Food Antioxidants: Chemical Insights at the Molecular Level.
Galano, Annia; Mazzone, Gloria; Alvarez-Diduk, Ruslán; Marino, Tiziana; Alvarez-Idaboy, J Raúl; Russo, Nino
2016-01-01
In this review, we briefly summarize the reliability of the density functional theory (DFT)-based methods to accurately predict the main antioxidant properties and the reaction mechanisms involved in the free radical-scavenging reactions of chemical compounds present in food. The analyzed properties are the bond dissociation energies, in particular those involving OH bonds, electron transfer enthalpies, adiabatic ionization potentials, and proton affinities. The reaction mechanisms are hydrogen-atom transfer, proton-coupled electron transfer, radical adduct formation, single electron transfer, sequential electron proton transfer, proton-loss electron transfer, and proton-loss hydrogen-atom transfer. Furthermore, the chelating ability of these compounds and its role in decreasing or inhibiting the oxidative stress induced by Fe(III) and Cu(II) are considered. Comparisons between theoretical and experimental data confirm that modern theoretical tools are not only able to explain controversial experimental facts but also to predict chemical behavior.
Matsuda, Yoshiyuki; Xie, Min; Fujii, Asuka
2018-05-30
An ionization-induced multistage reaction of an ionized diethylether (DEE) dimer involving isomerization, proton transfer, and dissociation is investigated by combining infrared (IR) spectroscopy, tandem mass spectrometry, and a theoretical reaction path search. The vertically-ionized DEE dimer isomerizes to a hydrogen-bonded cluster of protonated DEE and the [DEE-H] radical through barrierless intermolecular proton transfer from the CH bond of the ionized moiety. This isomerization process is confirmed by IR spectroscopy and the theoretical reaction path search. The multiple dissociation pathways following the isomerization are analyzed by tandem mass spectrometry. The isomerized cluster dissociates stepwise into a [protonated DEE-acetaldehyde (AA)] cluster, protonated DEE, and protonated AA. The structure of the fragment ion is also analyzed by IR spectroscopy. The reaction map of the multistage processes is revealed through a harmony of these experimental and theoretical methods.
Kuleta, Patryk; Sarewicz, Marcin; Postila, Pekka; Róg, Tomasz; Osyczka, Artur
2016-10-01
Describing dynamics of proton transfers in proteins is challenging, but crucial for understanding processes which use them for biological functions. In cytochrome bc1, one of the key enzymes of respiration or photosynthesis, proton transfers engage in oxidation of quinol (QH2) and reduction of quinone (Q) taking place at two distinct catalytic sites. Here we evaluated by site-directed mutagenesis the contribution of Lys251/Asp252 pair (bacterial numbering) in electron transfers and associated with it proton uptake to the quinone reduction site (Qi site). We showed that the absence of protonable group at position 251 or 252 significantly changes the equilibrium levels of electronic reactions including the Qi-site mediated oxidation of heme bH, reverse reduction of heme bH by quinol and heme bH/Qi semiquinone equilibrium. This implicates the role of H-bonding network in binding of quinone/semiquinone and defining thermodynamic properties of Q/SQ/QH2 triad. The Lys251/Asp252 proton path is disabled only when both protonable groups are removed. With just one protonable residue from this pair, the entrance of protons to the catalytic site is sustained, albeit at lower rates, indicating that protons can travel through parallel routes, possibly involving water molecules. This shows that proton paths display engineering tolerance for change as long as all the elements available for functional cooperation secure efficient proton delivery to the catalytic site. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Rappaport, Fabrice; Boussac, Alain; Force, Dee Ann; Peloquin, Jeffrey; Brynda, Marcin; Sugiura, Miwa; Un, Sun; Britt, R. David; Diner, Bruce A.
2009-01-01
The catalytic cycle of numerous enzymes involves the coupling between proton transfer and electron transfer. Yet, the understanding of this coordinated transfer in biological systems remains limited, likely because its characterization relies on the controlled but experimentally challenging modifications of the free energy changes associated with either the electron or proton transfer. We have performed such a study here in Photosystem II. The driving force for electron transfer from TyrZ to P680•+ has been decreased by ~ 80 meV by mutating the axial ligand of P680, and that for proton transfer upon oxidation of TyrZ by substituting a 3-fluorotyrosine (3F-TyrZ) for TyrZ. In Mn-depleted Photosystem II, the dependence upon pH of the oxidation rates of TyrZ and 3F-TyrZ were found to be similar. However, in the pH range where the phenolic hydroxyl of TyrZ is involved in a H-bond with a proton acceptor, the activation energy of the oxidation of 3F-TyrZ is decreased by 110 meV, a value which correlates with the in vitro finding of a 90 meV stabilization energy to the phenolate form of 3F-Tyr when compared to Tyr (Seyedsayamdost et al., 2006, JACS 128:1569–79). Thus, when the phenol of YZ acts as a H-bond-donor, its oxidation by P680•+ is controlled by its prior deprotonation. This contrasts with the situation prevailing at lower pH, where the proton acceptor is protonated and therefore unavailable, in which the oxidation-induced proton transfer from the phenolic hydroxyl of TyrZ has been proposed to occur concertedly with the electron transfer to P680•+. This suggests a switch between a concerted proton/electron transfer at pHs < 7.5 to a sequential one at pHs > 7.5 and illustrates the roles of the H-bond and of the likely salt-bridge existing between the phenolate and the nearby proton acceptor in determining the coupling between proton and electron transfer. PMID:19265377
Zhou, Yuhua; Yang, Jing; Su, Haibin; Zeng, Jie; Jiang, San Ping; Goddard, William A
2014-04-02
We have developed for fuel cells a novel proton exchange membrane (PEM) using inorganic phosphotungstic acid (HPW) as proton carrier and mesoporous silica as matrix (HPW-meso-silica) . The proton conductivity measured by electrochemical impedance spectroscopy is 0.11 S cm(-1) at 90 °C and 100% relative humidity (RH) with a low activation energy of ∼14 kJ mol(-1). In order to determine the energetics associated with proton migration within the HPW-meso-silica PEM and to determine the mechanism of proton hopping, we report density functional theory (DFT) calculations using the generalized gradient approximation (GGA). These DFT calculations revealed that the proton transfer process involves both intramolecular and intermolecular proton transfer pathways. When the adjacent HPWs are close (less than 17.0 Å apart), the calculated activation energy for intramolecular proton transfer within a HPW molecule is higher (29.1-18.8 kJ/mol) than the barrier for intermolecular proton transfer along the hydrogen bond. We find that the overall barrier for proton movement within the HPW-meso-silica membranes is determined by the intramolecular proton transfer pathway, which explains why the proton conductivity remains unchanged when the weight percentage of HPW on meso-silica is above 67 wt %. In contrast, the activation energy of proton transfer on a clean SiO2 (111) surface is computed to be as high as ∼40 kJ mol(-1), confirming the very low proton conductivity on clean silica surfaces observed experimentally.
Proton-Coupled Electron Transfer in Artificial Photosynthetic Systems.
Mora, S Jimena; Odella, Emmanuel; Moore, Gary F; Gust, Devens; Moore, Thomas A; Moore, Ana L
2018-02-20
Artificial photosynthetic constructs can in principle operate more efficiently than natural photosynthesis because they can be rationally designed to optimize solar energy conversion for meeting human demands rather than the multiple needs of an organism competing for growth and reproduction in a complex ecosystem. The artificial photosynthetic constructs described in this Account consist primarily of covalently linked synthetic chromophores, electron donors and acceptors, and proton donors and acceptors that carry out the light absorption, electron transfer, and proton-coupled electron transfer (PCET) processes characteristic of photosynthetic cells. PCET is the movement of an electron from one site to another accompanied by proton transfer. PCET and the transport of protons over tens of angstroms are important in all living cells because they are a fundamental link between redox processes and the establishment of transmembrane gradients of proton electrochemical potential, known as proton-motive force (PMF), which is the unifying concept in bioenergetics. We have chosen a benzimidazole phenol (BIP) system as a platform for the study of PCET because with appropriate substitutions it is possible to design assemblies in which one or multiple proton transfers can accompany oxidation of the phenol. In BIP, oxidation of the phenol increases its acidity by more than ten pK a units; thus, electrochemical oxidation of the phenol is associated with a proton transfer to the imidazole. This is an example of a PCET process involving transfer of one electron and one proton, known as electron-proton transfer (EPT). When the benzimidazole moiety of BIP is substituted at the 4-position with good proton acceptor groups such as aliphatic amines, experimental and theoretical results indicate that two proton transfers occur upon one-electron oxidation of the phenol. This phenomenon is described as a one-electron-two-proton transfer (E2PT) process and results in translocation of protons over ∼7 Å via a Grotthuss-type mechanism, where the protons traverse a network of internally H-bonded sites. In the case of the E2TP process involving BIP analogues with amino group substituents, the thermodynamic price paid in redox potential to move a proton to the final proton acceptor is ∼300 mV. In this example, the decrease in redox potential limits the oxidizing power of the resulting phenoxyl radical. Thus, unlike the biological counterpart, the artificial construct is thermodynamically incapable of effectively advancing the redox state of a water oxidation catalyst. The design of systems where multiple proton transfer events are coupled to an oxidation reaction while a relatively high redox potential is maintained remains an outstanding challenge. The ability to control proton transfer and activity at defined distances and times is key to achieving proton management in the vicinity of catalysts operating at low overpotential in myriad biochemically important processes. Artificial photosynthetic constructs with well-defined structures, such as the ones described in this Account, can provide the means for discovering design principles upon which efficient redox catalysts for electrolysis and fuel cells can be based.
Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; ...
2014-10-08
Here, the hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We concludemore » that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring.« less
Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; Roubelakis, Manolis M.; Maher, Andrew G.; Lee, Chang Hoon; Chambers, Matthew B.; Hammes-Schiffer, Sharon; Nocera, Daniel G.
2014-01-01
The hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We conclude that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring. PMID:25298534
Sulfate-reducing bacteria: Microbiology and physiology
NASA Technical Reports Server (NTRS)
Peck, H. D.
1985-01-01
The sulfate reducing bacteria, the first nonphotosynthetic anaerobic bacteria demonstrated to contain c type cytochromes, perform electron transfer coupled to phosphorylation. A new bioenergetic scheme for the formation of a proton gradient for growth of Desulfovibrio on organic substrates and sulfate involving vectors electron transfer and consistent with the cellular localization of enzymes and electron transfer components was proposed. Hydrogen is produced in the cytoplasm from organic substrates and, as a permease molecule diffuses rapidly across the cytoplasmic membrane, it is oxidized to protons and electrons by the periplasmic hydrogenase. The electrons only are transferred across the cytoplasmic membrane to the cytoplasm where they are used to reduce sulfate to sulfide. The protons are used for transport or to drive a reversible ATPOSE. The net effect is the transfer of protons across the cytoplasmic membrane with the intervention of a proton pump. This type of H2 cycling is relevant to the bioenergetics of other types of anaerobic microorganisms.
Shutova, Tatiana; Klimov, Vyacheslav V; Andersson, Bertil; Samuelsson, Göran
2007-06-01
The hypothesis presented here for proton transfer away from the water oxidation complex of Photosystem II (PSII) is supported by biochemical experiments on the isolated PsbO protein in solution, theoretical analyses of better understood proton transfer systems like bacteriorhodopsin and cytochrome oxidase, and the recently published 3D structure of PS II (Pdb entry 1S5L). We propose that a cluster of conserved glutamic and aspartic acid residues in the PsbO protein acts as a buffering network providing efficient acceptors of protons derived from substrate water molecules. The charge delocalization of the cluster ensures readiness to promptly accept the protons liberated from substrate water. Therefore protons generated at the catalytic centre of PSII need not be released into the thylakoid lumen as generally thought. The cluster is the beginning of a localized, fast proton transfer conduit on the lumenal side of the thylakoid membrane. Proton-dependent conformational changes of PsbO may play a role in the regulation of both supply of substrate water to the water oxidizing complex and the resultant proton transfer.
Classical Molecular Dynamics with Mobile Protons.
Lazaridis, Themis; Hummer, Gerhard
2017-11-27
An important limitation of standard classical molecular dynamics simulations is the inability to make or break chemical bonds. This restricts severely our ability to study processes that involve even the simplest of chemical reactions, the transfer of a proton. Existing approaches for allowing proton transfer in the context of classical mechanics are rather cumbersome and have not achieved widespread use and routine status. Here we reconsider the combination of molecular dynamics with periodic stochastic proton hops. To ensure computational efficiency, we propose a non-Boltzmann acceptance criterion that is heuristically adjusted to maintain the correct or desirable thermodynamic equilibria between different protonation states and proton transfer rates. Parameters are proposed for hydronium, Asp, Glu, and His. The algorithm is implemented in the program CHARMM and tested on proton diffusion in bulk water and carbon nanotubes and on proton conductance in the gramicidin A channel. Using hopping parameters determined from proton diffusion in bulk water, the model reproduces the enhanced proton diffusivity in carbon nanotubes and gives a reasonable estimate of the proton conductance in gramicidin A.
Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer
NASA Astrophysics Data System (ADS)
Sotiriou, Georgios A.; Blattmann, Christoph O.; Deligiannakis, Yiannis
2015-12-01
Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer.Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04942c
NASA Astrophysics Data System (ADS)
Martens, Sabrina M.; Marta, Rick A.; Martens, Jonathan K.; McMahon, Terry B.
2012-10-01
Protonated ferulic acid and its principle fragment ion have been characterized using infrared multiple photon dissociation spectroscopy and electronic structure calculations at the B3LYP/6-311 + G(d,p) level of theory. Due to its extensively conjugated structure, protonated ferulic acid is observed to yield three stable fragment ions in IRMPD experiments. It is proposed that two parallel fragmentation pathways of protonated ferulic acid are being observed. The first pathway involves proton transfer, resulting in the loss of water and subsequently carbon monoxide, producing fragment ions m/z 177 and 149, respectively. Optimization of m/z 177 yields a species containing an acylium group, which is supported by a diagnostic peak in the IRMPD spectrum at 2168 cm-1. The second pathway involves an alternate proton transfer leading to loss of methanol and rearrangement to a five-membered ring.
Proton transfer and protein quake in photoreceptor activation
NASA Astrophysics Data System (ADS)
Xie, Aihua
2002-03-01
Proteins are able to perform an enormous variety of functions, while using only a limited number of underlying processes. One of these is proton transfer, found in a range of receptors and enzymes. It is conceivable that proton transfer is essential in biological energy transduction, but it is less evident how proton transfer is employed in receptor activation during biological signal transduction. An important question regarding receptor activation is how a localized event of detecting a stimulus at the active site drives global conformational changes involving protein surface for signal relay. We will present structural, kinetic and energetic studies on the activation mechanism of a prototype PAS domain photoreceptor, photoactive yellow protein (PYP). Our data reveal that the putative signaling state of PYP upon absorption of a blue photon is formed during a large-amplitude protein quake triggered by the formation of a new buried charge in a hydrophobic pocket at the active site of PYP via intramolecular proton transfer. This mechanism for protein quakes driven by proton transfer and electrostatic interactions may play roles during the functioning of other receptor proteins and non-receptor proteins that require large conformational changes.
Michalczyk, Ryszard; Unkefer, Clifford J.; Bacik, John -Paul; ...
2015-05-05
Proton transfer is a fundamental mechanism at the core of many enzyme-catalyzed reactions. It is also exquisitely sensitive to a number of factors, including pH, electrostatics, proper active-site geometry, and chemistry. Carbonic anhydrase has evolved a fast and efficient way to conduct protons through a combination of hydrophilic amino acid side chains that coordinate a highly ordered H-bonded water network. This study uses a powerful approach, combining NMR solution studies with neutron protein crystallography, to determine the effect of pH and divalent cations on key residues involved in proton transfer in human carbonic anhydrase. Lastly, the results have broad implicationsmore » for our understanding of proton transfer and how subtle changes in ionization and H-bonding interactions can modulate enzyme catalysis.« less
Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity.
Wuttig, Anna; Yaguchi, Momo; Motobayashi, Kenta; Osawa, Masatoshi; Surendranath, Yogesh
2016-08-09
CO2 reduction in aqueous electrolytes suffers efficiency losses because of the simultaneous reduction of water to H2 We combine in situ surface-enhanced IR absorption spectroscopy (SEIRAS) and electrochemical kinetic studies to probe the mechanistic basis for kinetic bifurcation between H2 and CO production on polycrystalline Au electrodes. Under the conditions of CO2 reduction catalysis, electrogenerated CO species are irreversibly bound to Au in a bridging mode at a surface coverage of ∼0.2 and act as kinetically inert spectators. Electrokinetic data are consistent with a mechanism of CO production involving rate-limiting, single-electron transfer to CO2 with concomitant adsorption to surface active sites followed by rapid one-electron, two-proton transfer and CO liberation from the surface. In contrast, the data suggest an H2 evolution mechanism involving rate-limiting, single-electron transfer coupled with proton transfer from bicarbonate, hydronium, and/or carbonic acid to form adsorbed H species followed by rapid one-electron, one-proton, or H recombination reactions. The disparate proton coupling requirements for CO and H2 production establish a mechanistic basis for reaction selectivity in electrocatalytic fuel formation, and the high population of spectator CO species highlights the complex heterogeneity of electrode surfaces under conditions of fuel-forming electrocatalysis.
Study of Proton Transfer in E. Coli Photolyase
NASA Astrophysics Data System (ADS)
Zhang, Meng; Liu, Zheyun; Li, Jiang; Wang, Lijuan; Zhong, Dongping
2013-06-01
Photolyase is a flavoprotein which utilizes blue-light energy to repair UV-light damaged DNA. The catalytic cofactor of photolyase, flavin adenine dinucleotide (FAD), has five redox states. Conversions between these redox states involve intraprotein electron transfer and proton transfer, which play important role in protein function. Here we systematically studied proton transfer in E. coli photolyase in vitro by site-directed mutagenesis and steady-state UV-vis spectroscopy, and proposed the proton channel in photolyase. We found that in the mutant N378C/E363L, proton channel was completely eliminated when DNA substrate was bound to the protein. Proton is suggested to be transported from protein surface to FAD by two pathways: the proton relay pathway through E363 and surface water to N378 and then to FAD; and the proton diffusion pathway through the substrate binding pocket. In addition, reaction kinetics of conversions between the redox states was then solved and redox potentials of the redox states were determined. These results described a complete picture of FAD redox changes, which are fundamental to the functions of all flavoenzymes.
Ge, Xiaoxia; Gunner, M R
2016-05-01
Bacteriorhodopsin, a light activated protein that creates a proton gradient in halobacteria, has long served as a simple model of proton pumps. Within bacteriorhodopsin, several key sites undergo protonation changes during the photocycle, moving protons from the higher pH cytoplasm to the lower pH extracellular side. The mechanism underlying the long-range proton translocation between the central (the retinal Schiff base SB216, D85, and D212) and exit clusters (E194 and E204) remains elusive. To obtain a dynamic view of the key factors controlling proton translocation, a systematic study using molecular dynamics simulation was performed for eight bacteriorhodopsin models varying in retinal isomer and protonation states of the SB216, D85, D212, and E204. The side-chain orientation of R82 is determined primarily by the protonation states of the residues in the EC. The side-chain reorientation of R82 modulates the hydrogen-bond network and consequently possible pathways of proton transfer. Quantum mechanical intrinsic reaction coordinate calculations of proton-transfer in the methyl guanidinium-hydronium-hydroxide model system show that proton transfer via a guanidinium group requires an initial geometry permitting proton donation and acceptance by the same amine. In all the bacteriorhodopsin models, R82 can form proton wires with both the CC and the EC connected by the same amine. Alternatively, rare proton wires for proton transfer from the CC to the EC without involving R82 were found in an O' state where the proton on D85 is transferred to D212. © 2016 Wiley Periodicals, Inc.
Chemical dynamics of the first proton-coupled electron transfer of water oxidation on TiO2 anatase.
Chen, Jia; Li, Ye-Fei; Sit, Patrick; Selloni, Annabella
2013-12-18
Titanium dioxide (TiO2) is a prototype, water-splitting (photo)catalyst, but its performance is limited by the large overpotential for the oxygen evolution reaction (OER). We report here a first-principles density functional theory study of the chemical dynamics of the first proton-coupled electron transfer (PCET), which is considered responsible for the large OER overpotential on TiO2. We use a periodic model of the TiO2/water interface that includes a slab of anatase TiO2 and explicit water molecules, sample the solvent configurations by first principles molecular dynamics, and determine the energy profiles of the two electronic states involved in the electron transfer (ET) by hybrid functional calculations. Our results suggest that the first PCET is sequential, with the ET following the proton transfer. The ET occurs via an inner sphere process, which is facilitated by a state in which one electronic hole is shared by the two oxygen ions involved in the transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mautner, M.M.N.
The ionization energy of ferrocene (Cp{sub 2}Fe) was measured by charge-transfer equilibria as 6.81 {plus minus} 0.07 eV (157.1 {plus minus} 1.6 kcal/mol). The proton affinity was obtained from equilibrium temperature studies as 207 {plus minus} 1 kcal/mol. The protonation of Cp{sub 2}Fe also involves a significant entropy change of +6.3 cal/mol{center dot}K. Deuteration experiments show that, in the protonation of Cp{sub 2}Fe, the incoming proton goes to a sterically unique position and does not exchange with the ring protons. This is consistent with protonation on iron, but ring protonation exclusively in an exo position or an agostic ring-to-iron bridgedmore » structure are also possible. The results suggest that the proton affinity at Fe is greater by at least 5 kcal/mol than for ring protonation. The solvation energies of Cp{sub 2}Fe{sup +} and Cp{sub 2}FeH{sup +} by a CH{sub 3}CN molecule, 11.4 and 12.9 kcal/mol, respectively, are weaker than those of most gas-phase cations, and the attachment energies of dimethyl ether and benzene, <9 kcal/mol, are even weaker. These results support that the weak solution basicity of Cp{sub 2}Fe is due to inefficient ion solvation. The kinetics of proton transfer between Cp{sub 2}Fe and some cyclic compounds is unusually slow, with reaction efficiencies of 0.1-0.01, without significant temperature dependence. These are the first proton-transfer reactions to show such behavior, which may be due to a combination of an energy barrier and steric hindrance. Proton transfer is also observed from (RCN){sub 2}H{sup +} dimer ions to Cp{sub 2}Fe. These reactions may be direct or involve ligand switching, and in several cases either mechanism is endothermic and entropy-driven.« less
Carbinolamine Formation and Dehydration in a DNA Repair Enzyme Active Site
Dodson, M. L.; Walker, Ross C.; Lloyd, R. Stephen
2012-01-01
In order to suggest detailed mechanistic hypotheses for the formation and dehydration of a key carbinolamine intermediate in the T4 pyrimidine dimer glycosylase (T4PDG) reaction, we have investigated these reactions using steered molecular dynamics with a coupled quantum mechanics–molecular mechanics potential (QM/MM). We carried out simulations of DNA abasic site carbinolamine formation with and without a water molecule restrained to remain within the active site quantum region. We recovered potentials of mean force (PMF) from thirty replicate reaction trajectories using Jarzynski averaging. We demonstrated feasible pathways involving water, as well as those independent of water participation. The water–independent enzyme–catalyzed reaction had a bias–corrected Jarzynski–average barrier height of approximately for the carbinolamine formation reaction and ) for the reverse reaction at this level of representation. When the proton transfer was facilitated with an intrinsic quantum water, the barrier height was approximately in the forward (formation) reaction and for the reverse. In addition, two modes of unsteered (free dynamics) carbinolamine dehydration were observed: in one, the quantum water participated as an intermediate proton transfer species, and in the other, the active site protonated glutamate hydrogen was directly transferred to the carbinolamine oxygen. Water–independent unforced proton transfer from the protonated active site glutamate carboxyl to the unprotonated N–terminal amine was also observed. In summary, complex proton transfer events, some involving water intermediates, were studied in QM/MM simulations of T4PDG bound to a DNA abasic site. Imine carbinolamine formation was characterized using steered QM/MM molecular dynamics. Dehydration of the carbinolamine intermediate to form the final imine product was observed in free, unsteered, QM/MM dynamics simulations, as was unforced acid-base transfer between the active site carboxylate and the N–terminal amine. PMID:22384015
Proton transfer in malonaldehyde: From reaction path to Schrödinger's Cat
NASA Astrophysics Data System (ADS)
Fillaux, François; Nicolaï, Béatrice
2005-11-01
Proton transfer in the chelated form of malonaldehyde is commonly supposed to occur between two tautomers, across a transition state involving changes of the chemical bonding. We show that this view is in conflict with rotational spectra. The molecule is better thought of as a superposition of indistinguishable and non-separable C s tautomers and proton tunneling is totally decoupled from the other degrees of freedom. Double minimum potential functions are determined from experiments and ab initio calculations.
The mechanism of proton conduction in phosphoric acid
NASA Astrophysics Data System (ADS)
Vilčiauskas, Linas; Tuckerman, Mark E.; Bester, Gabriel; Paddison, Stephen J.; Kreuer, Klaus-Dieter
2012-06-01
Neat liquid phosphoric acid (H3PO4) has the highest intrinsic proton conductivity of any known substance and is a useful model for understanding proton transport in other phosphate-based systems in biology and clean energy technologies. Here, we present an ab initio molecular dynamics study that reveals, for the first time, the microscopic mechanism of this high proton conductivity. Anomalously fast proton transport in hydrogen-bonded systems involves a structural diffusion mechanism in which intramolecular proton transfer is driven by specific hydrogen bond rearrangements in the surrounding environment. Aqueous media transport excess charge defects through local hydrogen bond rearrangements that drive individual proton transfer reactions. In contrast, strong, polarizable hydrogen bonds in phosphoric acid produce coupled proton motion and a pronounced protic dielectric response of the medium, leading to the formation of extended, polarized hydrogen-bonded chains. The interplay between these chains and a frustrated hydrogen-bond network gives rise to the high proton conductivity.
Chakravorty, Dhruva K; Hammes-Schiffer, Sharon
2010-06-02
The two proton transfer reactions catalyzed by ketosteroid isomerase (KSI) involve a dienolate intermediate stabilized by hydrogen bonds with Tyr14 and Asp99. Molecular dynamics simulations based on an empirical valence bond model are used to examine the impact of mutating these residues on the hydrogen-bonding patterns, conformational changes, and van der Waals and electrostatic interactions during the proton transfer reactions. While the rate constants for the two proton transfer steps are similar for wild-type (WT) KSI, the simulations suggest that the rate constant for the first proton transfer step is smaller in the mutants due to the significantly higher free energy of the dienolate intermediate relative to the reactant. The calculated rate constants for the mutants D99L, Y14F, and Y14F/D99L relative to WT KSI are qualitatively consistent with the kinetic experiments indicating a significant reduction in the catalytic rates along the series of mutants. In the simulations, WT KSI retained two hydrogen-bonding interactions between the substrate and the active site, while the mutants typically retained only one hydrogen-bonding interaction. A new hydrogen-bonding interaction between the substrate and Tyr55 was observed in the double mutant, leading to the prediction that mutation of Tyr55 will have a greater impact on the proton transfer rate constants for the double mutant than for WT KSI. The electrostatic stabilization of the dienolate intermediate relative to the reactant was greater for WT KSI than for the mutants, providing a qualitative explanation for the significantly reduced rates of the mutants. The active site exhibited restricted motion during the proton transfer reactions, but small conformational changes occurred to facilitate the proton transfer reactions by strengthening the hydrogen-bonding interactions and by bringing the proton donor and acceptor closer to each other with the proper orientation for proton transfer. Thus, these calculations suggest that KSI forms a preorganized active site but that the structure of this preorganized active site is altered upon mutation. Moreover, small conformational changes due to stochastic thermal motions are required within this preorganized active site to facilitate the proton transfer reactions.
NASA Astrophysics Data System (ADS)
Scharnagl, Christina; Fischer, Sighart F.
1996-11-01
We use equilibrium thermodynamic concepts to relate protein conformational and protonation substates and their pH-dependent population to kinetic schemes for the rise of the M intermediate in the photocycle of bacteriorhodopsin. Conformational flexibility of arginine R82 is described by a two-state model. The analysis accounts for the electrostatic coupling between its orientation and hydrogen ion titration and presents a structural basis for the linkage between the protonation states of the primary proton acceptor, aspartate D85, and the extracellular release group, glutamate E204. We find that the charge state of D85 is a significant determinant for the orientation of R82. The molecular model predicts the following: the primary proton transfer to D85 can be described by a kinetic scheme with two heterogeneous substates. They control the event with different activation parameters due to the reorientation of R82 away from the chromophore binding site. Their population depends on the external pH and the proton exchange equilibrium between the membrane buried residues and the bulk aqueous solvent. Proton transfer in the physiologic pH range is strongly activated and followed by the reorientation of R82 which shifts the equilibrium toward complete transfer. In the alkaline pH region a different mechanism operates, which involves the increased population of a substate with already reoriented R82 as a consequence of the deprotonation of E204, leading to accelerated proton transfer. Assuming full proton exchange equilibrium with the bulk water on the millisecond time scale leads to an increased population of substates which are non-productive for proton transfer.
The matrix effect in secondary ion mass spectrometry
NASA Astrophysics Data System (ADS)
Seah, M. P.; Shard, A. G.
2018-05-01
Matrix effects in the secondary ion mass spectrometry (SIMS) of selected elemental systems have been analyzed to investigate the applicability of a mathematical description of the matrix effect, called here the charge transfer (CT) model. This model was originally derived for proton exchange and organic positive secondary ions, to characterise the enhancement or suppression of intensities in organic binary systems. In the systems considered in this paper protons are specifically excluded, which enables an assessment of whether the model applies for electrons as well. The present importance is in organic systems but, here we analyse simpler inorganic systems. Matrix effects in elemental systems cannot involve proton transfer if there are no protons present but may be caused by electron transfer and so electron transfer may also be involved in the matrix effects for organic systems. There are general similarities in both the magnitudes of the ion intensities as well as the matrix effects for both positive and negative secondary ions in both systems and so the CT model may be more widely applicable. Published SIMS analyses of binary elemental mixtures are analyzed. The data of Kim et al., for the Pt/Co system, provide, with good precision, data for such a system. This gives evidence for the applicability of the CT model, where electron, rather than proton, transfer is the matrix enhancing and suppressing mechanism. The published data of Prudon et al., for the important Si/Ge system, provides further evidence for the effects for both positive and negative secondary ions and allows rudimentary rules to be developed for the enhancing and suppressing species.
Nagao, Ryo; Ueoka-Nakanishi, Hanayo; Noguchi, Takumi
2017-12-08
In photosynthetic water oxidation, two water molecules are converted into one oxygen molecule and four protons at the Mn 4 CaO 5 cluster in photosystem II (PSII) via the S-state cycle. Efficient proton exit from the catalytic site to the lumen is essential for this process. However, the exit pathways of individual protons through the PSII proteins remain to be identified. In this study, we examined the involvement of a hydrogen-bond network near the redox-active tyrosine Y Z in proton transfer during the S-state cycle. We focused on spectroscopic analyses of a site-directed variant of D1-Asn-298, a residue involved in a hydrogen-bond network near Y Z We found that the D1-N298A mutant of Synechocystis sp. PCC 6803 exhibits an O 2 evolution activity of ∼10% of the wild-type. D1-N298A and the wild-type D1 had very similar features of thermoluminescence glow curves and of an FTIR difference spectrum upon Y Z oxidation, suggesting that the hydrogen-bonded structure of Y Z and electron transfer from the Mn 4 CaO 5 cluster to Y Z were little affected by substitution. In the D1-N298A mutant, however, the flash-number dependence of delayed luminescence showed a monotonic increase without oscillation, and FTIR difference spectra of the S-state cycle indicated partial and significant inhibition of the S 2 → S 3 and S 3 → S 0 transitions, respectively. These results suggest that the D1-N298A substitution inhibits the proton transfer processes in the S 2 → S 3 and S 3 → S 0 transitions. This in turn indicates that the hydrogen-bond network near Y Z can be functional as a proton transfer pathway during photosynthetic water oxidation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Limbach, Hans-Heinrich; Meschede, Ludger; Scherer, Gerd
1989-05-01
Stratagems are presented for the determination of kinetic isotope effects of proton exchange reactions by dynamic NMR spectroscopy. In such experiments, lineshape analyses and/or polarization transfer experiments are performed on the exchanging protons or deuterons as well as on remote spins, as a function of the deuterium fraction in the mobile proton sites. These methods are NMR analogs of previous proton inventory techniques involving classical kinetic methods. A theory is developed in order to derive the kinetic isotope effects as well as the number of transferred protons from the experimental NMR spectra. The technique is then applied to the problem of proton exchange in the system 15N,15N'-di-p-fluorophenylibrmamidine, a nitrogen analog of formic acid, dissolved in tetrahydrofuran-d8 (THF). DFFA forms two conformers in THF to which s-trans and s-cis structures have been assigned. Only the s-trans conformer is able to dimerize and exchange protons. Lineshape simulations and magnetization transfer experiments were carried out at 189,2 K, at a concentration of 0.02 mol l-1, as a function of the deuterium fraction D in the 1H-15N sites. Using 1H NMR spectroscopy, a linear dependence of the inverse proton lifetimes on D was observed. From this it was concluded that two protons are transported in the rate limiting step of the proton exchange. This result is expected for a double proton transfer in an s-trans dimer with a cyclic structure. The full kinetic HH/HD/DD isotope effects of 233:11:1 at 189 K were determined through 19F NMR experiments on the same samples. The deviation from the rule of geometric mean, although substantial, is much smaller than found in previous studies of intramolecular HH transfer reactions. Possible causes of this effect are discussed.
Unno, Masaki; Ishikawa-Suto, Kumiko; Kusaka, Katsuhiro; Tamada, Taro; Hagiwara, Yoshinori; Sugishima, Masakazu; Wada, Kei; Yamada, Taro; Tomoyori, Katsuaki; Hosoya, Takaaki; Tanaka, Ichiro; Niimura, Nobuo; Kuroki, Ryota; Inaka, Koji; Ishihara, Makiko; Fukuyama, Keiichi
2015-04-29
Phycocyanobilin, a light-harvesting and photoreceptor pigment in higher plants, algae, and cyanobacteria, is synthesized from biliverdin IXα (BV) by phycocyanobilin:ferredoxin oxidoreductase (PcyA) via two steps of two-proton-coupled two-electron reduction. We determined the neutron structure of PcyA from cyanobacteria complexed with BV, revealing the exact location of the hydrogen atoms involved in catalysis. Notably, approximately half of the BV bound to PcyA was BVH(+), a state in which all four pyrrole nitrogen atoms were protonated. The protonation states of BV complemented the protonation of adjacent Asp105. The "axial" water molecule that interacts with the neutral pyrrole nitrogen of the A-ring was identified. His88 Nδ was protonated to form a hydrogen bond with the lactam O atom of the BV A-ring. His88 and His74 were linked by hydrogen bonds via H3O(+). These results imply that Asp105, His88, and the axial water molecule contribute to proton transfer during PcyA catalysis.
Alwaaly, Ahmed; Clegg, William; Henderson, Richard A; Probert, Michael R; Waddell, Paul G
2015-02-21
The complexes [Ni(S2CR)(triphos)]BPh4 (R = Me, Et, Bu(n) or Ph; triphos = PhP{CH2CH2PPh2}2) have been prepared and characterised. X-ray crystallography (for R = Et, Ph, C6H4Me-4, C6H4OMe-4 and C6H4Cl-4) shows that the geometry of the five-coordinate nickel in the cation is best described as distorted trigonal bipyramidal, containing a bidentate carboxydithioate ligand with the two sulfur atoms spanning axial and equatorial sites, the other axial site being occupied by the central phosphorus of triphos. The reactions of [Ni(S2CR)(triphos)](+) with mixtures of HCl and Cl(-) in MeCN to form equilibrium solutions containing [Ni(SH(S)CR)(triphos)](2+) have been studied using stopped-flow spectrophotometry. The kinetics show that proton transfer is slower than the diffusion-controlled limit and involves at least two coupled equilibria. The first step involves the rapid association between [Ni(S2CR)(triphos)](+) and HCl to form the hydrogen-bonded precursor, {[Ni(S2CR)(triphos)](+)HCl} (K) and this is followed by the intramolecular proton transfer (k) to produce [Ni(SH(S)CR)(triphos)](2+). In the reaction of [Ni(S2CMe)(triphos)](+) the rate law is consistent with the carboxydithioate ligand undergoing chelate ring-opening after protonation. It seems likely that chelate ring-opening occurs for all [Ni(S2CR)(triphos)](+), but only with [Ni(S2CMe)(triphos)](+) is the protonation step sufficiently fast that chelate ring-opening is rate-limiting. With all other systems, proton transfer is rate-limiting. DFT calculations indicate that protonation can occur at either sulfur atom, but only protonation at the equatorial sulfur results in chelate ring-opening. The ways in which protonation of either sulfur atom complicates the analyses and interpretation of the kinetics are discussed.
NASA Astrophysics Data System (ADS)
Shoji, Mitsuo; Isobe, Hiroshi; Shigeta, Yasuteru; Nakajima, Takahito; Yamaguchi, Kizashi
2018-04-01
The reaction mechanism of the O2 formation in the S4 state of the oxygen-evolving complex of photosystem II was clarified at the quantum mechanics/molecular mechanics (QM/MM) level. After the Yz (Y161) oxidation and the following proton transfer in the S3 state, five reaction steps are required to produce the molecular dioxygen. The highest barrier step is the first proton transfer reaction (0 → 1). The following reactions involving electron transfers were precisely analyzed in terms of their energies, structures and spin densities. We found that the one-electron transfer from the Mn4Ca cluster to Y161 triggers the O-O sigma bond formation.
Protonation-Gated Dual Photochromism of a Chromene-Styryl Dye Hybrid.
Berdnikova, Daria V; Paululat, Thomas; Jonusauskas, Gediminas; Peregudova, Svetlana M; Fedorova, Olga A
2017-10-20
A novel hybrid bisphotochromic system involving a chromene residue and a styryl dye fragment is described. Initially, the compound shows almost no photochromism due to intramolecular energy and electron transfer between the chromophores. Protonation of the hybrid system blocks the transfer processes and unlocks a dual photochromic activity that includes ring opening of the chromene fragment and E-Z-isomerization of the styryl dye residue. Deprotonation of any photoinduced form resets the system to the initial photoinactive form.
Huynh, Mioy T.; Mora, S. Jimena; Villalba, Matias; ...
2017-05-09
Nature employs a TyrZ-His pair as a redox relay that couples proton transfer to the redox process between P680 and the water oxidizing catalyst in photosystem II. Artificial redox relays composed of different benzimidazole–phenol dyads (benzimidazole models His and phenol models Tyr) with substituents designed to simulate the hydrogen bond network surrounding the TyrZ-His pair have been prepared. Furthermore, when the benzimidazole substituents are strong proton acceptors such as primary or tertiary amines, theory predicts that a concerted two proton transfer process associated with the electrochemical oxidation of the phenol will take place. Furthermore, theory predicts a decrease in themore » redox potential of the phenol by ~300 mV and a small kinetic isotope effect (KIE). Indeed, electrochemical, spectroelectrochemical, and KIE experimental data are consistent with these predictions. Our results were obtained by using theory to guide the rational design of artificial systems and have implications for managing proton activity to optimize efficiency at energy conversion sites involving water oxidation and reduction.« less
Lillo, Victor J; Mansilla, Javier; Saá, José M
2018-06-06
Proton transfer is central to the understanding of chemical processes. More so in addition reactions of the type NuH + E → Nu-EH taking place under solvent-free and catalyst-free conditions. Herein we show that the addition of alcohols or amines (the NuH component) to imine derivatives (the E component), in 1 : 1 ratio, under solvent-free and catalyst-free conditions, are efficient methods to access N,O and N,N-acetal derivatives. In addition, computational studies reveal that they are catalyzed reactions involving two or even three NuH molecules operating in a cooperative manner as H-bonded NuH(NuH)nNuH associates (many body effects) in the transition state through a concerted proton shuttling mechanism (addition of alcohols) or stepwise proton shuttling mechanism (addition of amines), thereby facilitating the key proton transfer step.
Ratzloff, Michael W; Wilker, Molly B; Mulder, David W; Lubner, Carolyn E; Hamby, Hayden; Brown, Katherine A; Dukovic, Gordana; King, Paul W
2017-09-20
Molecular complexes between CdSe nanocrystals and Clostridium acetobutylicum [FeFe] hydrogenase I (CaI) enabled light-driven control of electron transfer for spectroscopic detection of redox intermediates during catalytic proton reduction. Here we address the route of electron transfer from CdSe→CaI and activation thermodynamics of the initial step of proton reduction in CaI. The electron paramagnetic spectroscopy of illuminated CdSe:CaI showed how the CaI accessory FeS cluster chain (F-clusters) functions in electron transfer with CdSe. The H ox →H red H + reduction step measured by Fourier-transform infrared spectroscopy showed an enthalpy of activation of 19 kJ mol -1 and a ∼2.5-fold kinetic isotope effect. Overall, these results support electron injection from CdSe into CaI involving F-clusters, and that the H ox →H red H + step of catalytic proton reduction in CaI proceeds by a proton-dependent process.
Protonation and Proton-Coupled Electron Transfer at S-Ligated [4Fe-4S] Clusters
Morris, Wesley D.; Darcy, Julia W.; Mayer, James M.
2015-01-01
Biological [Fe-S] clusters are increasingly recognized to undergo proton-coupled electron transfer (PCET), but the site of protonation, mechanism, and role for PCET remains largely unknown. Here we explore this reactivity with synthetic model clusters. Protonation of the arylthiolate-ligated [4Fe-4S] cluster [Fe4S4(SAr)4]2- (1, SAr = S-2,4-6-(iPr)3C6H2) leads to thiol dissociation, reversibly forming [Fe4S4(SAr)3L]1- (2) + ArSH (L = solvent, and/or conjugate base). Solutions of 2 + ArSH react with the nitroxyl radical TEMPO to give [Fe4S4(SAr)4]1- (1ox) and TEMPOH. This reaction involves PCET coupled to thiolate association and may proceed via the unobserved protonated cluster [Fe4S4(SAr)3(HSAr)]1-(1-H). Similar reactions with this and related clusters proceed comparably. An understanding of the PCET thermochemistry of this cluster system has been developed, encompassing three different redox levels and two protonation states. PMID:25965413
Size and shape dependent deprotonation potential and proton affinity of nanodiamond
NASA Astrophysics Data System (ADS)
Barnard, Amanda S.; Per, Manolo C.
2014-11-01
Many important reactions in biology and medicine involve proton abstraction and transfer, and it is integral to applications such as drug delivery. Unlike electrons, which are quantum mechanically delocalized, protons are instantaneously localized on specific residues in these reactions, which can be a distinct advantage. However, the introduction of nanoparticles, such as non-toxic nanodiamonds, to this field complicates matters, as the number of possible sites increases as the inverse radius of the particle. In this paper we present \\gt {{10}4} simulations that map the size- and shape-dependence of the deprotonation potential and proton affinity of nanodiamonds in the range 1.8-2.7 nm in average diameter. We find that while the average deprotonation potential and proton affinities decrease with size, the site-specific values are inhomogeneous over the surface of the particles, exhibiting strong shape-dependence. The proton affinity is strongly facet-dependent, whereas the deprotonation potential is edge/corner-dependent, which creates a type of spatial hysteresis in the transfer of protons to and from the nanodiamond, and provides new opportunities for selective functionalization.
Pagba, Cynthia V; McCaslin, Tyler G; Chi, San-Hui; Perry, Joseph W; Barry, Bridgette A
2016-02-25
Photosystem II (PSII) and ribonucleotide reductase employ oxidation and reduction of the tyrosine aromatic ring in radical transport pathways. Tyrosine-based reactions involve either proton-coupled electron transfer (PCET) or electron transfer (ET) alone, depending on the pH and the pKa of tyrosine's phenolic oxygen. In PSII, a subset of the PCET reactions are mediated by a tyrosine-histidine redox-driven proton relay, YD-His189. Peptide A is a PSII-inspired β-hairpin, which contains a single tyrosine (Y5) and histidine (H14). Previous electrochemical characterization indicated that Peptide A conducts a net PCET reaction between Y5 and H14, which have a cross-strand π-π interaction. The kinetic impact of H14 has not yet been explored. Here, we address this question through time-resolved absorption spectroscopy and 280-nm photolysis, which generates a neutral tyrosyl radical. The formation and decay of the neutral tyrosyl radical at 410 nm were monitored in Peptide A and its variant, Peptide C, in which H14 is replaced by cyclohexylalanine (Cha14). Significantly, both electron transfer (ET, pL 11, L = lyonium) and PCET (pL 9) were accelerated in Peptide A and C, compared to model tyrosinate or tyrosine at the same pL. Increased electronic coupling, mediated by the peptide backbone, can account for this rate acceleration. Deuterium exchange gave no significant solvent isotope effect in the peptides. At pL 9, but not at pL 11, the reaction rate decreased when H14 was mutated to Cha14. This decrease in rate is attributed to an increase in reorganization energy in the Cha14 mutant. The Y5-H14 mechanism in Peptide A is reminiscent of proton- and electron-transfer events involving YD-H189 in PSII. These results document a mechanism by which proton donors and acceptors can regulate the rate of PCET reactions.
Li, Ping; Bu, Yuxiang
2004-11-22
The behavior of double proton transfer occurring in a representative glycinamide-formic acid complex has been investigated at the B3LYP/6-311 + + G( * *) level of theory. Thermodynamic and, especially, kinetic parameters, such as tautomeric energy, equilibrium constant, and barrier heights have been discussed, respectively. The relevant quantities involved in the double proton transfer process, such as geometrical changes, interaction energies, and intrinsic reaction coordinate calculations have also been studied. Computational results show that the participation of a formic acid molecule favors the proceeding of the proton transfer for glycinamide compared with that without mediate-assisted case. The double proton transfer process proceeds with a concerted mechanism rather than a stepwise one since no ion-pair complexes have been located during the proton transfer process. The calculated barrier heights are 11.48 and 0.85 kcal/mol for the forward and reverse directions, respectively. However, both of them have been reduced by 2.95 and 2.61 kcal/mol to 8.53 and -1.76 kcal/mol if further inclusion of zero-point vibrational energy corrections, where the negative barrier height implies that the reverse reaction should proceed with barrierless spontaneously, analogous to that occurring between glycinamide and formamide. Furthermore, solvent effects on the thermodynamic and kinetic processes have also been predicted qualitatively employing the isodensity surface polarized continuum model within the framework of the self-consistent reaction field theory. Additionally, the oxidation process for the double H-bonded glycinamide-formic acid complex has also been investigated. Contrary to that neutral form possessing a pair of two parallel intermolecular H bonds, only a single H bond with a comparable strength has been found in its ionized form. The vertical and adiabatic ionization potentials for the neutral complex have been determined to be about 9.40 and 8.69 eV, respectively, where ionization is mainly localized on the glycinamide fragment. Like that ionized glycinamide-formamide complex, the proton transfer in the ionized complex is characterized by a single-well potential, implying that the proton initially attached to amide N4 in the glycinamide fragment cannot be transferred to carbonyl O13 in the formic acid fragment at the geometry of the optimized complex. Copyright 2004 American Institute of Physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratzloff, Michael W.; Wilker, Molly B.; Mulder, David W.
Molecular complexes between CdSe nanocrystals and Clostridium acetobutylicum [FeFe] hydrogenase I (CaI) enabled light-driven control of electron transfer for spectroscopic detection of redox intermediates during catalytic proton reduction. Here in this paper we address the route of electron transfer from CdSe→CaI and activation thermodynamics of the initial step of proton reduction in CaI. The electron paramagnetic spectroscopy of illuminated CdSe:CaI showed how the CaI accessory FeS cluster chain (F-clusters) functions in electron transfer with CdSe. The H ox→H redH + reduction step measured by Fourier-transform infrared spectroscopy showed an enthalpy of activation of 19 kJ mol -1 and a ~2.5-foldmore » kinetic isotope effect. Overall these results support electron injection from CdSe into CaI involving F-clusters, and that the H ox→H redH + step of catalytic proton reduction in CaI proceeds by a proton-dependent process.« less
Ratzloff, Michael W.; Wilker, Molly B.; Mulder, David W.; ...
2017-08-29
Molecular complexes between CdSe nanocrystals and Clostridium acetobutylicum [FeFe] hydrogenase I (CaI) enabled light-driven control of electron transfer for spectroscopic detection of redox intermediates during catalytic proton reduction. Here in this paper we address the route of electron transfer from CdSe→CaI and activation thermodynamics of the initial step of proton reduction in CaI. The electron paramagnetic spectroscopy of illuminated CdSe:CaI showed how the CaI accessory FeS cluster chain (F-clusters) functions in electron transfer with CdSe. The H ox→H redH + reduction step measured by Fourier-transform infrared spectroscopy showed an enthalpy of activation of 19 kJ mol -1 and a ~2.5-foldmore » kinetic isotope effect. Overall these results support electron injection from CdSe into CaI involving F-clusters, and that the H ox→H redH + step of catalytic proton reduction in CaI proceeds by a proton-dependent process.« less
Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S
2015-10-14
While diabatic approaches are ubiquitous for the understanding of electron-transfer reactions and have been mooted as being of general relevance, alternate applications have not been able to unify the same wide range of observed spectroscopic and kinetic properties. The cause of this is identified as the fundamentally different orbital configurations involved: charge-transfer phenomena involve typically either 1 or 3 electrons in two orbitals whereas most reactions are typically closed shell. As a result, two vibrationally coupled electronic states depict charge-transfer scenarios whereas three coupled states arise for closed-shell reactions of non-degenerate molecules and seven states for the reactions implicated in the aromaticity of benzene. Previous diabatic treatments of closed-shell processes have considered only two arbitrarily chosen states as being critical, mapping these states to those for electron transfer. We show that such effective two-state diabatic models are feasible but involve renormalized electronic coupling and vibrational coupling parameters, with this renormalization being property dependent. With this caveat, diabatic models are shown to provide excellent descriptions of the spectroscopy and kinetics of the ammonia inversion reaction, proton transfer in N2H7(+), and aromaticity in benzene. This allows for the development of a single simple theory that can semi-quantitatively describe all of these chemical phenomena, as well as of course electron-transfer reactions. It forms a basis for understanding many technologically relevant aspects of chemical reactions, condensed-matter physics, chemical quantum entanglement, nanotechnology, and natural or artificial solar energy capture and conversion.
Excited state proton transfer in strongly enhanced GFP (sGFP2).
van Oort, Bart; ter Veer, Mirelle J T; Groot, Marie Louise; van Stokkum, Ivo H M
2012-07-07
Proton transfer is an elementary process in biology. Green fluorescent protein (GFP) has served as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. We have used pump-dump-probe spectroscopy to study how proton transfer through the 'proton-wire' around the chromophore is affected by a combination of mutations in a modern GFP variety (sGFP2). The results indicate that in H(2)O, after absorption of a photon, a proton is transferred (A* → I*) in 5 ps, and back-transferred from a ground state intermediate (I → A) in 0.3 ns, similar to time constants found with GFPuv, although sGFP2 shows less heterogeneous proton transfer. This suggests that the mutations left the proton-transfer largely unchanged, indicating the robustness of the proton-wire. We used pump-dump-probe spectroscopy in combination with target analysis to probe suitability of the sGFP2 fluorophore for super-resolution microscopy.
NASA Technical Reports Server (NTRS)
Karpas, Z.; Harden, C. S.; Smith, P. B. W.
1995-01-01
The 'kinetic method' was used to determine the proton affinity (PA) of a,coalkyldiamines from collision induced dissociation (CID) studies of protonated heterodimers. These PA values were consistently lower than those reported in the proton affinity scale. The apparent discrepancy was rationalized in terms of differences in the conformation of the protonated diamine monomers. The minimum energy species, formed by equilibrium proton transfer processes, have a cyclic conformation and the ion charge is shared by both amino-groups which are bridged by the proton. On the other hand, the species formed through dissociation of protonated dimers have a linear structure and the charge is localized on one of the amino-groups. Thus, the difference in the PA values obtained by both methods is a measure of the additional stability acquired by the protonated diamines through cyclization and charge delocalization. The major collision dissociation pathway of the protonated diamine monomers involved elimination of an ammonia moiety. Other reactions observed included loss of the second amino-group and several other bond cleavages. CID of the protonated dimers involved primarily formation of a protonated monomer through cleavage of the weaker hydrogen bond and subsequently loss of ammonia at higher collision energies. As observed from the CID studies, doubly charged ions were also formed from the diamines under conditions of the electrospray ionization.
Protons in non-ionic aqueous reverse micelles.
Rodriguez, Javier; Martí, Jordi; Guàrdia, Elvira; Laria, Daniel
2007-05-03
Using molecular dynamics techniques, we investigate the solvation of an excess proton within an aqueous reverse micelle in vacuo, with the neutral surfactant diethylene glycol monodecyl ether [CH3(CH2)11(OC2H4)2OH]. The simulation experiments were performed using a multistate empirical valence bond Hamiltonian model. Our results show that the stable solvation environments for the excess proton are located in the water-surfactant interface and that its first solvation shell is composed exclusively by water molecules. The relative prevalence of Eigen- versus Zundel-like solvation structures is investigated; compared to bulk results, Zundel-like structures in micelles become somewhat more stable. Characteristic times for the proton translocation jumps have been computed using population relaxation time correlation functions. The micellar rate for proton transfer is approximately 40x smaller than that found in bulk water at ambient conditions. Differences in the computed rates are examined in terms of the hydrogen-bond connectivity involving the first solvation shell of the excess charge with the rest of the micellar environment. Simulation results would indicate that proton transfers are correlated with rare episodes during which the HB connectivity between the first and second solvation shells suffers profound modifications.
Krygowski, Tadeusz M; Szatyłowicz, Halina; Zachara, Joanna E
2005-01-01
The simplified model system [p-X-PhO...H...F](-), where -X are -NO, -NO(2), -CHO, -H, -CH(3), -OCH(3), and -OH, with various O...F distance was used to simulate the wide range of the H-bond strength. Structural changes due to variation of the substituent as well as the H-bond strength are well monitored by the changes in the aromaticity index HOMA and by two empirical measures of the H-bond strength-the (1)H NMR chemical shift of proton involved and the C-O bond length. Changes in H-bonding strengths and the position of proton transfer while shortening the O...F distance are well described by the Hammett equation.
Ultrafast Intramolecular Electron and Proton Transfer in Bis(imino)isoindole Derivatives.
Driscoll, Eric; Sorenson, Shayne; Dawlaty, Jahan M
2015-06-04
Concerted motion of electrons and protons in the excited state is pertinent to a wide range of chemical phenomena, including those relevant for solar-to-fuel light harvesting. The excited state dynamics of small proton-bearing molecules are expected to serve as models for better understanding such phenomena. In particular, for designing the next generation of multielectron and multiproton redox catalysts, understanding the dynamics of more than one proton in the excited state is important. Toward this goal, we have measured the ultrafast dynamics of intramolecular excited state proton transfer in a recently synthesized dye with two equivalent transferable protons. We have used a visible ultrafast pump to initiate the proton transfer in the excited state, and have probed the transient absorption of the molecule over a wide bandwidth in the visible range. The measurement shows that the signal which is characteristic of proton transfer emerges within ∼710 fs. To identify whether both protons were transferred in the excited state, we have measured the ultrafast dynamics of a related derivative, where only a single proton was available for transfer. The measured proton transfer time in that molecule was ∼427 fs. The observed dynamics in both cases were reasonably fit with single exponentials. Supported by the ultrafast observations, steady-state fluorescence, and preliminary computations of the relaxed excited states, we argue that the doubly protonated derivative most likely transfers only one of its two protons in the excited state. We have performed calculations of the frontier molecular orbitals in the Franck-Condon region. The calculations show that in both derivatives, the excitation is primarily from the HOMO to LUMO causing a large rearrangement of the electronic charge density immediately after photoexcitation. In particular, charge density is shifted away from the phenolic protons and toward the proton acceptor nitrogens. The proton transfer is hypothesized to occur both due to enhanced acidity of the phenolic proton and enhanced basicity of the nitrogen in the excited state. We hope this study can provide insight for better understanding of the general class of excited state concerted electron-proton dynamics.
Ab initio treatment of ion-induced charge transfer dynamics of isolated 2-deoxy-D-ribose.
Bacchus-Montabonel, Marie-Christine
2014-08-21
Modeling-induced radiation damage in biological systems, in particular, in DNA building blocks, is of major concern in cancer therapy studies. Ion-induced charge-transfer dynamics may indeed be involved in proton and hadrontherapy treatments. We have thus performed a theoretical approach of the charge-transfer dynamics in collision of C(4+) ions and protons with isolated 2-deoxy-D-ribose in a wide collision energy range by means of ab initio quantum chemistry molecular methods. The comparison of both projectile ions has been performed with regard to previous theoretical and experimental results. The charge transfer appears markedly less efficient with the 2-deoxy-D-ribose target than that with pyrimidine nucleobases, which would induce an enhancement of the fragmentation process in agreement with experimental measurements. The mechanism has been analyzed with regard to inner orbital excitations, and qualitative tendencies have been pointed out for studies on DNA buiding block damage.
Fukuda, Yohta; Tse, Ka Man; Nakane, Takanori; Nakatsu, Toru; Suzuki, Mamoru; Sugahara, Michihiro; Inoue, Shigeyuki; Masuda, Tetsuya; Yumoto, Fumiaki; Matsugaki, Naohiro; Nango, Eriko; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Song, Changyong; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Murphy, Michael E P; Inoue, Tsuyoshi; Iwata, So; Mizohata, Eiichi
2016-03-15
Proton-coupled electron transfer (PCET), a ubiquitous phenomenon in biological systems, plays an essential role in copper nitrite reductase (CuNiR), the key metalloenzyme in microbial denitrification of the global nitrogen cycle. Analyses of the nitrite reduction mechanism in CuNiR with conventional synchrotron radiation crystallography (SRX) have been faced with difficulties, because X-ray photoreduction changes the native structures of metal centers and the enzyme-substrate complex. Using serial femtosecond crystallography (SFX), we determined the intact structures of CuNiR in the resting state and the nitrite complex (NC) state at 2.03- and 1.60-Å resolution, respectively. Furthermore, the SRX NC structure representing a transient state in the catalytic cycle was determined at 1.30-Å resolution. Comparison between SRX and SFX structures revealed that photoreduction changes the coordination manner of the substrate and that catalytically important His255 can switch hydrogen bond partners between the backbone carbonyl oxygen of nearby Glu279 and the side-chain hydroxyl group of Thr280. These findings, which SRX has failed to uncover, propose a redox-coupled proton switch for PCET. This concept can explain how proton transfer to the substrate is involved in intramolecular electron transfer and why substrate binding accelerates PCET. Our study demonstrates the potential of SFX as a powerful tool to study redox processes in metalloenzymes.
Chen, Wei; Chen, Jie-Jie; Lu, Rui; Qian, Chen; Li, Wen-Wei; Yu, Han-Qing
2014-08-01
Riboflavin (RF), the primary redox active component of flavin, is involved in many redox processes in biogeochemical systems. Despite of its wide distribution and important roles in environmental remediation, its redox behaviors and reaction mechanisms in hydrophobic sites remain unclear yet. In this study, spectroelectrochemical analysis and density functional theory (DFT) calculation were integrated to explore the redox behaviors of RF in dimethyl sulfoxide (DMSO), which was used to create a hydrophobic environment. Specifically, cyclic voltafluorometry (CVF) and derivative cyclic voltafluorometry (DCVF) were employed to track the RF concentration changing profiles. It was found that the reduction contained a series of proton-coupled electron transfers dependent of potential driving force. In addition to the electron transfer-chemical reaction-electron transfer process, a disproportionation (DISP1) process was also identified to be involved in the reduction. The redox potential and free energy of each step obtained from the DFT calculations further confirmed the mechanisms proposed based on the experimental results. The combination of experimental and theoretical approaches yields a deep insight into the characteristics of RF in environmental remediation and better understanding about the proton-coupled electron transfer mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Proton transfer in organic scaffolds
NASA Astrophysics Data System (ADS)
Basak, Dipankar
This dissertation focuses on the fundamental understanding of the proton transfer process and translating the knowledge into design/development of new organic materials for efficient non-aqueous proton transport. For example, what controls the shuttling of a proton between two basic sites? a) Distance between two groups? or b) the basicity? c) What is the impact of protonation on molecular conformation when the basic sites are attached to rigid scaffolds? For this purpose, we developed several tunable proton sponges and studied proton transfer in these scaffolds theoretically as well as experimentally. Next we moved our attention to understand long-range proton conduction or proton transport. We introduced liquid crystalline (LC) proton conductor based on triphenylene molecule and established that activation energy barrier for proton transport is lower in the LC phase compared to the crystalline phase. Furthermore, we investigated the impact of several critical factors: the choice of the proton transferring groups, mobility of the charge carriers, intrinsic vs. extrinsic charge carrier concentrations and the molecular architectures on long-range proton transport. The outcome of this research will lead to a deeper understanding of non-aqueous proton transfer process and aid the design of next generation proton exchange membrane (PEM) for fuel cell.
The controlled relay of multiple protons required at the active site of nitrogenase.
Dance, Ian
2012-07-07
The enzyme nitrogenase, when reducing natural and unnatural substrates, requires large numbers of protons per chemical catalytic cycle. The active face of the catalytic site (the FeMo-cofactor, FeMo-co) is situated in a protein domain which is largely hydrophobic and anhydrous, and incapable of serial provision of multiple protons. Through detailed analysis of the high quality protein crystal structures available the characteristics of a chain of water molecules leading from the protein surface to a key sulfur atom (S3B) of FeMo-co are described. The first half of the water chain from the surface inwards is branched, slightly variable, and able to accommodate exogenous small molecules: this is dubbed the proton bay. The second half, from the proton bay to S3B, is comprised of a single chain of eight hydrogen bonded water molecules. This section is strictly conserved, and is intimately involved in hydrogen bonds with homocitrate, an essential component that chelates Mo. This is the proton wire, and a detailed Grotthuss mechanism for serial translocation of protons through this proton wire to S3B is proposed. This controlled serial proton relay from the protein surface to S3B is an essential component of the intramolecular hydrogenation paradigm for the complete chemical mechanisms of nitrogenase. Each proton reaching S3B, instigated by electron transfer to FeMo-co, becomes a hydrogen atom that migrates to other components of the active face of FeMo-co and to bound substrates and intermediates, allowing subsequent multiple proton transfers along the proton wire. Experiments to test the proposed mechanism of proton supply are suggested. The water chain in nitrogenase is comparable with the purported proton pumping pathway of cytochrome c oxidase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsounaros, Ioannis; Chen, Ting; Gewirth, Andrew A.
The two traditional mechanisms of the electrochemical ammonia oxidation consider only concerted proton-electron transfer elementary steps and thus they predict that the rate–potential relationship is independent of the pH on the pH-corrected RHE potential scale. In this letter we show that this is not the case: the increase of the solution pH shifts the onset of the NH 3-to-N 2 oxidation on Pt(100) to lower potentials and also leads to higher surface concentration of formed N Oad before the latter is oxidized to nitrite. Therefore, we present a new mechanism for the ammonia oxidation which incorporates a deprotonation step occurringmore » prior to the electron transfer. The deprotonation step yields a negatively charged surface-adsorbed species which is discharged in a subsequent electron transfer step before the N–N bond formation. The negatively charged species is thus a precursor for the formation of N 2 and NO. The new mechanism should be a future guide for computational studies aiming at the identification of intermediates and corresponding activation barriers for the elementary steps. As a result, ammonia oxidation is a new example of a bond-forming reaction on (100) terraces which involves decoupled proton-electron transfer.« less
Katsounaros, Ioannis; Chen, Ting; Gewirth, Andrew A.; ...
2016-01-12
The two traditional mechanisms of the electrochemical ammonia oxidation consider only concerted proton-electron transfer elementary steps and thus they predict that the rate–potential relationship is independent of the pH on the pH-corrected RHE potential scale. In this letter we show that this is not the case: the increase of the solution pH shifts the onset of the NH 3-to-N 2 oxidation on Pt(100) to lower potentials and also leads to higher surface concentration of formed N Oad before the latter is oxidized to nitrite. Therefore, we present a new mechanism for the ammonia oxidation which incorporates a deprotonation step occurringmore » prior to the electron transfer. The deprotonation step yields a negatively charged surface-adsorbed species which is discharged in a subsequent electron transfer step before the N–N bond formation. The negatively charged species is thus a precursor for the formation of N 2 and NO. The new mechanism should be a future guide for computational studies aiming at the identification of intermediates and corresponding activation barriers for the elementary steps. As a result, ammonia oxidation is a new example of a bond-forming reaction on (100) terraces which involves decoupled proton-electron transfer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doukov,T.; Hemmi, H.; Drennan, C.
The methyltetrahydrofolate (CH{sub 3}-H{sub 4}folate) corrinoid-ironsulfur protein (CFeSP) methyltransferase (MeTr) catalyzes transfer of the methyl group of CH3-H4folate to cob(I)amide. This key step in anaerobic CO and CO{sub 2} fixation is similar to the first half-reaction in the mechanisms of other cobalamin-dependent methyltransferases. Methyl transfer requires electrophilic activation of the methyl group of CH{sub 3}-H{sub 4}folate, which includes proton transfer to the N5 group of the pterin ring and poises the methyl group for reaction with the Co(I) nucleophile. The structure of the binary CH{sub 3}-H{sub 4}folate/MeTr complex (revealed here) lacks any obvious proton donor near the N5 group. Instead,more » an Asn residue and water molecules are found within H-bonding distance of N5. Structural and kinetic experiments described here are consistent with the involvement of an extended H-bonding network in proton transfer to N5 of the folate that includes an Asn (Asn-199 in MeTr), a conserved Asp (Asp-160), and a water molecule. This situation is reminiscent of purine nucleoside phosphorylase, which involves protonation of the purine N7 in the transition state and is accomplished by an extended H-bond network that includes water molecules, a Glu residue, and an Asn residue (Kicska, G. A., Tyler, P. C., Evans, G. B., Furneaux, R. H., Shi, W., Fedorov, A., Lewandowicz, A., Cahill, S. M., Almo, S. C., and Schramm, V. L. (2002) Biochemistry 41, 14489-14498). In MeTr, the Asn residue swings from a distant position to within H-bonding distance of the N5 atom upon CH{sub 3}-H{sub 4}folate binding. An N199A variant exhibits only {approx}20-fold weakened affinity for CH{sub 3}-H{sub 4}folate but a much more marked 20,000-40,000-fold effect on catalysis, suggesting that Asn-199 plays an important role in stabilizing a transition state or high energy intermediate for methyl transfer.« less
Nguyen, Truong X; Kattnig, Daniel; Mansha, Asim; Grampp, Günter; Yurkovskaya, Alexandra V; Lukzen, Nikita
2012-11-08
The kinetics of triplet state quenching of 3,3',4,4'-benzophenone tetracarboxylic acid (BPTC) by DNA bases adenine, adenosine, thymine, and thymidine has been investigated in aqueous solution using time-resolved laser flash photolysis. The observation of the BPTC ketyl radical anion at λ(max) = 630 nm indicates that one electron transfer is involved in the quenching reactions. The pH-dependence of the quenching rate constants is measured in detail. As a result, the chemical reactivity of the reactants is assigned. The bimolecular rate constants of the quenching reactions between triplet BPTC and adenine, adenosine, thymine, and thymidine are k(q) = 2.3 × 10(9) (4.7 < pH < 9.9), k(q) = 4.0 × 10(9) (3.5 < pH < 4.7), k(q) = 1.0 × 10(9) (4.7 < pH < 9.9), and k(q) = 4.0 × 10(8) M(-1) s(-1) (4.7 < pH < 9.8), respectively. Moreover, it reveals that in strong basic medium (pH = 12.0) a keto-enol tautomerism of thymine inhibits its reaction with triplet BPTC. Such a behavior is not possible for thymidine because of its deoxyribose group. In addition, the pH-dependence of the apparent electrochemical standard potential of thymine in aqueous solution was investigated by cyclic voltammetry. The ΔE/ΔpH ≈ -59 mV/pH result is characteristic of proton-coupled electron transfer. This behavior, together with the kinetic analysis, leads to the conclusion that the quenching reactions between triplet BPTC and thymine involve one proton-coupled electron transfer.
2012-01-01
The kinetics of triplet state quenching of 3,3′,4,4′-benzophenone tetracarboxylic acid (BPTC) by DNA bases adenine, adenosine, thymine, and thymidine has been investigated in aqueous solution using time-resolved laser flash photolysis. The observation of the BPTC ketyl radical anion at λmax = 630 nm indicates that one electron transfer is involved in the quenching reactions. The pH-dependence of the quenching rate constants is measured in detail. As a result, the chemical reactivity of the reactants is assigned. The bimolecular rate constants of the quenching reactions between triplet BPTC and adenine, adenosine, thymine, and thymidine are kq = 2.3 × 109 (4.7 < pH < 9.9), kq = 4.0 × 109 (3.5 < pH < 4.7), kq = 1.0 × 109 (4.7 < pH < 9.9), and kq = 4.0 × 108 M–1 s–1 (4.7 < pH < 9.8), respectively. Moreover, it reveals that in strong basic medium (pH = 12.0) a keto–enol tautomerism of thymine inhibits its reaction with triplet BPTC. Such a behavior is not possible for thymidine because of its deoxyribose group. In addition, the pH-dependence of the apparent electrochemical standard potential of thymine in aqueous solution was investigated by cyclic voltammetry. The ΔE/ΔpH ≈ −59 mV/pH result is characteristic of proton-coupled electron transfer. This behavior, together with the kinetic analysis, leads to the conclusion that the quenching reactions between triplet BPTC and thymine involve one proton-coupled electron transfer. PMID:23038981
NASA Astrophysics Data System (ADS)
Liu, Xiaomei
1998-05-01
My thesis project has concentrated on clarifying the role of individual amino acids such as tyrosine, arginine and threonine in the active proton transferring process of Bacteriorhodopsin(bR). BR is a protein found in the purple membrane of Halobacteria salinarium. The main function of bR is to transfer a proton from the interior side of the cell to the external medium upon illumination by visible light. BR belongs to a family of retinal- containing membrane proteins which includes rhodopsin, a visual receptor found in the eye, and sensory rhodopsin I, a light receptor for phototaxis found in H. salinarium. Complete understanding of the proton transferring mechanism of bR can help explain the energy transduction and active ion transport in biological systems. This information also provides insight into other members of the retinal-containing protein family. To study the behavior of a single amino acid in a protein which consists of 248 amino acids, I employed the Fourier transform infrared (FTIR) difference spectroscopy technique. This was combined with the recently developed genetic engineering method of site directed isotope labeling (SDIL). As complementary work, I also characterized the vibrational properties of individual amino acids in various environments. Because of the high resolution and sensitivity of FTIR difference spectroscopy, along with the ability of SDIL to detect structural changes at the single amino acid level, we are able to determine changes in the structure of specific amino acids at different steps in bR photocycle. My research results provide strong evidence for a proton pump model. This model predicts the participation of tyrosine 185 and one or more threonines in a hydrogen bonded chain which can transfer proton across the membrane. My data also suggest a more accurate model for the proton release step which involves arginine 82.
Base-enhanced catalytic water oxidation by a carboxylate–bipyridine Ru(II) complex
Song, Na; Concepcion, Javier J.; Binstead, Robert A.; ...
2015-04-06
In aqueous solution above pH 2.4 with 4% (vol/vol) CH 3CN, the complex [Ru II(bda)(isoq) 2] (bda is 2,2'-bipyridine-6,6'-dicarboxylate; isoq is isoquinoline) exists as the open-arm chelate, [Ru II(CO 2-bpy-CO 2 $-$)(isoq) 2(NCCH 3)], as shown by 1H and 13C-NMR, X-ray crystallography, and pH titrations. Rates of water oxidation with the open-arm chelate are remarkably enhanced by added proton acceptor bases, as measured by cyclic voltammetry (CV). In 1.0 M PO 4 3–, the calculated half-time for water oxidation is ~7 μs. In conclusion, the key to the rate accelerations with added bases is direct involvement of the buffer basemore » in either atom–proton transfer (APT) or concerted electron–proton transfer (EPT) pathways.« less
Base-enhanced catalytic water oxidation by a carboxylate–bipyridine Ru(II) complex
Song, Na; Concepcion, Javier J.; Binstead, Robert A.; Rudd, Jennifer A.; Vannucci, Aaron K.; Dares, Christopher J.; Coggins, Michael K.; Meyer, Thomas J.
2015-01-01
In aqueous solution above pH 2.4 with 4% (vol/vol) CH3CN, the complex [RuII(bda)(isoq)2] (bda is 2,2′-bipyridine-6,6′-dicarboxylate; isoq is isoquinoline) exists as the open-arm chelate, [RuII(CO2-bpy-CO2−)(isoq)2(NCCH3)], as shown by 1H and 13C-NMR, X-ray crystallography, and pH titrations. Rates of water oxidation with the open-arm chelate are remarkably enhanced by added proton acceptor bases, as measured by cyclic voltammetry (CV). In 1.0 M PO43–, the calculated half-time for water oxidation is ∼7 μs. The key to the rate accelerations with added bases is direct involvement of the buffer base in either atom–proton transfer (APT) or concerted electron–proton transfer (EPT) pathways. PMID:25848035
Johnson, Matthew P
2016-10-31
Photosynthesis sustains virtually all life on planet Earth providing the oxygen we breathe and the food we eat; it forms the basis of global food chains and meets the majority of humankind's current energy needs through fossilized photosynthetic fuels. The process of photosynthesis in plants is based on two reactions that are carried out by separate parts of the chloroplast. The light reactions occur in the chloroplast thylakoid membrane and involve the splitting of water into oxygen, protons and electrons. The protons and electrons are then transferred through the thylakoid membrane to create the energy storage molecules adenosine triphosphate (ATP) and nicotinomide-adenine dinucleotide phosphate (NADPH). The ATP and NADPH are then utilized by the enzymes of the Calvin-Benson cycle (the dark reactions), which converts CO 2 into carbohydrate in the chloroplast stroma. The basic principles of solar energy capture, energy, electron and proton transfer and the biochemical basis of carbon fixation are explained and their significance is discussed. © 2016 The Author(s).
Wang, Shanshan; Dong, Cheng; Yu, Lian; Guo, Cheng; Jiang, Kezhi
2016-01-15
In the tandem mass spectrometry of protonated N-(3-phenyl-2H-chromen-2-ylidene)benzenesulfonamides, the precursor ions have been observed to undergo gas-phase dissociation via two competing channels: (a) the predominant channel involves migration of the sulfonyl cation to the phenyl C atom and the subsequent loss of benzenesulfinic acid along with cyclization reaction, and (b) the minor one involves dissociation of the precursor ion to give an ion/neutral complex of [sulfonyl cation/imine], followed by decomposition to afford sulfonyl cation or the INC-mediated electron transfer to give an imine radical cation. The proposed reaction channels have been supported by theoretical calculations and D-labeling experiments. The gas-phase cyclization reaction originating from the N- to C-sulfonyl cation transfer has been first reported to the best of our knowledge. For the substituted sulfonamides, the presence of electron-donating groups (R(2) -) at the C-ring effectively facilitates the reaction channel of cyclization reaction, whereas that of electron-withdrawing groups inhibits this pathway. Copyright © 2015 John Wiley & Sons, Ltd.
Umbrella sampling of proton transfer in a creatine-water system
NASA Astrophysics Data System (ADS)
Ivchenko, Olga; Bachert, Peter; Imhof, Petra
2014-04-01
Proton transfer reactions are among the most common processes in chemistry and biology. Proton transfer between creatine and surrounding solvent water is underlying the chemical exchange saturation transfer used as a contrast in magnetic resonance imaging. The free energy barrier, determined by first-principles umbrella sampling simulations (EaDFT 3 kcal/mol) is in the same order of magnitude as the experimentally obtained activation energy. The underlying mechanism is a first proton transfer from the guanidinium group to the water pool, followed by a second transition where a proton is "transferred back" from the nearest water molecule to the deprotonated nitrogen atom of creatine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anson, Colin W.; Stahl, Shannon S.
