberg, Molly; Jones, Drew; Garfield, Craig; Rowley, Diane L
2010-01-01
To: 1) review the historical contexts and current profiles of father involvement in African American families; 2) identify barriers to, and supports of, involvement; 3) evaluate the effectiveness of father involvement programs; and 4) recommend directions for future research, programs, and public policies. Review of observational and interventional studies on father involvement. Several historical developments (slavery, declining employment for Black men and increasing workforce participation for Black women, and welfare policies that favored single mothers) led to father absence from African American families. Today, more than two thirds of Black infants are born to unmarried mothers. Even if unmarried fathers are actively involved initially, their involvement over time declines. We identified multiple barriers to, and supports of, father involvement at multiple levels. These levels include intrapersonal (eg, human capital, attitudes and beliefs about parenting), interpersonal (eg, the father's relationships with the mother and maternal grandmother), neighborhoods and communities (eg, high unemployment and incarceration rates), cultural or societal (eg, popular cultural perceptions of Black fathers as expendable and irresponsible, racial stratification and institutionalized racism), policy (eg, Earned Income Tax Credit, Temporary Assistance for Needy Families, child support enforcement), and life-course factors (eg, father involvement by the father's father). We found strong evidence of success for several intervention programs (eg, Reducing the Risk, Teen Outreach Program, and Children's Aid Society - Carrera Program) designed to prevent formation of father-absent families, but less is known about the effectiveness of programs to encourage greater father involvement because of a lack of rigorous research design and evaluation for most programs. A multi-level, life-course approach is needed to strengthen the capacity of African American men to promote greater involvement in pregnancy and parenting as they become fathers.
Mechanics of graben formation in crustal rocks - A finite element analysis
NASA Technical Reports Server (NTRS)
Melosh, H. J.; Williams, C. A., Jr.
1989-01-01
The mechanics of the initial stages of graben formation are examined, showing that the configuration of a graben (a pair of antithetically dipping normal faults) is the most energetically favorable fault configuration in elastic-brittle rocks subjected to pure extension. The stress field in the vicinity of a single initial normal fault is computed with a two-dimensional FEM. It is concluded that the major factor controlling graben width is the depth of the initial fault.
Tamarit, Blanche; Bugault, Florence; Pillet, Anne-Hélène; Lavergne, Vincent; Bochet, Pascal; Garin, Nathalie; Schwarz, Ulf; Thèze, Jacques; Rose, Thierry
2013-01-01
Interleukin (IL)-7 is the main homeostatic regulator of CD4 T-lymphocytes (helper) at both central and peripheral levels. Upon activation by IL-7, several signaling pathways, mainly JAK/STAT, PI3K/Akt and MAPK, induce the expression of genes involved in T-cell differentiation, activation, and proliferation. We have analyzed the early events of CD4 T-cell activation by IL-7. We have shown that IL-7 in the first few min induces the formation of cholesterol-enriched membrane microdomains that compartmentalize its activated receptor and initiate its anchoring to the cytoskeleton, supporting the formation of the signaling complex, the signalosome, on the IL-7 receptor cytoplasmic domains. Here we describe by stimulated emission depletion microscopy the key roles played by membrane microdomains and cytoskeleton transient organization in the IL-7-regulated JAK/STAT signaling pathway. We image phospho-STAT5 and cytoskeleton components along IL-7 activation kinetics using appropriate inhibitors. We show that lipid raft inhibitors delay and reduce IL-7-induced JAK1 and JAK3 phosphorylation. Drug-induced disassembly of the cytoskeleton inhibits phospho-STAT5 formation, transport, and translocation into the nucleus that controls the transcription of genes involved in T-cell activation and proliferation. We fit together the results of these quantitative analyses and propose the following mechanism. Activated IL-7 receptors embedded in membrane microdomains induce actin-microfilament meshwork formation, anchoring microtubules that grow radially from rafted receptors to the nuclear membrane. STAT5 phosphorylated by signalosomes are loaded on kinesins and glide along the microtubules across the cytoplasm to reach the nucleus 2 min after IL-7 stimulation. Radial microtubules disappear 15 min later, while transversal microtubules, independent of phospho-STAT5 transport, begin to bud from the microtubule organization center. PMID:23329834
Chipiso, Kudzanai; Logan, Isabelle E; Eskew, Matthew W; Omondi, Benard; Simoyi, Reuben H
2016-10-11
The kinetics and mechanism of the oxidation of the important antitubercular agent, ethionamide, ETA (2-ethylthioisonicotinamide), by peracetic acid (PAA) have been studied. It is effectively a biphasic reaction with an initial rapid first phase of the reaction which is over in about 5 s and a second slower phase of the reaction which can run up to an hour. The first phase involves the addition of a single oxygen atom to ethionamide to form the S-oxide. The second phase involves further oxidation of the S-oxide to desulfurization of ETA to give 2-ethylisonicotinamide. In contrast to the stability of most organosulfur compounds, the S-oxide of ETA is relatively stable and can be isolated. In conditions of excess ETA, the stoichiometry of the reaction was strictly 1:1: CH 3 CO 3 H + Et(C 5 H 4 )C(═S)NH 2 → CH 3 CO 2 H + Et(C 5 H 4 )C(═NH)SOH. In this oxidation, it was apparent that only the sulfur center was the reactive site. Though ETA was ultimately desulfurized, only the S-oxide was stable. Electrospray ionization (ESI) spectral analysis did not detect any substantial formation of the sulfinic and sulfonic acids. This suggests that cleavage of the carbon-sulfur bond occurs at the sulfenic acid stage, resulting in the formation of an unstable sulfur species that can react further to form more stable sulfur species. In this oxidation, no sulfate formation was observed. ESI spectral analysis data showed a final sulfur species in the form of a dimeric sulfur monoxide species, H 3 S 2 O 2 . We derived a bimolecular rate constant for the formation of the S-oxide of (3.08 ± 0.72) × 10 2 M -1 s -1 . Oxidation of the S-oxide further to give 2-ethylisonicotinamide gave zero order kinetics.
E2-EPF UCP Possesses E3 Ubiquitin Ligase Activity via Its Cysteine 118 Residue.
Lim, Jung Hwa; Shin, Hee Won; Chung, Kyung-Sook; Kim, Nam-Soon; Kim, Ju Hee; Jung, Hong-Ryul; Im, Dong-Soo; Jung, Cho-Rok
Here, we show that E2-EPF ubiquitin carrier protein (UCP) elongated E3-independent polyubiquitin chains on the lysine residues of von Hippel-Lindau protein (pVHL) and its own lysine residues both in vitro and in vivo. The initiation of the ubiquitin reaction depended on not only Lys11 linkage but also the Lys6, Lys48 and Lys63 residues of ubiquitin, which were involved in polyubiquitin chain formation on UCP itself. UCP self-association occurred through the UBC domain, which also contributed to the interaction with pVHL. The polyubiquitin chains appeared on the N-terminus of UCP in vivo, which indicated that the N-terminus of UCP contains target lysines for polyubiquitination. The Lys76 residue of UCP was the most critical site for auto-ubiquitination, whereas the polyubiquitin chain formation on pVHL occurred on all three of its lysines (Lys159, Lys171 and Lys196). A UCP mutant in which Cys118 was changed to alanine (UCPC118A) did not form a polyubiquitin chain but did strongly accumulate mono- and di-ubiquitin via auto-ubiquitination. Polyubiquitin chain formation required the coordination of Cys95 and Cys118 between two interacting molecules. The mechanism of the polyubiquitin chain reaction of UCP may involve the transfer of ubiquitin from Cys95 to Cys118 by trans-thiolation, with polyubiquitin chains forming at Cys118 by reversible thioester bonding. The polyubiquitin chains are then moved to the lysine residues of the substrate by irreversible isopeptide bonding. During the elongation of the ubiquitin chain, an active Cys118 residue is required in both parts of UCP, namely, the catalytic enzyme and the substrate. In conclusion, UCP possesses not only E2 ubiquitin conjugating enzyme activity but also E3 ubiquitin ligase activity, and Cys118 is critical for polyubiquitin chain formation.