2017-12-01
The molecular cobalt complex, Co(salophen), and para-hydroquinone (H2Q) serve as effective cocatalysts for the electrochemical reduction of O2 to water. Mechanistic studies reveal redox cooperativity between Co(salophen) and H2Q. H2Q serves as an electron-proton transfer mediator (EPTM) that enables electrochemical O2 reduction at higher potentials and with faster rates than is observed with Co(salophen) alone. Replacement of H2Q with the higher potential EPTM, 2-chloro-H2Q, allows for faster O2 reduction rates at higher applied potential. These results demonstrate a unique strategy to achieve improved performance with molecular electrocatalyst systems.
Esteves, Lucas F; Rey, Nicolás A; Dos Santos, Hélio F; Costa, Luiz Antônio S
2016-03-21
The catalytic mechanism that involves the cleavage of the phosphate diester model BDNPP (bis(2,4-dinitrophenyl) phosphate) catalyzed through a dinuclear copper complex is investigated in the current study. The metal complex was originally designed to catalyze catechol oxidation, and it showed an interesting catalytic promiscuity case in biomimetic systems. The current study investigates two different reaction mechanisms through quantum mechanics calculations in the gas phase, and it also includes the solvent effect through PCM (polarizable continuum model) single-point calculations using water as solvent. Two mechanisms are presented in order to fully describe the phosphate diester hydrolysis. Mechanism 1 is of the S(N)2 type, which involves the direct attack of the μ-OH bridge between the two copper(II) ions toward the phosphorus center, whereas mechanism 2 is the process in which hydrolysis takes place through proton transfer between the oxygen atom in the bridging hydroxo ligand and the other oxygen atom in the phosphate model. Actually, the present theoretical study shows two possible reaction paths in mechanism 1. Its first reaction path (p1) involves a proton transfer that occurs immediately after the hydrolytic cleavage, so that the proton transfer is the rate-determining step, which is followed by the entry of two water molecules. Its second reaction path (p2) consists of the entry of two water molecules right after the hydrolytic cleavage, but with no proton transfer; thus, hydrolytic cleavage is the rate-limiting step. The most likely catalytic path occurs in mechanism 1, following the second reaction path (p2), since it involves the lowest free energy activation barrier (ΔG(⧧) = 23.7 kcal mol(-1), in aqueous solution). A kinetic analysis showed that the experimental k(obs) value of 1.7 × 10(-5) s(-1) agrees with the calculated value k1 = 2.6 × 10(-5) s(-1); the concerted mechanism is kinetically favorable. The KIE (kinetic isotope effect) analysis applied to the second reaction path (p2) in mechanism 1 was also taken into account to assess the changes that take place in TS1-i (transition state of mechanism 1) and to perfectly characterize the mechanism described herein.
Martínez-González, Eduardo; González, Felipe J; Ascenso, José R; Marcos, Paula M; Frontana, Carlos
2016-08-05
Competition between hydrogen bonding and proton transfer reactions was studied for systems composed of electrogenerated dianionic species from dinitrobenzene isomers and substituted dihomooxacalix[4]arene bidentate urea derivatives. To analyze this competition, a second-order ErCrCi mechanism was considered where the binding process is succeeded by proton transfer and the voltammetric responses depend on two dimensionless parameters: the first related to hydrogen bonding reactions, and the second one to proton transfer processes. Experimental results indicated that, upon an increase in the concentration of phenyl-substituted dihomooxacalix[4]arene bidentate urea, voltammetric responses evolve from diffusion-controlled waves (where the binding process is at chemical equilibrium) into irreversible kinetic responses associated with proton transfer. In particular, the 1,3-dinitrobenzene isomer showed a higher proton transfer rate constant (∼25 M(-1) s(-1)) compared to that of the 1,2-dinitrobenzene (∼5 M(-1) s(-1)), whereas the 1,4-dinitrobenzene did not show any proton transfer effect in the experimental conditions employed.
Sensitivity-enhanced detection of non-labile proton and carbon NMR spectra on water resonances.
Novakovic, Mihajlo; Martinho, Ricardo P; Olsen, Gregory L; Lustig, Michael S; Frydman, Lucio
2017-12-20
Chemical exchange saturation transfer (CEST) experiments enhance the NMR signals of labile protons by continuously transferring these protons' saturation to an abundant solvent pool like water. The present study expands these principles by fusing into these experiments homonuclear isotropic mixing sequences, enabling the water-enhanced detection of non-exchangeable species. Further opportunities are opened by the addition of coupling-mediated heteronuclear polarization transfers, which then impose on the water resonance a saturation stemming from non-labile heteronuclear species like 13 C. To multiplex the ensuing experiments, these relayed approaches are combined with time-domain schemes involving multiple Ramsey-labeling experiments imparting the frequencies of the non-labile sites on the water resonance, via chemical exchange. 13 C and 1 H NMR spectra were detected in this fashion with about two-fold SNR amplification vis-à-vis conventionally detected spectroscopies. When combined with non-uniform sampling principles, this methodology thus becomes a sensitive alternative to detect non-exchangeable species in biomolecules. Still, multiple parameters including the scalar couplings and solvent exchange rates, will affect the efficiency and consequently the practicality of the overall experiment.
Lórenz-Fonfría, Víctor A; Kandori, Hideki; Padrós, Esteve
2011-06-23
We present a general approach for probing the kinetics of specific molecular processes in proteins by time-resolved Fourier transform infrared (IR) spectroscopy. Using bacteriorhodopsin (bR) as a model we demonstrate that by appropriately monitoring some selected IR bands it is possible obtaining the kinetics of the most important events occurring in the photocycle, namely changes in the chromophore and the protein backbone conformation, and changes in the protonation state of the key residues implicated in the proton transfers. Besides confirming widely accepted views of the bR photocycle, our analysis also sheds light into some disputed issues: the degree of retinal torsion in the L intermediate to respect the ground state; the possibility of a proton transfer from Asp85 to Asp212; the relationship between the protonation/deprotonation of Asp85 and the proton release complex; and the timing of the protein backbone dynamics. By providing a direct way to estimate the kinetics of photocycle intermediates the present approach opens new prospects for a robust quantitative kinetic analysis of the bR photocycle, which could also benefit the study of other proteins involved in photosynthesis, in phototaxis, or in respiratory chains.
Exploring proton transfer in 1,2,3-triazole-triazolium dimer with ab initio method
NASA Astrophysics Data System (ADS)
Li, Ailin; Yan, Tianying; Shen, Panwen
Ab initio calculations are utilized to search for transition state structures for proton transfer in the 1,2,3-triazole-triazolium complexes on the basis of optimized dimers. The result suggests six transition state structures for single proton transfer in the complexes, most of which are coplanar. The energy barriers, between different stable and transition states structures with zero point energy (ZPE) corrections, show that proton transfer occurs at room temperature with coplanar configuration that has the lowest energy. The results clearly support that reorientation gives triazole flexibility for proton transfer.
Ishigami, Izumi; Hikita, Masahide; Egawa, Tsuyoshi; Yeh, Syun-Ru; Rousseau, Denis L.
2014-01-01
Cytochrome c oxidase is the terminal enzyme in the electron transfer chain. It reduces oxygen to water and harnesses the released energy to translocate protons across the inner mitochondrial membrane. The mechanism by which the oxygen chemistry is coupled to proton translocation is not yet resolved owing to the difficulty of monitoring dynamic proton transfer events. Here we summarize several postulated mechanisms for proton translocation, which have been supported by a variety of vibrational spectroscopic studies. We recently proposed a proton translocation model involving proton accessibility to the regions near the propionate groups of the heme a and heme a3 redox centers of the enzyme based by hydrogen/deuterium (H/D) exchange Raman scattering studies (Egawa et al., PLOS ONE 2013). To advance our understanding of this model and to refine the proton accessibility to the hemes, the H/D exchange dependence of the heme propionate group vibrational modes on temperature and pH was measured. The H/D exchange detected at the propionate groups of heme a3 takes place within a few seconds under all conditions. In contrast, that detected at the heme a propionates occurs in the oxidized but not the reduced enzyme and the H/D exchange is pH-dependent with a pKa of ~8.0 (faster at high pH). Analysis of the thermodynamic parameters revealed that, as the pH is varied, entropy/enthalpy compensation held the free energy of activation in a narrow range. The redox dependence of the possible proton pathways to the heme groups is discussed. PMID:25268561
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prayer, C.; Gustavsson, T.; Tran-Thi, T.-H.
1996-04-01
The proton transfer from excited pyranine to water is studied by the femtosecond fluorescence upconversion technique. It is shown for the first time that the proton transfer reaction in water proceeds by three successive steps: the solvent cage relaxation, the specific solute-solvent hydrogen-bond formation and finally the ion pair dissociation/diffusion.
Solis, Brian H.; Maher, Andrew G.; Honda, Tatsuhiko; ...
2014-11-06
The design of molecular electrocatalysts for hydrogen evolution has been targeted as a strategy for the conversion of solar energy to chemical fuels. In cobalt hangman porphyrins, a carboxylic acid group on a xanthene backbone is positioned over a metalloporphyrin to serve as a proton relay. A key proton-coupled electron transfer (PCET) step along the hydrogen evolution pathway occurs via a sequential ET-PT mechanism in which electron transfer (ET) is followed by proton transfer (PT). Herein theoretical calculations are employed to investigate the mechanistic pathways of these hangman metalloporphyrins. The calculations confirm the ET-PT mechanism by illustrating that the calculatedmore » reduction potentials for this mechanism are consistent with experimental data. Under strong-acid conditions, the calculations indicate that this catalyst evolves H 2 by protonation of a formally Co(II) hydride intermediate, as suggested by previous experiments. Under weak-acid conditions, however, the calculations reveal a mechanism that proceeds via a phlorin intermediate, in which the meso carbon of the porphyrin is protonated. In the first electrochemical reduction, the neutral Co(II) species is reduced to a monoanionic singlet Co(I) species. Subsequent reduction leads to a dianionic doublet, formally a Co(0) complex in which substantial mixing of Co and porphyrin orbitals indicates ligand redox noninnocence. The partial reduction of the ligand disrupts the aromaticity in the porphyrin ring. As a result of this ligand dearomatization, protonation of the dianionic species is significantly more thermodynamically favorable at the meso carbon than at the metal center, and the ET-PT mechanism leads to a dianionic phlorin species. According to the proposed mechanism, the carboxylate group of this dianionic phlorin species is reprotonated, the species is reduced again, and H 2 is evolved from the protonated carboxylate and the protonated carbon. This proposed mechanism is a guidepost for future experimental studies of proton relays involving noninnocent ligand platforms.« less
Kinetic Effects Of Increased Proton Transfer Distance On Proton-Coupled Oxidations Of Phenol-Amines
Rhile, Ian J.
2011-01-01
To test the effect of varying the proton donor-acceptor distance in proton-coupled electron transfer (PCET) reactions, the oxidation of a bicyclic amino-indanol (2) is compared with that of a closely related phenol with an ortho CPh2NH2 substituent (1). Spectroscopic, structural, thermochemical and computational studies show that the two amino-phenols are very similar, except that the O⋯N distance (dON) is >0.1 Å longer in 2 than in 1. The difference in dON is 0.13 ± 0.03 Å from X-ray crystallography and 0.165 Å from DFT calculations. Oxidations of these phenols by outer-sphere oxidants yield distonic radical cations •OAr–NH3+ by concerted proton-electron transfer (CPET). Simple tunneling and classical kinetic models both predict that the longer donor-acceptor distance in 2 should lead to slower reactions, by ca. two orders of magnitude, as well as larger H/D kinetic isotope effects (KIEs). However, kinetic studies show that the compound with the longer proton-transfer distance, 2, exhibits smaller KIEs and has rate constants that are quite close to those of 1. For example, the oxidation of 2 by the triarylamminium radical cation N(C6H4OMe)3•+ (3a+) occurs at (1.4 ± 0.1) × 104 M-1 s-1, only a factor of two slower than the closely related reaction of 1 with N(C6H4OMe)2(C6H4Br)•+ (3b+). This difference in rate constants is well accounted for by the slightly different free energies of reaction: ΔG°(2 + 3a+) = +0.078 V vs. ΔG°(1 + 3b+) = +0.04 V. The two phenol-amines do display some subtle kinetic differences: for instance, compound 2 has a shallower dependence of CPET rate constants on driving force (Brønsted α, Δln(k)/Δln(Keq)). These results show that the simple tunneling model is not a good predictor of the effect of proton donor-acceptor distance on concerted-electron transfer reactions involving strongly hydrogen-bonded systems. Computational analysis of the observed similarity of the two phenols emphasizes the importance of the highly anharmonic O⋯H⋯N potential energy surface and the influence of proton vibrational excited states. PMID:21919508
Proton transfer in microbial electrolysis cells
Borole, Abhijeet P.; Lewis, Alex J.
2017-02-15
Proton transfer and electron transfer are of prime importance in the development of microbial electrochemical cells. While electron transfer is primarily controlled by biology, proton transfer is controlled by process engineering and cell design. To develop commercially feasible technologies around the concept of a bioelectrochemical cell, real feedstocks have to be explored and associated limitations have to be identified. Here in this study, the proton transfer rate was quantified for a microbial electrolysis cell (MEC) and its dependence on process parameters was investigated using a proton balance model. The reaction system consisted of a biomass-derived pyrolytic aqueous stream as amore » substrate producing hydrogen in a flow-through MEC. The proton transfer rate increased with anode flow rate and organic loading rate up to a maximum of 0.36 ± 0.01 moles per m 2 per h, equivalent to a hydrogen production rate of 9.08 L per L per day. Higher rates of hydrogen production, reaching 11.7 ± 0.2 L per L per day were achieved, when additional protons were provided via the cathode buffer. Electrochemical impedance spectroscopy shows that proton transfer was the dominant resistance in the production of hydrogen. The quantification of proton transfer rates for MECs with potential for biorefinery application and the demonstration of high hydrogen production rates approaching those required for commercial consideration indicate the strong potential of this technology for renewable hydrogen production. Understanding the transport phenomenon in bioelectrochemical cells is of great significance since these systems have potential for wide-ranging applications including energy production, bioremediation, chemical and nanomaterial synthesis, electro-fermentation, energy storage, desalination, and produced water treatment. Electron transfer in anode biofilms has been investigated extensively, but proton transfer studies are also important, since many cathodic half reactions require protons as the reactant. Determination of transport rates via proton balance was investigated in microbial electrolysis cells, which can be applied to other forms of microbial electrochemical systems. Lastly, these systems have a unique niche in the development of future biorefineries as a means of recovering energy from waste streams with potential for water recycle, making them an integral part of the water–energy nexus focus area.« less
Proton transfer in microbial electrolysis cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borole, Abhijeet P.; Lewis, Alex J.
Proton transfer and electron transfer are of prime importance in the development of microbial electrochemical cells. While electron transfer is primarily controlled by biology, proton transfer is controlled by process engineering and cell design. To develop commercially feasible technologies around the concept of a bioelectrochemical cell, real feedstocks have to be explored and associated limitations have to be identified. Here in this study, the proton transfer rate was quantified for a microbial electrolysis cell (MEC) and its dependence on process parameters was investigated using a proton balance model. The reaction system consisted of a biomass-derived pyrolytic aqueous stream as amore » substrate producing hydrogen in a flow-through MEC. The proton transfer rate increased with anode flow rate and organic loading rate up to a maximum of 0.36 ± 0.01 moles per m 2 per h, equivalent to a hydrogen production rate of 9.08 L per L per day. Higher rates of hydrogen production, reaching 11.7 ± 0.2 L per L per day were achieved, when additional protons were provided via the cathode buffer. Electrochemical impedance spectroscopy shows that proton transfer was the dominant resistance in the production of hydrogen. The quantification of proton transfer rates for MECs with potential for biorefinery application and the demonstration of high hydrogen production rates approaching those required for commercial consideration indicate the strong potential of this technology for renewable hydrogen production. Understanding the transport phenomenon in bioelectrochemical cells is of great significance since these systems have potential for wide-ranging applications including energy production, bioremediation, chemical and nanomaterial synthesis, electro-fermentation, energy storage, desalination, and produced water treatment. Electron transfer in anode biofilms has been investigated extensively, but proton transfer studies are also important, since many cathodic half reactions require protons as the reactant. Determination of transport rates via proton balance was investigated in microbial electrolysis cells, which can be applied to other forms of microbial electrochemical systems. Lastly, these systems have a unique niche in the development of future biorefineries as a means of recovering energy from waste streams with potential for water recycle, making them an integral part of the water–energy nexus focus area.« less
Aqueous proton transfer across single-layer graphene
Achtyl, Jennifer L.; Unocic, Raymond R.; Xu, Lijun; ...
2015-03-17
Proton transfer across single-layer graphene proceeds with large computed energy barriers and is thought to be unfavourable at room temperature unless nanoscale holes or dopants are introduced, or a potential bias is applied. Here we subject single-layer graphene supported on fused silica to cycles of high and low pH, and show that protons transfer reversibly from the aqueous phase through the graphene to the other side where they undergo acid–base chemistry with the silica hydroxyl groups. After ruling out diffusion through macroscopic pinholes, the protons are found to transfer through rare, naturally occurring atomic defects. Computer simulations reveal low energymore » barriers of 0.61–0.75 eV for aqueous proton transfer across hydroxyl-terminated atomic defects that participate in a Grotthuss-type relay, while pyrylium-like ether terminations shut down proton exchange. In conclusion, unfavourable energy barriers to helium and hydrogen transfer indicate the process is selective for aqueous protons.« less
NASA Astrophysics Data System (ADS)
Hori, T.; Takahashi, H.; Nitta, T.
2003-10-01
The proton transfer along the chain of hydrogen bonds is involved in many chemical reactions in aqueous solution and known to play a decisive role. We have performed the hybrid quantum chemical simulations for the methanol formation reaction catalyzed by the proton transfer mechanism [CH3Cl+nH2O→CH3OH+HCl+(n-1)H2O, n=3] in supercritical water (SCW) to investigate the role of water solvent on the reaction. In the simulation, the electronic state of the chemically active solutes (CH3Cl+3H2O) has been determined quantum mechanically, while the static water solvent has been represented by a classical model. The activation free energy for the water-catalytic reaction in SCW has been found to be 9.6 kcal/mol, which is much lower than that in the gas phase (29.2 kcal/mol). The fractional charge analysis has revealed that the notable charge separation in the solute complex takes place at the transition state (TS) and the resulting huge dipole gives rise to the considerable stabilization of the TS as compared to the reactant. It has been shown that the reaction assisted by the proton transfer mechanism is energetically much favored than the ionic SN2 reaction (CH3Cl+OH-→CH3OH+Cl-, 18.8 kcal/mol). The present calculations suggest that the proton migrations through the chain of hydrogen bonds can be regarded as a probable candidate responsible for the anomalous reactivities observed in SCW.
Sharma, Vivek; Enkavi, Giray; Vattulainen, Ilpo; Róg, Tomasz; Wikström, Mårten
2015-01-01
Molecular oxygen acts as the terminal electron sink in the respiratory chains of aerobic organisms. Cytochrome c oxidase in the inner membrane of mitochondria and the plasma membrane of bacteria catalyzes the reduction of oxygen to water, and couples the free energy of the reaction to proton pumping across the membrane. The proton-pumping activity contributes to the proton electrochemical gradient, which drives the synthesis of ATP. Based on kinetic experiments on the O–O bond splitting transition of the catalytic cycle (A → PR), it has been proposed that the electron transfer to the binuclear iron–copper center of O2 reduction initiates the proton pump mechanism. This key electron transfer event is coupled to an internal proton transfer from a conserved glutamic acid to the proton-loading site of the pump. However, the proton may instead be transferred to the binuclear center to complete the oxygen reduction chemistry, which would constitute a short-circuit. Based on atomistic molecular dynamics simulations of cytochrome c oxidase in an explicit membrane–solvent environment, complemented by related free-energy calculations, we propose that this short-circuit is effectively prevented by a redox-state–dependent organization of water molecules within the protein structure that gates the proton transfer pathway. PMID:25646428
Geneste, Grégory; Hermet, Jessica; Dezanneau, Guilhem
2017-08-09
We respond to the erroneous criticisms about our modeling of proton transport in barium stannate [G. Geneste et al., Phys. Chem. Chem. Phys., 2015, 17, 19104]. In this previous work, we described, on the basis of density-functional calculations, proton transport in the classical and semi-classical regimes, and provided arguments in favor of an adiabatic picture for proton transfer at low temperature. We re-explain here our article (with more detail and precision), the content of which has been distorted in the Comment, and reiterate our arguments in this reply. We refute all criticisms. They are completely wrong in the context of our article. Even though a few of them are based on considerations probably true in some metals, they make no sense here since they do not correspond to the content of our work. It has not been understood in the Comment that two competitive configurations, associated with radically different transfer mechanisms, have been studied in our work. It has also not been understood in the Comment that the adiabatic regime described for transfer occurs in the protonic ground state, in a very-low barrier configuration with the protonic ground state energy larger than the barrier. Serious confusion has been made in the Comment with the case of H in metals like Nb or Ta, leading to the introduction of the notion of (protonic) "excited-state proton transfer", relevant for H in some metals, but (i) that does not correspond to the (ground state) adiabatic transfers here described, and (ii) that does not correspond to what is commonly described as the "adiabatic limit for proton transfer" in the scientific literature. We emphasize, accordingly, the large differences between proton transfer in the present oxide and hydrogen jumps in metals like Nb or Ta, and the similarities between proton transfer in the present oxide and in acid-base solutions. We finally describe a scenario for proton transfer in the present oxide regardless of the temperature regime.
Proton impact charge transfer on hydantoin - Prebiotic implications
NASA Astrophysics Data System (ADS)
Bacchus-Montabonel, Marie-Christine
2016-11-01
Formation and destruction of prebiotic compounds in astrophysical environments is a major issue in reactions concerning the origin of life. Detection of hydantoin in laboratory irradiation of interstellar ice analogues has confirmed evidence of this prebiotic compound and its stability to UV radiation or collisions may be crucial. Considering the different astrophysical environments, we have investigated theoretically proton-induced collisions with hydantoin in a wide energy range, from eV in the interstellar medium, up to keV for processes involving solar wind or supernovae shock-waves protons. Results are compared to previous investigations and qualitative trends on damage under spatial radiations are suggested.
Infrared spectra of proton transfer complexes of the cycleanine alkaloid in solid state
NASA Astrophysics Data System (ADS)
Kasende, Okuma E.; de Waal, D.
2003-01-01
Proton transfer complexes obtained between the cycleanine alkaloid and hydrogen chloride, hydrogen bromide and nitric acids have been investigated by infrared spectroscopic technique between 4000 and 400 cm -1 in KBr. The vibrational perturbations brought about by proton transfer complex formation, discussed in terms of preferred site of interaction, show that the proton of the inorganic acids is transferred to cycleanine through one of its N sites.
Hydrophobic Shielding Drives Catalysis of Hydride Transfer in a Family of F420H2-Dependent Enzymes.
Mohamed, A Elaaf; Condic-Jurkic, Karmen; Ahmed, F Hafna; Yuan, Peng; O'Mara, Megan L; Jackson, Colin J; Coote, Michelle L
2016-12-13
A family of flavin/deazaflavin-dependent oxidoreductases (FDORs) from mycobacteria has been recently characterized and found to play a variety of catalytic roles, including the activation of prodrugs such as the candidate anti-tuberculosis drug pretomanid (PA-824). However, our understanding of the catalytic mechanism used by these enzymes is relatively limited. To address this, we have used a combination of quantum mechanics and molecular dynamics calculations to study the catalytic mechanism of the activation of pretomanid by the deazaflavin-dependent nitroreductase (Ddn) from Mycobacterium tuberculosis. The preferred pathway involves an initial hydride transfer step from the deprotonated cofactor (i.e., F 420 H - ), with subsequent protonation, before a series of spontaneous intramolecular reactions to form the final reactive nitrogen species. The most likely proton source is a hydroxonium ion within the solvent accessible active site. Intriguingly, catalysis of the rate-determining hydride transfer step is aided by three tyrosine residues that form a hydrophobic barrier around the active site that, upon reaction, is then disrupted to allow increased water accessibility to facilitate the subsequent proton transfer step. The catalytic mechanism we propose is consistent with previous experimental observations of the Ddn enzyme and will inform the design of improved prodrugs in the future.
Compensated second-order recoupling: application to third spin assisted recoupling†
Giffard, Mathilde; Hediger, Sabine; Lewandowski, Józef R.; Bardet, Michel; Simorre, Jean-Pierre; Griffin, Robert G.; De Paëpe, Gaël
2015-01-01
We consider the effect of phase shifts in the context of second-order recoupling techniques in solid-state NMR. Notably we highlight conditions leading to significant improvements for the Third Spin Assisted Recoupling (TSAR) mechanism and demonstrate the benefits of resulting techniques for detecting long-distance transfer in biomolecular systems. The modified pulse sequences of PAR and PAIN-CP, Phase-Shifted Proton Assisted Recoupling (AH-PS-PAR) and Phase-Shifted Proton-Assisted Insensitive Nuclei Cross Polarization (ABH-PS-PAIN-CP), still rely on cross terms between heteronuclear dipolar couplings involving assisting protons that mediate zero-quantum polarization transfer between low-γ nuclei (13C–13C, 15N–15N, 15N–13C polarization transfer). Using Average Hamiltonian Theory we show that phase inversion compensates off-resonance contributions and yields improved polarization transfer as well as substantial broadening of the matching conditions. PS-TSAR greatly improves on the standard TSAR based methods because it alleviates their sensitivity to precise RF settings which significantly enhances robustness of the experiments. We demonstrate these new methods on a 19.6 kDa protein (U–[15N, 13C]-YajG) at high magnetic fields (up to 900 MHz 1H frequency) and fast sample spinning (up to 65 kHz MAS frequency). PMID:22513727
Single mutations that redirect internal proton transfer in the ba3 oxidase from Thermus thermophilus
Smirnova, Irina; Chang, Hsin-Yang; von Ballmoos, Christoph; Ädelroth, Pia; Gennis, Robert B.; Brzezinski, Peter
2014-01-01
The ba3-type cytochrome c oxidase from Thermus thermophilus is a membrane-bound proton pump. Results from earlier studies have shown that with the aa3-type oxidases proton uptake to the catalytic site and “pump site” occur simultaneously. However, with the ba3 oxidase the pump site is loaded before proton transfer to the catalytic site because the proton transfer to the latter is slower than with the aa3 oxidases. In addition, the timing of formation and decay of catalytic intermediates is different in the two types of oxidases. In the present study, we have investigated two mutant ba3 CytcOs in which residues of the proton pathway leading to the catalytic site as well as the pump site were exchanged, Thr312Val and Tyr244Phe. Even though the ba3 CytcO uses only a single proton pathway for transfer of the substrate and “pumped” protons, the amino-acid residue substitutions had distinctly different effects on the kinetics of proton transfer to the catalytic site and the pump site, respectively. The results indicate that the rates of these reactions can be modified independently by replacement of single residues within the proton pathway. Furthermore, the data suggest that the Thr312Val and Tyr244Phe mutations interfere with a structural rearrangement in the proton pathway that is rate limiting for proton transfer to the catalytic site. PMID:24004023
NASA Astrophysics Data System (ADS)
Ghasemi, Khaled; Rezvani, Ali Reza; Shokrollahi, Ardeshir; Zarghampour, Fereshteh; Moghimi, Abolghasem; García-Granda, Santiago; Mendoza-Meroño, Rafael
2015-06-01
Reaction between 2,2‧-dipyridylamine (DPA) and 2,6-pyridine dicarboxylic acid (dipicolinic acid, dipicH2), in water results in the formation of a proton transfer or charge transfer (CT) complex, (DPAH)+(dipicH)-·H2O, 1. The characterization was performed using 1H NMR and FTIR spectroscopy, elemental analysis and X-ray crystallography. The crystal system is triclinic with space group P1. The structural investigations exhibit that the hydrogen bonds and π-π stacking interactions stabilize the crystal structure of proton transfer complex. The protonation constants of 2,6-pyridine dicarboxylic acid, 2,2‧-dipyridylamine and the equilibrium constants for dipic-DPA (1:1) proton transfer system were calculated by potentiometric pH titration method using Hyperquad2008 program. The stoichiometries of the proton transfer species in solution was in agreement with the solid state result.
Kumar, Anil; Sevilla, Michael D.
2009-01-01
On one-electron oxidation all molecules including DNA bases become more acidic in nature. For the GC base pair experiments suggest that a facile proton transfer takes place in the G•+-C base pair from N1 of G•+ to N3 of cytosine. This intra-base pair proton transfer reaction has been extensively considered using theoretical methods for the gas phase and it is predicted that the proton transfer is slightly unfavorable in disagreement with experiment. In the present study, we consider the effect of the first hydration layer on the proton transfer reaction in G•+-C by the use of density functional theory (DFT), B3LYP/6-31+G** calculations of the G•+-C base pair in the presence of 6 and 11 water molecules. Under the influence of hydration of 11 waters, a facile proton transfer from N1 of G•+ to N3 of C is predicted. The zero point energy (ZPE) corrected forward and backward energy barriers, for the proton transfer from N1 of G•+ to N3 of C, was found to be 1.4 and 2.6 kcal/mol, respectively. The proton transferred G•-(H+)C + 11H2O was found to be 1.2 kcal/mol more stable than G•+-C + 11H2O in agreement with experiment. The present calculation demonstrates that the inclusion of the first hydration shell around G•+-C base pair has an important effect on the internal proton transfer energetics. PMID:19485319
Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes.
Westlake, Brittany C; Brennaman, M Kyle; Concepcion, Javier J; Paul, Jared J; Bettis, Stephanie E; Hampton, Shaun D; Miller, Stephen A; Lebedeva, Natalia V; Forbes, Malcolm D E; Moran, Andrew M; Meyer, Thomas J; Papanikolas, John M
2011-05-24
The simultaneous, concerted transfer of electrons and protons--electron-proton transfer (EPT)--is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4'-biphenylphenol. Femtosecond transient absorption spectral measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H(+) is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck-Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated (+)H ─ B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.
Proton transfer to charged platinum electrodes. A molecular dynamics trajectory study.
Wilhelm, Florian; Schmickler, Wolfgang; Spohr, Eckhard
2010-05-05
A recently developed empirical valence bond (EVB) model for proton transfer on Pt(111) electrodes (Wilhelm et al 2008 J. Phys. Chem. C 112 10814) has been applied in molecular dynamics (MD) simulations of a water film in contact with a charged Pt surface. A total of seven negative surface charge densities σ between -7.5 and -18.9 µC cm(-2) were investigated. For each value of σ, between 30 and 84 initial conditions of a solvated proton within a water slab were sampled, and the trajectories were integrated until discharge of a proton occurred on the charged surfaces. We have calculated the mean rates for discharge and for adsorption of solvated protons within the adsorbed water layer in contact with the metal electrode as a function of surface charge density. For the less negative values of σ we observe a Tafel-like exponential increase of discharge rate with decreasing σ. At the more negative values this exponential increase levels off and the discharge process is apparently transport limited. Mechanistically, the Tafel regime corresponds to a stepwise proton transfer: first, a proton is transferred from the bulk into the contact water layer, which is followed by transfer of a proton to the charged surface and concomitant discharge. At the more negative surface charge densities the proton transfer into the contact water layer and the transfer of another proton to the surface and its discharge occur almost simultaneously.
Thomaz, Joseph E; Lawler, Christian M; Fayer, Michael D
2017-05-04
Proton transfer in the nanoscopic water channels of polyelectrolyte fuel cell membranes was studied using a photoacid, 8-hydroxypyrene-1,3,6-trisulfonic acid sodium salt (HPTS), in the channels. The local environment of the probe was determined using 8-methoxypyrene-1,3,6-trisulfonic acid sodium salt (MPTS), which is not a photoacid. Three fully hydrated membranes, Nafion (DuPont) and two 3M membranes, were studied to determine the impact of different pendant chains and equivalent weights on proton transfer. Fluorescence anisotropy and excited state population decay data that characterize the local environment of the fluorescent probes and proton transfer dynamics were measured. The MPTS lifetime and anisotropy results show that most of the fluorescent probes have a bulk-like water environment with a relatively small fraction interacting with the channel wall. Measurements of the HPTS protonated and deprotonated fluorescent bands' population decays provided information on the proton transport dynamics. The decay of the protonated band from ∼0.5 ns to tens of nanoseconds is in part determined by dissociation and recombination with the HPTS, providing information on the ability of protons to move in the channels. The dissociation and recombination is manifested as a power law component in the protonated band fluorescence decay. The results show that equivalent weight differences between two 3M membranes resulted in a small difference in proton transfer. However, differences in pendant chain structure did significantly influence the proton transfer ability, with the 3M membranes displaying more facile transfer than Nafion.
Dutta Banik, Sindrila; Chandra, Amalendu
2014-09-25
Pyridoxal 5'-phosphate (PLP) Schiff base, a versatile cofactor, exhibits a tautomeric equilibrium that involves an intramolecular proton transfer between the N-protonated zwitterionic ketoenamine tautomer and the O-protonated covalent enolimine tautomer. It has been postulated that for the catalytic activity, the PLP has to be in the zwitterionic ketoenamine tautomeric form. However, the exact position of the tautomeric equilibrium of Schiff base in the active site of PLP-dependent enzyme is not known yet. In the present work, we investigated the tautomeric equilibrium for the external aldimine state of PLP aspartate (PLP-Asp) Schiff base in the active site of aspartate aminotransferase (AspAT) using combined quantum mechanical and molecular mechanical simulations. The main focus of the present study is to analyze the factors that control the tautomeric equilibrium in the active sites of various PLP-dependent enzymes. The results show that the ketoenamine tautomer is more preferred than the enolimine tautomer both in the gas and aqueous phases as well as in the active site of AspAT. Current simulations show that the active site of AspAT is more suitable for the ketoenamine tautomer compared to the enolimine tautomer. Interestingly, the Tyr225 acts as a proton donor to the phenolic oxygen in the ketoenamine tautomer, while in the covalent enolimine tautomer, it acts as a proton acceptor to the phenolic oxygen. Finally, the metadynamics study confirms this result. The calculated free energy barrier is about 7.5 kcal/mol. A comparative analysis of the microenvironment created by the active site residues of three different PLP-dependent enzymes (aspartate aminotransferase, Dopa decarboxylase, and Ala-racemase) has been carried out to understand the controlling factor(s) of the tautomeric equilibrium. The analysis shows that the intermolecular hydrogen bonding between active site residues and the phenolic oxygen of PLP shifts the tautomeric equilibrium toward the N-protonated ketoenamine tautomeric form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soloveichik, Grigorii
2015-11-30
EFRC vision. The direct use of organic hydrides in fuel cells as virtual hydrogen carriers that generate stable organic molecules, protons, and electrons upon electro-oxidation and can be electrochemically charged by re-hydrogenating the oxidized carrier was the major focus of the Center for Electrocatalysis, Transport Phenomena and Materials for Innovative Energy Storage (EFRC-ETM). Compared to a hydrogen-on-demand design that includes thermal decomposition of organic hydrides in a catalytic reactor, the proposed approach is much simpler and does not require additional dehydrogenation catalysts or heat exchangers. Further, this approach utilizes the advantages of a flow battery (i.e., separation of power andmore » energy, ease of transport and storage of liquid fuels) with fuels that have system energy densities similar to current hydrogen PEM fuel cells. EFRC challenges. Two major EFRC challenges were electrocatalysis and transport phenomena. The electrocatalysis challenge addresses fundamental processes which occur at a single molecular catalyst (microscopic level) and involve electron and proton transfer between the hydrogen rich and hydrogen depleted forms of organic liquid fuel and the catalyst. To form stable, non-radical dehydrogenation products from the organic liquid fuel, it is necessary to ensure fast transport of at least two electrons and two protons (per double bond formation). The same is true for the reverse hydrogenation reaction. The transport phenomena challenge addresses transport of electrons to/from the electrocatalyst and the current collector as well as protons across the polymer membrane. Additionally it addresses prevention of organic liquid fuel, water and oxygen transport through the PEM. In this challenge, the transport of protons or molecules involves multiple sites or a continuum (macroscopic level) and water serves as a proton conducting medium for the majority of known sulfonic acid based PEMs. Proton transfer in the presence of prospective organic liquid fuels was studied. During EFRC program various types of electrocatalysts, classes of fuels, and membranes have been investigated.« less
Qin, Xin; Deng, Li; Hu, Caihong; Li, Li; Chen, Xiaohua
2017-10-20
The possible catalytic mechanism of the reduction of nitrite by copper-containing nitrite reductases (CuNiRs) is examined by using the M06 function according to two copper models, which include type-one copper (T1Cu) and type-two copper (T2Cu) sites. Examinations confirm that the protonation of two residues, His255 and Asp98, near the T2Cu site, can modulate the redox states of T1Cu and T2Cu, but cannot directly cause electron transfer from T1Cu to T2Cu. The electron hole remains at the T2Cu site when only one residue, His255 or Asp98, is protonated. However, the hole resides at the T1Cu site when both His255 and Asp98 are protonated. Then, the first protonation of nitrite takes place through indirect proton transfer from protonated His255 through the bridging H 2 O and Asp98 with three protons moving together, which cannot cause the cleavage of the HO-NO bond. Subsequently, the substrate is required to obtain another proton from reprotonated His255 through the bridging H 2 O. The reprotonation of nitrite induces the generation of nitric oxide (NO) and H 2 O at the T2Cu site through a special double-proton-coupled spin-exchanged electron-transfer mechanism with indirect proton transfer from His255 to the substrate, a beta-electron of T2Cu I shift to the NO cation, and the remaining alpha-electron changing spin direction at the same time. These results may provide useful information to better understand detailed proton-/electron-transfer reactions for the catalytic processes of CuNiR. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantum Calculations of Electron Tunneling in Respiratory Complex III.
Hagras, Muhammad A; Hayashi, Tomoyuki; Stuchebrukhov, Alexei A
2015-11-19
The most detailed and comprehensive to date study of electron transfer reactions in the respiratory complex III of aerobic cells, also known as bc1 complex, is reported. In the framework of the tunneling current theory, electron tunneling rates and atomistic tunneling pathways between different redox centers were investigated for all electron transfer reactions comprising different stages of the proton-motive Q-cycle. The calculations reveal that complex III is a smart nanomachine, which under certain conditions undergoes conformational changes gating electron transfer, or channeling electrons to specific pathways. One-electron tunneling approximation was adopted in the tunneling calculations, which were performed using hybrid Broken-Symmetry (BS) unrestricted DFT/ZINDO levels of theory. The tunneling orbitals were determined using an exact biorthogonalization scheme that uniquely separates pairs of tunneling orbitals with small overlaps out of the remaining Franck-Condon orbitals with significant overlap. Electron transfer rates in different redox pairs show exponential distance dependence, in agreement with the reported experimental data; some reactions involve coupled proton transfer. Proper treatment of a concerted two-electron bifurcated tunneling reaction at the Q(o) site is given.
Timing of electron and proton transfer in the ba(3) cytochrome c oxidase from Thermus thermophilus.
von Ballmoos, Christoph; Lachmann, Peter; Gennis, Robert B; Ädelroth, Pia; Brzezinski, Peter
2012-06-05
Heme-copper oxidases are membrane-bound proteins that catalyze the reduction of O(2) to H(2)O, a highly exergonic reaction. Part of the free energy of this reaction is used for pumping of protons across the membrane. The ba(3) oxidase from Thermus thermophilus presumably uses a single proton pathway for the transfer of substrate protons used during O(2) reduction as well as for the transfer of the protons that are pumped across the membrane. The pumping stoichiometry (0.5 H(+)/electron) is lower than that of most other (mitochondrial-like) oxidases characterized to date (1 H(+)/electron). We studied the pH dependence and deuterium isotope effect of the kinetics of electron and proton transfer reactions in the ba(3) oxidase. The results from these studies suggest that the movement of protons to the catalytic site and movement to a site located some distance from the catalytic site [proposed to be a "proton-loading site" (PLS) for pumped protons] are separated in time, which allows individual investigation of these reactions. A scenario in which the uptake and release of a pumped proton occurs upon every second transfer of an electron to the catalytic site would explain the decreased proton pumping stoichiometry compared to that of mitochondrial-like oxidases.
Dissolving Hydroxyolite: A DNA Molecule into Its Hydroxyapatite Mold.
Bertran, Oscar; Revilla-López, Guillermo; Casanovas, Jordi; Del Valle, Luis J; Turon, Pau; Puiggalí, Jordi; Alemán, Carlos
2016-05-04
In spite of the clinical importance of hydroxyapatite (HAp), the mechanism that controls its dissolution in acidic environments remains unclear. Knowledge of such a process is highly desirable to provide better understanding of different pathologies, as for example osteoporosis, and of the HAp potential as vehicle for gene delivery to replace damaged DNA. In this work, the mechanism of dissolution in acid conditions of HAp nanoparticles encapsulating double-stranded DNA has been investigated at the atomistic level using computer simulations. For this purpose, four consecutive (multi-step) molecular dynamics simulations, involving different temperatures and proton transfer processes, have been carried out. Results are consistent with a polynuclear decalcification mechanism in which proton transfer processes, from the surface to the internal regions of the particle, play a crucial role. In addition, the DNA remains protected by the mineral mold and transferred proton from both temperature and chemicals. These results, which indicate that biomineralization imparts very effective protection to DNA, also have important implications in other biomedical fields, as for example in the design of artificial bones or in the fight against osteoporosis by promoting the fixation of Ca(2+) ions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
First experience with carbon stripping foils for the 160 MeV H- injection into the CERN PSB
NASA Astrophysics Data System (ADS)
Weterings, Wim; Bracco, Chiara; Jorat, Louise; Noulibos, Remy; van Trappen, Pieter
2018-05-01
160 MeV H- beam will be delivered from the new CERN linear accelerator (Linac4) to the Proton Synchrotron Booster (PSB), using a H- charge-exchange injection system. A 200 µg/cm2 carbon stripping foil will convert H- into protons by stripping off the electrons. The H- charge-exchange injection principle will be used for the first time in the CERN accelerator complex and involves many challenges. In order to gain experience with the foil changing mechanism and the very fragile foils, in 2016, prior to the installation in the PSB, a stripping foil test stand has been installed in the Linac4 transfer line. In addition, parts of the future PSB injection equipment are also temporarily installed in the Linac4 transfer line for tests with a 160 MeV H- commissioning proton beam. This paper describes the foil changing mechanism and control system, summarizes the practical experience of gluing and handling these foils and reports on the first results with beam.
Proton transfer events in GFP.
Di Donato, Mariangela; van Wilderen, Luuk J G W; Van Stokkum, Ivo H M; Stuart, Thomas Cohen; Kennis, John T M; Hellingwerf, Klaas J; van Grondelle, Rienk; Groot, Marie Louise
2011-09-28
Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton transfer through a 'proton-wire', formed by the chromophore (the proton donor), water molecule W22, Ser205 and Glu222 (the acceptor), on a picosecond time scale. To obtain a more refined view of this process, we have used a combined approach of time resolved mid-infrared spectroscopy and visible pump-dump-probe spectroscopy to resolve with atomic resolution how and how fast protons move through this wire. Our results indicate that absorption of light by GFP induces in 3 ps (10 ps in D(2)O) a shift of the equilibrium positions of all protons in the H-bonded network, leading to a partial protonation of Glu222 and to a so-called low barrier hydrogen bond (LBHB) for the chromophore's proton, giving rise to dual emission at 475 and 508 nm. This state is followed by a repositioning of the protons on the wire in 10 ps (80 ps in D(2)O), ultimately forming the fully deprotonated chromophore and protonated Glu222.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soudackov, Alexander V.; Hammes-Schiffer, Sharon
2015-11-21
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at highmore » temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes.« less
Tahat, Amani; Martí, Jordi
2016-07-01
Microscopic characteristics of an aqueous excess proton in a wide range of thermodynamic states, from low density amorphous ices (down to 100 K) to high temperature liquids under the critical point (up to 600 K), placed inside hydrophobic graphene slabs at the nanometric scale (with interplate distances between 3.1 and 0.7 nm wide) have been analyzed by means of molecular dynamics simulations. Water-proton and carbon-proton forces were modeled with a multistate empirical valence bond method. Densities between 0.07 and 0.02 Å(-3) have been considered. As a general trend, we observed a competition between effects of confinement and temperature on structure and dynamical properties of the lone proton. Confinement has strong influence on the local structure of the proton, whereas the main effect of temperature on proton properties is observed on its dynamics, with significant variation of proton transfer rates, proton diffusion coefficients, and characteristic frequencies of vibrational motions. Proton transfer is an activated process with energy barriers between 1 and 10 kJ/mol for both proton transfer and diffusion, depending of the temperature range considered and also on the interplate distance. Arrhenius-like behavior of the transfer rates and of proton diffusion are clearly observed for states above 100 K. Spectral densities of proton species indicated that in all states Zundel-like and Eigen-like complexes survive at some extent. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Proton Transfer in the Catalytic Cycle of [NiFe] Hydrogenases: Insight from Vibrational Spectroscopy
2017-01-01
Catalysis of H2 production and oxidation reactions is critical in renewable energy systems based around H2 as a clean fuel, but the present reliance on platinum-based catalysts is not sustainable. In nature, H2 is oxidized at minimal overpotential and high turnover frequencies at [NiFe] catalytic sites in hydrogenase enzymes. Although an outline mechanism has been established for the [NiFe] hydrogenases involving heterolytic cleavage of H2 followed by a first and then second transfer of a proton and electron away from the active site, details remain vague concerning how the proton transfers are facilitated by the protein environment close to the active site. Furthermore, although [NiFe] hydrogenases from different organisms or cellular environments share a common active site, they exhibit a broad range of catalytic characteristics indicating the importance of subtle changes in the surrounding protein in controlling their behavior. Here we review recent time-resolved infrared (IR) spectroscopic studies and IR spectroelectrochemical studies carried out in situ during electrocatalytic turnover. Additionally, we re-evaluate the significant body of IR spectroscopic data on hydrogenase active site states determined through more conventional solution studies, in order to highlight mechanistic steps that seem to apply generally across the [NiFe] hydrogenases, as well as steps which so far seem limited to specific groups of these enzymes. This analysis is intended to help focus attention on the key open questions where further work is needed to assess important aspects of proton and electron transfer in the mechanism of [NiFe] hydrogenases. PMID:28413691
Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westlake, Brittany C.; Brennaman, Kyle M.; Concepcion, Javier J.
2011-05-24
The simultaneous, concerted transfer of electrons and protons—electron-proton transfer (EPT)—is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4'-biphenylphenol. Femtosecond transient absorption spectralmore » measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H⁺ is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck–Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated ⁺H–B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.« less
Preparations of an inorganic-framework proton exchange nanochannel membrane
NASA Astrophysics Data System (ADS)
Yan, X. H.; Jiang, H. R.; Zhao, G.; Zeng, L.; Zhao, T. S.
2016-09-01
In this work, a proton exchange membrane composed of straight and aligned proton conducting nanochannels is developed. Preparation of the membrane involves the surface sol-gel method assisted with a through-hole anodic aluminum oxide (AAO) template to form the framework of the PEM nanochannels. A monomolecular layer (SO3Hsbnd (CH2)3sbnd Sisbnd (OCH3)3) is subsequently added onto the inner surfaces of the nanochannels to shape a proton-conducting pathway. Straight nanochannels exhibit long range order morphology, contributing to a substantial improvement in the proton mobility and subsequently proton conductivity. In addition, the nanochannel size can be altered by changing the surface sol-gel condition, allowing control of the active species/charge carrier selectivity via pore size exclusion. The proton conductivity of the nanochannel membrane is reported as high as 11.3 mS cm-1 at 70 °C with a low activation energy of 0.21 eV (20.4 kJ mol-1). First-principle calculations reveal that the activation energy for proton transfer is impressively low (0.06 eV and 0.07 eV) with the assistance of water molecules.
Yadav, Nirbhay N; Jones, Craig K; Hua, Jun; Xu, Jiadi; van Zijl, Peter C M
2013-04-01
To image endogenous exchangeable proton signals in the human brain using a recently reported method called frequency labeled exchange transfer (FLEX) MRI. As opposed to labeling exchangeable protons using saturation (i.e., chemical exchange saturation transfer, or CEST), FLEX labels exchangeable protons with their chemical shift evolution. The use of short high-power frequency pulses allows more efficient labeling of rapidly exchanging protons, while time domain acquisition allows removal of contamination from semi-solid magnetization transfer effects. FLEX-based exchangeable proton signals were detected in human brain over the 1-5 ppm frequency range from water. Conventional magnetization transfer contrast and the bulk water signal did not interfere in the FLEX spectrum. The information content of these signals differed from in vivo CEST data in that the average exchange rate of these signals was 350-400 s(-1) , much faster than the amide signal usually detected using direct saturation (∼30 s(-1) ). Similarly, fast exchanging protons could be detected in egg white in the same frequency range where amide and amine protons of mobile proteins and peptides are known to resonate. FLEX MRI in the human brain preferentially detects more rapidly exchanging amide/amine protons compared to traditional CEST experiments, thereby changing the information content of the exchangeable proton spectrum. This has the potential to open up different types of endogenous applications as well as more easy detection of rapidly exchanging protons in diaCEST agents or fast exchanging units such as water molecules in paracest agents without interference of conventional magnetization transfer contrast. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wang, Ye; Shi, Ying; Cong, Lin; Li, Hui
2015-02-01
Time-dependent density functional theory method at the def-TZVP/B3LYP level was employed to investigate the intramolecular and intermolecular hydrogen bonding dynamics in the first excited (S1) state of 4‧-dimethylaminoflavonol (DMAF) monomer and in ethanol solution. In the DMAF monomer, we demonstrated that the intramolecular charge transfer (ICT) takes place in the S1 state. This excited state ICT process was followed by intramolecular proton transfer. Our calculated results are in good agreement with the mechanism proposed in experimental work. For the hydrogen-bonded DMAF-EtOH complex, it was demonstrated that the intermolecular hydrogen bonds can induce the formation of the twisted intramolecular charge transfer (TICT) state and the conformational twisting is along the C3-C4 bond. Moreover, the intermolecular hydrogen bonds can also facilitate the intermolecular double proton transfer in the TICT state. A stepwise intermolecular double proton transfer process was revealed. Therefore, the intermolecular hydrogen bonds can alter the mechanism of intramolecular charge transfer and proton transfer in the excited state for the DMAF molecule.
Leferink, Nicole G H; Han, Cong; Antonyuk, Svetlana V; Heyes, Derren J; Rigby, Stephen E J; Hough, Michael A; Eady, Robert R; Scrutton, Nigel S; Hasnain, S Samar
2011-05-17
We demonstrated recently that two protons are involved in reduction of nitrite to nitric oxide through a proton-coupled electron transfer (ET) reaction catalyzed by the blue Cu-dependent nitrite reductase (Cu NiR) of Alcaligenes xylosoxidans (AxNiR). Here, the functionality of two putative proton channels, one involving Asn90 and the other His254, is studied using single (N90S, H254F) and double (N90S--H254F) mutants. All mutants studied are active, indicating that protons are still able to reach the active site. The H254F mutation has no effect on the catalytic activity, while the N90S mutation results in ~70% decrease in activity. Laser flash-photolysis experiments show that in H254F and wild-type enzyme electrons enter at the level of the T1Cu and then redistribute between the two Cu sites. Complete ET from T1Cu to T2Cu occurs only when nitrite binds at the T2Cu site. This indicates that substrate binding to T2Cu promotes ET from T1Cu, suggesting that the enzyme operates an ordered mechanism. In fact, in the N90S and N90S--H254F variants, where the T1Cu site redox potential is elevated by ∼60 mV, inter-Cu ET is only observed in the presence of nitrite. From these results it is evident that the Asn90 channel is the main proton channel in AxNiR, though protons can still reach the active site if this channel is disrupted. Crystallographic structures provide a clear structural rationale for these observations, including restoration of the proton delivery via a significant movement of the loop connecting the T1Cu ligands Cys130 and His139 that occurs on binding of nitrite. Notably, a role for this loop in facilitating interaction of cytochrome c(551) with Cu NiR has been suggested previously based on a crystal structure of the binary complex.
The nitric-oxide reductase from Paracoccus denitrificans uses a single specific proton pathway.
ter Beek, Josy; Krause, Nils; Reimann, Joachim; Lachmann, Peter; Ädelroth, Pia
2013-10-18
The NO reductase from Paracoccus denitrificans reduces NO to N2O (2NO + 2H(+) + 2e(-) → N2O + H2O) with electrons donated by periplasmic cytochrome c (cytochrome c-dependent NO reductase; cNOR). cNORs are members of the heme-copper oxidase superfamily of integral membrane proteins, comprising the O2-reducing, proton-pumping respiratory enzymes. In contrast, although NO reduction is as exergonic as O2 reduction, there are no protons pumped in cNOR, and in addition, protons needed for NO reduction are derived from the periplasmic solution (no contribution to the electrochemical gradient is made). cNOR thus only needs to transport protons from the periplasm into the active site without the requirement to control the timing of opening and closing (gating) of proton pathways as is needed in a proton pump. Based on the crystal structure of a closely related cNOR and molecular dynamics simulations, several proton transfer pathways were suggested, and in principle, these could all be functional. In this work, we show that residues in one of the suggested pathways (denoted pathway 1) are sensitive to site-directed mutation, whereas residues in the other proposed pathways (pathways 2 and 3) could be exchanged without severe effects on turnover activity with either NO or O2. We further show that electron transfer during single-turnover reduction of O2 is limited by proton transfer and can thus be used to study alterations in proton transfer rates. The exchange of residues along pathway 1 showed specific slowing of this proton-coupled electron transfer as well as changes in its pH dependence. Our results indicate that only pathway 1 is used to transfer protons in cNOR.
Herrera, Barbara
2011-05-01
In this article, a theoretical study of 1-5 proton transfers is presented. Two model systems which represent 1-5 proton transfer, 3-hidroxy-2-propenimine and salicyldenaniline have been studied as shown in Fig. 1. For this purpose, a DFT/B3LYP/6-311+G**, reaction force and reaction electronic flux analysis is made. The obtained results indicate that both proton transfers exhibit energetic and electronic differences emphasizing the role of the neighbor ring and the impact of conjugation on electronic properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlits, Oksana; Wymore, Troy; Das, Amit
Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other asparticmore » proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.« less
Gerlits, Oksana; Wymore, Troy; Das, Amit; ...
2016-03-09
Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other asparticmore » proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.« less
Gerlits, Oksana; Wymore, Troy; Das, Amit; Shen, Chen-Hsiang; Parks, Jerry M; Smith, Jeremy C; Weiss, Kevin L; Keen, David A; Blakeley, Matthew P; Louis, John M; Langan, Paul; Weber, Irene T; Kovalevsky, Andrey
2016-04-11
Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other aspartic proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soudackov, Alexander; Hammes-Schiffer, Sharon
2015-11-17
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency regimes for the proton donor-acceptor vibrational mode. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term does not significantly impact the rate constants derived using the cumulant expansion approachmore » in any of the regimes studied. The effects of the quadratic term may become significant when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant, however, particularly at high temperatures and for proton transfer interfaces with extremely soft proton donor-acceptor modes that are associated with extraordinarily weak hydrogen bonds. Even with the thermal averaging procedure, the effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances, and the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes. We are grateful for support from National Institutes of Health Grant GM056207 (applications to enzymes) and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (applications to molecular electrocatalysts).« less
Stabilization of very rare tautomers of uracil by an excess electron.
Bachorz, Rafał A; Rak, Janusz; Gutowski, Maciej
2005-05-21
We characterized valence-type and dipole-bound anionic states of uracil using various electronic structure methods. We found that the most stable anion is related to neither the canonical 2,4-dioxo nor a rare imino-hydroxy tautomer. Instead, it is related to an imino-oxo tautomer, in which the N1H proton is transferred to the C5 atom. This valence anion is characterized by an electron vertical detachment energy (VDE) of 1267 meV and it is adiabatically stable with respect to the canonical neutral by 3.93 kcal mol(-1). It is also more stable by 2.32 and 5.10 kcal mol(-1) than the dipole-bound and valence anion, respectively, of the canonical tautomer. The VDE values for the former and the latter are 73 and 506 meV, respectively. Another, anionic, low-lying imino-oxo tautomer with a VDE of 2499 meV has a proton transferred from N3H to C5. It is less stable than the neutral canonical tautomer by 1.38 kcal mol(-1). The mechanism of formation of anionic tautomers with the carbon C5 protonated may involve intermolecular proton transfer or dissociative electron attachment to the canonical neutral tautomer followed by a barrier-free attachment of a hydrogen atom to C5. The six-member ring structure of anionic tautomers with carbon atoms protonated might be unstable upon an excess electron detachment. Indeed, the neutral systems resulting from electron detachment from anionic tautomers with carbon atoms protonated evolve along barrier-free decomposition pathways to a linear or a bicyclo structure, which might be viewed as lesions to RNA. Within the PCM hydration model, the low-lying valence anions become adiabatically bound with respect to the canonical neutral and the two most stable tautomers have carbon atoms protonated.
Zheng, Y; Wang, X-M
2017-04-01
As amide proton transfer imaging is sensitive to protein content and intracellular pH, it has been widely used in the nervous system, including brain tumors and stroke. This work aimed to measure the lactate content and amide proton transfer values in the basal ganglia of a neonatal piglet hypoxic-ischemic brain injury model by using MR spectroscopy and amide proton transfer imaging. From 58 healthy neonatal piglets (3-5 days after birth; weight, 1-1.5 kg) selected initially, 9 piglets remained in the control group and 43 piglets, in the hypoxic-ischemic brain injury group. Single-section amide proton transfer imaging was performed at the coronal level of the basal ganglia. Amide proton transfer values of the bilateral basal ganglia were measured in all piglets. The ROI of MR spectroscopy imaging was the right basal ganglia, and the postprocessing was completed with LCModel software. After hypoxic-ischemic insult, the amide proton transfer values immediately decreased, and at 0-2 hours, they remained at their lowest level. Thereafter, they gradually increased and finally exceeded those of the control group at 48-72 hours. After hypoxic-ischemic insult, the lactate content increased immediately, was maximal at 2-6 hours, and then gradually decreased to the level of the control group. The amide proton transfer values were negatively correlated with lactate content ( r = -0.79, P < .05). This observation suggests that after hypoxic-ischemic insult, the recovery of pH was faster than that of lactate homeostasis. © 2017 by American Journal of Neuroradiology.
Bai, Yan; Lin, Yusong; Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun
2017-01-24
Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas.
Zelleke, Theodros; Marx, Dominik
2017-01-18
The rate-determining step in the reductive half-reaction of the bacterial enzyme methylamine dehydrogenase, which is proton abstraction from the native substrate methylamine, is investigated using accelerated QM/MM molecular dynamics simulations at room temperature. Generation of the multidimensional thermal free-energy landscape without restriction of the degrees of freedom beyond a multidimensional reaction subspace maps two rather similar pathways for the underlying proton transfer to one of two aspartate carboxyl oxygen atoms, termed OD1 and OD2, which hydrogen bond with Thr122 and Trp108, respectively. Despite significant large-amplitude motion perpendicular to the one-dimensional proton transfer coordinate, due to fluctuations of the donor-acceptor distance of about 3 Å, it is found that the one-dimensional proton transfer free-energy profiles are essentially identical to the minimum free-energy pathways on the multidimensional free-energy landscapes for both proton transfer channels. Proton transfer to one of the acceptor oxygen atoms-the OD2 site-is slightly favored in methylamine dehydrogenase by approximately 2 kcal mol -1 , both kinetically and thermodynamically. Mechanistic analyses reveal that the hydrogen bond between Thr122β and OD1 is always present in the transition state independently of the proton transfer channel. Population analysis confirms that the electronic charge gained upon oxidation of the substrate is delocalized within the ring systems of the tryptophan tryptophylquinone cofactor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultrafast proton shuttling in Psammocora cyan fluorescent protein.
Kennis, John T M; van Stokkum, Ivo H M; Peterson, Dayna S; Pandit, Anjali; Wachter, Rebekka M
2013-09-26
Cyan, green, yellow, and red fluorescent proteins (FPs) homologous to green fluorescent protein (GFP) are used extensively as model systems to study fundamental processes in photobiology, such as the capture of light energy by protein-embedded chromophores, color tuning by the protein matrix, energy conversion by Förster resonance energy transfer (FRET), and excited-state proton transfer (ESPT) reactions. Recently, a novel cyan fluorescent protein (CFP) termed psamFP488 was isolated from the genus Psammocora of reef building corals. Within the cyan color class, psamFP488 is unusual because it exhibits a significantly extended Stokes shift. Here, we applied ultrafast transient absorption and pump-dump-probe spectroscopy to investigate the mechanistic basis of psamFP488 fluorescence, complemented with fluorescence quantum yield and dynamic light scattering measurements. Transient absorption spectroscopy indicated that, upon excitation at 410 nm, the stimulated cyan emission rises in 170 fs. With pump-dump-probe spectroscopy, we observe a very short-lived (110 fs) ground-state intermediate that we assign to the deprotonated, anionic chromophore. In addition, a minor fraction (14%) decays with 3.5 ps to the ground state. Structural analysis of homologous proteins indicates that Glu-167 is likely positioned in sufficiently close vicinity to the chromophore to act as a proton acceptor. Our findings support a model where unusually fast ESPT from the neutral chromophore to Glu-167 with a time constant of 170 fs and resulting emission from the anionic chromophore forms the basis of the large psamFP488 Stokes shift. When dumped to the ground state, the proton on neutral Glu is very rapidly shuttled back to the anionic chromophore in 110 fs. Proton shuttling in excited and ground states is a factor of 20-4000 faster than in GFP, which probably results from a favorable hydrogen-bonding geometry between the chromophore phenolic oxygen and the glutamate acceptor, possibly involving a short hydrogen bond. At any time in the reaction, the proton is localized on either the chromophore or Glu-167, which implies that most likely no low-barrier hydrogen bond exists between these molecular groups. This work supports the notion that proton transfer in biological systems, be it in an electronic excited or ground state, can be an intrinsically fast process that occurs on a 100 fs time scale. PsamFP488 represents an attractive model system that poses an ultrafast proton transfer regime in discrete steps. It constitutes a valuable model system in addition to wild type GFP, where proton transfer is relatively slow, and the S65T/H148D GFP mutant, where the effects of low-barrier hydrogen bonds dominate.
Anglada, Josep M; Gonzalez, Javier
2009-12-07
The effect of a single water molecule on the reaction mechanism of the gas-phase reaction between formic acid and the hydroxyl radical was investigated with high-level quantum mechanical calculations using DFT-B3LYP, MP2 and CCSD(T) theoretical approaches in concert with the 6-311+G(2df,2p) and aug-cc-pVTZ basis sets. The reaction between HCOOH and HO has a very complex mechanism involving a proton-coupled electron transfer process (pcet), two hydrogen-atom transfer reactions (hat) and a double proton transfer process (dpt). The hydroxyl radical predominantly abstracts the acidic hydrogen of formic acid through a pcet mechanism. A single water molecule affects each one of these reaction mechanisms in different ways, depending on the way the water interacts. Very interesting is also the fact that our calculations predict that the participation of a single water molecule results in the abstraction of the formyl hydrogen of formic acid through a hydrogen atom transfer process (hat).
NASA Astrophysics Data System (ADS)
Biswas, Sohag; Dasgupta, Teesta; Mallik, Bhabani S.
2016-09-01
We present the reactivity of an organic intermediate by studying the proton transfer process from water to ketyl radical anion using gas phase electronic structure calculations and the metadynamics method based first principles molecular dynamics (FPMD) simulations. Our results indicate that during the micro solvation of anion by water molecules systematically, the presence of minimum three water molecules in the gas phase cluster is sufficient to observe the proton transfer event. The analysis of trajectories obtained from initial FPMD simulation of an aqueous solution of the anion does not show any evident of complete transfer of the proton from water. The cooperativity of water molecules and the relatively weak anion-water interaction in liquid state prohibit the full release of the proton. Using biasing potential through first principles metadynamics simulations, we report the observation of proton transfer reaction from water to ketyl radical anion with a barrier height of 16.0 kJ/mol.
Walewski, Łukasz; Waluk, Jacek; Lesyng, Bogdan
2010-02-18
Car-Parrinello molecular dynamics simulations were carried out to help interpret proton-transfer processes observed experimentally in porphycene under thermodynamic equilibrium conditions (NVT ensemble) as well as during selective, nonequilibrium vibrational excitations of the molecular scaffold (NVE ensemble). In the NVT ensemble, the population of the trans form in the gas phase at 300 K is 96.5%, and of the cis-1 form is 3.5%, in agreement with experimental data. Approximately 70% of the proton-transfer events are asynchronous double proton transfers. According to the high resolution simulation data they consist of two single transfer events that rapidly take place one after the other. The average time-period between the two consecutive jumps is 220 fs. The gas phase reaction rate estimate at 300 K is 3.6 ps, which is comparable to experimentally determined rates. The NVE ensemble nonequilibrium ab initio MD simulations, which correspond to selective vibrational excitations of the molecular scaffold generated with high resolution laser spectroscopy techniques, exhibit an enhancing property of the 182 cm(-1) vibrational mode and an inhibiting property of the 114 cm(-1) one. Both of them influence the proton-transfer rate, in qualitative agreement with experimental findings. Our ab initio simulations provide new predictions regarding the influence of double-mode vibrational excitations on proton-transfer processes. They can help in setting up future programmable spectroscopic experiments for the proton-transfer translocations.
Transient low-barrier hydrogen bond in the photoactive state of green fluorescent protein.
Nadal-Ferret, Marc; Gelabert, Ricard; Moreno, Miquel; Lluch, José M
2015-12-14
In this paper, we have analyzed the feasibility of spontaneous proton transfer in GFP at the Franck-Condon region directly after photoexcitation. Computation of a sizeable portion of the potential energy surface at the Franck-Condon region of A the structure shows the process of proton transfer to be unfavorable by 3 kcal mol(-1) in S1 if no further structural relaxation is permitted. The ground vibrational state is found to lie above the potential energy barrier of the proton transfer in both S0 and S1. Expectation values of the geometry reveal that the proton shared between the chromophore and W22, and the proton shared between Ser205 and Glu222 are very close to the center of the respective hydrogen bonds, giving support to the claim that the first transient intermediate detected after photoexcitation (I0*) has characteristics similar to those of a low-barrier hydrogen bond [Di Donato et al., Phys. Chem. Chem. Phys., 2012, 13, 16295]. A quantum dynamical calculation of the evolution in the excited state shows an even larger probability of finding those two protons close to the center compared to in the ground state, but no formation of the proton-transferred product is observed. A QM/MM photoactive state geometry optimization, initiated using a configuration obtained by taking the A minimum and moving the protons to the product side, yields a minimum energy structure with the protons transferred and in which the His148 residue is substantially closer to the now anionic chromophore. These results indicate that: (1) proton transfer is not possible if structural relaxation of the surroundings of the chromophore is prevented; (2) protons H1 and H3 especially are found very close to the point halfway between the donor and acceptor after photoexcitation when the zero-point energy is considered; (3) a geometrical parameter exists (the His148-Cro distance) under which the structure with the protons transferred is not a minimum, and that, if included, should lead to the fluorescing I* structure. The existence of an oscillating stationary state between the reactants and products of the triple proton transfer reaction can explain the dual emission reported for the I0* intermediate of wtGFP.
A PEG/copper(i) halide cluster as an eco-friendly catalytic system for C-N bond formation.
Li, Cheng-An; Ji, Wei; Qu, Jian; Jing, Su; Gao, Fei; Zhu, Dun-Ru
2018-05-22
The catalytic activities of eight copper(i) halide clusters assembled from copper(i) halide and ferrocenyltelluroethers, 1-8, were investigated in C-N formation under various conditions. A catalytic procedure using poly(ethylene glycol) (PEG-400) as a greener alternative organic solvent has been developed. The PEG-400/5 system can achieve 99% targeted yield with a mild reaction temperature and short reaction time. After the isolation of the products by extraction with diethyl ether, this PEG-400/cluster system could be easily recycled. Spectroscopic studies elucidate a stepwise mechanism: firstly, proton-coupled electron transfer (PCET) involving the transfer of an electron from Cu+ and a proton from imidazole results in the formation of a labile penta-coordinated Cu2+ and aryl radical; the following effective electron transfer from the ferrocene unit reduces Cu2+ and forms the target product; finally, the ferrocenium unit is reduced by the I- anion. The merits of this eco-friendly synthesis are the efficient utilization of reagents and easy recyclability.
Proton pumping in the bc1 complex: a new gating mechanism that prevents short circuits.
Crofts, Antony R; Lhee, Sangmoon; Crofts, Stephanie B; Cheng, Jerry; Rose, Stuart
2006-08-01
The Q-cycle mechanism of the bc1 complex explains how the electron transfer from ubihydroquinone (quinol, QH2) to cytochrome (cyt) c (or c2 in bacteria) is coupled to the pumping of protons across the membrane. The efficiency of proton pumping depends on the effectiveness of the bifurcated reaction at the Q(o)-site of the complex. This directs the two electrons from QH2 down two different pathways, one to the high potential chain for delivery to an electron acceptor, and the other across the membrane through a chain containing heme bL and bH to the Qi-site, to provide the vectorial charge transfer contributing to the proton gradient. In this review, we discuss problems associated with the turnover of the bc1 complex that center around rates calculated for the normal forward and reverse reactions, and for bypass (or short-circuit) reactions. Based on rate constants given by distances between redox centers in known structures, these appeared to preclude conventional electron transfer mechanisms involving an intermediate semiquinone (SQ) in the Q(o)-site reaction. However, previous research has strongly suggested that SQ is the reductant for O2 in generation of superoxide at the Q(o)-site, introducing an apparent paradox. A simple gating mechanism, in which an intermediate SQ mobile in the volume of the Q(o)-site is a necessary component, can readily account for the observed data through a coulombic interaction that prevents SQ anion from close approach to heme bL when the latter is reduced. This allows rapid and reversible QH2 oxidation, but prevents rapid bypass reactions. The mechanism is quite natural, and is well supported by experiments in which the role of a key residue, Glu-295, which facilitates proton transfer from the site through a rotational displacement, has been tested by mutation.
Mechanism of tyrosine D oxidation in Photosystem II.
Saito, Keisuke; Rutherford, A William; Ishikita, Hiroshi
2013-05-07
Using quantum mechanics/molecular mechanics calculations and the 1.9-Å crystal structure of Photosystem II [Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Nature 473(7345):55-60], we investigated the H-bonding environment of the redox-active tyrosine D (TyrD) and obtained insights that help explain its slow redox kinetics and the stability of TyrD(•). The water molecule distal to TyrD, located ~4 Å away from the phenolic O of TyrD, corresponds to the presence of the tyrosyl radical state. The water molecule proximal to TyrD, in H-bonding distance to the phenolic O of TyrD, corresponds to the presence of the unoxidized tyrosine. The H(+) released on oxidation of TyrD is transferred to the proximal water, which shifts to the distal position, triggering a concerted proton transfer pathway involving D2-Arg180 and a series of waters, through which the proton reaches the aqueous phase at D2-His61. The water movement linked to the ejection of the proton from the hydrophobic environment near TyrD makes oxidation slow and quasiirreversible, explaining the great stability of the TyrD(•). A symmetry-related proton pathway associated with tyrosine Z is pointed out, and this is associated with one of the Cl(-) sites. This may represent a proton pathway functional in the water oxidation cycle.
Wei, Donghui; Fang, Lei; Tang, Mingsheng; Zhan, Chang-Guo
2013-01-01
Proteasome is the major component of the crucial nonlysosomal protein degradation pathway in the cells, but the detailed reaction pathway is unclear. In this study, first-principles quantum mechanical/molecular mechanical free energy calculations have been performed to explore, for the first time, possible reaction pathways for proteasomal proteolysis/hydrolysis of a representative peptide, succinyl-leucyl-leucyl-valyl-tyrosyl-7-amino-4-methylcoumarin (Suc-LLVY-AMC). The computational results reveal that the most favorable reaction pathway consists of six steps. The first is a water-assisted proton transfer within proteasome, activating Thr1-Oγ. The second is a nucleophilic attack on the carbonyl carbon of a Tyr residue of substrate by the negatively charged Thr1-Oγ, followed by the dissociation of the amine AMC (third step). The fourth step is a nucleophilic attack on the carbonyl carbon of the Tyr residue of substrate by a water molecule, accompanied by a proton transfer from the water molecule to Thr1-Nz. Then, Suc-LLVY is dissociated (fifth step), and Thr1 is regenerated via a direct proton transfer from Thr1-Nz to Thr1-Oγ. According to the calculated energetic results, the overall reaction energy barrier of the proteasomal hydrolysis is associated with the transition state (TS3b) for the third step involving a water-assisted proton transfer. The determined most favorable reaction pathway and the rate-determining step have provided a reasonable interpretation of the reported experimental observations concerning the substituent and isotopic effects on the kinetics. The calculated overall free energy barrier of 18.2 kcal/mol is close to the experimentally-derived activation free energy of ~18.3–19.4 kcal/mol, suggesting that the computational results are reasonable. PMID:24111489
Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer
NASA Astrophysics Data System (ADS)
Choi, Gilbert J.; Zhu, Qilei; Miller, David C.; Gu, Carol J.; Knowles, Robert R.
2016-11-01
Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process—a subset of the classical Hofmann-Löffler-Freytag reaction—amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using traditional HAT-based approaches.
Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer.
Choi, Gilbert J; Zhu, Qilei; Miller, David C; Gu, Carol J; Knowles, Robert R
2016-11-10
Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process-a subset of the classical Hofmann-Löffler-Freytag reaction-amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using traditional HAT-based approaches.
Pitteri, Sharon J.; Chrisman, Paul A.; Hogan, Jason M.; McLuckey, Scott A.
2005-01-01
Ion–ion reactions between a variety of peptide cations (doubly and triply charged) and SO2 anions have been studied in a 3-D quadrupole ion trap, resulting in proton and electron transfer. Electron transfer dissociation (ETD) gives many c- and z-type fragments, resulting in extensive sequence coverage in the case of triply protonated peptides with SO2·−. For triply charged neurotensin, in which a direct comparison can be made between 3-D and linear ion trap results, abundances of ETD fragments relative to one another appear to be similar. Reactions of doubly protonated peptides with SO2·− give much less structural information from ETD than triply protonated peptides. Collision-induced dissociation (CID) of singly charged ions formed in reactions with SO2·− shows a combination of proton and electron transfer products. CID of the singly charged species gives more structural information than ETD of the doubly protonated peptide, but not as much information as ETD of the triply protonated peptide. PMID:15762593
Femtochemistry of Intramolecular Charge and Proton Transfer Reactions in Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douhal, Abderrazzak; Sanz, Mikel; Carranza, Maria Angeles
2005-03-17
We report on the first observation of ultrafast intramolecular charge- and proton-transfer reactions in 4'-dimethylaminoflavonol (DAMF) in solution. Upon femtosecond excitation of a non-planar structure of DMAF in apolar medium, the intramolecular charge transfer (ICT) does not occur, and a slow (2 ps) proton motion takes place. However, in polar solvents, the ICT is very fast (100-200 fs) and the produced structure is stabilized that proton motion takes place in few or tens of ps.