E2-EPF UCP Possesses E3 Ubiquitin Ligase Activity via Its Cysteine 118 Residue
Lim, Jung Hwa; Shin, Hee Won; Chung, Kyung-Sook; Kim, Nam-Soon; Kim, Ju Hee; Jung, Hong-Ryul; Im, Dong-Soo; Jung, Cho-Rok
2016-01-01
Here, we show that E2-EPF ubiquitin carrier protein (UCP) elongated E3-independent polyubiquitin chains on the lysine residues of von Hippel-Lindau protein (pVHL) and its own lysine residues both in vitro and in vivo. The initiation of the ubiquitin reaction depended on not only Lys11 linkage but also the Lys6, Lys48 and Lys63 residues of ubiquitin, which were involved in polyubiquitin chain formation on UCP itself. UCP self-association occurred through the UBC domain, which also contributed to the interaction with pVHL. The polyubiquitin chains appeared on the N-terminus of UCP in vivo, which indicated that the N-terminus of UCP contains target lysines for polyubiquitination. The Lys76 residue of UCP was the most critical site for auto-ubiquitination, whereas the polyubiquitin chain formation on pVHL occurred on all three of its lysines (Lys159, Lys171 and Lys196). A UCP mutant in which Cys118 was changed to alanine (UCPC118A) did not form a polyubiquitin chain but did strongly accumulate mono- and di-ubiquitin via auto-ubiquitination. Polyubiquitin chain formation required the coordination of Cys95 and Cys118 between two interacting molecules. The mechanism of the polyubiquitin chain reaction of UCP may involve the transfer of ubiquitin from Cys95 to Cys118 by trans-thiolation, with polyubiquitin chains forming at Cys118 by reversible thioester bonding. The polyubiquitin chains are then moved to the lysine residues of the substrate by irreversible isopeptide bonding. During the elongation of the ubiquitin chain, an active Cys118 residue is required in both parts of UCP, namely, the catalytic enzyme and the substrate. In conclusion, UCP possesses not only E2 ubiquitin conjugating enzyme activity but also E3 ubiquitin ligase activity, and Cys118 is critical for polyubiquitin chain formation. PMID:27685940
Ma, Xiqing; Xu, Qian; Meyer, William A; Huang, Bingru
2016-09-01
Rhizomes are underground stems with meristematic tissues capable of generating shoots and roots. However, mechanisms controlling rhizome formation and growth are yet to be completely understood. The objectives of this study were to investigate whether rhizome development could be regulated by cytokinins (CKs) and gibberellic acids (GAs), and determine underlying mechanisms of regulation of rhizome formation and growth of tall fescue (Festuca arundinacea) by a CK or GA through proteomic and transcript analysis. A rhizomatous genotype of tall fescue ('BR') plants were treated with 6-benzylaminopurine (BAP, a synthetic cytokinin) or GA3 in hydroponic culture in growth chambers. Furthermore, comparative proteomic analysis of two-dimensional electrophoresis and mass spectrometry were performed to investigate proteins and associated metabolic pathways imparting increased rhizome number by BAP and rhizome elongation by GA3 KEY RESULTS: BAP stimulated rhizome formation while GA3 promoted rhizome elongation. Proteomic analysis identified 76 differentially expressed proteins (DEPs) due to BAP treatment and 37 DEPs due to GA3 treatment. Cytokinin-related genes and cell division-related genes were upregulated in the rhizome node by BAP and gibberellin-related and cell growth-related genes in the rhizome by GA3 CONCLUSIONS: Most of the BAP- or GA-responsive DEPs were involved in respiratory metabolism and amino acid metabolism. Transcription analysis demonstrated that genes involved in hormone metabolism, signalling pathways, cell division and cell-wall loosening were upregulated by BAP or GA3 The CK and GA promoted rhizome formation and growth, respectively, by activating metabolic pathways that supply energy and amino acids to support cell division and expansion during rhizome initiation and elongation in tall fescue. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Experimental investigation on thermochemical sulfate reduction by H2S initiation
Zhang, T.; Amrani, A.; Ellis, G.S.; Ma, Q.; Tang, Y.
2008-01-01
Hydrogen sulfide (H2S) is known to catalyze thermochemical sulfate reduction (TSR) by hydrocarbons (HC), but the reaction mechanism remains unclear. To understand the mechanism of this catalytic reaction, a series of isothermal gold-tube hydrous pyrolysis experiments were conducted at 330 ??C for 24 h under a constant confining pressure of 24.1 MPa. The reactants used were saturated HC (sulfur-free) and CaSO4 in the presence of variable H2S partial pressures at three different pH conditions. The experimental results showed that the in-situ pH of the aqueous solution (herein, in-situ pH refers to the calculated pH of aqueous solution under the experimental conditions) can significantly affect the rate of the TSR reaction. A substantial increase in the TSR reaction rate was recorded with a decrease in the in-situ pH value of the aqueous solution involved. A positive correlation between the rate of TSR and the initial partial pressure of H2S occurred under acidic conditions (at pH ???3-3.5). However, sulfate reduction at pH ???5.0 was undetectable even at high initial H2S concentrations. To investigate whether the reaction of H2S(aq) and HSO4- occurs at pH ???3, an additional series of isothermal hydrous pyrolysis experiments was conducted with CaSO4 and variable H2S partial pressures in the absence of HC at the same experimental temperature and pressure conditions. CaSO4 reduction was not measurable in the absence of paraffin even with high H2S pressure and acidic conditions. These experimental observations indicate that the formation of organosulfur intermediates from H2S reacting with hydrocarbons may play a significant role in sulfate reduction under our experimental conditions rather than the formation of elemental sulfur from H2S reacting with sulfate as has been suggested previously (Toland W. G. (1960) Oxidation of organic compounds with aqueous sulphate. J. Am. Chem. Soc. 82, 1911-1916). Quantification of labile organosulfur compounds (LSC), such as thiols and sulfides, was performed on the products of the reaction of H2S and HC from a series of gold-tube non-isothermal hydrous pyrolysis experiments conducted at about pH 3 from 300 to 370 ??C and a 0.1-??C/h heating rate. Incorporation of sulfur into HC resulted in an appreciable amount of thiol and sulfide formation. The rate of LSC formation positively correlated with the initial H2S pressure. Thus, we propose that the LSC produced from H2S reaction with HC are most likely the reactive intermediates for H2S initiation of sulfate reduction. We further propose a three-step reaction scheme of sulfate reduction by HC under reservoir conditions, and discuss the geological implications of our experimental findings with regard to the effect of formation water and oil chemistry, in particular LSC content. ?? 2008 Elsevier Ltd. All rights reserved.
Early Events in the Folding of an Amphipathic Peptide A Multi- Nanosecond Molecular Dynamics Study
NASA Technical Reports Server (NTRS)
Chipot, Christophe; Maigret, Bernard; Pohorille, Andrew
1999-01-01
Folding of the capped LQQLLQQLLQL peptide is investigated at the water-hexane interface by molecular dynamics simulations over 161.5 nanoseconds. Initially placed in the aqueous phase as a beta-strand, the peptide rapidly adsorbs to the interface, where it adopts an amphipathic conformation. The marginal presence of non-amphipathic structures throughout the complete trajectory indicate- that the corresponding conformations are strongly disfavored at the interface. It is further suggestive that folding in an interfacial environment proceeds through a pathway of successive amphipathic intermediates. The energetic and entropic penalties involved in the conformational changes along this pathway markedly increase the folding time-scales of LQQLLQQLLQL, explaining why the alpha-helix, the hypothesized lowest free energy structure for a sequence with a hydrophobic periodicity of 3.6, has not been reached yet. The formation of a type I beta-turn at the end of the simulation confirms the importance of such motifs as initiation sites allowing the peptide to coalesce towards a secondary structure.
ELF-VLF communications through the Earth Project report for calendar year 1984, revision 1
NASA Astrophysics Data System (ADS)
Buettner, H. M.; Burker, G. J.; Didwall, E. M.; Holladay, G.; Lytle, R. J.
1985-08-01
We use computer models and experiments to explore the feasibility of communication between points underground and on the Earth's surface. Emphasis is placed on ELF-VLF electromagnetic propagation through the Earth; nominally, we investigated propagation in the 200 Hz-30 kHz frequency range. The computer modeling included calculations of the fields of a point electric or magnetic source in a homogeneous half space or a stratified earth. Initial results for an insulated antenna of finite length are also considered. The experiments involved through-the-Earth transmissions at two locations in Pennsylvania, both of which had large formations of limestone. Initial results indicate that information rates as high as kbits/s may be possible for subsurface depths of 300 m or less. Accuracy of these estimates depends on the electromagnetic propagation constant of the rock, the noise characteristics, and the modulation scheme. Although a nuisance for evaluating through-the-Earth propagation, the existence of subsurface metal conductors can improve the transmission character of the site.