Polarization Transfer in Proton Compton Scattering at High Momentum Transfer
NASA Astrophysics Data System (ADS)
Hamilton, D. J.; Mamyan, V. H.; Aniol, K. A.; Annand, J. R.; Bertin, P. Y.; Bimbot, L.; Bosted, P.; Calarco, J. R.; Camsonne, A.; Chang, G. C.; Chang, T.-H.; Chen, J.-P.; Choi, Seonho; Chudakov, E.; Danagoulian, A.; Degtyarenko, P.; de Jager, C. W.; Deur, A.; Dutta, D.; Egiyan, K.; Gao, H.; Garibaldi, F.; Gayou, O.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Hansen, J.-O.; Hayes, D.; Higinbotham, D.; Hinton, W.; Horn, T.; Howell, C.; Hunyady, T.; Hyde-Wright, C. E.; Jiang, X.; Jones, M. K.; Khandaker, M.; Ketikyan, A.; Kubarovsky, V.; Kramer, K.; Kumbartzki, G.; Laveissière, G.; Lerose, J.; Lindgren, R. A.; Margaziotis, D. J.; Markowitz, P.; McCormick, K.; Meziani, Z.-E.; Michaels, R.; Moussiegt, P.; Nanda, S.; Nathan, A. M.; Nikolenko, D. M.; Nelyubin, V.; Norum, B. E.; Paschke, K.; Pentchev, L.; Perdrisat, C. F.; Piasetzky, E.; Pomatsalyuk, R.; Punjabi, V. A.; Rachek, I.; Radyushkin, A.; Reitz, B.; Roche, R.; Roedelbronn, M.; Ron, G.; Sabatie, F.; Saha, A.; Savvinov, N.; Shahinyan, A.; Shestakov, Y.; Širca, S.; Slifer, K.; Solvignon, P.; Stoler, P.; Tajima, S.; Sulkosky, V.; Todor, L.; Vlahovic, B.; Weinstein, L. B.; Wang, K.; Wojtsekhowski, B.; Voskanyan, H.; Xiang, H.; Zheng, X.; Zhu, L.
2005-06-01
Compton scattering from the proton was investigated at s=6.9 GeV2 and t=-4.0 GeV2 via polarization transfer from circularly polarized incident photons. The longitudinal and transverse components of the recoil proton polarization were measured. The results are in disagreement with a prediction of perturbative QCD based on a two-gluon exchange mechanism, but agree well with a prediction based on a reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton.
NASA Astrophysics Data System (ADS)
Chen, Mohan; Zheng, Lixin; Santra, Biswajit; Ko, Hsin-Yu; DiStasio, Robert A., Jr.; Klein, Michael L.; Car, Roberto; Wu, Xifan
2018-03-01
Proton transfer via hydronium and hydroxide ions in water is ubiquitous. It underlies acid-base chemistry, certain enzyme reactions, and even infection by the flu. Despite two centuries of investigation, the mechanism underlying why hydroxide diffuses slower than hydronium in water is still not well understood. Herein, we employ state-of-the-art density-functional-theory-based molecular dynamics—with corrections for non-local van der Waals interactions, and self-interaction in the electronic ground state—to model water and hydrated water ions. At this level of theory, we show that structural diffusion of hydronium preserves the previously recognized concerted behaviour. However, by contrast, proton transfer via hydroxide is less temporally correlated, due to a stabilized hypercoordination solvation structure that discourages proton transfer. Specifically, the latter exhibits non-planar geometry, which agrees with neutron-scattering results. Asymmetry in the temporal correlation of proton transfer leads to hydroxide diffusing slower than hydronium.
DFT Study on Nitrite Reduction Mechanism in Copper-Containing Nitrite Reductase.
Lintuluoto, Masami; Lintuluoto, Juha M
2016-01-12
Dissimilatory reduction of nitrite by copper-containing nitrite reductase (CuNiR) is an important step in the geobiochemical nitrogen cycle. The proposed mechanisms for the reduction of nitrite by CuNiRs include intramolecular electron and proton transfers, and these two events are understood to couple. Proton-coupled electron transfer is one of the key processes in enzyme reactions. We investigated the geometric structure of bound nitrite and the mechanism of nitrite reduction on CuNiR using density functional theory calculations. Also, the proton transfer pathway, the key residues, and their roles in the reaction mechanism were clarified in this study. In our results, the reduction of T2 Cu site promotes the proton transfer, and the hydrogen bond network around the binding site has an important role not only to stabilize the nitrite binding but also to promote the proton transfer to nitrite.
Osburn, Sandra M; Ochola, Sila O; Talaty, Erach R; Van Stipdonk, Michael J
2008-11-01
The presence and position of a single beta-alanine (betaA), gamma-aminobutyric acid (gammaABu) or epsilon-aminocaproic acid (Cap) residue has been shown to have a significant influence on the formation of b(n)+ and y(n)+ product ions from a series of model, protonated peptides. In this study, we examined the effect of the same residues on the formation of analogous [b3 - 1 + cat]+ products from metal (Li+, Na+ and Ag+)-cationized peptides. The larger amino acids suppress formation of b3+ from protonated peptides with general sequence AAXG (where X = beta-alanine, gamma-aminobutyric acid or epsilon-aminocaproic acid), presumably because of the prohibitive effect of larger cyclic intermediates in the 'oxazolone' pathway. However, abundant [b3 - 1 + cat]+ products are generated from metal-cationized versions of AAXG. Using a group of deuterium-labeled and exchanged peptides, we found that formation of [b3 - 1 + cat]+ involves transfer of either amide or alpha-carbon position H atoms, and the tendency to transfer the atom from the alpha-carbon position increases with the size of the amino acid in position X. To account for the transfer of the H atom, a mechanism involving formation of a ketene product as [b3 - 1 + cat]+ is proposed.
Thermally triggered polyrotaxane translational motion helps proton transfer.
Ge, Xiaolin; He, Yubin; Liang, Xian; Wu, Liang; Zhu, Yuan; Yang, Zhengjin; Hu, Min; Xu, Tongwen
2018-06-12
Synthetic polyelectrolytes, capable of fast transporting protons, represent a challenging target for membrane engineering in so many fields, for example, fuel cells, redox flow batteries, etc. Inspired by the fast advance in molecular machines, here we report a rotaxane based polymer entity assembled via host-guest interaction and prove that by exploiting the thermally triggered translational motion (although not in a controlled manner) of mechanically bonded rotaxane, exceptionally fast proton transfer can be fulfilled at an external thermal input. The relative motion of the sulfonated axle to the ring in rotaxane happens at ~60 °C in our cases and because of that a proton conductivity (indicating proton transfer rate) of 260.2 mS cm -1 , which is much higher than that in the state-of-the-art Nafion, is obtained at a relatively low ion-exchange capacity (representing the amount of proton transfer groups) of 0.73 mmol g -1 .
NASA Astrophysics Data System (ADS)
Ghasemi, Fatemeh; Ghasemi, Khaled; Rezvani, Ali Reza; Shokrollahi, Ardeshir; Refahi, Masoud; García-Granda, Santiago; Mendoza-Meroño, Rafael
2017-03-01
Reaction between N,N-dimethylebiguanidine, Met = Metformin, and 4-hydroxy-2,6-pyridinedicarboxylic acid, HO-dipicH2, results in the formation of a novel proton transfer compound, [MetH2][HO-dipicH]2·H2O, 1. The characterization was performed using FTIR, UV-Vis, 1H and 13C NMR spectroscopy and X-ray crystallography. The crystal system is triclinic with space group P 1 bar and two molecules per unit cell. The protonation constants of O-dipic and Met, in all of probability protonated forms, and the equilibrium constants for the O-dipic-Met proton transfer system were investigated by the potentiometric pH titration method using the Hyperquad2008 program. The stoichiometry of the proton transfer species in solution were in agreement with the solid state result.
NASA Astrophysics Data System (ADS)
Karimzadeh, Morteza; Manouchehri, Neda; Saberi, Dariush; Niknam, Khodabakhsh
2018-06-01
All 66 conformers of guanylurea were optimized and frequency calculations were performed at M06-2X/6-311++G(d,p) level of theory. Theses conformers were categorized into five tautomers, and the most stable conformer of each tautomer were found. Geometrical parameters indicated that these tautomers have almost planar structure. Complete stepwise tautomerism were studied through both intramolecular proton transfer routs and internal rotations. Results indicated that the proton transfer routs involving four-membered heterocyclic structures were rate-determining steps. Also, intramolecular proton movement having six-membered transition state structures had very low energy barrier comparable to the transition states of internal rotation routs. Differentiation of studied tautomers could easily be done through their FT-IR spectra in the range of 3200 to 3900 cm-1 by comparing absorption bands and intensity of peaks. Solvent-implicit effects on the stability of tautomers were also studied through re-optimization and frequency calculation in four solvents. Water, DMSO, acetone and toluene had stabilization effect on all considered tautomers, but the order of stabilization effect was as follows: water > DMSO > acetone > toluene. Finally, solvent-explicit, base-explicit and acid-explicit effect were also studied by taking place of studied tautomer nearside of acid, base or solvent and optimization of them. Frequency calculation for proton movement by contribution of explicit effect showed that formic acid had a very strong effect on proton transfer from tautomer A1 to tautomer D8 by lowering the energy barrier from 42.57 to 0.8 kcal/mol. In addition, ammonia-explicit effect was found to lower the barrier from 42.57 to 22.46 kcal/mol, but this effect is lower than that of water and methanol-explicit effect.
F"orster-type mechanism of the redox-driven proton pump
NASA Astrophysics Data System (ADS)
Mourokh, Lev; Smirnov, Anatoly; Nori, Franco
2007-03-01
We propose a model to describe an electronically-driven proton pump in the cytochrome c oxidase (CcO). We examine the situation when the electron transport between the two sites embedded into the inner membrane of the mitochondrion occurs in parallel with the proton transfer from the protonable site that is close to the negative (inner) side of the membrane to the other protonable site located nearby the positive (outer) surface of the membrane. In addition to the conventional electron and proton tunnelings between the sites, the Coulomb interaction between electrons and protons localized on the corresponding sites leads to so-called F"orster transfer, i.e. to the process when the simultaneous electron and proton tunnelings are accompanied by the resonant energy transfer between the electrons and protons. Our calculations based on reasonable parameters have demonstrated that the F"orster process facilitates the proton pump at physiological temperatures. We have examined the effects of an electron voltage build-up, external temperature, and molecular electrostatics driving the electron and proton energies to the resonant conditions, and have shown that these parameters can control the proton pump operation.
NASA Astrophysics Data System (ADS)
Zhang, Xiaoqian; Li, Xiao-Xi; Liu, Yufang; Wang, Yong
2017-01-01
N-benzyl-N-cyclopropylamine (BCA) has been attracting great interests for decades for its partial suicide inactivation role to cytochrome P450 (P450) via a ring-opening mechanism besides acting as a role of normal substrates. Understanding the mechanism of such partial inactivation is vital to the clinical drug design. Thus, density functional theoretical (DFT) calculations were carried out on such P450-catalyzed reactions, not only on the metabolic pathway, but on the ring-opening inactivation one. Our theoretical results demonstrated that, in the metabolic pathway, besides the normal carbinolamine, an unexpected enamine was formed via the dual hydrogen abstraction (DHA) process, in which the competition between rotation of the H-abstracted substrate radical and the rotation of hydroxyl group of the protonated Cpd II moiety plays a significant role in product branch; In the inactivation pathway, the well-noted single electron transfer (SET) mechanism-involved process was invalidated for its high energy barrier, a proton-coupled electron transfer (PCET(ET)) mechanism plays a role. Our results are consistent with other related theoretical works on heteroatom-hydrogen (X-H, X = O, N) activation and revealed new features. The revealed mechanisms will play a positive role in relative drug design.
Bates, Katie; Garrett, Brendan; Henderson, Richard A
2007-12-24
The rates of proton transfer from [pyrH]+ (pyr = pyrrolidine) to the binuclear complexes [Fe2S2Cl4]2- and [S2MS2FeCl2]2- (M = Mo or W) are reported. The reactions were studied using stopped-flow spectrophotometry, and the rate constants for proton transfer were determined from analysis of the kinetics of the substitution reactions of these clusters with the nucleophiles Br- or PhS- in the presence of [pyrH]+. In general, Br- is a poor nucleophile for these clusters, and proton transfer occurs before Br- binds, allowing direct measure of the rate of proton transfer from [pyrH]+ to the cluster. In contrast, PhS- is a better nucleophile, and a pathway in which PhS- binds preferentially to the cluster prior to proton transfer from [pyrH]+ usually operates. For the reaction of [Fe2S2Cl4]2- with PhS- in the presence of [pyrH]+ both pathways are observed. Comparison of the results presented in this paper with analogous studies reported earlier on cuboidal Fe-S-based clusters allows discussion of the factors which affect the rates of proton transfer in synthetic clusters including the nuclearity of the cluster core, the metal composition, and the nature of the terminal ligands. The possible relevance of these findings to the protonation sites of natural Fe-S-based clusters, including FeMo-cofactor from nitrogenase, are presented.
Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons.
Bythell, Benjamin J; Suhai, Sándor; Somogyi, Arpád; Paizs, Béla
2009-10-07
The mobile proton model (Dongre, A. R., Jones, J. L., Somogyi, A. and Wysocki, V. H. J. Am. Chem. Soc. 1996, 118 , 8365-8374) of peptide fragmentation states that the ionizing protons play a critical role in the gas-phase fragmentation of protonated peptides upon collision-induced dissociation (CID). The model distinguishes two classes of peptide ions, those with or without easily mobilizable protons. For the former class mild excitation leads to proton transfer reactions which populate amide nitrogen protonation sites. This enables facile amide bond cleavage and thus the formation of b and y sequence ions. In contrast, the latter class of peptide ions contains strongly basic functionalities which sequester the ionizing protons, thereby often hindering formation of sequence ions. Here we describe the proton-driven amide bond cleavages necessary to produce b and y ions from peptide ions lacking easily mobilizable protons. We show that this important class of peptide ions fragments by different means from those with easily mobilizable protons. We present three new amide bond cleavage mechanisms which involve salt-bridge, anhydride, and imine enol intermediates, respectively. All three new mechanisms are less energetically demanding than the classical oxazolone b(n)-y(m) pathway. These mechanisms offer an explanation for the formation of b and y ions from peptide ions with sequestered ionizing protons which are routinely fragmented in large-scale proteomics experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ignat`ev, I.S.; Kochina, T.A.; Nefedov, V.D.
1995-08-10
Ion-molecular gas-phase reactions of free methyl and sec-butyl cations with diethylamine were studied. These reactions proceed via two competing pathways involving formation of a condensation complex or a proton-transfer complex, the latter process predominating. 32 refs., 1 tab.
Kinetic Classroom: Acid-Base and Redox Demonstrations with Student Movement.
ERIC Educational Resources Information Center
Lomax, Joseph F.
1994-01-01
Describes classroom activities that involve student movement to demonstrate principles of kinetics. This classroom method can be used for any topic related to dynamic processes. The method used in this activity illustrates Brxnsted-Lowry acid-base theory and redox reactions. Takes advantage of analogies between proton and electron transfers. Use…
Electrochemistry and spectroelectrochemistry of bioactive hydroxyquinolines: a mechanistic study.
Sokolová, Romana; Nycz, Jacek E; Ramešová, Šárka; Fiedler, Jan; Degano, Ilaria; Szala, Marcin; Kolivoška, Viliam; Gál, Miroslav
2015-05-21
The oxidation mechanism of selected hydroxyquinoline carboxylic acids such as 8-hydroxyquinoline-7-carboxylic acid (1), the two positional isomers 2-methyl-8-hydroxyquinoline-7-carboxylic acid (3) and 2-methyl-5-hydroxyquinoline-6-carboxylic acid (4), as well as other hydroxyquinolines were studied in aprotic environment using cyclic voltammetry, controlled potential electrolysis, in situ UV-vis and IR spectroelectrochemistry, and HPLC-MS/MS techniques. IR spectroelectrochemistry showed that oxidation unexpectedly proceeds together with protonation of the starting compound. We proved that the nitrogen atom in the heterocycle of hydroxyquinolines is protonated during the apparent 0.7 electron oxidation process. This was rationalized by the autodeprotonation reaction by another two starting molecules of hydroxyquinoline, so that the overall oxidation mechanism involves two electrons and three starting molecules. Both the electrochemical and spectroelectrochemical results showed that the oxidation mechanism is not influenced by the presence of the carboxylic group in the chemical structure of hydroxyquinolines, as results from oxidation of 2,7-dimethyl-5-hydroxyquinoline (6). In the presence of a strong proton acceptor such as pyridine, the oxidation ECEC process involves two electrons and two protons per one molecule of the hydroxyquinoline derivative. The electron transfer efficiency of hydroxyquinolines in biosystems may be related to protonation of biocompounds containing nitrogen bases. Molecular orbital calculations support the experimental findings.
NASA Astrophysics Data System (ADS)
Meng, Xi; Nguyen, William H.; Nowick, James S.; Shaka, A. J.
2010-03-01
A new selective heteronuclear Hartmann-Hahn (SHEHAHA) multiple-pulse mixing sequence is proposed for the solution structure elucidation of milligram amounts of peracetylated oligosaccharides in which the acetyl groups are enriched in carbon-13, so-called “isotags”. SHEHAHA accomplishes exclusive in-phase magnetization transfer between the isotag carbonyl 13C and the proximal proton on the sugar ring. Relayed transfer around the sugar rings by proton-proton TOCSY is suppressed, while the heteronuclear transfer from the labeled carbonyl carbon to the proximal ring proton is maintained. The sequence is broadband in the sense that all acetyl groups simultaneously give good signal transfer to their respective nearest proton neighbors. The 1H-detected spectra have decent sensitivity and excellent resolution, giving patterns that unambiguously identify common structural subunits in human glycans. Peracetylated maltitol is shown as a test case of the method. Lineshapes are pure absorption, allowing facile measurement of vicinal proton-proton couplings. Linkage points can be deduced, and the 2D correlation spectra may be useful for more ambitious prediction algorithms and machine identification by a spectral database.
NASA Astrophysics Data System (ADS)
Fedorova, I. V.; Khatuntseva, E. A.; Krest'yaninov, M. A.; Safonova, L. P.
2016-02-01
Proton transfer along the hydrogen bond in complexes of DMF with H3PO4, H3PO3, CH3H2PO3, and their dimers has been investigated by the B3LYP/6-31++G** method in combination with the C-PCM model. When the Oacid···ODMF distance ( R) in the scanning procedure is not fixed, the energy profile in all cases has a single well. When this distance is fixed, there can be a proton transfer in all of the complexes in the gas phase at R > 2.6 Å; if solvation is taken into account, proton transfer can take place at R > 2.4 Å ( R > 2.5 Å for DMF complexes with CH3H2PO3 and its dimer). The height of the energy barrier to proton transfer increases with increasing R. Proton transfer is energetically most favorable in the DMF-phosphoric acid complexes. The structural and energetic characteristics of the hydrogen-bonded complexes calculated on the basis of the solvation model are compared with the same parameters for the complexes in the gas phase.
Chakravorty, Dhruva K.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon
2009-01-01
Hybrid quantum/classical molecular dynamics simulations of the two proton transfer reactions catalyzed by ketosteroid isomerase are presented. The potential energy surfaces for the proton transfer reactions are described with the empirical valence bond method. Nuclear quantum effects of the transferring hydrogen increase the rates by a factor of ~8, and dynamical barrier recrossings decrease the rates by a factor of 3–4. For both proton transfer reactions, the donor-acceptor distance decreases substantially at the transition state. The carboxylate group of the Asp38 side chain, which serves as the proton acceptor and donor in the first and second steps, respectively, rotates significantly between the two proton transfer reactions. The hydrogen bonding interactions within the active site are consistent with the hydrogen bonding of both Asp99 and Tyr14 to the substrate. The simulations suggest that a hydrogen bond between Asp99 and the substrate is present from the beginning of the first proton transfer step, whereas the hydrogen bond between Tyr14 and the substrate is virtually absent in the first part of this step but forms nearly concurrently with the formation of the transition state. Both hydrogen bonds are present throughout the second proton transfer step until partial dissociation of the product. The hydrogen bond between Tyr14 and Tyr55 is present throughout both proton transfer steps. The active site residues are more mobile during the first step than during the second step. The van der Waals interaction energy between the substrate and the enzyme remains virtually constant along the reaction pathway, but the electrostatic interaction energy is significantly stronger for the dienolate intermediate than for the reactant and product. Mobile loop regions distal to the active site exhibit significant structural rearrangements and, in some cases, qualitative changes in the electrostatic potential during the catalytic reaction. These results suggest that relatively small conformational changes of the enzyme active site and substrate strengthen the hydrogen bonds that stabilize the intermediate, thereby facilitating the proton transfer reactions. Moreover, the conformational and electrostatic changes associated with these reactions are not limited to the active site but rather extend throughout the entire enzyme. PMID:19799395
Siletsky, Sergey A; Mamedov, Mahir D; Lukashev, Evgeniy P; Balashov, Sergei P; Dolgikh, Dmitriy A; Rubin, Andrei B; Kirpichnikov, Mikhail P; Petrovskaya, Lada E
2016-11-01
A retinal protein from Exiguobacterium sibiricum (ESR) functions as a light-driven proton pump. Unlike other proton pumps, it contains Lys96 instead of a usual carboxylic residue in the internal proton donor site. Nevertheless, the reprotonation of the Schiff base occurs fast, indicating that Lys96 facilitates proton transfer from the bulk. In this study we examined kinetics of light-induced transmembrane electrical potential difference, ΔΨ, generated in proteoliposomes reconstituted with ESR. We show that total magnitude of ΔΨ is comparable to that produced by bacteriorhodopsin but its kinetic components and their pH dependence are substantially different. The results are in agreement with the earlier finding that proton uptake precedes reprotonation of the Schiff base in ESR, suggesting that Lys96 is unprotonated in the initial state and gains a proton transiently in the photocycle. The electrogenic phases and the photocycle transitions related to proton transfer from the bulk to the Schiff base are pH dependent. At neutral pH, they occur with τ 0.5ms and 4.5ms. At alkaline pH, the fast component ceases and Schiff base reprotonation slows. At pH8.4, a spectrally silent electrogenic component with τ 0.25ms is detected, which can be attributed to proton transfer from the bulk to Lys96. At pH5.1, the amplitude of ΔΨ decreases 10 fold, reflecting a decreased yield and rate of proton transfer, apparently from protonation of the acceptor (Asp85-His57 pair) in the initial state. The features of the photoelectric potential generation correlate with the ESR structure and proposed mechanism of proton transfer. Copyright © 2016 Elsevier B.V. All rights reserved.
Feliks, Mikolaj; Ullmann, G Matthias
2012-06-21
A combination of continuum electrostatic and density functional calculations has been employed to study the mechanism of the B(12)-independent glycerol dehydratase, a novel glycyl-radical enzyme involved in the microbial conversion of glycerol to 3-hydroxylpropionaldehyde. The calculations indicate that the dehydratation of glycerol by the B(12)-independent enzyme does not need to involve a mechanistically complicated migration of the middle hydroxyl group to one of the two terminal positions of a molecule, as previously suggested. Instead, the reaction can proceed in three elementary steps. First, a radical transfer from the catalytically active Cys433 to the ligand generates a substrate-related intermediate. Second, a hydroxyl group splits off at the middle position of the ligand and is protonated by the neighboring His164 to form a water molecule. The other active site residue Glu435 accepts a proton from one of the terminal hydroxyl groups of the ligand and a C═O double bond is created. Third, the reaction is completed by a radical back transfer from the product-related intermediate to Cys433. On the basis of our calculations, the catalytic functions of the active site residues have been suggested. Cys433 is a radical relay site; His164 and Glu435 make up a proton accepting/donating system; Asn156, His281, and Asp447 form a network of hydrogen bonds responsible for the electrostatic stabilization of the transition state. A synergistic participation of these residues in the reaction seems to be crucial for the catalysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Qin; Yao, Jianzhuang; Wiodawer, Alexander
2011-01-01
Quantum mechanical/molecular mechanical (QM/MM) free energy simulations are applied for understanding the mechanism of the acylation reaction catalyzed by sedolisin, a representative serine-carboxyl peptidase, leading to the acyl-enzyme (AE) and first product from the enzyme-catalyzed reaction. One of the interesting questions to be addressed in this work is the origin of the substrate specificity of sedolisin that shows a relatively high activity on the substrates with Glu at P1 site. It is shown that the bond making and breaking events of the acylation reaction involving a peptide substrate (LLE*FL) seem to be accompanied by local conformational changes, proton transfers asmore » well as the formation of alternative hydrogen bonds. The results of the simulations indicate that the conformational change of Glu at P1 site and its formation of a low barrier hydrogen bond with Asp-170 (along with the transient proton transfer) during the acylation reaction might play a role in the relatively high specificity for the substrate with Glu at P1 site. The role of some key residues in the catalysis is confirmed through free energy simulations. Glu-80 is found to act as a general base to accept a proton from Ser-287 during the nucleophilic attack and then as a general acid to protonate the leaving group (N H of P1 -Phe) during the cleavage of the scissile peptide bond. Another acidic residue, Asp-170, acts as a general acid catalyst to protonate the carbonyl of P1-Glu during the formation of the tetrahedral intermediate and as a general base for the formation of the acyl-enzyme. The energetic results from the free energy simulations support the importance of proton transfer from Asp-170 to the carbonyl of P1-Glu in the stabilization of the tetrahedral intermediate and the formation of a low-barrier hydrogen bond between the carboxyl group of P1-Glu and Asp-170 in the lowering of the free energy barrier for the cleavage of the peptide bond. Detailed analyses of the proton transfers during acylation are also given.« less
Mousa, Souad A; Douglas, Peter; Burrows, Hugh D; Fonseca, Sofia M
2013-09-01
The fluorescence quenching of protonated β-carbolines has been investigated in acidic aqueous solutions and in w/o microemulsions using I(-), Br(-), Cu(2+), SCN(-), and Pb(2+) as quenchers. It was found that fluorescence quenching by these compounds is much more efficient in water than in microemulsions since quenching in microemulsions depends on the simultaneous occupancy of the water droplets by both fluorophore and quencher. Linear Stern-Volmer plots were obtained in all cases, leading to quenching rate constants of ca. 10(8)-10(10) M(-1) s(-1) in water and ca. 10(7)-10(8) M(-1) s(-1) in microemulsions. In the case of quenching by SCN(-), ns flash photolysis studies indicate formation of (SCN)2(˙-) showing that at least part of the quenching process involves an electron transfer mechanism. This indicates that the singlet excited states of the protonated β-carbolines can act as relatively strong oxidants (E° > 1.6 V), capable of oxidizing many species, including the biologically relevant DNA base guanine. The observation of the (SCN)2(˙-) transient in microemulsions demonstrates that it is possible to have the protonated β-carboline and at least two thiocyanate ions in the same water pool.
Lennox, J Christian; Dempsey, Jillian L
2017-11-22
A polypyridyl ruthenium complex with fluorinated bipyridine ligands and a covalently bound tyrosine moiety was synthesized, and its photo-induced proton-coupled electron transfer (PCET) reactivity in acetonitrile was investigated with transient absorption spectroscopy. Using flash-quench methodology with methyl viologen as an oxidative quencher, a Ru 3+ species is generated that is capable of initiating the intramolecular PCET oxidation of the tyrosine moiety. Using a series of substituted pyridine bases, the reaction kinetics were found to vary as a function of proton acceptor concentration and identity, with no significant H/D kinetic isotope effect. Through analysis of the kinetics traces and comparison to a control complex without the tyrosine moiety, PCET reactivity was found to proceed through an equilibrium electron transfer followed by proton transfer (ET-PT) pathway in which irreversible deprotonation of the tyrosine radical cation shifts the ET equilibrium, conferring a base dependence on the reaction. Comprehensive kinetics modeling allowed for deconvolution of complex kinetics and determination of rate constants for each elementary step. Across the five pyridine bases explored, spanning a range of 4.2 pK a units, a linear free-energy relationship was found for the proton transfer rate constant with a slope of 0.32. These findings highlight the influence that proton transfer driving force exerts on PCET reaction kinetics.
Sirjoosingh, Andrew; Hammes-Schiffer, Sharon
2011-03-24
The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.
Polarization Transfer in Proton Compton Scattering at High Momentum Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.J. Hamilton; Vahe Mamyan
2004-10-01
Compton scattering from the proton was investigated at s = 6.9 GeV{sup 2} and t = -4.0 TeV{sup 2} via polarization transfer from circularly polarized incident photons. The longitudinal and transverse components of the recoil proton polarization were measured. The results are in excellent agreement with a prediction based on a reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton and in disagreement with a prediction of pQCD based on a two-gluon exchange mechanism.
Stabilization of very rare tautomers of 1-methylcytosine by an excess electron.
Harańczyk, Maciej; Rak, Janusz; Gutowski, Maciej
2005-12-22
We characterized valence anionic states of 1-methylcytosine using various electronic structure methods. We found that the most stable valence anion is related to neither the canonical amino-oxo nor a rare imino-oxo tautomer, in which a proton is transferred from the N4 to N3 atom. Instead, it is related to an imino-oxo tautomer, in which the C5 atom is protonated. This anion is characterized by an electron vertical detachment energy (VDE) of 2.12 eV and it is more stable than the anion based on the canonical tautomer by 1.0 kcal/mol. The latter is characterized by a VDE of 0.31 eV. Another unusual low-lying imino-oxo tautomer with a VDE of 3.60 eV has the C6 atom protonated and is 3.6 kcal/mol less stable than the anion of the canonical tautomer. All these anionic states are adiabatically unbound with respect to the canonical amino-oxo neutral, with the instability of 5.8 kcal/mol for the most stable valence anion. The mechanism of formation of anionic tautomers with carbon atoms protonated may involve intermolecular proton transfer or dissociative electron attachment to the canonical neutral tautomer followed by a barrier-free attachment of a hydrogen atom to the C5 or C6 atom. The six-member ring structure of anionic tautomers with carbon atoms protonated is unstable upon an excess electron detachment. Indeed the neutral systems collapse without a barrier to a linear or a bicyclo structure, which might be viewed as lesions to DNA or RNA. Within the PCM hydration model, the anions become adiabatically bound with respect to the corresponding neutrals, and the two most stable tautomers have a carbon atom protonated.
Tunneling induced electron transfer between separated protons
NASA Astrophysics Data System (ADS)
Vindel-Zandbergen, Patricia; Meier, Christoph; Sola, Ignacio R.
2018-04-01
We study electron transfer between two separated protons using local control theory. In this symmetric system one can favour a slow transfer by biasing the algorithm, achieving high efficiencies for fixed nuclei. The solution can be parametrized using a sequence of a pump followed by a dump pulse that lead to tunneling-induced electron transfer. Finally, we study the effect of the nuclear kinetic energy on the efficiency. Even in the absence of relative motion between the protons, the spreading of the nuclear wave function is enough to reduce the yield of electronic transfer to less than one half.
NASA Technical Reports Server (NTRS)
Schweighofer, Karl J.; Pohorille, Andrew; DeVincenzi, D. (Technical Monitor)
1999-01-01
The 25 amino acids long, transmembrane fragment of the Influenza virus M2 protein forms a homotetrameric channel that transports protons across lipid bilayers. It has been postulated that high efficiency and selectivity of this process is due to gating by four histidine residues that occlude the channel lumen in the closed state. Two mechanisms of gating have been postulated. In one mechanism, the proton is "shuttled" through the gate by attaching to the delta nitrogen atom on the extracellular side of the imidazole ring, followed by the release of the proton attached to the epsilon nitrogen atom on the opposite side. In the second mechanism, the four histidines move away from each other due to electrostatic repulsion upon protonation, thus opening the gate sufficiently that a wire of water molecules can penetrate the gate. Then, protons are transported by "hopping" along the wire. In this paper, both mechanisms are evaluated in a series of molecular dynamics simulations by investigating stability of different protonation states of the channel that are involved in these mechanisms. For the shuttle mechanism, these are states with all epsilon protonated histidines, one biprotonated residue or one histidine protonated in the delta position. For the gate opening mechanism, this is the state in which all four histidines are biprotonated. In addition, a state with two biprotonated histidines is considered. For each system, composed of the protein channel embedded in phospholipid bilayer located between two water lamellae, a molecular dynamics trajectory of approximately 1.3 ns (after equilibration) was obtained. It is found that the states involved in the shuttle mechanism are stable during the simulations. Furthermore, the orientations and dynamics of water molecules near the gate are conducive to proton transfers involved in the shuttle. In contract, the fully biprotonated state, implicated in the gate opening mechanism, is not stable and the channel looses its structural integrity. If only two histidines are biprotonated the channel deforms but remains intact with the gate mostly closed. In summary, the results of this study lend support to the shuttle mechanism but not to the gate opening mechanism of proton gating in M2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Stephen C.; Bettis Homan, Stephanie; Weiss, Emily A.
2016-01-28
This paper describes the use of cadmium sulfide quantum dots (CdS QDs) as visible-light photocatalysts for the reduction of nitrobenzene to aniline through six sequential photoinduced, proton-coupled electron transfers. At pH 3.6–4.3, the internal quantum yield of photons-to-reducing electrons is 37.1% over 54 h of illumination, with no apparent decrease in catalyst activity. Monitoring of the QD exciton by transient absorption reveals that, for each step in the catalytic cycle, the sacrificial reductant, 3-mercaptopropionic acid, scavenges the excitonic hole in ~5 ps to form QD•–; electron transfer to nitrobenzene or the intermediates nitrosobenzene and phenylhydroxylamine then occurs on the nanosecondmore » time scale. The rate constants for the single-electron transfer reactions are correlated with the driving forces for the corresponding proton-coupled electron transfers. This result suggests, but does not prove, that electron transfer, not proton transfer, is rate-limiting for these reactions. Nuclear magnetic resonance analysis of the QD–molecule systems shows that the photoproduct aniline, left unprotonated, serves as a poison for the QD catalyst by adsorbing to its surface. Performing the reaction at an acidic pH not only encourages aniline to desorb but also increases the probability of protonated intermediates; the latter effect probably ensures that recruitment of protons is not rate-limiting.« less
Kungwan, Nawee; Ngaojampa, Chanisorn; Ogata, Yudai; Kawatsu, Tsutomu; Oba, Yuki; Kawashima, Yukio; Tachikawa, Masanori
2017-10-05
Solvent dependence of double proton transfer in the formic acid-formamidine (FA-FN) complex at room temperature was investigated by means of ab initio path integral molecular dynamics (AIPIMD) simulation with taking nuclear quantum and thermal effects into account. The conductor-like screening model (COSMO) was applied for solvent effect. In comparison with gas phase, double proton delocalization between two heavy atoms (O and N) in FA-FN were observed with reduced proton transfer barrier height in low dielectric constant medium (<4.8). For dielectric constant medium at 4.8, the chance of finding these two protons are more pronounced due to the solvent effect which completely washes out the proton transfer barrier. In the case of higher dielectric constant medium (>4.8), the ionic species becomes more stable than the neutral ones and the formate anion and formamidium cation are thermodynamically stable. For ab initio molecular dynamics simulation, in low dielectric constant medium (<4.8) a reduction of proton transfer barrier with solvent effect is found to be less pronounced than the AIPIMD due to the absence of nuclear quantum effect. Moreover, the motions of FA-FN complex are significantly different with increasing dielectric constant medium. Such a difference is revealed in detail by the principal component analysis.
2011-01-01
Background Cytosine is a biologically important compound owing to its natural occurrence as a component of nucleic acids. Cytosine plays a crucial role in DNA/RNA base pairing, through several hydrogen-bonding patterns, and controls the essential features of life as it is involved in genetic codon of 17 amino acids. The molecular recognition among cytosines, and the molecular heterosynthons of molecular salts fabricated through proton-transfer reactions, might be used to investigate the theoretical sites of cytosine-specific DNA-binding proteins and the design for molecular imprint. Results Reaction of cytosine (Cyt) and 5-fluorocytosine (5Fcyt) with 5-nitrouracil (Nit) in aqueous solution yielded two new products, which have been characterized by single-crystal X-ray diffraction. The products include a dihydrated molecular salt (CytNit) having both ionic and neutral hydrogen-bonded species, and a dihydrated cocrystal of neutral species (5FcytNit). In CytNit a protonated and an unprotonated cytosine form a triply hydrogen-bonded aggregate in a self-recognition ion-pair complex, and this dimer is then hydrogen bonded to one neutral and one anionic 5-nitrouracil molecule. In 5FcytNit the two neutral nucleobase derivatives are hydrogen bonded in pairs. In both structures conventional N-H...O, O-H...O, N-H+...N and N-H...N- intermolecular interactions are most significant in the structural assembly. Conclusion The supramolecular structure of the molecular adducts formed by cytosine and 5-fluorocytosine with 5-nitrouracil, CytNit and 5FcytNit, respectively, have been investigated in detail. CytNit and 5FcytNit exhibit widely differing hydrogen-bonding patterns, though both possess layered structures. The crystal structures of CytNit (Dpka = -0.7, molecular salt) and 5FcytNit (Dpka = -2.0, cocrystal) confirm that, at the present level of knowledge about the nature of proton-transfer process, there is not a strict correlation between the Dpka values and the proton transfer, in that the acid/base pka strength is not a definite guide to predict the location of H atoms in the solid state. Eventually, the absence in 5FcytNit of hydrogen bonds involving fluorine is in agreement with findings that covalently bound fluorine hardly ever acts as acceptor for available Brønsted acidic sites in the presence of competing heteroatom acceptors. PMID:21888640
Ultrafast Spectroscopy of Proton-Coupled Electron Transfer (PCET) in Photocatalysis
2016-07-08
AFRL-AFOSR-VA-TR-2016-0244 Ultrafast Spectroscopy of Proton-Coupled Electron Transfer (PCET) in Photocatalysis Jahan Dawlaty UNIVERSITY OF SOUTHERN...TITLE AND SUBTITLE Ultrafast Spectroscopy of Proton-Coupled Electron Transfer (PCET) in Photocatalysis 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550...298 Back (Rev. 8/98) DISTRIBUTION A: Distribution approved for public release. Final Report: AFOSR YIP Grant FA9550-13-1-0128: Ultrafast Spectroscopy
Photodynamics of intramolecular proton transfer in polar and nonpolar biflavonoid solutions
NASA Astrophysics Data System (ADS)
Bondarev, S. L.; Knyukshto, V. N.; Tikhomirov, S. A.; Buganov, O. V.; Pyrko, A. N.
2012-10-01
Using methods of steady state luminescence and femtosecond spectroscopy, we have studied the mechanism of intramolecular proton transfer in synthesized 3,7-dihydroxy-2,8-di(4-methoxyphenyl)-4H,6H-pyrano[3,2- g]chromen-4,6-dion in polar and nonpolar solutions, films, and polycrystals at 293 and 77 K. In an excited singlet state, intramolecular proton transfer occurs in two stages. At the first stage, a tautomer with one transferred proton (OTP tautomer) is formed from the Franck-Condon state within τ1 = 0.6 ps. At the second stage, the second proton is transferred within τ2 = 3.1 ps and a tautomer with two transferred protons (TTP tautomer) is formed, which fluoresces in toluene at 293 K with a high quantum yield, Φ f = 0.66, and the fluorescence spectrum of which is characterized by a large Stokes shift, 9900 cm-1. At 293 K, polar solvents (dimethylformamide, dimethyl sulfoxide, ethanol, etc.) solvate the BFV molecule in the ground state, while, in the excited state, an OTP tautomer is mainly formed. In polar ethanol at 77 K, a dual fluorescence spectrum is observed, which is caused by the fluorescence emission of polysolvates with λ{max/ f } = 460 nm and TTP phototautomers at λ{max/ f }= 610 nm.
Koeppe, Benjamin; Tolstoy, Peter M; Limbach, Hans-Heinrich
2011-05-25
Combined low-temperature NMR/UV-vis spectroscopy (UVNMR), where optical and NMR spectra are measured in the NMR spectrometer under the same conditions, has been set up and applied to the study of H-bonded anions A··H··X(-) (AH = 1-(13)C-2-chloro-4-nitrophenol, X(-) = 15 carboxylic acid anions, 5 phenolates, Cl(-), Br(-), I(-), and BF(4)(-)). In this series, H is shifted from A to X, modeling the proton-transfer pathway. The (1)H and (13)C chemical shifts and the H/D isotope effects on the latter provide information about averaged H-bond geometries. At the same time, red shifts of the π-π* UV-vis absorption bands are observed which correlate with the averaged H-bond geometries. However, on the UV-vis time scale, different tautomeric states and solvent configurations are in slow exchange. The combined data sets indicate that the proton transfer starts with a H-bond compression and a displacement of the proton toward the H-bond center, involving single-well configurations A-H···X(-). In the strong H-bond regime, coexisting tautomers A··H···X(-) and A(-)···H··X are observed by UV. Their geometries and statistical weights change continuously when the basicity of X(-) is increased. Finally, again a series of single-well structures of the type A(-)···H-X is observed. Interestingly, the UV-vis absorption bands are broadened inhomogeneously because of a distribution of H-bond geometries arising from different solvent configurations.
Can membrane-bound carotenoid pigment zeaxanthin carry out a transmembrane proton transfer?
Kupisz, Kamila; Sujak, Agnieszka; Patyra, Magdalena; Trebacz, Kazimierz; Gruszecki, Wiesław I
2008-10-01
Polar carotenoid pigment zeaxanthin (beta,beta-carotene-3,3'-diol) incorporated into planar lipid membranes formed with diphytanoyl phosphatidylcholine increases the specific electric resistance of the membrane from ca. 4 to 13 x 10(7) Omega cm2 (at 5 mol% zeaxanthin with respect to lipid). Such an observation is consistent with the well known effect of polar carotenoids in decreasing fluidity and structural stabilization of lipid bilayers. Zeaxanthin incorporated into the lipid membrane at 1 mol% has very small effect on the overall membrane resistance but facilitates equilibration of the transmembrane proton gradient, as demonstrated with the application of the H+-sensitive antimony electrodes. Relatively low changes in the electrical potential suggest that the equilibration process may be associated with a symport/antiport activity or with a transmembrane transfer of the molecules of acid. UV-Vis linear dichroism analysis of multibilayer formed with the same lipid-carotenoid system shows that the transition dipole moment of the pigment molecules forms a mean angle of 21 degrees with respect to the axis normal to the plane of the membrane. This means that zeaxanthin spans the membrane and tends to have its two hydroxyl groups anchored in the opposite polar zones of the membrane. Detailed FTIR analysis of beta-carotene and zeaxanthin indicates that the polyene chain of carotenoids is able to form weak hydrogen bonds with water molecules. Possible molecular mechanisms responsible for proton transport by polyenes are discussed, including direct involvement of the polyene chain in proton transfer and indirect effect of the pigment on physical properties of the membrane.
Felicíssimo, V C; Guimarães, F F; Cesar, A; Gel'mukhanov, F; Agren, H
2006-11-30
The theory of IR-X-ray pump-probe spectroscopy beyond the Born-Oppenheimer approximation is developed and applied to the study of the dynamics of intramolecular proton transfer in glyoxalmonoxime leading to the formation of the tautomer 2-nitrosoethenol. Due to the IR pump pulses the molecule gains sufficient energy to promote a proton to a weakly bound well. A femtosecond X-ray pulse snapshots the wave packet route and, hence, the dynamics of the proton transfer. The glyoxalmonoxime molecule contains two chemically nonequivalent oxygen atoms that possess distinct roles in the hydrogen bond, a hydrogen donor and an acceptor. Core ionizations of these form two intersecting core-ionized states, the vibronic coupling between which along the OH stretching mode partially delocalizes the core hole, resulting in a hopping of the core hole from one site to another. This, in turn, affects the dynamics of the proton transfer in the core-ionized state. The quantum dynamical simulations of X-ray photoelectron spectra of glyoxalmonoxime driven by strong IR pulses demonstrate the general applicability of the technique for studies of intramolecular proton transfer in systems with vibronic coupling.
NASA Astrophysics Data System (ADS)
Fanelli, C.; Cisbani, E.; Hamilton, D. J.; Salmé, G.; Wojtsekhowski, B.; Ahmidouch, A.; Annand, J. R. M.; Baghdasaryan, H.; Beaufait, J.; Bosted, P.; Brash, E. J.; Butuceanu, C.; Carter, P.; Christy, E.; Chudakov, E.; Danagoulian, S.; Day, D.; Degtyarenko, P.; Ent, R.; Fenker, H.; Fowler, M.; Frlez, E.; Gaskell, D.; Gilman, R.; Horn, T.; Huber, G. M.; de Jager, C. W.; Jensen, E.; Jones, M. K.; Kelleher, A.; Keppel, C.; Khandaker, M.; Kohl, M.; Kumbartzki, G.; Lassiter, S.; Li, Y.; Lindgren, R.; Lovelace, H.; Luo, W.; Mack, D.; Mamyan, V.; Margaziotis, D. J.; Markowitz, P.; Maxwell, J.; Mbianda, G.; Meekins, D.; Meziane, M.; Miller, J.; Mkrtchyan, A.; Mkrtchyan, H.; Mulholland, J.; Nelyubin, V.; Pentchev, L.; Perdrisat, C. F.; Piasetzky, E.; Prok, Y.; Puckett, A. J. R.; Punjabi, V.; Shabestari, M.; Shahinyan, A.; Slifer, K.; Smith, G.; Solvignon, P.; Subedi, R.; Wesselmann, F. R.; Wood, S.; Ye, Z.; Zheng, X.
2015-10-01
Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The wide-angle Compton scattering polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of θcmp=70 ° . The longitudinal transfer KLL, measured to be 0.645 ±0.059 ±0.048 , where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton. However, the observed value is ˜3 times larger than predicted by the generalized-parton-distribution-based calculations, which indicates a significant unknown contribution to the scattering amplitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanelli, C.; Cisbani, E.; Hamilton, D. J.
Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The wide-angle Compton scattering polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of theta(p)(cm) cm = 70 degrees. The longitudinal transfer K-LL, measured to be 0.645 +/- 0.059 +/- 0.048, where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying themore » spin of the proton. However, the observed value is similar to 3 times larger than predicted by the generalized-parton-distribution-based calculations, which indicates a significant unknown contribution to the scattering amplitude.« less
Zelent, Bogumil; Vanderkooi, Jane M.; Coleman, Ryan G.; Gryczynski, Ignacy; Gryczynski, Zygmunt
2006-01-01
Pyrene-1-carboxylic acid has a pK of 4.0 in the ground state and 8.1 in the singlet electronic excited state. In the pH range of physiological interest (pH ∼5–8), the ground state compound is largely ionized as pyrene-1-carboxylate, but protonation of the excited state molecule occurs when a proton donor reacts with the carboxylate during the excited state lifetime of the fluorophore. Both forms of the pyrene derivatives are fluorescent, and in this work the protonation reaction was measured by monitoring steady-state and time-resolved fluorescence. The rate of protonation of pyrene-COO− by acetic, chloroacetic, lactic, and cacodylic acids is a function of ΔpK, as predicted by Marcus theory. The rate of proton transfer from these acids saturates at high concentration, as expected for the existence of an encounter complex. Trihydrogen-phosphate is a much better proton donor than dihydrogen- and monohydrogen-phosphate, as can be seen by the pH dependence. The proton-donating ability of phosphate does not saturate at high concentrations, but increases with increasing phosphate concentration. We suggest that enhanced rate of proton transfer at high phosphate concentrations may be due to the dual proton donating and accepting nature of phosphate, in analogy to the Grotthuss mechanism for proton transfer in water. It is suggested that in molecular structures containing multiple phosphates, such as membrane surfaces and DNA, proton transfer rates will be enhanced by this mechanism. PMID:16920831
Venkataraman, Charulatha
2011-11-28
The linearized semiclassical initial value representation is employed to describe ultrafast electron transfer processes coupled to a phonon bath and weakly coupled to a proton mode. The goal of our theoretical investigation is to understand the influence of the proton on the electronic dynamics in various bath relaxation regimes. More specifically, we study the impact of the proton on coherences and analyze if the coupling to the proton is revealed in the form of an isotope effect. This will be important in distinguishing reactions in which the proton does not undergo significant rearrangement from those in which the electron transfer is accompanied by proton transfer. Unlike other methodologies widely employed to describe nonadiabatic electron transfer, this approach treats the electronic and nuclear degrees of freedom consistently. However, due to the linearized approximation, quantum interference effects are not captured accurately. Our study shows that at small phonon bath reorganization energies, coherent oscillations and isotope effect are observed in both slow and fast bath regimes. The coherences are more substantially damped by deuterium in comparison to the proton. Further, in contrast to the dynamics of the spin-boson model, the coherences are not long-lived. At large bath reorganization energies, the decay is incoherent in the slow and fast bath regimes. In this case, the extent of the isotope effect depends on the relative relaxation timescales of the proton mode and the phonon bath. The isotope effect is magnified for baths that relax on picosecond timescales in contrast to baths that relax in femtoseconds.
Proton transfer from imidazole to chloranil studied by FTIR spectroscopy
NASA Astrophysics Data System (ADS)
Sharma, Amit
2018-05-01
Imidazole is incorporated into many important biological molecules. The most obvious is the amino acid histidine, which has an imidazole side chain. Histidine is present in many proteins and enzymes and plays a vital part in the structure and binding functions of hemoglobin. Therefore it is important to study its proton transfer property. In the present work proton transfer from imidazole to chloranil is investigated by Fourier Transform Infra red Spectroscopy.
Zhou, Qiao; Du, Can; Yang, Li; Zhao, Meiyu; Dai, Yumei; Song, Peng
2017-06-22
The single and dual cooperated proton transfer dynamic process in the excited state of 1,5-dihydroxyanthraquinone (1,5-DHAQ) was theoretically investigated, taking solvent effects (ethanol) into account. The absorption and fluorescence spectra were simulated, and dual fluorescence exhibited, which is consistent with previous experiments. Analysis of the calculated IR and Raman vibration spectra reveals that the intramolecular hydrogen bonding interactions (O 20 -H 21 ···O 24 and O 22 -H 23 ···O 25 ) are strengthened following the excited proton transfer process. Finally, by constructing the potential energy surfaces of the ground state, first excited singlet state, and triplet state, the mechanism of the intramolecular proton transfer of 1,5-DHAQ can be revealed.
Hu, Fanghao; Schmidt-Rohr, Klaus; Hong, Mei
2012-02-29
The acid-activated proton channel formed by the influenza M2 protein is important for the life cycle of the virus. A single histidine, His37, in the M2 transmembrane domain (M2TM) is responsible for pH activation and proton selectivity of the channel. Recent studies suggested three models for how His37 mediates proton transport: a shuttle mechanism involving His37 protonation and deprotonation, a H-bonded imidazole-imidazolium dimer model, and a transporter model involving large protein conformational changes in synchrony with proton conduction. Using magic-angle-spinning (MAS) solid-state NMR spectroscopy, we examined the proton exchange and backbone conformational dynamics of M2TM in a virus-envelope-mimetic membrane. At physiological temperature and pH, (15)N NMR spectra show fast exchange of the imidazole (15)N between protonated and unprotonated states. To quantify the proton exchange rates, we measured the (15)N T(2) relaxation times and simulated them for chemical-shift exchange and fluctuating N-H dipolar fields under (1)H decoupling and MAS. The exchange rate is 4.5 × 10(5) s(-1) for Nδ1 and 1.0 × 10(5) s(-1) for Nε2, which are approximately synchronized with the recently reported imidazole reorientation. Binding of the antiviral drug amantadine suppressed both proton exchange and ring motion, thus interfering with the proton transfer mechanism. By measuring the relative concentrations of neutral and cationic His as a function of pH, we determined the four pK(a) values of the His37 tetrad in the viral membrane. Fitting the proton current curve using the charge-state populations from these pK(a)'s, we obtained the relative conductance of the five charge states, which showed that the +3 channel has the highest time-averaged unitary conductance. At physiologically relevant pH, 2D correlation spectra indicated that the neutral and cationic histidines do not have close contacts, ruling out the H-bonded dimer model. Moreover, a narrowly distributed nonideal helical structure coexists with a broadly distributed ideal helical conformation without interchange on the sub-10 ms time scale, thus excluding the transporter model in the viral membrane. These data support the shuttle mechanism of proton conduction, whose essential steps involve His-water proton exchange facilitated by imidazole ring reorientations. © 2011 American Chemical Society
Catalán, Javier; del Valle, Juan Carlos; Kasha, Michael
1999-01-01
The experimental and theoretical bases for a synchronous or concerted double-proton transfer in centro-symmetric H-bonded electronically excited molecular dimers are presented. The prototype model is the 7-azaindole dimer. New research offers confirmation of a concerted mechanism for excited-state biprotonic transfer. Recent femtosecond photoionization and coulombic explosion techniques have given rise to time-of-flight MS observations suggesting sequential two-step biprotonic transfer for the same dimer. We interpret the overall species observed in the time-of-flight experiments as explicable without conflict with the concerted mechanism of proton transfer. PMID:10411876
Size-restricted proton transfer within toluene-methanol cluster ions.
Chiang, Chi-Tung; Shores, Kevin S; Freindorf, Marek; Furlani, Thomas; DeLeon, Robert L; Garvey, James F
2008-11-20
To understand the interaction between toluene and methanol, the chemical reactivity of [(C6H5CH3)(CH3OH) n=1-7](+) cluster ions has been investigated via tandem quadrupole mass spectrometry and through calculations. Collision Induced Dissociation (CID) experiments show that the dissociated intracluster proton transfer reaction from the toluene cation to methanol clusters, forming protonated methanol clusters, only occurs for n = 2-4. For n = 5-7, CID spectra reveal that these larger clusters have to sequentially lose methanol monomers until they reach n = 4 to initiate the deprotonation of the toluene cation. Metastable decay data indicate that for n = 3 and n = 4 (CH3OH)3H(+) is the preferred fragment ion. The calculational results reveal that both the gross proton affinity of the methanol subcluster and the structure of the cluster itself play an important role in driving this proton transfer reaction. When n = 3, the cooperative effect of the methanols in the subcluster provides the most important contribution to allow the intracluster proton transfer reaction to occur with little or no energy barrier. As n >or= 4, the methanol subcluster is able to form ring structures to stabilize the cluster structures so that direct proton transfer is not a favored process. The preferred reaction product, the (CH3OH)3H(+) cluster ion, indicates that this size-restricted reaction is driven by both the proton affinity and the enhanced stability of the resulting product.
Petruk, Ariel A.; Bartesaghi, Silvina; Trujillo, Madia; Estrin, Darío A.; Murgida, Daniel; Kalyanaraman, Balaraman; Marti, Marcelo A.; Radi, Rafael
2012-01-01
Experimental studies in hemeproteins and model Tyr/Cys-containing peptides exposed to oxidizing and nitrating species suggest that intramolecular electron transfer (IET) between tyrosyl radicals (Tyr-O●) and Cys residues controls oxidative modification yields. The molecular basis of this IET process is not sufficiently understood with structural atomic detail. Herein, we analyzed using molecular dynamics and quantum mechanics-based computational calculations, mechanistic possibilities for the radical transfer reaction in Tyr/Cys-containing peptides in solution and correlated them with existing experimental data. Our results support that Tyr-O● to Cys radical transfer is mediated by an acid/base equilibrium that involves deprotonation of Cys to form the thiolate, followed by a likely rate-limiting transfer process to yield cysteinyl radical and a Tyr phenolate; proton uptake by Tyr completes the reaction. Both, the pKa values of the Tyr phenol and Cys thiol groups and the energetic and kinetics of the reversible IET are revealed as key physico-chemical factors. The proposed mechanism constitutes a case of sequential, acid/base equilibrium-dependent and solvent-mediated, proton-coupled electron transfer and explains the dependency of oxidative yields in Tyr/Cys peptides as a function of the number of alanine spacers. These findings contribute to explain oxidative modifications in proteins that contain sequence and/or spatially close Tyr-Cys residues. PMID:22640642
Xu, Jiadi; Yadav, Nirbhay N.; Bar-Shir, Amnon; Jones, Craig K.; Chan, Kannie W. Y.; Zhang, Jiangyang; Walczak, P.; McMahon, Michael T.; van Zijl, Peter C. M.
2013-01-01
Purpose Chemical exchange saturation transfer (CEST) imaging is a new MRI technology allowing the detection of low concentration endogenous cellular proteins and metabolites indirectly through their exchangeable protons. A new technique, variable delay multi-pulse CEST (VDMP-CEST), is proposed to eliminate the need for recording full Z-spectra and performing asymmetry analysis to obtain CEST contrast. Methods The VDMP-CEST scheme involves acquiring images with two (or more) delays between radiofrequency saturation pulses in pulsed CEST, producing a series of CEST images sensitive to the speed of saturation transfer. Subtracting two images or fitting a time series produces CEST and relayed-nuclear Overhauser enhancement CEST maps without effects of direct water saturation and, when using low radiofrequency power, minimal magnetization transfer contrast interference. Results When applied to several model systems (bovine serum albumin, crosslinked bovine serum albumin, l-glutamic acid) and in vivo on healthy rat brain, VDMP-CEST showed sensitivity to slow to intermediate range magnetization transfer processes (rate < 100–150 Hz), such as amide proton transfer and relayed nuclear Overhauser enhancement-CEST. Images for these contrasts could be acquired in short scan times by using a single radiofrequency frequency. Conclusions VDMP-CEST provides an approach to detect CEST effect by sensitizing saturation experiments to slower exchange processes without interference of direct water saturation and without need to acquire Z-spectra and perform asymmetry analysis. PMID:23813483
Reduction and Reoxidation of Humic Acid: Influence on Spectroscopic Properties and Proton Binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, F.; Christl, I; Kretzschmar, R
2010-01-01
Previous studies on proton and metal binding to humic substances have not considered a potential influence of reduction and oxidation of functional groups. Therefore, we investigated how proton binding of a purified soil humic acid was affected by reduction. Reduction of the humic acid was carried out using an electrochemical cell that allowed us to measure the amounts of electrons and protons involved in reduction reactions. We further applied spectroscopic methods (UV-vis, fluorescence, FT-IR, C-1s NEXAFS) to detect possible chemical changes in the humic acid induced by reduction and reoxidation. The effect of reduction on proton binding was determined withmore » acid-base titrations in the pH range 4-10 under controlled redox conditions. During reduction, 0.54 mol kg{sup -1} protons and 0.55 mol kg{sup -1} electrons were transferred to humic acid. NICA-Donnan modeling revealed an equivalent increase in proton-reactive sites (0.52 mol kg{sup -1}) in the alkaline pH-range. Our results indicate that reduction of humic acid increased the amount of proton-reactive sites by 15% compared to the untreated state. Spectroscopic differences between the untreated and reduced humic acid were minor, apart from a lower UV-vis absorption of the reduced humic acid between 400 and 700 nm.« less
The Role of Oxygen in the Formation of TNT Product Ions in Ion Mobility Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daum, Keith Alvin; Atkinson, David Alan; Ewing, Robert Gordon
2002-03-01
The atmospheric pressure ionization of 2,4,6-trinitrotoluene (TNT) in air yields the (TNT-H)- product ion. It is generally accepted that this product ion is formed by the direct proton abstraction of neutral TNT by O2- reactant ions. Data presented here demonstrate the reaction involves the formation of an intermediate (TNT·O2)-, from the association of either TNT+O2- or TNT-+O2. This intermediate has two subsequent reaction branches. One of these branches involves simple dissociation of the intermediate to TNT-; the other branch is a terminal reaction that forms the typically observed (TNT-H)- ion via proton abstraction. The dissociation reaction involving electron transfer tomore » TNT- appeared to be kinetically favored and prevailed at low concentrations of oxygen (less than 2%). The presence of significant amounts of oxygen, however, resulted in the predominant formation of the (TNT-H)- ion by the terminal reaction branch. With TNT- in the system, either from direct electron attachment or by simple dissociation of the intermediate, increasing levels of oxygen in the system will continue to reform the intermediate, allowing the cycle to continue until proton abstraction occurs. Key to understanding this complex reaction pathway is that O2- was observed to transfer an electron directly to neutral TNT to form the TNT-. At oxygen levels of less than 2%, the TNT- ion intensity increased with increasing levels of oxygen (and O2-) and was larger than the (TNT-H)- ion intensity. As the oxygen level increased from 2 to 10%, the (TNT-H)- product ion became predominant. The potential reaction mechanisms were investigated with an ion mobility spectrometer, which was configured to independently evaluate the ionization pathways.« less
Hong, Young J; Irmisch, Sandra; Wang, Selina C; Garms, Stefan; Gershenzon, Jonathan; Zu, Liansuo; Köllner, Tobias G; Tantillo, Dean J
2013-09-27
Terpene synthases, as key enzymes of terpene biosynthesis, have garnered the attention of chemists and biologists for many years. Their carbocationic reaction mechanisms are responsible for the huge variety of terpene structures in nature. These mechanisms are amenable to study by using classical biochemical approaches as well as computational analysis, and in this study we combine quantum-chemical calculations and deuterium-labeling experiments to elucidate the reaction mechanism of a triquinane forming sesquiterpene synthase from chamomile. Our results suggest that the reaction from farnesyl diphosphate to triquinanes proceeds through caryophyllyl and presilphiperfolanyl cations and involves the protonation of a stable (-)-(E)-β-caryophyllene intermediate. A tyrosine residue was identified that appears to be involved in the proton-transfer process. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Drukker, Karen; Hammes-Schiffer, Sharon
1997-07-01
This paper presents an analytical derivation of a multiconfigurational self-consistent-field (MC-SCF) solution of the time-independent Schrödinger equation for nuclear motion (i.e. vibrational modes). This variational MC-SCF method is designed for the mixed quantum/classical molecular dynamics simulation of multiple proton transfer reactions, where the transferring protons are treated quantum mechanically while the remaining degrees of freedom are treated classically. This paper presents a proof that the Hellmann-Feynman forces on the classical degrees of freedom are identical to the exact forces (i.e. the Pulay corrections vanish) when this MC-SCF method is used with an appropriate choice of basis functions. This new MC-SCF method is applied to multiple proton transfer in a protonated chain of three hydrogen-bonded water molecules. The ground state and the first three excited state energies and the ground state forces agree well with full configuration interaction calculations. Sample trajectories are obtained using adiabatic molecular dynamics methods, and nonadiabatic effects are found to be insignificant for these sample trajectories. The accuracy of the excited states will enable this MC-SCF method to be used in conjunction with nonadiabatic molecular dynamics methods. This application differs from previous work in that it is a real-time quantum dynamical nonequilibrium simulation of multiple proton transfer in a chain of water molecules.
Xu, Jiadi; Chan, Kannie W.Y.; Xu, Xiang; Yadav, Nibhay; Liu, Guanshu; van Zijl, Peter C. M.
2016-01-01
Purpose To develop an on-resonance variable delay multi-pulse (VDMP) scheme to image magnetization transfer contrast (MTC) as well as the chemical exchange saturation transfer (CEST) contrast of total fast-exchanging protons (TFP) with exchange rate above about 1 kHz. Methods A train of high power binomial pulses was applied at the water resonance. The inter-pulse delay, called mixing time, was varied to observe its effect on the water signal reduction, allowing separation and quantification of MTC and CEST contributions due to their different proton transfer rates. The fast-exchanging protons in CEST and MTC are labeled together with the short T2 components in MTC and separated out using a variable mixing time. Results Phantom studies of selected metabolite solutions (glucose, glutamate, creatine, myo-inositol), bovine serum albumin (BSA) and hair conditioner show the capability of on-resonance VDMP to separate out exchangeable protons with exchange rates above 1 kHz. Quantitative MTC and TFP maps were acquired on healthy mouse brains using this method showing strong gray/white matter contrast for the slowly transferring MTC protons while the TFP map was more uniform across the brain but somewhat higher in gray matter. Conclusions The new method provides a simple way of imaging fast-exchanging protons, as well as MTC components with a slow transfer rate. PMID:26900759
Gadda, Giovanni; Yuan, Hongling
2017-11-15
Choline oxidase oxidizes choline to glycine betaine, with two flavin-mediated reactions to convert the alcohol substrate to the carbon acid product. Proton abstraction from choline or hydrated betaine aldehyde in the wild-type enzyme occurs in the mixing time of the stopped-flow spectrophotometer, thereby precluding a mechanistic investigation. Mutagenesis of S101 rendered the proton transfer reaction amenable to study. Here, we have investigated the aldehyde oxidation reaction catalyzed by the mutant enzymes using steady-state and rapid kinetics with betaine aldehyde. Stopped-flow traces for the reductive half-reaction of the S101T/V/C variants were biphasic, corresponding to the reactions of proton abstraction and hydride transfer. In contrast, the S101A enzyme yielded monophasic traces like wild-type choline oxidase. The rate constants for proton transfer in the S101T/C/V variants decreased logarithmically with increasing hydrophobicity of residue 101, indicating a behavior different from that seen previously with choline for which no correlation was determined. The rate constants for hydride transfer also showed a logarithmic decrease with increasing hydrophobicity at position 101, which was similar to previous results with choline as a substrate for the enzyme. Thus, the hydrophilic character of S101 is necessary not only for efficient hydride transfer but also for the proton abstraction reaction. Copyright © 2017. Published by Elsevier Inc.
A classical but new kinetic equation for hydride transfer reactions.
Zhu, Xiao-Qing; Deng, Fei-Huang; Yang, Jin-Dong; Li, Xiu-Tao; Chen, Qiang; Lei, Nan-Ping; Meng, Fan-Kun; Zhao, Xiao-Peng; Han, Su-Hui; Hao, Er-Jun; Mu, Yuan-Yuan
2013-09-28
A classical but new kinetic equation to estimate activation energies of various hydride transfer reactions was developed according to transition state theory using the Morse-type free energy curves of hydride donors to release a hydride anion and hydride acceptors to capture a hydride anion and by which the activation energies of 187 typical hydride self-exchange reactions and more than thirty thousand hydride cross transfer reactions in acetonitrile were safely estimated in this work. Since the development of the kinetic equation is only on the basis of the related chemical bond changes of the hydride transfer reactants, the kinetic equation should be also suitable for proton transfer reactions, hydrogen atom transfer reactions and all the other chemical reactions involved with breaking and formation of chemical bonds. One of the most important contributions of this work is to have achieved the perfect unity of the kinetic equation and thermodynamic equation for hydride transfer reactions.
Proton transfer in the K-channel analog of B-type Cytochrome c oxidase from Thermus thermophilus.
Woelke, Anna Lena; Wagner, Anke; Galstyan, Gegham; Meyer, Tim; Knapp, Ernst-Walter
2014-11-04
A key enzyme in aerobic metabolism is cytochrome c oxidase (CcO), which catalyzes the reduction of molecular oxygen to water in the mitochondrial and bacterial membranes. Substrate electrons and protons are taken up from different sides of the membrane and protons are pumped across the membrane, thereby generating an electrochemical gradient. The well-studied A-type CcO uses two different entry channels for protons: the D-channel for all pumped and two consumed protons, and the K-channel for the other two consumed protons. In contrast, the B-type CcO uses only a single proton input channel for all consumed and pumped protons. It has the same location as the A-type K-channel (and thus is named the K-channel analog) without sharing any significant sequence homology. In this study, we performed molecular-dynamics simulations and electrostatic calculations to characterize the K-channel analog in terms of its energetic requirements and functionalities. The function of Glu-15B as a proton sink at the channel entrance is demonstrated by its rotational movement out of the channel when it is deprotonated and by its high pKA value when it points inside the channel. Tyr-244 in the middle of the channel is identified as the valve that ensures unidirectional proton transfer, as it moves inside the hydrogen-bond gap of the K-channel analog only while being deprotonated. The electrostatic energy landscape was calculated for all proton-transfer steps in the K-channel analog, which functions via proton-hole transfer. Overall, the K-channel analog has a very stable geometry without large energy barriers.
Proton Transfer in the K-Channel Analog of B-Type Cytochrome c Oxidase from Thermus thermophilus
Woelke, Anna Lena; Wagner, Anke; Galstyan, Gegham; Meyer, Tim; Knapp, Ernst-Walter
2014-01-01
A key enzyme in aerobic metabolism is cytochrome c oxidase (CcO), which catalyzes the reduction of molecular oxygen to water in the mitochondrial and bacterial membranes. Substrate electrons and protons are taken up from different sides of the membrane and protons are pumped across the membrane, thereby generating an electrochemical gradient. The well-studied A-type CcO uses two different entry channels for protons: the D-channel for all pumped and two consumed protons, and the K-channel for the other two consumed protons. In contrast, the B-type CcO uses only a single proton input channel for all consumed and pumped protons. It has the same location as the A-type K-channel (and thus is named the K-channel analog) without sharing any significant sequence homology. In this study, we performed molecular-dynamics simulations and electrostatic calculations to characterize the K-channel analog in terms of its energetic requirements and functionalities. The function of Glu-15B as a proton sink at the channel entrance is demonstrated by its rotational movement out of the channel when it is deprotonated and by its high pKA value when it points inside the channel. Tyr-244 in the middle of the channel is identified as the valve that ensures unidirectional proton transfer, as it moves inside the hydrogen-bond gap of the K-channel analog only while being deprotonated. The electrostatic energy landscape was calculated for all proton-transfer steps in the K-channel analog, which functions via proton-hole transfer. Overall, the K-channel analog has a very stable geometry without large energy barriers. PMID:25418102
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xantheas, S. S.
2016-12-01
The structure and properties of the aqueous proton is of fundamental interest in many areas of chemistry and biology. Acids and bases are molecules that are able to transfer (donate / accept) a proton according to Brønsted and Lowry, a process that was further explained by Lewis in terms of changes in their electronic structure in an attempt to offer a generalization of the Arrhenius theory. Simple proton transfers or the ones coupled to an electron transfer determine speciation, valence and reactivity in aqueous media and explain electrochemical processes, while voltage-gated proton channels have severe implications to the function ofmore » a number of tissues and species.« less
Zhou, Jinyuan; Wilson, David A; Sun, Phillip Zhe; Klaus, Judith A; Van Zijl, Peter C M
2004-05-01
The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low-concentration endogenous and exogenous species. In this work, the analytic expressions for water exchange (WEX) filter spectroscopy, chemical exchange-dependent saturation transfer (CEST), and amide proton transfer (APT) experiments are derived by the use of Bloch equations with exchange terms. The effects of the initial states for the system, the difference between a steady state and a saturation state, and the relative contributions of the forward and backward exchange processes are discussed. The theory, in combination with numerical calculations, provides a useful tool for designing experimental schemes and assessing magnetization transfer (MT) processes between water protons and solvent-exchangeable protons. As an example, the case of endogenous amide proton exchange in the rat brain at 4.7 T is analyzed in detail. Copyright 2004 Wiley-Liss, Inc.
Marreiros, Bruno C.; Sena, Filipa V.; Sousa, Filipe M.; Oliveira, A. Sofia F.; Soares, Cláudio M.; Batista, Ana P.; Pereira, Manuela M.
2017-01-01
Type II NADH:quinone oxidoreductases (NDH-2s) are membrane proteins involved in respiratory chains. These proteins contribute indirectly to the establishment of the transmembrane difference of electrochemical potential by catalyzing the reduction of quinone by oxidation of NAD(P)H. NDH-2s are widespread enzymes being present in the three domains of life. In this work, we explored the catalytic mechanism of NDH-2 by investigating the common elements of all NDH-2s, based on the rationale that conservation of such elements reflects their structural/functional importance. We observed conserved sequence motifs and structural elements among 1762 NDH-2s. We identified two proton pathways possibly involved in the protonation of the quinone. Our results led us to propose the first catalytic mechanism for NDH-2 family, in which a conserved glutamate residue, E172 (in NDH-2 from Staphylococcus aureus) plays a key role in proton transfer to the quinone pocket. This catalytic mechanism may also be extended to the other members of the two-Dinucleotide Binding Domains Flavoprotein (tDBDF) superfamily, such as sulfide:quinone oxidoreductases. PMID:28181562
Mechanisms of proton transfer in Nafion: elementary reactions at the sulfonic acid groups.
Sagarik, Kritsana; Phonyiem, Mayuree; Lao-ngam, Charoensak; Chaiwongwattana, Sermsiri
2008-04-21
Proton transfer reactions at the sulfonic acid groups in Nafion were theoretically studied, using complexes formed from triflic acid (CF3SO3H), H3O+ and H2O, as model systems. The investigations began with searching for potential precursors and transition states at low hydration levels, using the test-particle model (T-model), density functional theory (DFT) and ab initio calculations. They were employed as starting configurations in Born-Oppenheimer molecular dynamics (BOMD) simulations at 298 K, from which elementary reactions were analyzed and categorized. For the H3O+-H2O complexes, BOMD simulations suggested that a quasi-dynamic equilibrium could be established between the Eigen and Zundel complexes, and that was considered to be one of the most important elementary reactions in the proton transfer process. The average lifetime of H3O+ obtained from BOMD simulations is close to the lowest limit, estimated from low-frequency vibrational spectroscopy. It was demonstrated that proton transfer reactions at -SO3H are not concerted, due to the thermal energy fluctuation and the existence of various quasi-dynamic equilibria, and -SO3H could directly and indirectly mediate proton transfer reactions through the formation of proton defects, as well as the -SO3- and -SO3H2+ transition states.
A delicate case of unidirectional proton transfer from water to an aromatic heterocyclic anion.
Biswas, Sohag; Mallik, Bhabani S
2016-11-21
We present the characteristic proton transfer process from water to the pyrazole anion, infrared signatures of hydroxyl groups and the free energy profile of the process in aqueous solution combining first principles simulations, wavelet analysis and metadynamics. Our results show that the presence of minimum three water molecules in the gas phase cluster with a particular arrangement is sufficient to facilitate the proton transfer process from water to the anion. The overall reaction is very rapid in aqueous solution, and the free energy barrier for this process is found to be 4.2 kcal mol -1 . One of the earlier reported fundamental reasons for the transfer of proton from water to the anion is the change in the acidity of OH groups surrounding the anion. We have correlated the stretching frequencies of the surrounding OH groups with this acidity. We find that the development of less energetic vibrational states, and the OH mode having lowest average stretching frequency contains the most acidic proton. A large frequency shift of the OH mode belonging to one of the surrounding water molecules is observed during the transfer of proton from water to the anion; this shift is due to the change in acidity of the adjacent hydroxyl groups in the vicinity of the anion.
Sterics level the rates of proton transfer to [Ni(XPh){PhP(CH₂CH₂PPh₂)₂}]⁺ (X = O, S or Se).
Alwaaly, Ahmed; Henderson, Richard A
2014-09-04
Rates of proton transfers between lutH(+) (lut = 2,6-dimethylpyridine) and [Ni(XPh)(PhP{CH2CH2PPh2}2)](+) (X = O, S or Se) are slow and show little variation (k(O) : k(S) : k(Se) = 1 : 12 : 9). This unusual behaviour is a consequence of sterics affecting the optimal interaction between the reactants prior to proton transfer.
Catalysis of Methyl Group Transfers Involving Tetrahydrofolate and B12
Ragsdale, Stephen W.
2011-01-01
This review focuses on the reaction mechanism of enzymes that use B12 and tetrahydrofolate (THF) to catalyze methyl group transfers. It also covers the related reactions that use B12 and tetrahydromethanopterin (THMPT), which is a THF analog used by archaea. In the past decade, our understanding of the mechanisms of these enzymes has increased greatly because the crystal structures for three classes of B12-dependent methyltransferases have become available and because biophysical and kinetic studies have elucidated the intermediates involved in catalysis. These steps include binding of the cofactors and substrates, activation of the methyl donors and acceptors, the methyl transfer reaction itself, and product dissociation. Activation of the methyl donor in one class of methyltransferases is achieved by an unexpected proton transfer mechanism. The cobalt (Co) ion within the B12 macrocycle must be in the Co(I) oxidation state to serve as a nucleophile in the methyl transfer reaction. Recent studies have uncovered important principles that control how this highly reducing active state of B12 is generated and maintained. PMID:18804699
Pathways of proton transfer in the light-driven pump bacteriorhodopsin
NASA Technical Reports Server (NTRS)
Lanyi, J. K.