ELF-VLF communications through-the-Earth
NASA Astrophysics Data System (ADS)
Buettner, H. M.; Burke, G. J.; Didwall, E. M.; Holladay, G.; Lytle, R. J.
1985-06-01
We use computer models and experiments to explore the feasibility of communication between points underground and on the Earth's surface. Emphasis is placed on ELF-VLF electromagnetic propagation through the Earth; nominally, we investigated propagation in the 200 Hz-30 kHz frequency range. The computer modeling included calculations of the fields of a point electric or magnetic source in a homogeneous half space or a stratified Earth. Initial results for an insulated antenna of finite length are also considered. The experiments involved through-the-Earth transmissions at two locations in Pennsylvania, both of which had large formations of limestone. Initial results indicate that information rates as high as kbits/s may be possible for subsurface depths of 300 m or less. Accuracy of these estimates depends on the electromagnetic propagation constants of the rock, the noise characteristics, and modulation scheme. Although a nuisance for evaluating through-the-Earth propagation, the existence of subsurface metal conductors can improve the transmission character of the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, A.A.; Imai, A.; Tamaya, T.
Growing evidence suggests an association between intra-amniotic infection and premature initiation of parturition. We recently demonstrated that some factor(s) including endotoxin produced by the organism stimulates endogenous phospholipase A2 resulting in liberation of arachidonic acid and prostaglandin formation. The studies presented in this report were designated to evaluate the mechanism for endotoxin to stimulate phospholipase A2 using human endometrial fibroblasts. Exposure of the fibroblasts to endotoxin from Escherichia coli in the presence of ({sup 32}P) phosphate increased {sup 32}P-labeling of phosphatidic acid (PA) and phosphatidyl-inositol (PI) in a dose-dependent and a time-dependent manners. The PA labeling occurred without a measurablemore » lag time. These findings demonstrate that the endotoxin stimulates phosphoinositide metabolism in human endometrial fibroblasts by a receptor-mediated mechanism. Membrane phosphoinositide turnover stimulated by endotoxin results in cytosolic Ca{sup 2+} increment, liberation of arachidonic acid, which may be involved in the initiation of parturition.« less
Lymphocutaneous sporotrichosis in an adolescent girl presenting as mycetoma.
Tilak, Ragini; Kumari, Varsha; Bansal, Manish; Sharma, Taniya; Pandey, Shyam Sunder
2012-09-01
A 13-year-old girl presented with multiple painless purulent ulcers with raised borders on the medial aspect of the sole of her right foot associated with inguinal lymphadenopathy for the past 4 years. There was history of local trauma at the site prior to the formation of ulcers. There were no other significant associated signs or symptoms. The patient was initially treated with multiple antibiotics with minimal improvement. Fungal cultures of biopsy specimens demonstrated the presence of colonies of Sporothrix schenckii thus confirming the diagnosis of sporotrichosis. Oral itraconazole at the dose of 100 mg twice daily was initiated with marked response at 4 weeks. This case demonstrated a rare morphological presentation of the lymphocutaneous sporotrichosis as mycetoma. The possible diagnosis of sporotrichosis should be kept in mind in such a clinical presentation not responding to antibiotics. Cutaneous sporotrichosis should be diagnosed and treated as early as possible because untreated cases may disseminate to cause visceral involvement with fatal outcome in immunocompromised patients.
Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C
2014-12-02
Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.
Yang, Tao; Muzangwa, Lloyd; Kaiser, Ralf I; Jamal, Adeel; Morokuma, Keiji
2015-09-07
Crossed molecular beam experiments and electronic structure calculations on the reaction of the meta-tolyl radical with vinylacetylene were conducted to probe the formation of methyl-substituted naphthalene isomers. We present the compelling evidence that under single collision conditions 1- and 2-methylnaphthalene can be formed without an entrance barrier via indirect scattering dynamics through a bimolecular collision of two non-PAH reactants: the meta-tolyl radical and vinylacetylene. The electronic structure calculations, conducted at the UCCSD(T)-F12b/cc-pVDZ//UM06-2x/cc-pVTZ + ZPE(UM06-2x/cc-pVTZ) level of theory, reveal that this reaction is initiated by the barrierless addition of the meta-tolyl radical to the terminal vinyl carbon (C1) of vinylacetylene, via a van-der-Waals complex implying that this mechanism can play a key role in forming methyl-substituted PAHs in low temperature extreme environments such as the low temperature interstellar medium and hydrocarbon-rich atmospheres of planets and their moons in the outer solar system. The reaction mechanism, proposed from the C11H11 potential energy surface, involves a sequence of isomerizations involving hydrogen transfer and ring closure, followed by hydrogen dissociation, which eventually leads to 1- and 2-methylnaphthalene in an overall exoergic process.
Zander, Gesa; Kramer, Wilfried; Seel, Anika; Krebber, Heike
2017-11-01
Gle2/Rae1 is highly conserved from yeast to humans and has been described as an mRNA export factor. Additionally, it is implicated in the anaphase-promoting complex-mediated cell cycle regulation in higher eukaryotes. Here we identify an involvement for Saccharomyces cerevisiae Gle2 in septin organization, which is crucial for cell cycle progression and cell division. Gle2 genetically and physically interacts with components of the septin ring. Importantly, deletion of GLE2 leads to elongated buds, severe defects in septin-assembly and their cellular mislocalization. Septin-ring formation is triggered by the septin-regulating GTPase Cdc42, which establishes and maintains cell polarity. Additionally, activity of the master cell cycle regulator Cdc28 (Cdk1) is needed, which is, besides other functions, also required for G 2 /M-transition, and in yeast particularly responsible for initiating the apical-isotropic switch. We show genetic and physical interactions of Gle2 with both Cdc42 and Cdc28. Most importantly, we find that gle2∆ severely mislocalizes Cdc42, leading to defects in septin-complex formation and cell division. Thus, our findings suggest that Gle2 participates in the efficient organization of the septin assembly network, where it might act as a scaffold protein. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.
Formative Evaluation of the Understanding the Early Years Initiative. Final Report
ERIC Educational Resources Information Center
Human Resources and Skills Development Canada, 2009
2009-01-01
This report presents the findings of the formative evaluation of the Understanding the Early Years (UEY) Initiative. The evaluation was conducted to examine issues of implementation and design, early progress in achieving immediate objectives, and issues related to accountability. The evaluation team was also asked to provide preliminary guidance…
The Formation of Initial Components of Number Concepts in Mexican Children
ERIC Educational Resources Information Center
Solovieva, Yulia; Quintanar, Luis; Ortiz, Gerardo
2012-01-01
The initial formation of number concept represents one of the essential aspects of learning mathematics at the primary school. Children commonly show strong difficulties and absence of comprehension of symbolic and abstract nature of concept of number. The objective of the present study was to show the effectiveness of original method for…
ERIC Educational Resources Information Center
Crossouard, Barbara
2009-01-01
Drawing upon data arising from an evaluation carried out for the Jersey educational authority, this article discusses the interaction of two professional development initiatives, formative assessment and critical skills thinking, bringing the two initiatives together from the perspective of Cultural Historical Activity Theory (CHAT). This allows…
Formative Evaluation of the Targeted Initiative for Older Workers. Final Report
ERIC Educational Resources Information Center
Human Resources and Skills Development Canada, 2010
2010-01-01
This report presents the findings and conclusions, and recommendations for the Formative Evaluation of the Targeted Initiative for Older Workers (TIOW). The TIOW was introduced in 2006 to help older workers in vulnerable communities who had lost their jobs to extend their labour market participation and reintegrate into employment. The TIOW is…
Formative Assessment, Communication Skills and ICT in Initial Teacher Training
ERIC Educational Resources Information Center
Romero-Martín, M. Rosario; Castejón-Oliva, Francisco-Javier; López-Pastor, Víctor-Manuel; Fraile-Aranda, Antonio
2017-01-01
The purpose of this study is to analyze the perception of students, graduates, and lecturers in relation to systems of formative and shared assessment and to the acquisition of teaching competences regarding communication and the use of Information and Communications Technology (ICT) in initial teacher education (ITE) on degrees in Primary…
Self-similar infall models for cold dark matter haloes
NASA Astrophysics Data System (ADS)
Le Delliou, Morgan Patrick
2002-04-01
How can we understand the mechanisms for relaxation and the constitution of the density profile in CDM halo formation? Can the old Self-Similar Infall Model (SSIM) be made to contain all the elements essential for this understanding? In this work, we have explored and improved the SSIM, showing it can at once explain large N-body simulations and indirect observations of real haloes alike. With the use of a carefully-crafted simple shell code, we have followed the accretion of secondary infalls in different settings, ranging from a model for mergers to a distribution of angular momentum for the shells, through the modeling of a central black hole. We did not assume self-similar accretion from initial conditions but allowed for it to develop and used coordinates that make it evident. We found self-similar accretion to appear very prominently in CDM halo formation as an intermediate stable (quasi-equilibrium) stage of Large Scale Structure formation. Dark Matter haloes density profiles are shown to be primarily influenced by non-radial motion. The merger paradigm reveals itself through the SSIM to be a secondary but non-trivial factor in those density profiles: it drives the halo profile towards a unique attractor, but the main factor for universality is still the self-similarity. The innermost density cusp flattening observed in some dwarf and Low Surface Brightness galaxies finds a natural and simple explanation in the SSIM embedding a central black hole. Relaxation in cold collisionless collapse is clarified by the SSIM. It is a continuous process involving only the newly-accreted particles for just a few dynamical times. All memory of initial energy is not lost so relaxation is only moderately violent. A sharp cut off, or population inversion, originates in initial conditions and is maintained through relaxation. It characterises moderately violent relaxation in the system's Distribution Function. Finally, the SSIM has shown this relaxation to arise from phase space instability once the halo has been stirred enough through phase mixing. Extensions of these explorations are possible and expected to refine our understanding of the formation of dark halo density profiles. A link should be sought, for instance, between the present results on relaxation and the entropy of the system.