1993-01-01
The mechanism of proton transport in the light-driven pump bacteriorhodopsin is beginning to be understood. Light causes the all-trans to 13-cis isomerization of the retinal chromophore. This sets off a sequential and directed series of transient decreases in the pKa's of a) the retinal Schiff base, b) an extracellular proton release complex which includes asp-85, and c) a cytoplasmic proton uptake complex which includes asp-96. The timing of these pKa changes during the photoreaction cycle causes sequential proton transfers which result in the net movement of a proton across the protein, from the cytoplasmic to the extracellular surface.
Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A
2016-10-24
The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chararalambidis, Georgios; Das, Shyamal; Trapali, Adelais; Quaranta, Annamaria; Orio, Maylis; Halime, Zakaria; Fertey, Pierre; Guillot, Régis; Coutsolelos, Athanassios; Leibl, Winfried; Aukauloo, Ally; Sircoglou, Marie
2018-05-22
We investigate a biomimetic model of a Tyr Z /His 190 pair, a hydrogen-bonded phenol/imidazole covalently attached to a porphyrin sensitizer. Laser flash photolysis in the presence of an external electron acceptor reveals the need for water molecules to unlock the light-induced oxidation of the phenol through an intramolecular pathway. Kinetics monitoring encompasses two fast phases with distinct spectral properties. The first phase is related to a one-electron transfer from the phenol to the porphyrin radical cation coupled with a domino two-proton transfer leading to the ejection of a proton from the imidazole-phenol pair. The second phase concerns conveying the released proton to the porphyrin N 4 coordinating cavity. Our study provides an unprecedented example of a light-induced electron-transfer process in a Tyr Z /His 190 model of photosystem II, evidencing the movement of both the phenol and imidazole protons along an isoenergetic pathway. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Karimzadeh, Morteza; Manouchehri, Neda; Saberi, Dariush; Niknam, Khodabakhsh
2018-06-15
All 66 conformers of guanylurea were optimized and frequency calculations were performed at M06-2X/6-311++G(d,p) level of theory. Theses conformers were categorized into five tautomers, and the most stable conformer of each tautomer were found. Geometrical parameters indicated that these tautomers have almost planar structure. Complete stepwise tautomerism were studied through both intramolecular proton transfer routs and internal rotations. Results indicated that the proton transfer routs involving four-membered heterocyclic structures were rate-determining steps. Also, intramolecular proton movement having six-membered transition state structures had very low energy barrier comparable to the transition states of internal rotation routs. Differentiation of studied tautomers could easily be done through their FT-IR spectra in the range of 3200 to 3900cm -1 by comparing absorption bands and intensity of peaks. Solvent-implicit effects on the stability of tautomers were also studied through re-optimization and frequency calculation in four solvents. Water, DMSO, acetone and toluene had stabilization effect on all considered tautomers, but the order of stabilization effect was as follows: water>DMSO>acetone>toluene. Finally, solvent-explicit, base-explicit and acid-explicit effect were also studied by taking place of studied tautomer nearside of acid, base or solvent and optimization of them. Frequency calculation for proton movement by contribution of explicit effect showed that formic acid had a very strong effect on proton transfer from tautomer A1 to tautomer D8 by lowering the energy barrier from 42.57 to 0.8kcal/mol. In addition, ammonia-explicit effect was found to lower the barrier from 42.57 to 22.46kcal/mol, but this effect is lower than that of water and methanol-explicit effect. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazurkiewicz, Kamil; Bachorz, Rafal; Gutowski, Maciej S.
2006-12-07
We characterized valence-type and dipole-bound anionic states of thymine using various electronic structure methods, with the most accurate results obtained at the CCSD(T)/aug-cc-pVDZ level of theory followed by extrapolations to complete basis set limits. We found that the most stable anion in the gas phase is related to neither the canonical 2,4-dioxo nor a rare imino-hydroxy tautomer. Instead, it is related to an imino-oxo tautomer, in which the N1H proton is transferred to the C5 atom. This valence anion is characterized by an electron vertical detachment energy (VDE) of 1251 meV and it is adiabatically stable with respect to themore » canonical neutral by 2.4 kcal/mol. It is also more stable than the dipole-bound and valence anion of the canonical tautomer. The latter is adiabatically unbound with respect to by 0.1 kcal/mol and this instability is smaller than the uncertainty of the computational model used. The VDE values for and are 55 and 457 meV, respectively. Another, anionic, low-lying imino-oxo tautomer with a VDE of 2458 meV has a proton transferred from N3H to C5. It is less stable than by 3.2 kcal/mol. The mechanism of formation of anionic tautomers with the carbons C5 or C6 protonated may involve intermolecular proton transfer or dissociative electron attachment to the canonical neutral tautomer followed by a barrier-free attachment of a hydrogen atom to C5. The six-member ring structure of anionic tautomers with carbon atoms protonated might be unstable upon an excess electron detachment. Indeed, the neutral systems resulting from electron detachment from and evolve, along barrier-free decomposition pathways, to a linear or a bicyclo structure, respectively, which might be viewed as lesions to DNA.« less
Noguchi, Takumi
2015-01-01
Photosynthetic water oxidation, which provides the electrons necessary for CO₂ reduction and releases O₂ and protons, is performed at the Mn₄CaO₅ cluster in photosystem II (PSII). In this review, studies that assessed the mechanism of water oxidation using infrared spectroscopy are summarized focusing on electron and proton transfer dynamics. Structural changes in proteins and water molecules between intermediates known as Si states (i=0-3) were detected using flash-induced Fourier transform infrared (FTIR) difference spectroscopy. Electron flow in PSII and proton release from substrate water were monitored using the infrared changes in ferricyanide as an exogenous electron acceptor and Mes buffer as a proton acceptor. Time-resolved infrared (TRIR) spectroscopy provided information on the dynamics of proton-coupled electron transfer during the S-state transitions. In particular, a drastic proton movement during the lag phase (~200μs) before electron transfer in the S3→S0 transition was detected directly by monitoring the infrared absorption of a polarizable proton in a hydrogen bond network. Furthermore, the proton release pathways in the PSII proteins were analyzed by FTIR difference measurements in combination with site-directed mutagenesis, isotopic substitutions, and quantum chemical calculations. Therefore, infrared spectroscopy is a powerful tool for understanding the molecular mechanism of photosynthetic water oxidation. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Costentin, Cyrille; Passard, Guillaume; Robert, Marc; Savéant, Jean-Michel
2014-08-20
Two derivatives of iron tetraphenylporphyrin bearing prepositioned phenolic functionalities on two of the opposed phenyl groups prove to be remarkable catalysts for the reduction of CO2 to CO when generated electrochemically at the Fe(0) oxidation state. In one case, the same substituents are present on the two other phenyls, whereas in the other the two other phenyls are perfluorinated. They are taken as examples of the possible role of pendant acid-base groups in molecular catalysis. The prepositioned phenol groups incorporated into the catalyst molecule induce strong stabilization of the initial Fe(0)CO2 adduct through H-bonding, confirmed by DFT calculations. This positive factor is partly counterbalanced by the necessity, resulting from the same stabilization, to inject an additional electron to trigger catalysis. Thanks to the preprotonation of the initial Fe(0)CO2 adduct, the potential required for this second electron transfer is not very distant from the potential at which the adduct is generated by addition of CO2 to the Fe(0) complex. The protonation step involves an internal phenolic group and the reprotonation of the phenoxide ion thus generated by added phenol. The prepositioned phenol groups thus play both the role of H-bonding stabilizers and high-concentration proton donors. They play the same role in the second electron transfer step which closes the catalytic loop concertedly with the breaking of one of the two C-O bonds of CO2 and with proton transfer. It is also remarkable that reprotonation by added phenol is concerted with the three other events.
Excited-State Proton Transfer on the Surface of a Therapeutic Protein, Protamine.
Awasthi, Ankur A; Singh, Prabhat K
2017-11-16
Proton transfer reactions on biosurfaces play an important role in a myriad of biological processes. Herein, the excited-state proton transfer reaction of 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) has been investigated in the presence of an important therapeutic protein, Protamine (PrS), using ground-state absorption, steady-state, and detailed time-resolved emission measurements. HPTS forms a 1:1 complex with Protamine with a high association constant of 2.6 × 10 4 M -1 . The binding of HPTS with Protamine leads to a significant modulation in the ground-state prototropic equilibrium causing a downward shift of 1.1 unit in the acidity constant (pK a ). In contrast to a large number of reports of slow proton transfer of HPTS on biosurfaces, interestingly, HPTS registers a faster proton transfer event in the presence of Protamine as compared to that of even the bulk aqueous buffer medium. Furthermore, the dimensionality of the proton diffusion process is also significantly reduced on the surface of Protamine that is in contrast to the behavior of HPTS in the bulk aqueous buffer medium, where the proton diffusion process is three-dimensional. The effect of ionic strength on the binding of HPTS toward PrS suggests a predominant role of electrostatic interaction between anionic HPTS and cationic Protamine, which is further supported by molecular docking simulations which predict that the most preferable binding site for HPTS on the surface of Protamine is surrounded by multiple cationic arginine residues.
Xu, Jiadi; Chan, Kannie W Y; Xu, Xiang; Yadav, Nirbhay; Liu, Guanshu; van Zijl, Peter C M
2017-02-01
To develop an on-resonance variable delay multipulse (VDMP) scheme to image magnetization transfer contrast (MTC) and the chemical exchange saturation transfer (CEST) contrast of total fast-exchanging protons (TFP) with exchange rate above approximately 1 kHz. A train of high power binomial pulses was applied at the water resonance. The interpulse delay, called mixing time, was varied to observe its effect on the water signal reduction, allowing separation and quantification of MTC and CEST contributions as a result of their different proton transfer rates. The fast-exchanging protons in CEST and MTC are labeled together with the short T 2 components in MTC and separated out using a variable mixing time. Phantom studies of selected metabolite solutions (glucose, glutamate, creatine, myo-inositol), bovine serum albumin (BSA), and hair conditioner show the capability of on-resonance VDMP to separate out exchangeable protons with exchange rates above 1 kHz. Quantitative MTC and TFP maps were acquired on healthy mouse brains using this method, showing strong gray/white matter contrast for the slowly transferring MTC protons, whereas the TFP map was more uniform across the brain but somewhat higher in gray matter. The new method provides a simple way of imaging fast-exchanging protons and MTC components with a slow transfer rate. Magn Reson Med 77:730-739, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Vlk, Alexandra; Stokes, Sarah; Wang, Yi; Hicks, Zachary; Zhang, Xinxing; Blando, Nicolas; Frock, Andrew; Marquez, Sara; Bowen, Kit; Bowen Lab JHU Team
Anion photoelectron spectroscopic (PES) and density functional theory (DFT) studies on the dimer anion of (2-hydroxypyridine)2-are reported. The experimentally measured vertical detachment energy (VDE) of 1.21eV compares well with the theoretically predicted values. The 2-hydroxypyridine anionic dimer system was investigated because of its resemblance to the nitrogenous heterocyclic pyrimidine nucleobases. Experimental and theoretical results show electron induced proton transfer (EIPT) in both the lactim and lactam homogeneous dimers. Upon electron attachment, the anion can serve as the intermediate between the two neutral dimers. A possible double proton transfer process can occur from the neutral (2-hydroxypyridine)2 to (2-pyridone)2 through the dimer anion. This potentially suggests an electron catalyzed double proton transfer mechanism of tautomerization. Research supported by the NSF Grant No. CHE-1360692.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, David J.; Brennaman, M. Kyle; Bettis, Stephanie E.
2011-08-04
The emitting metal-to-ligand charge transfer (MLCT) excited state of fac-[Re{sup I}(bpy)(CO)₃(4,4'-bpy)] + (1) (bpy is 2,2'-bipyridine, 4,4'-bpy is 4,4'-bipyridine), [Re II(bpy –•)(CO)₃(4,4'-bpy)] +*, is reductively quenched by 1,4-hydroquinone (H₂Q) in CH₃CN at 23 ± 2 °C by competing pathways to give a common electron–proton-transfer intermediate. In one pathway, electron transfer (ET) quenching occurs to give Re{sup I}(bpy –•)(CO)₃(4,4'-bpy)]⁰ with k = (1.8 ± 0.2) × 10⁹ M –1 s –1, followed by proton transfer from H₂Q to give [Re I(bpy)(CO)₃(4,4'-bpyH •)] +. Protonation triggers intramolecular bpy –•→ 4,4'-bpyH{sup +} electron transfer. In the second pathway, preassociationmore » occurs between the ground state and H₂Q at high concentrations. Subsequent Re → bpy MLCT excitation of the adduct is followed by electron–proton transfer from H₂Q in concert with intramolecular bpy –•→ 4,4'-bpyH + electron transfer to give [Re I(bpy)(CO)₃(4,4'-bpyH •)] + with k = (1.0 ± 0.4) × 10⁹ s –1 in 3:1 CH₃CN/H₂O.« less
Su, C; Liu, C; Zhao, L; Jiang, J; Zhang, J; Li, S; Zhu, W; Wang, J
2017-09-01
Prognosis in glioma depends strongly on tumor grade and proliferation. In this prospective study of patients with untreated primary cerebral gliomas, we investigated whether amide proton transfer-weighted imaging could reveal tumor proliferation and reliably distinguish low-grade from high-grade gliomas compared with Ki-67 expression and proton MR spectroscopy imaging. This study included 42 patients with low-grade ( n = 28) or high-grade ( n = 14) glioma, all of whom underwent conventional MR imaging, proton MR spectroscopy imaging, and amide proton transfer-weighted imaging on the same 3T scanner within 2 weeks before surgery. We assessed metabolites of choline and N -acetylaspartate from proton MR spectroscopy imaging and the asymmetric magnetization transfer ratio at 3.5 ppm from amide proton transfer-weighted imaging and compared them with histopathologic grade and immunohistochemical expression of the proliferation marker Ki-67 in the resected specimens. The asymmetric magnetization transfer ratio at 3.5 ppm values measured by different readers showed good concordance and were significantly higher in high-grade gliomas than in low-grade gliomas (3.61% ± 0.155 versus 2.64% ± 0.185, P = .0016), with sensitivity and specificity values of 92.9% and 71.4%, respectively, at a cutoff value of 2.93%. The asymmetric magnetization transfer ratio at 3.5 ppm values correlated with tumor grade ( r = 0.506, P = .0006) and Ki-67 labeling index ( r = 0.502, P = .002). For all patients, the asymmetric magnetization transfer ratio at 3.5 ppm correlated positively with choline ( r = 0.43, P = .009) and choline/ N -acetylaspartate ratio ( r = 0.42, P = .01) and negatively with N -acetylaspartate ( r = -0.455, P = .005). These correlations held for patients with low-grade gliomas versus those with high-grade gliomas, but the correlation coefficients were higher in high-grade gliomas (choline: r = 0.547, P = .053; N -acetylaspartate: r = -0.644, P = .017; choline/ N -acetylaspartate: r = 0.583, P = .036). The asymmetric magnetization transfer ratio at 3.5 ppm may serve as a potential biomarker not only for assessing proliferation, but also for predicting histopathologic grades in gliomas. © 2017 by American Journal of Neuroradiology.
Proton transfer reactions and dynamics in CH(3)OH-H(3)O(+)-H(2)O complexes.
Sagarik, Kritsana; Chaiwongwattana, Sermsiri; Vchirawongkwin, Viwat; Prueksaaroon, Supakit
2010-01-28
Proton transfer reactions and dynamics in hydrated complexes formed from CH(3)OH, H(3)O(+) and H(2)O were studied using theoretical methods. The investigations began with searching for equilibrium structures at low hydration levels using the DFT method, from which active H-bonds in the gas phase and continuum aqueous solution were characterized and analyzed. Based on the asymmetric stretching coordinates (Deltad(DA)), four H-bond complexes were identified as potential transition states, in which the most active unit is represented by an excess proton nearly equally shared between CH(3)OH and H(2)O. These cannot be definitive due to the lack of asymmetric O-H stretching frequencies (nu(OH)) which are spectral signatures of transferring protons. Born-Oppenheimer molecular dynamics (BOMD) simulations revealed that, when the thermal energy fluctuations and dynamics were included in the model calculations, the spectral signatures at nu(OH) approximately 1000 cm(-1) appeared. In continuum aqueous solution, the H-bond complex with incomplete water coordination at charged species turned out to be the only active transition state. Based on the assumption that the thermal energy fluctuations and dynamics could temporarily break the H-bonds linking the transition state complex and water molecules in the second hydration shell, elementary reactions of proton transfer were proposed. The present study showed that, due to the coupling among various vibrational modes, the discussions on proton transfer reactions cannot be made based solely on static proton transfer potentials. Inclusion of thermal energy fluctuations and dynamics in the model calculations, as in the case of BOMD simulations, together with systematic IR spectral analyses, have been proved to be the most appropriate theoretical approaches.
Protonic transport through solitons in hydrogen-bonded systems
NASA Astrophysics Data System (ADS)
Kavitha, L.; Jayanthi, S.; Muniyappan, A.; Gopi, D.
2011-09-01
We offer an alternative route for investigating soliton solutions in hydrogen-bonded (HB) chains. We invoke the modified extended tangent hyperbolic function method coupled with symbolic computation to solve the governing equation of motion for proton dynamics. We investigate the dynamics of proton transfer in HB chains through bell-shaped soliton excitations, which trigger the bio-energy transport in most biological systems. This solitonic mechanism of proton transfer could play functional roles in muscular contraction, enzymatic activity and oxidative phosphorylation.
Smith, Graham; Wermuth, Urs D
2013-05-01
The structures of the anhydrous proton-transfer compounds of the sulfa drug sulfamethazine with 5-nitrosalicylic acid and picric acid, namely 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2-hydroxy-5-nitrobenzoate, C12H15N4O2S(+)·C7H4NO4(-), (I), and 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2,4,6-trinitrophenolate, C12H15N4O2S(+)·C6H2N3O7(-), (II), respectively, have been determined. In the asymmetric unit of (I), there are two independent but conformationally similar cation-anion heterodimer pairs which are formed through duplex intermolecular N(+)-H···O(carboxylate) and N-H···O(carboxylate) hydrogen-bond pairs, giving a cyclic motif [graph set R2(2)(8)]. These heterodimers form separate and different non-associated substructures through aniline N-H···O hydrogen bonds, one one-dimensional, involving carboxylate O-atom acceptors, the other two-dimensional, involving both carboxylate and hydroxy O-atom acceptors. The overall two-dimensional structure is stabilized by π-π interactions between the pyrimidinium ring and the 5-nitrosalicylate ring in both heterodimers [minimum ring-centroid separation = 3.4580 (8) Å]. For picrate (II), the cation-anion interaction involves a slightly asymmetric chelating N-H···O R2(1)(6) hydrogen-bonding association with the phenolate O atom, together with peripheral conjoint R1(2)(6) interactions between the same N-H groups and O atoms of the ortho-related nitro groups. An inter-unit amine N-H···O(sulfone) hydrogen bond gives one-dimensional chains which extend along a and inter-associate through π-π interactions between the pyrimidinium rings [centroid-centroid separation = 3.4752 (9) Å]. The two structures reported here now bring to a total of four the crystallographically characterized examples of proton-transfer salts of sulfamethazine with strong organic acids.
Ivanov, Sergei D; Grant, Ian M; Marx, Dominik
2015-09-28
With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.
NASA Astrophysics Data System (ADS)
Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov'Yov, Ilia A.
2015-12-01
Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome-a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor.
Proton transfer pathways, energy landscape, and kinetics in creatine-water systems.
Ivchenko, Olga; Whittleston, Chris S; Carr, Joanne M; Imhof, Petra; Goerke, Steffen; Bachert, Peter; Wales, David J
2014-02-27
We study the exchange processes of the metabolite creatine, which is present in both tumorous and normal tissues and has NH2 and NH groups that can transfer protons to water. Creatine produces chemical exchange saturation transfer (CEST) contrast in magnetic resonance imaging (MRI). The proton transfer pathway from zwitterionic creatine to water is examined using a kinetic transition network constructed from the discrete path sampling approach and an approximate quantum-chemical energy function, employing the self-consistent-charge density-functional tight-binding (SCC-DFTB) method. The resulting potential energy surface is visualized by constructing disconnectivity graphs. The energy landscape consists of two distinct regions corresponding to the zwitterionic creatine structures and deprotonated creatine. The activation energy that characterizes the proton transfer from the creatine NH2 group to water was determined from an Arrhenius fit of rate constants as a function of temperature, obtained from harmonic transition state theory. The result is in reasonable agreement with values obtained in water exchange spectroscopy (WEX) experiments.
Le Breton, Nolwenn; Wright, John J; Jones, Andrew J Y; Salvadori, Enrico; Bridges, Hannah R; Hirst, Judy; Roessler, Maxie M
2017-11-15
Energy-transducing respiratory complex I (NADH:ubiquinone oxidoreductase) is one of the largest and most complicated enzymes in mammalian cells. Here, we used hyperfine electron paramagnetic resonance (EPR) spectroscopic methods, combined with site-directed mutagenesis, to determine the mechanism of a single proton-coupled electron transfer reaction at one of eight iron-sulfur clusters in complex I, [4Fe-4S] cluster N2. N2 is the terminal cluster of the enzyme's intramolecular electron-transfer chain and the electron donor to ubiquinone. Because of its position and pH-dependent reduction potential, N2 has long been considered a candidate for the elusive "energy-coupling" site in complex I at which energy generated by the redox reaction is used to initiate proton translocation. Here, we used hyperfine sublevel correlation (HYSCORE) spectroscopy, including relaxation-filtered hyperfine and single-matched resonance transfer (SMART) HYSCORE, to detect two weakly coupled exchangeable protons near N2. We assign the larger coupling with A( 1 H) = [-3.0, -3.0, 8.7] MHz to the exchangeable proton of a conserved histidine and conclude that the histidine is hydrogen-bonded to N2, tuning its reduction potential. The histidine protonation state responds to the cluster oxidation state, but the two are not coupled sufficiently strongly to catalyze a stoichiometric and efficient energy transduction reaction. We thus exclude cluster N2, despite its proton-coupled electron transfer chemistry, as the energy-coupling site in complex I. Our work demonstrates the capability of pulse EPR methods for providing detailed information on the properties of individual protons in even the most challenging of energy-converting enzymes.
Alternating electron and proton transfer steps in photosynthetic water oxidation
Klauss, André; Haumann, Michael; Dau, Holger
2012-01-01
Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel–production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese–calcium complex and its protein environment in photosystem II. In time-resolved photothermal beam deflection experiments, we monitored apparent volume changes of the photosystem II protein associated with charge creation by light-induced electron transfer (contraction) and charge-compensating proton relocation (expansion). Two previously invisible proton removal steps were detected, thereby filling two gaps in the basic reaction-cycle model of photosynthetic water oxidation. In the S2 → S3 transition of the classical S-state cycle, an intermediate is formed by deprotonation clearly before electron transfer to the oxidant (). The rate-determining elementary step (τ, approximately 30 µs at 20 °C) in the long-distance proton relocation toward the protein–water interface is characterized by a high activation energy (Ea = 0.46 ± 0.05 eV) and strong H/D kinetic isotope effect (approximately 6). The characteristics of a proton transfer step during the S0 → S1 transition are similar (τ, approximately 100 µs; Ea = 0.34 ± 0.08 eV; kinetic isotope effect, approximately 3); however, the proton removal from the Mn complex proceeds after electron transfer to . By discovery of the transient formation of two further intermediate states in the reaction cycle of photosynthetic water oxidation, a temporal sequence of strictly alternating removal of electrons and protons from the catalytic site is established. PMID:22988080
Alternating electron and proton transfer steps in photosynthetic water oxidation.
Klauss, André; Haumann, Michael; Dau, Holger
2012-10-02
Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel-production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese-calcium complex and its protein environment in photosystem II. In time-resolved photothermal beam deflection experiments, we monitored apparent volume changes of the photosystem II protein associated with charge creation by light-induced electron transfer (contraction) and charge-compensating proton relocation (expansion). Two previously invisible proton removal steps were detected, thereby filling two gaps in the basic reaction-cycle model of photosynthetic water oxidation. In the S(2) → S(3) transition of the classical S-state cycle, an intermediate is formed by deprotonation clearly before electron transfer to the oxidant (Y Z OX). The rate-determining elementary step (τ, approximately 30 µs at 20 °C) in the long-distance proton relocation toward the protein-water interface is characterized by a high activation energy (E(a) = 0.46 ± 0.05 eV) and strong H/D kinetic isotope effect (approximately 6). The characteristics of a proton transfer step during the S(0) → S(1) transition are similar (τ, approximately 100 µs; E(a) = 0.34 ± 0.08 eV; kinetic isotope effect, approximately 3); however, the proton removal from the Mn complex proceeds after electron transfer to . By discovery of the transient formation of two further intermediate states in the reaction cycle of photosynthetic water oxidation, a temporal sequence of strictly alternating removal of electrons and protons from the catalytic site is established.
NASA Astrophysics Data System (ADS)
Shakib, Farnaz; Huo, Pengfei
Photo-induced proton-coupled electron transfer reactions (PCET) are at the heart of energy conversion reactions in photocatalysis. Here, we apply the recently developed ring-polymer surface-hopping (RPSH) approach to simulate the nonadiabatic dynamics of photo-induced PCET. The RPSH method incorporates ring-polymer (RP) quantization of the proton into the fewest-switches surface-hopping (FSSH) approach. Using two diabatic electronic states, corresponding to the electron donor and acceptor states, we model photo-induced PCET with the proton described by a classical isomorphism RP. From the RPSH method, we obtain numerical results that are comparable to those obtained when the proton is treated quantum mechanically. This accuracy stems from incorporating exact quantum statistics, such as proton tunnelling, into approximate quantum dynamics. Additionally, RPSH offers the numerical accuracy along with the computational efficiency. Namely, compared to the FSSH approach in vibronic representation, there is no need to calculate a massive number of vibronic states explicitly. This approach opens up the possibility to accurately and efficiently simulate photo-induced PCET with multiple transferring protons or electrons.
Effect of proton transfer on the electronic coupling in DNA
NASA Astrophysics Data System (ADS)
Rak, Janusz; Makowska, Joanna; Voityuk, Alexander A.
2006-06-01
The effects of single and double proton transfer within Watson-Crick base pairs on donor-acceptor electronic couplings, Vda, in DNA are studied on the bases of quantum chemical calculations. Four dimers [AT,AT], [GC,GC], [GC,AT] and [GC,TA)] are considered. Three techniques - the generalized Mulliken-Hush scheme, the fragment charge method and the diabatic states method - are employed to estimate Vda for hole transfer between base pairs. We show that both single- and double proton transfer (PT) reactions may substantially affect the electronic coupling in DNA. The electronic coupling in [AT,AT] is predicted to be most sensitive to PT. Single PT within the first base pair in the dimer leads to increase in the hole transfer efficiency by a factor of 4, while proton transfer within the second pair should substantially, by 2.7 times, decrease the rate of charge transfer. Thus, directional asymmetry of the PT effects on the electronic coupling is predicted. The changes in the Vda matrix elements correlate with the topological properties of orbitals of donor and acceptor and can be qualitatively rationalized in terms of resonance structures of donor and acceptor. Atomic pair contributions to the Vda matrix elements are also analyzed.
Hong, G; Cornish, A J; Hegg, E L; Pachter, R
2011-05-01
Proton transfer to the [Fe-Fe](H) sub-cluster in the Desulfovibrio desulfuricans (DdH) and Clostridium pasteurianum (CpI) [Fe-Fe] hydrogenases was investigated by a combination of first principles and empirical molecular dynamics simulations. Pathways that can be inferred from the X-ray crystal structures of DdH and CpI, i.e., (Glu159→Ser198→Glu156→water460→Cys178→DTMA([Fe-Fe](H)) and (Glu282→Ser319→Glu279→water612→Cys299), respectively, were considered. Proton transfer from Cys178 to DTMA in the [Fe-Fe](H) sub-cluster in DdH was readily observed in our results, specifically when [Fe-Fe](H) was in the reduced state ([Fe(I)-Fe(I)]) or in the mixed valence state for the protonated distal iron Fe(d) ([Fe(I)-Fe(II)-H(-)](H)). A concerted mechanism is proposed, where proton transfer in DdH from Glu159 to Glu156 via Ser198 and Glu156 to Cys178 via water460 readily occurred, as well as from Glu282 to Glu279 via Ser319 and Glu279 to Cys299 via water612 in CpI. The theoretical prediction of the proton transfer characteristics is consistent with the assumed biocatalytic mechanism of the [Fe-Fe] hydrogenases in which the proton binds at Fe(d), providing confirmation that has not been explored so far. The computational results were qualitatively validated by the agreement with experimental hydrogen production activity data for mutated CpI enzymes, relative to the wild-type protein. Finally, the insight provided by the simulations, combined, in part, with experimental validation, are important for establishing an approach in future exploration of proton transfer to the active site in this class of enzymes, and possibly also for biomimetic analogs. Published by Elsevier B.V.
Ripple, Maureen O; Kim, Namjoon; Springett, Roger
2013-02-22
Mitochondrial complex I couples electron transfer between matrix NADH and inner-membrane ubiquinone to the pumping of protons against a proton motive force. The accepted proton pumping stoichiometry was 4 protons per 2 electrons transferred (4H(+)/2e(-)) but it has been suggested that stoichiometry may be 3H(+)/2e(-) based on the identification of only 3 proton pumping units in the crystal structure and a revision of the previous experimental data. Measurement of proton pumping stoichiometry is challenging because, even in isolated mitochondria, it is difficult to measure the proton motive force while simultaneously measuring the redox potentials of the NADH/NAD(+) and ubiquinol/ubiquinone pools. Here we employ a new method to quantify the proton motive force in living cells from the redox poise of the bc(1) complex measured using multiwavelength cell spectroscopy and show that the correct stoichiometry for complex I is 4H(+)/2e(-) in mouse and human cells at high and physiological proton motive force.
NASA Astrophysics Data System (ADS)
Kojima, H.; Yamada, A.; Okazaki, S.
2015-05-01
The intramolecular proton transfer reaction of malonaldehyde in neon solvent has been investigated by mixed quantum-classical molecular dynamics (QCMD) calculations and fully classical molecular dynamics (FCMD) calculations. Comparing these calculated results with those for malonaldehyde in water reported in Part I [A. Yamada, H. Kojima, and S. Okazaki, J. Chem. Phys. 141, 084509 (2014)], the solvent dependence of the reaction rate, the reaction mechanism involved, and the quantum effect therein have been investigated. With FCMD, the reaction rate in weakly interacting neon is lower than that in strongly interacting water. However, with QCMD, the order of the reaction rates is reversed. To investigate the mechanisms in detail, the reactions were categorized into three mechanisms: tunneling, thermal activation, and barrier vanishing. Then, the quantum and solvent effects were analyzed from the viewpoint of the reaction mechanism focusing on the shape of potential energy curve and its fluctuations. The higher reaction rate that was found for neon in QCMD compared with that found for water solvent arises from the tunneling reactions because of the nearly symmetric double-well shape of the potential curve in neon. The thermal activation and barrier vanishing reactions were also accelerated by the zero-point energy. The number of reactions based on these two mechanisms in water was greater than that in neon in both QCMD and FCMD because these reactions are dominated by the strength of solute-solvent interactions.
Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy.
Fang, Chong; Frontiera, Renee R; Tran, Rosalie; Mathies, Richard A
2009-11-12
Tracing the transient atomic motions that lie at the heart of chemical reactions requires high-resolution multidimensional structural information on the timescale of molecular vibrations, which commonly range from 10 fs to 1 ps. For simple chemical systems, it has been possible to map out in considerable detail the reactive potential-energy surfaces describing atomic motions and resultant reaction dynamics, but such studies remain challenging for complex chemical and biological transformations. A case in point is the green fluorescent protein (GFP) from the jellyfish Aequorea victoria, which is a widely used gene expression marker owing to its efficient bioluminescence. This feature is known to arise from excited-state proton transfer (ESPT), yet the atomistic details of the process are still not fully understood. Here we show that femtosecond stimulated Raman spectroscopy provides sufficiently detailed and time-resolved vibrational spectra of the electronically excited chromophore of GFP to reveal skeletal motions involved in the proton transfer that produces the fluorescent form of the protein. In particular, we observe that the frequencies and intensities of two marker bands, the C-O and C = N stretching modes at opposite ends of the conjugated chromophore, oscillate out of phase with a period of 280 fs; we attribute these oscillations to impulsively excited low-frequency phenoxyl-ring motions, which optimize the geometry of the chromophore for ESPT. Our findings illustrate that femtosecond simulated Raman spectroscopy is a powerful approach to revealing the real-time nuclear dynamics that make up a multidimensional polyatomic reaction coordinate.
NASA Astrophysics Data System (ADS)
Lengyel, Jozef; Med, Jakub; Slavíček, Petr; Beyer, Martin K.
2017-09-01
The reaction of HNO3 with hydrated electrons (H2O)n- (n = 35-65) in the gas phase was studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and ab initio molecular dynamics simulations. Kinetic analysis of the experimental data shows that OH-(H2O)m is formed primarily via a reaction of the hydrated electron with HNO3 inside the cluster, while proton transfer is not observed and NO3-(H2O)m is just a secondary product. The reaction enthalpy was determined using nanocalorimetry, revealing a quite exothermic charge transfer with -241 ± 69 kJ mol-1. Ab initio molecular dynamics simulations indicate that proton transfer is an allowed reaction pathway, but the overall thermochemistry favors charge transfer.
A Simple Geometric Model for the Marcus Theory of Proton Transfer
ERIC Educational Resources Information Center
McLennan, Duncan J.
1976-01-01
Uses the intersecting parabola model to derive an equation that relates the observed free energy of activation for a slow proton transfer to the overall thermodynamic free energy change in the reaction. (MLH)
Delchev, Vassil B; Shterev, Ivan G
2009-04-01
Twelve binary and eight ternary supersystems between thymine and methanol, and water were investigated in the ground state at the B3LYP and MP2 levels of theory using B3LYP/6-311 + + G(d,p) basis functions. The thermodynamics of complex formations and the mechanisms of intermolecular proton transfers were clarified in order to find out the most stable H-boned system. It was established that the energy barriers of the water/methanol-assisted proton transfers are several times lower than those of the intramolecular proton transfers in the DNA/RNA bases. The X-ray powder spectra of thymine, and this precrystallized from water and methanol showed that water molecules are incorporated in the crystal lattice of thymine forming H-bridges between thymine molecules.
NASA Astrophysics Data System (ADS)
Yuan, Huijuan; Feng, Songyan; Wen, Keke; Guo, Xugeng; Zhang, Jinglai
2018-02-01
Excited-state intramolecular proton transfer (ESIPT) reactions of a series of N(R)sbnd H ⋯ N-type seven-membered-ring hydrogen-bonding compounds were explored by employing density functional theory/time-dependent density functional theory calculations with the PBE0 functional. Our results indicate that the absorption and emission spectra predicted theoretically match very well the experimental findings. Additionally, as the electron-withdrawing strength of R increases, the intramolecular H-bond of the Nsbnd S1 form gradually enhances, and the forward energy barrier along the ESIPT reaction gradually decreases. For compound 4, its ESIPT reaction is found to be a barrierless process due to the involvement of a strong electron-withdrawing COCF3 group. It is therefore a reasonable presumption that the ESIPT efficiency of these N(R)sbnd H ⋯ N-type seven-membered-ring H-bonding systems can be improved when a strong electron-withdrawing group in R is introduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gewirth, Andrew A.; Kenis, Paul J.; Nuzzo, Ralph G.
In this research, we prosecuted a comprehensive plan of research directed at developing new catalysts and new understandings relevant to the operation of low temperature hydrogen-oxygen fuel cells. The focal point of this work was one centered on the Oxygen Reduction Reaction (ORR), the electrochemical process that most fundamentally limits the technological utility of these environmentally benign energy conversion devices. Over the period of grant support, we developed new ORR catalysts, based on Cu dimers and multimers. In this area, we developed substantial new insight into design rules required to establish better ORR materials, inspired by the three-Cu active sitemore » in laccase which has the highest ORR onset potential of any material known. We also developed new methods of characterization for the ORR on conventional (metal-based) catalysts. Finally, we developed a new platform to study the rate of proton transfer relevant to proton coupled electron transfer (PCET) reactions, of which the ORR is an exemplar. Other aspects of work involved theory and prototype catalyst testing.« less
Single-neutron orbits near 78Ni: Spectroscopy of the N = 49 isotope 79Zn
Orlandi, R.; Mücher, D.; Raabe, R.; ...
2014-12-09
Single-neutron states in the Z=30, N=49 isotope 79Zn have been populated using the 78Zn(d, p) 79Zn transfer reaction at REX-ISOLDE, CERN. The experimental setup allowed the combined detection of protons ejected in the reaction, and of γ rays emitted by 79Zn. The analysis reveals that the lowest excited states populated in the reaction lie at approximately 1 MeV of excitation, and involve neutron orbits above the N=50 shell gap. From the analysis of γ -ray data and of proton angular distributions, characteristic of the amount of angular momentum transferred, a 5/2 + configuration was assigned to a state at 983more » keV. Comparison with large-scale-shell-model calculations supports a robust neutron N=50 shell-closure for 78Ni. Finally, these data constitute an important step towards the understanding of the magicity of 78Ni and of the structure of nuclei in the region.« less
Navarre, Laure; Martinez, Rémi; Genet, Jean-Pierre; Darses, Sylvain
2008-05-14
Conjugate addition of potassium trifluoro(organo)borates 2 to dehydroalanine derivatives 1, mediated by a chiral rhodium catalyst and in situ enantioselective protonation, afforded straightforward access to a variety of protected alpha-amino esters 3 with high yields and enantiomeric excesses up to 95%. Among the tested chiral ligands and proton sources, Binap, in combination with guaiacol (2-methoxyphenol), an inexpensive and nontoxic phenol, afforded the highest asymmetric inductions. Organostannanes have also shown to participate in this reaction. By a fine-tuning of the ester moiety, and using Difluorophos as chiral ligand, increased levels of enantioselectivity, generally close to 95%, were achieved. Deuterium labeling experiments revealed, and DFT calculation supported, an unusual mechanism involving a hydride transfer from the amido substituent to the alpha carbon explaining the high levels of enantioselectivity attained in controlling this alpha chiral center.
Computer simulation of ion channel gating: the M(2) channel of influenza A virus in a lipid bilayer
NASA Technical Reports Server (NTRS)
Schweighofer, K. J.; Pohorille, A.
2000-01-01
The transmembrane fragment of the influenza virus M(2) protein forms a homotetrameric channel that transports protons. In this paper, we use molecular dynamics simulations to help elucidate the mechanism of channel gating by four histidines that occlude the channel lumen in the closed state. We test two competing hypotheses. In the "shuttle" mechanism, the delta nitrogen atom on the extracellular side of one histidine is protonated by the incoming proton, and, subsequently, the proton on the epsilon nitrogen atom is released on the opposite side. In the "water-wire" mechanism, the gate opens because of electrostatic repulsion between four simultaneously biprotonated histidines. This allows for proton transport along the water wire that penetrates the gate. For each system, composed of the channel embedded in a hydrated phospholipid bilayer, a 1.3-ns trajectory was obtained. It is found that the states involved in the shuttle mechanism, which contain either single-protonated histidines or a mixture of single-protonated histidines plus one biprotonated residue, are stable during the simulations. Furthermore, the orientations and dynamics of water molecules near the gate are conducive to proton transfer. In contrast, the fully biprotonated state is not stable. Additional simulations show that if only two histidines are biprotonated, the channel deforms but the gate remains closed. These results support the shuttle mechanism but not the gate-opening mechanism of proton gating in M(2).
First steps towards a gas-phase acidity ladder for derivatized fullerene dications
NASA Astrophysics Data System (ADS)
Petrie, Simon; Javahery, Gholamreza; Bohme, Diethard K.
1993-03-01
C2+60 can be derivatized by gas-phase ion/molecule reactions with polar hydrogen-bearing molecules. The adduct dications so produced may then undergo proton transfer to neutrals. The occurrence or absence of proton transfer as a secondary process gives information on the gas-phase acidity of the dicationic species C60·(XH)2+in. We have performed studies using a selected-ion flow tube at 294 ± 2 K and 0.35 ± 0.01 Torr, and have used observed reactivity of such dicationic fullerene adducts to determine upper or lower limits to their apparent and absolute gas-phase acidities. We present also a rationale for assessing the proton-transfer reactivity of dications via the apparent gas-phase acidity of these species, rather than the traditional use of gas-phase basicities or proton affinities. We propose that further studies of proton transfer from polycharged fullerene adducts may provide considerable useful information to model the reactivity of polyprotonated proteins and other large molecular polycatiions which can now be produced by techniques such as electrospray ionization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loew, G.H.; Axe, F.U.; Collins, J.R.
In this study, we have investigated the plausibility of a key postulated transformation of the proximal imidazole ligand (His 175) to an imidazolate by proton transfer to a nearby aspartate (Asp 235) absent in Mb. The proton relay system studied included not only models for the His 175 and Asp 235 residues but also for a nearby Trp 191 residue that could also interact with Asp 235 through hydrogen bonding and polarization. Two semiempirical quantum mechanical methods, Am1 and MNDO/H, with improved capabilities of describing H-bonded systems, were used to calculate the enthalpies of the three tautomeric forms of themore » proton relay system corresponding to the proton on the His, Asp, and Trp, respectively. These calculations were made for several models of the effect of the iron. Relative tautomeric enthalpies were calculated both with H-atom only optimization, keeping the heavy atoms fixed in their X-ray positions, and additional optimization that allowed the model Asp residue to relax. Transition-state enthalpies for the proton transfer from His to Asp were also calculated. The results of these studies suggest that the crucial postulated proton transfer from His to Asp is energetically favored, but only in the presence of the interaction of the iron with the imidazole ligand. Another stable form of the cluster, with competing proton transfer from the Trp to the Asp, was found only when the Asp position was allowed to optimize.« less
Avilés-Moreno, Juan Ramón; Berden, Giel; Oomens, Jos; Martínez-Haya, Bruno
2018-02-07
The recognition of arginine plays a central role in modern proteomics and genomics. Arginine is unique among natural amino acids due to the high basicity of its guanidinium side chain, which sustains specific interactions and proton exchange biochemical processes. The search for suitable macrocyclic ionophores constitutes a promising route towards the development of arginine receptors. This study evaluates the conformational features involved in the binding of free arginine by the polyether macrocycle (18-crown-6)-tetracarboxylic acid. Infrared action vibrational spectroscopy and quantum-chemical computations are combined to characterize the complexes with net charges +1 and +2. The spectrum of the +1 complex can be explained in terms of a configuration predominantly stabilized by a robust bidentate coordination of guanidinium with a carboxylate group formed from the deprotonation of one side group of the crown ether. The released proton is transferred to the amino terminus of arginine, which then coordinates with the crown ether ring. In an alternative type of conformation, partly consistent with experiment, the amino terminus is neutral and the guanidinium group inserts into the crown ether cavity. In the +2 complexes, arginine is always doubly protonated and the most stable conformations are characterized by a tripodal coordination of the ammonium -NH 3 + group of arginine with the oxygen atoms of the macrocycle ring, while the interactions of the amino acid with the side carboxylic acid groups of the crown ether acquire a remarkable lesser role.
Infrared photodissociation spectroscopy of protonated neurotransmitters in the gas phase
NASA Astrophysics Data System (ADS)
MacLeod, N. A.; Simons, J. P.
2007-03-01
Protonated neurotransmitters have been produced in the gas phase via a novel photochemical scheme: complexes of the species of interest, 1-phenylethylamine, 2-amino-1-phenylethanol and the diastereo-isomers, ephedrine and pseudoephedrine, with a suitable proton donor, phenol (or indole), are produced in a supersonic expansion and ionized by resonant two photon ionization of the donor. Efficient proton transfer generates the protonated neurotransmitters, complexed to a phenoxy radical. Absorption of infrared radiation, and subsequent evaporation of the phenoxy tag, coupled with time of flight mass spectrometry, provides vibrational spectra of the protonated (and also hydrated) complexes for comparison with the results of quantum chemical computation. Comparison with the conformational structures of the neutral neurotransmitters (established previously) reveals the effect of protonation on their structure. The photochemical proton transfer strategy allows spectra to be recorded from individual laser shots and their quality compares favourably with that obtained using electro-spray or matrix assisted laser desorption ion sources.
Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi
2015-01-01
Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism. PMID:25588215
Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi
2015-01-12
Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism.
Lactate Chemical Exchange Saturation Transfer (LATEST) Imaging in vivo A Biomarker for LDH Activity.
DeBrosse, Catherine; Nanga, Ravi Prakash Reddy; Bagga, Puneet; Nath, Kavindra; Haris, Mohammad; Marincola, Francesco; Schnall, Mitchell D; Hariharan, Hari; Reddy, Ravinder
2016-01-22
Non-invasive imaging of lactate is of enormous significance in cancer and metabolic disorders where glycolysis dominates. Here, for the first time, we describe a chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) method (LATEST), based on the exchange between lactate hydroxyl proton and bulk water protons to image lactate with high spatial resolution. We demonstrate the feasibility of imaging lactate with LATEST in lactate phantoms under physiological conditions, in a mouse model of lymphoma tumors, and in skeletal muscle of healthy human subjects pre- and post-exercise. The method is validated by measuring LATEST changes in lymphoma tumors pre- and post-infusion of pyruvate and correlating them with lactate determined from multiple quantum filtered proton magnetic resonance spectroscopy (SEL-MQC (1)H-MRS). Similarly, dynamic LATEST changes in exercising human skeletal muscle are correlated with lactate determined from SEL-MQC (1)H-MRS. The LATEST method does not involve injection of radioactive isotopes or labeled metabolites. It has over two orders of magnitude higher sensitivity compared to conventional (1)H-MRS. It is anticipated that this technique will have a wide range of applications including diagnosis and evaluation of therapeutic response of cancer, diabetes, cardiac, and musculoskeletal diseases. The advantages of LATEST over existing methods and its potential challenges are discussed.
Lactate Chemical Exchange Saturation Transfer (LATEST) Imaging in vivo A Biomarker for LDH Activity
DeBrosse, Catherine; Nanga, Ravi Prakash Reddy; Bagga, Puneet; Nath, Kavindra; Haris, Mohammad; Marincola, Francesco; Schnall, Mitchell D.; Hariharan, Hari; Reddy, Ravinder
2016-01-01
Non-invasive imaging of lactate is of enormous significance in cancer and metabolic disorders where glycolysis dominates. Here, for the first time, we describe a chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) method (LATEST), based on the exchange between lactate hydroxyl proton and bulk water protons to image lactate with high spatial resolution. We demonstrate the feasibility of imaging lactate with LATEST in lactate phantoms under physiological conditions, in a mouse model of lymphoma tumors, and in skeletal muscle of healthy human subjects pre- and post-exercise. The method is validated by measuring LATEST changes in lymphoma tumors pre- and post-infusion of pyruvate and correlating them with lactate determined from multiple quantum filtered proton magnetic resonance spectroscopy (SEL-MQC 1H-MRS). Similarly, dynamic LATEST changes in exercising human skeletal muscle are correlated with lactate determined from SEL-MQC 1H-MRS. The LATEST method does not involve injection of radioactive isotopes or labeled metabolites. It has over two orders of magnitude higher sensitivity compared to conventional 1H-MRS. It is anticipated that this technique will have a wide range of applications including diagnosis and evaluation of therapeutic response of cancer, diabetes, cardiac, and musculoskeletal diseases. The advantages of LATEST over existing methods and its potential challenges are discussed. PMID:26794265
NASA Astrophysics Data System (ADS)
Takeda, Sadamu; Tsuzumitani, Akihiko; Chatzidimitriou-Dreismann, C. A.
1992-10-01
A precise investigation of spin—lattice relaxation rates for protons and deuterons of partially deuterated benzoic acid crystals showed a remarkable quenching of the transfer rate of an HD pair in hydrogen-bonded dimeric units of carboxyl groups with increasing concentration of D in the surrounding hydrogen bonds. A similar effect was also observed for partially deuterated crystals of acetylenedicarboxylic acid. This finding supports recent theoretical predictions of thermally activated protonic quantum correlation in condensed matter and proposes a new mechanism for the proton transfer in hydrogen bonds in condensed matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aruta, Carmela; Han, Chu; Zhou, Si
Proton-conducting perovskite oxides form a class of solid electrolytes for novel electrochemical devices operating at moderate temperatures. Here, we use hard X-ray photoelectron spectroscopy, scanning transmission electron microscopy, and density functional theory calculations to investigate the structure and elucidate the origin of the fast proton transport properties of strained ultrathin films of Y-doped BaZrO 3 grown by pulsed lased deposition on NdGaO 3. Our study shows that our BaZr 0.8Y 0.2O 3 films incorporate a significant amount of Y dopants, and to a lesser extent also Zr ions, substituting for Ba 2+, and that these substitutional defects agglomerate forming columnarmore » regions crossing vertically from the surface to the interface the entire film. In conclusion, our calculations also show that, in regions rich in Y substitutions for both Zr and Ba, the proton transfer process involves nearly zero-energy barriers, indicating that A-site cation substitutions by Y lead to fast transport pathways and hence are responsible for the previously observed enhanced values of the proton conductivity of these perovskite oxide films.« less
NASA Astrophysics Data System (ADS)
Wang, Se; Wang, Zhuang; Hao, Ce
2016-01-01
The time-dependent density functional theory (TDDFT) method was performed to investigate the excited-state intramolecular double proton transfer (ESIDPT) reaction of calix[4] arene (C4A) and the role of the intramolecular hydrogen bonds in the ESIDPT process. The geometries of C4A in the ground state and excited states (S1, S2 and T1) were optimized. Four intramolecular hydrogen bonds formed in the C4A are strengthened or weakened in the S2 and T1 states compared to those in the ground state. Interestingly, upon excitation to the S1 state of C4A, two protons H1 and H2 transfer along the two intramolecular hydrogen bonds O1-H1···O2 and O2-H2···O3, while the other two protons do not transfer. The ESIDPT reaction breaks the primary symmetry of C4A in the ground state. The potential energy curves of proton transfer demonstrate that the ESIDPT process follows the stepwise mechanism but not the concerted mechanism. Findings indicate that intramolecular hydrogen bonding is critical to the ESIDPT reactions in intramolecular hydrogen-bonded systems.
NASA Astrophysics Data System (ADS)
Xue, Q.; Horsewill, A. J.; Johnson, M. R.; Trommsdorff, H. P.
2004-06-01
The isotope effects associated with double proton transfer in the hydrogen bonds of benzoic acid (BA) dimers have been measured using field-cycling 1H NMR relaxometry and quasielastic neutron scattering. By studying mixed isotope (hydrogen and deuterium) samples, the dynamics of three isotopologues, BA-HH, BA-HD, and BA-DD, have been investigated. Low temperature measurements provide accurate measurements of the incoherent tunneling rate, k0. This parameter scales accurately with the mass number, m, according to the formula k0=(E/m)e-F√m providing conclusive evidence that the proton transfer process is a strongly correlated motion of two hydrons. Furthermore, we conclude that the tunneling pathway is the same for the three isotopologue species. Measurements at higher temperatures illuminate the through barrier processes that are mediated via intermediate or excited vibrational states. In parallel with the investigation of proton transfer dynamics, the theoretical and experimental aspects of studying spin-lattice relaxation in single crystals of mixed isotope samples are investigated in depth. Heteronuclear dipolar interactions between 1H and 2H isotopes contribute significantly to the overall proton spin-lattice relaxation and it is shown that these must be modeled correctly to obtain accurate values for the proton transfer rates. Since the sample used in the NMR measurements was a single crystal, full account of the orientation dependence of the spin-lattice relaxation with respect to the applied B field was incorporated into the data analysis.
NASA Astrophysics Data System (ADS)
Kasai, Yukako; Yoshida, Norio; Nakano, Haruyuki
2015-05-01
The co-solvent effect on the proton transfer reaction of glycine in a water-acetonitrile mixture was examined using the reference interaction-site model self-consistent field theory. The free energy profiles of the proton transfer reaction of glycine between the carboxyl oxygen and amino nitrogen were computed in a water-acetonitrile mixture solvent at various molar fractions. Two types of reactions, the intramolecular proton transfer and water-mediated proton transfer, were considered. In both types of the reactions, a similar tendency was observed. In the pure water solvent, the zwitterionic form, where the carboxyl oxygen is deprotonated while the amino nitrogen is protonated, is more stable than the neutral form. The reaction free energy is -10.6 kcal mol-1. On the other hand, in the pure acetonitrile solvent, glycine takes only the neutral form. The reaction free energy from the neutral to zwitterionic form gradually increases with increasing acetonitrile concentration, and in an equally mixed solvent, the zwitterionic and neutral forms are almost isoenergetic, with a difference of only 0.3 kcal mol-1. The free energy component analysis based on the thermodynamic cycle of the reaction also revealed that the free energy change of the neutral form is insensitive to the change of solvent environment but the zwitterionic form shows drastic changes. In particular, the excess chemical potential, one of the components of the solvation free energy, is dominant and contributes to the stabilization of the zwitterionic form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khadka, Nimesh; Milton, Ross D.; Shaw, Sudipta
Nitrogenase catalyzes the reduction of dinitrogen (N2) to ammonia (NH3) with obligatory reduction of protons (H+) to dihydrogen (H2) through a mechanism involving reductive elimination of two [Fe-H-Fe] bridging hydrides at its active site FeMo-cofactor. The overall rate-limiting step is associated with ATP-driven electron delivery from Fe protein, precluding isotope effect measurements on substrate reduction steps. Here, we use mediated bioelectrocatalysis to drive electron delivery to MoFe protein without Fe protein and ATP hydrolysis, thereby eliminating the normal rate-limiting step. The ratio of catalytic current in mixtures of H2O and D2O, the proton inventory, changes linearly with the D2O/H2O ratio,more » revealing that a single H/D is involved in the rate limiting step. Kinetic models, along with measurements that vary the electron/proton delivery rate and use different substrates, reveal that the rate-limiting step under these conditions is the H2 formation reaction. Altering the chemical environment around the active site FeMo-cofactor in the MoFe protein either by substituting nearby amino acids or transferring the isolated FeMo-cofactor into a different peptide matrix, changes the net isotope effect, but the proton inventory plot remains linear, consistent with an unchanging rate-limiting step. Density functional theory predicts a transition state for H2 formation where the proton from S-H+ moves to the hydride in Fe-H-, predicting the number and magnitude of the observed H/D isotope effect. This study not only reveals the mechanism of H2 formation, but also illustrates a strategy for mechanistic study that can be applied to other enzymes and to biomimetic complexes.« less
Gene expression profiling of breast cancer cell lines treated with proton and electron radiations.
Bravatà, Valentina; Minafra, Luigi; Cammarata, Francesco Paolo; Pisciotta, Pietro; Lamia, Debora; Marchese, Valentina; Manti, Lorenzo; Cirrone, Giuseppe Ap; Gilardi, Maria Carla; Cuttone, Giacomo; Forte, Giusi Irma; Russo, Giorgio
2018-06-11
Technological advances in radiation therapy are evolving with the use of hadrons, such as protons, indicated for tumors where conventional radiotherapy does not give significant advantages or for tumors located in sensitive regions, which need the maximum of dose-saving of the surrounding healthy tissues. The genomic response to conventional and non conventional Linear Energy Transfer exposure is a poor investigated topic and became an issue of radiobiological interest. The aim of this work was to analyze and compare molecular responses in term of gene expression profiles, induced by electron and proton irradiation in breast cancer cell lines. We studied the gene expression profiling differences by cDNA microarray activated in response to electron and proton irradiation with different Linear Energy Transfer values, among three breast cell lines (the tumorigenic MCF7 and MDA-MB-231 and the non tumorigenic MCF10A), exposed to the same sub-lethal dose of 9 Gy. Gene expression profiling pathway analyses showed the activation of different signaling and molecular networks in a cell line and radiation type-dependent manner. MCF10A and MDA-MB-231 cell lines were found to induce factors and pathways involved in the immunological process control. Here we describe in a detailed way the gene expression profiling and pathways activated after electron and proton irradiation in breast cancer cells. Summarizing, although specific pathways are activated in a radiation type-dependent manner, each cell line activates overall similar molecular networks in response to both these two types of ionizing radiation. Advances in knowledge: In the era of personalized medicine and breast cancer target-directed intervention, we trust that this study could drive radiation therapy towards personalized treatments, evaluating possible combined treatments, based on the molecular characterization.
Six-coordinate manganese(3+) in catalysis by yeast manganese superoxide dismutase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Yuewei; Gralla, Edith Butler; Schumacher, Mikhail
Reduction of superoxide (O{sub 2}{sup -}) by manganese-containing superoxide dismutase occurs through either a 'prompt protonation' pathway, or an 'inner-sphere' pathway, with the latter leading to formation of an observable Mn-peroxo complex. We recently reported that wild-type (WT) manganese superoxide dismutases (MnSODs) from Saccharomyces cerevisiae and Candida albicans are more gated toward the 'prompt protonation' pathway than human and bacterial MnSODs and suggested that this could result from small structural changes in the second coordination sphere of manganese. We report here that substitution of a second-sphere residue, Tyr34, by phenylalanine (Y34F) causes the MnSOD from S. cerevisiae to react exclusivelymore » through the 'inner-sphere' pathway. At neutral pH, we have a surprising observation that protonation of the Mn-peroxo complex in the mutant yeast enzyme occurs through a fast pathway, leading to a putative six-coordinate Mn3+ species, which actively oxidizes O{sub 2}{sup -} in the catalytic cycle. Upon increasing pH, the fast pathway is gradually replaced by a slow proton-transfer pathway, leading to the well-characterized five-coordinate Mn{sup 3+}. We here propose and compare two hypothetical mechanisms for the mutant yeast enzyme, diffeeing in the structure of the Mn-peroxo complex yet both involving formation of the active six-coordinate Mn{sup 3+} and proton transfer from a second-sphere water molecule, which has substituted for the -OH of Tyr34, to the Mn-peroxo complex. Because WT and the mutant yeast MnSOD both rest in the 2+ state and become six-coordinate when oxidized up from Mn{sup 2+}, six-coordinate Mn{sup 3+} species could also actively function in the mechanism of WT yeast MnSODs.« less
Ripple, Maureen O.; Kim, Namjoon; Springett, Roger
2013-01-01
Mitochondrial complex I couples electron transfer between matrix NADH and inner-membrane ubiquinone to the pumping of protons against a proton motive force. The accepted proton pumping stoichiometry was 4 protons per 2 electrons transferred (4H+/2e−) but it has been suggested that stoichiometry may be 3H+/2e− based on the identification of only 3 proton pumping units in the crystal structure and a revision of the previous experimental data. Measurement of proton pumping stoichiometry is challenging because, even in isolated mitochondria, it is difficult to measure the proton motive force while simultaneously measuring the redox potentials of the NADH/NAD+ and ubiquinol/ubiquinone pools. Here we employ a new method to quantify the proton motive force in living cells from the redox poise of the bc1 complex measured using multiwavelength cell spectroscopy and show that the correct stoichiometry for complex I is 4H+/2e− in mouse and human cells at high and physiological proton motive force. PMID:23306206
Cherepanov, Dmitry A.; Junge, Wolfgang; Mulkidjanian, Armen Y.
2004-01-01
Crossing the membrane/water interface is an indispensable step in the transmembrane proton transfer. Elsewhere we have shown that the low dielectric permittivity of the surface water gives rise to a potential barrier for ions, so that the surface pH can deviate from that in the bulk water at steady operation of proton pumps. Here we addressed the retardation in the pulsed proton transfer across the interface as observed when light-triggered membrane proton pumps ejected or captured protons. By solving the system of diffusion equations we analyzed how the proton relaxation depends on the concentration of mobile pH buffers, on the surface buffer capacity, on the form and size of membrane particles, and on the height of the potential barrier. The fit of experimental data on proton relaxation in chromatophore vesicles from phototropic bacteria and in bacteriorhodopsin-containing membranes yielded estimates for the interfacial potential barrier for H+/OH− ions of ∼120 meV. We analyzed published data on the acceleration of proton equilibration by anionic pH buffers and found that the height of the interfacial barrier correlated with their electric charge ranging from 90 to 120 meV for the singly charged species to >360 meV for the tetra-charged pyranine. PMID:14747306
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethi, Roshan V.; Giantsoudi, Drosoula; Raiford, Michael
2014-03-01
Purpose: The pattern of failure in medulloblastoma patients treated with proton radiation therapy is unknown. For this increasingly used modality, it is important to ensure that outcomes are comparable to those in modern photon series. It has been suggested this pattern may differ from photons because of variations in linear energy transfer (LET) and relative biological effectiveness (RBE). In addition, the use of matching fields for delivery of craniospinal irradiation (CSI) may influence patterns of relapse. Here we report the patterns of failure after the use of protons, compare it to that in the available photon literature, and determine themore » LET and RBE values in areas of recurrence. Methods and Materials: Retrospective review of patients with medulloblastoma treated with proton radiation therapy at Massachusetts General Hospital (MGH) between 2002 and 2011. We documented the locations of first relapse. Discrete failures were contoured on the original planning computed tomography scan. Monte Carlo calculation methods were used to estimate the proton LET distribution. Models were used to estimate RBE values based on the LET distributions. Results: A total of 109 patients were followed for a median of 38.8 months (range, 1.4-119.2 months). Of the patients, 16 experienced relapse. Relapse involved the supratentorial compartment (n=8), spinal compartment (n=11), and posterior fossa (n=5). Eleven failures were isolated to a single compartment; 6 failures in the spine, 4 failures in the supratentorium, and 1 failure in the posterior fossa. The remaining patients had multiple sites of disease. One isolated spinal failure occurred at the spinal junction of 2 fields. None of the 70 patients treated with an involved-field-only boost failed in the posterior fossa outside of the tumor bed. We found no correlation between Monte Carlo-calculated LET distribution and regions of recurrence. Conclusions: The most common site of failure in patients treated with protons for medulloblastoma was outside of the posterior fossa. The most common site for isolated local failure was the spine. We recommend consideration of spinal imaging in follow-up and careful attention to dose distribution in the spinal junction regions. Development of techniques that do not require field matching may be of benefit. We did not identify a direct correlation between lower LET values and recurrence in medulloblastoma patients treated with proton therapy. Patterns of failure do not appear to differ from those in patients treated with photon therapy.« less
AmPMS: Detection of Ammonia and Amines in Particle Formation and Growth Experiments
NASA Astrophysics Data System (ADS)
Hanson, D. R.; McMurry, P. H.; Jiang, J.; Huey, L. G.; Tanner, D.
2010-12-01
Ammonia and amine compounds in the atmosphere can be a significant component of atmospheric aerosol. Theoretical work shows that these compounds have a potentially large affinity for the particulate phase if strong acids are present. The co-accumulation of amines/ammonia with acids on atmospheric particles can be important for growth of atmospheric particles. Also, the role of nitrogen bases in nucleation is believed to be important. While proton transfer mass spectrometry (MS) has been deployed to detect a wide variety of volatile organic compounds in the atmosphere using H3O+ as the ionizing agent, they are generally operated at reduced pressures of 0.002 to 0.01 atm, which can limit the ability to detect pptv levels of amines. Use of this technique at atmospheric pressure can increase its sensitivity, as demonstrated by the efficient detection of ammonia via proton transfer at ambient pressures and relative humidities in the lab [1]. An instrument based on this system was deployed in the field (NCCN 2009, Atlanta) and was recently connected to a chamber at the University of Minnesota where nucleation experiments involving sulfuric acid and amines were carried out. This instrument, Ambient pressure Proton transfer Mass Spectrometer (AmP-MS), combines the specificity of chemical ionization with the high sensitivity of atmospheric pressure ionization techniques. It works for species that have high proton affinities and it is relatively insensitive to highly abundant VOCs such as methanol, acetaldehyde, acetone, etc. Water-proton clusters are electrostatically drawn across a flow of analyte gas resulting in ion-molecule reaction times of ~0.5-to-1 ms, and sensitivities in the few Hz per pptv are possible. In the laboratory, ion-molecule reactions of water proton and water ammonium clusters with various amine species are facile [2] and Sunner et al. [3] showed that species with high gas-phase basicities, and thus high PAs, also react fast with highly hydrated H3O+ and NH4+ ions. Amines have large proton affinities. The basics of the AmP-MS construction and operation will be presented as well as data from its deployment in the field and from the laboratory chamber experiments. Focus will be on the veracity of the technique and on correlations of measurements with environmental conditions, particle size distributions, and sulfuric acid cluster measurements. Candidates for important roles in nucleation will be discussed. [1] Hanson, D.R., E. Kosciuch, The NH3 mass accommodation coefficient for uptake onto sulfuric acid solutions, J. Phys. Chem. A, 2003, 107, 2199-2208. [2] Viggiano, A. A., Dale, F., and Paulson, J. F.: Proton transfer reactions of H+(H2O)n=2-11 with methanol, ammonia, pyridine, acetonitrile and acetone, J. Chem. Phys., 88, 2469-2477, 1988. [3] Sunner J., G. Nicol, and P. Kebarle, Factors Determining Relative Sensitivity of Analytes in Positive Mode Atmospheric Pressure Ionization Mass Spectrometry, Anal. Chem. 1988, 60, 1300-1307.
Gupta, Ashutosh; Jaeger, Heather M; Compaan, Katherine R; Schaefer, Henry F
2012-05-17
The guanine-cytosine (GC) radical anion and its interaction with a single water molecule is studied using ab initio and density functional methods. Z-averaged second-order perturbation theory (ZAPT2) was applied to GC radical anion for the first time. Predicted spin densities show that the radical character is localized on cytosine. The Watson-Crick monohydrated GC anion is compared to neutral GC·H2O, as well as to the proton-transferred analogue on the basis of structural and energetic properties. In all three systems, local minima are identified that correspond to water positioned in the major and minor grooves of macromolecular DNA. On the anionic surface, two novel structures have water positioned above or below the GC plane. On the neutral and anionic surfaces, the global minimum can be described as water interacting with the minor groove. These structures are predicted to have hydration energies of 9.7 and 11.8 kcal mol(-1), respectively. Upon interbase proton-transfer (PT), the anionic global minimum has water positioned in the major groove, and the hydration energy increases to 13.4 kcal mol(-1). PT GC·H2O(•-) has distonic character; the radical character resides on cytosine, while the negative charge is localized on guanine. The effects of proton transfer are further investigated through the computed adiabatic electron affinities (AEA) of GC and monohydrated GC, and the vertical detachment energies (VDE) of the corresponding anions. Monohydration increases the AEAs and VDEs by only 0.1 eV, while proton-transfer increases the VDEs substantially (0.8 eV). The molecular charge distribution of monohydrated guanine-cytosine radical anion depends heavily on interbase proton transfer.
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
The transport of protons across membranes is an essential process for both bioenergetics of modern cells and the origins of cellular life. All living systems make use of proton gradients across cell walls to convert environmental energy into a high-energy chemical compound, adenosine triphosphate (ATP), synthesized from adenosine diphosphate. ATP, in turn, is used as a source of energy to drive many cellular reactions. The ubiquity of this process in biology suggests that even the earliest cellular systems were relying on proton gradient for harvesting environmental energy needed to support their survival and growth. In contemporary cells, proton transfer is assisted by large, complex proteins embedded in membranes. The issue addressed in this Study was: how the same process can be accomplished with the aid of similar but much simpler molecules that could have existed in the protobiological milieu? The model system used in the study contained a bilayer membrane made of phospholipid, dimyristoylphosphatidylcholine (DMPC) which is a good model of the biological membranes forming cellular boundaries. Both sides of the bilayer were surrounded by water which simulated the environment inside and outside the cell. Embedded in the membrane was a fragment of the Influenza-A M$_2$ protein and enough sodium counterions to maintain system neutrality. This protein has been shown to exhibit remarkably high rates of proton transport and, therefore, is an excellent model to study the formation of proton gradients across membranes. The Influenza M$_2$ protein is 97 amino acids in length, but a fragment 25 amino acids long. which contains a transmembrane domain of 19 amino acids flanked by three amino acids on each side. is sufficient to transport protons. Four identical protein fragments, each folded into a helix, aggregate to form small channels spanning the membrane. Protons are conducted through a narrow pore in the middle of the channel in response to applied voltage. This channel is large enough to contain water molecules. and is normally filled with water. In analogy to the mechanism of proton transfer in some other channels, it has been postulated that protons are translocated along the network of water molecules filling the pore of the channel. This mechanism, however, must involve an additional important step because the channel contains four histidine amino acid residues, one from each of the helices, which are sufficiently large to occlude the pore and interrupt the water network. The histidine residues ensure channel selectivity by blocking transport of small ions, such as sodium or potassium. They have been also implicated in gating protons due to the ability of each histidine to become positively charged by accepting an additional proton. Two mechanisms of gating have been proposed. In one mechanism, all four histidines acquire an additional proton and, due to repulsion between their positive charges, move away from one another, thus opening the channel. The alternative mechanism relies of the ability of protons to move between different atoms in a molecule (tautomerization). Thus, a proton is captured on one side of the gate while another proton is released from the opposite side, and the molecule returns to the initial state through tautomerization. The simulations were designed to test these two mechanisms. Large-scale, atomic-level molecular dynamics simulations of the channel with the histidine residues in different protonation states revealed that all intermediate states of the system involved in the tautomerization mechanism are structurally stable and the arrangement of water molecules in the channel is conducive to the proton transport. In contrast, in the four-protonated state, postulated to exist in the gate-opening mechanism, the electrostatic repulsion between the histidine residues appears to be so large that the channel loses its structural integrity and one helix moves away from the remaining three. Additional information is contained within the original extended abstract.
Yuan, Hongling; Gadda, Giovanni
2011-02-08
Choline oxidase catalyzes the flavin-dependent, two-step oxidation of choline to glycine betaine with the formation of an aldehyde intermediate. In the first oxidation reaction, the alcohol substrate is initially activated to its alkoxide via proton abstraction. The substrate is oxidized via transfer of a hydride from the alkoxide α-carbon to the N(5) atom of the enzyme-bound flavin. In the wild-type enzyme, proton and hydride transfers are mechanistically and kinetically uncoupled. In this study, we have mutagenized an active site serine proximal to the C(4a) and N(5) atoms of the flavin and investigated the reactions of proton and hydride transfers by using substrate and solvent kinetic isotope effects. Replacement of Ser101 with threonine, alanine, cysteine, or valine resulted in biphasic traces in anaerobic reductions of the flavin with choline investigated in a stopped-flow spectrophotometer. Kinetic isotope effects established that the kinetic phases correspond to the proton and hydride transfer reactions catalyzed by the enzyme. Upon removal of Ser101, there is an at least 15-fold decrease in the rate constants for proton abstraction, irrespective of whether threonine, alanine, valine, or cysteine is present in the mutant enzyme. A logarithmic decrease spanning 4 orders of magnitude is seen in the rate constants for hydride transfer with increasing hydrophobicity of the side chain at position 101. This study shows that the hydrophilic character of a serine residue proximal to the C(4a) and N(5) flavin atoms is important for efficient hydride transfer.
Polarization-transfer measurement to a large-virtuality bound proton in the deuteron
NASA Astrophysics Data System (ADS)
Yaron, I.; Izraeli, D.; Achenbach, P.; Arenhövel, H.; Beričič, J.; Böhm, R.; Bosnar, D.; Cohen, E. O.; Debenjak, L.; Distler, M. O.; Esser, A.; Friščić, I.; Gilman, R.; Korover, I.; Lichtenstadt, J.; Merkel, H.; Middleton, D. G.; Mihovilovič, M.; Müller, U.; Piasetzky, E.; Pochodzalla, J.; Ron, G.; Schlimme, B. S.; Schoth, M.; Schulz, F.; Sfienti, C.; Širca, S.; Strauch, S.; Thiel, M.; Tyukin, A.; Weber, A.; A1 Collaboration
2017-06-01
We report the measurement of the ratio of polarization-transfer components, Px /Pz, in the 2H (e → ,e‧ p →) n reaction at low and high missing momenta, in search of differences between free and bound protons. The observed deviation of Px /Pz from that of a free proton, which is similar to that observed in 4He, indicates that the effect in nuclei is a function of the virtuality of the knock-out proton and the missing momentum direction, but not the average nuclear density. There is a general agreement between the data and calculations, which assume free proton form factors, however, the measurements are consistently about 10% higher.
Lonsdale, Richard; Reetz, Manfred T
2015-11-25
Enoate reductases catalyze the reduction of activated C═C bonds with high enantioselectivity. The oxidative half-reaction, which involves the addition of a hydride and a proton to opposite faces of the C═C bond, has been studied for the first time by hybrid quantum mechanics/molecular mechanics (QM/MM). The reduction of 2-cyclohexen-1-one by YqjM from Bacillus subtilis was selected as the model system. Two-dimensional QM/MM (B3LYP-D/OPLS2005) reaction pathways suggest that the hydride and proton are added as distinct steps, with the former step preceding the latter. Furthermore, we present interesting insights into the reactivity of this enzyme, including the weak binding of the substrate in the active site, the role of the two active site histidine residues for polarization of the substrate C═O bond, structural details of the transition states to hydride and proton transfer, and the role of Tyr196 as proton donor. The information presented here will be useful for the future design of enantioselective YqjM mutants for other substrates.
Templin, Thomas; Young, Erik F.; Smilenov, Lubomir B.
2013-01-01
Purpose Previously, we showed that microRNA (miRNA) signatures derived from the peripheral blood of mice are highly specific for both radiation energy (γ-rays or high linear energy transfer [LET] 56Fe ions) and radiation dose. Here, we investigate to what extent miRNA expression signatures derived from mouse blood can be used as biomarkers for exposure to 600 MeV proton radiation. Materials and methods We exposed mice to 600 MeV protons, using doses of 0.5 or 1.0 Gy, isolated total RNA at 6 h or 24 h after irradiation, and used quantitative real-time polymerase chain reaction (PCR) to determine the changes in miRNA expression. Results A total of 26 miRNA were differentially expressed after proton irradiation, in either one (77%) or multiple conditions (23%). Statistical classifiers based on proton, γ, and 56Fe-ion miRNA expression signatures predicted radiation type and proton dose with accuracies of 81% and 88%, respectively. Importantly, gene ontology analysis for proton-irradiated cells shows that genes targeted by radiation-induced miRNA are involved in biological processes and molecular functions similar to those controlled by miRNA in γ ray- and 56Fe-irradiated cells. Conclusions Mouse blood miRNA signatures induced by proton, γ, or 56Fe irradiation are radiation type- and dose-specific. These findings underline the complexity of the miRNA-mediated radiation response. PMID:22551419
Measurement of polarization-transfer to bound protons in carbon and its virtuality dependence
NASA Astrophysics Data System (ADS)
Izraeli, D.; Brecelj, T.; Achenbach, P.; Ashkenazi, A.; Böhm, R.; Cohen, E. O.; Distler, M. O.; Esser, A.; Gilman, R.; Kolar, T.; Korover, I.; Lichtenstadt, J.; Mardor, I.; Merkel, H.; Mihovilovič, M.; Müller, U.; Olivenboim, M.; Piasetzky, E.; Ron, G.; Schlimme, B. S.; Schoth, M.; Sfienti, C.; Širca, S.; Štajner, S.; Strauch, S.; Thiel, M.; Weber, A.; Yaron, I.; A1 Collaboration
2018-06-01
We measured the ratio Px /Pz of the transverse to longitudinal components of polarization transferred from electrons to bound protons in 12C by the 12C (e → ,e‧ p →) process at the Mainz Microtron (MAMI). We observed consistent deviations from unity of this ratio normalized to the free-proton ratio, (Px /Pz) 12C /(Px /Pz) 1H, for both s- and p-shell knocked out protons, even though they are embedded in averaged local densities that differ by about a factor of two. The dependence of the double ratio on proton virtuality is similar to the one for knocked out protons from 2H and 4He, suggesting a universal behavior. It further implies no dependence on average local nuclear density.