1993-01-01
Xenopus egg extracts prepared before and after egg activation retain M- and S-phase specific activity, respectively. Staurosporine, a potent inhibitor of protein kinase, converted M-phase extracts into interphase- like extracts that were capable of forming nuclei upon the addition of sperm DNA. The nuclei formed in the staurosporine treated M-phase extract were incapable of replicating DNA, and they were unable to initiate replication upon the addition of S-phase extracts. Furthermore, replication was inhibited when the staurosporine-treated M- phase extract was added in excess to the staurosporine-treated S-phase extract before the addition of DNA. The membrane-depleted S-phase extract supported neither nuclear formation nor replication; however, preincubation of sperm DNA with these extracts allowed them to form replication-competent nuclei upon the addition of excess staurosporine- treated M-phase extract. These results demonstrate that positive factors in the S-phase extracts determined the initiation of DNA replication before nuclear formation, although these factors were unable to initiate replication after nuclear formation. PMID:8253833
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Se-Hui; Park, Jin-Young; Joo, Jung-Hoon
2011-07-15
Membrane bridges are key cellular structures involved in intercellular communication; however, dynamics for their formation are not well understood. We demonstrated the formation and regulation of novel extracellular ultrathin fibers in NIH3T3 cells using confocal and atomic force microscopy. At adjacent regions of neighboring cells, phorbol 12-myristate 13-acetate (PMA) and glucose oxidase induced ultrathin fiber formation, which was prevented by Trolox, a reactive oxygen species (ROS) scavenger. The height of ROS-sensitive ultrathin fibers ranged from 2 to 4 nm. PMA-induced formation of ultrathin fibers was inhibited by cytochalasin D, but not by Taxol or colchicine, indicating that ultrathin fibers mainlymore » comprise microfilaments. PMA-induced ultrathin fibers underwent dynamic structural changes, resulting in formation of intercellular membrane bridges. Thus, these fibers are formed by a mechanism(s) involving ROS and involved in formation of intercellular membrane bridges. Furthermore, ultrastructural imaging of ultrathin fibers may contribute to understanding the diverse mechanisms of cell-to-cell communication and the intercellular transfer of biomolecules, including proteins and cell organelles.« less
NASA Technical Reports Server (NTRS)
Desai, Tapan G.; Lawson, John W.; Keblinski, Pawel
2010-01-01
Reactive molecular dynamics simulations are used to study initial stage of pyrolysis of ablation materials and their composites with carbon nanotubes and carbon fibers. The products formed during pyrolysis are characterized and water is found as the primary product in all cases. The water formation mechanisms are analyzed and the value of the activation energy for water formation is estimated. A detailed study on graphitic precursor formation reveals the presence of two temperature zones. In the lower temperature zone (less than 2000 K) polymerization occurs resulting in formation of large, stable graphitic precursors, and in the high temperature zone (greater than 2000 K) polymer scission results in formation of short polymer chains/molecules. Simulations performed in the high temperature zone on the phenolic resin composites (with carbon nanotubes and carbon fibers) shows that the presence of interfaces had no substantial effect on the chain scission rate or the activation energy value for water formation.
Chemokine GPCR Signaling Inhibits β-Catenin during Zebrafish Axis Formation
Wu, Shu-Yu; Shin, Jimann; Sepich, Diane S.; Solnica-Krezel, Lilianna
2012-01-01
Embryonic axis formation in vertebrates is initiated by the establishment of the dorsal Nieuwkoop blastula organizer, marked by the nuclear accumulation of maternal β-catenin, a transcriptional effector of canonical Wnt signaling. Known regulators of axis specification include the canonical Wnt pathway components that positively or negatively affect β-catenin. An involvement of G-protein coupled receptors (GPCRs) was hypothesized from experiments implicating G proteins and intracellular calcium in axis formation, but such GPCRs have not been identified. Mobilization of intracellular Ca2+ stores generates Ca2+ transients in the superficial blastomeres of zebrafish blastulae when the nuclear accumulation of maternal β-catenin marks the formation of the Nieuwkoop organizer. Moreover, intracellular Ca2+ downstream of non-canonical Wnt ligands was proposed to inhibit β-catenin and axis formation, but mechanisms remain unclear. Here we report a novel function of Ccr7 GPCR and its chemokine ligand Ccl19.1, previously implicated in chemotaxis and other responses of dendritic cells in mammals, as negative regulators of β-catenin and axis formation in zebrafish. We show that interference with the maternally and ubiquitously expressed zebrafish Ccr7 or Ccl19.1 expands the blastula organizer and the dorsoanterior tissues at the expense of the ventroposterior ones. Conversely, Ccr7 or Ccl19.1 overexpression limits axis formation. Epistatic analyses demonstrate that Ccr7 acts downstream of Ccl19.1 ligand and upstream of β-catenin transcriptional targets. Moreover, Ccl19/Ccr7 signaling reduces the level and nuclear accumulation of maternal β-catenin and its axis-inducing activity and can also inhibit the Gsk3β -insensitive form of β-catenin. Mutational and pharmacologic experiments reveal that Ccr7 functions during axis formation as a GPCR to inhibit β-catenin, likely by promoting Ca2+ transients throughout the blastula. Our study delineates a novel negative, Gsk3β-independent control mechanism of β-catenin and implicates Ccr7 as a long-hypothesized GPCR regulating vertebrate axis formation. PMID:23055828
Cong, Guangzhi; Yan, Ru; Huang, Hui; Wang, Kai; Yan, Ning; Jin, Ping; Zhang, Na; Hou, Jianjun; Chen, Dapeng; Jia, Shaobin
2017-03-15
Hyperhomocysteinemia (Hhcy) is an independent risk factor of atherosclerosis and promotes unstable plaque formation. Epigenetic mechanisms play an important role in the pathogenesis of atherosclerosis induced by Hhcy. However, the exact mechanism is still undefined. Lesional apoptotic cells and necrotic core formation contribute greatly to the progression of plaque. The present study sought to determine whether modification of histone methylation is involved in macrophage apoptosis and unstable plaque formation in the condition of Hhcy. The unstable plaque formation, lesional apoptotic cells and status of histone methylation were monitored in the aortas of Hhcy ApoE -/- mice induced by a high-methionine (HM) diet for 20weeks. Involvement of histone methylation in macrophage apoptosis and foam cell formation were assessed in macrophage Raw 264.7 cells after being challenged with homocysteine alone or in combination with the histone methylation inhibitor BIX 01294. The unstable plaque formation and lesion apoptotic cells are increased in ApoE -/ - mice supplemented with high-methionine (HM), accompanied with a decreased expression of histone H3 lysine 9 dimethylation. Hhcy increases the apoptosis of macrophages and inhibits the histone H3 lysine 9 dimethylation, as well as the expression of histone methyltransferase G9a in vitro. Inhibition of histone methylation by BIX01294 enhances macrophage apoptosis and foam cell formation in vitro. Our data suggest that Hhcy promotes the progression of atherosclerosis via macrophage apoptosis. Histone methylation might be involved in macrophage apoptosis and unstable plaque formation in methionine induced hyperhomocysteinemic ApoE -/- mice. Copyright © 2017 Elsevier Inc. All rights reserved.
ArrayInitiative - a tool that simplifies creating custom Affymetrix CDFs
2011-01-01
Background Probes on a microarray represent a frozen view of a genome and are quickly outdated when new sequencing studies extend our knowledge, resulting in significant measurement error when analyzing any microarray experiment. There are several bioinformatics approaches to improve probe assignments, but without in-house programming expertise, standardizing these custom array specifications as a usable file (e.g. as Affymetrix CDFs) is difficult, owing mostly to the complexity of the specification file format. However, without correctly standardized files there is a significant barrier for testing competing analysis approaches since this file is one of the required inputs for many commonly used algorithms. The need to test combinations of probe assignments and analysis algorithms led us to develop ArrayInitiative, a tool for creating and managing custom array specifications. Results ArrayInitiative is a standalone, cross-platform, rich client desktop application for creating correctly formatted, custom versions of manufacturer-provided (default) array specifications, requiring only minimal knowledge of the array specification rules and file formats. Users can import default array specifications, import probe sequences for a default array specification, design and import a custom array specification, export any array specification to multiple output formats, export the probe sequences for any array specification and browse high-level information about the microarray, such as version and number of probes. The initial release of ArrayInitiative supports the Affymetrix 3' IVT expression arrays we currently analyze, but as an open source application, we hope that others will contribute modules for other platforms. Conclusions ArrayInitiative allows researchers to create new array specifications, in a standard format, based upon their own requirements. This makes it easier to test competing design and analysis strategies that depend on probe definitions. Since the custom array specifications are easily exported to the manufacturer's standard format, researchers can analyze these customized microarray experiments using established software tools, such as those available in Bioconductor. PMID:21548938
Importance of Nonclassical σ-Hole Interactions for the Reactivity of λ3-Iodane Complexes.
Pinto de Magalhães, Halua; Togni, Antonio; Lüthi, Hans Peter
2017-11-17
Key for the observed reactivity of λ 3 -iodanes, powerful reagents for the selective transfer of functional groups to nucleophiles, are the properties of the 3-center-4-electron bond involving the iodine atom and the two linearly arranged ligands. This bond is also involved in the formation of the initial complex between the λ 3 -iodane and a nucleophile, which can be a solvent molecule or a reactant. The bonding in such complexes can be described by means of σ-hole interactions. In halogen compounds, σ-hole interaction was identified as a force in crystal packing or in the formation of supramolecular chains. More recently, σ-hole interactions were also shown to affect the reactivity of the iodine-based hypervalent reagents. Relative to their monovalent counterparts, where the σ-hole is located on the extension of the sigma-bond, in the hypervalent species our DFT calculations reveal the formation of a nonclassical σ-hole region with one or even two maxima. This observation is also made in fully relativistic calculations. The SAPT analysis shows that the σ-hole bond between the λ 3 -iodane and the nucleophile is not necessarily of purely electrostatic nature but may also contain a significant covalent component. This covalent component may facilitate chemical transformation of the compound by means of reductive elimination or other mechanisms and is therefore an indicator for its reactivity. Here, we also show that the shape, location, and strength of the σ-holes can be tuned by the choice of ligands and measures such as Brønsted activation of the iodane reagent. At the limit, the tuning transforms the nonclassical σ-hole regions into coordination sites, which allows us to control how a nucleophile will bind and react with the iodane.
Ségaliny, Aude I; Mohamadi, Amel; Dizier, Blandine; Lokajczyk, Anna; Brion, Régis; Lanel, Rachel; Amiaud, Jérôme; Charrier, Céline; Boisson-Vidal, Catherine; Heymann, Dominique
2015-07-01
Interleukin-34 (IL-34) was recently characterized as the M-CSF "twin" cytokine, regulating the proliferation/differentiation/survival of myeloid cells. The implication of M-CSF in oncology was initially suspected by the reduced metastatic dissemination in knock-out mice, due to angiogenesis impairment. Based on this observation, our work studied the involvement of IL-34 in the pathogenesis of osteosarcoma. The in vivo effects of IL-34 were assessed on tissue vasculature and macrophage infiltration in a murine preclinical model based on a paratibial inoculation of human osteosarcoma cells overexpressing or not IL-34 or M-CSF. In vitro investigations using endothelial cell precursors and mature HUVEC cells were performed to analyse the involvement of IL-34 in angiogenesis and myeloid cell adhesion. The data revealed that IL-34 overexpression was associated with the progression of osteosarcoma (tumor growth, lung metastases) and an increase of neo-angiogenesis. In vitro analyses demonstrated that IL-34 stimulated endothelial cell proliferation and vascular cord formation. Pre-treatment of endothelial cells by chondroitinases/heparinases reduced the formation of vascular tubes and abolished the associated cell signalling. In addition, IL-34 increased the in vivo recruitment of M2 tumor-associated macrophages into the tumor tissue. IL-34 increased in vitro monocyte/CD34(+) cell adhesion to activated HUVEC monolayers under physiological shear stress conditions. This work also demonstrates that IL-34 is expressed by osteosarcoma cells, is regulated by TNF-α, IL-1β, and contributes to osteosarcoma growth by increasing the neo-angiogenesis and the recruitment of M2 macrophages. By promoting new vessel formation and extravasation of immune cells, IL-34 may play a key role in tumor development and inflammatory diseases. © 2014 UICC.
Vasculogenic Mimicry of HT1080 Tumour Cells In Vivo: Critical Role of HIF-1α-Neuropilin-1 Axis
Misra, Roli M.; Bajaj, Manmohan S.; Kale, Vaijayanti P.
2012-01-01
HT1080 - a human fibrosarcoma-derived cell line – forms aggressive angiogenic tumours in immuno-compromised mice. In spite of its extensive use as a model of tumour angiogenesis, the molecular event(s) initiating the angiogenic program in these cells are not known. Since hypoxia stimulates tumour angiogenesis, we examined the hypoxia-induced events evoked in these cells. In contrast to cells grown under normoxic conditions, hypoxia-primed (1% O2) HT1080 cells formed robust tubules on growth factor-reduced matrigel and formed significantly larger tumours in xenograft models in a chetomin-sensitive manner, indicating the role of HIF-1α-mediated transcription in these processes. Immuno-histochemical analyses of tumours formed by GFP-expressing HT1080 cells clearly showed that the tumour cells themselves expressed various angiogenic markers including Neuropilin-1 (NRP-1) and formed functional vessels containing red blood cells, thereby unambiguously demonstrating the vasculogenic mimicry of HT1080 cells in vivo. Experiments performed with the HT1080 cells stably transfected with plasmid constructs expressing shNRP-1 or full-length NRP-1 clearly established that the HIF1α-mediated up-regulation of NRP-1 played a deterministic role in the process. Hypoxia-exposure resulted in an up-regulation of c-Myc and OCT3/4 and a down-regulation of KLF4 mRNAs, suggesting their involvement in the tumour formation and angiogenesis. However, silencing of NRP-1 alone, though not affecting proliferation in culture, was sufficient to abrogate the tumour formation completely; clearly establishing that the hypoxia-mediated HIF-1α-dependent up-regulation of NRP-1 is a critical molecular event involved in the vasculogenic mimicry and tumor formation by HT1080 cells in vivo. PMID:23185562
Cai, Xiaoqiang; Nomura-Kitabayashi, Aya; Cai, Weibin; Yan, Jianyun; Christoffels, Vincent M.; Cai, Chen-Leng
2011-01-01
During early embryogenesis, the formation of the cardiac atrioventricular canal (AVC) facilitates the transition of the heart from a linear tube into a chambered organ. However, the genetic pathways underlying this developmental process are poorly understood. The T-box transcription factor Tbx20 is expressed predominantly in the AVC of early heart tube. It was shown that Tbx20 activates Nmyc1 and suppresses Tbx2 expression to promote proliferation and specification of the atrial and ventricular chambers, yet it is not known if Tbx20 is involved in early AVC development. Here, we report that mice lacking Tbx20 in the AVC myocardium fail to form the AVC constriction, and the endocardial epithelial-mesenchymal transition (EMT) is severely perturbed. Tbx20 maintains expression of a variety of genes, including Bmp2, Tbx3 and Hand1 in the AVC myocardium. Intriguingly, we found Bmp2 downstream genes involved in the EMT initiation are also downregulated. In addition, re-expression of Bmp2 in the AVC myocardium substantially rescues the EMT defects resulting from the lack of Tbx20, suggesting Bmp2 is one of the key downstream targets of Tbx20 in AVC development. Our data support a complex signaling network with Tbx20 suppressing Tbx2 in the AVC myocardium but also indirectly promoting Tbx2 expression through Bmp2. The spatiotemporal expression of Tbx2 in the AVC appears to be balanced between these two opposing signals. Overall, our study provides genetic evidence that Tbx20 has essential roles in regulating AVC development that coordinate early cardiac chamber formation. PMID:21983003
Cai, Xiaoqiang; Nomura-Kitabayashi, Aya; Cai, Weibin; Yan, Jianyun; Christoffels, Vincent M; Cai, Chen-Leng
2011-12-15
During early embryogenesis, the formation of the cardiac atrioventricular canal (AVC) facilitates the transition of the heart from a linear tube into a chambered organ. However, the genetic pathways underlying this developmental process are poorly understood. The T-box transcription factor Tbx20 is expressed predominantly in the AVC of early heart tube. It was shown that Tbx20 activates Nmyc1 and suppresses Tbx2 expression to promote proliferation and specification of the atrial and ventricular chambers, yet it is not known if Tbx20 is involved in early AVC development. Here, we report that mice lacking Tbx20 in the AVC myocardium fail to form the AVC constriction, and the endocardial epithelial-mesenchymal transition (EMT) is severely perturbed. Tbx20 maintains expression of a variety of genes, including Bmp2, Tbx3 and Hand1 in the AVC myocardium. Intriguingly, we found Bmp2 downstream genes involved in the EMT initiation are also downregulated. In addition, re-expression of Bmp2 in the AVC myocardium substantially rescues the EMT defects resulting from the lack of Tbx20, suggesting Bmp2 is one of the key downstream targets of Tbx20 in AVC development. Our data support a complex signaling network with Tbx20 suppressing Tbx2 in the AVC myocardium but also indirectly promoting Tbx2 expression through Bmp2. The spatiotemporal expression of Tbx2 in the AVC appears to be balanced between these two opposing signals. Overall, our study provides genetic evidence that Tbx20 has essential roles in regulating AVC development that coordinate early cardiac chamber formation. Copyright © 2011 Elsevier Inc. All rights reserved.