NASA Astrophysics Data System (ADS)
Blomberg, Margareta R. A.; Siegbahn, Per E. M.
2010-10-01
The proton pumping mechanism in cytochrome c oxidase, the terminal enzyme in the respiratory chain, has been investigated using hybrid DFT with large chemical models. In previous studies, a gating mechanism was suggested based on electrostatic interpretations of kinetic experiments. The predictions from that analysis are tested here. The main result is that the suggestion of a positively charged transition state for proton transfer is confirmed, while some other suggestions for the gating are not supported. It is shown that a few critical relative energy values from the earlier studies are reproduced with quite high accuracy using the present model calculations. Examples are the forward barrier for proton transfer from the N-side of the membrane to the pump-loading site when the heme a cofactor is reduced, and the corresponding back leakage barrier when heme a is oxidised. An interesting new finding is an unexpected double-well potential for proton transfer from the N-side to the pump-loading site. In the intermediate between the two transition states found, the proton is bound to PropD on heme a. A possible purpose of this type of potential surface is suggested here. The accuracy of the present values are discussed in terms of their sensitivity to the choice of dielectric constant. Only one energy value, which is not critical for the present mechanism, varies significantly with this choice and is therefore less certain.
Honda, Tatsuhiko; Kojima, Takahiko; Fukuzumi, Shunichi
2012-03-07
Proton-coupled electron-transfer reduction of dioxygen (O(2)) to afford hydrogen peroxide (H(2)O(2)) was investigated by using ferrocene derivatives as reductants and saddle-distorted (α-octaphenylphthalocyaninato)cobalt(II) (Co(II)(Ph(8)Pc)) as a catalyst under acidic conditions. The selective two-electron reduction of O(2) by dimethylferrocene (Me(2)Fc) and decamethylferrocene (Me(10)Fc) occurs to yield H(2)O(2) and the corresponding ferrocenium ions (Me(2)Fc(+) and Me(10)Fc(+), respectively). Mechanisms of the catalytic reduction of O(2) are discussed on the basis of detailed kinetics studies on the overall catalytic reactions as well as on each redox reaction in the catalytic cycle. The active species to react with O(2) in the catalytic reaction is switched from Co(II)(Ph(8)Pc) to protonated Co(I)(Ph(8)PcH), depending on the reducing ability of ferrocene derivatives employed. The protonation of Co(II)(Ph(8)Pc) inhibits the direct reduction of O(2); however, the proton-coupled electron transfer from Me(10)Fc to Co(II)(Ph(8)Pc) and the protonated [Co(II)(Ph(8)PcH)](+) occurs to produce Co(I)(Ph(8)PcH) and [Co(I)(Ph(8)PcH(2))](+), respectively, which react immediately with O(2). The rate-determining step is a proton-coupled electron-transfer reduction of O(2) by Co(II)(Ph(8)Pc) in the Co(II)(Ph(8)Pc)-catalyzed cycle with Me(2)Fc, whereas it is changed to the electron-transfer reduction of [Co(II)(Ph(8)PcH)](+) by Me(10)Fc in the Co(I)(Ph(8)PcH)-catalyzed cycle with Me(10)Fc. A single crystal of monoprotonated [Co(III)(Ph(8)Pc)](+), [Co(III)Cl(2)(Ph(8)PcH)], produced by the proton-coupled electron-transfer reduction of O(2) by Co(II)(Ph(8)Pc) with HCl, was obtained, and the crystal structure was determined in comparison with that of Co(II)(Ph(8)Pc). © 2012 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz-Sanchez, Juan Manuel; Gelabert, Ricard; Moreno, Miquel
2008-12-07
The ultrafast proton transfer dynamics of salicylideneaniline has been theoretically analyzed in the ground and first singlet excited electronic states using density functional theory (DFT) and time-dependent DFT calculations, which predict a ({pi},{pi}*) barrierless excited state intramolecular proton transfer (ESIPT). In addition to this, the photochemistry of salicylideneaniline is experimentally known to present fast depopulation processes of the photoexcited species before and after the proton transfer reaction. Such processes are explained by means of conical intersections between the ground and first singlet ({pi},{pi}*) excited electronic states. The electronic energies obtained by the time-dependent density functional theory formalism have been fittedmore » to a monodimensional potential energy surface in order to perform quantum dynamics study of the processes. Our results show that the proton transfer and deactivation of the photoexcited species before the ESIPT processes are completed within 49.6 and 37.7 fs, respectively, which is in remarkable good agreement with experiments.« less
Dementin, Sébastien; Burlat, Bénédicte; De Lacey, Antonio L; Pardo, Alejandro; Adryanczyk-Perrier, Géraldine; Guigliarelli, Bruno; Fernandez, Victor M; Rousset, Marc
2004-03-12
Kinetic, EPR, and Fourier transform infrared spectroscopic analysis of Desulfovibrio fructosovorans [NiFe] hydrogenase mutants targeted to Glu-25 indicated that this amino acid participates in proton transfer between the active site and the protein surface during the catalytic cycle. Replacement of that glutamic residue by a glutamine did not modify the spectroscopic properties of the enzyme but cancelled the catalytic activity except the para-H(2)/ortho-H(2) conversion. This mutation impaired the fast proton transfer from the active site that allows high turnover numbers for the oxidation of hydrogen. Replacement of the glutamic residue by the shorter aspartic acid slowed down this proton transfer, causing a significant decrease of H(2) oxidation and hydrogen isotope exchange activities, but did not change the para-H(2)/ortho-H(2) conversion activity. The spectroscopic properties of this mutant were totally different, especially in the reduced state in which a non-photosensitive nickel EPR spectrum was obtained.
Fine structure in the transition region: reaction force analyses of water-assisted proton transfers.
Yepes, Diana; Murray, Jane S; Santos, Juan C; Toro-Labbé, Alejandro; Politzer, Peter; Jaque, Pablo
2013-07-01
We have analyzed the variation of the reaction force F(ξ) and the reaction force constant κ(ξ) along the intrinsic reaction coordinates ξ of the water-assisted proton transfer reactions of HX-N = Y (X,Y = O,S). The profile of the force constant of the vibration associated with the reactive mode, k ξ (ξ), was also determined. We compare our results to the corresponding intramolecular proton transfers in the absence of a water molecule. The presence of water promotes the proton transfers, decreasing the energy barriers by about 12 - 15 kcal mol(-1). This is due in part to much smaller bond angle changes being needed than when water is absent. The κ(ξ) profiles along the intrinsic reaction coordinates for the water-assisted processes show striking and intriguing differences in the transition regions. For the HS-N = S and HO-N = S systems, two κ(ξ) minima are obtained, whereas for HO-N = O only one minimum is found. The k ξ (ξ) show similar behavior in the transition regions. We propose that this fine structure reflects the degree of synchronicity of the two proton migrations in each case.
NASA Astrophysics Data System (ADS)
Pierre, Sadrach; Duke, Jessica R.; Hele, Timothy J. H.; Ananth, Nandini
2017-12-01
We investigate the mechanisms of condensed phase proton-coupled electron transfer (PCET) using Mapping-Variable Ring Polymer Molecular Dynamics (MV-RPMD), a recently developed method that employs an ensemble of classical trajectories to simulate nonadiabatic excited state dynamics. Here, we construct a series of system-bath model Hamiltonians for the PCET, where four localized electron-proton states are coupled to a thermal bath via a single solvent mode, and we employ MV-RPMD to simulate state population dynamics. Specifically, for each model, we identify the dominant PCET mechanism, and by comparing against rate theory calculations, we verify that our simulations correctly distinguish between concerted PCET, where the electron and proton transfer together, and sequential PCET, where either the electron or the proton transfers first. This work represents a first application of MV-RPMD to multi-level condensed phase systems; we introduce a modified MV-RPMD expression that is derived using a symmetric rather than asymmetric Trotter discretization scheme and an initialization protocol that uses a recently derived population estimator to constrain trajectories to a dividing surface. We also demonstrate that, as expected, the PCET mechanisms predicted by our simulations are robust to an arbitrary choice of the initial dividing surface.
NASA Astrophysics Data System (ADS)
Yamaji, Minoru; Aoyama, Yutaka; Furukawa, Takashi; Itoh, Takao; Tobita, Seiji
2006-03-01
The mechanism of the H-atom transfer from phenols or thiophenols to triplet π,π ∗ 5,12-naphthacenequinone (5,12-NQ) has been examined by means of laser flash photolysis at 295 K. Based on the Hammett plots and the Rehm-Weller equation for the quenching rate constants, the phenolic H-atom transfer from phenols or thiophenols to triplet π,π ∗ 5,12-NQ is shown to proceed via the electron transfer followed by proton transfer. The previously proposed mechanism for H-atom transfer of π,π ∗ triplets, that proton transfer is followed by electron transfer, was not verified in the present systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, H.; Yamada, A.; Okazaki, S., E-mail: okazaki@apchem.nagoya-u.ac.jp
2015-05-07
The intramolecular proton transfer reaction of malonaldehyde in neon solvent has been investigated by mixed quantum–classical molecular dynamics (QCMD) calculations and fully classical molecular dynamics (FCMD) calculations. Comparing these calculated results with those for malonaldehyde in water reported in Part I [A. Yamada, H. Kojima, and S. Okazaki, J. Chem. Phys. 141, 084509 (2014)], the solvent dependence of the reaction rate, the reaction mechanism involved, and the quantum effect therein have been investigated. With FCMD, the reaction rate in weakly interacting neon is lower than that in strongly interacting water. However, with QCMD, the order of the reaction rates ismore » reversed. To investigate the mechanisms in detail, the reactions were categorized into three mechanisms: tunneling, thermal activation, and barrier vanishing. Then, the quantum and solvent effects were analyzed from the viewpoint of the reaction mechanism focusing on the shape of potential energy curve and its fluctuations. The higher reaction rate that was found for neon in QCMD compared with that found for water solvent arises from the tunneling reactions because of the nearly symmetric double-well shape of the potential curve in neon. The thermal activation and barrier vanishing reactions were also accelerated by the zero-point energy. The number of reactions based on these two mechanisms in water was greater than that in neon in both QCMD and FCMD because these reactions are dominated by the strength of solute–solvent interactions.« less
NASA Astrophysics Data System (ADS)
Costela, A.; García-Moreno, I.; Mallavia, Ricardo; Amat-Guerri, F.; Barroso, J.; Sastre, R.
1998-06-01
We report on the lasing action of two newly synthesized 2-(2'-hydroxyphenyl) benzimidazole derivatives copolymerized with methyl methacrylate. The laser samples were transversely pumped with a N 2 laser at 337 nm. The influence on the proton-transfer laser performance of the distance between the chromophore group and the polymeric main chain and of the rigidity of the polymeric host matrix, were studied. Significant increases in lasing efficiency and photostability are demonstrated for some of the new materials, as compared to those previously obtained with related proton-transfer dyes also covalently bound to methacrylic monomers.
NASA Astrophysics Data System (ADS)
De Silvestri, S.; Laporta, P.
1984-01-01
Time-resolved and steady-state fluorescence studies of proflavine in aqueous solution are presented. The observation of a monoexponential fluorescence decay with a time constant decreasing with increasing pH and the presence of an anomalous red-shift in the fluorescence spectrum as a function of pH indicate the existence of a complex proton-transfer mechanism in the excited state. A reaction scheme is proposed and the corresponding proton-transfer rates are evaluated. An excited-state pK value of 12.85 is obtained for the equilibrium between the cationic form of proflavine and the same form dissociated at an amino group.
Crofts, Antony R; Holland, J Todd; Victoria, Doreen; Kolling, Derrick R J; Dikanov, Sergei A; Gilbreth, Ryan; Lhee, Sangmoon; Kuras, Richard; Kuras, Mariana Guergova
2008-01-01
Recent progress in understanding the Q-cycle mechanism of the bc(1) complex is reviewed. The data strongly support a mechanism in which the Q(o)-site operates through a reaction in which the first electron transfer from ubiquinol to the oxidized iron-sulfur protein is the rate-determining step for the overall process. The reaction involves a proton-coupled electron transfer down a hydrogen bond between the ubiquinol and a histidine ligand of the [2Fe-2S] cluster, in which the unfavorable protonic configuration contributes a substantial part of the activation barrier. The reaction is endergonic, and the products are an unstable ubisemiquinone at the Q(o)-site, and the reduced iron-sulfur protein, the extrinsic mobile domain of which is now free to dissociate and move away from the site to deliver an electron to cyt c(1) and liberate the H(+). When oxidation of the semiquinone is prevented, it participates in bypass reactions, including superoxide generation if O(2) is available. When the b-heme chain is available as an acceptor, the semiquinone is oxidized in a process in which the proton is passed to the glutamate of the conserved -PEWY- sequence, and the semiquinone anion passes its electron to heme b(L) to form the product ubiquinone. The rate is rapid compared to the limiting reaction, and would require movement of the semiquinone closer to heme b(L) to enhance the rate constant. The acceptor reactions at the Q(i)-site are still controversial, but likely involve a "two-electron gate" in which a stable semiquinone stores an electron. Possible mechanisms to explain the cyt b(150) phenomenon are discussed, and the information from pulsed-EPR studies about the structure of the intermediate state is reviewed. The mechanism discussed is applicable to a monomeric bc(1) complex. We discuss evidence in the literature that has been interpreted as shown that the dimeric structure participates in a more complicated mechanism involving electron transfer across the dimer interface. We show from myxothiazol titrations and mutational analysis of Tyr-199, which is at the interface between monomers, that no such inter-monomer electron transfer is detected at the level of the b(L) hemes. We show from analysis of strains with mutations at Asn-221 that there are coulombic interactions between the b-hemes in a monomer. The data can also be interpreted as showing similar coulombic interaction across the dimer interface, and we discuss mechanistic implications.
Facile doping of anionic narrow-band-gap conjugated polyelectrolytes during dialysis.
Mai, Cheng-Kang; Zhou, Huiqiong; Zhang, Yuan; Henson, Zachary B; Nguyen, Thuc-Quyen; Heeger, Alan J; Bazan, Guillermo C
2013-12-02
PCPDTBTSO3 K, an anionic, narrow-band-gap conjugated polyelectrolyte, was found to be doped after dialysis. The proposed doping mechanism involves protonation of the polymer backbone, followed by electron transfer from a neutral chain, to generate radical cations, which are stabilized by the pendant sulfonate anions. Formation of polarons is supported by spectroscopy and electrical-conductivity measurements. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasai, Yukako; Yoshida, Norio, E-mail: noriwo@chem.kyushu-univ.jp; Nakano, Haruyuki
2015-05-28
The co-solvent effect on the proton transfer reaction of glycine in a water–acetonitrile mixture was examined using the reference interaction-site model self-consistent field theory. The free energy profiles of the proton transfer reaction of glycine between the carboxyl oxygen and amino nitrogen were computed in a water–acetonitrile mixture solvent at various molar fractions. Two types of reactions, the intramolecular proton transfer and water-mediated proton transfer, were considered. In both types of the reactions, a similar tendency was observed. In the pure water solvent, the zwitterionic form, where the carboxyl oxygen is deprotonated while the amino nitrogen is protonated, is moremore » stable than the neutral form. The reaction free energy is −10.6 kcal mol{sup −1}. On the other hand, in the pure acetonitrile solvent, glycine takes only the neutral form. The reaction free energy from the neutral to zwitterionic form gradually increases with increasing acetonitrile concentration, and in an equally mixed solvent, the zwitterionic and neutral forms are almost isoenergetic, with a difference of only 0.3 kcal mol{sup −1}. The free energy component analysis based on the thermodynamic cycle of the reaction also revealed that the free energy change of the neutral form is insensitive to the change of solvent environment but the zwitterionic form shows drastic changes. In particular, the excess chemical potential, one of the components of the solvation free energy, is dominant and contributes to the stabilization of the zwitterionic form.« less
Szőri-Dorogházi, Emma; Maróti, Gergely; Szőri, Milán; Nyilasi, Andrea; Rákhely, Gábor; Kovács, Kornél L.
2012-01-01
A highly conserved histidine-rich region with unknown function was recognized in the large subunit of [NiFe] hydrogenases. The HxHxxHxxHxH sequence occurs in most membrane-bound hydrogenases, but only two of these histidines are present in the cytoplasmic ones. Site-directed mutagenesis of the His-rich region of the T. roseopersicina membrane-attached Hyn hydrogenase disclosed that the enzyme activity was significantly affected only by the replacement of the His104 residue. Computational analysis of the hydrogen bond network in the large subunits indicated that the second histidine of this motif might be a component of a proton transfer pathway including Arg487, Asp103, His104 and Glu436. Substitutions of the conserved amino acids of the presumed transfer route impaired the activity of the Hyn hydrogenase. Western hybridization was applied to demonstrate that the cellular level of the mutant hydrogenases was similar to that of the wild type. Mostly based on theoretical modeling, few proton transfer pathways have already been suggested for [NiFe] hydrogenases. Our results propose an alternative route for proton transfer between the [NiFe] active center and the surface of the protein. A novel feature of this model is that this proton pathway is located on the opposite side of the large subunit relative to the position of the small subunit. This is the first study presenting a systematic analysis of an in silico predicted proton translocation pathway in [NiFe] hydrogenases by site-directed mutagenesis. PMID:22511957
NASA Astrophysics Data System (ADS)
Al-Ahmary, Khairia M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.
2016-02-01
Proton transfer reaction between 2-amino-4-methylpyridine (2AMP) as the proton acceptor with 2,6-dichloro-4-nitrophenol (DCNP) as the proton donor has been investigated spectrophotometrically in methanol (MeOH), acetonitrile (AN) and a binary mixture composed of 50% MeOH and 50% AN (AN-Me). The composition of the complex has been investigated utilizing Job's and photometric titration methods to be 1:1. Minimum-maximum absorbance equation has been applied to estimate the formation constant of the proton transfer reaction (KPT) where it reached high values in the investigated solvent confirming its high stability. The formation constant recorded higher value in AN compared with MeOH and mixture of AN-Me. Based on the formation of stable proton transfer complex, a sensitive spectrophotometric method was suggested for quantitative determination of 2AMP. The Lambert-Beer's law was obeyed in the concentration range 0.5-8 μg mL- 1 with small values of limits of detection and quantification. The solid complex between 2AMP with DCNP has been synthesized and characterized by elemental analysis to be 1:1 in concordant with the molecular stoichiometry in solution. Further analysis of the solid complex was carried out using infrared and 1H NMR spectroscopy.
Horvath, Samantha; Fernandez, Laura E; Appel, Aaron M; Hammes-Schiffer, Sharon
2013-04-01
The nickel-based P2(Ph)N2(Bn) electrocatalysts comprised of a nickel atom and two 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane ligands catalyze H2 production in acetonitrile. Recent electrochemical experiments revealed a linear dependence of the Ni(II/I) reduction potential on pH with a slope of 57 mV/pH unit, implicating a proton-coupled electron transfer (PCET) process with the same number of electrons and protons transferred. The combined theoretical and experimental studies herein provide an explanation for this pH dependence in the context of the overall proposed catalytic mechanism. In the proposed mechanisms, the catalytic cycle begins with a series of intermolecular proton transfers from an acid to the pendant amine ligand and electrochemical electron transfers to the nickel center to produce the doubly protonated Ni(0) species, a precursor to H2 evolution. The calculated Ni(II/I) reduction potentials of the doubly protonated species are in excellent agreement with the experimentally observed reduction potential in the presence of strong acid, suggesting that the catalytically active species leading to the peak observed in these cyclic voltammetry (CV) experiments is doubly protonated. The Ni(I/0) reduction potential was found to be slightly more positive than the Ni(II/I) reduction potential, indicating that the Ni(I/0) reduction occurs spontaneously after the Ni(II/I) reduction, as implied by the experimental observation of a single CV peak. These results suggest that the PCET process observed in the CV experiments is a two-electron/two-proton process corresponding to an initial double protonation followed by two reductions. On the basis of the experimental and theoretical data, the complete thermodynamic scheme and the Pourbaix diagram were generated for this catalyst. The Pourbaix diagram, which identifies the most thermodynamically stable species at each reduction potential and pH value, illustrates that this catalyst undergoes different types of PCET processes for various pH ranges. These thermodynamic insights will aid in the design of more effective molecular catalysts for H2 production.
Lintuluoto, Masami; Yamada, Chiaki; Lintuluoto, Juha M
2017-08-03
The entire enzyme catalytic mechanism including the electron and the proton transfers of the copper- and zinc-containing extracellular superoxide dismutase (SOD3) was investigated by using QM/MM method. In the first step, the electron transfer from O 2 ·- to SOD3 occurred without the bond formation between the donor and the acceptor and formed the triplet oxygen molecule and reduced SOD3. In the reduced SOD3, the distorted tetrahedral structure of Cu(I) atom was maintained. The reduction of Cu(II) atom induced the protonation of His113, which bridges between the Cu(II) and Zn(II) atoms in the resting state. Since the protonation of His113 broke the bond between Cu(I) and His113, three-coordinated Cu(I) was formed. Further, we suggest the binding of O 2 ·- formed hydrogen peroxide and the resting state after both the Cu reduction and the protonation of His113. The protonation of His113 caused the conformational change of Arg186 located at the entrance of the reactive site. The electrostatic potential surface around the reactive site showed that Arg186 plays an important role as electrostatic guidance for the negatively charged substrates only after the protonation of His113. The rotation of Arg186 switched the proton supply routes via Glu108 or Glu179 for transferring two protons from the bulk solvent.
Cao, Xiaoji; Zhang, Feifei; Zhu, Kundan; Ye, Xuemin; Shen, Lingxiao; Chen, Jiaoyu; Mo, Weimin
2014-05-15
Esomeprazole analogs are a class of important proton pump inhibitors for the treatment of gastro-esophageal reflux diseases. Understanding the fragmentation reaction mechanism of the protonated esomeprazole analogs will facilitate the characterization of their complex metabolic fate in humans. In this paper, the kinetic method and theoretical calculations were applied to evaluate the fragmentation of protonated esomeprazole analogs. All collision-induced dissociation (CID) mass spectrometry experiments were carried out using electrospray ionization (ESI) ion trap mass spectrometry in positive ion mode. Also the accurate masses of fragments were measured on by ESI quadrupole time-of-flight (QTOF) MS in positive ion mode. Theoretical calculations were carried out by the density functional theory (DFT) method with the 6-31G(d) basis set in the Gaussian 03 program. In the fragmentation of the protonated esomeprazole analogs, C-S bond breakage is observed, which gives rise to protonated 2-(sulfinylmethylene)pyridines and protonated benzimidazoles. DFT calculations demonstrate that the nitrogen atom of the pyridine part is the thermodynamically most favorable protonation site, and the C-S bond cleavage is triggered by the transfer of this ionizing proton from the nitrogen atom of the pyridine part to the carbon atom of the benzimidazole part to which the sulfinyl is attached. Moreover, with the kinetic plot, the intensity ratios of two protonated product ions yield a linear relationship with the differences in proton affinities of the corresponding neutral molecules, which provides strong experimental evidence that the reaction proceeds via proton-bound 2-(sulfinylmethylene)pyridine/benzimidazole complex intermediates. The kinetic method combined with theoretical calculations was successfully applied to probe the proton transfer reaction by proton-bound 2-(sulfinylmethylene)pyridine/benzimidazole complexes in the fragmentation of protonated esomeprazole analogs by ESI CID MS, which is a strong evidence that the kinetic method can be applied in identifying a proton-bound dimeric intermediate in the fragmentation of protonated ions. Copyright © 2014 John Wiley & Sons, Ltd.
Microwave Spectroscopy and Proton Transfer Dynamics in the Formic Acid-Acetic Acid Dimer
NASA Astrophysics Data System (ADS)
Howard, B. J.; Steer, E.; Page, F.; Tayler, M.; Ouyang, B.; Leung, H. O.; Marshall, M. D.; Muenter, J. S.
2012-06-01
The rotational spectrum of the doubly hydrogen-bonded {hetero} dimer formed between formic acid and acetic acid has been recorded between 4 and 18 GHz using a pulsed-nozzle Fourier transform microwave spectrometer. Each rigid-molecule rotational transition is split into four as a result of two concurrent tunnelling motions, one being proton transfer between the two acid molecules, and the other the torsion/rotation of the methyl group within the acetic acid. We present a full assignment of the spectrum for {J} = 1 to {J} = 7 for these four torsion/tunnelling states. Spectra have been observed for the main isotopic species, with deuterium substitution at the C of the formic acid and all 13C species in natural abundance, The observed transitions are fitted to within a few kilohertz using a molecule-fixed effective rotational Hamiltonian for the separate {A} and {E} vibrational species of the G12 permutation-inversion group which is applicable to this complex. To reduce the effects of internal angular momentum, a non-principal axis system is used throughout. Interpretation of the internal motion uses an internal-vibration and overall rotation scheme, and full sets of rotational and centrifugal distortion constants are determined. The proton tunnelling rates and the internal angular momentum of the methyl group in the {E} states is interpreted in terms of a dynamical model which involves coupled proton transfer and internal rotation. The resulting potential energy surface not only describes these internal motions, but can also explain the observed shifts in rotational constants between {A} and {E} species, and the deviations of the tunnelling frequencies from the expected 2:1 ratio. It also permits the determination of spectral constants free from the contamination effects of the internal dynamics. M.C.D. Tayler, B. Ouyang and B.J. Howard, J. Chem. Phys., {134}, 054316 (2011).
Old Yellow Enzyme: Stepwise reduction of nitro-olefins and catalysis of aci-nitro tautomerization
Meah, Younus; Massey, Vincent
2000-01-01
The Old Yellow Enzyme has been shown to catalyze efficiently the NADPH-linked reduction of nitro-olefins. The reduction of the nitro-olefin proceeds in a stepwise fashion, with formation of a nitronate intermediate that is freely dissociable from the enzyme. The first step involves hydride transfer from the enzyme-reduced flavin to carbon 2 of the nitro-olefin. The protonation of the nitronate at carbon 1 to form the final nitroalkane product also is catalyzed by the enzyme and involves Tyr-196 as an active site acid/base. This residue also is involved in aci-nitro tautomerization of nitroalkanes, the first example of a nonredox reaction catalyzed by the enzyme. PMID:10995477
NASA Astrophysics Data System (ADS)
Yamaji, Minoru; Oshima, Juro; Hidaka, Motohiko
2009-06-01
Evidence for the coupled electron/proton transfer mechanism of the phenolic H-atom transfer between triplet π,π ∗ 3,3'-carbonylbis(7-diethylaminocoumarin) and phenol derivatives is obtained by using laser photolysis techniques. It was confirmed that the quenching rate constants of triplet CBC by phenols having positive Hammett constants do not follow the Rehm-Weller equation for electron transfer while those by phenols with negative Hammett constants do it. From the viewpoint of thermodynamic parameters for electron transfer, the crucial factors for phenolic H-atom transfer to π,π ∗ triplet are discussed.
FTIR Study of the Photoactivation Process of Xenopus (6-4) Photolyase†
Yamada, Daichi; Zhang, Yu; Iwata, Tatsuya; Hitomi, Kenichi; Getzoff, Elizabeth D.; Kandori, Hideki
2012-01-01
Photolyases (PHRs) are blue-light activated DNA repair enzymes that maintain genetic integrity by reverting UV-induced photoproducts into normal bases. The FAD chromophore of PHRs has four different redox states: oxidized (FADox), anion radical (FAD•−), neutral radical (FADH•) and fully reduced (FADH−). We combined difference Fourier-transform infrared (FTIR) spectroscopy with UV-visible spectroscopy to study the detailed photoactivation process of Xenopus (6-4) PHR. Two photons produce the enzymatically active, fully reduced PHR from oxidized FAD: FADox is converted to semiquinone via light-induced one-electron and one-proton transfers, and then to FADH− by light-induced one-electron transfer. We successfully trapped FAD•− at 200 K, where electron transfer occurs, but proton transfer does not. UV-visible spectroscopy following 450-nm illumination of FADox at 277 K defined the FADH•/FADH− mixture and allowed calculation of difference FTIR spectra among the four redox states. The absence of a characteristic C=O stretching vibration indicated that the proton donor is not a protonated carboxylic acid. Structural changes in Trp and Tyr are suggested from UV-visible and FTIR analysis of FAD•− at 200 K. Spectral analysis of amide-I vibrations revealed structural perturbation of the protein’s β-sheet during initial electron transfer (FAD•− formation), transient increase in α-helicity during proton transfer (FADH• formation) and reversion to the initial amide-I signal following subsequent electron transfer (FADH− formation). Consequently, in (6-4) PHR, unlike cryptochrome-DASH, formation of enzymatically active FADH− did not perturb α-helicity. Protein structural changes in the photoactivation of (6-4) PHR are discussed on the basis of the present FTIR observations. PMID:22747528
Salzl, S; Ertl, M; Knör, G
2017-03-22
The water-soluble zinc porphyrin complex Zn(TPPS) 4- with TPPS = tetrakis-(4-sulfonatophenyl)porphyrin surprisingly was found to produce significant amounts of hydrogen from aqueous sulfite or amine solutions under visible-light exposure without requiring any other components such as electron relays or additional proton reduction catalysts. Although the production rates and total amounts of chemically stored fuel obtained under these conditions are still much too low to be relevant for practical applications, the background of this unprecedented observation was further studied in its own right. Since the central metal zinc is unlikely to be involved in proton-coupled electron transfer steps upon long-wavelength irradiation and the process does not seem to be much affected by variations of the electron donor added, the mechanism of photocatalytic H 2 release is suggested to involve previously neglected redox features of the in situ generated hydroporphyrin ligand system in aqueous solution.
Intrinsic uncoupling of mitochondrial proton pumps. 2. Modeling studies.
Pietrobon, D; Zoratti, M; Azzone, G F; Caplan, S R
1986-02-25
The thermodynamic and kinetic properties associated with intrinsic uncoupling in a six-state model of a redox proton pump have been studied by computing the flow-force relations for different degrees of coupling. Analysis of these relations shows the regulatory influence of the thermodynamic forces on the extent and relative contributions of redox slip and proton slip. Inhibition has been introduced into the model in two different ways, corresponding to possible modes of action of experimental inhibitors. Experiments relating the rate of electron transfer to delta microH at static head upon progressive inhibition of the pumps have been simulated considering (1) the limiting case that the nonzero rate of electron transfer at static head is only due to intrinsic uncoupling (no leaks) and (2) the experimentally observed case that about 30% of the nonzero rate of electron transfer at static head is due to a constant proton leakage conductance in parallel with the pumps, the rest being due to intrinsic uncoupling. The same simulations have been performed for experiments in which the rate of electron transfer is varied by varying the substrate concentration rather than by using an inhibitor. The corresponding experimental results obtained by measuring delta microH and the rate of electron transfer at different succinate concentrations in rat liver mitochondria are presented. Comparison between simulated behavior and experimental results leads to the general conclusion that the typical relationship between rate of electron transfer and delta microH found in mitochondria at static head could certainly be a manifestation of some degree of intrinsic uncoupling in the redox proton pumps.(ABSTRACT TRUNCATED AT 250 WORDS)
Lopez, Juan Miguel; Männle, Ferdinand; Wawer, Iwona; Buntkowsky, Gerd; Limbach, Hans-Heinrich
2007-08-28
Using dynamic NMR spectroscopy, the kinetics of the degenerate double proton transfer in cyclic dimers of polycrystalline (15)N,(15)N'-di-(4-bromophenyl)-formamidine (DBrFA) have been studied including the kinetic HH/HD/DD isotope effects in a wide temperature range. This transfer is controlled by intermolecular interactions, which in turn are controlled by the molecular conformation and hence the molecular structure. At low temperatures, rate constants were determined by line shape analysis of (15)N NMR spectra obtained using cross-polarization (CP) and magic angle spinning (MAS). At higher temperatures, in the microsecond time scale, rate constants and kinetic isotope effects were obtained by a combination of longitudinal (15)N and (2)H relaxation measurements. (15)N CPMAS line shape analysis was also employed to study the non-degenerate double proton transfer of polycrystalline (15)N,(15)N'-diphenyl-formamidine (DPFA). The kinetic results are in excellent agreement with the kinetics of DPFA and (15)N,(15)N'-di-(4-fluorophenyl)-formamidine (DFFA) studied previously for solutions in tetrahydrofuran. Two large HH/HD and HD/DD isotope effects are observed in the whole temperature range which indicates a concerted double proton transfer mechanism in the domain of the reaction energy surface. The Arrhenius curves are non-linear indicating a tunneling mechanism. Arrhenius curve simulations were performed using the Bell-Limbach tunneling model. The role of the phenyl group conformation and hydrogen bond compression on the barrier of the proton transfer is discussed.
Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen.
O'Hagan, Molly; Shaw, Wendy J; Raugei, Simone; Chen, Shentan; Yang, Jenny Y; Kilgore, Uriah J; DuBois, Daniel L; Bullock, R Morris
2011-09-14
Proton transport is ubiquitous in chemical and biological processes, including the reduction of dioxygen to water, the reduction of CO(2) to formate, and the production/oxidation of hydrogen. In this work we describe intramolecular proton transfer between Ni and positioned pendant amines for the hydrogen oxidation electrocatalyst [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+) (P(Cy)(2)N(Bn)(2) = 1,5-dibenzyl-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane). Rate constants are determined by variable-temperature one-dimensional NMR techniques and two-dimensional EXSY experiments. Computational studies provide insight into the details of the proton movement and energetics of these complexes. Intramolecular proton exchange processes are observed for two of the three experimentally observable isomers of the doubly protonated Ni(0) complex, [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+), which have N-H bonds but no Ni-H bonds. For these two isomers, with pendant amines positioned endo to the Ni, the rate constants for proton exchange range from 10(4) to 10(5) s(-1) at 25 °C, depending on isomer and solvent. No exchange is observed for protons on pendant amines positioned exo to the Ni. Analysis of the exchange as a function of temperature provides a barrier for proton exchange of ΔG(‡) = 11-12 kcal/mol for both isomers, with little dependence on solvent. Density functional theory calculations and molecular dynamics simulations support the experimental observations, suggesting metal-mediated intramolecular proton transfers between nitrogen atoms, with chair-to-boat isomerizations as the rate-limiting steps. Because of the fast rate of proton movement, this catalyst may be considered a metal center surrounded by a cloud of exchanging protons. The high intramolecular proton mobility provides information directly pertinent to the ability of pendant amines to accelerate proton transfers during catalysis of hydrogen oxidation. These results may also have broader implications for proton movement in homogeneous catalysts and enzymes in general, with specific implications for the proton channel in the Ni-Fe hydrogenase enzyme.
Liu, Xin; Ohta, Takeshi; Kawabata, Takeshi; Kawai, Fusako
2013-01-01
Ethoxy (EO) chain nonylphenol dehydrogenase (NPEO-DH) from Ensifer sp. AS08 and EO chain octylphenol dehydrogenase from Pseudomonas putida share common molecular characteristics with polyethylene glycol (PEG) dehydrogenases (PEG-DH) and comprise a PEG-DH subgroup in the family of glucose-methanol-choline (GMC) oxidoreductases that includes glucose/alcohol oxidase and glucose/choline dehydrogenase. Three-dimensional (3D) molecular modeling suggested that differences in the size, secondary structure and hydropathy in the active site caused differences in their substrate specificities toward EO chain alkylphenols and free PEGs. Based on 3D molecular modeling, site-directed mutagenesis was utilized to introduce mutations into potential catalytic residues of NPEO-DH. From steady state and rapid kinetic characterization of wild type and mutant NPEO-DHs, we can conclude that His465 and Asn507 are directly involved in the catalysis. Asn507 mediates the transfer of proton from a substrate to FAD and His465 transfers the same proton from the reduced flavin to an electron acceptor. PMID:23306149
Liu, Xin; Ohta, Takeshi; Kawabata, Takeshi; Kawai, Fusako
2013-01-10
Ethoxy (EO) chain nonylphenol dehydrogenase (NPEO-DH) from Ensifer sp. AS08 and EO chain octylphenol dehydrogenase from Pseudomonas putida share common molecular characteristics with polyethylene glycol (PEG) dehydrogenases (PEG-DH) and comprise a PEG-DH subgroup in the family of glucose-methanol-choline (GMC) oxidoreductases that includes glucose/alcohol oxidase and glucose/choline dehydrogenase. Three-dimensional (3D) molecular modeling suggested that differences in the size, secondary structure and hydropathy in the active site caused differences in their substrate specificities toward EO chain alkylphenols and free PEGs. Based on 3D molecular modeling, site-directed mutagenesis was utilized to introduce mutations into potential catalytic residues of NPEO-DH. From steady state and rapid kinetic characterization of wild type and mutant NPEO-DHs, we can conclude that His465 and Asn507 are directly involved in the catalysis. Asn507 mediates the transfer of proton from a substrate to FAD and His465 transfers the same proton from the reduced flavin to an electron acceptor.
Basire, Marie; Borgis, Daniel; Vuilleumier, Rodolphe
2013-08-14
Langevin dynamics coupled to a quantum thermal bath (QTB) allows for the inclusion of vibrational quantum effects in molecular dynamics simulations at virtually no additional computer cost. We investigate here the ability of the QTB method to reproduce the quantum Wigner distribution of a variety of model potentials, designed to assess the performances and limits of the method. We further compute the infrared spectrum of a multidimensional model of proton transfer in the gas phase and in solution, using classical trajectories sampled initially from the Wigner distribution. It is shown that for this type of system involving large anharmonicities and strong nonlinear coupling to the environment, the quantum thermal bath is able to sample the Wigner distribution satisfactorily and to account for both zero point energy and tunneling effects. It leads to quantum time correlation functions having the correct short-time behavior, and the correct associated spectral frequencies, but that are slightly too overdamped. This is attributed to the classical propagation approximation rather than the generation of the quantized initial conditions themselves.
Peroxide Activation for Electrophilic Reactivity by the Binuclear Non-heme Iron Enzyme AurF
Park, Kiyoung; Li, Ning; Kwak, Yeonju; ...
2017-05-01
Binuclear non-heme iron enzymes activate O 2 for diverse chemistries that include oxygenation of organic substrates and hydrogen atom abstraction. This process often involves the formation of peroxo-bridged biferric intermediates, only some of which can perform electrophilic reactions. To elucidate the geometric and electronic structural requirements to activate peroxo reactivity, the active peroxo intermediate in 4-aminobenzoate N-oxygenase (AurF) has been characterized spectroscopically and computationally. A magnetic circular dichroism study of reduced AurF shows that its electronic and geometric structures are poised to react rapidly with O 2. Nuclear resonance vibrational spectroscopic definition of the peroxo intermediate formed in this reactionmore » shows that the active intermediate has a protonated peroxo bridge. Density functional theory computations on the structure established here show that the protonation activates peroxide for electrophilic/single-electron-transfer reactivity. As a result, this activation of peroxide by protonation is likely also relevant to the reactive peroxo intermediates in other binuclear non-heme iron enzymes.« less
Peroxide Activation for Electrophilic Reactivity by the Binuclear Non-heme Iron Enzyme AurF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Kiyoung; Li, Ning; Kwak, Yeonju
Binuclear non-heme iron enzymes activate O 2 for diverse chemistries that include oxygenation of organic substrates and hydrogen atom abstraction. This process often involves the formation of peroxo-bridged biferric intermediates, only some of which can perform electrophilic reactions. To elucidate the geometric and electronic structural requirements to activate peroxo reactivity, the active peroxo intermediate in 4-aminobenzoate N-oxygenase (AurF) has been characterized spectroscopically and computationally. A magnetic circular dichroism study of reduced AurF shows that its electronic and geometric structures are poised to react rapidly with O 2. Nuclear resonance vibrational spectroscopic definition of the peroxo intermediate formed in this reactionmore » shows that the active intermediate has a protonated peroxo bridge. Density functional theory computations on the structure established here show that the protonation activates peroxide for electrophilic/single-electron-transfer reactivity. As a result, this activation of peroxide by protonation is likely also relevant to the reactive peroxo intermediates in other binuclear non-heme iron enzymes.« less
Structure of the membrane domain of respiratory complex I.
Efremov, Rouslan G; Sazanov, Leonid A
2011-08-07
Complex I is the first and largest enzyme of the respiratory chain, coupling electron transfer between NADH and ubiquinone to the translocation of four protons across the membrane. It has a central role in cellular energy production and has been implicated in many human neurodegenerative diseases. The L-shaped enzyme consists of hydrophilic and membrane domains. Previously, we determined the structure of the hydrophilic domain. Here we report the crystal structure of the Esherichia coli complex I membrane domain at 3.0 Å resolution. It includes six subunits, NuoL, NuoM, NuoN, NuoA, NuoJ and NuoK, with 55 transmembrane helices. The fold of the homologous antiporter-like subunits L, M and N is novel, with two inverted structural repeats of five transmembrane helices arranged, unusually, face-to-back. Each repeat includes a discontinuous transmembrane helix and forms half of a channel across the membrane. A network of conserved polar residues connects the two half-channels, completing the proton translocation pathway. Unexpectedly, lysines rather than carboxylate residues act as the main elements of the proton pump in these subunits. The fourth probable proton-translocation channel is at the interface of subunits N, K, J and A. The structure indicates that proton translocation in complex I, uniquely, involves coordinated conformational changes in six symmetrical structural elements.
NASA Technical Reports Server (NTRS)
Woon, David E.
2011-01-01
A new family of very favorable reaction pathways is explored involving the deposition of ions on icy grain mantles with very low energies. Quantum chemical cluster calculations at the MP2/6-31+G** level in 4H2O clusters and at the B3LYP/6-31+G** level in 17H2O clusters indicate that HCO+ and CH3 + are able to react spontaneously with one of the water molecules in the cluster to form protonated formic acid (HCOOH2 +) and protonated methanol (CH3OH2 +), respectively. It is furthermore found that these initial adducts spontaneously transfer their excess protons to the cluster to form neutral formic acid and methanol, plus solvated hydronium, H3O+. In the final case, if a CO molecule is bound to the surface of the cluster, OH+ may react with it to form protonated carbon dioxide (HCO2 +), which then loses its proton to yield CO2 and H3O+. In the present model, all of these processes were found to occur with no barriers. Discussion includes the analogous gas phase processes, which have been considered in previous studies, as well as the competitive abstraction pathway for HCO(+) + H2O.
Nohl, Hans; Gille, Lars
2005-01-01
Ubiquinone is inhomogenously distributed in subcellular biomembranes. Apart from mitochondria, where ubiquinone has bioenergetic and pathophysiological functions, unusually high levels of ubiquinone have also been reported in Golgi vesicles and lysosomes. In lysosomes, the interior differs from other organelles in its low pH value which is important to ensure optimal activity of hydrolytic enzymes. Since redox-cycling of ubiquinone is associated with the acceptance and release of protons, we assumed that ubiquinone is part of a redox chain contributing to unilateral proton distribution. A similar function of ubiquinone was earlier suggested by Crane to operate in Golgi vesicles. Support for the involvement of ubiquinone in a presumed couple of redox carriers came from our observation that almost 70% of total lysosomal ubiquinone was in the divalently reduced state. Further reduction was seen in the presence of external NADH. Analysis of the components involved in the transfer of reducing equivalents from cytosolic NADH to ubiquinone revealed the existence of an FAD-containing NADH dehydrogenase. The latter was found to reduce ubiquinone by means of a b-type cytochrome. Proton translocation into the interior was linked to the activity of the novel lysosomal redox chain. Oxygen was found to be the terminal electron acceptor, thereby also regulating acidification of the lysosomal matrix. In contrast to mitochondrial respiration, oxygen was only trivalently reduced giving rise to the release of HO radicals. The role of this novel proton-pumping redox chain and the significance of the associated ROS formation has to be elucidated.
NASA Astrophysics Data System (ADS)
Afroz, Ziya; Faizan, Mohd.; Alam, Mohammad Jane; Ahmad, Shabbir; Ahmad, Afaq
2018-05-01
Natural atomic charge analysis and molecular electrostatic potential (MEP) surface analysis of hydrogen bonded charge transfer (HBCT) and proton transfer (PT) complex of 3,5-dinitrobenzoic acid (DNBA) and 1,2-dimethylimidazole (DMI) have been investigated by theoretical modelling using widely employed DFT/B3LYP/6-311G(d,p) level of theory. Along with this analysis, Hirshfeld surface study of the intermolecular interactions and associated 2D finger plot for reported PT complex between DNBA and DMI have been explored.
NASA Astrophysics Data System (ADS)
Chebotaryov, S.; Sakaguchi, S.; Uesaka, T.; Akieda, T.; Ando, Y.; Assie, M.; Beaumel, D.; Chiga, N.; Dozono, M.; Galindo-Uribarri, A.; Heffron, B.; Hirayama, A.; Isobe, T.; Kaki, K.; Kawase, S.; Kim, W.; Kobayashi, T.; Kon, H.; Kondo, Y.; Kubota, Y.; Leblond, S.; Lee, H.; Lokotko, T.; Maeda, Y.; Matsuda, Y.; Miki, K.; Milman, E.; Motobayashi, T.; Mukai, T.; Nakai, S.; Nakamura, T.; Ni, A.; Noro, T.; Ota, S.; Otsu, H.; Ozaki, T.; Panin, V.; Park, S.; Saito, A.; Sakai, H.; Sasano, M.; Sato, H.; Sekiguchi, K.; Shimizu, Y.; Stefan, I.; Stuhl, L.; Takaki, M.; Taniue, K.; Tateishi, K.; Terashima, S.; Togano, Y.; Tomai, T.; Wada, Y.; Wakasa, T.; Wakui, T.; Watanabe, A.; Yamada, H.; Yang, Zh; Yasuda, M.; Yasuda, J.; Yoneda, K.; Zenihiro, J.
2018-05-01
Differential cross sections of p-^6He elastic scattering were measured in inverse kinematics at an incident energy of 200 A MeV, covering the high momentum transfer region of 1.7-2.7 fm^{-1}. The sensitivity of the elastic scattering at low and high momentum transfers to the density distribution was investigated quantitatively using relativistic impulse approximation calculations. In the high momentum transfer region, where the present data were taken, the differential cross section has an order of magnitude higher sensitivity to the inner part of the ^6He density relative to the peripheral part (15:1). This feature makes the obtained data valuable for the deduction of the inner part of the ^6He density. The data were compared to a set of calculations assuming different proton and neutron density profiles of ^6He. The data are well reproduced by the calculation assuming almost the same profiles of proton and neutron densities around the center of ^6He, and a proton profile reproducing the known point-proton radius of 1.94 fm. This finding is consistent with the assumption that the ^6He nucleus consists of a rigid α-like core with a two-neutron halo.
Multiple Pathways for Benzyl Alcohol Oxidation by Ru V=O 3+ and Ru IV=O 2+
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Amit; Hull, Jonathan F.; Norris, Michael R.
2011-01-20
Significant rate enhancements are found for benzyl alcohol oxidation by the Ru V=O 3+ form of the water oxidation catalyst [Ru(Mebimpy)(bpy)(OH 2)] 2+ [Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine; bpy = 2,2'-bipyridine] compared to Ru IV=O 2+ and for the Ru IV=O 2+ form with added bases due to a new pathway involving concerted hydride proton transfer (HPT).
C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex.
Man, Wai-Lun; Xie, Jianhui; Pan, Yi; Lam, William W Y; Kwong, Hoi-Ki; Ip, Kwok-Wa; Yiu, Shek-Man; Lau, Kai-Chung; Lau, Tai-Chu
2013-04-17
We report experimental and computational studies of the facile oxidative C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex. We provide evidence that the initial step involves nucleophilic attack of aniline at the nitrido ligand of the ruthenium complex, which is followed by proton and electron transfer to afford a (salen)ruthenium(II) diazonium intermediate. This intermediate then undergoes unimolecular decomposition to generate benzene and N2.
Exploring Nucleon Spin Structure Through Neutrino Neutral-Current Interactions in MicroBooNE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodruff, Katherine
2017-02-02
The net contribution of the strange quark spins to the proton spin,more » $$\\Delta s$$, can be determined from neutral current elastic neutrino-proton interactions at low momentum transfer combined with data from electron-proton scattering. The probability of neutrino-proton interactions depends in part on the axial form factor, which represents the spin structure of the proton and can be separated into its quark flavor contributions. Low momentum transfer neutrino neutral current interactions can be measured in MicroBooNE, a high-resolution liquid argon time projection chamber (LArTPC) in its first year of running in the Booster Neutrino Beamline at Fermilab. The signal for these interactions in MicroBooNE is a single short proton track. We present our work on the automated reconstruction and classification of proton tracks in LArTPCs, an important step in the determination of neutrino- nucleon cross sections and the measurement of $$\\Delta s$$.« less
Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.
Yang, Yang; Culpitt, Tanner; Hammes-Schiffer, Sharon
2018-04-05
The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF - and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.
Pisliakov, Andrei V.; Hino, Tomoya; Shiro, Yoshitsugu; Sugita, Yuji
2012-01-01
Nitric oxide reductases (NORs) are membrane proteins that catalyze the reduction of nitric oxide (NO) to nitrous oxide (N2O), which is a critical step of the nitrate respiration process in denitrifying bacteria. Using the recently determined first crystal structure of the cytochrome c-dependent NOR (cNOR) [Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, et al. (2010) Structural basis of biological N2O generation by bacterial nitric oxide reductase. Science 330: 1666–70.], we performed extensive all-atom molecular dynamics (MD) simulations of cNOR within an explicit membrane/solvent environment to fully characterize water distribution and dynamics as well as hydrogen-bonded networks inside the protein, yielding the atomic details of functionally important proton channels. Simulations reveal two possible proton transfer pathways leading from the periplasm to the active site, while no pathways from the cytoplasmic side were found, consistently with the experimental observations that cNOR is not a proton pump. One of the pathways, which was newly identified in the MD simulation, is blocked in the crystal structure and requires small structural rearrangements to allow for water channel formation. That pathway is equivalent to the functional periplasmic cavity postulated in cbb 3 oxidase, which illustrates that the two enzymes share some elements of the proton transfer mechanisms and confirms a close evolutionary relation between NORs and C-type oxidases. Several mechanisms of the critical proton transfer steps near the catalytic center are proposed. PMID:22956904
Kawashima, Yukio; Tachikawa, Masanori
2014-01-14
Ab initio path integral molecular dynamics (PIMD) simulation was performed to understand the nuclear quantum effect on the out-of-plane ring deformation of hydrogen maleate anion and investigate the existence of a stable structure with ring deformation, which was suggested in experimental observation (Fillaux et al., Chem. Phys. 1999, 120, 387-403). The isotope effect and the temperature effect are studied as well. We first investigated the nuclear quantum effect on the proton transfer. In static calculation and classical ab initio molecular dynamics simulations, the proton in the hydrogen bond is localized to either oxygen atom. On the other hand, the proton is located at the center of two oxygen atoms in quantum ab initio PIMD simulations. The nuclear quantum effect washes out the barrier of proton transfer. We next examined the nuclear quantum effect on the motion of hydrogen maleate anion. Principal component analysis revealed that the out-of-plane ring bending modes have dominant contribution to the entire molecular motion. In quantum ab initio PIMD simulations, structures with ring deformation were the global minimum for the deuterated isotope at 300 K. We analyzed the out-of-plane ring bending mode further and found that there are three minima along a ring distortion mode. We successfully found a stable structure with ring deformation of hydrogen maleate for the first time, to our knowledge, using theoretical calculation. The structures with ring deformation found in quantum simulation of the deuterated isotope allowed the proton transfer to occur more frequently than the planar structure. Static ab initio electronic structure calculation found that the structures with ring deformation have very small proton transfer barrier compared to the planar structure. We suggest that the "proton transfer driven" mechanism is the origin of stabilization for the structure with out-of-plane ring deformation.
Li, Pengfei; Soudackov, Alexander V; Hammes-Schiffer, Sharon
2018-02-28
The proton-coupled electron transfer (PCET) reaction catalyzed by soybean lipoxygenase has served as a prototype for understanding hydrogen tunneling in enzymes. Herein this PCET reaction is studied with mixed quantum mechanical/molecular mechanical (QM/MM) free energy simulations. The free energy surfaces are computed as functions of the proton donor-acceptor (C-O) distance and the proton coordinate, and the potential of mean force is computed as a function of the C-O distance, inherently including anharmonicity. The simulation results are used to calculate the kinetic isotope effects for the wild-type enzyme (WT) and the L546A/L754A double mutant (DM), which have been measured experimentally to be ∼80 and ∼700, respectively. The PCET reaction is found to be exoergic for WT and slightly endoergic for the DM, and the equilibrium C-O distance for the reactant is found to be ∼0.2 Å greater for the DM than for WT. The larger equilibrium distance for the DM, which is due mainly to less optimal substrate binding in the expanded binding cavity, is primarily responsible for its higher kinetic isotope effect. The calculated potentials of mean force are anharmonic and relatively soft at shorter C-O distances, allowing efficient thermal sampling of the shorter distances required for effective hydrogen tunneling. The primarily local electrostatic field at the transferring hydrogen is ∼100 MV/cm in the direction to facilitate proton transfer and increases dramatically as the C-O distance decreases. These simulations suggest that the overall protein environment is important for conformational sampling of active substrate configurations aligned for proton transfer, but the PCET reaction is influenced primarily by local electrostatic effects that facilitate conformational sampling of shorter proton donor-acceptor distances required for effective hydrogen tunneling.
Duster, Adam W; Lin, Hai
2017-09-14
Recently, a collective variable "proton indicator" was purposed for tracking an excess proton solvated in bulk water in molecular dynamics simulations. In this work, we demonstrate the feasibility of utilizing the position of this proton indicator as a reaction coordinate to model an excess proton migrating through a hydrophobic carbon nanotube in combined quantum-mechanics/molecular-mechanics simulations. Our results indicate that applying a harmonic restraint to the proton indicator in the bulk solvent near the nanotube pore entrance leads to the recruitment of water molecules into the pore. This is consistent with an earlier study that employed a multistate empirical valence bond potential and a different representation (center of excess charge) of the proton. We attribute this water recruitment to the delocalized nature of the solvated proton, which prefers to be in high-dielectric bulk solvent. While water recruitment into the pore is considered an artifact in the present simulations (because of the artificially imposed restraint on the proton), if the proton were naturally restrained, it could assist in building water wires prior to proton transfer through the pore. The potential of mean force for a proton translocation through the water-filled pore was computed by umbrella sampling, where the bias potentials were applied to the proton indicator. The free energy curve and barrier heights agree reasonably with those in the literature. The results suggest that the proton indicator can be used as a reaction coordinate in simulations of proton transport in confined environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Sergei D., E-mail: sergei.ivanov@unirostock.de; Grant, Ian M.; Marx, Dominik
With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently andmore » thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.« less
Alarcos, Noemí; Gutierrez, Mario; Liras, Marta; Sánchez, Félix; Douhal, Abderrazzak
2015-07-07
We report on the steady-state, picosecond and femtosecond time-resolved studies of a charge and proton transfer dye 6-amino-2-(2'-hydroxyphenyl)benzoxazole (6A-HBO) and its methylated derivative 6-amino-2-(2'-methoxyphenyl)benzoxazole (6A-MBO), in different solvents. With femtosecond resolution and comparison with the photobehaviour of 6A-MBO, we demonstrate for 6A-HBO in solution, the photoproduction of an intramolecular charge-transfer (ICT) process at S1 taking place in ∼140 fs or shorter, followed by solvent relaxation in the charge transferred species. The generated structure (syn-enol charge transfer conformer) experiences an excited-state intramolecular proton-transfer (ESIPT) reaction to produce a keto-type tautomer. This subsequent proton motion occurs in 1.2 ps (n-heptane), 14 ps (DCM) and 35 ps (MeOH). In MeOH, it is assisted by the solvent molecules and occurs through tunneling for which we got a large kinetic isotope effect (KIE) of about 13. For the 6A-DBO (deuterated sample in CD3OD) the global proton-transfer reaction takes place in 200 ps, showing a remarkable slow KIE regime. The slow ESIPT reaction in DCM (14 ps), not through tunnelling as it is not sensitive to OH/OD exchange, has however to overcome an energy barrier using intramolecular as well as solvent coordinates. The rich ESIPT dynamics of 6A-HBO in the used solutions is governed by an ICT reaction, triggered by the amino group, and it is solvent dependent. Thus, the charge injection to a 6A-HBO molecular frame makes the ICT species more stable, and the phenol group less acidic, slowing down the subsequent ESIPT reaction. Our findings bring new insights into the coupling between ICT and ESIPT reactions on the potential-energy surfaces of several barriers.
Electrooxidation of morin hydrate at a Pt electrode studied by cyclic voltammetry.
Masek, Anna; Chrzescijanska, Ewa; Zaborski, Marian
2014-04-01
The process and the kinetics of the electrochemical oxidation of morin in an anhydrous electrolyte have been investigated using cyclic and differential pulse voltammetry. The oxidation mechanism proceeds in sequential steps related to the hydroxyl groups in the three aromatic rings. The oxidation of the 2',4'dihydroxy moiety at the B ring of morin occurs first, at very low positive potentials, and is a one-electron, one-proton irreversible reaction. The rate constant, electron transfer coefficient and diffusion coefficients involved in the electrochemical oxidation of morin were determined. The influence of the deprotonation of the ring B hydroxyl moiety is related to the electron/proton donating capacity of morin and to its radical scavenging antioxidant activity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Infrared laser driven double proton transfer. An optimal control theory study
NASA Astrophysics Data System (ADS)
Abdel-Latif, Mahmoud K.; Kühn, Oliver
2010-02-01
Laser control of ultrafast double proton transfer is investigated for a two-dimensional model system describing stepwise and concerted transfer pathways. The pulse design has been done by employing optimal control theory in combination with the multiconfiguration time-dependent Hartree wave packet propagation. The obtained laser fields correspond to multiple pump-dump pulse sequences. Special emphasis is paid to the relative importance of stepwise and concerted transfer pathways for the driven wave packet and its dependence on the parameters of the model Hamiltonian as well as on the propagation time. While stepwise transfer is dominating in all cases considered, for high barrier systems concerted transfer proceeding via tunneling can make a contribution.
NASA Astrophysics Data System (ADS)
Safarzade, Zohre; Akbarabadi, Farideh Shojaei; Fathi, Reza; Brunger, Michael J.; Bolorizadeh, Mohammad A.
2018-05-01
A fully quantum mechanical four-body treatment of charge transfer collisions between energetic protons and atomic helium is developed here. The Pauli exclusion principle is applied to both the wave function of the initial and final states as well as the operators involved in the interaction. Prior to the collision, the helium atom is assumed as a two-body system composed of the nucleus, He2+, and an electron cloud composed of two electrons. Nonetheless, four particles are assumed in the final state. As the double interactions contribute extensively in single charge transfer collisions, the Faddeev-Lovelace-Watson scattering formalism describes it best physically. The treatment of the charge transfer cross section, under this quasi-four-body treatment within the FWL formalism, showed that other mechanisms leading to an effect similar to the Thomas one occur at the same scattering angle. Here, we study the two-body interactions which are not classically described but which lead to an effect similar to the Thomas mechanism and finally we calculate the total singlet and triplet amplitudes as well as the angular distributions of the charge transfer cross sections. As the incoming projectiles are assumed to be plane waves, the present results are calculated for high energies; specifically a projectile energy of 7.42 MeV was assumed as this is where experimental results are available in the literature for comparison. Finally, when possible we compare the present results with the other available theoretical data.
Suzuki, Tadashi; Shinoda, Mio; Osanai, Yohei; Isozaki, Tasuku
2013-08-22
Photoreaction of 2-(3-benzoylphenyl)propionic acid (ketoprofen, KP) with basic amino acids (histidine, lysine, and arginine) and dipeptides (carnosine and anserine) including a histidine moiety in phosphate buffer solution (pH 7.4) has been investigated with transient absorption spectroscopy. With UV irradiation KP(-) gave rise to a carbanion through a decarboxylation reaction, and the carbanion easily abstracted a proton from the surrounding molecule to yield a 3-ethylbenzophenone ketyl biradical (EBPH). The dipeptides as well as the basic amino acids were found to accelerate the proton transfer reaction whereas alanine and glycine had no effect on the reaction, revealing that these amino acids having a protonated side chain act as a proton donor. The formation quantum yield of EBPH was estimated to be fairly large by means of an actinometrical method with benzophenone, and the bimolecular reaction rate constant for the proton transfer between the carbanion and the protonated basic amino acids or the protonated dipeptides was successfully determined. It has become apparent that the bimolecular reaction rate constant for the proton transfer depended on the acid dissociation constant for the side chain of the amino acids for the first time. This reaction mechanism was interpreted by difference of the heat of reaction for each basic amino acid based on the thermodynamical consideration. These results strongly suggest that the side chain of the basic amino acid residue in protein should play an important role for photochemistry of KP in vivo.
Sigala, Paul A.; Fafarman, Aaron T.; Schwans, Jason P.; Fried, Stephen D.; Fenn, Timothy D.; Caaveiro, Jose M. M.; Pybus, Brandon; Ringe, Dagmar; Petsko, Gregory A.; Boxer, Steven G.; Herschlag, Daniel
2013-01-01
Hydrogen bond networks are key elements of protein structure and function but have been challenging to study within the complex protein environment. We have carried out in-depth interrogations of the proton transfer equilibrium within a hydrogen bond network formed to bound phenols in the active site of ketosteroid isomerase. We systematically varied the proton affinity of the phenol using differing electron-withdrawing substituents and incorporated site-specific NMR and IR probes to quantitatively map the proton and charge rearrangements within the network that accompany incremental increases in phenol proton affinity. The observed ionization changes were accurately described by a simple equilibrium proton transfer model that strongly suggests the intrinsic proton affinity of one of the Tyr residues in the network, Tyr16, does not remain constant but rather systematically increases due to weakening of the phenol–Tyr16 anion hydrogen bond with increasing phenol proton affinity. Using vibrational Stark spectroscopy, we quantified the electrostatic field changes within the surrounding active site that accompany these rearrangements within the network. We were able to model these changes accurately using continuum electrostatic calculations, suggesting a high degree of conformational restriction within the protein matrix. Our study affords direct insight into the physical and energetic properties of a hydrogen bond network within a protein interior and provides an example of a highly controlled system with minimal conformational rearrangements in which the observed physical changes can be accurately modeled by theoretical calculations. PMID:23798390
Siletsky, Sergey A; Belevich, Ilya; Belevich, Nikolai P; Soulimane, Tewfik; Wikström, Mårten
2017-11-01
Two electrogenic phases with characteristic times of ~14μs and ~290μs are resolved in the kinetics of membrane potential generation coupled to single-electron reduction of the oxidized "relaxed" O state of ba 3 oxidase from T. thermophilus (O→E transition). The rapid phase reflects electron redistribution between Cu A and heme b. The slow phase includes electron redistribution from both Cu A and heme b to heme a 3 , and electrogenic proton transfer coupled to reduction of heme a 3 . The distance of proton translocation corresponds to uptake of a proton from the inner water phase into the binuclear center where heme a 3 is reduced, but there is no proton pumping and no reduction of Cu B . Single-electron reduction of the oxidized "unrelaxed" state (O H →E H transition) is accompanied by electrogenic reduction of the heme b/heme a 3 pair by Cu A in a "fast" phase (~22μs) and transfer of protons in "middle" and "slow" electrogenic phases (~0.185ms and ~0.78ms) coupled to electron redistribution from the heme b/heme a 3 pair to the Cu B site. The "middle" and "slow" electrogenic phases seem to be associated with transfer of protons to the proton-loading site (PLS) of the proton pump, but when all injected electrons reach Cu B the electronic charge appears to be compensated by back-leakage of the protons from the PLS into the binuclear site. Thus proton pumping occurs only to the extent of ~0.1 H + /e - , probably due to the formed membrane potential in the experiment. Copyright © 2017 Elsevier B.V. All rights reserved.
Jones, Andrew J Y; Blaza, James N; Varghese, Febin; Hirst, Judy
2017-03-24
Respiratory complex I couples electron transfer between NADH and ubiquinone to proton translocation across an energy-transducing membrane to support the proton-motive force that drives ATP synthesis. The proton-pumping stoichiometry of complex I ( i.e. the number of protons pumped for each two electrons transferred) underpins all mechanistic proposals. However, it remains controversial and has not been determined for any of the bacterial enzymes that are exploited as model systems for the mammalian enzyme. Here, we describe a simple method for determining the proton-pumping stoichiometry of complex I in inverted membrane vesicles under steady-state ADP-phosphorylating conditions. Our method exploits the rate of ATP synthesis, driven by oxidation of NADH or succinate with different sections of the respiratory chain engaged in catalysis as a proxy for the rate of proton translocation and determines the stoichiometry of complex I by reference to the known stoichiometries of complexes III and IV. Using vesicles prepared from mammalian mitochondria (from Bos taurus ) and from the bacterium Paracoccus denitrificans , we show that four protons are pumped for every two electrons transferred in both cases. By confirming the four-proton stoichiometry for mammalian complex I and, for the first time, demonstrating the same value for a bacterial complex, we establish the utility of P. denitrificans complex I as a model system for the mammalian enzyme. P. denitrificans is the first system described in which mutagenesis in any complex I core subunit may be combined with quantitative proton-pumping measurements for mechanistic studies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Nuclear quantum effects and kinetic isotope effects in enzyme reactions.
Vardi-Kilshtain, Alexandra; Nitoker, Neta; Major, Dan Thomas
2015-09-15
Enzymes are extraordinarily effective catalysts evolved to perform well-defined and highly specific chemical transformations. Studying the nature of rate enhancements and the mechanistic strategies in enzymes is very important, both from a basic scientific point of view, as well as in order to improve rational design of biomimetics. Kinetic isotope effect (KIE) is a very important tool in the study of chemical reactions and has been used extensively in the field of enzymology. Theoretically, the prediction of KIEs in condensed phase environments such as enzymes is challenging due to the need to include nuclear quantum effects (NQEs). Herein we describe recent progress in our group in the development of multi-scale simulation methods for the calculation of NQEs and accurate computation of KIEs. We also describe their application to several enzyme systems. In particular we describe the use of combined quantum mechanics/molecular mechanics (QM/MM) methods in classical and quantum simulations. The development of various novel path-integral methods is reviewed. These methods are tailor suited to enzyme systems, where only a few degrees of freedom involved in the chemistry need to be quantized. The application of the hybrid QM/MM quantum-classical simulation approach to three case studies is presented. The first case involves the proton transfer in alanine racemase. The second case presented involves orotidine 5'-monophosphate decarboxylase where multidimensional free energy simulations together with kinetic isotope effects are combined in the study of the reaction mechanism. Finally, we discuss the proton transfer in nitroalkane oxidase, where the enzyme employs tunneling as a catalytic fine-tuning tool. Copyright © 2015 Elsevier Inc. All rights reserved.
Enhancement of proton transfer in ion channels by membrane phosphate headgroups.
Wyatt, Debra L; de Godoy, Carlos Marcelo G; Cukierman, Samuel
2009-05-14
The transfer of protons (H+) in gramicidin (gA) channels is markedly distinct in monoglyceride and phospholipid membranes. In this study, the molecular groups that account for those differences were investigated using a new methodology. The rates of H+ transfer were measured in single gA channels reconstituted in membranes made of plain ceramides or sphingomyelins and compared to those in monoglyceride and phospholipid bilayers. Single-channel conductances to protons (gH) were significantly larger in sphingomyelin than in ceramide membranes. A novel and unsuspected finding was that H+ transfer was heavily attenuated or completely blocked in ceramide (but not in sphingomyelin) membranes in low-ionic-strength solutions. It is reasoned that H-bond dynamics at low ionic strengths between membrane ceramides and gA makes channels dysfunctional. The rate of H+ transfer in gA channels in ceramide membranes is significantly higher than that in monoglyceride bilayers. This suggests that solvation of the hydrophobic surface of gA channels by two acyl chains in ceramides stabilizes the gA channels and the water wire inside the pore, leading to an enhancement of H+ transfer in relation to that occurring in monoglyceride membranes. gH values in gA channels are similar in ceramide and monoglyceride bilayers and in sphingomyelin and phospholipid membranes. It is concluded that phospho headgroups in membranes have significant effects on the rate of H+ transfer at the membrane gA channel/solution interfaces, enhancing the entry and exit rates of protons in channels.
Molecular modeling of the reaction pathway and hydride transfer reactions of HMG-CoA reductase.
Haines, Brandon E; Steussy, C Nicklaus; Stauffacher, Cynthia V; Wiest, Olaf
2012-10-09
HMG-CoA reductase catalyzes the four-electron reduction of HMG-CoA to mevalonate and is an enzyme of considerable biomedical relevance because of the impact of its statin inhibitors on public health. Although the reaction has been studied extensively using X-ray crystallography, there are surprisingly no computational studies that test the mechanistic hypotheses suggested for this complex reaction. Theozyme and quantum mechanical (QM)/molecular mechanical (MM) calculations up to the B3LYP/6-31g(d,p)//B3LYP/6-311++g(2d,2p) level of theory were employed to generate an atomistic description of the enzymatic reaction process and its energy profile. The models generated here predict that the catalytically important Glu83 is protonated prior to hydride transfer and that it acts as the general acid or base in the reaction. With Glu83 protonated, the activation energies calculated for the sequential hydride transfer reactions, 21.8 and 19.3 kcal/mol, are in qualitative agreement with the experimentally determined rate constant for the entire reaction (1 s(-1) to 1 min(-1)). When Glu83 is not protonated, the first hydride transfer reaction is predicted to be disfavored by >20 kcal/mol, and the activation energy is predicted to be higher by >10 kcal/mol. While not involved in the reaction as an acid or base, Lys267 is critical for stabilization of the transition state in forming an oxyanion hole with the protonated Glu83. Molecular dynamics simulations and MM/Poisson-Boltzmann surface area free energy calculations predict that the enzyme active site stabilizes the hemithioacetal intermediate better than the aldehyde intermediate. This suggests a mechanism in which cofactor exchange occurs before the breakdown of the hemithioacetal. Slowing the conversion to aldehyde would provide the enzyme with a mechanism to protect it from solvent and explain why the free aldehyde is not observed experimentally. Our results support the hypothesis that the pK(a) of an active site acidic group is modulated by the redox state of the cofactor. The oxidized cofactor and deprotonated Glu83 are closer in space after hydride transfer, indicating that indeed the cofactor may influence the pK(a) of Glu83 through an electrostatic interaction. The enzyme is able to catalyze the transfer of a hydride to the structurally and electronically distinct substrates by maintaining the general shape of the active site and adjusting the electrostatic environment through acid-base chemistry. Our results are in good agreement with the well-studied hydride transfer reactions catalyzed by liver alcohol dehydrogenase in calculated energy profile and reaction geometries despite different mechanistic functionalities.
Evidence for Coherent Transfer of para-Hydrogen-Induced Polarization at Low Magnetic Fields.
Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Kaptein, Robert; Vieth, Hans-Martin; Ivanov, Konstantin L
2013-08-01
We have investigated the mechanism of para-hydrogen-induced polarization (PHIP) transfer from the original strongly aligned protons to other nuclei at low external magnetic fields. Although it is known that PHIP is efficiently transferred at low fields, the nature of the transfer mechanism, that is, coherent spin mixing or cross-relaxation, is not well established. Polarization transfer kinetics for individual protons of styrene was, for the first time, measured and modeled theoretically. Pronounced oscillations were observed indicating a coherent transfer mechanism. Spin coherences were excited by passing through an avoided level crossing of the nuclear spin energy levels. Transfer at avoided level crossings is selective with respect to spin order. Our work provides evidence that the coherent PHIP transfer mechanism is dominant at low magnetic fields.
Marković, Zoran; Đorović, Jelena; Petrović, Zorica D; Petrović, Vladimir P; Simijonović, Dušica
2015-11-01
The antioxidant properties of some phenolic Schiff bases in the presence of different reactive particles such as (•)OH, (•)OOH, (CH2=CH-O-O(•)), and (-•)O2 were investigated. The thermodynamic values, ΔH BDE, ΔH IP, and ΔH PA, were used for this purpose. Three possible mechanisms for transfer of hydrogen atom, concerted proton-electron transfer (CPET), single electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) were considered. These mechanisms were tested in solvents of different polarity. On the basis of the obtained results it was shown that SET-PT antioxidant mechanism can be the dominant mechanism when Schiff bases react with radical cation, while SPLET and CPET are competitive mechanisms for radical scavenging of hydroxy radical in all solvents under investigation. Examined Schiff bases react with the peroxy radicals via SPLET mechanism in polar and nonpolar solvents. The superoxide radical anion reacts with these Schiff bases very slowly.
Entanglement and co-tunneling of two equivalent protons in hydrogen bond pairs
NASA Astrophysics Data System (ADS)
Smedarchina, Zorka; Siebrand, Willem; Fernández-Ramos, Antonio
2018-03-01
A theoretical study is reported of a system of two identical symmetric hydrogen bonds, weakly coupled such that the two mobile protons can move either separately (stepwise) or together (concerted). It is modeled by two equivalent quartic potentials interacting through dipolar and quadrupolar coupling terms. The tunneling Hamiltonian has two imaginary modes (reaction coordinates) and a potential with a single maximum that may turn into a saddle-point of second order and two sets of (inequivalent) minima. Diagonalization is achieved via a modified Jacobi-Davidson algorithm. From this Hamiltonian the mechanism of proton transfer is derived. To find out whether the two protons move stepwise or concerted, a new tool is introduced, based on the distribution of the probability flux in the dividing plane of the transfer mode. While stepwise transfer dominates for very weak coupling, it is found that concerted transfer (co-tunneling) always occurs, even when the coupling vanishes since the symmetry of the Hamiltonian imposes permanent entanglement on the motions of the two protons. We quantify this entanglement and show that, for a wide range of parameters of interest, the lowest pair of states of the Hamiltonian represents a perfect example of highly entangled quantum states in continuous variables. The method is applied to the molecule porphycene for which the observed tunneling splitting is calculated in satisfactory agreement with experiment, and the mechanism of double-proton tunneling is found to be predominantly concerted. We show that, under normal conditions, when they are in the ground state, the two porphycene protons are highly entangled, which may have interesting applications. The treatment also identifies the conditions under which such a system can be handled by conventional one-instanton techniques.
Aldarf, M; Fourcade, F; Amrane, A; Prigent, Y
2004-07-05
Geotrichum candidum was cultivated at the surface of solid model media containing peptone to simulate the composition of Camembert cheese. The surface growth of G. candidum induced the diffusion of substrates from the core to the rind and the diffusion of produced metabolites from the rind to the core. In the range of pH measured during G. candidum growth, constant diffusion coefficients were found for lactate and ammonium, 0.4 and 0.8 cm(2) day(-1), respectively, determined in sterile culture medium. Growth kinetics are described using the Verlhust model and both lactate consumption and ammonium production are considered as partially linked to growth. The experimental diffusion gradients of lactate and ammonium recorded during G. candidum growth have been fitted. The diffusion/reaction model was found to match with experimental data until the end of growth, except with regard to ammonium concentration gradients in the presence of lactate in the medium. Indeed, G. candidum preferentially assimilated peptone over lactate as a carbon source, resulting in an almost cessation of ammonium release before the end of growth. On peptone, it was found that the proton transfer did not account for the ammonium concentration gradients. Indeed, amino acids, being positively charged, are involved in the proton transfer at the beginning of growth. This effect can be neglected in the presence of lactate within the medium, and the sum of both lactate consumption and ammonium release gradients corresponded well to the proton transfer gradients, confirming that both components are responsible for the pH increase observed during the ripening of soft Camembert cheese. Copyright 2004 Wiley Periodicals, Inc.
Stereochemistry of 1,2-elimination and proton-transfer reactions: toward a unified understanding.
Mohrig, Jerry R
2013-07-16
Many mechanistic and stereochemical studies have focused on the breaking of the C-H bond through base-catalyzed elimination reactions. When we began our research, however, chemists knew almost nothing about the stereospecificity of addition-elimination reactions involving conjugated acyclic carbonyl compounds, even though the carbonyl group is a pivotal functional group in organic chemistry. Over the last 25 years, we have studied the addition-elimination reactions of β-substituted acyclic esters, thioesters, and ketones in order to reach a comprehensive understanding of how electronic effects influence their stereochemistry. This Account brings together our understanding of the stereochemistry of 1,2-elimination and proton-transfer reactions, describing how each study has built upon previous work and contributed to our understanding of this field. When we began, chemists thought that anti stereospecificity in base-catalyzed 1,2-elimination reactions occurred via concerted E2 mechanisms, which provide a smooth path for anti elimination. Unexpectedly, we discovered that some E1cBirrev reactions produce the same anti stereospecificity as E2 reactions even though they proceed through diffusionally equilibrated, "free" enolate-anion intermediates. This result calls into question the conventional wisdom that anti stereochemistry must result from a concerted mechanism. While carrying out our research, we developed insights ranging from the role of historical contingency in the evolution of hydratase-dehydratase enzymes to the influence of buffers on the stereochemistry of H/D exchange in D2O. Negative hyperconjugation is the most important concept for understanding our results. This idea provides a unifying view for the largely anti stereochemistry in E1cBirrev elimination reactions and a basis for understanding the stereoelectronic influence of electron-withdrawing β-substituents on proton-transfer reactions.
Nagaoka, Shin-Ichi; Bandoh, Yuki; Nagashima, Umpei; Ohara, Keishi
2017-10-26
Singlet-oxygen ( 1 O 2 ) quenching, free-radical scavenging, and excited-state intramolecular proton-transfer (ESIPT) activities of hydroxyflavones, anthocyanidins, and 1-hydroxyanthraquinones were studied by means of laser, stopped-flow, and steady-state spectroscopies. In hydroxyflavones and anthocyanidins, the 1 O 2 quenching activity positively correlates to the free-radical scavenging activity. The reason for this correlation can be understood by considering that an early step of each reaction involves electron transfer from the unfused phenyl ring (B-ring), which is singly bonded to the bicyclic chromen or chromenylium moiety (A- and C-rings). Substitution of an electron-donating OH group at B-ring enhances the electron transfer leading to activation of the 1 O 2 quenching and free-radical scavenging. In 3-hydroxyflavones, the OH substitution at B-ring reduces the activity of ESIPT within C-ring, which can be explained in terms of the nodal-plane model. As a result, the 1 O 2 quenching and free-radical scavenging activities negatively correlate to the ESIPT activity. A catechol structure at B-ring is another factor that enhances the free-radical scavenging in hydroxyflavones. In contrast to these hydroxyflavones, 1-hydroxyanthraquinones having an electron-donating OH substituent adjacent to the O-H---O═C moiety susceptible to ESIPT do not show a simple correlation between their 1 O 2 quenching and ESIPT activities, because the OH substitution modulates these reactions.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.
2011-05-01
Charge transfer complexes based on 3-amino-6-[2-(2-thienyl)vinyl]-1,2,4-triazin-5(4 H)-one (ArNH 2) organic basic donor and pi-acceptors having acidic protons such as picric acid (PiA), hydroquinone (Q(OH) 2) and 3,5-dinitrobenzene (DNB) have been synthesized and spectroscopically studied. The sbnd NH3+ ammonium ion was formed under the acid-base theory through proton transfer from an acidic to basic centers in all charge transfer complexes resulted. The values of formation constant ( KCT) and molar extinction coefficient ( ɛCT) which were estimated from the spectrophotometric studies have a dramatic effect for the charge transfer complexes with differentiation of pi-acceptors. For further studies the vibrational spectroscopy of the [( ArNH3+)(PiA -)] (1), [( ArNH3+)(Q (OH)2-)] (2) and [( ArNH3+)(DNB -)] (3) of (1:1) charge transfer complexes of (donor: acceptor) were characterized by elemental analysis, infrared spectra, Raman spectra, 1H and 13CNMR spectra. The experimental data of elemental analyses of the charge transfer complexes (1), (2) and (3) were in agreement with calculated data. The IR and Raman spectra of (1), (2) and (3) are indicated to the presence of bands around 3100 and 1600 cm -1 distinguish to sbnd NH3+. The thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) techniques were performed to give knowledge about thermal stability behavior of the synthesized charge transfer complexes. The morphological features of start materials and charge transfer complexes were investigated using scanning electron microscopy (SEM) and optical microscopy.
NASA Astrophysics Data System (ADS)
Xue, Yuanyuan; Wang, Zujun; Zhang, Fengqi; Bian, Jingying; Yao, Zhibin; He, Baoping; Liu, Minbo; Sheng, Jiangkun; Ma, Wuying; Dong, Guantao; Jin, Junshan
2018-04-01
Charge transfer inefficiency (CTI) is an important parameter for photodiode (PPD) CMOS image sensors (CISs). A test system was built and used to measure the CTI of PPD CIS devices at different integration times. The radiation effects of 3 MeV and 10 MeV protons on the CTI were investigated. The experiments were carried out at the EN Tandem Van de Graaff accelerator at proton fluences in the range 1010 to 1011 p/cm2. The CTI was measured within the 2 h following proton radiations. The dependence of CTI on integration time, proton energy and fluence were investigated. The CTI was observed to increase after proton irradiation: with the effect of irradiation with 3 MeV proton being more severe than that with 10 MeV protons. The CTI was also observed to decrease with increasing integration time, which is thought to be related to the charge density in the space charge region (SCR) of the CIS devices. This work has provided a simple method to measure the CTI and helped us to understand proton radiation effects on the CTI of PPD CISs.
Landon, Céline; Berthault, Patrick; Vovelle, Françoise; Desvaux, Hervé
2001-01-01
Nonspecific lipid transfer protein from wheat is studied by liquid-state NMR in the presence of xenon. The gas–protein interaction is indicated by the dependence of the protein proton chemical shifts on the xenon pressure and formally confirmed by the first observation of magnetization transfer from laser-polarized xenon to the protein protons. Twenty-six heteronuclear nOes have allowed the characterization of four interaction sites inside the wheat ns-LTP cavity. Their locations are in agreement with the variations of the chemical shifts under xenon pressure and with solvation simulations. The richness of the information obtained by the noble gas with a nuclear polarization multiplied by ∼12,000 makes this approach based on dipolar cross-relaxation with laser-polarized xenon promising for probing protein hydrophobic pockets at ambient pressure. PMID:11274467
Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi
2010-01-01
Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of non-equivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolites with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: i) On-resonance SL is most sensitive to chemical exchanges in the intermediate exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. ii) Offset frequency-dependent SL and CEST spectra are very similar, and can be explained well with an SL model recently developed by Trott and Palmer. iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. iv) The asymmetry of the magnetization transfer ratio (MTRasym) is highly dependent on the choice of saturation pulse power. In the intermediate exchange regime, MTRasym becomes complicated and should be interpreted with care. PMID:21500270
Elusive anion growth in Titan's atmosphere: Low temperature kinetics of the C3N- + HC3N reaction
NASA Astrophysics Data System (ADS)
Bourgalais, Jérémy; Jamal-Eddine, Nour; Joalland, Baptiste; Capron, Michael; Balaganesh, Muthiah; Guillemin, Jean-Claude; Le Picard, Sébastien D.; Faure, Alexandre; Carles, Sophie; Biennier, Ludovic
2016-06-01
Ion chemistry appears to be deeply involved in the formation of heavy molecules in the upper atmosphere of Titan. These large species form the seeds of the organic aerosols responsible for the opaque haze surrounding the biggest satellite of Saturn. The chemical pathways involving individual anions remain however mostly unknown. The determination of the rates of the elementary reactions with ions and the identification of the products are essential to the progress in our understanding of Titan's upper atmosphere. We have taken steps in that direction through the investigation of the low temperature reactivity of C3N- , which was tentatively identified in the spectra measured by the CAPS-ELS instrument of the Cassini spacecraft during its high altitude flybys. The reaction of this anion with HC3N, one of the most abundant trace organics in the atmosphere, has been studied over the 49-294 K temperature range in uniform supersonic flows using the CRESU technique. The proton transfer is found to be the main exit channel (>91%) of the C315N- + HC3N reaction. It remains however indistinguishable with the non-isotopically labeled C314N- reactant. The T - 1 / 2 temperature dependence of this proton transfer reaction and its global rate are reasonably well reproduced theoretically using an average dipole orientation model. A minor exit channel, reactive detachment (< 9%), has also been uncovered, although the nature of the neutral products has not been determined. It is concluded that the C314N- + HC3N reaction cannot contribute to the growth of molecular anions in the upper atmosphere of Titan. Due to the low branching into the neutral exit channel, it cannot contribute either to the growth of neutrals even assuming a complete mass transfer.
Endpoint Model of Exclusive Processes
NASA Astrophysics Data System (ADS)
Dagaonkar, Sumeet; Jain, Pankaj; Ralston, John P.
2018-07-01
The endpoint model explains the scaling laws observed in exclusive hadronic reactions at large momentum transfer in all experimentally important regimes. The model, originally conceived by Feynman and others, assumes a single valence quark carries most of the hadron momentum. The quark wave function is directly related to the momentum transfer dependence of the reaction. After extracting the momentum dependence of the quark wave function from one process, it explains all the others. Endpoint quark-counting rules relate the number of quarks in a hadron to the power-law. A universal linear endpoint behavior explains the proton electromagnetic form factors F1 and F2, proton-proton scattering at fixed-angle, the t-dependence of proton-proton scattering at large s>> t, and Compton scattering at fixed t. The model appears to be the only comprehensive mechanism consistent with all experimental information.
Proton-deuteron double scattering
NASA Technical Reports Server (NTRS)
Wilson, J. W.
1974-01-01
A simple but accurate form for the proton-deuteron elastic double scattering amplitude, which includes both projectile and target recoil motion and is applicable at all momentum transfer, is derived by taking advantage of the restricted range of Fermi momentum allowed by the deuteron wave function. This amplitude can be directly compared to approximations which have neglected target recoil or are limited to small momentum transfer; the target recoil and large momentum transfer effects are evaluated explicitly within the context of a Gaussian model.
Two-proton transfer reactions on even Ni and Zn isotopes
NASA Astrophysics Data System (ADS)
Boucenna, A.; Kraus, L.; Linck, I.; Chan, Tsan Ung
1990-10-01
New levels strongly excited by 112-MeV 12C ions on even Ni and Zn isotopes are Jπ assigned on kinematical and geometrical arguments, crude shell-model calculations, and distorted-wave Born approximation angular-distribution analysis. These tentative assignments are supported by the Bansal-French model. Because of the contribution of additional collective effects, the two-proton transfer reaction spectra are less selectively fed than those obtained with the analogous two-neutron transfer reactions induced on the same targets in a similar energy range.
Puckett, Andrew J. R.; Brash, E. J.; Jones, M. K.; ...
2017-11-06
In this paper, interest in the behavior of nucleon electromagnetic form factors at large momentum transfers has steadily increased since the discovery, using polarization observables, of the rapid decrease of the ratio G p E/G p M of the proton's electric and magnetic form factors for momentum transfers Q 2 ≳ 1 GeV 2, in strong disagreement with previous extractions of this ratio using the traditional Rosenbluth separation technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puckett, Andrew J. R.; Brash, E. J.; Jones, M. K.
In this paper, interest in the behavior of nucleon electromagnetic form factors at large momentum transfers has steadily increased since the discovery, using polarization observables, of the rapid decrease of the ratio G p E/G p M of the proton's electric and magnetic form factors for momentum transfers Q 2 ≳ 1 GeV 2, in strong disagreement with previous extractions of this ratio using the traditional Rosenbluth separation technique.
Baptista, A M; Martel, P J; Soares, C M
1999-01-01
A new method is presented for simulating the simultaneous binding equilibrium of electrons and protons on protein molecules, which makes it possible to study the full equilibrium thermodynamics of redox and protonation processes, including electron-proton coupling. The simulations using this method reflect directly the pH and electrostatic potential of the environment, thus providing a much closer and realistic connection with experimental parameters than do usual methods. By ignoring the full binding equilibrium, calculations usually overlook the twofold effect that binding fluctuations have on the behavior of redox proteins: first, they affect the energy of the system by creating partially occupied sites; second, they affect its entropy by introducing an additional empty/occupied site disorder (here named occupational entropy). The proposed method is applied to cytochrome c3 of Desulfovibrio vulgaris Hildenborough to study its redox properties and electron-proton coupling (redox-Bohr effect), using a continuum electrostatic method based on the linear Poisson-Boltzmann equation. Unlike previous studies using other methods, the full reduction order of the four hemes at physiological pH is successfully predicted. The sites more strongly involved in the redox-Bohr effect are identified by analysis of their titration curves/surfaces and the shifts of their midpoint redox potentials and pKa values. Site-site couplings are analyzed using statistical correlations, a method much more realistic than the usual analysis based on direct interactions. The site found to be more strongly involved in the redox-Bohr effect is propionate D of heme I, in agreement with previous studies; other likely candidates are His67, the N-terminus, and propionate D of heme IV. Even though the present study is limited to equilibrium conditions, the possible role of binding fluctuations in the concerted transfer of protons and electrons under nonequilibrium conditions is also discussed. The occupational entropy contributions to midpoint redox potentials and pKa values are computed and shown to be significant. PMID:10354425
Electron, proton and hydrogen-atom transfers in photosynthetic water oxidation.
Tommos, Cecilia
2002-01-01
When photosynthetic organisms developed so that they could use water as an electron source to reduce carbon dioxide, the stage was set for efficient proliferation. Algae and plants spread globally and provided the foundation for our atmosphere and for O(2)-based chemistry in biological systems. Light-driven water oxidation is catalysed by photosystem II, the active site of which contains a redox-active tyrosine denoted Y(Z), a tetramanganese cluster, calcium and chloride. In 1995, Gerald Babcock and co-workers presented the hypothesis that photosynthetic water oxidation occurs as a metallo-radical catalysed process. In this model, the oxidized tyrosine radical is generated by coupled proton/electron transfer and re-reduced by abstracting hydrogen atoms from substrate water or hydroxide-ligated to the manganese cluster. The proposed function of Y(Z) requires proton transfer from the tyrosine site upon oxidation. The oxidation mechanism of Y(Z) in an inhibited and O(2)-evolving photosystem II is discussed. Domino-deprotonation from Y(Z) to the bulk solution is shown to be consistent with a variety of data obtained on metal-depleted samples. Experimental data that suggest that the oxidation of Y(Z) in O(2)-evolving samples is coupled to proton transfer in a hydrogen-bonding network are described. Finally, a dielectric-dependent model for the proton release that is associated with the catalytic cycle of photosystem II is discussed. PMID:12437877
Ertem, Mehmed Z.; Kharche, Neerav; Batista, Victor S.; ...
2015-03-12
Photoeclectrochemical water splitting plays a key role in a promising path to the carbon-neutral generation of solar fuels. Wurzite GaN and its alloys ( e.g., GaN/ZnO and InGaN) are demonstrated photocatalysts for water oxidation, and they can drive the overall water splitting reaction when coupled with co-catalysts for proton reduction. In the present work, we investigate the water oxidation mechanism on the prototypical GaN (101¯0) surface using a combined ab initio molecular dynamics and molecular cluster model approach taking into account the role of water dissociation and hydrogen bonding within the first solvation shell of the hydroxylated surface. The investigationmore » of free-energy changes for the four proton-coupled electron-transfer (PCET) steps of the water oxidation mechanism shows that the first PCET step for the conversion of –Ga-OH to –Ga-O˙⁻ requires the highest energy input. We further examine the sequential PCETs, with the proton transfer (PT) following the electron transfer (ET), and find that photo-generated holes localize on surface –NH sites is thermodynamically more favorable than –OH sites. However, proton transfer from –OH sites with subsequent localization of holes on oxygen atoms is kinetically favored owing to hydrogen bonding interactions at the GaN (101¯0)–water interface. We find that the deprotonation of surface –OH sites is the limiting factor for the generation of reactive oxyl radical ion intermediates and consequently for water oxidation.« less
Pendant Hydrogen-Bond Donors in Cobalt Catalysts Independently Enhance CO2 Reduction
2018-01-01
The bioinspired incorporation of pendant proton donors into transition metal catalysts is a promising strategy for converting environmentally deleterious CO2 to higher energy products. However, the mechanism of proton transfer in these systems is poorly understood. Herein, we present a series of cobalt complexes with varying pendant secondary and tertiary amines in the ligand framework with the aim of disentangling the roles of the first and second coordination spheres in CO2 reduction catalysis. Electrochemical and kinetic studies indicate that the rate of catalysis shows a first-order dependence on acid, CO2, and the number of pendant secondary amines, respectively. Density functional theory studies explain the experimentally observed trends and indicate that pendant secondary amines do not directly transfer protons to CO2, but instead bind acid molecules from solution. Taken together, these results suggest a mechanism in which noncooperative pendant amines facilitate a hydrogen-bonding network that enables direct proton transfer from acid to the activated CO2 substrate. PMID:29632886
Pendant Hydrogen-Bond Donors in Cobalt Catalysts Independently Enhance CO2 Reduction.
Chapovetsky, Alon; Welborn, Matthew; Luna, John M; Haiges, Ralf; Miller, Thomas F; Marinescu, Smaranda C
2018-03-28
The bioinspired incorporation of pendant proton donors into transition metal catalysts is a promising strategy for converting environmentally deleterious CO 2 to higher energy products. However, the mechanism of proton transfer in these systems is poorly understood. Herein, we present a series of cobalt complexes with varying pendant secondary and tertiary amines in the ligand framework with the aim of disentangling the roles of the first and second coordination spheres in CO 2 reduction catalysis. Electrochemical and kinetic studies indicate that the rate of catalysis shows a first-order dependence on acid, CO 2 , and the number of pendant secondary amines, respectively. Density functional theory studies explain the experimentally observed trends and indicate that pendant secondary amines do not directly transfer protons to CO 2 , but instead bind acid molecules from solution. Taken together, these results suggest a mechanism in which noncooperative pendant amines facilitate a hydrogen-bonding network that enables direct proton transfer from acid to the activated CO 2 substrate.
do N Varella, Márcio T; Arasaki, Yasuki; Ushiyama, Hiroshi; Takatsuka, Kazuo; Wang, Kwanghsi; McKoy, Vincent
2007-02-07
The authors report on studies of time-resolved photoelectron spectra of intramolecular proton transfer in the ground state of chloromalonaldehyde, employing ab initio photoionization matrix elements and effective potential surfaces of reduced dimensionality, wherein the couplings of proton motion to the other molecular vibrational modes are embedded by averaging over classical trajectories. In the simulations, population is transferred from the vibrational ground state to vibrationally hot wave packets by pumping to an excited electronic state and dumping with a time-delayed pulse. These pump-dump-probe simulations demonstrate that the time-resolved photoelectron spectra track proton transfer in the electronic ground state well and, furthermore, that the geometry dependence of the matrix elements enhances the tracking compared with signals obtained with the Condon approximation. Photoelectron kinetic energy distributions arising from wave packets localized in different basins are also distinguishable and could be understood, as expected, on the basis of the strength of the optical couplings in different regions of the ground state potential surface and the Franck-Condon overlaps of the ground state wave packets with the vibrational eigenstates of the ion potential surface.
Rowley, Christopher N; Ong, Tiow-Gan; Priem, Jessica; Richeson, Darrin S; Woo, Tom K
2008-12-15
While lithium amides supported by tetramethylethylenediamine (TMEDA) are efficient catalysts in the synthesis of substituted guanidines via the guanylation of an amine with carbodiimide, as well as the guanylation of phosphines and conversion of alkynes into propiolamidines, aluminum amides are only efficient catalysts for the guanylation of amides. Density functional theory (DFT) calculations were used to explain this difference in activity. The origin of this behavior is apparent in the critical step where a proton is transferred from the substrate to a metal guanidinate. The activation energies of these steps are modest for amines, phosphines, and alkynes when a lithium catalyst was used, but are prohibitively high for the analogous reactions with phosphines and alkynes for aluminum amide catalysts. Energy decomposition analysis (EDA) indicates that these high activations energies are due to the high energetic cost of the detachment of a chelating guanidinate nitrogen from the aluminum in the proton transfer transition state. Amines are able to adopt an ideal geometry for facile proton transfer to the aluminum guanidinate and concomitant Al-N bond formation, while phosphines and alkynes are not.
NASA Astrophysics Data System (ADS)
Khan, Ishaat M.; Ahmad, Afaq
2013-10-01
A proton transfer or H-bonded (CT) complex of o-phenylenediamine (OPD) as donor with L-tartaric acid (TART) as acceptor was synthesized and characterized by spectral techniques such as FTIR, 1H NMR, elemental analysis, TGA-TDA, X-ray crystallography and spectrophotometric studies. The structural investigations exhibit that the cation [OPD+] and anion [TART-] are linked together through strong N+-H⋯O- type hydrogen bonds due to transfer of proton from acceptor to donor. Formed H-bonded complex exhibits well resolved proton transfer bands in the regions where neither donor nor acceptor has any absorption. The stoichiometry of the H-bonded complex (HBC) was found to be 1:1, determined by straight line methods. Spectrophotometric studies have been performed at room temperature and Benesi-Hildebrand equation was used to determine formation constant (KCT), molar extinction coefficient (ɛCT) and also transition energy (ECT) of the H-bonded complex. Spectrophotomeric and crystallographic studies have ascertained the formation of 1:1 H-bonded complex. Thermal analysis (TGA-DTA) was also used to confirm the thermal fragmentation and the stability of the synthesized H-bonded complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, S.W.; Eckert, J.; Barthes, M.
1995-11-02
The crystal structure of acetanilide C{sub 8}H{sub 9}NO, M{sub r} = 135.17, orthorhombic, space group Pbca, Z=8, has been determined from neutron diffraction data at 15 and 295 K. The crystal data obtained are presented. This new investigation of the structure of acetanilide has been undertaken in order to assess a recent suggestion that confirmational substates in the amide proton position may be responsible for the vibrational anomalies. We found no evidence for multiple conformations or transfer along the N-H...O hydrogen bond of the amide proton at either temperature. However the intramolecular O...H6 distance from O to the nearest phenylmore » ring proton is unusually short and the amide proton has relatively close contacts with one of the phenyl and one of the methyl protons, which may well affect the vibrational parameters of the respective molecular groups. 44 refs., 6 figs., 5 tabs.« less
Effect of protons on the redox chemistry of colloidal zinc oxide nanocrystals.
Valdez, Carolyn N; Braten, Miles; Soria, Ashley; Gamelin, Daniel R; Mayer, James M
2013-06-12
Electron transfer (ET) reactions of colloidal 3-5 nm diameter ZnO nanocrystals (NCs) with molecular reagents are explored in aprotic solvents. Addition of an excess of the one-electron reductant Cp*2Co (Cp* = pentamethylcyclopentadienyl) gives NCs that are reduced by up to 1-3 electrons per NC. Protons can be added stoichiometrically to the NCs by either a photoreduction/oxidation sequence or by addition of acid. The added protons facilitate the reduction of the ZnO NCs. In the presence of acid, NC reduction by Cp*2Co can be increased to over 15 electrons per NC. The weaker reductant Cp*2Cr transfers electrons only to ZnO NCs in the presence of protons. Cp*2M(+) counterions are much less effective than protons at stabilizing reduced NCs. With excess Cp*2Co or Cp*2Cr, the extent of reduction increases roughly linearly with the number of protons added. Some of the challenges in understanding these results are discussed.
Dutta, Arnab; Lense, Sheri; Hou, Jianbo; Engelhard, Mark H; Roberts, John A S; Shaw, Wendy J
2013-12-11
Hydrogenase enzymes use first-row transition metals to interconvert H2 with protons and electrons, reactions that are important for the storage and recovery of energy from intermittent sources such as solar, hydroelectric, and wind. Here we present Ni(P(Cy)2N(Gly)2)2, a water-soluble molecular electrocatalyst with the amino acid glycine built into the diphosphine ligand framework. Proton transfer between the outer coordination sphere carboxylates and the second coordination sphere pendant amines is rapid, as observed by cyclic voltammetry and FTIR spectroscopy, indicating that the carboxylate groups may participate in proton transfer during catalysis. This complex oxidizes H2 (1-33 s(-1)) at low overpotentials (150-365 mV) over a range of pH values (0.1-9.0) and produces H2 under identical solution conditions (>2400 s(-1) at pH 0.5). Enzymes employ proton channels for the controlled movement of protons over long distances-the results presented here demonstrate the effects of a simple two-component proton channel in a synthetic molecular electrocatalyst.
Cerminara, Michele; Campos, Luis A.; Ramanathan, Ravishankar; Muñoz, Victor
2013-01-01
A battery of thermodynamic, kinetic, and structural approaches has indicated that the small α-helical protein BBL folds-unfolds via the one-state downhill scenario. Yet, single-molecule fluorescence spectroscopy offers a more conflicting view. Single-molecule experiments at pH 6 show a unique half-unfolded conformational ensemble at mid denaturation, whereas other experiments performed at higher pH show a bimodal distribution, as expected for two-state folding. Here we use thermodynamic and laser T-jump kinetic experiments combined with theoretical modeling to investigate the pH dependence of BBL stability, folding kinetics and mechanism within the pH 6–11 range. We find that BBL unfolding is tightly coupled to the protonation of one of its residues with an apparent pKa of ∼7. Therefore, in chemical denaturation experiments around neutral pH BBL unfolds gradually, and also converts in binary fashion to the protonated species. Moreover, under the single-molecule experimental conditions (denaturant midpoint and 279 K), we observe that proton transfer is much slower than the ∼15 microseconds folding-unfolding kinetics of BBL. The relaxation kinetics is distinctly biphasic, and the overall relaxation time (i.e. 0.2–0.5 ms) becomes controlled by the proton transfer step. We then show that a simple theoretical model of protein folding coupled to proton transfer explains quantitatively all these results as well as the two sets of single-molecule experiments, including their more puzzling features. Interestingly, this analysis suggests that BBL unfolds following a one-state downhill folding mechanism at all conditions. Accordingly, the source of the bimodal distributions observed during denaturation at pH 7–8 is the splitting of the unique conformational ensemble of BBL onto two slowly inter-converting protonation species. Both, the unprotonated and protonated species unfold gradually (one-state downhill), but they exhibit different degree of unfolding at any given condition because the native structure is less stable for the protonated form. PMID:24205082
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paolone, M.; Malace, S. P.; Strauch, S.
2010-08-12
Proton recoil polarization was measured in the quasielastic 4He(e(pol),e{prime}p(pol)){sup 3}H reaction at Q{sup 2}=0.8 and 1.3(GeV/c){sup 2} with unprecedented precision. The polarization-transfer coefficients are found to differ from those of the {sup 1}H(e(pol),e{prime}p(pol)) reaction, contradicting a relativistic distorted-wave approximation and favoring either the inclusion of medium-modified proton form factors predicted by the quark-meson coupling model or a spin-dependent charge-exchange final-state interaction. For the first time, the polarization-transfer ratio is studied as a function of the virtuality of the proton.
NASA Astrophysics Data System (ADS)
Petrov, O. A.; Kuzmina, E. L.; Maizlish, V. E.; Rodionov, A. V.
2014-01-01
The acid-basic interaction between tetra(4-nitro-5- tert-butyl)phthalocyanine and pyridine, 2-methylpyridine, morpholine, piperidine, n-butylamine, diethylamine, and triethylamine in benzene is studied. It is found that the intermolecular transfer of protons of NH groups from tetra(4-nitro-5- tert-butyl)phthalocyanine to morpholine and diethylamine is characterized by unusually low values of the reaction constant rates. The effect of the structure of tetra(4-nitro-5- tert-butyl)phthalocyanine and tetra(3-nitro-5- tert-butyl)phthalocyanine, and of the nature of the base on the kinetic parameters of acid-base interaction is demonstrated. A structure is proposed for complexes with the transfer of displaced phthalocyanines' protons. It is found that they undergo decomposition over time.
Ion-to-Neutral Ratios and Thermal Proton Transfer in Matrix-Assisted Laser Desorption/Ionization
NASA Astrophysics Data System (ADS)
Lu, I.-Chung; Chu, Kuan Yu; Lin, Chih-Yuan; Wu, Shang-Yun; Dyakov, Yuri A.; Chen, Jien-Lian; Gray-Weale, Angus; Lee, Yuan-Tseh; Ni, Chi-Kung
2015-07-01
The ion-to-neutral ratios of four commonly used solid matrices, α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (2,5-DHB), sinapinic acid (SA), and ferulic acid (FA) in matrix-assisted laser desorption/ionization (MALDI) at 355 nm are reported. Ions are measured using a time-of-flight mass spectrometer combined with a time-sliced ion imaging detector. Neutrals are measured using a rotatable quadrupole mass spectrometer. The ion-to-neutral ratios of CHCA are three orders of magnitude larger than those of the other matrices at the same laser fluence. The ion-to-neutral ratios predicted using the thermal proton transfer model are similar to the experimental measurements, indicating that thermal proton transfer reactions play a major role in generating ions in ultraviolet-MALDI.
Insights into proton translocation in cbb3 oxidase from MD simulations.
Carvalheda, Catarina A; Pisliakov, Andrei V
2017-05-01
Heme-copper oxidases are membrane protein complexes that catalyse the final step of the aerobic respiration, namely the reduction of oxygen to water. The energy released during catalysis is coupled to the active translocation of protons across the membrane, which contributes to the establishment of an electrochemical gradient that is used for ATP synthesis. The distinctive C-type (or cbb 3 ) cytochrome c oxidases, which are mostly present in proteobacteria, exhibit a number of unique structural and functional features, including high catalytic activity at low oxygen concentrations. At the moment, the functioning mechanism of C-type oxidases, in particular the proton transfer/pumping mechanism presumably via a single proton channel, is still poorly understood. In this work we used all-atom molecular dynamics simulations and continuum electrostatics calculations to obtain atomic-level insights into the hydration and dynamics of a cbb 3 oxidase. We provide the details of the water dynamics and proton transfer pathways for both the "chemical" and "pumped" protons, and show that formation of protonic connections is strongly affected by the protonation state of key residues, namely H243, E323 and H337. Copyright © 2017 Elsevier B.V. All rights reserved.
2016-01-01
Improved electrocatalysts for the oxygen reduction reaction (ORR) are critical for the advancement of fuel cell technologies. Herein, we report a series of 11 soluble iron porphyrin ORR electrocatalysts that possess turnover frequencies (TOFs) from 3 s–1 to an unprecedented value of 2.2 × 106 s–1. These TOFs correlate with the ORR overpotential, which can be modulated by changing the E1/2 of the catalyst using different ancillary ligands, by changing the solvent and solution acidity, and by changing the catalyst’s protonation state. The overpotential is well-defined for these homogeneous electrocatalysts by the E1/2 of the catalyst and the proton activity of the solution. This is the first such correlation for homogeneous ORR electrocatalysis, and it demonstrates that the remarkably fast TOFs are a consequence of high overpotential. The correlation with overpotential is surprising since the turnover limiting steps involve oxygen binding and protonation, as opposed to turnover limiting electron transfer commonly found in Tafel analysis of heterogeneous ORR materials. Computational studies show that the free energies for oxygen binding to the catalyst and for protonation of the superoxide complex are in general linearly related to the catalyst E1/2, and that this is the origin of the overpotential correlations. This analysis thus provides detailed understanding of the ORR barriers. The best catalysts involve partial decoupling of the influence of the second coordination sphere from the properties of the metal center, which is suggested as new molecular design strategy to avoid the limitations of the traditional scaling relationships for these catalysts. PMID:27924314
Cook, Brian J; Pink, Maren; Pal, Kuntal; Caulton, Kenneth G
2018-05-21
The bis-pyrazolato pyridine complex LCo(PEt 3 ) 2 serves as a masked form of three-coordinate Co II and shows diverse reactivity in its reaction with several potential outer sphere oxidants and oxygen atom transfer reagents. N-Methylmorpholine N-oxide (NMO) oxidizes coordinated PEt 3 from LCo(PEt 3 ) 2 , but the final cobalt product is still divalent cobalt, in LCo(NMO) 2 . The thermodynamics of a variety of oxygen atom transfer reagents, including NMO, are calculated by density functional theory, to rank their oxidizing power. Oxidation of LCo(PEt 3 ) 2 with AgOTf in the presence of LiCl as a trapping nucleophile forms the unusual aggregate [LCo(PEt 3 ) 2 Cl(LiOTf) 2 ] 2 held together by Li + binding to very nucleophilic chloride on Co(III) and triflate binding to those Li + . In contrast, Cp 2 Fe + effects oxidation to trivalent cobalt, to form (HL)Co(PEt 3 ) 2 Cl + ; proton and the chloride originate from solvent in a rare example of CH 2 Cl 2 dehydrochlorination. An unexpected noncomplementary redox reaction is reported involving attack by 2e reductant PEt 3 nucleophile on carbon of the 1e oxidant radical Cp 2 Fe + , forming a P-C bond and H + ; this reaction competes in the reaction of LCo(PEt 3 ) 2 with Cp 2 Fe + .
NASA Astrophysics Data System (ADS)
Gao, Aihua; Li, Jianpeng; Wang, Dehua; Ma, Xiaoguang; Wang, Meishan
2018-02-01
The photoisomerization processes of the second stablest isomer in the aromatic Schiff base, N-salicilydenemethylfurylamine, in the gas phase have been studied by static electronic structure calculations and surface-hopping dynamics simulations based on the Zhu-Nakamura theory. Various stable structures are obtained in the optimization because of different orientations of methyl-furyl part with respect to the salicylaldimine part and different orientations of hydroxy group with respect to the benzene ring. Upon photoexcitation into the first excited state, bond isomerization in the salicylaldimine part is completely suppressed until the strong excited-state hydrogen bond is broken. The decay pathway involves two excited-state minima, one in cis-enol form and the other in cis-keto form. After the excited-state proton transfer, twists of bonds lead to a conical intersection between the ground and excited states. After internal conversion around a conical intersection, the molecule is stabilized in cis- or trans-keto form. If the reverse hydrogen transfer process occurs in the ground state, the molecule will finally end up in the cis-enol region. The cis-keto and trans-keto isomers are observed as photoproducts. According to our full-dimensional nonadiabatic dynamics simulations, we find the excited-state intramolecular proton transfer and torsions of three single bonds in the chain to be responsible for photoisomerization of the second stablest isomer of N-salicilydenemethylfurylamine.
Joo, Ji Bong; Dillon, Robert; Lee, Ilkeun; Yin, Yadong; Bardeen, Christopher J.; Zaera, Francisco
2014-01-01
The production of hydrogen from water with semiconductor photocatalysts can be promoted by adding small amounts of metals to their surfaces. The resulting enhancement in photocatalytic activity is commonly attributed to a fast transfer of the excited electrons generated by photon absorption from the semiconductor to the metal, a step that prevents deexcitation back to the ground electronic state. Here we provide experimental evidence that suggests an alternative pathway that does not involve electron transfer to the metal but requires it to act as a catalyst for the recombination of the hydrogen atoms made via the reduction of protons on the surface of the semiconductor instead. PMID:24843154
Joo, Ji Bong; Dillon, Robert; Lee, Ilkeun; Yin, Yadong; Bardeen, Christopher J; Zaera, Francisco
2014-06-03
The production of hydrogen from water with semiconductor photocatalysts can be promoted by adding small amounts of metals to their surfaces. The resulting enhancement in photocatalytic activity is commonly attributed to a fast transfer of the excited electrons generated by photon absorption from the semiconductor to the metal, a step that prevents deexcitation back to the ground electronic state. Here we provide experimental evidence that suggests an alternative pathway that does not involve electron transfer to the metal but requires it to act as a catalyst for the recombination of the hydrogen atoms made via the reduction of protons on the surface of the semiconductor instead.
NASA Astrophysics Data System (ADS)
Kim, Hee Jin; Talukdar, Krishan; Choi, Sang-June
2016-02-01
Metal-organic frameworks can be intentionally coordinated to achieve improved proton conductivity because they have highly ordered structures and modular nature that serve as a scaffold to anchor acidic groups and develop efficient proton transfer pathways for fuel cell application. Using the concept of a coordination network, the conductivity of Nafion® was tuned by the incorporation of HKUST-1. It has CuII-paddle wheel type nodes and 1,3,5-benzenetricarboxylate struts, feature accessible sites that provides an improved protonic channel depending on the water content. In spite of the fact that HKUST-1 is neutral, coordinated water molecules are contributed adequately acidic by CuII to supply protons to enhance proton conductivity. Water molecules play a vital part in transfer of proton as conducting media and serve as triggers to change proton conductivity through reforming hydrogen bonding networks by water adsorption/desorption process. Increased ion exchange capacity and proton conductivity with lower water uptake of the H3PO4-doped material, and improved thermal stability (as confirmed by thermogravimetric analysis) were achieved. The structure of HKUST-1 was confirmed via field emission scanning electron microscopy and X-ray diffraction, while the porosity and adsorption desorption capacity were characterized by porosity analysis.
Ionic Liquids and New Proton Exchange Membranes for Fuel Cells
NASA Technical Reports Server (NTRS)
Belieres, Jean-Philippe
2004-01-01
There is currently a great surge of activity in fuel cell research as laboratories across the world seek to take advantage of the high energy capacity provided by &el cells relative to those of other portable electrochemical power systems. Much of this activity is aimed at high temperature fie1 cells, and a vital component of such &el cells must be the availability of a high temperature stable proton-permeable membrane. NASA Glenn Research Center is greatly involved in developing this technology. Other approaches to the high temperature fuel cell involve the use of single- component or almost-single-component electrolytes that provide a path for protons through the cell. A heavily researched case is the phosphoric acid fuel cell, in which the electrolyte is almost pure phosphoric acid and the cathode reaction produces water directly. The phosphoric acid fie1 cell delivers an open circuit voltage of 0.9 V falling to about 0.7 V under operating conditions at 170 C. The proton transport mechanism is mainly vehicular in character according to the viscosity/conductance relation. Here we describe some Proton Transfer Ionic Liquids (PTILs) with low vapor pressure and high temperature stability that have conductivities of unprecedented magnitude for non-aqueous systems. The first requirement of an ionic liquid is that, contrary to experience with most liquids consisting of ions, it must have a melting point that is not much above room temperature. The limit commonly suggested is 100 C. PTILs constitute an interesting class of non-corrosive proton-exchange electrolyte, which can serve well in high temperature (T = 100 - 250 C) fuel cell applications. We will present cell performance data showing that the open circuit voltage output, and the performance of a simple H2(g)Pt/PTIL/Pt/O2(g) fuel cell may be superior to those of the equivalent phosphoric acid electrolyte fuel cell both at ambient temperature and temperatures up to and above 200 C. My work at NASA Glenn Research Center during this summer is to develop and characterize proton exchange membranes doped with ionic liquids. The main techniques used to characterize these materials are: Impedance Spectroscopy, NMR, DSC, TGA, DMA, IR, and SEM ...
NASA Astrophysics Data System (ADS)
Afroz, Ziya; Faizan, Mohd.; Alam, Mohammad Jane; Ahmad, Shabbir; Ahmad, Afaq
2018-04-01
Proton transfer (PT) and hydrogen bonded charge transfer (HBCT) 1:1 complex of 1,2-dimethylimidazole (DMI) and 3,5-dinitrobenzoic acid (DNBA) have been theoretically analyzed and compared with reported experimental results. Both the structures in the isolated gaseous state have been optimized at DFT/B3LYP/6-311G(d,p) level of theory and further, the PT energy barrier has been calculated from potential energy surface scan. Along with structural investigations, theoretical vibrational spectra have been inspected and compared with the FTIR spectrum. Moreover, frontier molecular analysis has also been carried out.
Zhang, Liang; Zhu, Xun; Kashima, Hiroyuki; Li, Jun; Ye, Ding-Ding; Liao, Qiang; Regan, John M
2015-03-01
Two identical microbial fuel cells (MFCs) with a floating air-cathode were operated under either buffered (MFC-B) or bufferless (MFC-BL) conditions to investigate anolyte recirculation effects on enhancing proton transfer. With an external resistance of 50 Ω and recirculation rate of 1.0 ml/min, MFC-BL had a 27% lower voltage (9.7% lower maximal power density) but a 64% higher Coulombic efficiency (CE) than MFC-B. MFC-B had a decreased voltage output, batch time, and CE with increasing recirculation rate resulting from more oxygen transfer into the anode. However, increasing the recirculation rate within a low range significantly enhanced proton transfer in MFC-BL, resulting in a higher voltage output, a longer batch time, and a higher CE. A further increase in recirculation rate decreased the batch time and CE of MFC-BL due to excess oxygen transfer into anode outweighing the proton-transfer benefits. The unbuffered MFC had an optimal recirculation rate of 0.35 ml/min. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esboui, Mounir, E-mail: mounir.esboui@fst.rnu.tn; Technical and Vocational Training Corporation, Hail College of Technology, P.O. Box 1960, Hail 81441
The stepwise and concerted excited state intermolecular proton transfer (PT) and hydrogen transfer (HT) reactions in 2-hydroxypyridine-(NH{sub 3}){sub 2} complex in the gas phase under Cs symmetry constraint and without any symmetry constraints were performed using quantum chemical calculations. It shows that upon excitation, the hydrogen bonded in 2HP-(NH{sub 3}){sub 2} cluster facilitates the releasing of both hydrogen and proton transfer reactions along ammonia wire leading to the formation of the 2-pyridone tautomer. For the stepwise mechanism, it has been found that the proton and the hydrogen may transfer consecutively. These processes are distinguished from each other through charge translocationmore » analysis and the coupling between the motion of the proton and the electron density distribution along ammonia wire. For the complex under Cs symmetry, the excited state HT occurs on the A″({sup 1}πσ{sup ∗}) and A′({sup 1}nσ{sup ∗}) states over two accessible energy barriers along reaction coordinates, and excited state PT proceeds mainly through the A′({sup 1}ππ{sup ∗}) and A″({sup 1}nπ{sup ∗}) potential energy surfaces. For the unconstrained complex, potential energy profiles show two {sup 1}ππ{sup ∗}-{sup 1}πσ{sup ∗} conical intersections along enol → keto reaction path indicating that proton and H atom are localized, respectively, on the first and second ammonia of the wire. Moreover, the concerted excited state PT is competitive to take place with the stepwise process, because it proceeds over low barriers of 0.14 eV and 0.11 eV with respect to the Franck-Condon excitation of enol tautomer, respectively, under Cs symmetry and without any symmetry constraints. These barriers can be probably overcome through tunneling effect.« less
The use of nanomaterials for mass spectrometry can be uplifting for analyte detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J.; Lipson, R. H.
2014-03-31
Surface-Assisted Laser Desorption Ionization (SALDI) involves desorbing and ionizing analyte molecules from a nanoporous substrate by laser irradiation for detection in a mass spectrometer. In this work experiments were designed to better understand the mechanisms governing desorption and ionization for Desorption Ionization On Silicon (DIOS), a variant of SALDI which uses porous silicon (pSi) as a substrate. Experiments are also reported for other nanoporous semiconducting materials (WO{sub 3}, TiO{sub 2}) which exhibit very similar behaviors; specifically, that both protonated analyte ions and analyte radical cations can be generated with relative intensities that depend on the position of the incident lasermore » focus relative to substrate surface. While thermal desorption appears to be important, preliminary evidence suggests that the ionization mechanism leading to protonated analytes involves in part electrons and holes formed when photoexciting the substrate above its electronic band gap, and the presence of defect states within the band gap. Radical cation formation appears to be driven in part by electron transfer due to the large electron affinity of each substrate used in this work.« less
Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation.
Hernández-Ortega, Aitor; Ferreira, Patricia; Martínez, Angel T
2012-02-01
Aryl-alcohol oxidase (AAO) is an extracellular flavoprotein providing the H(2)O(2) required by ligninolytic peroxidases for fungal degradation of lignin, the key step for carbon recycling in land ecosystems. O(2) activation by Pleurotus eryngii AAO takes place during the redox-cycling of p-methoxylated benzylic metabolites secreted by the fungus. Only Pleurotus AAO sequences were available for years, but the number strongly increased recently due to sequencing of different basidiomycete genomes, and a comparison of 112 GMC (glucose-methanol-choline oxidase) superfamily sequences including 40 AAOs is presented. As shown by kinetic isotope effects, alcohol oxidation by AAO is produced by hydride transfer to the flavin, and hydroxyl proton transfer to a base. Moreover, site-directed mutagenesis studies showed that His502 activates the alcohol substrate by proton abstraction, and this result was extended to other GMC oxidoreductases where the nature of the base was under discussion. However, in contrast with that proposed for GMC oxidoreductases, the two transfers are not stepwise but concerted. Alcohol docking at the buried AAO active site resulted in only one catalytically relevant position for concerted transfer, with the pro-R α-hydrogen at distance for hydride abstraction. The expected hydride-transfer stereoselectivity was demonstrated, for the first time in a GMC oxidoreductase, by using the (R) and (S) enantiomers of α-deuterated p-methoxybenzyl alcohol. Other largely unexplained aspects of AAO catalysis (such as the unexpected specificity on substituted aldehydes) can also be explained in the light of the recent results. Finally, the biotechnological interest of AAO in flavor production is extended by its potential in production of chiral compounds taking advantage from the above-described stereoselectivity.
Anglada, Josep M; Crehuet, Ramon; Adhikari, Sarju; Francisco, Joseph S; Xia, Yu
2018-02-14
Hydropersulfides (RSSH) are highly reactive as nucleophiles and hydrogen atom transfer reagents. These chemical properties are believed to be key for them to act as antioxidants in cells. The reaction involving the radical species and the disulfide bond (S-S) in RSSH, a known redox-active group, however, has been scarcely studied, resulting in an incomplete understanding of the chemical nature of RSSH. We have performed a high-level theoretical investigation on the reactions of the hydroxyl radical (˙OH) toward a set of RSSH (R = -H, -CH 3 , -NH 2 , -C(O)OH, -CN, and -NO 2 ). The results show that S-S cleavage and H-atom abstraction are the two competing channels. The electron inductive effect of R induces selective ˙OH substitution at one sulfur atom upon S-S cleavage, forming RSOH and ˙SH for the electron donating groups (EDGs), whereas producing HSOH and ˙SR for the electron withdrawing groups (EWGs). The H-Atom abstraction by ˙OH follows a classical hydrogen atom transfer (hat) mechanism, producing RSS˙ and H 2 O. Surprisingly, a proton-coupled electron transfer (pcet) process also occurs for R being an EDG. Although for RSSH having EWGs hat is the leading channel, S-S cleavage can be competitive or even dominant for the EDGs. The overall reactivity of RSSH toward ˙OH attack is greatly enhanced with the presence of an EDG, with CH 3 SSH being the most reactive species found in this study (overall rate constant: 4.55 × 10 12 M -1 s -1 ). Our results highlight the complexity in RSSH reaction chemistry, the extent of which is closely modulated by the inductive effect of the substituents in the case of the oxidation by hydroxyl radicals.
2012-01-01
Background The kinome is made up of a large number of functionally diverse enzymes, with the classification indicating very little about the extent of the conserved kinetic mechanisms associated with phosphoryl transfer. It has been demonstrated that C8-H of ATP plays a critical role in the activity of a range of kinase and synthetase enzymes. Results A number of conserved mechanisms within the prescribed kinase fold families have been identified directly utilizing the C8-H of ATP in the initiation of phosphoryl transfer. These mechanisms are based on structurally conserved amino acid residues that are within hydrogen bonding distance of a co-crystallized nucleotide. On the basis of these conserved mechanisms, the role of the nucleotide C8-H in initiating the formation of a pentavalent intermediate between the γ-phosphate of the ATP and the substrate nucleophile is defined. All reactions can be clustered into two mechanisms by which the C8-H is induced to be labile via the coordination of a backbone carbonyl to C6-NH2 of the adenyl moiety, namely a "push" mechanism, and a "pull" mechanism, based on the protonation of N7. Associated with the "push" mechanism and "pull" mechanisms are a series of proton transfer cascades, initiated from C8-H, via the tri-phosphate backbone, culminating in the formation of the pentavalent transition state between the γ-phosphate of the ATP and the substrate nucleophile. Conclusions The "push" mechanism and a "pull" mechanism are responsible for inducing the C8-H of adenyl moiety to become more labile. These mechanisms and the associated proton transfer cascades achieve the proton transfer via different family-specific conserved sets of amino acids. Each of these mechanisms would allow for the regulation of the rate of formation of the pentavalent intermediate between the ATP and the substrate nucleophile. Phosphoryl transfer within kinases is therefore a specific event mediated and regulated via the coordination of the adenyl moiety of ATP and the C8-H of the adenyl moiety. PMID:22397702
Kjær, Christina; Brøndsted Nielsen, Steen; Stockett, Mark H
2017-09-20
While the emission spectrum of fluorescein monoanions isolated in vacuo displays a broad and featureless band, that of resorufin, also belonging to the xanthene family, has a sharp band maximum, clear vibronic structure, and experiences a small Stokes shift. Excited-state proton transfer in fluorescein can account for the differences.
The M2 Proton Channel of Influenza Virus: How Does It Work?
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, Michael; Schweighofer, Karl; Fonda, Mark (Technical Monitor)
2002-01-01
The transport of protons across membranes is an essential process for both bioenergetics of modem cells and the origins of cellular life. All living systems make use of proton gradients across cell walls to convert environmental energy into a high-energy chemical compound, adenosine triphosphate (ATR), synthesized from adenosine diphosphate. ATR, in turn, is used as a source of energy to drive many cellular reactions. The ubiquity of this process in biology suggests that even the earliest cellular systems were relying on proton gradient for harvesting environmental energy needed to support their survival and growth. In contemporary cells, proton transfer is assisted by large, complex proteins embedded in membranes. The issue addressed in this study was: how the same process can be accomplished with the aid of similar, but much simpler molecules that could have existed in the protobiological milieu? The model system used in the study contained a bilayer membrane made of phospholipid, dimyristoylphosphatidylcholine (DMPC), which is a good model of the biological membranes focusing cellular boundaries. Both sides of the bilayer were surrounded by water which simulated the environment inside and outside the cell. Embedded in the membrane was a fragment of the Influenza-A M2 protein and enough sodium counterions to maintain system neutrality. This protein has been shown to exhibit remarkably high rates of proton transport and, therefore, is an excellent model to study the formation of proton gradients across membranes. The Influenza M2 protein is 97 amino acids in length, but a fragment 25 amino acids long, which contains a transmembrane domain of 19 amino acids flanked by 3 amino acids on each side, is sufficient to transport protons. Four identical protein fragments, each folded into a helix, aggregate to form small channels spanning the membrane. Protons are conducted through a narrow pore in the middle of the channel in response to applied voltage. This channel is large enough to contain water molecules, and is normally filled with water. In analogy to the mechanism of proton transfer in some other channels, it has been postulated that protons are translocated along the network of water molecules filling the pore of the channel. This mechanism, however, must involve an additional, important step because the channel contains four histidine amino acid residues, one from each of the helices, which are sufficiently large to occlude the pore and interrupt the water network. The histidine residues ensure channel selectivity by blocking transport of small such as sodium or potassium. They have been also implicated in gating protons due to the ability of each histidine to become positively charged by accepting an additional proton. Two mechanisms of gating have been proposed. In one mechanism, all four histidines acquire an additional proton and, due to repulsion between their positive charges, move away from one another, thus opening the channel. The alternative mechanism relies of the ability of protons to move between different atoms in a molecule (tautomerization). Thus, a proton is captured on one side of the gate while another proton is released from the opposite side, and the molecule returns to the initial state through tautomerization. The simulations were designed to test these two mechanisms. Large-scale, atomic-level molecular dynamics simulations of the channel, in which the histidine residues were in different protonation states revealed that all intermediate states of the system involved in the tautomerization mechanism are structurally stable and the arrangement of water molecules in the channel is conducive to the proton transport. In contrast, in the four-protonated state, postulated to exist in the gate-opening mechanism, the electrostatic repulsion between the histidine residues appears to be so large that the channel looses its structural integrity and one helix moves away from the remaining three. This result indicates that such a mechanism of proton transport is unlikely. The simulations revealed that translocation along a network of water molecules in the channel and tautomerization of the histidine residues in the M2 proteins in the most likely mechanism of proton transport. The results not only explain how a remarkably simple protein system can efficiently aid in the formation of proton gradients across cell walls, but also suggest how this system can be genetically re-engineered to become a directional, reversible proton pump. Such a pump can provide energy to laboratory-built models of simple cellular systems. If they were successfully constructed it would greatly advance our understanding of the beginnings of life and find important applications in medicine and pharmacology.
Dynamics of Charge Transfer in DNA Wires: A Proton-Coupled Approach
NASA Astrophysics Data System (ADS)
Behnia, Sohrab; Fathizadeh, Samira; Ziaei, Javid; Akhshani, Afshin
2017-12-01
The advent of molecular electronics has fueled interest in studying DNA as a nanowire. The well-known Peyrard-Bishop-Dauxois (PBD) model, which was proposed for the purpose of understanding the mechanism of DNA denaturation, has a limited number of degrees of freedom. In addition, considering the Peyrard-Bishop-Holstein (PBH) model as a means of studying the charge transfer effect, in which the dynamical motion is described via the PBD model, may apply limitations on observing all the phenomena. Therefore, we have attempted to add the mutual interaction of a proton and electron in the form of proton-coupled electron transfer (PCET) to the PBH model. PCET has been implicated in a variety of oxidative processes that ultimately lead to mutations. When we have considered the PCET approach to DNA based on a proton-combined PBH model, we were able to extract the electron and proton currents independently. In this case, the reciprocal influence of electron and proton current is considered. This interaction does not affect the general form of the electronic current in DNA, but it changes the threshold of the occurrence of phenomena such as negative differential resistance. It is worth mentioning that perceiving the structural properties of the attractors in phase space via the Rényi dimension and concentrating on the critical regions through a scalogram can present a clear picture of the critical points in such phenomena.
Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi
2011-05-01
Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of nonequivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolite phantoms with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: (i) on-resonance SL is most sensitive to chemical exchanges in the intermediate-exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. (ii) Offset frequency-dependent SL and CEST spectra are very similar and can be explained well with an SL model recently developed by Trott and Palmer (J Magn Reson 2002;154:157-160). (iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. (iv) The asymmetry of the magnetization transfer ratio (MTR(asym)) is highly dependent on the choice of saturation pulse power. In the intermediate-exchange regime, MTR(asym) becomes complicated and should be interpreted with care. Copyright © 2010 Wiley-Liss, Inc.
Two-proton transfer reactions on even Ni and Zn isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boucenna, A.; Kraus, L.; Linck, I.
New levels strongly excited by 112-MeV {sup 12}C ions on even Ni and Zn isotopes are {ital J}{sup {pi}} assigned on kinematical and geometrical arguments, crude shell-model calculations, and distorted-wave Born approximation angular-distribution analysis. These tentative assignments are supported by the Bansal-French model. Because of the contribution of additional collective effects, the two-proton transfer reaction spectra are less selectively fed than those obtained with the analogous two-neutron transfer reactions induced on the same targets in a similar energy range.
Wawrzyniak, Piotr K; Alia, A; Schaap, Roland G; Heemskerk, Mattijs M; de Groot, Huub J M; Buda, Francesco
2008-12-14
Bacteriochlorophyll-histidine complexes are ubiquitous in nature and are essential structural motifs supporting the conversion of solar energy into chemically useful compounds in a wide range of photosynthesis processes. A systematic density functional theory study of the NMR chemical shifts for histidine and for bacteriochlorophyll-a-histidine complexes in the light-harvesting complex II (LH2) is performed using the BLYP functional in combination with the 6-311++G(d,p) basis set. The computed chemical shift patterns are consistent with available experimental data for positive and neutral(tau) (N(tau) protonated) crystalline histidines. The results for the bacteriochlorophyll-a-histidine complexes in LH2 provide evidence that the protein environment is stabilizing the histidine close to the Mg ion, thereby inducing a large charge transfer of approximately 0.5 electronic equivalent. Due to this protein-induced geometric constraint, the Mg-coordinated histidine in LH2 appears to be in a frustrated state very different from the formal neutral(pi) (N(pi) protonated) form. This finding could be important for the understanding of basic functional mechanisms involved in tuning the electronic properties and exciton coupling in LH2.
Hydrogen production by the naked active site of the di-iron hydrogenases in water.
Zipoli, Federico; Car, Roberto; Cohen, Morrel H; Selloni, Annabella
2009-10-01
We explored the reactivity of the active center of the [FeFe]-hydrogenases detached from the enzyme and immersed in acidified water by first-principles Car-Parrinello molecular-dynamics simulations. We focused on the identification of the structures that are stable and metastable in acidified water and on their activity for hydrogen production. Our calculations revealed that the naked active center could be an efficient catalyst provided that electrons are transferred to the cluster. We found that both bridging and terminal isomers are present at equilibrium and that the bridging configuration is essential for efficient hydrogen production. The formation of the hydrogen molecule occurs via sequential protonations of the distal iron and of the N-atom of the S-CH(2)-NH-CH(2)-S chelating group. H(2) desorption does not involve a significant energy barrier, making the process very efficient at room temperature. We established that the bottleneck in the reaction is the direct proton transfer from water to the vacant site of the distal iron. Moreover, we found that even if the terminal isomer is present at the equilibrium, its strong local hydrophobicity prevents poisoning of the cluster.
Loerting, Thomas; Liedl, Klaus R.
2000-01-01
The hydration rate constant of sulfur trioxide to sulfuric acid is shown to depend sensitively on water vapor pressure. In the 1:1 SO3-H2O complex, the rate is predicted to be slower by about 25 orders of magnitude compared with laboratory results [Lovejoy, E. R., Hanson, D. R. & Huey, L. G. (1996) J. Phys. Chem. 100, 19911–19916; Jayne, J. T., Pöschl, U., Chen, Y.-m., Dai, D., Molina, L. T., Worsnop, D. R., Kolb, C. E. & Molina, M. J. (1997) J. Phys. Chem. A 101, 10000–10011]. This discrepancy is removed mostly by allowing a second and third water molecule to participate. An asynchronous water-mediated double proton transfer concerted with the nucleophilic attack and a double proton transfer accompanied by a transient H3O+ rotation are predicted to be the fastest reaction mechanisms. Comparison of the predicted negative apparent “activation” energies with the experimental finding indicates that in our atmosphere, different reaction paths involving two and three water molecules are taken in the process of forming sulfate aerosols and consequently acid rain. PMID:10922048
Michalczyk, Ryszard; Unkefer, Clifford J.; Bacik, John-Paul; Schrader, Tobias E.; Ostermann, Andreas; Kovalevsky, Andrey Y.; McKenna, Robert; Fisher, Suzanne Zoë
2015-01-01
Human carbonic anhydrase II (HCA II) uses a Zn-bound OH−/H2O mechanism to catalyze the reversible hydration of CO2. This catalysis also involves a separate proton transfer step, mediated by an ordered solvent network coordinated by hydrophilic residues. One of these residues, Tyr7, was previously shown to be deprotonated in the neutron crystal structure at pH 10. This observation indicated that Tyr7 has a perturbed pKa compared with free tyrosine. To further probe the pKa of this residue, NMR spectroscopic measurements of [13C]Tyr-labeled holo HCA II (with active-site Zn present) were preformed to titrate all Tyr residues between pH 5.4–11.0. In addition, neutron studies of apo HCA II (with Zn removed from the active site) at pH 7.5 and holo HCA II at pH 6 were conducted. This detailed interrogation of tyrosines in HCA II by NMR and neutron crystallography revealed a significantly lowered pKa of Tyr7 and how pH and Tyr proximity to Zn affect hydrogen-bonding interactions. PMID:25902526
NASA Astrophysics Data System (ADS)
Bialas, A.; Bzdak, A.
2007-01-01
Small momentum transfer elastic proton-proton cross-section at high energies is calculated assuming the nucleon composed of two constituents -- a quark and a diquark. A comparison to data (described very well up to -t approx 2 GeV2/c) allows to determine some properties of the constituents. While quark turns out fairly small, the diquark appears to be rather large, comparable to the size of the proton.
Controlling the dual mechanisms of oxide interface doping
NASA Astrophysics Data System (ADS)
Dai, Weitao; Cen, Cheng
The formation of two dimensional electron gas (2DEG) at LaAlO3/SrTiO3 interfaces involves multiple electronic and structural causes. The interplay between them makes the investigation of individual mechanism very challenging. Here we demonstrate the nanoscale selective control of two interface doping pathways: charge transfers from surface adsorbed protons and oxygen vacancies created in LaAlO3 layers. The selective control is achieved by combining intensive electric field generated by conducting AFM probe which controls both the creation/migration of oxygen vacancies and the surface proton density, with plasma assisted surface hydroxylation and solvent based proton solvation that act mainly on surface adsorbates. Robust nanoscale reversible metal-insulator transition was achieved at the interfaces with the LaAlO3 layer thicker than the critic thickness. Different combinations of the experimental methods and doping mechanisms enable highly flexible tuning of the 2DEG's carrier density, mobility and sensitivity to ambient environments. The reversible and independent controls of surface states and vacancies add to the fundamental material research capabilities and can benefit future exploration of designed 2DEG nanoelectronics.
Double proton transfer in the complex of acetic acid with methanol: Theory versus experiment
NASA Astrophysics Data System (ADS)
Fernández-Ramos, Antonio; Smedarchina, Zorka; Rodríguez-Otero, Jesús
2001-01-01
To test the approximate instanton approach to intermolecular proton-transfer dynamics, we report multidimensional ab initio bimolecular rate constants of HH, HD, and DD exchange in the complex of acetic acid with methanol in tetrahydrofuran-d8, and compare them with the NMR (nuclear magnetic resonance) experiments of Gerritzen and Limbach. The bimolecular rate constants are evaluated as products of the exchange rates and the equilibrium rate constants of complex formation in solution. The two molecules form hydrogen-bond bridges and the exchange occurs via concerted transfer of two protons. The dynamics of this transfer is evaluated in the complete space of 36 vibrational degrees of freedom. The geometries of the two isolated molecules, the complex, and the transition states corresponding to double proton transfer are fully optimized at QCISD (quadratic configuration interaction including single and double substitutions) level of theory, and the normal-mode frequencies are calculated at MP2 (Møller-Plesset perturbation theory of second order) level with the 6-31G (d,p) basis set. The presence of the solvent is taken into account via single-point calculations over the gas phase geometries with the PCM (polarized continuum model). The proton exchange rate constants, calculated with the instanton method, show the effect of the structure and strength of the hydrogen bonds, reflected in the coupling between the tunneling motion and the other vibrations of the complex. Comparison with experiment, which shows substantial kinetic isotopic effects (KIE), indicates that tunneling prevails over classic exchange for the whole temperature range of observation. The unusual behavior of the experimental KIE upon single and double deuterium substitution is well reproduced and is related to the synchronicity of two-atom tunneling.
Zhang, Wei; Wang, Yang; Wei, Donghui; Tang, Mingsheng; Zhu, Xinju
2016-07-06
A systematic theoretical study has been carried out to understand the mechanism and stereoselectivity of N-heterocyclic carbene (NHC)-catalyzed intramolecular crossed-benzoin reaction of enolizable keto-aldehyde using density functional theory (DFT) calculations. The calculated results reveal that the most favorable pathway contains four steps, i.e., the nucleophilic attack of NHC on the carbonyl carbon atom of a formyl group, the formation of a Breslow intermediate, a ring-closure process coupled with proton transfer, and regeneration of the catalyst. For the formation of the Breslow intermediate via the [1,2]-proton transfer process, apart from the direct proton transfer mechanism, the base Et3N and the in situ generated Brønsted acid Et3N·H(+) mediated proton transfer mechanisms have also been investigated; the free energy barriers for the crucial proton transfer steps are found to be significantly lowered by explicit inclusion of the Brønsted acid Et3N·H(+). The computational results show that the ring-closure process is the stereoselectivity-determining step, in which two chirality centers assigned on the coupling carbon atoms are formed, and the S-configured diastereomer is the predominant product, which is in good agreement with the experimental observations. NCI and NBO analyses are employed to disclose the origin of stereoselectivity and regioselectivity. Moreover, a global reaction index (GRI) analysis has been performed to confirm that NHC mainly plays the role of a Lewis base. The mechanistic insights obtained in the present study should be valuable for the rational design of an effective organocatalyst for this kind of reaction with high stereoselectivity and regioselectivity.
Jin, Tao; Kim, Seong-Gi
2014-01-01
The chemical exchange (CE) rate of endogenous hydroxyl and amine protons with water is often comparable to the difference in their chemical shifts. These intermediate exchange (IMEX) processes have been imaged by the CE saturation transfer (CEST) approach with low-power and long-duration irradiation. However, its sensitivity is not optimal, and more importantly, the signal is contaminated by slow magnetization transfer processes. Here, the property of CEST signals is compared to a CE-sensitive spin-locking (CESL) technique irradiating at the labile proton frequency. Firstly, using a higher power and shorter irradiation in CE-MRI yields i) increasing selectivity to faster chemical exchange rates by higher sensitivity to faster exchanges and less sensitivity to slower CE and magnetization transfer processes, and ii) decreasing in vivo asymmetric magnetization transfer contrast measured at ±15 ppm. The sensitivity gain of CESL over CEST is higher for a higher-power and shorter irradiation. Unlike CESL, CEST signals oscillate at a very high power and short irradiation. Secondly, time-dependent CEST and CESL signals are well modeled by analytical solutions of CE-MRI with asymmetric population approximation (CEAPA), which can be used for quantitative CE-MRI, and validated by simulations of Bloch-McConnell equations and phantom experiments. Lastly, in vivo amine-water proton exchange contrast measured at 2.5 ppm with ω1 of 500 Hz is 18% higher in sensitivity for CESL than CEST at 9.4 T. Overall, CESL provides better exchange rate selectivity and sensitivity than CEST; therefore, CESL is more suitable for CE-MRI of IMEX protons. PMID:25199631
Molecular mechanisms for generating transmembrane proton gradients
Gunner, M.R.; Amin, Muhamed; Zhu, Xuyu; Lu, Jianxun
2013-01-01
Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side. PMID:23507617
Xu, Sihang; Pavlov, Julius; Attygalle, Athula B
2017-04-01
Upon activation in the gas phase, protonated benzoic acid (m/z 123) undergoes fragmentation by several mechanisms. In addition to the predictable water loss followed by a CO loss, the m/z 123 ion more intriguingly eliminates a molecule of benzene to generate protonated carbon dioxide (H - O + ═ C ≡ O, m/z 45), or a molecule of carbon dioxide to yield protonated benzene (m/z 79). Experimental evidence shows that the incipient proton ambulates during the fragmentation processes. For the CO 2 or benzene loss, protonated benzoic acid transfers the charge-imparting proton initially to the ortho position and then to the ipso position to generate a transient species which dissociates to form an ion-neutral complex between benzene and protonated CO 2 . The formation of the m/z 45 ion is not a phenomenon unique to benzoic acid: spectra from protonated isophthalic acid, terephthalic acid, trans-cinnamic acid and some aliphatic acids also displayed a peak for m/z 45. However, the m/z 45 peak is structurally diagnostic only for certain benzene polycarboxylic acids because the spectra of compounds with two carboxyl groups on adjacent ring carbons do not produce a peak at m/z 45. For the m/z 79 ion to be formed, an intramolecular reaction should take place in which protonated CO 2 within the ion-neutral complex acts as the attacking electrophile to transfer a proton to benzene. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Proton elastic form factor ratios to Q2=3.5GeV2 by polarization transfer
NASA Astrophysics Data System (ADS)
Punjabi, V.; Perdrisat, C. F.; Aniol, K. A.; Baker, F. T.; Berthot, J.; Bertin, P. Y.; Bertozzi, W.; Besson, A.; Bimbot, L.; Boeglin, W. U.; Brash, E. J.; Brown, D.; Calarco, J. R.; Cardman, L. S.; Chai, Z.; Chang, C.-C.; Chen, J.-P.; Chudakov, E.; Churchwell, S.; Cisbani, E.; Dale, D. S.; Leo, R. De; Deur, A.; Diederich, B.; Domingo, J. J.; Epstein, M. B.; Ewell, L. A.; Fissum, K. G.; Fleck, A.; Fonvieille, H.; Frullani, S.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gerstner, G.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Gorbenko, V.; Green, A.; Hansen, J.-O.; Howell, C. R.; Huber, G. M.; Iodice, M.; de Jager, C. W.; Jaminion, S.; Jiang, X.; Jones, M. K.; Kahl, W.; Kelly, J. J.; Khayat, M.; Kramer, L. H.; Kumbartzki, G.; Kuss, M.; Lakuriki, E.; Laveissière, G.; Lerose, J. J.; Liang, M.; Lindgren, R. A.; Liyanage, N.; Lolos, G. J.; Macri, R.; Madey, R.; Malov, S.; Margaziotis, D. J.; Markowitz, P.; McCormick, K.; McIntyre, J. I.; Meer, R. L.; Michaels, R.; Milbrath, B. D.; Mougey, J. Y.; Nanda, S. K.; Offermann, E. A.; Papandreou, Z.; Pentchev, L.; Petratos, G. G.; Piskunov, N. M.; Pomatsalyuk, R. I.; Prout, D. L.; Quéméner, G.; Ransome, R. D.; Raue, B. A.; Roblin, Y.; Roche, R.; Rutledge, G.; Rutt, P. M.; Saha, A.; Saito, T.; Sarty, A. J.; Smith, T. P.; Sorokin, P.; Strauch, S.; Suleiman, R.; Takahashi, K.; Templon, J. A.; Todor, L.; Ulmer, P. E.; Urciuoli, G. M.; Vernin, P.; Vlahovic, B.; Voskanyan, H.; Wijesooriya, K.; Wojtsekhowski, B. B.; Woo, R. J.; Xiong, F.; Zainea, G. D.; Zhou, Z.-L.
2005-05-01
The ratio of the proton elastic electromagnetic form factors, GEp/GMp, was obtained by measuring Pt and Pℓ, the transverse and longitudinal recoil proton polarization components, respectively, for the elastic e→p→ep→reaction in the four-momentum transfer squared range of 0.5 to 3.5GeV2. In the single-photon exchange approximation, GEp/GMp is directly proportional to Pt/Pℓ. The simultaneous measurement of Pt and Pℓ in a polarimeter reduces systematic uncertainties. The results for GEp/GMp show a systematic decrease with increasing Q2, indicating for the first time a definite difference in the distribution of charge and magnetization in the proton. The data have been reanalyzed and their systematic uncertainties have become significantly smaller than those reported previously.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisov, S. P., E-mail: denisov@ihep.ru; Kozelov, A. V.; Petrov, V. A.
Elastic-scattering data were analyzed, and it was concluded on the basis of this analysis that precisionmeasurements of differential cross sections for elastic proton–proton scattering at the accelerator of the Institute for High Energy Physics (IHEP, Protvino, Russia) over a broad momentum-transfer range are of importance and topical interest. The layout of the respective experimental facility detecting the scattered particle and recoil proton and possessing a high momentum-transfer resolution was examined along with the equipment constituting this facility. The facility in question is able to record up to a billion events of elastic proton–proton scattering per IHEP accelerator run (20 days).more » Other lines of physics research with this facility are briefly discussed.« less
Structure-Derived Proton-Transfer Mechanism of Action Human Pyruvate Dehydrogenase
NASA Technical Reports Server (NTRS)
Ciszak, Ewa; Dominiak, Paulina
2003-01-01
The derivative of vitamin B1 thiamin pyrophosphate (TPP) is a cofactor of pyruvate dehydrogenase (E1p) that is involved in decarboxylation of pyruvate followed by reductive acetylation of lipoic acid covalently bound to a lysine residue of dihydrolipoamide acetyltransferase. The structure of E1p recently determined in our laboratory revealed patterns of association of foul subunits and specifics of two TPP binding sites. The mechanism of action in part includes a conserved hydrogen bond between the N1' atom of the aminopyrimidine ring of the cofactor and the carboxylate group of Glu59 from the beta subunits, and a V-conformation of the cofactor that brings the N4' atom of the aminopyrimidine ring to the distance of the intramolecular hydrogen bond formed with the C2-atom of the thiazolium moiety. The carboxylate group of Glu59 is the local proton acceptor that enables proton translocation within the aminopyrimidine ring and stabilization of the rare N4' - iminopyrimidine tautomer. Based on the analysis of E1p structure, we postulate that the protein environment drives N4' - amino/N4' - imino dynamics resulting in a concerted shuttle-like movement of the subunits. We also propose that this movement of the subunits is strictly coordinated with the two enzymatic reactions carried out in E1p by each of the two cofactor sites. It is proposed that these reactions are in alternating phases such that when one active site is involved in decarboxylation, the other is involved in acetylation of lipoyl noiety.
Liu, Jian; McLuckey, Scott A.
2012-01-01
The effect of cation charge state on product partitioning in the gas-phase ion/ion electron transfer reactions of multiply protonated tryptic peptides, model peptides, and relatively large peptides with singly charged radical anions has been examined. In particular, partitioning into various competing channels, such as proton transfer (PT) versus electron transfer (ET), electron transfer with subsequent dissociation (ETD) versus electron transfer with no dissociation (ET,noD), and fragmentation of backbone bonds versus fragmentation of side chains, was measured quantitatively as a function of peptide charge state to allow insights to be drawn about the fundamental aspects of ion/ion reactions that lead to ETD. The ET channel increases relative to the PT channel, ETD increases relative to ET,noD, and fragmentation at backbone bonds increases relative to side-chain cleavages as cation charge state increases. The increase in ET versus PT with charge state is consistent with a Landau-Zener based curve-crossing model. An optimum charge state for ET is predicted by the model for the ground state-to-ground state reaction. However, when the population of excited product ion states is considered, it is possible that a decrease in ET efficiency as charge state increases will not be observed due to the possibility of the population of excited electronic states of the products. Several factors can contribute to the increase in ETD versus ET,noD and backbone cleavage versus side-chain losses. These factors include an increase in reaction exothermicity and charge state dependent differences in precursor and product ion structures, stabilities, and sites of protonation. PMID:23264749
Tunneling dynamics of double proton transfer in formic acid and benzoic acid dimers
NASA Astrophysics Data System (ADS)
Smedarchina, Zorka; Fernández-Ramos, Antonio; Siebrand, Willem
2005-04-01
Direct dynamics calculations based on instanton techniques are reported of tunneling splittings due to double proton transfer in formic and benzoic acid dimers. The results are used to assign the observed splittings to levels for which the authors of the high-resolution spectra could not provide a definitive assignment. In both cases the splitting is shown to be due mainly to the zero-point level rather than to the vibrationally or electronically excited level whose spectrum was investigated. This leads to zero-point splittings of 375MHz for (DCOOH)2 and 1107MHz for the benzoic acid dimer. Thus, contrary to earlier calculations, it is found that the splitting is considerably larger in the benzoic than in the formic acid dimer. The calculations are extended to solid benzoic acid where the asymmetry of the proton-transfer potential induced by the crystal can be overcome by suitable doping. This has allowed direct measurement of the interactions responsible for double proton transfer, which were found to be much larger than those in the isolated dimer. To account for this observation both static and dynamic effects of the crystal forces on the intradimer hydrogen bonds are included in the calculations. The same methodology, extended to higher temperatures, is used to calculate rate constants for HH, HD, and DD transfers in neat benzoic acid crystals. The results are in good agreement with reported experimental rate constants measured by NMR relaxometry and, if allowance is made for small structural changes induced by doping, with the transfer matrix elements observed in doped crystals. Hence the method used allows a unified description of tunneling splittings in the gas phase and in doped crystals as well as of transfer rates in neat crystals.
Renaud, J; Rossomme, S; Sarfehnia, A; Vynckier, S; Palmans, H; Kacperek, A; Seuntjens, J
2016-09-21
In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min -1 , with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user's beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.