Yu, Liangliang; Li, Qiong; Zhu, Yingying; Afzal, Muhammad Saddique; Li, Laigeng
2018-05-01
PtrGH9A7, a poplar β-type endo-1,4-β-glucanase gene induced by auxin, promotes both plant growth and lateral root development by enhancing cell expansion. Endo-1,4-β-glucanase (EGase) family genes function in multiple aspects of plant growth and development. Our previous study found that PtrCel9A6, a poplar EGase gene of the β subfamily, is specifically expressed in xylem tissue and is involved in the cellulose biosynthesis required for secondary cell wall formation (Yu et al. in Mol Plant 6:1904-1917, 2013). To further explore the functions and regulatory mechanism of β-subfamily EGases, we cloned and characterized another poplar β-type EGase gene PtrGH9A7, a close homolog of PtrCel9A6. In contrast to PtrCel9A6, PtrGH9A7 is predominantly expressed in parenchyma tissues of the above-ground part; in roots, PtrGH9A7 expression is specifically restricted to lateral root primordia at all stages from initiation to emergence and is strongly induced by auxin application. Heterologous overexpression of PtrGH9A7 promotes plant growth by enhancing cell expansion, suggesting a conserved role for β-type EGases in 1,4-β-glucan chains remodeling, which is required for cell wall loosening. Moreover, the overexpression of PtrGH9A7 significantly increases lateral root number, which might result from improved lateral root primordium development due to enhanced cell expansion. Taken together, these results demonstrate that this β-type EGase induced by auxin signaling has a novel role in promoting lateral root formation as well as in enhancing plant growth.
Epithelial topography for repetitive tooth formation
Gaete, Marcia; Fons, Juan Manuel; Popa, Elena Mădălina; Chatzeli, Lemonia; Tucker, Abigail S.
2015-01-01
ABSTRACT During the formation of repetitive ectodermally derived organs such as mammary glands, lateral line and teeth, the tissue primordium iteratively initiates new structures. In the case of successional molar development, new teeth appear sequentially in the posterior region of the jaw from Sox2+ cells in association with the posterior aspect of a pre-existing tooth. The sequence of molar development is well known, however, the epithelial topography involved in the formation of a new tooth is unclear. Here, we have examined the morphology of the molar dental epithelium and its development at different stages in the mouse in vivo and in molar explants. Using regional lineage tracing we show that within the posterior tail of the first molar the primordium for the second and third molar are organized in a row, with the tail remaining in connection with the surface, where a furrow is observed. The morphology and Sox2 expression of the tail retains characteristics reminiscent of the earlier stages of tooth development, such that position along the A-P axes of the tail correlates with different temporal stages. Sox9, a stem/progenitor cell marker in other organs, is expressed mainly in the suprabasal epithelium complementary with Sox2 expression. This Sox2 and Sox9 expressing molar tail contains actively proliferating cells with mitosis following an apico-basal direction. Snail2, a transcription factor implicated in cell migration, is expressed at high levels in the tip of the molar tail while E-cadherin and laminin are decreased. In conclusion, our studies propose a model in which the epithelium of the molar tail can grow by posterior movement of epithelial cells followed by infolding and stratification involving a population of Sox2+/Sox9+ cells. PMID:26538639
CD47 and Nox1 Mediate Dynamic Fluid-Phase Macropinocytosis of Native LDL
Csányi, Gábor; Feck, Douglas M.; Ghoshal, Pushpankur; Singla, Bhupesh; Lin, Huiping; Nagarajan, Shanmugam; Meijles, Daniel N.; Al Ghouleh, Imad; Cantu-Medellin, Nadiezhda; Kelley, Eric E.; Mateuszuk, Lukasz; Isenberg, Jeffrey S.; Watkins, Simon
2017-01-01
Abstract Aims: Macropinocytosis has been implicated in cardiovascular and other disorders, yet physiological factors that initiate fluid-phase internalization and the signaling mechanisms involved remain poorly identified. The present study was designed to examine whether matrix protein thrombospondin-1 (TSP1) stimulates macrophage macropinocytosis and, if so, to investigate the potential signaling mechanism involved. Results: TSP1 treatment of human and murine macrophages stimulated membrane ruffle formation and pericellular solute internalization by macropinocytosis. Blockade of TSP1 cognate receptor CD47 and NADPH oxidase 1 (Nox1) signaling, inhibition of phosphoinositide 3-kinase, and transcriptional knockdown of myotubularin-related protein 6 abolished TSP1-induced macropinocytosis. Our results demonstrate that Nox1 signaling leads to dephosphorylation of actin-binding protein cofilin at Ser-3, actin remodeling, and macropinocytotic uptake of unmodified native low-density lipoprotein (nLDL), leading to foam cell formation. Finally, peritoneal chimera studies suggest the role of CD47 in macrophage lipid macropinocytosis in hypercholesterolemic ApoE−/− mice in vivo. Innovation: Activation of a previously unidentified TSP1-CD47 signaling pathway in macrophages stimulates direct receptor-independent internalization of nLDL, leading to significant lipid accumulation and foam cell formation. These findings reveal a new paradigm in which delimited Nox1-mediated redox signaling, independent of classical lipid oxidation, contributes to early propagation of vascular inflammatory disease. Conclusions: The findings of the present study demonstrate a new mechanism of solute uptake with implications for a wide array of cell types, including macrophages, dendritic cells, and cancer cells, and multiple pathological conditions in which matrix proteins are upregulated. Antioxid. Redox Signal. 26, 886–901. PMID:27958762
Brandariz-Nuñez, Alberto; Menaya-Vargas, Rebeca; Benavente, Javier; Martinez-Costas, Jose
2010-05-01
Members of the genus Orthoreovirus replicate in cytoplasmic inclusions termed viral factories. Compelling evidence suggests that the nonstructural protein microNS forms the matrix of the factories and recruits specific viral proteins to these structures. In the first part of this study, we analyzed the properties of avian reovirus factories and microNS-derived inclusions and found that they are nonaggresome cytoplasmic globular structures not associated with the cytoskeleton which do not require an intact microtubule network for formation and maturation. We next investigated the capacity of avian reovirus microNS to form inclusions in transfected and baculovirus-infected cells. Our results showed that microNS is the main component of the inclusions formed by recombinant baculovirus expression. This, and the fact that microNS is able to self-associate inside the cell, suggests that microNS monomers contain all the interacting domains required for inclusion formation. Examination of the inclusion-forming capacities of truncated microNS versions allowed us to identify the region spanning residues 448 to 635 of microNS as the smallest that was inclusion competent, although residues within the region 140 to 380 seem to be involved in inclusion maturation. Finally, we investigated the roles that four different motifs present in microNS(448-635) play in inclusion formation, and the results suggest that the C-terminal tail domain is a key determinant in dictating the initial orientation of monomer-to-monomer contacts to form basal oligomers that control inclusion shape and inclusion-forming efficiency. Our results contribute to an understanding of the generation of structured protein aggregates that escape the cellular mechanisms of protein recycling.