NASA Astrophysics Data System (ADS)
Renaud, J.; Rossomme, S.; Sarfehnia, A.; Vynckier, S.; Palmans, H.; Kacperek, A.; Seuntjens, J.
2016-09-01
In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min-1, with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user’s beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.
NASA Astrophysics Data System (ADS)
Safarzade, Zohre; Fathi, Reza; Shojaei Akbarabadi, Farideh; Bolorizadeh, Mohammad A.
2018-04-01
The scattering of a completely bare ion by atoms larger than hydrogen is at least a four-body interaction, and the charge transfer channel involves a two-step process. Amongst the two-step interactions of the high-velocity single charge transfer in an anion-atom collision, there is one whose amplitude demonstrates a peak in the angular distribution of the cross sections. This peak, the so-called Thomas peak, was predicted by Thomas in a two-step interaction, classically, which could also be described through three-body quantum mechanical models. This work discusses a four-body quantum treatment of the charge transfer in ion-atom collisions, where two-step interactions illustrating a Thomas peak are emphasized. In addition, the Pauli exclusion principle is taken into account for the initial and final states as well as the operators. It will be demonstrated that there is a momentum condition for each two-step interaction to occur in a single charge transfer channel, where new classical interactions lead to the Thomas mechanism.
Investigation of La1−xSrxCrO3−∂ (x ~ 0.1) as Membrane for Hydrogen Production
Larring, Yngve; Vigen, Camilla; Ahouanto, Florian; Fontaine, Marie-Laure; Peters, Thijs; Smith, Jens B.; Norby, Truls; Bredesen, Rune
2012-01-01
Various inorganic membranes have demonstrated good capability to separate hydrogen from other gases at elevated temperatures. Hydrogen-permeable, dense, mixed proton-electron conducting ceramic oxides offer superior selectivity and thermal stability, but chemically robust candidates with higher ambipolar protonic and electronic conductivity are needed. In this work, we present for the first time the results of various investigations of La1−xSrxCrO3−∂ membranes for hydrogen production. We aim in particular to elucidate the material’s complex transport properties, involving co-ionic transport of oxide ions and protons, in addition to electron holes. This opens some new possibilities for efficient heat and mass transfer management in the production of hydrogen. Conductivity measurements as a function of pH2 at constant pO2 exhibit changes that reveal a significant hydration and presence of protons. The flux and production of hydrogen have been measured under different chemical gradients. In particular, the effect of water vapor in the feed and permeate gas stream sides was investigated with the aim of quantifying the ratio of hydrogen production by hydrogen flux from feed to permeate and oxygen flux the opposite way (“water splitting”). Deuterium labeling was used to unambiguously prove flux of hydrogen species. PMID:24958299
Momentum loss in proton-nucleus and nucleus-nucleus collisions
NASA Technical Reports Server (NTRS)
Khan, Ferdous; Townsend, Lawrence W.
1993-01-01
An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies.
Kogan, Feliks; Singh, Anup; Cai, Keija; Haris, Mohammad; Hariharan, Hari; Reddy, Ravinder
2011-01-01
Proton exchange imaging is important as it allows for visualization and quantification of the distribution of specific metabolites with conventional MRI. Current exchange mediated MRI methods suffer from poor contrast as well as confounding factors that influence exchange rates. In this study we developed a new method to measure proton exchange which combines chemical exchange saturation transfer (CEST) and T1ρ magnetization preparation methods (CESTrho). We demonstrated that this new CESTrho sequence can detect proton exchange in the slow to intermediate exchange regimes. It has a linear dependence on proton concentration which allows it to be used to quantitatively measure changes in metabolite concentration. Additionally, the magnetization scheme of this new method can be customized to make it insensitive to changes in exchange rate while retaining its dependency on solute concentration. Finally, we showed the feasibility of using CESTrho in vivo. This sequence is able to detect proton exchange at intermediate exchange rates and is unaffected by the confounding factors that influence proton exchange rates thus making it ideal for the measurement of metabolites with exchangeable protons in this exchange regime. PMID:22009759
Kogan, Feliks; Singh, Anup; Cai, Keija; Haris, Mohammad; Hariharan, Hari; Reddy, Ravinder
2012-07-01
Proton exchange imaging is important as it allows for visualization and quantification of the distribution of specific metabolites with conventional MRI. Current exchange mediated MRI methods suffer from poor contrast as well as confounding factors that influence exchange rates. In this study we developed a new method to measure proton exchange which combines chemical exchange saturation transfer and T(1)(ρ) magnetization preparation methods (CESTrho). We demonstrated that this new CESTrho sequence can detect proton exchange in the slow to intermediate exchange regimes. It has a linear dependence on proton concentration which allows it to be used to quantitatively measure changes in metabolite concentration. Additionally, the magnetization scheme of this new method can be customized to make it insensitive to changes in exchange rate while retaining its dependency on solute concentration. Finally, we showed the feasibility of using CESTrho in vivo. This sequence is able to detect proton exchange at intermediate exchange rates and is unaffected by the confounding factors that influence proton exchange rates thus making it ideal for the measurement of metabolites with exchangeable protons in this exchange regime. Copyright © 2011 Wiley Periodicals, Inc.
Transfer of a proton between H2 and O2.
Kluge, Lars; Gärtner, Sabrina; Brünken, Sandra; Asvany, Oskar; Gerlich, Dieter; Schlemmer, Stephan
2012-11-13
The proton affinities of hydrogen and oxygen are very similar. Therefore, it has been discussed that the proton transfer from the omnipresent H(3)(+) to molecular oxygen in the near thermoneutral reaction H(3)(+) + O(2) <--> O(2)H(+) + H(2) effectively binds the interstellar oxygen in O(2)H(+). In this work, the proton transfer reaction has been investigated in a low-temperature 22-pole ion trap from almost room temperature (280 K) down to the lowest possible temperature limited by freeze out of oxygen gas (about 40 K at a low pressure). The Arrhenius behaviour of the rate coefficient for the forward reaction shows that it is subject to an activation energy of E(A)/k=113 K. Thus, the forward reaction can proceed only in higher temperature molecular clouds. Applying laser-induced reactions to the given reaction (in the backward direction), a preliminary search for spectroscopic signatures of O(2)H(+) in the infrared was unsuccessful, whereas the forward reaction has been successfully used to probe the population of the lowest ortho and para levels of H(3)(+).
Omidyan, Reza; Iravani, Maryam
2016-11-14
The MP2/CC2 and CASSCF theoretical approaches have been employed to determine the excited state proton transfer and photophysical nature of the four organic compounds, having the main frame of hydroxyphenyl-imidzaopyridine (HPIP). The nitrogen insertion effect, in addition to amine (-NH 2 ) substitution has been investigated extensively by following the transition energies and deactivation pathways of resulted HPIP derivatives. It has been predicted that the excited state intramolecular proton transfer with or without small barrier is the most important feature of these compounds. Also, for all of the considered HPIP derivatives, a conical intersection (CI) between ground and the S 1 excited state has been predicted. The strong non-adiabatic coupling in the CI (S 1 /S 0 ), drives the system back to the ground state in which the proton may either return to the phenoxy unit and thus close the photocycle, or the system can continue the twisting motion that results in formation of a γ-photochromic species. This latter species can be responsible for photochromism of HPIP derivative systems.
NASA Astrophysics Data System (ADS)
Omidyan, Reza; Iravani, Maryam
2016-11-01
The MP2/CC2 and CASSCF theoretical approaches have been employed to determine the excited state proton transfer and photophysical nature of the four organic compounds, having the main frame of hydroxyphenyl-imidzaopyridine (HPIP). The nitrogen insertion effect, in addition to amine (-NH2) substitution has been investigated extensively by following the transition energies and deactivation pathways of resulted HPIP derivatives. It has been predicted that the excited state intramolecular proton transfer with or without small barrier is the most important feature of these compounds. Also, for all of the considered HPIP derivatives, a conical intersection (CI) between ground and the S1 excited state has been predicted. The strong non-adiabatic coupling in the CI (S1/S0), drives the system back to the ground state in which the proton may either return to the phenoxy unit and thus close the photocycle, or the system can continue the twisting motion that results in formation of a γ-photochromic species. This latter species can be responsible for photochromism of HPIP derivative systems.
Kamel, Amin; Jeanville, Patrick; Colizza, Kevin; J-Rivera, Lauren Elizabeth
2008-11-01
The role of propionitrile in the production of [M+H]+ under atmospheric pressure photoionization (APPI) was investigated. In dopant-assisted APPI using acetone and anisole, protonated acetone and anisole radical cations were the most prominent ions observed. In dopant-free or direct APPI in acetonitrile, however, a major ion in acetonitrile was detected and identified as propionitrile, using high accuracy mass measurement and collision induced dissociation studies. Vaporizing ca. 10(-5) M althiazide and bendroflumethazide under direct APPI in acetonitrile produced their corresponding protonated species [M+H]+. In addition to protonated acetonitrile, its dimers, and acetonitrile/water clusters, protonated propionitrile, propionitrile dimer, and propionitrile/water clusters were also observed. The role of propionitrile, an impurity in acetonitrile and/or a possible product of ion-molecule reaction, in the production of [M+H]+ of althiazide and bendroflumethazide was further investigated in the absence of dopant using propionitrile-d5. The formation of [M+D]+ species was observed, suggesting a possible role of propionitrile in the protonation process. Additionally, an increase in the [M+H]+ signal of althiazide and bendroflumethazide was observed as a function of propionitrile concentration in acetonitrile. Theoretical data from the literature supported the assumption that one possible mechanism, among others, for the formation of [M+H]+ could be attributed to photo-initiated isomerization of propionitrile. The most stable isomers of propionitrile, based on their calculated ionization energy (IE) and relative energy (DeltaE), were assumed to undergo proton transfer to the analytes, and mechanisms were proposed.
Ivanova, Lena V; Cibich, Daniel; Deye, Gregory; Talipov, Marat R; Timerghazin, Qadir K
2017-04-18
Nitroxyl (HNO), a reduced form of the important gasotransmitter nitric oxide, exhibits its own unique biological activity. A possible biological pathway of HNO formation is the S-thiolation reaction between thiols and S-nitrosothiols (RSNOs). Our density functional theory (DFT) calculations suggested that S-thiolation proceeds through a proton transfer from the thiol to the RSNO nitrogen atom, which increases electrophilicity of the RSNO sulfur, followed by nucleophilic attack by thiol, yielding a charge-separated zwitterionic intermediate structure RSS + (R)N(H)O - (Zi), which decomposes to yield HNO and disulfide RSSR. In the gas phase, the proton transfer and the S-S bond formation are asynchronous, resulting in a high activation barrier (>40 kcal mol -1 ), making the reaction infeasible. However, the barrier can decrease below the S-N bond dissociation energy in RSNOs (≈30 kcal mol -1 ) upon transition into an aqueous environment that stabilizes Zi and provides a proton shuttle to synchronize the proton transfer and the S-S bond formation. These mechanistic features suggest that S-thiolation can easily lend itself to enzymatic catalysis and thus can be a possible route of endogenous HNO production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Greatly Under-Appreciated Fundamental Principle of Physical Organic Chemistry
Cox, Robin A.
2011-01-01
If a species does not have a finite lifetime in the reaction medium, it cannot be a mechanistic intermediate. This principle was first enunciated by Jencks, as the concept of an enforced mechanism. For instance, neither primary nor secondary carbocations have long enough lifetimes to exist in an aqueous medium, so SN1 reactions involving these substrates are not possible, and an SN2 mechanism is enforced. Only tertiary carbocations and those stabilized by resonance (benzyl cations, acylium ions) are stable enough to be reaction intermediates. More importantly, it is now known that neither H3O+ nor HO− exist as such in dilute aqueous solution. Several recent high-level calculations on large proton clusters are unable to localize the positive charge; it is found to be simply “on the cluster” as a whole. The lifetime of any ionized water species is exceedingly short, a few molecular vibrations at most; the best experimental study, using modern IR instrumentation, has the most probable hydrated proton structure as H13O6+, but only an estimated quarter of the protons are present even in this form at any given instant. Thanks to the Grotthuss mechanism of chain transfer along hydrogen bonds, in reality a proton or a hydroxide ion is simply instantly available anywhere it is needed for reaction. Important mechanistic consequences result. Any charged oxygen species (e.g., a tetrahedral intermediate) is also not going to exist long enough to be a reaction intermediate, unless the charge is stabilized in some way, usually by resonance. General acid catalysis is the rule in reactions in concentrated aqueous acids. The Grotthuss mechanism also means that reactions involving neutral water are favored; the solvent is already highly structured, so the entropy involved in bringing several solvent molecules to the reaction center is unimportant. Examples are given. PMID:22272074
2015-01-01
After a summary of the problem of coupling electron and proton transfer to proton pumping in cytochrome c oxidase, we present the results of our earlier and recent density functional theory calculations for the dinuclear Fe-a3–CuB reaction center in this enzyme. A specific catalytic reaction wheel diagram is constructed from the calculations, based on the structures and relative energies of the intermediate states of the reaction cycle. A larger family of tautomers/protonation states is generated compared to our earlier work, and a new lowest-energy pathway is proposed. The entire reaction cycle is calculated for the new smaller model (about 185–190 atoms), and two selected arcs of the wheel are chosen for calculations using a larger model (about 205 atoms). We compare the structural and redox energetics and protonation calculations with available experimental data. The reaction cycle map that we have built is positioned for further improvement and testing against experiment. PMID:24960612
Proton transport through aqueous Nafion membrane
NASA Astrophysics Data System (ADS)
Son, D. N.; Kasai, H.
2009-08-01
We introduce a new model for proton transport through a single proton-conducting channel of an aqueous Nafion membrane based on a mechanism in which protons move under electrostatic effect provided by the sulfonate ( SO3 -groups of the Nafion side chains, the spin effect of active components, the hydrogen bonding effect with water molecules, and the screening effect of water media. This model can describe the proton transport within various levels of humidification ranging from the low humidity to the high humidity as a function of operating temperature. At low humidity, this model approaches to the so-called surface mechanism, while at high humidity, it approaches the well-known Grotthuss one. Proton motion is considered as the transfer from cluster to cluster under a potential energy. A proton-proton interaction is comprised in the calculation. Using Green function method, we obtained the proton current as a function of the Nafion membrane temperature. We found that the lower the temperature, the higher the proton current transfer through the Nafion membrane in low temperatures compared to the critical point 10K, which separates magnetic regime from non-magnetic regime. The increasing of proton current at very low temperatures is attributed to the spin effect. As the membrane temperature is higher than 40 ° C , the decreasing of proton current is attributed to the loss of water uptake and the polymer contraction. The results of this study are qualitatively in good agreement with experiments. The expression for the critical temperature is also presented as a function of structural and tunable parameters, and interpreted by experimental data. in here
Mechanistic insights into the rhenium-catalyzed alcohol-to-olefin dehydration reaction.
Korstanje, Ties J; Jastrzebski, Johann T B H; Klein Gebbink, Robertus J M
2013-09-23
Rhenium-based complexes are powerful catalysts for the dehydration of various alcohols to the corresponding olefins. Here, we report on both experimental and theoretical (DFT) studies into the mechanism of the rhenium-catalyzed dehydration of alcohols to olefins in general, and the methyltrioxorhenium-catalyzed dehydration of 1-phenylethanol to styrene in particular. The experimental and theoretical studies are in good agreement, both showing the involvement of several proton transfers, and of a carbenium ion intermediate in the catalytic cycle. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ATP hydrolysis in Eg5 kinesin involves a catalytic two-water mechanism.
Parke, Courtney L; Wojcik, Edward J; Kim, Sunyoung; Worthylake, David K
2010-02-19
Motor proteins couple steps in ATP binding and hydrolysis to conformational switching both in and remote from the active site. In our kinesin.AMPPPNP crystal structure, closure of the active site results in structural transformations appropriate for microtubule binding and organizes an orthosteric two-water cluster. We conclude that a proton is shared between the lytic water, positioned for gamma-phosphate attack, and a second water that serves as a general base. To our knowledge, this is the first experimental detection of the catalytic base for any ATPase. Deprotonation of the second water by switch residues likely triggers subsequent large scale structural rearrangements. Therefore, the catalytic base is responsible for initiating nucleophilic attack of ATP and for relaying the positive charge over long distances to initiate mechanotransduction. Coordination of switch movements via sequential proton transfer along paired water clusters may be universal for nucleotide triphosphatases with conserved active sites, such as myosins and G-proteins.
NASA Astrophysics Data System (ADS)
Xia, Hanxue; Zhang, Yong; Attygalle, Athula B.
2018-06-01
Protonated methyl benzoate, upon activation, fragments by three distinct pathways. The m/z 137 ion for the protonated species generated by helium-plasma ionization (HePI) was mass-selected and subjected to collisional activation. In one fragmentation pathway, the protonated molecule generated a product ion of m/z 59 by eliminating a molecule of benzene (Pathway I). The m/z 59 ion (generally recognized as the methoxycarbonyl cation) produced in this way, then formed a methyl carbenium ion in situ by decarboxylation, which in turn evoked an electrophilic aromatic addition reaction on the benzene ring by a termolecular process to generate the toluenium cation (Pathway II). Moreover, protonated methyl benzoate undergoes also a methanol loss (Pathway III). However, it is not a simple removal of a methanol molecule after a protonation on the methoxy group. The incipient proton migrates to the ring and randomizes to a certain degree before a subsequent transfer of one of the ring protons to the alkoxy group for the concomitant methanol elimination. The spectrum recorded from deuteronated methyl benzoate showed two peaks at m/z 105 and 106 for the benzoyl cation at a ratio of 2:1, confirming the charge-imparting proton is mobile. However, the proton transfer from the benzenium intermediate to the methoxy group for the methanol loss occurs before achieving a complete state of scrambling. [Figure not available: see fulltext.
Panek, Jarosław J; Filarowski, Aleksander; Jezierska-Mazzarello, Aneta
2013-10-21
Understanding of the electronic structure evolution due to a proton dynamics is a key issue in biochemistry and material science. This paper reports on density functional theory calculations of Schiff bases containing short, strong intramolecular hydrogen bonds where the bridged proton is located: (i) at the donor site, (ii) strongly delocalized, and (iii) at the acceptor site. The mobility of the bridged proton and its influence on the molecular structure and properties of the chosen Schiff base derivatives have been investigated on the basis of Atoms in Molecules, Natural Bond Orbitals, and Electron Localization Function theories. It has been observed that the extent of the bridged proton delocalization is strongly modified by the steric and inductive effects present in the studied compounds introduced by various substituents. It has been shown that: (i) potential energy profiles for the proton motion are extremely dependent on the substitution of the aromatic ring, (ii) the topology of the free electron pairs present at the donor∕acceptor site, as well as their electron populations, are affected qualitatively by the bridged proton position, (iii) the distortion of the molecular structure due to the bridged proton dynamics includes the atomic charge fluctuations, which are in some cases non-monotonic, and (iv) topology of the ELF recognizes events of proton detachment from the donor and attachment to the acceptor. The quantitative and qualitative results shed light onto molecular consequences of the proton transfer phenomena.
Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber
NASA Astrophysics Data System (ADS)
Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien
2015-04-01
This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the 'NETSCAN' method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.
J. M. Roberts; P. Veres; C. Warneke; J. A. Neuman; R. A. Washenfelder; S. S. Brown; M. Baasandorj; J. B. Burkholder; I. R. Burling; T. J. Johnson; R. J. Yokelson; J. de Gouw
2010-01-01
A negative-ion proton transfer chemical ionization mass spectrometric technique (NI-PT-CIMS), using acetate as the reagent ion, was applied to the measurement of volatile inorganic acids of atmospheric interest: hydrochloric (HCl), nitrous (HONO), nitric 5 (HNO3), and isocyanic (HNCO) acids. Gas phase calibrations through the sampling inlet showed the method to be...
NASA Astrophysics Data System (ADS)
McCarthy, Annemarie; Ruth, Albert A.
2013-11-01
Two distinct S0 → S1 fluorescence excitation spectra of methyl-2-hydroxy-3-napthoate (MHN23) have been obtained by monitoring fluorescence separately in the short (˜410 nm) and long (˜650 nm) wavelength emission bands. The short wavelength fluorescence is assigned to two MHN23 conformers which do not undergo excited state intramolecular proton transfer (ESIPT). Analysis of the 'long wavelength' fluorescence excitation spectrum, which arises from the proton transfer tautomer of MHN23 indicates an average lifetime of τ ⩾ 18 ± 2 fs for the initially excited states. Invoking the results of Catalan et al. [J. Phys. Chem. A, 1999, 103, 10921], who determined the N tautomer to decay predominantly via a fast non-radiative process, the limit of the rate of intramolecular excited proton transfer in MHN23 is calculated as, kpt ⩽ 1 × 1012 s-1.
Proton-Coupled Electron Transfer in Organic Synthesis: Fundamentals, Applications, and Opportunities
Miller, David C.; Tarantino, Kyle T.; Knowles, Robert R.
2016-01-01
Proton-coupled electron transfers (PCETs) are unconventional redox processes in which both protons and electrons are exchanged, often in a concerted elementary step. While PCET is now recognized to play a central a role in biological redox catalysis and inorganic energy conversion technologies, its applications in organic synthesis are only beginning to be explored. In this chapter we aim to highlight the origins, development and evolution of PCET processes most relevant to applications in organic synthesis. Particular emphasis is given to the ability of PCET to serve as a non-classical mechanism for homolytic bond activation that is complimentary to more traditional hydrogen atom transfer processes, enabling the direct generation of valuable organic radical intermediates directly from their native functional group precursors under comparatively mild catalytic conditions. The synthetically advantageous features of PCET reactivity are described in detail, along with examples from the literature describing the PCET activation of common organic functional groups. PMID:27573270
Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level
NASA Astrophysics Data System (ADS)
Hansel, A.; Jordan, A.; Holzinger, R.; Prazeller, P.; Vogel, W.; Lindinger, W.
1995-11-01
A system for trace gas analysis using proton transfer reaction mass spectrometry (PTR-MS) has been developed which allows for on-line measurements of components with concentrations as low as 1 ppb. The method is based on reactions of H3O+ ions, which perform non-dissociative proton transfer to most of the common organic trace constituents but do not react with any of the components present in clean air. Examples of analysis of breath taken from smokers and non-smokers as well as from patients suffering from cirrhosis of the liver, and of air in buildings as well as of ambient air taken at a road crossing demonstrate the wide range of applicability of this method. An enhanced level of acetonitrile in the breath is a most suitable indicator that a person is a smoker. Enhanced levels of propanol strongly indicate that a person has a severe liver deficiency.
A catalytic role of surface silanol groups in CO2 capture on the amine-anchored silica support.
Cho, Moses; Park, Joonho; Yavuz, Cafer T; Jung, Yousung
2018-05-03
A new mechanism of CO2 capture on the amine-functionalized silica support is demonstrated using density functional theory calculations, in which the silica surface not only acts as a support to anchor amines, but also can actively participate in the CO2 capture process through a facile proton transfer reaction with the amine groups. The surface-mediated proton transfer mechanism in forming a carbamate-ammonium product has lower kinetic barrier (8.1 kcal mol-1) than the generally accepted intermolecular mechanism (12.7 kcal mol-1) under dry conditions, and comparable to that of the water-assisted intermolecular mechanism (6.0 kcal mol-1) under humid conditions. These findings suggest that the CO2 adsorption on the amine-anchored silica surface would mostly occur via the rate-determining proton transfer step that is catalyzed by the surface silanol groups.
A SIFT study of the reactions of H2ONO+ ions with several types of organic molecules
NASA Astrophysics Data System (ADS)
Smith, David; Wang, Tianshu; Spanel, Patrik
2003-11-01
A selected ion flow tube (SIFT) study has been carried out of the reactions of hydrated nitrosonium ions, NO+H2O, which theory has equated to protonated nitrous acid ions, H2ONO+. One objective of this study was to investigate if this ion exhibits the properties of both a cluster ion and a protonated acid in their reactions with a variety of organic molecules. The chosen reactant molecules comprise two each of the following types--amines, terpenes, aromatic hydrocarbons, esters, carboxylic acids, ketones, aldehydes and alcohols. The reactant H2ONO+ (NO+H2O) ions are formed in a discharge ion source and injected into helium carrier gas where they are partially vibrationally excited and partially dissociated to NO+ ions. Hence, the reactions of the H2ONO+ ions had to be studies simultaneously with NO+ ions, the reactions of the latter ions readily being studied by selectively injecting NO+ ions into the carrier gas. The results of this study indicate that the H2ONO+ ions undergo a wide variety of reaction processes that depend on the properties of the reactant molecules such as their ionisation energies and proton affinities. These processes include charge transfer with compounds, M, that have low ionisation energies (producing M+), proton transfer with compounds possessing large proton affinities (MH+), hydride ion transfer (M---H+), alkyl radical (M---R+), alkoxide radical transfer (M---OR+), ion-molecule association (NO+H2OM) and ligand switching (NO+M), producing the ions given in parentheses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shakib, Farnaz A.; Hanna, Gabriel, E-mail: gabriel.hanna@ualberta.ca
In a previous study [F. A. Shakib and G. Hanna, J. Chem. Phys. 141, 044122 (2014)], we investigated a model proton-coupled electron transfer (PCET) reaction via the mixed quantum-classical Liouville (MQCL) approach and found that the trajectories spend the majority of their time on the mean of two coherently coupled adiabatic potential energy surfaces. This suggested a need for mean surface evolution to accurately simulate observables related to ultrafast PCET processes. In this study, we simulate the time-dependent populations of the three lowest adiabatic states in the ET-PT (i.e., electron transfer preceding proton transfer) version of the same PCET modelmore » via the MQCL approach and compare them to the exact quantum results and those obtained via the fewest switches surface hopping (FSSH) approach. We find that the MQCL population profiles are in good agreement with the exact quantum results and show a significant improvement over the FSSH results. All of the mean surfaces are shown to play a direct role in the dynamics of the state populations. Interestingly, our results indicate that the population transfer to the second-excited state can be mediated by dynamics on the mean of the ground and second-excited state surfaces, as part of a sequence of nonadiabatic transitions that bypasses the first-excited state surface altogether. This is made possible through nonadiabatic transitions between different mean surfaces, which is the manifestation of coherence transfer in MQCL dynamics. We also investigate the effect of the strength of the coupling between the proton/electron and the solvent coordinate on the state population dynamics. Drastic changes in the population dynamics are observed, which can be understood in terms of the changes in the potential energy surfaces and the nonadiabatic couplings. Finally, we investigate the state population dynamics in the PT-ET (i.e., proton transfer preceding electron transfer) and concerted versions of the model. The PT-ET results confirm the participation of all of the mean surfaces, albeit in different proportions compared to the ET-PT case, while the concerted results indicate that the mean of the ground- and first-excited state surfaces only plays a role, due to the large energy gaps between the ground- and second-excited state surfaces.« less
Yu, Xue-Fang; Yamazaki, Shohei; Taketsugu, Tetsuya
2017-08-30
Solvent effects on the excited-state double proton transfer (ESDPT) mechanism in the 7-azaindole (7AI) dimer were investigated using the time-dependent density functional theory (TDDFT) method. Excited-state potential energy profiles along the reaction paths in a locally excited (LE) state and a charge transfer (CT) state were calculated using the polarizable continuum model (PCM) to include the solvent effect. A series of non-polar and polar solvents with different dielectric constants were used to examine the polarity effect on the ESDPT mechanism. The present results suggest that in a non-polar solvent and a polar solvent with a small dielectric constant, ESDPT follows a concerted mechanism, similar to the case in the gas phase. In a polar solvent with a relatively large dielectric constant, however, ESDPT is likely to follow a stepwise mechanism via a stable zwitterionic intermediate in the LE state on the adiabatic potential energy surface, although inclusion of zero-point vibrational energy (ZPE) corrections again suggests the concerted mechanism. In the meantime, the stepwise reaction path involving the CT state with neutral intermediates is also examined, and is found to be less competitive than the concerted or stepwise path in the LE state in both non-polar and polar solvents. The present study provides a new insight into the experimental controversy of the ESDPT mechanism of the 7AI dimer in a solution.
Quantification of in vivo pH-weighted amide proton transfer (APT) MRI in acute ischemic stroke
NASA Astrophysics Data System (ADS)
Zhou, Iris Y.; Igarashi, Takahiro; Guo, Yingkun; Sun, Phillip Z.
2015-03-01
Amide proton transfer (APT) imaging is a specific form of chemical exchange saturation transfer (CEST) MRI that probes the pH-dependent amide proton exchange.The endogenous APT MRI is sensitive to tissue acidosis, which may complement the commonly used perfusion and diffusion scans for characterizing heterogeneous ischemic tissue damage. Whereas the saturation transfer asymmetry analysis (MTRasym) may reasonably compensate for direct RF saturation, in vivo MTRasym is however, susceptible to an intrinsically asymmetric shift (MTR'asym). Specifically, the reference scan for the endogenous APT MRI is 7 ppm upfield from that of the label scan, and subjects to concomitant RF irradiation effects, including nuclear overhauser effect (NOE)-mediated saturation transfer and semisolid macromolecular magnetization transfer. As such, the commonly used asymmetry analysis could not fully compensate for such slightly asymmetric concomitant RF irradiation effects, and MTRasym has to be delineated in order to properly characterize the pH-weighted APT MRI contrast. Given that there is very little change in relaxation time immediately after ischemia and the concomitant RF irradiation effects only minimally depends on pH, the APT contrast can be obtained as the difference of MTRasym between the normal and ischemic regions. Thereby, the endogenous amide proton concentration and exchange rate can be solved using a dual 2-pool model, and the in vivo MTR'asym can be calculated by subtracting the solved APT contrast from asymmetry analysis (i.e., MTR'asym =MTRasym-APTR). In addition, MTR'asym can be quantified using the classical 2-pool exchange model. In sum, our study delineated the conventional in vivo pH-sensitive MTRasym contrast so that pHspecific contrast can be obtained for imaging ischemic tissue acidosis.
Sakamoto, Hiroki; Shimizu, Tatsuki; Nagao, Ryo; Noguchi, Takumi
2017-02-08
Photosynthetic water oxidation performed at the Mn 4 CaO 5 cluster in photosystem II plays a crucial role in energy production as electron and proton sources necessary for CO 2 fixation. Molecular oxygen, a byproduct, is a source of the oxygenic atmosphere that sustains life on earth. However, the molecular mechanism of water oxidation is not yet well-understood. In the reaction cycle of intermediates called S states, the S 2 → S 3 transition is particularly important; it consists of multiple processes of electron transfer, proton release, and water insertion, and generates an intermediate leading to O-O bond formation. In this study, we monitored the reaction process during the S 2 → S 3 transition using time-resolved infrared spectroscopy to clarify its molecular mechanism. A change in the hydrogen-bond interaction of the oxidized Y Z • radical, an immediate electron acceptor of the Mn 4 CaO 5 cluster, was clearly observed as a ∼100 μs phase before the electron-transfer phase with a time constant of ∼350 μs. This observation provides strong experimental evidence that rearrangement of the hydrogen-bond network around Y Z • , possibly due to the movement of a water molecule located near Y Z • to the Mn site, takes place before the electron transfer. The electron transfer was coupled with proton release, as revealed by a relatively high deuterium kinetic isotope effect of 1.9. This proton release, which decreases the redox potential of the Mn 4 CaO 5 cluster to facilitate electron transfer to Y Z • , was proposed to determine, as a rate-limiting step, the relatively slow electron-transfer rate of the S 2 → S 3 transition.
Double-Resonance Facilitated Decomposion of Emission Spectra
NASA Astrophysics Data System (ADS)
Kato, Ryota; Ishikawa, Haruki
2016-06-01
Emission spectra provide us with rich information about the excited-state processes such as proton-transfer, charge-transfer and so on. In the cases that more than one excited states are involved, emission spectra from different excited states sometimes overlap and a decomposition of the overlapped spectra is desired. One of the methods to perform a decomposition is a time-resolved fluorescence technique. It uses a difference in time evolutions of components involved. However, in the gas-phase, a concentration of the sample is frequently too small to carry out this method. On the other hand, double-resonance technique is a very powerful tool to discriminate or identify a common species in the spectra in the gas-phase. Thus, in the present study, we applied the double-resonance technique to resolve the overlapped emission spectra. When transient IR absorption spectra of the excited state are available, we can label the population of the certain species by the IR excitation with a proper selection of the IR wavenumbers. Thus, we can obtain the emission spectra of labeled species by subtracting the emission spectra with IR labeling from that without IR. In the present study, we chose the charge-transfer emission spectra of cyanophenyldisilane (CPDS) as a test system. One of us reported that two charge-transfer (CT) states are involved in the intramolecular charge-transfer (ICT) process of CPDS-water cluster and recorded the transient IR spectra. As expected, we have succeeded in resolving the CT emission spectra of CPDS-water cluster by the double resonance facilitated decomposion technique. In the present paper, we will report the details of the experimental scheme and the results of the decomposition of the emission spectra. H. Ishikawa, et al., Chem. Phys. Phys. Chem., 9, 117 (2007).
Factors that control catalytic two- versus four-electron reduction of dioxygen by copper complexes.
Fukuzumi, Shunichi; Tahsini, Laleh; Lee, Yong-Min; Ohkubo, Kei; Nam, Wonwoo; Karlin, Kenneth D
2012-04-25
The selective two-electron reduction of O(2) by one-electron reductants such as decamethylferrocene (Fc*) and octamethylferrocene (Me(8)Fc) is efficiently catalyzed by a binuclear Cu(II) complex [Cu(II)(2)(LO)(OH)](2+) (D1) {LO is a binucleating ligand with copper-bridging phenolate moiety} in the presence of trifluoroacetic acid (HOTF) in acetone. The protonation of the hydroxide group of [Cu(II)(2)(LO)(OH)](2+) with HOTF to produce [Cu(II)(2)(LO)(OTF)](2+) (D1-OTF) makes it possible for this to be reduced by 2 equiv of Fc* via a two-step electron-transfer sequence. Reactions of the fully reduced complex [Cu(I)(2)(LO)](+) (D3) with O(2) in the presence of HOTF led to the low-temperature detection of the absorption spectra due to the peroxo complex [Cu(II)(2)(LO)(OO)] (D) and the protonated hydroperoxo complex [Cu(II)(2)(LO)(OOH)](2+) (D4). No further Fc* reduction of D4 occurs, and it is instead further protonated by HOTF to yield H(2)O(2) accompanied by regeneration of [Cu(II)(2)(LO)(OTF)](2+) (D1-OTF), thus completing the catalytic cycle for the two-electron reduction of O(2) by Fc*. Kinetic studies on the formation of Fc*(+) under catalytic conditions as well as for separate examination of the electron transfer from Fc* to D1-OTF reveal there are two important reaction pathways operating. One is a rate-determining second reduction of D1-OTF, thus electron transfer from Fc* to a mixed-valent intermediate [Cu(II)Cu(I)(LO)](2+) (D2), which leads to [Cu(I)(2)(LO)](+) that is coupled with O(2) binding to produce [Cu(II)(2)(LO)(OO)](+) (D). The other involves direct reaction of O(2) with the mixed-valent compound D2 followed by rapid Fc* reduction of a putative superoxo-dicopper(II) species thus formed, producing D.
2015-01-01
The glmS ribozyme catalyzes a self-cleavage reaction at the phosphodiester bond between residues A-1 and G1. This reaction is thought to occur by an acid–base mechanism involving the glucosamine-6-phosphate cofactor and G40 residue. Herein quantum mechanical/molecular mechanical free energy simulations and pKa calculations, as well as experimental measurements of the rate constant for self-cleavage, are utilized to elucidate the mechanism, particularly the role of G40. Our calculations suggest that an external base deprotonates either G40(N1) or possibly A-1(O2′), which would be followed by proton transfer from G40(N1) to A-1(O2′). After this initial deprotonation, A-1(O2′) starts attacking the phosphate as a hydroxyl group, which is hydrogen-bonded to deprotonated G40, concurrent with G40(N1) moving closer to the hydroxyl group and directing the in-line attack. Proton transfer from A-1(O2′) to G40 is concomitant with attack of the scissile phosphate, followed by the remainder of the cleavage reaction. A mechanism in which an external base does not participate, but rather the proton transfers from A-1(O2′) to a nonbridging oxygen during nucleophilic attack, was also considered but deemed to be less likely due to its higher effective free energy barrier. The calculated rate constant for the favored mechanism is in agreement with the experimental rate constant measured at biological Mg2+ ion concentration. According to these calculations, catalysis is optimal when G40 has an elevated pKa rather than a pKa shifted toward neutrality, although a balance among the pKa’s of A-1, G40, and the nonbridging oxygen is essential. These results have general implications, as the hammerhead, hairpin, and twister ribozymes have guanines at a similar position as G40. PMID:25526516
A pathway for protons in nitric oxide reductase from Paracoccus denitrificans.
Reimann, Joachim; Flock, Ulrika; Lepp, Håkan; Honigmann, Alf; Adelroth, Pia
2007-05-01
Nitric oxide reductase (NOR) from P. denitrificans is a membrane-bound protein complex that catalyses the reduction of NO to N(2)O (2NO+2e(-)+2H(+)-->N(2)O+H(2)O) as part of the denitrification process. Even though NO reduction is a highly exergonic reaction, and NOR belongs to the superfamily of O(2)-reducing, proton-pumping heme-copper oxidases (HCuOs), previous measurements have indicated that the reaction catalyzed by NOR is non-electrogenic, i.e. not contributing to the proton electrochemical gradient. Since electrons are provided by donors in the periplasm, this non-electrogenicity implies that the substrate protons are also taken up from the periplasm. Here, using direct measurements in liposome-reconstituted NOR during reduction of both NO and the alternative substrate O(2), we demonstrate that protons are indeed consumed from the 'outside'. First, multiple turnover reduction of O(2) resulted in an increase in pH on the outside of the NOR-vesicles. Second, comparison of electrical potential generation in NOR-liposomes during oxidation of the reduced enzyme by either NO or O(2) shows that the proton transfer signals are very similar for the two substrates proving the usefulness of O(2) as a model substrate for these studies. Last, optical measurements during single-turnover oxidation by O(2) show electron transfer coupled to proton uptake from outside the NOR-liposomes with a tau=15 ms, similar to results obtained for net proton uptake in solubilised NOR [U. Flock, N.J. Watmough, P. Adelroth, Electron/proton coupling in bacterial nitric oxide reductase during reduction of oxygen, Biochemistry 44 (2005) 10711-10719]. NOR must thus contain a proton transfer pathway leading from the periplasmic surface into the active site. Using homology modeling with the structures of HCuOs as templates, we constructed a 3D model of the NorB catalytic subunit from P. denitrificans in order to search for such a pathway. A plausible pathway, consisting of conserved protonatable residues, is suggested.
Olasz, Balázs; Szabó, István; Czakó, Gábor
2017-04-01
Bimolecular nucleophilic substitution (S N 2) and proton transfer are fundamental processes in chemistry and F - + CH 3 I is an important prototype of these reactions. Here we develop the first full-dimensional ab initio analytical potential energy surface (PES) for the F - + CH 3 I system using a permutationally invariant fit of high-level composite energies obtained with the combination of the explicitly-correlated CCSD(T)-F12b method, the aug-cc-pVTZ basis, core electron correlation effects, and a relativistic effective core potential for iodine. The PES accurately describes the S N 2 channel producing I - + CH 3 F via Walden-inversion, front-side attack, and double-inversion pathways as well as the proton-transfer channel leading to HF + CH 2 I - . The relative energies of the stationary points on the PES agree well with the new explicitly-correlated all-electron CCSD(T)-F12b/QZ-quality benchmark values. Quasiclassical trajectory computations on the PES show that the proton transfer becomes significant at high collision energies and double-inversion as well as front-side attack trajectories can occur. The computed broad angular distributions and hot internal energy distributions indicate the dominance of indirect mechanisms at lower collision energies, which is confirmed by analyzing the integration time and leaving group velocity distributions. Comparison with available crossed-beam experiments shows usually good agreement.
NASA Astrophysics Data System (ADS)
Gil, Michał; Douhal, Abderrazzak
2008-06-01
In this contribution, we report on fast and ultrafast dynamics of a non-steroidal anti-inflammatory drug, piroxicam (PX), in methyl acetate (MAC) and triacetin (TAC), two solvents of different viscosities. The enol form of PX undergoes a femtosecond (shorter than 100 fs) electronically excited state intramolecular proton-transfer reaction to produce keto tautomers. These structures exhibit an internal twisting motion to generate keto rotamers in ˜2-5 ps, a time being longer in TAC. The transient absorption/emission spectrum is very broad indicating that the potential-energy surface at the electronically excited state is very flat, and reflecting the involvement of several coordinates along which the wavepacket of the fs-produced structures evolve.
Rerich, Eugenia; Zaiss, Moritz; Korzowski, Andreas; Ladd, Mark E; Bachert, Peter
2015-11-01
The small biomolecule creatine is involved in energy metabolism. Mapping of the total creatine (mostly PCr and Cr) in vivo has been done with chemical shift imaging. Chemical exchange saturation transfer (CEST) allows an alternative detection of creatine via water MRI. Living tissue exhibits CEST effects from different small metabolites, including creatine, with four exchanging protons of its guanidinium group resonating about 2 ppm from the water peak and hence contributing to the amine proton CEST peak. The intermediate exchange rate (≈ 1000 Hz) of the guanidinium protons requires high RF saturation amplitude B1. However, strong B1 fields also label semi-solid magnetization transfer (MT) effects originating from immobile protons with broad linewidths (~kHz) in the tissue. Recently, it was shown that endogenous CEST contrasts are strongly affected by the MT background as well as by T1 relaxation of the water protons. We show that this influence can be corrected in the acquired CEST data by an inverse metric that yields the apparent exchange-dependent relaxation (AREX). AREX has some useful linearity features that enable preparation of both concentration, and--by using the AREX-ratio of two RF irradiation amplitudes B1--purely exchange-rate-weighted CEST contrasts. These two methods could be verified in phantom experiments with different concentration and pH values, but also varying water relaxation properties. Finally, results from a preliminary application to in vivo CEST imaging data of the human calf muscle before and after exercise are presented. The creatine concentration increases during exercise as expected and as confirmed by (31)P NMR spectroscopic imaging. However, the estimated concentrations obtained by our method were higher than the literature values: cCr,rest=24.5±3.74mM to cCr,ex=38.32±13.05mM. The CEST-based pH method shows a pH decrease during exercise, whereas a slight increase was observed by (31)P NMR spectroscopy. Copyright © 2015 John Wiley & Sons, Ltd.
Acid-induced exchange of the imino proton in G.C pairs.
Nonin, S; Leroy, J L; Gueron, M
1996-01-01
Acid-induced catalysis of imino proton exchange in G.C pairs of DNA duplexes is surprisingly fast, being nearly as fast as for the isolated nucleoside, despite base-pair dissociation constants in the range of 10(-5) at neutral or basic pH. It is also observed in terminal G.C pairs of duplexes and in base pairs of drug-DNA complexes. We have measured imino proton exchange in deoxyguanosine and in the duplex (ATATAGATCTATAT) as a function of pH. We show that acid-induced exchange can be assigned to proton transfer from N7-protonated guanosine to cytidine in the open state of the pair. This is faster than transfer from neutral guanosine (the process of intrinsic catalysis previously characterized at neutral ph) due to the lower imino proton pK of the protonated form, 7.2 instead of 9.4. Other interpretations are excluded by a study of exchange catalysis by formiate and cytidine as exchange catalysts. The cross-over pH between the regimes of pH-independent and acid-induced exchange rates is more basic in the case of base pairs than in the mononucleoside, suggestive of an increase by one to two decades in the dissociation constant of the base pair upon N7 protonation of G. Acid-induced catalysis is much weaker in A.T base pairs, as expected in view of the low pK for protonation of thymidine. PMID:8604298
Acid-induced exchange of the imino proton in G.C pairs.
Nonin, S; Leroy, J L; Gueron, M
1996-02-15
Acid-induced catalysis of imino proton exchange in G.C pairs of DNA duplexes is surprisingly fast, being nearly as fast as for the isolated nucleoside, despite base-pair dissociation constants in the range of 10(-5) at neutral or basic pH. It is also observed in terminal G.C pairs of duplexes and in base pairs of drug-DNA complexes. We have measured imino proton exchange in deoxyguanosine and in the duplex (ATATAGATCTATAT) as a function of pH. We show that acid-induced exchange can be assigned to proton transfer from N7-protonated guanosine to cytidine in the open state of the pair. This is faster than transfer from neutral guanosine (the process of intrinsic catalysis previously characterized at neutral ph) due to the lower imino proton pK of the protonated form, 7.2 instead of 9.4. Other interpretations are excluded by a study of exchange catalysis by formiate and cytidine as exchange catalysts. The cross-over pH between the regimes of pH-independent and acid-induced exchange rates is more basic in the case of base pairs than in the mononucleoside, suggestive of an increase by one to two decades in the dissociation constant of the base pair upon N7 protonation of G. Acid-induced catalysis is much weaker in A.T base pairs, as expected in view of the low pK for protonation of thymidine.
Dynamics of the F(-) + CH3I → HF + CH2I(-) Proton Transfer Reaction.
Zhang, Jiaxu; Xie, Jing; Hase, William L
2015-12-17
Direct chemical dynamics simulations, at collision energies Erel of 0.32 and 1.53 eV, were performed to obtain an atomistic understanding of the F(-) + CH3I reaction dynamics. There is only the F(-) + CH3I → CH3F + I(-) bimolecular nucleophilic substitution SN2 product channel at 0.32 eV. Increasing Erel to 1.53 eV opens the endothermic F(-) + CH3I → HF + CH2I(-) proton transfer reaction, which is less competitive than the SN2 reaction. The simulations reveal proton transfer occurs by two direct atomic-level mechanisms, rebound and stripping, and indirect mechanisms, involving formation of the F(-)···HCH2I complex and the roundabout. For the indirect trajectories all of the CH2I(-) is formed with zero-point energy (ZPE), while for the direct trajectories 50% form CH2I(-) without ZPE. Without a ZPE constraint for CH2I(-), the reaction cross sections for the rebound, stripping, and indirect mechanisms are 0.2 ± 0.1, 1.2 ± 0.4, and 0.7 ± 0.2 Å(2), respectively. Discarding trajectories that do not form CH2I(-) with ZPE reduces the rebound and stripping cross sections to 0.1 ± 0.1 and 0.7 ± 0.5 Å(2). The HF product is formed rotationally and vibrationally unexcited. The average value of J is 2.6 and with histogram binning n = 0. CH2I(-) is formed rotationally excited. The partitioning between CH2I(-) vibration and HF + CH2I(-) relative translation energy depends on the treatment of CH2I(-) ZPE. Without a CH2I(-) ZPE constraint the energy partitioning is primarily to relative translation with little CH2I(-) vibration. With a ZPE constraint, energy partitioning to CH2I(-) rotation, CH2I(-) vibration, and relative translation are statistically the same. The overall F(-) + CH3I rate constant at Erel of both 0.32 and 1.53 eV is in good agreement with experiment and negligibly affected by the treatment of CH2I(-) ZPE, since the SN2 reaction is the major contributor to the total reaction rate constant. The potential energy surface and reaction dynamics for F(-) + CH3I proton transfer are compared with those reported previously (J. Phys. Chem. A 2013, 117, 7162-7178) for the isoelectronic OH(-) + CH3I reaction.
Complexity in Acid–Base Titrations: Multimer Formation Between Phosphoric Acids and Imines
Malm, Christian; Kim, Heejae; Wagner, Manfred
2017-01-01
Abstract Solutions of Brønsted acids with bases in aprotic solvents are not only common model systems to study the fundamentals of proton transfer pathways but are also highly relevant to Brønsted acid catalysis. Despite their importance the light nature of the proton makes characterization of acid–base aggregates challenging. Here, we track such acid–base interactions over a broad range of relative compositions between diphenyl phosphoric acid and the base quinaldine in dichloromethane, by using a combination of dielectric relaxation and NMR spectroscopy. In contrast to what one would expect for an acid–base titration, we find strong deviations from quantitative proton transfer from the acid to the base. Even for an excess of the base, multimers consisting of one base and at least two acid molecules are formed, in addition to the occurrence of proton transfer from the acid to the base and simultaneous formation of ion pairs. For equimolar mixtures such multimers constitute about one third of all intermolecular aggregates. Quantitative analysis of our results shows that the acid‐base association constant is only around six times larger than that for the acid binding to an acid‐base dimer, that is, to an already protonated base. Our findings have implications for the interpretation of previous studies of reactive intermediates in organocatalysis and provide a rationale for previously observed nonlinear effects in phosphoric acid catalysis. PMID:28597513
DFT-based prediction of reactivity of short-chain alcohol dehydrogenase
NASA Astrophysics Data System (ADS)
Stawoska, I.; Dudzik, A.; Wasylewski, M.; Jemioła-Rzemińska, M.; Skoczowski, A.; Strzałka, K.; Szaleniec, M.
2017-06-01
The reaction mechanism of ketone reduction by short chain dehydrogenase/reductase, ( S)-1-phenylethanol dehydrogenase from Aromatoleum aromaticum, was studied with DFT methods using cluster model approach. The characteristics of the hydride transfer process were investigated based on reaction of acetophenone and its eight structural analogues. The results confirmed previously suggested concomitant transfer of hydride from NADH to carbonyl C atom of the substrate with proton transfer from Tyr to carbonyl O atom. However, additional coupled motion of the next proton in the proton-relay system, between O2' ribose hydroxyl and Tyr154 was observed. The protonation of Lys158 seems not to affect the pKa of Tyr154, as the stable tyrosyl anion was observed only for a neutral Lys158 in the high pH model. The calculated reaction energies and reaction barriers were calibrated by calorimetric and kinetic methods. This allowed an excellent prediction of the reaction enthalpies (R2 = 0.93) and a good prediction of the reaction kinetics (R2 = 0.89). The observed relations were validated in prediction of log K eq obtained for real whole-cell reactor systems that modelled industrial synthesis of S-alcohols.
Hydrated proton and hydroxide charge transfer at the liquid/vapor interface of water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soniat, Marielle; Rick, Steven W., E-mail: srick@uno.edu; Kumar, Revati
2015-07-28
The role of the solvated excess proton and hydroxide ions in interfacial properties is an interesting scientific question with applications in a variety of aqueous behaviors. The role that charge transfer (CT) plays in interfacial behavior is also an unsettled question. Quantum calculations are carried out on clusters of water with an excess proton or a missing proton (hydroxide) to determine their CT. The quantum results are applied to analysis of multi-state empirical valence bond trajectories. The polyatomic nature of the solvated excess proton and hydroxide ion results in directionally dependent CT, depending on whether a water molecule is amore » hydrogen bond donor or acceptor in relation to the ion. With polyatomic molecules, CT also depends on the intramolecular bond distances in addition to intermolecular distances. The hydrated proton and hydroxide affect water’s liquid/vapor interface in a manner similar to monatomic ions, in that they induce a hydrogen-bonding imbalance at the surface, which results in charged surface waters. This hydrogen bond imbalance, and thus the charged waters at the surface, persists until the ion is at least 10 Å away from the interface.« less
Lupulescu, Adonis; Frydman, Lucio
2011-10-07
Recent years have witnessed efforts geared at increasing the sensitivity of NMR experiments, by relying on the suitable tailoring and exploitation of relaxation phenomena. These efforts have included the use of paramagnetic agents, enhanced (1)H-(1)H incoherent and coherent transfers processes in 2D liquid state spectroscopy, and homonuclear (13)C-(13)C spin diffusion effects in labeled solids. The present study examines some of the opportunities that could open when exploiting spontaneous (1)H-(1)H spin-diffusion processes, to enhance relaxation and to improve the sensitivity of dilute nuclei in solid state NMR measurements. It is shown that polarization transfer experiments executed under sufficiently fast magic-angle-spinning conditions, enable a selective polarization of the dilute low-γ spins by their immediate neighboring protons. Repolarization of the latter can then occur during the time involved in monitoring the signal emitted by the low-γ nuclei. The basic features involved in the resulting approach, and its potential to improve the effective sensitivity of solid state NMR measurements on dilute nuclei, are analyzed. Experimental tests witness the advantages that could reside from utilizing this kind of approach over conventional cross-polarization processes. These measurements also highlight a number of limitations that will have to be overcome for transforming selective polarization transfers of this kind into analytical methods of choice. © 2011 American Institute of Physics
Cavity hydration dynamics in cytochrome c oxidase and functional implications
Son, Chang Yun; Cui, Qiang
2017-01-01
Cytochrome c oxidase (CcO) is a transmembrane protein that uses the free energy of O2 reduction to generate the proton concentration gradient across the membrane. The regulation of competitive proton transfer pathways has been established to be essential to the vectorial transport efficiency of CcO, yet the underlying mechanism at the molecular level remains lacking. Recent studies have highlighted the potential importance of hydration-level change in an internal cavity that connects the proton entrance channel, the site of O2 reduction, and the putative proton exit route. In this work, we use atomistic molecular dynamics simulations to investigate the energetics and timescales associated with the volume fluctuation and hydration-level change in this central cavity. Extensive unrestrained molecular dynamics simulations (accumulatively ∼4 μs) and free energy computations for different chemical states of CcO support a model in which the volume and hydration level of the cavity are regulated by the protonation state of a propionate group of heme a3 and, to a lesser degree, the redox state of heme a and protonation state of Glu286. Markov-state model analysis of ∼2-μs trajectories suggests that hydration-level change occurs on the timescale of 100–200 ns before the proton-loading site is protonated. The computed energetic and kinetic features for the cavity wetting transition suggest that reversible hydration-level change of the cavity can indeed be a key factor that regulates the branching of proton transfer events and therefore contributes to the vectorial efficiency of proton transport. PMID:28973914
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plautz, Tia E.; Johnson, R. P.; Sadrozinski, H. F.-W.
Purpose: To characterize the modulation transfer function (MTF) of the pre-clinical (phase II) head scanner developed for proton computed tomography (pCT) by the pCT collaboration. To evaluate the spatial resolution achievable by this system. Methods: Our phase II proton CT scanner prototype consists of two silicon telescopes that track individual protons upstream and downstream from a phantom, and a 5-stage scintillation detector that measures a combination of the residual energy and range of the proton. Residual energy is converted to water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and associated pathsmore » of protons passing through the object over a 360° angular scan is processed by an iterative parallelizable reconstruction algorithm that runs on GP-GPU hardware. A custom edge phantom composed of water-equivalent polymer and tissue-equivalent material inserts was constructed. The phantom was first simulated in Geant4 and then built to perform experimental beam tests with 200 MeV protons at the Northwestern Medicine Chicago Proton Center. The oversampling method was used to construct radial and azimuthal edge spread functions and modulation transfer functions. The spatial resolution was defined by the 10% point of the modulation transfer function in units of lp/cm. Results: The spatial resolution of the image was found to be strongly correlated with the radial position of the insert but independent of the relative stopping power of the insert. The spatial resolution varies between roughly 4 and 6 lp/cm in both the the radial and azimuthal directions depending on the radial displacement of the edge. Conclusion: The amount of image degradation due to our detector system is small compared with the effects of multiple Coulomb scattering, pixelation of the image and the reconstruction algorithm. Improvements in reconstruction will be made in order to achieve the theoretical limits of spatial resolution.« less
Study of the efficiency for ion transfer through bent capillaries.
Chen, Tsung-Chi; Xu, Wei; Garimella, Sandilya; Ouyang, Zheng
2012-11-01
Discontinuous atmospheric pressure interfaces (DAPIs) with bent capillaries represent a highly simplified and flexible means for introducing ions into a vacuum manifold for mass analysis or gas phase ion reactions. In this work, a series of capillaries of different radians and curvatures were used with DAPI for studying the impact of the capillary bending on the ion transfer. The variation of transfer efficiency was systematically characterized for dry and solvated ions. The efficiency loss for dry ions was less than one order of magnitude, even with a three-turn bent capillary. The transfer of solvated ions generated by electrospray was found to be minimally impacted by the bending of the transfer capillary. For multiply protonated ions, the transfer efficiency for ions at lower charge states could be relatively well retained, presumably due to the lower reactivity associated with proton transfer reaction and the compensation in intensity by conversion of ions at higher charge states. Copyright © 2012 John Wiley & Sons, Ltd.
Kumar, Anil; Sevilla, Michael D.
2009-01-01
Previous experimental and theoretical work has established that electronic excitation of a guanine cation radical in nucleosides or in DNA itself leads to sugar radical formation by deprotonation from the dexoxyribose sugar. In this work we investigate a ground electronic state pathway for such sugar radical formation in a hydrated one electron oxidized 2′-deoxyguanosine (dG•+ + 7H2O), using density functional theory (DFT) with the B3LYP functional and the 6-31G* basis set. We follow the stretching of the C5′-H bond in dG•+ to gain an understanding of the energy requirements to transfer the hole from the base to sugar ring and then to deprotonate to proton acceptor sites in solution and on the guanine ring. The geometries of reactant (dG•+ + 7H2O), transition state (TS) for deprotonation of C5′ site and product (dG(•C5′, N7-H+) + 7 H2O) were fully optimized. The zero point energy (ZPE) corrected activation energy (TS) for the proton transfer (PT) from C5′ is calculated to be 9.0 kcal/mol and is achieved by stretching the C5′-H bond by 0.13 Å from its equilibrium bond distance (1.099 Å). Remarkably, this small bond stretch is sufficient to transfer the “hole” (positive charge and spin) from guanine to the C5′ site on the deoxyribose group. Beyond the TS, the proton (H+) spontaneously adds to water to form a hydronium ion (H3O+) as an intermediate. The proton subsequently transfers to the N7 site of the guanine (product). The 9 kcal/mol barrier suggests slow thermal conversion of the cation radical to the sugar radical but also suggests that localized vibrational excitations would be sufficient to induce rapid sugar radical formation in DNA base cation radicals. PMID:19754084
Tubert-Brohman, Ivan; Acevedo, Orlando; Jorgensen, William L
2006-12-27
Fatty acid amide hydrolase (FAAH) is a serine hydrolase that degrades anandamide, an endocannabinoid, and oleamide, a sleep-inducing lipid, and has potential applications as a therapeutic target for neurological disorders. Remarkably, FAAH hydrolyzes amides and esters with similar rates; however, the normal preference for esters reemerges when Lys142 is mutated to alanine. To elucidate the hydrolysis mechanisms and the causes behind this variation of selectivity, mixed quantum and molecular mechanics (QM/MM) calculations were carried out to obtain free-energy profiles for alternative mechanisms for the enzymatic hydrolyses. The methodology features free-energy perturbation calculations in Monte Carlo simulations with PDDG/PM3 as the QM method. For wild-type FAAH, the results support a mechanism, which features proton transfer from Ser217 to Lys142, simultaneous proton transfer from Ser241 to Ser217, and attack of Ser241 on the substrate's carbonyl carbon to yield a tetrahedral intermediate, which subsequently undergoes elimination with simultaneous protonation of the leaving group by a Lys142-Ser217 proton shuttle. For the Lys142Ala mutant, a striking multistep sequence is proposed with simultaneous proton transfer from Ser241 to Ser217, attack of Ser241 on the carbonyl carbon of the substrate, and elimination of the leaving group and its protonation by Ser217. Support comes from the free-energy results, which well reproduce the observation that the Lys142Ala mutation in FAAH decreases the rate of hydrolysis for oleamide significantly more than for methyl oleate.
Han, Si-ping; van Duin, Adri C T; Goddard, William A; Strachan, Alejandro
2011-05-26
We studied the thermal decomposition and subsequent reaction of the energetic material nitromethane (CH(3)NO(2)) using molecular dynamics with ReaxFF, a first principles-based reactive force field. We characterize the chemistry of liquid and solid nitromethane at high temperatures (2000-3000 K) and density 1.97 g/cm(3) for times up to 200 ps. At T = 3000 K the first reaction in the decomposition of nitromethane is an intermolecular proton transfer leading to CH(3)NOOH and CH(2)NO(2). For lower temperatures (T = 2500 and 2000 K) the first reaction during decomposition is often an isomerization reaction involving the scission of the C-N bond the formation of a C-O bond to form methyl nitrate (CH(3)ONO). Also at very early times we observe intramolecular proton transfer events. The main product of these reactions is H(2)O which starts forming following those initiation steps. The appearance of H(2)O marks the beginning of the exothermic chemistry. Recent quantum-mechanics-based molecular dynamics simulations on the chemical reactions and time scales for decomposition of a crystalline sample heated to T = 3000 K for a few picoseconds are in excellent agreement with our results, providing an important, direct validation of ReaxFF.
NASA Astrophysics Data System (ADS)
Erickson, M. H.; Jobson, B. T.
2010-12-01
To understand secondary organic aerosol formation it is important to observe the precursors. The large hydrocarbon species found in diesel exhaust is thought to be a major contributor to SOA formation in urban environments. A new method was developed utilizing a proton transfer reaction mass spectrometer (PTR-MS) to measure long chain alkanes (C12 and above). There are two issues involved in directly measuring these alkanes. Diesel exhaust is present in relatively low concentrations, which often close or below the limits of detection. A preconcentration system was built to collect a large sample to increase our signal to noise. Lab tests show that all the alkanes fragment to a common set of m/z values. Interferences from other species occur at these m/z values. To overcome this obstacle, the preconcentration system was operated to discriminate between VOCs and IVOCs. This will allow for minimal interference and better quantification of the alkanes. The PTR-MS was outfitted with a new sample system that contains two inlets to allow for the measurement of VOCs while the IVOCs are being collected, which means a wide range of SOA precursors can be measured. Results from the Carbonaceous Aerosol and Radiative Effects Study in Sacramento, CA will be presented.
Conformational dependence of a protein kinase phosphate transfer reaction.
Henkelman, Graeme; LaBute, Montiago X; Tung, Chang-Shung; Fenimore, P W; McMahon, Benjamin H
2005-10-25
Atomic motions and energetics for a phosphate transfer reaction catalyzed by the cAMP-dependent protein kinase are calculated by plane-wave density functional theory, starting from structures of proteins crystallized in both the reactant conformation (RC) and the transition-state conformation (TC). In TC, we calculate that the reactants and products are nearly isoenergetic with a 20-kJ/mol barrier, whereas phosphate transfer is unfavorable by 120 kJ/mol in the RC, with an even higher barrier. With the protein in TC, the motions involved in reaction are small, with only P(gamma) and the catalytic proton moving >0.5 A. Examination of the structures reveals that in the RC the active site cleft is not completely closed and there is insufficient space for the phosphorylated serine residue in the product state. Together, these observations imply that the phosphate transfer reaction occurs rapidly and reversibly in a particular conformation of the protein, and that the reaction can be gated by changes of a few tenths of an angstrom in the catalytic site.
Varanasi, Lakshman; Hosler, Jonathan
2011-01-01
In order to characterize protein structures that control proton uptake, forms of cytochrome c oxidase (CcO) containing a carboxyl or a thiol group in line with the initial, internal waters of the D pathway for proton transfer have been assayed in the presence and absence of subunit III. Subunit III provides approximately half of the protein surrounding the entry region of the D pathway. The mutant N139D-D132N contains a carboxyl group 6Å within the D pathway and lacks the normal, surface-exposed proton acceptor, Asp-132. With subunit III, the steady-state activity of this mutant is slow but once subunit III is removed its activity is the same as wild-type CcO lacking subunit III (∼1800 H+ s-1). Thus, a carboxyl group ∼25% within the pathway enhances proton uptake even though the carboxyl has no direct contact with bulk solvent. Protons from solvent apparently move to internal Asp-139 through a short file of waters, normally blocked by subunit III. Cysteine-139 also supports rapid steady-state proton uptake, demonstrating that an anion other than a carboxyl can attract and transfer protons into the D pathway. When both Asp-132 and Asp/Cys-139 are present, the removal of subunit III increases CcO activity to rates greater than that of normal CcO due to simultaneous proton uptake by two initial acceptors. The results show how the environment of the initial proton acceptor for the D pathway in these CcO forms dictates the pH range of CcO activity, with implications for the function of Asp-132, the normal proton acceptor. PMID:21344856
Theoretical study of the adsorption of DNA bases on the acidic external surface of montmorillonite.
Mignon, Pierre; Sodupe, Mariona
2012-01-14
In the present study, DFT periodic plane wave calculations, at the PBE-D level of theory, were carried out to investigate the interaction of DNA nucleobases with acidic montmorillonite. The surface model was considered in its octahedral (Osub) and tetrahedral (Tsub) substituted forms, known to have different acidic properties. The adsorption of adenine, guanine and cytosine was considered in both orthogonal and coplanar orientations with the surface, interacting with the proton via a given heteroatom. In almost all considered cases, adsorption involved the spontaneous proton transfer to the nucleobase, with a more pronounced character in the Osub structures. The binding energy is about 10 kcal mol(-1) larger for Osub than for Tsub complexes mainly due to the larger acidity in Osub surfaces and due to the better stabilization by H-bond contacts between the negatively charged surface and the protonated base. The binding energy of coplanar orientations of the base is observed to be as large as the orthogonal ones due to a balance between electrostatic and dispersion contributions. Finally the binding of guanine and adenine on the acidic surface amounts to 50 kcal mol(-1) while that of cytosine rises to 44 kcal mol(-1).
Hydrogen/Chlorine exchange reactions of gaseous carbanions.
Chen, Hao; Cooks, R Graham; Meurer, Eduardo C; Eberlin, Marcos N
2005-12-01
Gas-phase reactions of three typical carbanions CH(2)NO(2)(-), CH(2)CN(-), and CH(2)S(O)CH(3)(-) with the chloromethanes CH(2)Cl(2), CHCl(3), and CCl(4), examined by tandem mass spectrometry, show a novel hydrogen/chlorine exchange reaction. For example, reaction between the nitromethyl anion CH(2)NO(2)(-) and carbon tetrachloride CCl(4) forms the ion CHClNO(2)(-). The suggested reaction mechanism involves nucleophilic attack by CH(2)NO(2)(-) at the chlorine of CCl(4) followed by proton transfer within the resulting complex [CH(2)ClNO(2) + CCl(3)(-)] to form CHClNO(2)(-) and CHCl(3). Two other carbanions CH(2)CN(-) and CH(2)S(O)CH(3)(-) also undergo the novel hydrogen/chlorine exchange reactions with CCl(4) but to a much smaller extent, their higher nucleophilicities favoring competitive nucleophilic attack reactions. Proton abstraction is the exclusive pathway in the reactions of these carbanions with CHCl(3). While CH(2)CN(-) and CH(2)S(O)CH(3)(-) promote mainly proton abstraction and nucleophilic displacement in reactions with CH(2)Cl(2), CH(2)NO(2)(-) does not react.
Xu, Xiang; Yadav, Nirbhay N; Zeng, Haifeng; Jones, Craig K; Zhou, Jinyuan; van Zijl, Peter C M; Xu, Jiadi
2016-01-01
To use the variable delay multipulse (VDMP) chemical exchange saturation transfer (CEST) approach to obtain clean amide proton transfer (APT) and relayed Nuclear Overhauser enhancement (rNOE) CEST images in the human brain by suppressing the conventional magnetization transfer contrast (MTC) and reducing the direct water saturation contribution. The VDMP CEST scheme consists of a train of RF pulses with a specific mixing time. The CEST signal with respect to the mixing time shows distinguishable characteristics for protons with different exchange rates. Exchange rate filtered CEST images are generated by subtracting images acquired at two mixing times at which the MTC signals are equal, while the APT and rNOE-CEST signals differ. Because the subtraction is performed at the same frequency offset for each voxel and the CEST signals are broad, no B0 correction is needed. MTC-suppressed APT and rNOE-CEST images of human brain were obtained using the VDMP method. The APT-CEST data show hyperintensity in gray matter versus white matter, whereas the rNOE-CEST images show negligible contrast between gray and white matter. The VDMP approach provides a simple and rapid way of recording MTC-suppressed APT-CEST and rNOE-CEST images without the need for B0 field correction. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Atsushi; Kojima, Hidekazu; Okazaki, Susumu, E-mail: okazaki@apchem.nagoya-u.ac.jp
2014-08-28
In order to investigate proton transfer reaction in solution, mixed quantum-classical molecular dynamics calculations have been carried out based on our previously proposed quantum equation of motion for the reacting system [A. Yamada and S. Okazaki, J. Chem. Phys. 128, 044507 (2008)]. Surface hopping method was applied to describe forces acting on the solvent classical degrees of freedom. In a series of our studies, quantum and solvent effects on the reaction dynamics in solutions have been analysed in detail. Here, we report our mixed quantum-classical molecular dynamics calculations for intramolecular proton transfer of malonaldehyde in water. Thermally activated proton transfermore » process, i.e., vibrational excitation in the reactant state followed by transition to the product state and vibrational relaxation in the product state, as well as tunneling reaction can be described by solving the equation of motion. Zero point energy is, of course, included, too. The quantum simulation in water has been compared with the fully classical one and the wave packet calculation in vacuum. The calculated quantum reaction rate in water was 0.70 ps{sup −1}, which is about 2.5 times faster than that in vacuum, 0.27 ps{sup −1}. This indicates that the solvent water accelerates the reaction. Further, the quantum calculation resulted in the reaction rate about 2 times faster than the fully classical calculation, which indicates that quantum effect enhances the reaction rate, too. Contribution from three reaction mechanisms, i.e., tunneling, thermal activation, and barrier vanishing reactions, is 33:46:21 in the mixed quantum-classical calculations. This clearly shows that the tunneling effect is important in the reaction.« less
Mathes, Tilo; van Stokkum, Ivo H. M.; Stierl, Manuela; Kennis, John T. M.
2012-01-01
Photoinduced electron transfer in biological systems, especially in proteins, is a highly intriguing matter. Its mechanistic details cannot be addressed by structural data obtained by crystallography alone because this provides only static information on a given redox system. In combination with transient spectroscopy and site-directed manipulation of the protein, however, a dynamic molecular picture of the ET process may be obtained. In BLUF (blue light sensors using FAD) photoreceptors, proton-coupled electron transfer between a tyrosine and the flavin cofactor is the key reaction to switch from a dark-adapted to a light-adapted state, which corresponds to the biological signaling state. Particularly puzzling is the fact that, although the various naturally occurring BLUF domains show little difference in the amino acid composition of the flavin binding pocket, the reaction rates of the forward reaction differ quite largely from a few ps up to several hundred ps. In this study, we modified the redox potential of the flavin/tyrosine redox pair by site-directed mutagenesis close to the flavin C2 carbonyl and fluorination of the tyrosine, respectively. We provide information on how changes in the redox potential of either reaction partner significantly influence photoinduced proton-coupled electron transfer. The altered redox potentials allowed us furthermore to experimentally describe an excited state charge transfer intermediately prior to electron transfer in the BLUF photocycle. Additionally, we show that the electron transfer rate directly correlates with the quantum yield of signaling state formation. PMID:22833672
Hydrogen bonding between phosphate and amino acid side chains
NASA Astrophysics Data System (ADS)
Carmona, P.; Rodriguez, M. L.
1986-03-01
Hydrogen bonds between polar groups of amino acid side chains (histidine, lysine, glutamic acid) and phosphate ions have been studied by infrared spectroscopy. Proton transfer from amino acid groups to phosphate occur mainly in case that tribasic and dibasic phosphate ions take part in hydrogen bonds. Conformational changes and continuum are strongly related to the degree of proton transfer and hydration. It is pointed out that the aforementioned properties should be of great significance for nucleation and growth of prostatic and renal stones.
Visualization of Proton and Electron Transfer Processes of a Biochemical Reaction by μSR
NASA Astrophysics Data System (ADS)
Kiyotani, Tamiko; Kobayashi, Masayoshi; Tanaka, Ichiro; Niimura, Nobuo
For the last several years, we have discussed and conducted experiments toward realization of visualization of electron and proton transfer process in an enzyme reaction using muon. As the first step for exploring the useful application of the μSR for the biological system, which is "μSR in Biology". A first μSR experiment on biochemical reaction was conducted using the complex of a digestive enzyme, a kind of serine-protease and the inhibitor at J-PARC and PSI.
Fukuzumi, Shunichi; Mandal, Sukanta; Mase, Kentaro; Ohkubo, Kei; Park, Hyejin; Benet-Buchholz, Jordi; Nam, Wonwoo; Llobet, Antoni
2012-06-20
Four-electron reduction of O(2) by octamethylferrocene (Me(8)Fc) occurs efficiently with a dinuclear cobalt-μ-1,2-peroxo complex, 1, in the presence of trifluoroacetic acid in acetonitrile. Kinetic investigations of the overall catalytic reaction and each step in the catalytic cycle showed that proton-coupled electron transfer from Me(8)Fc to 1 is the rate-determining step in the catalytic cycle.
Shahak, Y; Arieli, B; Binder, B; Padan, E
1987-12-01
Light-induced proton translocation coupled to sulfide-dependent electron transport has been studied in isolated thylakoids of the cyanobacterium Oscillatoria limnetica. The thylakoids are obtained by osmotic shock of washed spheroplasts, prepared with glycine-betaine as the osmotic stabilizer. 13C NMR studies suggests that betaine is the major osmoregulator in O. limnetica. Thylakoid preparations obtained from both sulfide-induced anoxygenic cells and noninduced oxygenic cells are capable of proton pumping coupled to phenazinemethosulfate-mediated cyclic electron flow. However, only in the induced thylakoids can sulfide-dependent proton gradient (delta pH) formation be measured, using either NADP or methyl viologen as the terminal acceptor. Sulfide-dependent delta pH formation correlates with a high-affinity electron donation site (apparent Km 44 microM at pH 7.9). This site is not lost upon washing of the thylakoids. In addition, both sulfide-dependent electron transport and delta pH formation are sensitive to inhibitors of the cytochrome b6f complex such as 2-n-nonyl-4-hydroxyquinoline-N-oxide, 2,4-dinitrophenyl ether of 2-iodo-4-nitrothymol, or stigmatellin. Sulfide-dependent NADP photoreduction of low affinity (which does not saturate by as much as 7 mM sulfide) is detected in both induced and noninduced thylakoids, but this activity is insensitive to the inhibitors and is not coupled to proton transport. It is suggested that the adaptation of O. limnetica to anoxygenic photosynthesis involves the induction of a thylakoid factor(s) which creates a high-affinity site for sulfide, and the transfer of its electrons via the cytochrome b6f complex, coupled to proton translocation.
Radiosensitization by PARP inhibition to proton beam irradiation in cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirai, Takahisa; Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo; Saito, Soichiro
The poly(ADP-ribose) polymerase (PARP)-1 regulates DNA damage responses and promotes base excision repair. PARP inhibitors have been shown to enhance the cytotoxicity of ionizing radiation in various cancer cells and animal models. We have demonstrated that the PARP inhibitor (PARPi) AZD2281 is also an effective radiosensitizer for carbon-ion radiation; thus, we speculated that the PARPi could be applied to a wide therapeutic range of linear energy transfer (LET) radiation as a radiosensitizer. Institutes for biological experiments using proton beam are limited worldwide. This study was performed as a cooperative research at heavy ion medical accelerator in Chiba (HIMAC) in Nationalmore » Institute of Radiological Sciences. HIMAC can generate various ion beams; this enabled us to compare the radiosensitization effect of the PARPi on cells subjected to proton and carbon-ion beams from the same beam line. After physical optimization of proton beam irradiation, the radiosensitization effect of the PARPi was assessed in the human lung cancer cell line, A549, and the pancreatic cancer cell line, MIA PaCa-2. The effect of the PARPi, AZD2281, on radiosensitization to Bragg peak was more significant than that to entrance region. The PARPi increased the number of phosphorylated H2AX (γ-H2AX) foci and enhanced G2/M arrest after proton beam irradiation. This result supports our hypothesis that a PARPi could be applied to a wide therapeutic range of LET radiation by blocking the DNA repair response. - Highlights: • Effective radiosensitizers for particle radiation therapy have not been reported. • PARP inhibitor treatment radiosensitized after proton beam irradiation. • The sensitization at Bragg peak was greater than that at entrance region. • DSB induction and G2/M arrest is involved in the sensitization mechanism.« less
di Nunzio, Maria Rosaria; Douhal, Yasmin; Organero, Juan Angel; Douhal, Abderrazzak
2018-05-23
This work reports on photophysical studies of the irinotecan (IRT) anti-cancer drug in water solutions of different acidities (pH = 1.11-9.46). We found that IRT co-exists as mono-cationic (C1), di-cationic (C2), or neutral (N) forms. The population of each prototropic species depends on the pH of the solution. At pH = 1.11-3.01, the C1 and C2 structures are stabilized. At pH = 7.00, the most populated species is C1, while at pH values larger than 9.46 the N form is the most stable species. In the 1.11-2.61 pH range, the C1* emission is efficiently quenched by protons to give rise to the emission from C2*. The dynamic quenching constant, KD, is ∼32 M-1. While the diffusion governs the rate of excited-state proton-transfer (ESPT) under these conditions, the reaction rate increases with the proton concentration. A two-step diffusive Debye-Smoluchowski model was applied at pH = 1.11-2.61 to describe the protonation of C1*. The ESPT time constants derived for C1* are 382 and 1720 ps at pH = 1.11 and 1.95, respectively. We found that one proton species is involved in the protonation of C1* to give C2*, in the analyzed acidic pH range. Under alkaline conditions (pH = 9.46), the N form is the most stable structure of IRT. These results indicate the influence of the pH of the medium on the structural and dynamical properties of IRT in water solution. They may help to provide a better understanding on the relationship between the structure and biological activity of IRT.
NASA Astrophysics Data System (ADS)
Faizan, Mohd; Afroz, Ziya; Alam, Mohammad Jane; Bhat, Sheeraz Ahmad; Ahmad, Shabbir; Ahmad, Afaq
2018-05-01
The intermolecular interactions in complex formation between 2-amino-4-hydroxy-6-methylpyrimidine (AHMP) and 2,3-pyrazinedicarboxylicacid (PDCA) have been explored using density functional theory calculations. The isolated 1:1 molecular geometry of proton transfer (PT) complex between AHMP and PDCA has been optimized on a counterpoise corrected potential energy surface (PES) at DFT-B3LYP/6-31G(d,p) level of theory in the gaseous phase. Further, the formation of hydrogen bonded charge transfer (HBCT) complex between PDCA and AHMP has been also discussed. PT energy barrier between two extremes is calculated using potential energy surface (PES) scan by varying bond length. The intermolecular interactions have been analyzed from theoretical perspective of natural bond orbital (NBO) analysis. In addition, the interaction energy between molecular fragments involved in the complex formation has been also computed by counterpoise procedure at same level of theory.
Water-chromophore electron transfer determines the photochemistry of cytosine and cytidine.
Szabla, Rafał; Kruse, Holger; Šponer, Jiří; Góra, Robert W
2017-07-21
Many of the UV-induced phenomena observed experimentally for aqueous cytidine were lacking the mechanistic interpretation for decades. These processes include the substantial population of the puzzling long-lived dark state, photohydration, cytidine to uridine conversion and oxazolidinone formation. Here, we present quantum-chemical simulations of excited-state spectra and potential energy surfaces of N1-methylcytosine clustered with two water molecules using the second-order approximate coupled cluster (CC2), complete active space with second-order perturbation theory (CASPT2), and multireference configuration interaction with single and double excitation (MR-CISD) methods. We argue that the assignment of the long-lived dark state to a singlet nπ* excitation involving water-chromophore electron transfer might serve as an explanation for the numerous experimental observations. While our simulated spectra for the state are in excellent agreement with experimentally acquired data, the electron-driven proton transfer process occurring on the surface may initiate the subsequent damage in the vibrationally hot ground state of the chromophore.
Oxygen anion (O- ) and hydroxide anion (HO- ) reactivity with a series of old and new refrigerants.
Le Vot, Clotilde; Lemaire, Joël; Pernot, Pascal; Heninger, Michel; Mestdagh, Hélène; Louarn, Essyllt
2018-04-01
The reactivity of a series of commonly used halogenated compounds (trihalomethanes, chlorofluorocarbon, hydrochlorofluorocarbon, fluorocarbons, and hydrofluoroolefin) with hydroxide and oxygen anion is studied in a compact Fourier transform ion cyclotron resonance. O - is formed by dissociative electron attachment to N 2 O and HO - by a further ion-molecule reaction with ammonia. Kinetic experiments are performed by increasing duration of introduction of the studied molecule at a constant pressure. Hydroxide anion reactions mainly proceed by proton transfer for all the acidic compounds. However, nucleophilic substitution is observed for chlorinated and brominated compounds. For fluorinated compounds, a specific elimination of a neutral fluorinated alkene is observed in our results in parallel with the proton transfer reaction. Oxygen anion reacts rapidly and extensively with all compounds. Main reaction channels result from nucleophilic substitution, proton transfer, and formal H 2 + transfer. We highlight the importance of transfer processes (atom or ion) in the intermediate ion-neutral complex, explaining part of the observed reactivity and formed ions. In this paper, we present the first reactivity study of anions with HFO 1234yf. Finally, the potential of O - and HO - as chemical ionization reagents for trace analysis is discussed. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Hasell, D. K.;
2018-02-01
The OLYMPUS collaboration has recently made a precise measurement of the positron-proton to electron-proton elastic scattering cross section ratio, R 2γ, over a wide range of the virtual photon polarization, 0.456 < ɛ < 0.978. This provides a direct measure of hard two-photon exchange in elastic lepton-proton scattering widely thought to explain the discrepancy observed between unpolarized and polarized measurements of the proton form factor ratio, {μ }p{G}Ep/{G}Mp. The OLYMPUS results are small, within 1% on unity, over the range of momentum transfers measured and significantly lower than theoretical calculations that can explain part of the observed discrepancy in terms of two-photon exchange at higher momentum transfers. However, the results are in reasonable agreement with predictions based on phenomenological fits to the available form factor data. The motivation for measuring R 2γ will be presented followed by a description of the OLYMPUS experiment. The importance of radiative corrections in the analysis will be shown also. Then we will present the OLYMPUS results and compare with results from two similar experiments and theoretical calculations.
Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries
Prentice, Boone M.
2013-01-01
Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field. PMID:23257901
Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries.
Prentice, Boone M; McLuckey, Scott A
2013-02-01
Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field.
Thermal Decomposition of the Solid Phase of Nitromethane: Ab Initio Molecular Dynamics Simulations
NASA Astrophysics Data System (ADS)
Chang, Jing; Lian, Peng; Wei, Dong-Qing; Chen, Xiang-Rong; Zhang, Qing-Ming; Gong, Zi-Zheng
2010-10-01
The Car-Parrinello molecular dynamics simulations were employed to investigate thermal decomposition of the solid nitromethane. It is found that it undergoes chemical decomposition at about 2200 K under ambient pressure. The initiation of reactions involves both proton transfer and commonly known C-N bond cleavage. About 75 species and 100 elementary reactions were observed with the final products being H2O, CO2, N2, and CNCNC. It represents the first complete simulation of solid-phase explosive reactions reported to date, which is of far-reaching implication for design and development of new energetic materials.
Magnetic resonance imaging using chemical exchange saturation transfer
NASA Astrophysics Data System (ADS)
Park, Jaeseok
2012-10-01
Magnetic resonance imaging (MRI) has been widely used as a valuable diagnostic imaging modality that exploits water content and water relaxation properties to provide both structural and functional information with high resolution. Chemical exchange saturation transfer (CEST) in MRI has been recently introduced as a new mechanism of image contrast, wherein exchangeable protons from mobile proteins and peptides are indirectly detected through saturation transfer and are not observable using conventional MRI. It has been demonstrated that CEST MRI can detect important tissue metabolites and byproducts such as glucose, glycogen, and lactate. Additionally, CEST MRI is sensitive to pH or temperature and can calibrate microenvironment dependent on pH or temperature. In this work, we provide an overview on recent trends in CEST MRI, introducing general principles of CEST mechanism, quantitative description of proton transfer process between water pool and exchangeable solute pool in the presence or absence of conventional magnetization transfer effect, and its applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rode, Michał F.; Sobolewski, Andrzej L.; Jankowska, Joanna
2016-04-07
In this work, we present a reversible ferroelectric molecular switch controlled by an external electric field. The studied (2Z)-1-(6-((Z)-2-hydroxy-2-phenylvinyl)pyridin-3-yl)-2-(pyridin-2(1H) -ylidene)ethanone (DSA) molecule is polarized by two uniaxial intramolecular hydrogen bonds. Two protons can be transferred along hydrogen bonds upon an electric field applied along the main molecular axis. The process results in reversion of the dipole moment of the system. Static ab initio and on-the-fly dynamical simulations of the DSA molecule placed in an external electric field give insight into the mechanism of the double proton transfer (DPT) in the system and allow for estimation of the time scale ofmore » this process. The results indicate that with increasing strength of the electric field, the step-wise mechanism of DPT changes into the downhill barrierless process in which the synchronous and asynchronous DPTs compete with each other.« less
Yano, Naomine; Muramoto, Kazumasa; Shimada, Atsuhiro; Takemura, Shuhei; Baba, Junpei; Fujisawa, Hidenori; Mochizuki, Masao; Shinzawa-Itoh, Kyoko; Yamashita, Eiki; Tsukihara, Tomitake; Yoshikawa, Shinya
2016-01-01
Bovine heart cytochrome c oxidase (CcO) pumps four proton equivalents per catalytic cycle through the H-pathway, a proton-conducting pathway, which includes a hydrogen bond network and a water channel operating in tandem. Protons are transferred by H3O+ through the water channel from the N-side into the hydrogen bond network, where they are pumped to the P-side by electrostatic repulsion between protons and net positive charges created at heme a as a result of electron donation to O2 bound to heme a3. To block backward proton movement, the water channel remains closed after O2 binding until the sequential four-proton pumping process is complete. Thus, the hydrogen bond network must collect four proton equivalents before O2 binding. However, a region with the capacity to accept four proton equivalents was not discernable in the x-ray structures of the hydrogen bond network. The present x-ray structures of oxidized/reduced bovine CcO are improved from 1.8/1.9 to 1.5/1.6 Å resolution, increasing the structural information by 1.7/1.6 times and revealing that a large water cluster, which includes a Mg2+ ion, is linked to the H-pathway. The cluster contains enough proton acceptor groups to retain four proton equivalents. The redox-coupled x-ray structural changes in Glu198, which bridges the Mg2+ and CuA (the initial electron acceptor from cytochrome c) sites, suggest that the CuA-Glu198-Mg2+ system drives redox-coupled transfer of protons pooled in the water cluster to the H-pathway. Thus, these x-ray structures indicate that the Mg2+-containing water cluster is the crucial structural element providing the effective proton pumping in bovine CcO. PMID:27605664
Yano, Naomine; Muramoto, Kazumasa; Shimada, Atsuhiro; Takemura, Shuhei; Baba, Junpei; Fujisawa, Hidenori; Mochizuki, Masao; Shinzawa-Itoh, Kyoko; Yamashita, Eiki; Tsukihara, Tomitake; Yoshikawa, Shinya
2016-11-11
Bovine heart cytochrome c oxidase (CcO) pumps four proton equivalents per catalytic cycle through the H-pathway, a proton-conducting pathway, which includes a hydrogen bond network and a water channel operating in tandem. Protons are transferred by H 3 O + through the water channel from the N-side into the hydrogen bond network, where they are pumped to the P-side by electrostatic repulsion between protons and net positive charges created at heme a as a result of electron donation to O 2 bound to heme a 3 To block backward proton movement, the water channel remains closed after O 2 binding until the sequential four-proton pumping process is complete. Thus, the hydrogen bond network must collect four proton equivalents before O 2 binding. However, a region with the capacity to accept four proton equivalents was not discernable in the x-ray structures of the hydrogen bond network. The present x-ray structures of oxidized/reduced bovine CcO are improved from 1.8/1.9 to 1.5/1.6 Å resolution, increasing the structural information by 1.7/1.6 times and revealing that a large water cluster, which includes a Mg 2+ ion, is linked to the H-pathway. The cluster contains enough proton acceptor groups to retain four proton equivalents. The redox-coupled x-ray structural changes in Glu 198 , which bridges the Mg 2+ and Cu A (the initial electron acceptor from cytochrome c) sites, suggest that the Cu A -Glu 198 -Mg 2+ system drives redox-coupled transfer of protons pooled in the water cluster to the H-pathway. Thus, these x-ray structures indicate that the Mg 2+ -containing water cluster is the crucial structural element providing the effective proton pumping in bovine CcO. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Proton Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pluth, Michael; Bergman, Robert; Raymond, Kenneth
2009-04-10
Synthetic supramolecular host assemblies can impart unique reactivity to encapsulated guest molecules. Synthetic host molecules have been developed to carry out complex reactions within their cavities, despite the fact that they lack the type of specifically tailored functional groups normally located in the analogous active sites of enzymes. Over the past decade, the Raymond group has developed a series of self-assembled supramolecules and the Bergman group has developed and studied a number of catalytic transformations. In this Account, we detail recent collaborative work between these two groups, focusing on chemical catalysis stemming from the encapsulation of protonated guests and expandingmore » to acid catalysis in basic solution. We initially investigated the ability of a water-soluble, self-assembled supramolecular host molecule to encapsulate protonated guests in its hydrophobic core. Our study of encapsulated protonated amines revealed rich host-guest chemistry. We established that self-exchange (that is, in-out guest movement) rates of protonated amines were dependent on the steric bulk of the amine rather than its basicity. The host molecule has purely rotational tetrahedral (T) symmetry, so guests with geminal N-methyl groups (and their attendant mirror plane) were effectively desymmetrized; this allowed for the observation and quantification of the barriers for nitrogen inversion followed by bond rotation. Furthermore, small nitrogen heterocycles, such as N-alkylaziridines, N-alkylazetidines, and N-alkylpyrrolidines, were found to be encapsulated as proton-bound homodimers or homotrimers. We further investigated the thermodynamic stabilization of protonated amines, showing that encapsulation makes the amines more basic in the cavity. Encapsulation raises the effective basicity of protonated amines by up to 4.5 pK{sub a} units, a difference almost as large as that between the moderate and strong bases carbonate and hydroxide. The thermodynamic stabilization of protonated guests was translated into chemical catalysis by taking advantage of the potential for accelerating reactions that take place via positively charged transition states, which could be potentially stabilized by encapsulation. Orthoformates, generally stable in neutral or basic solution, were found to be suitable substrates for catalytic hydrolysis by the assembly. Orthoformates small enough to undergo encapsulation were readily hydrolyzed by the assembly in basic solution, with rate acceleration factors up to 3900 compared with those of the corresponding uncatalyzed reactions. Furthering the analogy to enzymes that obey Michaelis-Menten kinetics, we observed competitive inhibition with the inhibitor NPr{sub 4}{sup +}, thereby confirming that the interior cavity of the assembly was the active site for catalysis. Mechanistic studies revealed that the assembly is required for catalysis and that the rate-limiting step of the reaction involves proton transfer from hydronium to the encapsulated substrate. Encapsulation in the assembly changes the orthoformate hydrolysis from an A-1 mechanism (in which decomposition of the protonated substrate is the rate-limiting step) to an A-S{sub E}2 mechanism (in which proton transfer is the rate-limiting step). The study of hydrolysis in the assembly was next extended to acetals, which were also catalytically hydrolyzed by the assembly in basic solution. Acetal hydrolysis changed from the A-1 mechanism in solution to an A-2 mechanism inside the assembly, where attack of water on the protonated substrate is rate limiting. This work provides rare examples of assembly-catalyzed reactions that proceed with substantial rate accelerations despite the absence of functional groups in the cavity and with mechanisms fully elucidated by quantitative kinetic studies.« less
Tamogami, Jun; Sato, Keitaro; Kurokawa, Sukuna; Yamada, Takumi; Nara, Toshifumi; Demura, Makoto; Miyauchi, Seiji; Kikukawa, Takashi; Muneyuki, Eiro; Kamo, Naoki
2016-02-23
Proteorhodopsin (PR) is an outward light-driven proton pump observed in marine eubacteria. Despite many structural and functional similarities to bacteriorhodopsin (BR) in archaea, which also acts as an outward proton pump, the mechanism of the photoinduced proton release and uptake is different between two H(+)-pumps. In this study, we investigated the pH dependence of the photocycle and proton transfer in PR reconstituted with the phospholipid membrane under alkaline conditions. Under these conditions, as the medium pH increased, a blue-shifted photoproduct (defined as Ma), which is different from M, with a pKa of ca. 9.2 was produced. The sequence of the photoinduced proton uptake and release during the photocycle was inverted with the increase in pH. A pKa value of ca. 9.5 was estimated for this inversion and was in good agreement with the pKa value of the formation of Ma (∼ 9.2). In addition, we measured the photoelectric current generated by PRs attached to a thin polymer film at varying pH. Interestingly, increases in the medium pH evoked bidirectional photocurrents, which may imply a possible reversal of the direction of the proton movement at alkaline pH. On the basis of these findings, a putative photocycle and proton transfer scheme in PR under alkaline pH conditions was proposed.
Capturing the radical ion-pair intermediate in DNA guanine oxidation
Jie, Jialong; Liu, Kunhui; Wu, Lidan; Zhao, Hongmei; Song, Di; Su, Hongmei
2017-01-01
Although the radical ion pair has been frequently invoked as a key intermediate in DNA oxidative damage reactions and photoinduced electron transfer processes, the unambiguous detection and characterization of this species remain formidable and unresolved due to its extremely unstable nature and low concentration. We use the strategy that, at cryogenic temperatures, the transient species could be sufficiently stabilized to be detectable spectroscopically. By coupling the two techniques (the cryogenic stabilization and the time-resolved laser flash photolysis spectroscopy) together, we are able to capture the ion-pair transient G+•⋯Cl− in the chlorine radical–initiated DNA guanine (G) oxidation reaction, and provide direct evidence to ascertain the intricate type of addition/charge separation mechanism underlying guanine oxidation. The unique spectral signature of the radical ion-pair G+•⋯Cl− is identified, revealing a markedly intense absorption feature peaking at 570 nm that is distinctive from G+• alone. Moreover, the ion-pair spectrum is found to be highly sensitive to the protonation equilibria within guanine-cytosine base pair (G:C), which splits into two resolved bands at 480 and 610 nm as the acidic proton transfers along the central hydrogen bond from G+• to C. We thus use this exquisite sensitivity to track the intrabase-pair proton transfer dynamics in the double-stranded DNA oligonucleotides, which is of critical importance for the description of the proton-coupled charge transfer mechanisms in DNA. PMID:28630924
Hydration of Concrete: The First Steps.
Thissen, Peter; Natzeck, Carsten; Giraudo, Nicolas; Weidler, Peter; Wöll, Christof
2018-04-12
Concrete is the most important construction material used by mankind and, at the same time, one of the most complex substances known in materials science. Since this mineral compound is highly porous, a better understanding of its surface chemistry, and in particular the reaction with water, is urgently required to understand and avoid corrosion of infrastructure like buildings and bridges. We have gained insight into proton transfer from concrete upon contact with water by applying the so-called Surface Science approach to a well-defined mineral, Wollastonite. Data from IR (infrared) spectroscopy reveal that exposure of this calcium-silicate (CS) substrate to H 2 O leads to dissociation and the formation of OH-species. This proton transfer is a chemical reaction of key importance, since on the one hand it triggers the conversion of cement into concrete (a calcium-silicate-hydrate phase), but on the other hand also governs the corrosion of concrete. Interestingly, we find that no proton transfer takes place when the same surface is exposed to methanol. In order to understand this unexpected difference, the analysis of the spectroscopic data obtained was aided by a detailed, first-principles computational study employing density functional theory (DFT). The combined experimental and theoretical effort allows derivation of a consistent picture of proton transfer reactions occurring in CS and CSH phases. Implications for strategies to protect this backbone of urban infrastructure from corrosion in harsh, aqueous environments will be discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kumar, Ayush; Worobec, Elizabeth A
2002-10-01
To determine the presence of a proton gradient-dependent efflux of fluoroquinolone drugs in Serratia marcescens. Thirteen clinical isolates of S. marcescens were screened for resistance to four fluoroquinolones: ofloxacin, ciprofloxacin, norfloxacin and nalidixic acid by determining MICs. The presence of a proton gradient-dependent efflux mechanism was assessed using ethidium bromide accumulation assays. Drug accumulation studies for norfloxacin, ciprofloxacin and ofloxacin were performed to determine the drug specificity of efflux. Western transfer of cellular proteins, followed by immunodetection using anti-AcrA (Escherichia coli) antibodies were used to demonstrate the presence of a resistance-nodulation-cell division (RND) pump protein. PCR was used to identify a RND pump-encoding gene using primers for two conserved motifs within inner membrane components of RND proteins. A mutant strain of S. marcescens, UOC-67WL, was isolated by culturing the wild-type strain in the presence of ciprofloxacin in T-soy media and was subjected to the same studies as described above for the clinical isolates. Ethidium bromide accumulation assays confirmed the presence of a proton gradient-dependent efflux mechanism in S. marcescens. One clinical isolate, T-861, and the mutant strain, UOC-67WL, were found to efflux ciprofloxacin and ofloxacin. Western immunoblot results confirmed overexpression of an AcrA-like protein in T-861 and UOC-67WL. Sequencing of the PCR product showed the presence of a mexF-like gene, which is overexpressed in nfxC mutants of Pseudomonas aeruginosa. This study reports the presence of a proton gradient-dependent efflux mechanism in S. marcescens.
Zheng, Daoyuan; Zhang, Mingzhen; Zhao, Guangjiu
2017-10-23
Time-dependent density functional theory (TDDFT) and atoms in molecules (AIM) theory are combined to study the photoinduced excited state intramolecular proton transfer (ESIPT) dynamics for eight anthraquinones (AQs) derivatives in solution. The calculated absorption and emission spectra are consistent with the available experimental data, verifying the suitability of the theory selected. The systems with the excited-state exothermic proton transfer, such as 1-HAQ, 1,5-DHAQ and TFAQ, emit completely from transfer structure (T), while the reactions for those without ESIPT including 1,4-DHAQ and AAAQ appear to be endothermic. Three reaction properties of three systems (1,8-DHAQ, DCAQ and CAAQ) are between the exothermic and endothermic, sensitive to the solvent. Energy scanning shows that 1,4-DHAQ and AAAQ exhibit the higher ESIPT energy barriers compared to 1-HAQ, 1,5-DHAQ and TFAQ with the "barrierless" ESIPT process. The ESIPT process is facilitated by the strengthening of hydrogen bonds in excited state. With AIM theory, it is observed that the change in electrons density ρ(r) and potential energy density V(r) at BCP position between ground state and excited state are crucial factors to quantitatively elucidate the ESIPT.
Complexity in Acid-Base Titrations: Multimer Formation Between Phosphoric Acids and Imines.
Malm, Christian; Kim, Heejae; Wagner, Manfred; Hunger, Johannes
2017-08-10
Solutions of Brønsted acids with bases in aprotic solvents are not only common model systems to study the fundamentals of proton transfer pathways but are also highly relevant to Brønsted acid catalysis. Despite their importance the light nature of the proton makes characterization of acid-base aggregates challenging. Here, we track such acid-base interactions over a broad range of relative compositions between diphenyl phosphoric acid and the base quinaldine in dichloromethane, by using a combination of dielectric relaxation and NMR spectroscopy. In contrast to what one would expect for an acid-base titration, we find strong deviations from quantitative proton transfer from the acid to the base. Even for an excess of the base, multimers consisting of one base and at least two acid molecules are formed, in addition to the occurrence of proton transfer from the acid to the base and simultaneous formation of ion pairs. For equimolar mixtures such multimers constitute about one third of all intermolecular aggregates. Quantitative analysis of our results shows that the acid-base association constant is only around six times larger than that for the acid binding to an acid-base dimer, that is, to an already protonated base. Our findings have implications for the interpretation of previous studies of reactive intermediates in organocatalysis and provide a rationale for previously observed nonlinear effects in phosphoric acid catalysis. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banu, A.; Al-Abdullah, T.; Fu, C.
2009-02-15
The cross section of the radiative proton capture reaction on the drip line nucleus {sup 12}N was investigated using the asymptotic normalization coefficient (ANC) method. We have used the {sup 14}N({sup 12}N,{sup 13}O){sup 13}C proton transfer reaction at 12 MeV/nucleon to extract the ANC for {sup 13}O{yields}{sup 12}N+p and calculate from it the direct component of the astrophysical S factor of the {sup 12}N(p,{gamma}){sup 13}O reaction. The optical potentials used and the distorted-wave Born approximation analysis of the proton transfer reaction are discussed. For the entrance channel, the optical potential was inferred from an elastic scattering measurement carried out atmore » the same time as the transfer measurement. From the transfer, we determined the square of the ANC, C{sub p{sub 1/2}}{sup 2}({sup 13}O{sub g.s.})=2.53{+-}0.30 fm{sup -1}, and hence a value of 0.33(4) keV b was obtained for the direct astrophysical S factor at zero energy. Constructive interference at low energies between the direct and resonant captures leads to an enhancement of S{sub total}(0)=0.42(6) keV b. The {sup 12}N(p,{gamma}){sup 13}O reaction was investigated in relation to the evolution of hydrogen-rich massive Population III stars, for the role that it may play in the hot pp-chain nuclear burning processes, possibly occurring in such objects.« less
Initial stage of atomic layer deposition of 2D-MoS2 on a SiO2 surface: a DFT study.
Shirazi, M; Kessels, W M M; Bol, A A
2018-06-20
In this study, we investigate the reactions involving Atomic Layer Deposition (ALD) of 2D-MoS2 from the heteroleptic precursor Mo(NMe2)2(NtBu)2 and H2S as the co-reagent on a SiO2(0001) surface by means of density functional theory (DFT). All dominant reaction pathways from the early stage of adsorption of each ALD reagent to the formation of bulk-like Mo and S at the surface are identified. In the metal pulse, proton transfer from terminal OH groups on the SiO2 to the physisorbed metal precursor increases the Lewis acidity of Mo and Lewis basicity of O, which gives rise to the chemical adsorption of the metal precursor. Proton transfer from the surface to the dimethylamido ligands leads to the formation and desorption of dimethylamine. In contrast, the formation and desorption of tert-butylamine is not energetically favorable. The tert-butylimido ligand can only be partially protonated in the metal pulse. In the sulphur pulse, co-adsorption and dissociation of H2S molecules give rise to the formation and desorption of tert-butylamine. Through the calculated activation energies, the cooperation between H2S molecules ('cooperative' mechanism) is shown to have a profound influence on the formation and desorption of tert-butylamine, which are crucial steps in the initial ALD deposition of 2D-MoS2 on SiO2. The cyclic ALD reactions give rise to the formation of a buffer layer which might have important consequences for the electrical and optical properties on the 2D layer formed in the subsequent homodeposition.
Askerka, Mikhail; Wang, Jimin; Brudvig, Gary W.; ...
2014-10-27
The S 1 → S 2 transition of the oxygen-evolving complex (OEC) of photosystem II does not involve the transfer of a proton to the lumen and occurs at cryogenic temperatures. Therefore, it is commonly thought to involve only Mn oxidation without any significant change in the structure of the OEC. Here, we analyze structural changes upon the S 1 → S 2 transition, as revealed by quantum mechanics/molecular mechanics methods and the isomorphous difference Fourier method applied to serial femtosecond X-ray diffraction data. Lastly, we find that the main structural change in the OEC is in the position ofmore » the dangling Mn and its coordination environment.« less
Smith, Parker J; Goeltz, John C
2017-12-07
The 1,2-diol moiety in a variety of substituted catechols allows formation of room temperature ionic melts in a 2:1 ratio with choline chloride or choline dihydrogen citrate. These deep eutectic solvents were 4.3-6.6 M in redox active catechols. Substituents on 3- and 4-substituted catechols shift both E° and pK a such that Hammett parameters predict the observed E p for oxidation in square wave voltammetry. The proton acceptor for the proton-coupled oxidation shifts the observed E p more strongly than the substituents within the substituents and acceptors reported here. The shift is predicted well by the pK a of the conjugate acid of the proton acceptor, i.e., water in aqueous solutions or chloride or dihydrogen citrate in the DESs in this study. Together, the substituent and the proton acceptor allow gross and fine-tuning of the oxidation potential for catechol over 750 mV, the first demonstration of control of the thermodynamics of proton-coupled electron transfer in deep eutectic solvents. Changing the substituents on the HBD affords fine control in tens of millivolts, while changing the base strength of the anion of the organic salt affords gross control across hundreds of millivolts.
Kohno, Ryosuke; Hotta, Kenji; Matsubara, Kana; Nishioka, Shie; Matsuura, Taeko; Kawashima, Mitsuhiko
2012-03-08
When in vivo proton dosimetry is performed with a metal-oxide semiconductor field-effect transistor (MOSFET) detector, the response of the detector depends strongly on the linear energy transfer. The present study reports a practical method to correct the MOSFET response for linear energy transfer dependence by using a simplified Monte Carlo dose calculation method (SMC). A depth-output curve for a mono-energetic proton beam in polyethylene was measured with the MOSFET detector. This curve was used to calculate MOSFET output distributions with the SMC (SMC(MOSFET)). The SMC(MOSFET) output value at an arbitrary point was compared with the value obtained by the conventional SMC(PPIC), which calculates proton dose distributions by using the depth-dose curve determined by a parallel-plate ionization chamber (PPIC). The ratio of the two values was used to calculate the correction factor of the MOSFET response at an arbitrary point. The dose obtained by the MOSFET detector was determined from the product of the correction factor and the MOSFET raw dose. When in vivo proton dosimetry was performed with the MOSFET detector in an anthropomorphic phantom, the corrected MOSFET doses agreed with the SMC(PPIC) results within the measurement error. To our knowledge, this is the first report of successful in vivo proton dosimetry with a MOSFET detector.
Reaction Dynamics of Proton-Coupled Electron Transfer from Reduced ZnO Nanocrystals.
Braten, Miles N; Gamelin, Daniel R; Mayer, James M
2015-10-27
The creation of systems that efficiently interconvert chemical and electrical energies will be aided by understanding proton-coupled electron transfers at solution-semiconductor interfaces. Steps in developing that understanding are described here through kinetic studies of reactions of photoreduced colloidal zinc oxide (ZnO) nanocrystals (NCs) with the nitroxyl radical TEMPO. These reactions proceed by proton-coupled electron transfer (PCET) to give the hydroxylamine TEMPOH. They occur on the submillisecond to seconds time scale, as monitored by stopped-flow optical spectroscopy. Under conditions of excess TEMPO, the reactions are multiexponential in character. One of the contributors to this multiexponential kinetics may be a distribution of reactive proton sites. A graphical overlay method shows the reaction to be first order in [TEMPO]. Different electron concentrations in otherwise identical NC samples were achieved by three different methods: differing photolysis times, premixing with an unphotolyzed sample, or prereaction with TEMPO. The reaction velocities were consistently higher for NCs with higher numbers of electrons. For instance, NCs with an average of 2.6 e(-)/NC reacted faster than otherwise identical samples containing ≤1 e(-)/NC. Surprisingly, NC samples with the same average number of electrons but prepared in different ways often had different reaction profiles. These results show that properties beyond electron content determine PCET reactivity of the particles.
Lee, Chiho; Son, Hyewon; Park, Sungnam
2015-07-21
Two-dimensional infrared (2DIR) spectroscopy, which has been proven to be an excellent experimental method for studying thermally-driven chemical processes, was successfully used to investigate the acid dissociation equilibrium of HN3 in methanol (CH3OH) and dimethyl sulfoxide (DMSO) for the first time. Our 2DIR experimental results indicate that the acid-base equilibrium occurs on picosecond timescales in CH3OH but that it occurs on much longer timescales in DMSO. Our results imply that the different timescales of the acid-base equilibrium originate from different proton transfer mechanisms between the acidic (HN3) and basic (N3(-)) species in CH3OH and DMSO. In CH3OH, the acid-base equilibrium is assisted by the surrounding CH3OH molecules which can directly donate H(+) to N3(-) and accept H(+) from HN3 and the proton migrates through the hydrogen-bonded chain of CH3OH. On the other hand, the acid-base equilibrium in DMSO occurs through the mutual diffusion of HN3 and N3(-) or direct proton transfer. Our 2DIR experimental results corroborate different proton transfer mechanisms in the acid-base equilibrium in protic (CH3OH) and aprotic (DMSO) solvents.
Internuclear cascade-evaporation model for LET spectra of 200 MeV protons used for parts testing.
O'Neill, P M; Badhwar, G D; Culpepper, W X
1998-12-01
The Linear Energy Transfer (LET) spectrum produced in microelectronic components during testing with 200 MeV protons is calculated with an intemuclear cascade-evaporation code. This spectrum is compared to the natural space heavy ion environment for various earth orbits. This comparison is used to evaluate the results of proton testing in terms of determining a firm upper bound to the on-orbit heavy ion upset rate and the risk of on-orbit heavy ion failures that would not be detected with protons.
Petrou, Athinoula L; Koutselos, Andreas D; Wahab, Hilal S; Clegg, William; Harrington, Ross W; Henderson, Richard A
2011-02-07
The complexes [Ni(4-Spy)(triphos)]BPh(4) and [Ni(2-Spy)(triphos)]BPh(4) {triphos = PhP(CH(2)CH(2)PPh(2))(2), 4-Spy = 4-pyridinethiolate, 2-Spy = 2-pyridinethiolate} have been prepared and characterized both spectroscopically and using X-ray crystallography. In both complexes the triphos is a tridentate ligand. However, [Ni(4-Spy)(triphos)](+) comprises a 4-coordinate, square-planar nickel with the 4-Spy ligand bound to the nickel through the sulfur while [Ni(2-Spy)(triphos)](+) contains a 5-coordinate, trigonal-bipyramidal nickel with a bidentate 2-Spy ligand bound to the nickel through both sulfur and nitrogen. The kinetics of the reactions of [Ni(4-Spy)(triphos)](+) and [Ni(2-Spy)(triphos)](+) with lutH(+) (lut = 2,6-dimethylpyridine) in MeCN have been studied using stopped-flow spectrophotometry, and the two complexes show very different reactivities. The reaction of [Ni(4-Spy)(triphos)](+) with lutH(+) is complete within the deadtime of the stopped-flow apparatus (2 ms) and corresponds to protonation of the nitrogen. However, upon mixing [Ni(2-Spy)(triphos)](+) and lutH(+) a reaction is observed (on the seconds time scale) to produce an equilibrium mixture. The mechanistic interpretation of the rate law has been aided by the application of MSINDO semiempirical and ADF calculations. The kinetics and calculations are consistent with the reaction between [Ni(2-Spy)(triphos)](+) and lutH(+) involving initial protonation of the sulfur followed by dissociation of the nitrogen and subsequent transfer of the proton from sulfur to nitrogen. The factors affecting the position of protonation and the coupling of the coordination state of the 2-pyridinethiolate ligand to the site of protonation are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, Thomas B.
The Proton Transfer Reaction Mass Spectrometer (PTRMS) measures gas-phase compounds in ambient air and headspace samples before using chemical ionization to produce positively charged molecules, which are detected with a time-of-flight (TOF) mass spectrometer. This ionization method uses a gentle proton transfer reaction method between the molecule of interest and protonated water, or hydronium ion (H 3O +), to produce limited fragmentation of the parent molecule. The ions produced are primarily positively charged with the mass of the parent ion, plus an additional proton. Ion concentration is determined by adding the number of ions counted at the molecular ion’s mass-to-chargemore » ratio to the number of air molecules in the reaction chamber, which can be identified according to the pressure levels in the reaction chamber. The PTRMS allows many volatile organic compounds in ambient air to be detected at levels from 10–100 parts per trillion by volume (pptv). The response time is 1 to 10 seconds.« less
Bondar, Ana-Nicoleta; Smith, Jeremy C.
2017-07-25
Channel and pump rhodopsins use energy from light absorbed by a covalently bound retinal chromophore to transport ions across membranes of microbial cells. Ion transfer steps, including proton transfer, can couple to changes in protein conformational dynamics and water positions. Although general principles of how microbial rhodopsins function are largely understood, key issues pertaining to reaction mechanisms remain unclear. Here, we compare the protonation-coupled dynamics of pump and channelrhodopsins, highlighting the roles that water dynamics, protein electrostatics and protein flexibility can have in ion transport mechanisms. We discuss observations supporting important functional roles of inter- and intra-helical carboxylate/hydroxyl hydrogen-bonding motifs.more » Specifically, we use the proton pump bacteriorhodopsin, the sodium pump KR2, channelrhodopsins and Anabaena sensory rhodopsin. We outline the usefulness of theoretic biophysics approaches to the study of retinal proteins, challenges in studying the hydrogen-bond dynamics of rhodopsin active sites, and implications for conformational coupling in membrane transporters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bondar, Ana-Nicoleta; Smith, Jeremy C.
Channel and pump rhodopsins use energy from light absorbed by a covalently bound retinal chromophore to transport ions across membranes of microbial cells. Ion transfer steps, including proton transfer, can couple to changes in protein conformational dynamics and water positions. Although general principles of how microbial rhodopsins function are largely understood, key issues pertaining to reaction mechanisms remain unclear. Here, we compare the protonation-coupled dynamics of pump and channelrhodopsins, highlighting the roles that water dynamics, protein electrostatics and protein flexibility can have in ion transport mechanisms. We discuss observations supporting important functional roles of inter- and intra-helical carboxylate/hydroxyl hydrogen-bonding motifs.more » Specifically, we use the proton pump bacteriorhodopsin, the sodium pump KR2, channelrhodopsins and Anabaena sensory rhodopsin. We outline the usefulness of theoretic biophysics approaches to the study of retinal proteins, challenges in studying the hydrogen-bond dynamics of rhodopsin active sites, and implications for conformational coupling in membrane transporters.« less
Timofeyuk, N K; Johnson, R C; Mukhamedzhanov, A M
2003-12-05
We show how the charge symmetry of strong interactions can be used to relate the proton and neutron asymptotic normalization coefficients (ANCs) of the one-nucleon overlap integrals for light mirror nuclei. This relation extends to the case of real proton decay where the mirror analog is a virtual neutron decay of a loosely bound state. In this case, a link is obtained between the proton width and the squared ANC of the mirror neutron state. The relation between mirror overlaps can be used to study astrophysically relevant proton capture reactions based on information obtained from transfer reactions with stable beams.
Charged-particle spectroscopy for diagnosing shock ρR and strength in NIF implosions.
Zylstra, A B; Frenje, J A; Séguin, F H; Rosenberg, M J; Rinderknecht, H G; Johnson, M Gatu; Casey, D T; Sinenian, N; Manuel, M J-E; Waugh, C J; Sio, H W; Li, C K; Petrasso, R D; Friedrich, S; Knittel, K; Bionta, R; McKernan, M; Callahan, D; Collins, G W; Dewald, E; Döppner, T; Edwards, M J; Glenzer, S; Hicks, D G; Landen, O L; London, R; Mackinnon, A; Meezan, N; Prasad, R R; Ralph, J; Richardson, M; Rygg, J R; Sepke, S; Weber, S; Zacharias, R; Moses, E; Kilkenny, J; Nikroo, A; Sangster, T C; Glebov, V; Stoeckl, C; Olson, R; Leeper, R J; Kline, J; Kyrala, G; Wilson, D
2012-10-01
The compact Wedge Range Filter (WRF) proton spectrometer was developed for OMEGA and transferred to the National Ignition Facility (NIF) as a National Ignition Campaign diagnostic. The WRF measures the spectrum of protons from D-(3)He reactions in tuning-campaign implosions containing D and (3)He gas; in this work we report on the first proton spectroscopy measurement on the NIF using WRFs. The energy downshift of the 14.7-MeV proton is directly related to the total ρR through the plasma stopping power. Additionally, the shock proton yield is measured, which is a metric of the final merged shock strength.
NASA Astrophysics Data System (ADS)
Oimatsu, S.; Masahito, N.; Takahashi, K.; Yamamoto, K.; Keika, K.; Kletzing, C.; MacDowall, R. J.; Smith, C.; Mitchell, D. G.
2017-12-01
Poloidal Pc4 wave and proton flux oscillation due to the drift-bounce resonance are observed in the inner magnetosphere on the dayside near the magnetic equator by the Van Allen Probes spacecraft on 2 March 2014. The flux modulation is observed in the energy range of 67.0 keV to 268.8 keV with the same frequency of poloidal Pc4 wave. We estimate the resonant energy to be 120 keV for pitch angle (α) of 20º-40º or 140º-160º, and 170-180 keV for α=40º-60º or 120º-140º. The drift-bounce resonance theory gives the resonant energy of 110-120 keV, which is consistent with the observation for small α (or large α when α≥90º), but slightly higher than the observation for large α (or small α when α≥90º). We consider that this discrepancy of the resonant energy is due to the drift shell splitting. In order to examine the direction of energy flow between protons and the wave, we calculate the sign of the gradient of proton phase space density (df/dW) in both outbound and inbound paths. Results showed positive gradient in both paths, which means that the energy is transferred from the protons to the wave. During the appearance of poloidal Pc4 wave, the Dst* index shows a sudden increase of 6.7 nT. We estimate the total energy loss of the ring current from the recovery of the Dst* index and the variation of proton flux by the drift-bounce resonance. The estimated energy loss is almost comparable for both cases. Therefore, we suggest that the energy transfer from the ring current protons to the wave via the drift-bounce resonance cause the increase of Dst* index.
Explanation to the difference in the ketyl radical formation yields of benzophenone and benzil
NASA Astrophysics Data System (ADS)
Okutsu, Tetsuo; Muramatsu, Hidenori; Horiuchi, Hiroaki; Hiratsuka, Hiroshi
2005-03-01
p Ka values of benzophenone ketyl and benzil ketyl radicals were determined as 9.4 and 12.4, respectively. We can successfully explain the difference in quantum yield of the proton transfer between benzophenone ketyl and benzil ketyl radicals by these values. Reaction enthalpies of the proton transfer are the same (-80 kJ mol -1) for these radicals, and the difference in p Ka value can be explained by that reaction entropies. Reaction entropies between two radicals are discussed by the possible structure of the radicals.
Lin, Xinglong; Ye, Xincui; Sun, Xianwei; Zhang, Yuebao; Gao, Lu; Song, Zhenlei
2014-02-21
A [1,5]-anion relay has been achieved in 3,3-bis(silyl) benzyl enol ether. Deprotonation at the sterically more accessible benzyl position triggers an intramolecular proton transfer to generate the thermodynamically more stable 3,3-bis(silyl) allyloxy lithium. This endo-oriented allyl anion is stable at -78 °C and undergoes diastereoselective syn-addition at the γ-position with aldehydes and ketones to give monobenzyl-substituted 1,2-diols.
Cantu, David C.; Lee, Juntaek; Lee, Mal -Soon; ...
2016-03-28
The deployment of transformational non-aqueous CO 2-capture solvent systems is encumbered by high viscosity even at intermediate uptakes. Using single-molecule CO 2 binding organic liquids as a prototypical example, we identify the key molecular features controlling bulk liquid viscosity and CO 2 uptake kinetics. Fast uptake kinetics arise from close proximity of the alcohol and amine sites that are involved in CO 2 binding. This process results in the concerted formation of a Zwitterion containing both an alkylcarbonate and a protonated amine. The hydrogen bonding between the two functional groups ultimately determines the solution viscosity. Based on molecular simulation, thismore » work reveals options to significantly reduce viscosity with molecular modifications that shift the proton transfer equilibrium towards a neutral acid/amine species as opposed to the ubiquitously accepted Zwitterionic state. Lastly, the molecular design concepts proposed here, for the alkyl-carbonate systems, are readily extensible to other CO 2 capture technologies, such as the carbamate- or imidazole-based solvent chemistries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Dayle MA; Raugei, Simone; Squier, Thomas C.
2014-09-30
Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni–Fe cluster in the catalytically active Ni-C state. There aremore » correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.« less
Smith, Dayle M A; Raugei, Simone; Squier, Thomas C
2014-11-21
Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni-Fe cluster in the catalytically active Ni-C state. There are correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.
Theoretical study on the nitration of methane by acyl nitrate catalyzed by H-ZSM5 zeolite.
Silva, Alexander Martins; Nascimento, Marco Antonio Chaer
2008-09-25
A theoretical study on the nitration of methane by acyl nitrate catalyzed by HZSM-5 zeolite is reported. The zeolite was represented by a "double ring" 20T cluster. The calculations were performed at the DFT/X3LYP/6-31G** and MP2/6-31G** levels. The first step of the mechanism involves the protonation of the acyl nitrate by the zeolite and the formation of a nitronium-like ion. The reaction proceeds through a concerted step with the attack of the methane molecule by the nitronium-like ion and the simultaneous transfer of a proton from the methane molecule to the zeolite, thus reconstructing the acidic site. The activation energies for the first and second steps of this reaction are, respectively, 14.09 and 10.14 kcal/mol at X3LYP/6-31G** level and 16.68 and 13.85 kcal/mol at the MP2/6-31G**.
Scheidegger, Rachel; Vinogradov, Elena; Alsop, David C
2011-01-01
Amide proton transfer (APT) imaging has shown promise as an indicator of tissue pH and as a marker for brain tumors. Sources of error in APT measurements include direct water saturation, and magnetization transfer (MT) from membranes and macromolecules. These are typically suppressed by post-processing asymmetry analysis. However, this approach is strongly dependent on B0 homogeneity and can introduce additional errors due to intrinsic MT asymmetry, aliphatic proton features opposite the amide peak, and radiation damping-induced asymmetry. Although several methods exist to correct for B0 inhomogeneity, they tremendously increase scan times and do not address errors induced by asymmetry of the z-spectrum. In this paper, a novel saturation scheme - saturation with frequency alternating RF irradiation (SAFARI) - is proposed in combination with a new magnetization transfer ratio (MTR) parameter designed to generate APT images insensitive to direct water saturation and MT, even in the presence of B0 inhomogeneity. The feasibility of the SAFARI technique is demonstrated in phantoms and in the human brain. Experimental results show that SAFARI successfully removes direct water saturation and MT contamination from APT images. It is insensitive to B0 offsets up to 180Hz without using additional B0 correction, thereby dramatically reducing scanning time. PMID:21608029
NASA Astrophysics Data System (ADS)
Benbouzid, Y.; Allal, N. H.; Fellah, M.; Oudih, M. R.
2018-04-01
Isovector neutron-proton (np) pairing and particle-number fluctuation effects on the spectroscopic factors (SF) corresponding to one-pair like-particle transfer reactions in proton-rich even-even nuclei are studied. With this aim, expressions of the SF corresponding to two-neutron stripping and two-proton pick-up reactions, which take into account the isovector np pairing effect, are established within the generalized BCS approach, using a schematic definition proposed by Chasman. Expressions of the same SF which strictly conserve the particle number are also established within the Sharp-BCS (SBCS) discrete projection method. In both cases, it is shown that these expressions generalize those obtained when only the pairing between like particles is considered. First, the formalism is tested within the Richardson schematic model. Second, it is applied to study even-even proton-rich nuclei using the single-particle energies of a Woods-Saxon mean-field. In both cases, it is shown that the np pairing effect and the particle-number projection effect on the SF values are important, particularly in N = Z nuclei, and must then be taken into account.
Sahu, Kalyanasis; Nandi, Nilanjana; Dolai, Suman; Bera, Avisek
2018-06-05
Emission spectrum of a fluorophore undergoing excited state proton transfer (ESPT) often exhibits two distinct bands each representing emissions from protonated and deprotonated forms. The relative contribution of the two bands, best represented by an emission intensity ratio (R) (intensity maximum of the protonated band / intensity maximum of the deprotonated band), is an important parameter which usually denotes feasibility or promptness of the ESPT process. However, the use of ratio is only limited to the interpretation of steady-state fluorescence spectra. Here, for the first time, we exploit the time-dependence of the ratio (R(t)), calculated from time-resolved emission spectra (TRES) at different times, to analyze ESPT dynamics. TRES at different times were fitted with a sum of two lognormal-functions representing each peaks and then, the peak intensity ratio, R(t) was calculated and further fitted with an analytical function. Recently, a time-resolved area-normalized emission spectra (TRANES)-based analysis was presented where the decay of protonated emission or the rise of deprotonated emission intensity conveniently accounts for the ESPT dynamics. We show that these two methods are equivalent but the new method provides more insights on the nature of the ESPT process.
Senger, Moritz; Mebs, Stefan; Duan, Jifu; Shulenina, Olga; Laun, Konstantin; Kertess, Leonie; Wittkamp, Florian; Apfel, Ulf-Peter; Happe, Thomas; Winkler, Martin; Haumann, Michael; Stripp, Sven T
2018-01-31
The [FeFe]-hydrogenases of bacteria and algae are the most efficient hydrogen conversion catalysts in nature. Their active-site cofactor (H-cluster) comprises a [4Fe-4S] cluster linked to a unique diiron site that binds three carbon monoxide (CO) and two cyanide (CN - ) ligands. Understanding microbial hydrogen conversion requires elucidation of the interplay of proton and electron transfer events at the H-cluster. We performed real-time spectroscopy on [FeFe]-hydrogenase protein films under controlled variation of atmospheric gas composition, sample pH, and reductant concentration. Attenuated total reflection Fourier-transform infrared spectroscopy was used to monitor shifts of the CO/CN - vibrational bands in response to redox and protonation changes. Three different [FeFe]-hydrogenases and several protein and cofactor variants were compared, including element and isotopic exchange studies. A protonated equivalent (HoxH) of the oxidized state (Hox) was found, which preferentially accumulated at acidic pH and under reducing conditions. We show that the one-electron reduced state Hred' represents an intrinsically protonated species. Interestingly, the formation of HoxH and Hred' was independent of the established proton pathway to the diiron site. Quantum chemical calculations of the respective CO/CN - infrared band patterns favored a cysteine ligand of the [4Fe-4S] cluster as the protonation site in HoxH and Hred'. We propose that proton-coupled electron transfer facilitates reduction of the [4Fe-4S] cluster and prevents premature formation of a hydride at the catalytic diiron site. Our findings imply that protonation events both at the [4Fe-4S] cluster and at the diiron site of the H-cluster are important in the hydrogen conversion reaction of [FeFe]-hydrogenases.
Production of Hydrogen by Electrocatalysis: Making the H-H Bond by Combining Protons and Hydrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullock, R. Morris; Appel, Aaron M.; Helm, Monte L.
2014-03-25
Generation of hydrogen by reduction of two protons by two electrons can be catalysed by molecular electrocatalysts. Determination of the thermodynamic driving force for elimination of H2 from molecular complexes is important for the rational design of molecular electrocatalysts, and allows the design of metal complexes of abundant, inexpensive metals rather than precious metals (“Cheap Metals for Noble Tasks”). The rate of H2 evolution can be dramatically accelerated by incorporating pendant amines into diphosphine ligands. These pendant amines in the second coordination sphere function as protons relays, accelerating intramolecular and intermolecular proton transfer reactions. The thermodynamics of hydride transfer frommore » metal hydrides and the acidity of protonated pendant amines (pKa of N-H) contribute to the thermodynamics of elimination of H2; both of the hydricity and acidity can be systematically varied by changing the substituents on the ligands. A series of Ni(II) electrocatalysts with pendant amines have been developed. In addition to the thermochemical considerations, the catalytic rate is strongly influenced by the ability to deliver protons to the correct location of the pendant amine. Protonation of the amine endo to the metal leads to the N-H being positioned appropriately to favor rapid heterocoupling with the M-H. Designing ligands that include proton relays that are properly positioned and thermodynamically tuned is a key principle for molecular electrocatalysts for H2 production as well as for other multi-proton, multi-electron reactions important for energy conversions. The research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for DOE.« less
Yuki, Masahiro; Sakata, Ken; Kikuchi, Shoma; Kawai, Hiroyuki; Takahashi, Tsuyoshi; Ando, Masaki; Nakajima, Kazunari; Nishibayashi, Yoshiaki
2017-01-23
Thiolate-bridged diruthenium complexes bearing pendent ethers have been found to work as effective catalysts toward the oxidation of molecular dihydrogen into protons and electrons in water. The pendent ether moiety in the complex plays an important role to facilitate the proton transfer between the metal center and the external proton acceptor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Three-dimensional protonic conductivity in porous organic cage solids.
Liu, Ming; Chen, Linjiang; Lewis, Scott; Chong, Samantha Y; Little, Marc A; Hasell, Tom; Aldous, Iain M; Brown, Craig M; Smith, Martin W; Morrison, Carole A; Hardwick, Laurence J; Cooper, Andrew I
2016-09-13
Proton conduction is a fundamental process in biology and in devices such as proton exchange membrane fuel cells. To maximize proton conduction, three-dimensional conduction pathways are preferred over one-dimensional pathways, which prevent conduction in two dimensions. Many crystalline porous solids to date show one-dimensional proton conduction. Here we report porous molecular cages with proton conductivities (up to 10(-3) S cm(-1) at high relative humidity) that compete with extended metal-organic frameworks. The structure of the organic cage imposes a conduction pathway that is necessarily three-dimensional. The cage molecules also promote proton transfer by confining the water molecules while being sufficiently flexible to allow hydrogen bond reorganization. The proton conduction is explained at the molecular level through a combination of proton conductivity measurements, crystallography, molecular simulations and quasi-elastic neutron scattering. These results provide a starting point for high-temperature, anhydrous proton conductors through inclusion of guests other than water in the cage pores.
Three-dimensional protonic conductivity in porous organic cage solids
NASA Astrophysics Data System (ADS)
Liu, Ming; Chen, Linjiang; Lewis, Scott; Chong, Samantha Y.; Little, Marc A.; Hasell, Tom; Aldous, Iain M.; Brown, Craig M.; Smith, Martin W.; Morrison, Carole A.; Hardwick, Laurence J.; Cooper, Andrew I.
2016-09-01
Proton conduction is a fundamental process in biology and in devices such as proton exchange membrane fuel cells. To maximize proton conduction, three-dimensional conduction pathways are preferred over one-dimensional pathways, which prevent conduction in two dimensions. Many crystalline porous solids to date show one-dimensional proton conduction. Here we report porous molecular cages with proton conductivities (up to 10-3 S cm-1 at high relative humidity) that compete with extended metal-organic frameworks. The structure of the organic cage imposes a conduction pathway that is necessarily three-dimensional. The cage molecules also promote proton transfer by confining the water molecules while being sufficiently flexible to allow hydrogen bond reorganization. The proton conduction is explained at the molecular level through a combination of proton conductivity measurements, crystallography, molecular simulations and quasi-elastic neutron scattering. These results provide a starting point for high-temperature, anhydrous proton conductors through inclusion of guests other than water in the cage pores.
NASA Astrophysics Data System (ADS)
Vealey, Zachary; Foguel, Lidor; Vaccaro, Patrick
2017-06-01
Our fundamental understanding of synergistic hydrogen-bonding and proton-transfer phenomena has been advanced immensely by studies of model systems in which the coherent transduction of hydrons is mediated by two degenerate equilibrium configurations that are isolated from one another by a potential barrier of substantial height. This topography advantageously affords unambiguous signatures for the underlying state-resolved dynamics in the form of tunneling-induced spectral bifurcations, the magnitudes of which encode both the overall efficacy and the detailed mechanism of the unimolecular transformation. As a prototypical member of this class of compounds, 6-hydroxy-2-formylfulvene (HFF) supports an unusual quasi-linear O-H...O \\leftrightarrow O...H-O reaction coordinate that presents a minimal impediment to proton migration - a situation commensurate with the concepts of low-barrier hydrogen bonding (which are characterized by great strength, short distance, and a vanishingly small barrier for hydron migration). A variety of fluorescence-based, laser-spectroscopic probes have been deployed in a cold supersonic free-jet expansion to explore the vibrational landscape and anomalously large tunneling-induced shifts that dominate the ˜{X}^{1}A_{1} potential-energy surface of HFF, thus revealing the most rapid proton tunneling ever reported for a molecular ground state (τ_{pt}≤120fs). The surprising efficiency of such tunneling-mediated processes stems from proximity of the zero-point level to the barrier crest and produces a dramatic alteration in the canonical pattern of vibrational features that reflects, in part, the subtle transition from quantum-mechanical barrier penetration to classical over-the-barrier dynamics. The ultrafast proton-transfer regime that characterizes the ˜{X}^{1}A_{1} manifold will be juxtaposed against analogous findings for the lowest-lying singlet excited state ˜{A}^{1}B_{2} (π*←π), where a marked change in the nature of the reaction coordinate leads to the near-complete quenching of proton transfer. Experimental results, as well as complementary quantum-chemical analyses, will be discussed and contrasted with those obtained for related hydron-migration systems in an effort to highlight the unique bonding motifs and reaction propensities evinced by HFF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, G.D.; Sykes, B.D.
The coat protein of the filamentous coliphage M13 is a 50-residue polypeptide which spans the inner membrane of the Escherichia coli host upon infection. Amide hydrogen exchange kinetics have been used to probe the structure and dynamics of M13 coat protein which has been solubilized in sodium dodecyl sulfate (SDS) micelles. In a previous {sup 1}H nuclear magnetic resonance (NMR) study, multiple exponential analysis of the unresolved amide proton envelope revealed the existence of two slow kinetic sets containing a total of about 30 protons. The slower set (15-20 amides) originates from the hydrophobic membrane-spanning region and exchanges at leastmore » 10{sup 5}-fold slower than the unstructured, non-H-bonded model polypeptide poly(DL-alanine). Herein the authors use {sup 15}N NMR spectroscopy of biosynthetically labeled coat protein to follow individual, assigned, slowly exchanging amides in or near the hydrophobic segment. The INEPT (insensitive nucleus enhancement by polarization transfer) experiments can be used to transfer magnetization to the {sup 15}N nucleus from a coupled proton; when {sup 15}N-labeled protonated protein is dissolved in {sup 2}H{sub 2}O, the INEPT signal disappears with time as the amide protons are replaced by solvent deuterons. Amide hydrogen exchange is catalyzed by both H{sup +} and OH{sup {minus}} ions. The time-dependent exchange-out experiment is suitable for slow exchange rates (k{sub ex}). The INEPT experiment was also adapted to measure some of the more rapidly exchanging amides in the coat protein using either saturation transfer from water or exchange effects on the polarization transfer step itself. The results of all of these experiments are consistent with previous models of the coat protein in which a stable segment extends from the hydrophobic membrane-spanning region through to the C-terminus, whereas the N-terminal region is undergoing more extensive dynamic fluctuations.« less
Ludlow, Michelle K; Soudackov, Alexander V; Hammes-Schiffer, Sharon
2009-05-27
In this paper we present theoretical calculations on model biomimetic systems for quinol oxidation. In these model systems, an excited-state [Ru(bpy)(2)(pbim)](+) complex (bpy = 2,2'-dipyridyl, pbim = 2-(2-pyridyl)benzimidazolate) oxidizes a ubiquinol or plastoquinol analogue in acetonitrile. The charge transfer reaction occurs via a proton-coupled electron transfer (PCET) mechanism, in which an electron is transferred from the quinol to the Ru and a proton is transferred from the quinol to the pbim(-) ligand. The experimentally measured average kinetic isotope effects (KIEs) at 296 K are 1.87 and 3.45 for the ubiquinol and plastoquinol analogues, respectively, and the KIE decreases with temperature for plastoquinol but increases with temperature for ubiquinol. The present calculations provide a possible explanation for the differences in magnitudes and temperature dependences of the KIEs for the two systems and, in particular, an explanation for the unusual inverse temperature dependence of the KIE for the ubiquinol analogue. These calculations are based on a general theoretical formulation for PCET reactions that includes quantum mechanical effects of the electrons and transferring proton, as well as the solvent reorganization and proton donor-acceptor motion. The physical properties of the system that enable the inverse temperature dependence of the KIE are a stiff hydrogen bond, which corresponds to a high-frequency proton donor-acceptor motion, and small inner-sphere and solvent reorganization energies. The inverse temperature dependence of the KIE may be observed if the 0/0 pair of reactant/product vibronic states is in the inverted Marcus region, while the 0/1 pair of reactant/product vibronic states is in the normal Marcus region and is the dominant contributor to the overall rate. In this case, the free energy barrier for the dominant transition is lower for deuterium than for hydrogen because of the smaller splittings between the vibronic energy levels for deuterium, and the KIE increases with increasing temperature. The temperature dependence of the KIE is found to be very sensitive to the interplay among the driving force, the reorganization energy, and the vibronic coupling in this regime.
Markova, Nadezhda; Pejov, Ljupco; Stoyanova, Nina; Enchev, Venelin
2017-05-01
To provide an in-depth insight into the molecular basis of spontaneous tautomerism in DNA and RNA base pairs, a hybrid Monte Carlo (MC)-quantum chemical (QC) methodology is implemented to map two-dimensional potential energy surfaces along the reaction coordinates of solvent-assisted proton transfer processes in guanosine and its analog acyclovir in aqueous solution. The solvent effects were simulated by explicit inclusion of water molecules that model the relevant part of the first hydration shell around the solute. The position of these water molecules was estimated by carrying out a classical Metropolis Monte Carlo simulation of dilute water solutions of the guanosine (Gs) and acyclovir (ACV) and subsequently analyzing solute-solvent intermolecular interactions in the statistically-independent MC-generated configurations. The solvent-assisted proton transfer processes were further investigated using two different ab initio MP2 quantum chemical approaches. In the first one, potential energy surfaces of the 'bare' finite solute-solvent clusters containing Gs/ACV and four water molecules (MP2/6-31+G(d,p) level) were explored, while within the second approach, these clusters were embedded in 'bulk' solvent treated as polarizable continuum (C-PCM/MP2/6-31+G(d,p) level of theory). It was found that in the gas phase and in water solution, the most stable tautomer for guanosine and acyclovir is the 1H-2-amino-6-oxo form followed by the 2-amino-6-(sZ)-hydroxy form. The energy barriers of the water-assisted proton transfer reaction in guanosine and in acyclovir are found to be very similar - 11.74 kcal mol -1 for guanosine and 11.16 kcal mol -1 for acyclovir, and the respective rate constants (k = 1.5 × 10 1 s -1 , guanosine and k = 4.09 × 10 1 s -1 , acyclovir), are sufficiently large to generate the 2-amino-6-(sZ)-hydroxy tautomer. The analysis of the reaction profiles in both compounds shows that the proton transfer processes occur through the asynchronous concerted mechanism.
Sohn, Chang Ho; Yin, Sheng; Peng, Ivory; Loo, Joseph A; Beauchamp, J L
2015-11-15
The mechanisms of electron capture and electron transfer dissociation (ECD and ETD) are investigated by covalently attaching a free-radical hydrogen atom scavenger to a peptide. The 2,2,6,6-tetramethylpiperidin-l-oxyl (TEMPO) radical was chosen as the scavenger due to its high hydrogen atom affinity (ca. 280 kJ/mol) and low electron affinity (ca. 0.45 ev), and was derivatized to the model peptide, FQX TEMPO EEQQQTEDELQDK. The X TEMPO residue represents a cysteinyl residue derivatized with an acetamido-TEMPO group. The acetamide group without TEMPO was also examined as a control. The gas phase proton affinity (882 kJ/mol) of TEMPO is similar to backbone amide carbonyls (889 kJ/mol), minimizing perturbation to internal solvation and sites of protonation of the derivatized peptides. Collision induced dissociation (CID) of the TEMPO tagged peptide dication generated stable odd-electron b and y type ions without indication of any TEMPO radical induced fragmentation initiated by hydrogen abstraction. The type and abundance of fragment ions observed in the CID spectra of the TEMPO and acetamide tagged peptides are very similar. However, ECD of the TEMPO labeled peptide dication yielded no backbone cleavage. We propose that a labile hydrogen atom in the charge reduced radical ions is scavenged by the TEMPO radical moiety, resulting in inhibition of N-C α backbone cleavage processes. Supplemental activation after electron attachment (ETcaD) and CID of the charge-reduced precursor ion generated by electron transfer of the TEMPO tagged peptide dication produced a series of b + H (b H ) and y + H (y H ) ions along with some c ions having suppressed intensities, consistent with stable O-H bond formation at the TEMPO group. In summary, the results indicate that ECD and ETD backbone cleavage processes are inhibited by scavenging of a labile hydrogen atom by the localized TEMPO radical moiety. This observation supports the conjecture that ECD and ETD processes involve long-lived intermediates formed by electron capture/transfer in which a labile hydrogen atom is present and plays a key role with low energy processes leading to c and z ion formation. Ab initio and density functional calculations are performed to support our conclusion, which depends most importantly on the proton affinity, electron affinity and hydrogen atom affinity of the TEMPO moiety.
NASA Astrophysics Data System (ADS)
Shanty, Angamaly Antony; Mohanan, Puzhavoorparambil Velayudhan
2018-03-01
Phenolic heterocyclic imine based Schiff bases from Thiophene-2-carboxaldehyde and Pyrrole-2-carboxaldehyde were synthesized and characterized as novel antioxidants. The solvent effects of these Schiff bases were determined and compared with standard antioxidants, BHA employing DPPH assay and ABTS assay. Fixed reaction time and Steady state measurement were used for study. IC50 and EC50 were calculated. Structure-activity relationship revealed that the electron donating group in the phenolic ring increases the activity where as the electron withdrawing moiety decreases the activity. The Schiff base derivatives showed antioxidant property by two different pathways namely SPLET and HAT mechanisms in DPPH assay. While in ABTS method, the reaction between ABTS radical and Schiff bases involves electron transfer followed by proton transfer (ET-PT) mechanism. The cytotoxicity of these compounds has been evaluated by MTT assay. The results showed that all these compounds are non toxic in nature.
Ptushenko, Vasily V; Cherepanov, Dmitry A; Krishtalik, Lev I
2015-12-01
Continuum electrostatic calculation of the transfer energies of anions from water into aprotic solvents gives the figures erroneous by order of magnitude. This is due to the hydrogen bond disruption that suggests the necessity to reconsider the traditional approach of the purely electrostatic calculation of the transfer energy from water into protein. In this paper, the method combining the experimental estimates of the transfer energies from water into aprotic solvent and the electrostatic calculation of the transfer energies from aprotic solvent into protein is proposed. Hydrogen bonds between aprotic solvent and solute are taken into account by introducing an imaginary aprotic medium incapable to form hydrogen bonds with the solute. Besides, a new treatment of the heterogeneous intraprotein dielectric permittivity based on the microscopic protein structure and electrometric measurements is elaborated. The method accounts semi-quantitatively for the electrostatic effect of diverse charged amino acid substitutions in the donor and acceptor parts of the photosynthetic bacterial reaction center from Rhodobacter sphaeroides. Analysis of the volatile secondary acceptor site QB revealed that in the conformation with a minimal distance between quinone QB and Glu L 212 the proton uptake upon the reduction of QB is prompted by Glu L 212 in alkaline and by Asp L 213 in slightly acidic regions. This agrees with the pH dependences of protonation degrees and the proton uptake. The method of pK calculation was applied successfully also for dissociation of Asp 26 in bacterial thioredoxin. Copyright © 2015 Elsevier B.V. All rights reserved.
Charging of Proteins in Native Mass Spectrometry
NASA Astrophysics Data System (ADS)
Susa, Anna C.; Xia, Zijie; Tang, Henry Y. H.; Tainer, John A.; Williams, Evan R.
2017-02-01
Factors that influence the charging of protein ions formed by electrospray ionization from aqueous solutions in which proteins have native structures and function were investigated. Protein ions ranging in molecular weight from 12.3 to 79.7 kDa and pI values from 5.4 to 9.6 were formed from different solutions and reacted with volatile bases of gas-phase basicities higher than that of ammonia in the cell of a Fourier-transform ion cyclotron resonance mass spectrometer. The charge-state distribution of cytochrome c ions formed from aqueous ammonium or potassium acetate is the same. Moreover, ions formed from these two solutions do not undergo proton transfer to 2-fluoropyridine, which is 8 kcal/mol more basic than ammonia. These results provide compelling evidence that proton transfer between ammonia and protein ions does not limit protein ion charge in native electrospray ionization. Both circular dichroism and ion mobility measurements indicate that there are differences in conformations of proteins in pure water and aqueous ammonium acetate, and these differences can account for the difference in the extent of charging and proton-transfer reactivities of protein ions formed from these solutions. The extent of proton transfer of the protein ions with higher gas-phase basicity bases trends with how closely the protein ions are charged to the value predicted by the Rayleigh limit for spherical water droplets approximately the same size as the proteins. These results indicate that droplet charge limits protein ion charge in native mass spectrometry and are consistent with these ions being formed by the charged residue mechanism.
NASA Astrophysics Data System (ADS)
Ren, Jianhua; Tian, Yuan; Hossain, Ekram; Connolly, Michael D.
2016-04-01
Peptoids are peptide-mimicking oligomers consisting of N-alkylated glycine units. The fragmentation patterns for six singly and doubly protonated model peptoids were studied via collision-induced dissociation tandem mass spectrometry. The experiments were carried out on a triple quadrupole mass spectrometer with an electrospray ionization source. Both singly and doubly protonated peptoids were found to fragment mainly at the backbone amide bonds to produce peptoid B-type N-terminal fragment ions and Y-type C-terminal fragment ions. However, the relative abundances of B- versus Y-ions were significantly different. The singly protonated peptoids fragmented by producing highly abundant Y-ions and lesser abundant B-ions. The Y-ion formation mechanism was studied through calculating the energetics of truncated peptoid fragment ions using density functional theory and by controlled experiments. The results indicated that Y-ions were likely formed by transferring a proton from the C-H bond of the N-terminal fragments to the secondary amine of the C-terminal fragments. This proton transfer is energetically favored, and is in accord with the observation of abundant Y-ions. The calculations also indicated that doubly protonated peptoids would fragment at an amide bond close to the N-terminus to yield a high abundance of low-mass B-ions and high-mass Y-ions. The results of this study provide further understanding of the mechanisms of peptoid fragmentation and, therefore, are a valuable guide for de novo sequencing of peptoid libraries synthesized via combinatorial chemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bokatzian, Samantha S.; Stover, Michele L.; Plummer, Chelsea E.
Using mass spectrometry and correlated molecular orbital theory, three deprotonated structures were revealed for the amino acid tyrosine. The structures were distinguished experimentally by ion/molecule reactions involving proton transfer and trimethylsilyl azide. Gas-phase acidities from proton transfer reactions and from G3(MP2) calculations generally agree well. The lowest energy structure, which was only observed experimentally using electrospray ionization from aprotic solvents, is deprotonated at the carboxylic acid group and is predicted to be highly folded. A second unfolded carboxylate structure is several kcal/mol higher in energy and primarily forms from protic solvents. Protic solvents also yield a structure deprotonated at themore » phenolic side chain, which experiments find to be intermediate in energy to the two carboxylate forms. G3(MP2) calculations indicate that the three structures differ in energy by only 2.5 kcal/mol, yet they are readily distinguished experimentally. Structural abundance ratios are dependent upon experimental conditions, including the solvent and accumulation time of ions in a hexapole. Under some conditions, carboxylate ions may convert to phenolate ions. For phenylalanine, which lacks a phenolic group, only one deprotonated structure was observed experimentally when electrosprayed from protic solvent. This agrees with G3(MP2) calculations that find the folded and unfolded carboxylate forms to differ by 0.3 kcal/mol.« less
Hajdu, Bálint; Czakó, Gábor
2018-02-22
We report a comprehensive high-level explicitly correlated ab initio study on the X - + NH 2 Y [X,Y = F, Cl, Br, I] reactions characterizing the stationary points of the S N 2 (Y - + NH 2 X) and proton-transfer (HX + NHY - ) pathways as well as the reaction enthalpies of various endothermic additional product channels such as H - + NHXY, XY - + NH 2 , XY + NH 2 - , and XHY - + NH. Benchmark structures and harmonic vibrational frequencies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ(-PP) level of theory, followed by CCSD(T)-F12b/aug-cc-pVnZ(-PP) [n = Q and 5] and core correlation energy computations. In the entrance and exit channels we find two equivalent hydrogen-bonded C 1 minima, X - ···HH'NY and X - ···H'HNY connected by a C s first-order saddle point, X - ···H 2 NY, as well as a halogen-bonded front-side complex, X - ···YNH 2 . S N 2 reactions can proceed via back-side attack Walden inversion and front-side attack retention pathways characterized by first-order saddle points, submerged [X-NH 2 -Y] - and high-energy [H 2 NXY] - , respectively. Product-like stationary points below the HX + NHY - asymptotes are involved in the proton-transfer processes.
NASA Astrophysics Data System (ADS)
Blazejewski, Jacob; Schultz, Chase; Mazzuca, James
2015-03-01
Many biological systems utilize water chains to transfer charge over long distances by means of an excess proton. This study examines how quantum effects impact these reactions in a small model system. The model consists of a water molecule situated between an imidazole donor and acceptor group, which simulate a fixed amino acid backbone. A one dimensional energy profile is evaluated using density functional theory at the 6-31G*/B3LYP level, which generates a barrier with a width of 0.6 Å and a height of 20.7 kcal/mol. Quantum transmission probability is evaluated by solving the time dependent Schrödinger equation on a grid. Isotopic effects are examined by performing calculations with both hydrogen and deuterium. The ratio of hydrogen over the deuterium shows a 130-fold increase in transmission probability at low temperatures. This indicates a substantial quantum tunneling effect. The study of higher dimensional systems as well as increasing the number of water molecules in the chain will be necessary to fully describe the proton transfer process. Alma College Provost's Office.
NASA Astrophysics Data System (ADS)
Chew, Kathryn; Vealey, Zachary; Vaccaro, Patrick
2015-06-01
The vibrational and isotopic dependence of the hindered (tunneling-mediated) proton-transfer reaction taking place in the ground electronic state ( X1{A}1) of monodeuterated tropolone (TrOD) has been explored under ambient (bulk-gas) conditions by applying two-color variants of resonant four-wave mixing (RFWM) spectroscopy in conjunction with polarization-resolved detection schemes designed to alleviate spectral complexity and facilitate rovibrational assignments. Full rotation-tunneling analyses of high-resolution spectral profiles acquired for the fundamental and first-overtone bands of a reaction-promoting O-D\\cdotsO deformation/ring-breathing mode, νb{36}(a1), were performed, thereby extracting refined structural and dynamical information that affords benchmarks for the quantitative interpretation of tunneling-induced signatures found in long-range scans of X1{A}1 vibrational levels residing below Etilde{X}vib = 1700 wn}. Observed kinetic isotope effects, which reflect changes in both reaction kinematics and vibrational displacements, will be discussed, with high-level quantum-chemical calculations serving to elucidate state-resolved propensities for proton transfer in TrOH and TrOD.
NASA Astrophysics Data System (ADS)
Karl, T.; Jobson, T.; William, K.; Williams, E.; Stutz, J.; Goldan, P.; Fall, R.; Fehsenfeld, F.; Lindinger, W.
2002-12-01
We used Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) for continuous real-time monitoring of volatile organic compounds (VOCs) at a site near the Houston Ship Channel during the Texas Air Quality Study 2000. Anthropogenic aromatics, alkenes, methanol, acetaldehyde, formaldehyde, acetone/propanal, a C7-Ketone, HCN and acrylonitrile were the most prominent compounds observed. Propene was the most abundant light-weight hydrocarbon detected by this technique, and was highly correlated with its oxidation products, formaldehyde and acetaldehyde, with typical propene-acetaldehyde ratios close to 1 in propene-dominated plumes. In the case of aromatic species the high time resolution of the obtained dataset helped in identifying different anthropogenic sources (e.g. industrial from urban emissions) and testing current emission inventories. In addition, a comparison with results from complimentary techniques (gas chromatography, differential optical absorption spectroscopy) was used to assess the selectivity of this on-line technique in a complex urban and industrial VOC matrix and give an interpretation of mass scans obtained by `soft' chemical ionization using proton-transfer via H3O+.