Moridis, G.J.; Collett, T.S.; Dallimore, S.R.; Satoh, T.; Hancock, S.; Weatherill, B.
2004-01-01
The Mallik site represents an onshore permafrost-associated gas hydrate accumulation in the Mackenzie Delta, Northwest Territories, Canada. A gas hydrate research well was drilled at the site in 1998. The objective of this study is the analysis of various gas production scenarios from five methane hydrate-bearing zones at the Mallik site. In Zone #1, numerical simulations using the EOSHYDR2 model indicated that gas production from hydrates at the Mallik site was possible by depressurizing a thin free gas zone at the base of the hydrate stability field. Horizontal wells appeared to have a slight advantage over vertical wells, while multiwell systems involving a combination of depressurization and thermal stimulation offered superior performance, especially when a hot noncondensible gas was injected. Zone #2, which involved a gas hydrate layer with an underlying aquifer, could yield significant amounts of gas originating entirely from gas hydrates, the volumes of which increased with the production rate. However, large amounts of water were also produced. Zones #3, #4 and #5 were lithologically isolated gas hydrate-bearing deposits with no underlying zones of mobile gas or water. In these zones, thermal stimulation by circulating hot water in the well was used to induce dissociation. Sensitivity studies indicated that the methane release from the hydrate accumulations increased with the gas hydrate saturation, the initial formation temperature, the temperature of the circulating water in the well, and the formation thermal conductivity. Methane production appears to be less sensitive to the specific heat of the rock and of the hydrate, and to the permeability of the formation. ?? 2004 Published by Elsevier B.V.
Snow, S J; Cheng, W; Wolberg, A S; Carraway, M S
2014-07-01
Air pollution exposure is associated with cardiovascular events triggered by clot formation. Endothelial activation and initiation of coagulation are pathophysiological mechanisms that could link inhaled air pollutants to vascular events. Here we investigated the underlying mechanisms of increased endothelial cell procoagulant activity following exposure to soluble components of ultrafine particles (soluble UF). Human coronary artery endothelial cells (HCAEC) were exposed to soluble UF and assessed for their ability to trigger procoagulant activity in platelet-free plasma. Exposed HCAEC triggered earlier thrombin generation and faster fibrin clot formation, which was abolished by an anti-tissue factor (TF) antibody, indicating TF-dependent effects. Soluble UF exposure increased TF mRNA expression without compensatory increases in key anticoagulant proteins. To identify early events that regulate TF expression, we measured endothelial H2O2 production following soluble UF exposure and identified the enzymatic source. Soluble UF exposure increased endothelial H2O2 production, and antioxidants attenuated UF-induced upregulation of TF, linking the procoagulant responses to reactive oxygen species (ROS) formation. Chemical inhibitors and RNA silencing showed that NOX-4, an important endothelial source of H2O2, was involved in UF-induced upregulation of TF mRNA. These data indicate that soluble UF exposure induces endothelial cell procoagulant activity, which involves de novo TF synthesis, ROS production, and the NOX-4 enzyme. These findings provide mechanistic insight into the adverse cardiovascular effects associated with air pollution exposure. Published by Oxford University Press on behalf of Toxicological Sciences 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Shahi, Payam; Seethammagari, Mamatha R.; Valdez, Joseph M.; Xin, Li; Spencer, David M.
2011-01-01
Tissue stem cells are capable of both self-renewal and differentiation to maintain a constant stem cell population and give rise to the plurality of cells within a tissue. Wnt signaling has been previously identified as a key mediator for the maintenance of tissue stem cells; however, possible cross-regulation with other developmentally critical signaling pathways involved in adult tissue homeostasis, such as Notch, is not well understood. By using an in vitro prostate stem cell colony (“prostasphere”) formation assay and in vivo prostate reconstitution experiments, we demonstrate that Wnt pathway induction on Sca-1+ CD49f+ basal/stem cells (B/SCs) promotes expansion of the basal epithelial compartment with noticeable increases in “triple positive” (cytokeratin [CK] 5+, CK8+, p63+) prostate progenitor cells, concomitant with upregulation of known Wnt target genes involved in cell-cycle induction. Moreover, Wnt induction affects expression of epithelial-to-mesenchymal transition signature genes, suggesting a possible mechanism for priming B/SC to act as potential tumor-initiating cells. Interestingly, induction of Wnt signaling in B/SCs results in downregulation of Notch1 transcripts, consistent with its postulated antiproliferative role in prostate cells. In contrast, induction of Notch signaling in prostate progenitors inhibits their proliferation and disrupts prostasphere formation. In vivo prostate reconstitution assays further demonstrate that induction of Notch in B/SCs disrupts proper acini formation in cells expressing the activated Notch1 allele, Notch-1 intracellular domain. These data emphasize the importance of Wnt/Notch cross-regulation in adult stem cell biology and suggest that Wnt signaling controls the proliferation and/or maintenance of epithelial progenitors via modulation of Notch signaling. PMID:21308863
Engram formation in psychiatric disorders.
Gebicke-Haerter, Peter J
2014-01-01
Environmental factors substantially influence beginning and progression of mental illness, reinforcing or reducing the consequences of genetic vulnerability. Often initiated by early traumatic events, "engrams" or memories are formed that may give rise to a slow and subtle progression of psychiatric disorders. The large delay between beginning and time of onset (diagnosis) may be explained by efficient compensatory mechanisms observed in brain metabolism that use optional pathways in highly redundant molecular interactions. To this end, research has to deal with mechanisms of learning and long-term memory formation, which involves (a) epigenetic changes, (b) altered neuronal activities, and (c) changes in neuron-glia communication. On the epigenetic level, apparently DNA-methylations are more stable than histone modifications, although both closely interact. Neuronal activities basically deliver digital information, which clearly can serve as basis for memory formation (LTP). However, research in this respect has long time neglected the importance of glia. They are more actively involved in the control of neuronal activities than thought before. They can both reinforce and inhibit neuronal activities by transducing neuronal information from frequency-encoded to amplitude and frequency-modulated calcium wave patterns spreading in the glial syncytium by use of gap junctions. In this way, they serve integrative functions. In conclusion, we are dealing with two concepts of encoding information that mutually control each other and synergize: a digital (neuronal) and a wave-like (glial) computing, forming neuron-glia functional units with inbuilt feedback loops to maintain balance of excitation and inhibition. To better understand mental illness, we have to gain more insight into the dynamics of adverse environmental impact on those cellular and molecular systems. This report summarizes existing knowledge and draws some outline about further research in molecular psychiatry.
Engram formation in psychiatric disorders
Gebicke-Haerter, Peter J.
2014-01-01
Environmental factors substantially influence beginning and progression of mental illness, reinforcing or reducing the consequences of genetic vulnerability. Often initiated by early traumatic events, “engrams” or memories are formed that may give rise to a slow and subtle progression of psychiatric disorders. The large delay between beginning and time of onset (diagnosis) may be explained by efficient compensatory mechanisms observed in brain metabolism that use optional pathways in highly redundant molecular interactions. To this end, research has to deal with mechanisms of learning and long-term memory formation, which involves (a) epigenetic changes, (b) altered neuronal activities, and (c) changes in neuron-glia communication. On the epigenetic level, apparently DNA-methylations are more stable than histone modifications, although both closely interact. Neuronal activities basically deliver digital information, which clearly can serve as basis for memory formation (LTP). However, research in this respect has long time neglected the importance of glia. They are more actively involved in the control of neuronal activities than thought before. They can both reinforce and inhibit neuronal activities by transducing neuronal information from frequency-encoded to amplitude and frequency-modulated calcium wave patterns spreading in the glial syncytium by use of gap junctions. In this way, they serve integrative functions. In conclusion, we are dealing with two concepts of encoding information that mutually control each other and synergize: a digital (neuronal) and a wave-like (glial) computing, forming neuron-glia functional units with inbuilt feedback loops to maintain balance of excitation and inhibition. To better understand mental illness, we have to gain more insight into the dynamics of adverse environmental impact on those cellular and molecular systems. This report summarizes existing knowledge and draws some outline about further research in molecular psychiatry. PMID:24904262
Bromate formation in a hybrid ozonation-ceramic membrane filtration system.
Moslemi, Mohammadreza; Davies, Simon H; Masten, Susan J
2011-11-01
The effect of pH, ozone mass injection rate, initial bromide concentration, and membrane molecular weight cut off (MWCO) on bromate formation in a hybrid membrane filtration-ozonation reactor was studied. Decreasing the pH, significantly reduced bromate formation. Bromate formation increased with increasing gaseous ozone mass injection rate, due to increase in dissolved ozone concentrations. Greater initial bromide concentrations resulted in higher bromate concentrations. An increase in the bromate concentration was observed by reducing MWCO, which resulted in a concomitant increase in the retention time in the system. A model to estimate the rate of bromate formation was developed. Good correlation between the model simulation and the experimental data was achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Karahara, Ichirou; Kobayashi, Mai; Tamaoki, Daisuke; Kamisaka, Seiichiro
Our previous studies have shown that hypergravity inhibits growth and promotes lignin forma-tion in inflorescence stems of Arabidopsis thaliana by up-regulation of genes involved in lignin biosynthesis (Tamaoki et al. 2006, 2009). In the present study, we have examined whether ethylene is involved in these responses using an ethylene-insensitive Arabidopsis mutant ein3-1. Our results revealed that hypergravity treatment at 300 G for 24 h significantly inhibited growth of inflorescence stems, promoted both deposition of acetyl bromide extractable lignin and gene expression involved in lignin formation in inflorescence stems of wild type plants. Growth inhibition of inflorescence stems was also observed in ein3-1. However, the effects of hypergravity on the promotion of the deposition of acetyl bromide lignin and the expression of genes involved in lignin formation were not observed in ein3-1, indicating that ethylene sig-naling is involved in the up-regulation of the expression of lignin-related genes as well as the promotion of deposition of lignin by hypergravity in Arabidopsis inflorescence stems.
NASA Astrophysics Data System (ADS)
Rossignol-Strick, Martine
1987-06-01
A working hypothesis is proposed to account for the present accumulation of brines in isolated pockets of the ocean floor and for the formation of the underlying organic and metal-rich sediments. These are the Tyro and Bannock basins in the East Mediterranean, the Red Sea Deeps, and the Orca Basin in the northern Gulf of Mexico. Initiation of brine-derived deposition in the Red Sea Deeps and Orca Basin occurred between 12,000 and 8000 years B.P. This time bracket also encompasses the formation of the latest East Mediterranean sapropel and the wettest global climate since the last glacial maximum. This wet period first appeared in the tropics around 12,000 years B.P, then in the subtropical and middle latitudes. During the same period, the 23,000 year precession cycle brought the summer insolation of the northern hemisphere to its peak at 11,000 years B.P. with retreating northern hemisphere ice sheets. The Red Sea Deeps and the Orca Basin became anoxic during this humid period, and metal-rich sapropel deposition then began. In contrast, the Tyro and Bannock basins began accumulating a brine long before and persisted beyond this climatic stage. The hypothesis involves two propositions: (1) As in the Eastern Mediterranean Sea, marine anoxia was mainly the consequence of the large influx of continental runoff and local precipitation. Longer residence time of bottom waters, so-called "stagnation," in silled rimmed basins would have resulted from lower salinity at the sea surface in areas of deep water formation in the Eastern Mediterranean, the Red Sea, and the Gulf of Mexico and (2) Miocene or older evaporites underlie these basins or outcrop on their flanks. Leaching from these evaporites was an ongoing process before the quasi-stagnation phase, but the initial leachate, much less saline than the present brines, was continuously flushed by bottom circulation. The climate-induced quiescence of bottom waters in these basins enabled the leachate to accumulate. The feedback of stagnation by increased density progressively raised the salinity of entrapped bottom waters to the present brine concentration. The high density has resisted brine removal by bottom circulation until present time, long after cessation of the initiating wet period. The brines therefore are stagnant, fossil waters.
Generic Ada code in the NASA space station command, control and communications environment
NASA Technical Reports Server (NTRS)
Mcdougall, D. P.; Vollman, T. E.
1986-01-01
The results of efforts to apply powerful Ada constructs to the formatted message handling process are described. The goal of these efforts was to extend the state-of-technology in message handling while at the same time producing production-quality, reusable code. The first effort was initiated in September, 1984 and delivered in April, 1985. That product, the Generic Message Handling Facility, met initial goals, was reused, and is available in the Ada Repository on ARPANET. However, it became apparent during its development that the initial approach to building a message handler template was not optimal. As a result of this initial effort, several alternate approaches were identified, and research is now on-going to identify an improved product. The ultimate goal is to be able to instantly build a message handling system for any message format given a specification of that message format. The problem lies in how to specify the message format, and one that is done, how to use that information to build the message handler. Message handling systems and message types are described. The initial efforts, its results and its shortcomings are detailed. The approach now being taken to build a system which will be significantly easier to implement, and once implemented, easier to use, is described. Finally, conclusions are offered.
Shuck, Lowell Z.
1979-01-01
Subterranean earth formations containing energy values are subjected to hydraulic fracturing procedures to enhance the recovery of the energy values. These fractures are induced in the earth formation by pumping liquid into the wellbore penetrating the earth formation until the pressure of the liquid is sufficient to fracture the earth formation adjacent to the wellbore. The present invention is directed to a transducer which is positionable within the wellbore to generate a signal indicative of the fracture initiation useful for providing a timing signal to equipment for seismic mapping of the fracture as it occurs and for providing a measurement of the pressure at which the fracture is initiated.
Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei
2016-07-14
We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.
Intermediates in the Formation of Aromatics in Hydrocarbon Combustion
NASA Technical Reports Server (NTRS)
Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)
1994-01-01
The formation of the first benzene ring is believed to be the rate limiting step in soot formation. Two different mechanisms have been proposed for formation of cyclic C6 species. The first involves the reaction of two acetylenes to give CH2CHCCH (vinyl acetylene), the loss of a H to give CHCHCCH (n-C41-13) or CH2CCCH (iso-C4H3), and addition of another acetylene to n-C4H3, followed by ring closure to give phenyl radical. Miller and Melius argue that only n-C4H3 leads to phenyl radical and since iso-C4H3 is more stable than n-C4H3 this mechanism is unlikely. An alternative mechanism proposed by them is formation of benzene from the dimerization of two CH2CCH (propargyl) radicals (formed by the reaction of singlet methylene with C2H2). We report reaction pathways and accurate energetics (from CASSCF/internally contracted CI calculations) for the reactions of CH(pi-2) and CH2-1 with acetylene, the reaction of vinylidene with acetylene, and the reaction of n-C4H3 and iso-C4H3 with acetylene. These calculations identify two new reactive intermediates CHCHCH ( a A"-2 ground state in Cs symmetry; spin coupling is a doublet from three singly occupied orbitals) and CHCCH (B-3 ground state in C2 symmetry) from the reaction of CH with acetylene. These species dimerize with no barrier to form benzene and para-benzyne, respectively. CHCCH is proposed as a reactive intermediate which can add to benzene to give higher polynuclear aromatic hydrocarbons or fullerenes. The addition of a C3H2 unit releases two C-C bond energies and thus the resulting addition product contains sufficient energy to break several CH bonds leading to a reduction in the H to C ratio as the cluster size increases. It is found that iso-C4H3 adds to acetylene to initially give a fulvene radical but that this species rearranges to phenyl radical. Thus, the reaction of acetylene with iso-C4H3 does lead to phenyl radical and the cyclization pathway may also contribute to formation of the initial benzene ring.
Formation of new stellar populations from gas accreted by massive young star clusters.
Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André
2016-01-28
Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old 'globular' clusters--those with ages greater than ten billion years and masses several hundred thousand times that of the Sun--often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies' gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters.