Science.gov

Sample records for iodide nuclear detectors

  1. Growth of mercuric iodide (HgI2) for nuclear radiation detectors

    NASA Technical Reports Server (NTRS)

    Vandenberg, L.; Schnepple, W. F.

    1988-01-01

    Mercuric iodide is a material used for the fabrication of the sensing element in solid state X-ray and gamma ray detecting instruments. The operation of the devices is determined to a large degree by the density of structural defects in the single crystalline material used in the sensing element. Since there were strong indications that the quality of the material was degraded by the effects of gravity during the growth process, a research and engineering program was initiated to grow one or more crystals of mercuric iodide in the reduced gravity environment of space. A special furnace assembly was designed which could be accommodated in a Spacelab rack, and at the same time made it possible to use the same growth procedures and controls used when growing a crystal on the ground. The space crystal, after the flight, was subjected to the same evaluation methods used for earth-grown crystals, so that comparisons could be made.

  2. Mercuric iodide light detector and related method

    DOEpatents

    Iwanczyk, Jan S.; Barton, Jeff B.; Dabrowski, Andrzej J.; Schnepple, Wayne F.

    1986-01-01

    Apparatus and method for detecting light involve applying a substantially uniform electrical potential difference between first and second spaced surfaces of a body of mercuric iodide, exposing the first surface to light and measuring an electrical current passed through the body in response to the light. The mercuric iodide may be substantially monocrystalline and the potential may be applied between a substantially transparent conductive layer at the first surface and a second conductive layer at the second surface. In a preferred embodiment, the detector is coupled to a scintillator for passage of light to the mercuric iodide in response to ionizing radiation incident on the scintillator.

  3. Bismuth tri-iodide radiation detector development

    NASA Astrophysics Data System (ADS)

    Gokhale, Sasmit S.

    Bismuth tri-iodide is an attractive material for room temperature radiation detection. BiI3 demonstrates a number of properties that are apt for semiconductor radiation detection, especially gamma ray spectroscopy. The high atomic number (ZBi = 83 and ZI = 53) and the relatively high density (5.78 g/cm3) cause the material to have good photon stopping power, while the large band-gap (1.67 eV ) allows it to function as a room temperature radiation detector without any cooling mechanism. This work presents the fabrication and characterization of BiI3 radiation detectors. For the purpose of this research detectors were fabricated by cutting BiI3 crystal boules, followed by mechanical and chemical surface treatments. Detectors with various electrode geometries enabling single polarity charge sensing were fabricated. The electrical characteristics and the radiation response of the detectors were measured. The radiation response measurement was performed at room temperature using a 241Am alpha particle source and a 241Am sealed gamma-ray source. The spectral resolutions of the detectors varied from 2.09% - 6.1% for 59.5 keV gamma-rays and between 26% - 40% for 5.48 MeV alpha particles. Charge carrier properties such as the electron and hole mobility and lifetime were also estimated. The electron mobility for an ultrapure BiI 3 detector was estimated to be approximately 433 cm 2/Vs while that for antimony doped BiI3 was estimated to be around 956 cm2/Vs and the mobility-lifetime product for electrons was estimated to be around 5.44 x 10-4 cm 2/V. Detector simulation was performed using the Monte Carlo simulation code MCNP5. A Matlab script which incorporates charge carrier trapping and statistical variation was written to generate a gamma-ray spectrum from the simulated energy deposition spectra. Measured and simulated spectra were compared to extract the charge carrier mobility-lifetime products, which for electrons and holes were estimated to be 5 x 10-3 cm2/V and 1.3 x

  4. VLSI readout for imaging with polycrystalline mercuric iodide detectors

    NASA Astrophysics Data System (ADS)

    Turchetta, Renato; Dulinski, Wojtek; Husson, D.; Klein, N.; Riester, J. L.; Schieber, Michael M.; Zuck, A.; Braiman, M.; Melekhov, L.; Nissenbaum, J.; Sanguinetti, S.

    1998-11-01

    Recently polycrystalline mercuric iodide have become available, for room temperature radiation detectors over large areas at low cost. Though the quality of this material is still under improvement, ceramic detectors have been already been successfully tested with dedicated low-noise, low-power mixed signal VLSI electronics which can be used for compact, imaging solutions. The detectors used are of different kinds: microstrips and pixels; of different sizes, up to about 1 square inch; and of different thickness, up to 600 microns. The properties of this first-generation detectors are quite uniform from one detector to another. Also for each single detector the response is quite uniform and no charge loss in the inter-electrode space have been detected. Because of the low cost and of the polycrystallinity, detectors can be potentially fabricated in any size and shape, using standard ceramic technology equipment, which is an attractive feature where low cost and large area applications are needed.

  5. Development of mercuric iodide uncooled x ray detectors and spectrometers

    NASA Technical Reports Server (NTRS)

    Iwanczyk, Jan S.

    1990-01-01

    The results obtained in the development of miniature, lowpower, light weight mercuric iodide, HgI2, x ray spectrometers for future space missions are summarized. It was demonstrated that HgI2 detectors can be employed in a high resolution x ray spectrometer, operating in a scanning electron microscope. Also, the development of HgI2 x ray detectors to augment alpha backscattering spectrometers is discussed. These combination instruments allow for the identification of all chemical elements, with the possible exception of hydrogen, and their respective concentrations. Additionally, further investigations of questions regarding radiation damage effects in the HgI2 x ray detectors are reported.

  6. Potassium Iodide ("KI"): Instructions to Make Potassium Iodide Solution for Use During a Nuclear Emergency (Liquid Form)

    MedlinePlus

    ... make Potassium Iodide Solution for Use During a Nuclear Emergency (Liquid Form) Share Tweet Linkedin Pin it ... Preparation and Dosing Instructions for Use During a Nuclear Emergency To Make KI Solution (Liquid Form), using ...

  7. The effect of elemental and hydrocarbon impurities on mercuric iodide gamma ray detector performance

    NASA Astrophysics Data System (ADS)

    Cross, Eilene S.; Buffleben, George; Soria, Ed; James, Ralph; Schieber, Michael; Natarajan, Raj; Gerrish, Vern

    Mercuric iodide is a room temperature semiconductor material that is used for gamma ray and x-ray radiation detection. Mercuric iodide is synthesized from mercuric chloride and potassium iodide and is then purified by a series of melts and sublimation steps and by zone refining. The mercuric iodide is grown into crystals and platelets and then fabricated into detectors. Elemental contamination may be a determining factor in the performance of these detectors. These contaminates may be present in the starting material or may be introduced during, or be unaffected by, the purification, growth or fabrication steps. Methods have been developed for the analysis of trace levels of elemental contamination. Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS), Inductively Coupled Plasma/Optical Emission Spectroscopy (ICP/OES) and Gas Chromatography/Mass Spectroscopy (GC/MS) are used to determine sub ppm levels of many trace elemental impurities. Trace levels of many elemental impurities in the raw mercuric iodide are significantly reduced during the purification and zone refining processes. Though the levels of impurities are reduced, poor performing mercuric iodide detectors have contamination levels remaining or reintroduced which are higher for Ag, Al, Ca, Cu, Mg, Mn, Na, Pb and Zn than detectors with good gamma ray response. This paper will discuss the analytical methodology, the effects of purification on impurity levels, and the correlation between detector performance and impurity levels.

  8. A simple sperm nuclear vacuole assay with propidium iodide.

    PubMed

    Zhu, W-J; Li, J

    2015-09-01

    Our aim was to develop a new simple sperm nuclear vacuole assay (SNVA) with propidium iodide (PI) to determine the status of nuclear vacuole (NV) of individual spermatozoa. After PI staining, sperm nuclei were classified into the 14 categories according to both nuclear morphology and the status of NV. The incidence was 57.8% (range 28-84%) in fertile controls (n = 40), and 85.1% (range 67-99%) in men with varicocele (n = 40). In the fertile group, normal nuclear-shaped spermatozoa without NV or with one small NV located in the ante-nuclear region were significantly more in comparison with the varicocele group. In the varicocele group, abnormal nuclear-shaped spermatozoa with one large NV and with multiple NVs located in the ante-nuclear region were most frequent findings. Besides, spermatozoa with NVs in both ante- and post-nuclear regions in the varicocele group were significantly more than those in the fertile group. In both fertile and varicocele groups, normal or abnormal nuclear-shaped spermatozoa with one or more vacuoles only located in the post-nuclear region occurred sparingly. The SNVA provides a useful additional approach to identify the status of NV in human spermatozoa for diagnostic purposes. A good sperm sample would have more spermatozoa without NV or with one small NV located in the ante-nuclear region.

  9. Performance of photomultiplier tubes and sodium iodide scintillation detector systems

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.

    1981-01-01

    The performance of photomultiplier tubes (PMT's) and scintillation detector systems incorporating 50.8 by 1.27 cm NaI (T l) crystals was investigated to determine the characteristics of the photomultiplier tubes and optimize the detector geometry for the Burst and Transient Source Experiment on the Gamma Ray Observatory. Background information on performance characteristics of PMT's and NaI (T l) detectors is provided, procedures for measurement of relevant parameters are specified, and results of these measurements are presented.

  10. Use of mercuric iodide x-ray detectors with alpha backscattering spectrometers for space applications

    SciTech Connect

    Iwanczyk, J.S.; Wang, Y.J.; Dorri, N.; Dabrowski, A.J. ); Economou, T.E.; Turkevich, A.L. . Enrico Fermi Inst.)

    1991-04-01

    This paper presents x-ray fluorescence (XRF) spectra of different extraterrestrial samples taken with a mercuric iodide (HgI{sub 2}) spectrometer inserted into an Alpha Backscattering Instrument identical to that used in the Soviet Phobos Mission. The results obtained with the HgI{sub 2} ambient temperature detector are compared with those obtained using a Si(Li) cryogenically cooled detector. The authors' efforts to design an optimized instrument for space application are described.

  11. Use of mercuric iodide X-ray detectors with alpha backscattering spectrometers for space applications

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Wang, Y. J.; Dorri, N.; Dabrowski, A. J.; Economou, T. E.

    1991-01-01

    The authors present X-ray fluorescence (XRF) spectra of different extraterrestrial samples taken with a mercuric iodide (HgI2) spectrometer inserted into an alpha backscattering instrument identical to that used in the Soviet Phobos mission. The results obtained with the HgI2 ambient temperature detector are compared with those obtained using an Si(Li) cryogenically cooled detector. Efforts to design an optimized instrument for space application are also described. The results presented indicate that the energy resolution and sensitivity of HgI2 detectors are adequate to meet the performance needs of a number of proposed space applications, particularly those in which cooled silicon X-ray detectors are impractical or even not usable, such as for the target science programs on geoscience opportunities for lunar surface, Mars surface, and other comet and planetary missions being planned by NASA and ESA.

  12. Benchmark Gamma Spectroscopy Measurements of Uranium Hexafluoride in Aluminmum Pipe with a Sodium Iodide Detector

    SciTech Connect

    March-Leuba, Jose A; Uckan, Taner; Gunning, John E; Brukiewa, Patrick D; Upadhyaya, Belle R; Revis, Stephen M

    2010-01-01

    ) and an enrichment monitor (EM). Development of the FM is primarily the responsibility of Oak Ridge National Laboratory, and development of the EM is primarily the responsibility of Los Alamos National Laboratory. The FM will measure {sup 235}U mass flow rate by combining information from measuring the UF{sub 6} volumetric flow rate and the {sup 235}U density. The UF{sub 6} flow rate will be measured using characteristics of the process pumps used in product and tail UF{sub 6} header process lines of many GCEPs, and the {sup 235}U density will be measured using commercially available sodium iodide (NaI) gamma ray scintillation detectors. This report describes the calibration of the portion of the FM that measures the {sup 235}U density. Research has been performed to define a methodology and collect data necessary to perform this calibration without the need for plant declarations. The {sup 235}U density detector is a commercially available system (GammaRad made by Amptek, www.amptek.com) that contains the NaI crystal, photomultiplier tube, signal conditioning electronics, and a multichannel analyzer (MCA). Measurements were made with the detector system installed near four {sup 235}U sources. Two of the sources were made of solid uranium, and the other two were in the form of UF{sub 6} gas in aluminum piping. One of the UF{sub 6} gas sources was located at ORNL and the other at LANL. The ORNL source consisted of two pipe sections (schedule 40 aluminum pipe of 4-inch and 8-inch outside diameter) with 5.36% {sup 235}U enrichment, and the LANL source was a 4-inch schedule 40 aluminum pipe with 3.3% {sup 235}U enrichment. The configurations of the detector on these test sources, as well as on long straight pipe configurations expected to exist at GCEPs, were modeled using the computer code MCNP. The results of the MCNP calculations were used to define geometric correction factors between the test source and the GCEP application. Using these geometric correction factors

  13. Trapping radiodine, in the form of methyl iodide, on nuclear carbon

    SciTech Connect

    Nacapricha, D.; Taylor, C.

    1996-12-31

    Studies have been performed on potassium-iodide-impregnated charcoals of the type used in the nuclear industry for trapping radioiodine released during nuclear fission. The effects of various parameters on the trapping efficiency of methyl iodide have been investigated. A variation in particle size within a bulk charcoal caused poor precision in K value measurements because of differences in surface area, pore volume, and bed density, leading to differences in the deposition of the impregnant. Precision is improved by sieving the charcoal to a narrower size because smaller particles have a higher porosity. This finding is supported by surface area and pore measurements. Two methods of impregnation are compared by measuring K values and the deposition of potassium iodide. Charcoal impregnated by rotary evaporation exhibits both higher K values and higher potassium iodide contents than sprayed charcoal. Two designs of spraying drum are compared: a drum with helical vanes allows more efficient deposition and more uniform distribution of impregnant than a drum with axial vanes. A decrease in the K value with increasing humidity correlates with the available surface area. A similar correlation exists between water content and available pore volume. Aging of potassium-iodide-impregnated charcoal, caused by the formation of oxygen complexes on the surface, is associated with significant falls in K value. K values of charcoals also can be restored to at least their original values by heat treatment in the absence of air. 12 refs., 6 figs., 1 tab.

  14. Potassium Iodide

    MedlinePlus

    Potassium iodide is used to protect the thyroid gland from taking in radioactive iodine that may be released during a nuclear radiation emergency. Radioactive iodine can damage the thyroid gland. You should only ...

  15. Mercuric iodide room-temperature array detectors for gamma-ray imaging

    SciTech Connect

    Patt, B.

    1994-11-15

    Significant progress has been made recently in the development of mercuric iodide detector arrays for gamma-ray imaging, making real the possibility of constructing high-performance small, light-weight, portable gamma-ray imaging systems. New techniques have been applied in detector fabrication and then low noise electronics which have produced pixel arrays with high-energy resolution, high spatial resolution, high gamma stopping efficiency. Measurements of the energy resolution capability have been made on a 19-element protypical array. Pixel energy resolutions of 2.98% fwhm and 3.88% fwhm were obtained at 59 keV (241-Am) and 140-keV (99m-Tc), respectively. The pixel spectra for a 14-element section of the data is shown together with the composition of the overlapped individual pixel spectra. These techniques are now being applied to fabricate much larger arrays with thousands of pixels. Extension of these principles to imaging scenarios involving gamma-ray energies up to several hundred keV is also possible. This would enable imaging of the 208 keV and 375-414 keV 239-Pu and 240-Pu structures, as well as the 186 keV line of 235-U.

  16. Nuclear cargo detector

    DOEpatents

    Christo, Steven Basil

    2006-12-19

    Apparatus for the inspection of cargo containers for nuclear materials comprising one or more arrays of modules comprising grounded, closed conductive tubes filled with an ionizing gas mixture such as, but not limited to, Argon:CO.sub.2. A wire is suspended along each tube axis and electrically connected at both ends of the tube. A positive, dc high voltage is supplied to one end of the wire and an amplifier is attached to the other end through a capacitance to decouple the amplifier from the high voltage. X-rays, gamma rays or neutrons produced by nuclear material and passing through the tube ionize the gas. The electrons from the gas ionization process are accelerated toward the wire surface due to the wire's electrical potential. The acceleration of the electrons near the wire's surface is sufficient to ionize more gas and produce an amplification of electrons/ions that create a surge of current large enough to be detectable by the amplifier. Means are also provided for a warning device coupled to the amplifier.

  17. Semiconductor detectors in nuclear and particle physics

    SciTech Connect

    Rehak, P.; Gatti, E.

    1992-12-31

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups: Classical semiconductor diode detectors and semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported.

  18. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  19. Performance of room temperature mercuric iodide /HgI2/ detectors in the ultralow-energy X-ray region

    NASA Astrophysics Data System (ADS)

    Dabrowski, A. J.; Barton, J. B.; Huth, G. C.; Whited, R.; Ortale, C.; Economou, T. E.; Turkevich, A. L.; Iwanczyk, J. S.

    1981-02-01

    Experiments have been done to study the performance of mercuric iodide (HgI2) detectors in the ultralow-energy X-ray region. Energy resolution values of 245 eV (FWHM) for the Mg K-alpha X-ray line at 1.25 keV and 225 eV (FWHM) for the electronic noise linewidth have been obtained for an HgI2 detector with painted carbon contacts using a pulsed-light feedback preamplifier; the whole system was operated at room temperature. The resolution values in the ultralow-energy region are still limited by electronic noise of the system. In an attempt to minimize X-ray attenuation in the front contact, detectors were prepared with thin evaporated Pd contacts. These detectors show a pronounced low-energy tailing of the photopeak below a few keV, in contrast to the spectra obtained by detectors with carbon contact. An attempt has been made to explain the tailing effect starting with models wich have been proposed to describe similar effects in Ge detectors.

  20. Performance of room temperature mercuric iodide /HgI2/ detectors in the ultralow-energy X-ray region

    NASA Technical Reports Server (NTRS)

    Dabrowski, A. J.; Barton, J. B.; Huth, G. C.; Whited, R.; Ortale, C.; Economou, T. E.; Turkevich, A. L.; Iwanczyk, J. S.

    1981-01-01

    Experiments have been done to study the performance of mercuric iodide (HgI2) detectors in the ultralow-energy X-ray region. Energy resolution values of 245 eV (FWHM) for the Mg K-alpha X-ray line at 1.25 keV and 225 eV (FWHM) for the electronic noise linewidth have been obtained for an HgI2 detector with painted carbon contacts using a pulsed-light feedback preamplifier; the whole system was operated at room temperature. The resolution values in the ultralow-energy region are still limited by electronic noise of the system. In an attempt to minimize X-ray attenuation in the front contact, detectors were prepared with thin evaporated Pd contacts. These detectors show a pronounced low-energy tailing of the photopeak below a few keV, in contrast to the spectra obtained by detectors with carbon contact. An attempt has been made to explain the tailing effect starting with models wich have been proposed to describe similar effects in Ge detectors.

  1. Frequently Asked Questions on Potassium Iodide (KI)

    MedlinePlus

    ... needs to take potassium iodide (KI) after a nuclear radiation release? What potassium iodide (KI) products are currently ... needs to take potassium iodide (KI) after a nuclear radiation release? The FDA guidance prioritizes groups based on ...

  2. Nuclear Electronics: Superconducting Detectors and Processing Techniques

    NASA Astrophysics Data System (ADS)

    Polushkin, Vladimir

    2004-06-01

    With the commercialisation of superconducting particles and radiation detectors set to occur in the very near future, nuclear analytical instrumentation is taking a big step forward. These new detectors have a high degree of accuracy, stability and speed and are suitable for high-density multiplex integration in nuclear research laboratories and astrophysics. Furthermore, superconducting detectors can also be successfully applied to food safety, airport security systems, medical examinations, doping tests & forensic investigations. This book is the first to address a new generation of analytical tools based on new superconductor detectors demonstrating outstanding performance unsurpassed by any other conventional devices. Presenting the latest research and development in nanometer technologies and biochemistry this book: * Discusses the development of nuclear sensing techniques. * Provides guidance on the design and use of the next generation of detectors. * Describes cryogenic detectors for nuclear measurements and spectrometry. * Covers primary detectors, front-end readout electronics and digital signal processing. * Presents applications in nanotechnology and modern biochemistry including DNA sequencing, proteinomics, microorganisms. * Features examples of two applications in X-ray electron probe nanoanalysis and time-of-flight mass spectrometry. This comprehensive treatment is the ideal reference for researchers, industrial engineers and graduate students involved in the development of high precision nuclear measurements, nuclear analytical instrumentation and advanced superconductor primary sensors. This book will also appeal to physicists, electrical and electronic engineers in the nuclear industry.

  3. Sodium Iodide Symporter for Nuclear Molecular Imaging and Gene Therapy: From Bedside to Bench and Back

    PubMed Central

    Ahn, Byeong-Cheol

    2012-01-01

    Molecular imaging, defined as the visual representation, characterization and quantification of biological processes at the cellular and subcellular levels within intact living organisms, can be obtained by various imaging technologies, including nuclear imaging methods. Imaging of normal thyroid tissue and differentiated thyroid cancer, and treatment of thyroid cancer with radioiodine rely on the expression of the sodium iodide symporter (NIS) in these cells. NIS is an intrinsic membrane protein with 13 transmembrane domains and it takes up iodide into the cytosol from the extracellular fluid. By transferring NIS function to various cells via gene transfer, the cells can be visualized with gamma or positron emitting radioisotopes such as Tc-99m, I-123, I-131, I-124 and F-18 tetrafluoroborate, which are accumulated by NIS. They can also be treated with beta- or alpha-emitting radionuclides, such as I-131, Re-186, Re-188 and At-211, which are also accumulated by NIS. This article demonstrates the diagnostic and therapeutic applications of NIS as a radionuclide-based reporter gene for trafficking cells and a therapeutic gene for treating cancers. PMID:22539935

  4. Photon energy absorption coefficients for nuclear track detectors using Geant4 Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Singh, Vishwanath P.; Medhat, M. E.; Badiger, N. M.

    2015-01-01

    Geant4 Monte Carlo code simulations were used to solve experimental and theoretical complications for calculation of mass energy-absorption coefficients of elements, air, and compounds. The mass energy-absorption coefficients for nuclear track detectors were computed first time using Geant4 Monte Carlo code for energy 1 keV-20 MeV. Very good agreements for simulated results of mass energy-absorption coefficients for carbon, nitrogen, silicon, sodium iodide and nuclear track detectors were observed on comparison with the values reported in the literatures. Kerma relative to air for energy 1 keV-20 MeV and energy absorption buildup factors for energy 50 keV-10 MeV up to 10 mfp penetration depths of the selected nuclear track detectors were also calculated to evaluate the absorption of the gamma photons. Geant4 simulation can be utilized for estimation of mass energy-absorption coefficients in elements and composite materials.

  5. Physical properties of a new flat panel detector with cesium-iodide technology

    NASA Astrophysics Data System (ADS)

    Hahn, Andreas; Penchev, Petar; Fiebich, Martin

    2016-03-01

    Flat panel detectors have become the standard technology in projection radiography. Further progress in detector technology will result in an improvement of MTF and DQE. The new detector (DX-D45C; Agfa; Mortsel/Belgium) is based on cesium-iodine crystals and has a change in the detector material and the readout electronics. The detector has a size of 30 cm x 24 cm and a pixel matrix of 2560 x 2048 with a pixel pitch of 124 μm. The system includes an automatic exposure detector, which enables the use of the detector without a connection to the x-ray generator. The physical properties of the detector were determined following IEC 62220-1-1 in a laboratory setting. The MTF showed an improvement compared to the previous version of cesium-iodine based flat-panel detectors. Thereby the DQE is also improved especially for the higher frequencies. The new detector showed an improvement in the physical properties compared to the previous versions. This enables a potential for further dose reductions in clinical imaging.

  6. Measurement of the characteristic X ray of oxygen and other ultrasoft X rays using mercuric iodide detectors

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Dabrowski, A. J.; Huth, G. C.; Economou, T. E.

    1985-01-01

    This letter reports the detection and resolution of the characteristic X-ray of oxygen at 523 eV and other ultrasoft X-rays (photons energy less than 1 keV) using radiation detectors fabricated from the compound semi-insulator mercuric iodide (HgI2). These detectors are capable of operation at room ambient but in these experiments were slightly cooled using a Peltier element to 0 C. A pulsed light feedback preamplifier with a Peltier element cooled (to -30 deg) first stage field-effect transistor was used to amplify signals from the detector. Overall system noise level was 185 eV (full width at half-maximum) limited by the temperature of the first stage field-effect transistor. With optimal cooling of this element the characteristic X-ray of carbon at 282 eV should be measurable. These results would seem to be important in measurement of biological samples in electron column instruments.

  7. SABRE: A search for dark matter and a test of the DAMA/LIBRA annual-modulation result using thallium-doped sodium-iodide scintillation detectors

    NASA Astrophysics Data System (ADS)

    Shields, Emily Kathryn

    Ample evidence has been gathered demonstrating that the majority of the mass in the universe is composed of non-luminous, non-baryonic matter. Though the evidence for dark matter is unassailable, its nature and properties remain unknown. A broad effort has been undertaken by the physics community to detect dark-matter particles through direct-detection techniques. For over a decade, the DAMA/LIBRA experiment has observed a highly significant (9.3sigma) modulation in the scintillation event rate in their highly pure NaI(Tl) detectors, which they use as the basis of a claim for the discovery of dark-matter particles. However, the dark-matter interpretation of the DAMA/LIBRA modulation remains unverified. While there have been some recent hints of dark matter in the form of a light Weakly-Interacting Massive Particle (WIMP) from the CoGeNT and CDMS-Si experiments, when assuming a WIMP dark-matter model, several other experiments, including the LUX and XENON noble-liquid experiments, the KIMS CsI(Tl) experiment, and several bubble chamber experiments, conflict with DAMA/LIBRA. However, these experiments use different dark-matter targets and cannot be compared with DAMA/LIBRA in a model-independent way. The uncertainty surrounding the dark-matter model, astrophysical model, and nuclear-physics effects makes it necessary for a new NaI(Tl) experiment to directly test the DAMA/LIBRA result. The Sodium-iodide with Active Background REjection (SABRE) experiment seeks to provide a much-needed model-independent test of the DAMA/LIBRA modulation by developing highly pure crystal detectors with very low radioactivity and deploying them in an active veto detector that can reject key backgrounds in a dark-matter measurement. This work focuses on the efforts put forward by the SABRE collaboration in developing low-background, low-threshold crystal detectors, designing and fabricating a liquid-scintillator veto detector, and simulating the predicted background spectrum for a dark

  8. Sensitivity of sodium iodide cryogenic scintillation-phonon detectors to WIMP signals

    NASA Astrophysics Data System (ADS)

    Clark, M.; Nadeau, P.; Di Stefano, P. C. F.; Lanfranchi, J.-C.; Roth, S.; von Sivers, M.; Yavin, I.

    2016-05-01

    There is great interest in performing dark matter direct detection experiments using alkali halides such as NaI to test the DAMA/LIBRA claim. Cryogenic scintillation-phonon detectors measure both scintillation light and phonons to provide event-by-event discrimination between particles interacting with nuclei and particles interacting with electrons. An alkali halide scintillation-phonon detector could test the DAMA/LIBRA claim in a model-independent way using a similar material with added background discrimination. We present simulations of such detectors to determine their possible sensitivity to both annual modulation and particle interaction signals. We find that a 5 kg detector array could test the modulation reported by DAMA/LIBRA within 2 years using a likelihood-ratio test.

  9. Modeling Study of a Proposed Field Calibration Source Using K-40 and High-Z Targets for Sodium Iodide Detectors.

    PubMed

    Rogers, Jeremy; Marianno, Craig; Kallenbach, Gene; Trevino, Jose

    2016-06-01

    Calibration sources based on the primordial isotope potassium-40 (K) have reduced controls on the source's activity due to its terrestrial ubiquity and very low specific activity. Potassium-40's beta emissions and 1,460.8 keV gamma ray can be used to induce K-shell fluorescence x rays in high-Z metals between 60 and 80 keV. A gamma ray calibration source that uses potassium chloride salt and a high-Z metal to create a two-point calibration for a sodium iodide field gamma spectroscopy instrument is thus proposed. The calibration source was designed in collaboration with the Sandia National Laboratory using the Monte Carlo N-Particle eXtended (MCNPX) transport code. Two methods of x-ray production were explored. First, a thin high-Z layer (HZL) was interposed between the detector and the potassium chloride-urethane source matrix. Second, bismuth metal powder was homogeneously mixed with a urethane binding agent to form a potassium chloride-bismuth matrix (KBM). The bismuth-based source was selected as the development model because it is inexpensive, nontoxic, and outperforms the high-Z layer method in simulation. Based on the MCNPX studies, sealing a mixture of bismuth powder and potassium chloride into a thin plastic case could provide a light, inexpensive field calibration source. PMID:27115223

  10. A study of low-noise preamplifier systems for use with room temperature mercuric iodide /HgI2/ X-ray detectors

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Huth, G. C.; Del Duca, A.; Schnepple, W.; Dabrowski, A. J.

    1981-01-01

    An analysis of different preamplification systems for use with room temperature mercuric iodide X-ray detectors has been performed. Resistor-, drain-, and light-feedback preamplifiers have been studied. Energy resolution values of 295 eV (FWHM) for an Fe-55 source (5.9 keV) and 225 eV (FWHM) for a pulser have been obtained with both the detector and the input FET at room temperature using a pulsed-light feedback preamplifier. Improvement in energy resolution by cooling the input FET using a small Peltier element has been discussed.

  11. A study of low-noise preamplifier systems for use with room temperature mercuric iodide /HgI2/ X-ray detectors

    NASA Astrophysics Data System (ADS)

    Iwanczyk, J. S.; Huth, G. C.; del Duca, A.; Schnepple, W.; Dabrowski, A. J.

    1981-02-01

    An analysis of different preamplification systems for use with room temperature mercuric iodide X-ray detectors has been performed. Resistor-, drain-, and light-feedback preamplifiers have been studied. Energy resolution values of 295 eV (FWHM) for an Fe-55 source (5.9 keV) and 225 eV (FWHM) for a pulser have been obtained with both the detector and the input FET at room temperature using a pulsed-light feedback preamplifier. Improvement in energy resolution by cooling the input FET using a small Peltier element has been discussed.

  12. Study of low noise preamplifier systems for use with room temperature mercuric iodide (HgI/sub 2/) x-ray detectors

    SciTech Connect

    Iwanczyk, J.S.; Dabrowski, A.J.; Huth, G.C.; Del Duca, A.; Schenpple, W.

    1980-01-01

    An analysis of different preamplification systems for use with room temperature mercuric iodide x-ray detectors has been performed. Resistor-, drain-, and light-feedback preamplifiers have been studied. Energy resolution of 295 eV (FWHM) for Fe-55 source (5.9 keV) and 225 eV (FWHM) for the pulser have been obtained with both the detector and the input FET at room temperature using the pulsed-light feedback preamplifier. It has been shown that cooling the input FET using a small Peltier element allows the energy resolution to be improved up to 25%.

  13. Determination of major sodium iodide symporter (NIS) inhibitors in drinking waters using ion chromatography with conductivity detector.

    PubMed

    Cengiz, Mehmet Fatih; Bilgin, Ayse Kevser

    2016-02-20

    Goiter is an important health problem all over the world and iodine deficiency is its most common cause. Perchlorate, thiocyanate and nitrate (called as major NIS inhibitors) are known to competitively inhibit iodide uptake by the thyroid gland and thus, human exposure to major NIS inhibitors is a public health concern. In this study, an ion chromatographic method for the determination of most common NIS inhibitor ions in drinking waters was developed and validated. This is the first study where an analytical method is used for the determination of major NIS inhibitors in drinking water by an ion chromatography system in a single run. Chromatographic separations were achieved with an anion-exchange column and separated ions were identified by a conductivity detector. The method was found to be selective, linear, precise accurate and true for all of interested ions. The limits of the detections (LOD) were estimated at 0.003, 0.004 and 0.025mgL(-1) for perchlorate, thiocyanate and nitrate, respectively. Possible interference ions in drinking waters were examined for the best separation of NIS inhibitors. The excellent method validation data and proficiency test result (Z-score for nitrate: -0.1) of the FAPAS(®) suggested that the developed method could be applied for determination of NIS inhibitor residues in drinking waters. To evaluate the usefulness of the method, 75 drinking water samples from Antalya/Turkey were analyzed for NIS inhibitors. Perchlorate concentrations in the samples ranged from not detected (less than LOD) to 0.07±0.02mgL(-1) and the range of nitrate concentrations were found to be 3.60±0.01mgL(-1) and 47.42±0.40mgL(-1). No thiocyanate residues were detected in tested drinking water samples.

  14. Detector Requirements to Curb Nuclear Smuggling

    SciTech Connect

    Erickson, S A

    2001-11-14

    The problem of stopping nuclear smuggling of terrorist nuclear devices is a complex one, owing to the variety of pathways by which such a device can be transported. To fashion new detection systems that improve the chances of detecting such a device, it is important to know the various requirements and conditions that would be imposed on them by both the types of devices that might be smuggled and by the requirement that it not overly interfere with the transportation of legitimate goods. Requirements vary greatly from low-volume border crossings to high-volume industrial container ports, and the design of systems for them is likely to be quite different. There is also a further need to detect these devices if they are brought into a country via illicit routes, i.e., those which do not pass through customs posts, but travel overland though open space or to a smaller, unguarded airport or seaport. This paper describes some generic uses of detectors, how they need to be integrated into customs or other law enforcement systems, and what the specifications for such detectors might be.

  15. Lanthanum Bromide Detectors for Safeguards Measurements

    SciTech Connect

    Wright, J.

    2011-05-25

    Lanthanum bromide has advantages over other popular inorganic scintillator detectors. Lanthanum bromide offers superior resolution, and good efficiency when compared to sodium iodide and lanthanum chloride. It is a good alternative to high purity germanium detectors for some safeguards applications. This paper offers an initial look at lanthanum bromide detectors. Resolution of lanthanum bromide will be compared lanthanum chloride and sodium-iodide detectors through check source measurements. Relative efficiency and angular dependence will be looked at. Nuclear material spectra, to include plutonium and highly enriched uranium, will be compared between detector types.

  16. Methyl iodide

    Integrated Risk Information System (IRIS)

    Methyl iodide ; CASRN 74 - 88 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effe

  17. Methyl Iodide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl iodide (MeI, iodomethane, CH3I) was reported as a potential alternative to the stratospheric ozone-depleting fumigant methyl bromide (MeBr) in the mid-1990s (Sims et al., 1995; Ohr et al., 1996). It has since received significant research attention to determine its environmental fate and tran...

  18. Special Nuclear Material Detection with a Water Cherenkov based Detector

    SciTech Connect

    Sweany, M; Bernstein, A; Bowden, N; Dazeley, S; Svoboda, R

    2008-11-10

    Fission events from Special Nuclear Material (SNM), such as highly enriched uranium or plutonium, produce a number of neutrons and high energy gamma-rays. Assuming the neutron multiplicity is approximately Poissonian with an average of 2 to 3, the observation of time correlations between these particles from a cargo container would constitute a robust signature of the presence of SNM inside. However, in order to be sensitive to the multiplicity, one would require a high total efficiency. There are two approaches to maximize the total efficiency; maximizing the detector efficiency or maximizing the detector solid angle coverage. The advanced detector group at LLNL is investigating one way to maximize the detector size. We are designing and building a water Cerenkov based gamma and neutron detector for the purpose of developing an efficient and cost effective way to deploy a large solid angle car wash style detector. We report on our progress in constructing a larger detector and also present preliminary results from our prototype detector that indicates detection of neutrons.

  19. Semiconductor detectors for Compton imaging in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Harkness, LJ; Judson, D. S.; Kennedy, H.; Sweeney, A.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Nolan, P. J.; Sampson, J. A.; Burrows, I.; Groves, J.; Headspith, J.; Lazarus, I. H.; Simpson, J.; Bimson, W. E.; Kemp, G. J.

    2012-01-01

    An investigation is underway at the University of Liverpool to assess the suitability of two position sensitive semiconductor detectors as components of a Compton camera for nuclear medical imaging. The ProSPECTus project aims to improve image quality, provide shorter data acquisition times and lower patient doses by replacing conventional Single Photon Emission Computed Tomography (SPECT) systems. These mechanically collimated systems are employed to locate a radioactive tracer that has been administered to a patient to study specifically targeted physiological processes. The ProSPECTus system will be composed of a Si(Li) detector and a High Purity Germanium (HPGe) detector, a configuration deemed optimum using a validated Geant4 simulation package. Characterising the response of the detectors to gamma irradiation is essential in maximising the sensitivity and image resolution of the system. To this end, the performance of the HPGe ProSPECTus detector and a suitable Si(Li) detector has been assessed at the University of Liverpool. The energy resolution of the detectors has been measured and a surface scan of the Si(Li) detector has been performed using a finely collimated 241Am gamma ray source. Results from the investigation will be presented.

  20. Purification of HgI.sub.2 for nuclear detector fabrication

    DOEpatents

    Schieber, Michael M.

    1978-01-01

    A process for purification of mercuric iodide (HgI.sub.2) to be used as a source material for the growth of detector quality crystals. The high purity HgI.sub.2 raw material is produced by a combination of three stages: synthesis of HgI.sub.2 from Hg and I.sub.2, repeated sublimation, and zone refining.

  1. R&D for Better Nuclear Security: Radiation Detector Materials

    SciTech Connect

    Kammeraad, J E

    2009-04-02

    I am going to talk about the need for better materials for radiation detectors. I believe that government investment in this area can enable transformational technology change that could impact domestic nuclear security and also national nuclear security in some very positive and powerful ways. I'm not going to give you a lecture on how radiation detectors work, but I am going to tell you a bit about today's off-the-shelf technology and why it is not sufficient, what we need, and what security benefit you could get from improvements. I think we're at a critical point in time for some very impactful investments. In particular I'm going to focus on the use of gamma-ray radiation detectors at ports of entry. Not long before DHS was formed, Congress decreed that counter measures against the delivery of radiological and nuclear threats would be put in place at US ports of entry, under the authority of US Customs (later Customs and Border Protection in DHS). This included the screening of all cars and trucks passing through a port of entry. Existing off-the-shelf radiation detectors had to be selected for this purpose. Plans were made to make the most of the available technologies, but there are some inherent limitations of these detectors, plus the operational setting can bring out other limitations.

  2. The Angra Project: Monitoring Nuclear Reactors with Antineutrino Detectors

    SciTech Connect

    Anjos, J. C.; Barbosa, A. F.; Lima, H. P. Jr.; Bezerra, T. J. C.; Gonzalez, L. F. G.; Kemp, E.; Chimenti, P.; Leigui de Oliveira, M. A.; Lima, R. M.; Nunokawa, H.

    2010-03-30

    We present the status of the Angra Neutrino project, describing the development of an antineutrino detector aimed at monitoring nuclear reactor activity. The experiment will take place at the Brazilian nuclear power plant located in Angra dos Reis. The Angra II reactor, with 4 GW of thermal power, will be used as a source of antineutrinos. A water Cherenkov detector will be placed above ground in a commercial container outside the reactor containment, about 30 m from the reactor core. With a detector of one ton scale a few thousand antineutrino interactions per day are expected. We intend, in a first step, to use the measured neutrino event rate to monitor the on--off status and the thermal power delivered by the reactor. In addition to the safeguards issues the project will provide an alternative tool to have an independent measurement of the reactor power.

  3. Portable nuclear material detector and process

    DOEpatents

    Hofstetter, Kenneth J; Fulghum, Charles K; Harpring, Lawrence J; Huffman, Russell K; Varble, Donald L

    2008-04-01

    A portable, hand held, multi-sensor radiation detector is disclosed. The detection apparatus has a plurality of spaced sensor locations which are contained within a flexible housing. The detection apparatus, when suspended from an elevation, will readily assume a substantially straight, vertical orientation and may be used to monitor radiation levels from shipping containers. The flexible detection array can also assume a variety of other orientations to facilitate any unique container shapes or to conform to various physical requirements with respect to deployment of the detection array. The output of each sensor within the array is processed by at least one CPU which provides information in a usable form to a user interface. The user interface is used to provide the power requirements and operating instructions to the operational components within the detection array.

  4. Iodide uptake by negatively charged clay interlayers?

    PubMed

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species.

  5. Characterization of the CRESST detectors by neutron induced nuclear recoils

    NASA Astrophysics Data System (ADS)

    Coppi, C.; Ciemniak, C.; von Feilitzsch, F.; Gütlein, A.; Hagn, H.; Isaila, C.; Jochum, J.; Kimmerle, M.; Lanfranchi, J.-C.; Pfister, S.; Potzel, W.; Rau, W.; Roth, S.; Rottler, K.; Sailer, C.; Scholl, S.; Usherov, I.; Westphal, W.

    CRESST is an experiment for the direct detection of dark matter particles via nuclear recoils. The CRESST detectors, based on CaWO4 scintillating crystals, are able to discriminate γ and β background by simultaneously measuring the light and phonon signals produced by particle interactions. The discrimination of the background is possible because of the different light output (Quenching Factor, QF) for nuclear and electron recoils. In this article a measurement is shown, aimed at the determination of the QFs of the different nuclei (O, Ca, W) of the detector crystal at 40-60 mK using an 11 MeV neutron beam produced at the Maier-Leibnitz-Laboratorium in Garching (MLL).

  6. Position-Sensitive Nuclear Spectroscopy with Pixel Detectors

    SciTech Connect

    Granja, Carlos; Vykydal, Zdenek; Jakubek, Jan; Pospisil, Stanislav

    2007-10-26

    State-of-the-art hybrid semiconductor pixel detectors such as Medipix2 are suitable for energy- and position-sensitive nuclear spectroscopy. In addition to excellent energy- and spatial-resolution, these devices can operate in spectroscopic, single-quantum counting and/or on-line tracking mode. A devoted compact USB-readout interface provides functionality and ease of operation. The compact and versatile Medipix2/USB radiation camera provides visualization, vacuum and room-temperature operation as a real-time portable active nuclear emulsion.

  7. A Wide Range Neutron Detector for Space Nuclear Reactor Applications

    SciTech Connect

    Nassif, Eduardo; Sismonda, Miguel; Matatagui, Emilio; Pretorius, Stephan

    2007-01-30

    We propose here a versatile and innovative solution for monitoring and controlling a space-based nuclear reactor that is based on technology already proved in ground based reactors. A Wide Range Neutron Detector (WRND) allows for a reduction in the complexity of space based nuclear instrumentation and control systems. A ground model, predecessor of the proposed system, has been installed and is operating at the OPAL (Open Pool Advanced Light Water Research Reactor) in Australia, providing long term functional data. A space compatible Engineering Qualification Model of the WRND has been developed, manufactured and verified satisfactorily by analysis, and is currently under environmental testing.

  8. Detectors for high energy nuclear collisions: problems, progress and promise

    SciTech Connect

    Ludlam, T.W.

    1986-01-01

    Some perspective of the main issues in high energy nuclear collision physics is offered. How to identify and measure a quark-gluon plasma is considered to still be an open question. The types of detector configurations to be used in high-energy nucleus-nucleus experiments are discussed. Particular issues covered are measurements of lepton pair spectra, tracking systems and multitrack resolution, event-rate capabilities, backgrounds and other problems close to the beam, and calorimetry. 2 refs. (LEW)

  9. Improved spectrometric characteristics of thallium bromide nuclear radiation detectors

    NASA Astrophysics Data System (ADS)

    Hitomi, K.; Murayama, T.; Shoji, T.; Suehiro, T.; Hiratate, Y.

    1999-06-01

    Thallium bromide (TlBr) is a compound semiconductor with a high atomic number and wide band gap. In this study, nuclear radiation detectors have been fabricated from the TlBr crystals. The TlBr crystals were grown by the horizontal travelling molten zone (TMZ) method using the materials purified by many pass zone refining. The crystals were characterized by measuring the resistivity, the mobility-lifetime ( μτ) product and the energy required to create an electron-hole pair (the ɛ value). Improved energy resolution has been obtained by the TlBr radiation detectors. At room temperature the full-width at half-maximum (FWHM) for the 59.5, 122 and 662 keV γ-ray photo peak obtained from the detectors were 3.3, 8.8 and 29.5 keV, respectively. By comparing the saturated peak position of the TlBr detector with that of the CdTe detector, the ɛ value has been estimated to be about 5.85 eV for the TlBr crystal.

  10. Liquefied Noble Gas (LNG) detectors for detection of nuclear materials

    NASA Astrophysics Data System (ADS)

    Nikkel, J. A.; Gozani, T.; Brown, C.; Kwong, J.; McKinsey, D. N.; Shin, Y.; Kane, S.; Gary, C.; Firestone, M.

    2012-03-01

    Liquefied-noble-gas (LNG) detectors offer, in principle, very good energy resolution for both neutrons and gamma rays, fast response time (hence high-count-rate capabilities), excellent discrimination between neutrons and gamma rays, and scalability to large volumes. They do, however, need cryogenics. LNG detectors in sizes of interest for fissionable material detection in cargo are reaching a certain level of maturity because of the ongoing extensive R&}D effort in high-energy physics regarding their use in the search for dark matter and neutrinoless double beta decay. The unique properties of LNG detectors, especially those using Liquid Argon (LAr) and Liquid Xenon (LXe), call for a study to determine their suitability for Non-Intrusive Inspection (NII) for Special Nuclear Materials (SNM) and possibly for other threats in cargo. Rapiscan Systems Laboratory, Yale University Physics Department, and Adelphi Technology are collaborating in the investigation of the suitability of LAr as a scintillation material for large size inspection systems for air and maritime containers and trucks. This program studies their suitability for NII, determines their potential uses, determines what improvements in performance they offer and recommends changes to their design to further enhance their suitability. An existing 3.1 liter LAr detector (microCLEAN) at Yale University, developed for R&}D on the detection of weakly interacting massive particles (WIMPs) was employed for testing. A larger version of this detector (15 liters), more suitable for the detection of higher energy gamma rays and neutrons is being built for experimental evaluation. Results of measurements and simulations of gamma ray and neutron detection in microCLEAN and a larger detector (326 liter CL38) are presented.

  11. Development of Nuclear Emulsion Detector for Muon Radiography

    NASA Astrophysics Data System (ADS)

    Nishio, A.; Morishima, K.; Kuwabara, K.; Nakamura, M.

    Muon radiography is the non-destructive testing technique of large-scale constructions with cosmic ray muon. Cosmic ray muon has high penetrating power and it always comes from the whole sky. In the same way of taking a X-ray photograph, we can obtain integrated density of constructions which thickness are several tens to several hundreds. We had ever applied this technique to nuclear reactors, volcanos, and so on. Nuclear emulsion is three dimensional track detector with micrometric position accuracy. Thanks to high position resolution, Nuclear emulsion has mrad angular resolution. In addition, the features which require no power supply and can observe in a large area suitable for muon radiography. In Nagoya University, we launched emulsion manufacturing equipment at 2010. It has become possible to flexible development of our detector and succeeded to development of high sensitive nuclear emulsion film (Nagoya emulsion). An important factor is the temperature characteristic to withstand the outdoor observation as a detector to be used in the muon radiography. There is a phenomenon of a latent image fading, whichit is well known in the photographic industry, and this phenomenon is known that temperature and water are involved. So we examined temperature and humidity characteristic of latent image fading about Nagoya emulsion. As a result, we found latent image fading is strongly depends on both temperature and humidity. By dehydrating emulsion film in RH8%, over 95% (Grain Density>40) detection efficiency of muon track keeps over 3months in 25degree, for 2months in 35degree. Additionally it was showed in this test that increasing back ground noise "fog", which may have occurred by sealing emulsion film in a narrow space, is reduced by buffer space in the bag.

  12. The Iodine Hvperfine Structure in the Microwave Spectrum of Ethyl Iodide: Nuclear Quadrupole and Spin Rotation Coupling

    NASA Astrophysics Data System (ADS)

    Lee, W. W.; Scherr, Lawrence M.; Barsh, Max K.

    1988-11-01

    Some rotational transitions of ethyl iodide, CH3CH2I, have been reinvestigated by microwave Fourier transform (MWFT) spectroscopy. The iodine hyperfine structure splittings were first ana lyzed using a direct diagonalization procedure of the complete quadrupole Hamiltonian matrix. The results of this analysis showed deviations from our measurements up to 60 kHz. A new analysis using additional spin rotation coupling matrix elements reproduces our measurements within the experi­mental error limit and decreases the standard deviation of the least squares fit from 28 kHz to only 4 kHz.

  13. Determination of nuclear tracks parameters on sequentially etched PADC detectors

    NASA Astrophysics Data System (ADS)

    Horwacik, Tomasz; Bilski, Pawel; Koerner, Christine; Facius, Rainer; Berger, Thomas; Nowak, Tomasz; Reitz, Guenther; Olko, Pawel

    Polyallyl Diglycol Carbonate (PADC) detectors find many applications in radiation protection. One of them is the cosmic radiation dosimetry, where PADC detectors measure the linear energy transfer (LET) spectra of charged particles (from protons to heavy ions), supplementing TLD detectors in the role of passive dosemeter. Calibration exposures to ions of known LET are required to establish a relation between parameters of track observed on the detector and LET of particle creating this track. PADC TASTRAK nuclear track detectors were exposed to 12 C and 56 Fe ions of LET in H2 O between 10 and 544 keV/µm. The exposures took place at the Heavy Ion Medical Accelerator (HIMAC) in Chiba, Japan in the frame of the HIMAC research project "Space Radiation Dosimetry-Ground Based Verification of the MATROSHKA Facility" (20P-240). Detectors were etched in water solution of NaOH with three different temperatures and for various etching times to observe the appearance of etched tracks, the evolution of their parameters and the stability of the etching process. The applied etching times (and the solution's concentrations and temperatures) were: 48, 72, 96, 120 hours (6.25 N NaOH, 50 O C), 20, 40, 60, 80 hours (6.25 N NaOH, 60 O C) and 8, 12, 16, 20 hours (7N NaOH, 70 O C). The analysis of the detectors involved planimetric (2D) measurements of tracks' entrance ellipses and mechanical measurements of bulk layer thickness. Further track parameters, like angle of incidence, track length and etch rate ratio were then calculated. For certain tracks, results of planimetric measurements and calculations were also compared with results of optical track profile (3D) measurements, where not only the track's entrance ellipse but also the location of the track's tip could be directly measured. All these measurements have been performed with the 2D/3D measurement system at DLR. The collected data allow to create sets of V(LET in H2 O) calibration curves suitable for short, intermediate and

  14. Nuclear radiation-warning detector that measures impedance

    SciTech Connect

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  15. Neutron Detection with Mercuric Iodide

    SciTech Connect

    Bell, Z.A.

    2003-06-17

    Mercuric iodide is a high-density, high-Z semiconducting material useful for gamma ray detection. This makes it convertible to a thermal neutron detector by covering it with a boron rich material and detecting the 478 keV gamma rays resulting from the {sup 10}B(n, {alpha}){sup 7}Li* reaction. However, the 374 barn thermal capture cross section of {sup nat}Hg, makes the detector itself an attractive absorber, and this has been exploited previously. Since previous work indicates that there are no low-energy gamma rays emitted in coincidence with the 368 keV capture gamma from the dominant {sup 199}Hg(n, {gamma}){sup 200}Hg reaction, only the 368 keV capture gamma is seen with any efficiency a relatively thin (few mm) detector. In this paper we report preliminary measurements of neutrons via capture reactions in a bare mercuric iodide crystal and a crystal covered in {sup 10}B-loaded epoxy. The covered detector is an improvement over the bare detector because the presence of both the 478 and 368 keV gamma rays removes the ambiguity associated with the observation of only one of them. Pulse height spectra, obtained with and without lead and cadmium absorbers, showed the expected gamma rays and demonstrated that they were caused by neutrons.

  16. Nuclear physics detector technology applied to plant biology research

    SciTech Connect

    Weisenberger, Andrew G.; Kross, Brian J.; Lee, Seung Joo; McKisson, John E.; Xi, Wenze; Zorn, Carl J.; Howell, Calvin; Crowell, A.S.; Reid, C.D.; Smith, Mark

    2013-08-01

    The ability to detect the emissions of radioactive isotopes through radioactive decay (e.g. beta particles, x-rays and gamma-rays) has been used for over 80 years as a tracer method for studying natural phenomena. More recently a positron emitting radioisotope of carbon: {sup 11}C has been utilized as a {sup 11}CO{sub 2} tracer for plant ecophysiology research. Because of its ease of incorporation into the plant via photosynthesis, the {sup 11}CO{sub 2} radiotracer is a powerful tool for use in plant biology research. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using {sup 11}CO{sub 2}. Presently there are several groups developing and using new PET instrumentation for plant based studies. Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with the Duke University Phytotron and the Triangle Universities Nuclear Laboratory (TUNL) is involved in PET detector development for plant imaging utilizing technologies developed for nuclear physics research. The latest developments of the use of a LYSO scintillator based PET detector system for {sup 11}CO{sub 2} tracer studies in plants will be briefly outlined.

  17. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    SciTech Connect

    Gai, Moshe

    2015-02-24

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as {sup 12}C and {sup 16}O. All three detectors (SSD, eTPC and BC) will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the {sup 12}C(α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.

  18. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2015-02-01

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as 12C and 16O . All three detectors (SSD, eTPC and BC) will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the 12C (α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.

  19. Barium iodide and strontium iodide crystals andd scintillators implementing the same

    SciTech Connect

    Payne, Stephen A; Cherepy, Nerine J; Hull, Giulia E; Drobshoff, Alexander D; Burger, Arnold

    2013-11-12

    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector according to another embodiment includes a scintillator optic comprising europium-doped strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, wherein a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 A method for manufacturing a crystal suitable for use in a scintillator includes mixing strontium iodide-containing crystals with a source of Eu.sup.2+, heating the mixture above a melting point of the strontium iodide-containing crystals, and cooling the heated mixture near the seed crystal for growing a crystal. Additional materials, systems, and methods are presented.

  20. Size Effect on Nuclear Gamma-Ray Energy Spectra Acquired by Different Sized CeBr3, LaBr3:Ce, and NaI:Tl Gamma-Ray Detectors

    SciTech Connect

    Guss, Paul; Reed, Michael; Yuan, Ding; Beller, Denis; Cutler, Matthew; Contreras, Chris; Mukhopadhyay, Sanjoy; Wilde, Scott UNLV

    2014-03-01

    Gamma-ray energy spectra were acquired for different sizes of cerium tribromide (CeBr3), cerium-doped lanthanum tribromide (LaBr3:Ce), and thallium-doped sodium iodide (NaI:Tl) detectors. A comparison was conducted of the energy resolution and detection efficiency of these scintillator detectors for different sizes of detectors. The results of this study are consistent with the observation that for each size detector, LaBr3:Ce offers better resolution than either a CeBr3 or NaI:Tl detector of the same size. In addition, CeBr3 and LaBr3:Ce detectors could resolve some closely spaced peaks in the spectra of several radioisotopes that NaI:Tl could not. As the detector size increased, all three detector materials exhibited higher efficiency, albeit with slightly reduced resolution. Significantly, the very low intrinsic activity of CeBr3 is also demonstrated in this study, which, when combined with energy resolution characteristics for a range of detector sizes, could lead to an improved ability to detect special nuclear materials compared to the other detectors.

  1. Cesium iodide alloys

    DOEpatents

    Kim, H.E.; Moorhead, A.J.

    1992-12-15

    A transparent, strong CsI alloy is described having additions of monovalent iodides. Although the preferred iodide is AgI, RbI and CuI additions also contribute to an improved polycrystalline CsI alloy with outstanding multispectral infrared transmittance properties. 6 figs.

  2. A new method of imaging particle tracks in solid state nuclear track detectors.

    PubMed

    Wertheim, D; Gillmore, G; Brown, L; Petford, N

    2010-01-01

    Solid state nuclear track detectors are used to determine the concentration of alpha particles in the environment. The standard method for assessing exposed detectors involves 2D image analysis. However 3D imaging has the potential to provide additional information relating to angle as well as to differentiate clustered hit sequences and possibly energy of alpha particles but this could be time consuming. Here we describe a new method for rapid high-resolution 3D imaging of solid state nuclear track detectors. A 'LEXT' OLS3100 confocal laser scanning microscope (Olympus Corporation, Tokyo, Japan) was used in confocal mode to successfully obtain 3D image data on four CR-39 plastic detectors. Three-dimensional visualization and image analysis enabled characterization of track features. This method may provide a means of rapid and detailed 3D analysis of solid state nuclear track detectors.

  3. [Dosimetry of fast neutrons in 1W nuclear reactor with plastic nuclear-track detectors].

    PubMed

    Yasubuchi, S; Hoshi, M; Itoh, T; Hisanaga, S; Niwa, T; Miki, R; Kondo, S

    1989-09-01

    A nuclear reactor at Kinki University is operated at the maximum of 1W. It produces fission neutrons as much as gamma-rays. To facilitate its use for neutron radiobiology, fast neutrons inside the reactor were measured with nuclear-track detectors TS 16 N and a pair of ion chambers. The angular dependence of TS 16 N response, an anisotropy of fast neutron fluxes in the reactor and misuse of the kerma factor assumed for radiation protection business are the major causes of discrepancy is measured doses by the two methods. Correction factors for the three causes are proposed. After correction, neutron doses estimated with TS 16 N and chambers agree within 5%. The dose-rate at the reactor's center is about 20 tissue-cGy/h. This is the first in situ dosimetry of fast neutrons in a reactor with track detectors attached to biologic samples. Our routine usage has demonstrated that, if used with caution, TS 16 N elements are handy, reliable monitors for fast neutron dosimetry as they are insensitive to contaminated gamma-rays and small enough to be attached to biologic samples.

  4. Iodide transport: implications for health and disease

    PubMed Central

    2014-01-01

    Disorders of the thyroid gland are among the most common conditions diagnosed and managed by pediatric endocrinologists. Thyroid hormone synthesis depends on normal iodide transport and knowledge of its regulation is fundamental to understand the etiology and management of congenital and acquired thyroid conditions such as hypothyroidism and hyperthyroidism. The ability of the thyroid to concentrate iodine is also widely used as a tool for the diagnosis of thyroid diseases and in the management and follow up of the most common type of endocrine cancers: papillary and follicular thyroid cancer. More recently, the regulation of iodide transport has also been the center of attention to improve the management of poorly differentiated thyroid cancer. Iodine deficiency disorders (goiter, impaired mental development) due to insufficient nutritional intake remain a universal public health problem. Thyroid function can also be influenced by medications that contain iodide or interfere with iodide metabolism such as iodinated contrast agents, povidone, lithium and amiodarone. In addition, some environmental pollutants such as perchlorate, thiocyanate and nitrates may affect iodide transport. Furthermore, nuclear accidents increase the risk of developing thyroid cancer and the therapy used to prevent exposure to these isotopes relies on the ability of the thyroid to concentrate iodine. The array of disorders involving iodide transport affect individuals during the whole life span and, if undiagnosed or improperly managed, they can have a profound impact on growth, metabolism, cognitive development and quality of life. PMID:25009573

  5. Iodide transport: implications for health and disease.

    PubMed

    Pesce, Liuska; Kopp, Peter

    2014-01-01

    Disorders of the thyroid gland are among the most common conditions diagnosed and managed by pediatric endocrinologists. Thyroid hormone synthesis depends on normal iodide transport and knowledge of its regulation is fundamental to understand the etiology and management of congenital and acquired thyroid conditions such as hypothyroidism and hyperthyroidism. The ability of the thyroid to concentrate iodine is also widely used as a tool for the diagnosis of thyroid diseases and in the management and follow up of the most common type of endocrine cancers: papillary and follicular thyroid cancer. More recently, the regulation of iodide transport has also been the center of attention to improve the management of poorly differentiated thyroid cancer. Iodine deficiency disorders (goiter, impaired mental development) due to insufficient nutritional intake remain a universal public health problem. Thyroid function can also be influenced by medications that contain iodide or interfere with iodide metabolism such as iodinated contrast agents, povidone, lithium and amiodarone. In addition, some environmental pollutants such as perchlorate, thiocyanate and nitrates may affect iodide transport. Furthermore, nuclear accidents increase the risk of developing thyroid cancer and the therapy used to prevent exposure to these isotopes relies on the ability of the thyroid to concentrate iodine. The array of disorders involving iodide transport affect individuals during the whole life span and, if undiagnosed or improperly managed, they can have a profound impact on growth, metabolism, cognitive development and quality of life. PMID:25009573

  6. DETECTORS FOR ACCELERATOR-BASED NUCLEAR SECURITY APPLICATIONS

    SciTech Connect

    Warren, Glen A.; Stave, Sean C.; Miller, Erin A.

    2015-08-31

    We present of review of detector systems used in accelerator-based national security applications. In gen-eral, the detectors used for these applications are also used in passive measurements. The critical difference is that detector systems for accelerator-based applications in general need to discriminate beam-generated background from the intended signal. Typical techniques to remove background include shielding, timing, selection of sensitive materials, and choice of accelerator.

  7. Nuclear Material Accountability Applications of a Continuous Energy and Direction Gamma Ray Detector

    SciTech Connect

    David Gerts; Robert Bean; Marc Paff

    2010-07-01

    The Idaho National Laboratory has recently developed a detector system based on the principle of a Wilson cloud chamber that gives the original energy and direction to a gamma ray source. This detector has the properties that the energy resolution is continuous and the direction to the source can be resolved to desired fidelity. Furthermore, the detector has low power requirements, is durable, operates in widely varying environments, and is relatively cheap to produce. This detector is expected, however, to require significant time to perform measurements. To mitigate the significant time for measurements, the detector is expected to scale to very large sizes with a linear increase in cost. For example, the proof of principle detector is approximately 30,000 cm3. This work describes the technical results that lead to these assertions. Finally, the applications of this detector are described in the context of nuclear material accountability.

  8. Study of aging of nuclear detector based on n-silicon/copper phthalocyanine heterojunction

    SciTech Connect

    Ray, A.; Gupta, S. K.

    2013-02-05

    Nuclear detectors based on n-silicon/copper-phthalocyanine (CuPc) heterojunction were fabricated using thermally evaporated CuPc thin film. These detectors exhibited stable electrical and {alpha}-particle characteristics for prolonged periods of time under ordinary laboratory conditions and also exposing to {alpha}- particles (during {alpha}- spectroscopic measurements). The electrical and alpha particle characteristics of these detectors were studied after a long gap of 3 - 5 years and the best result obtained from one detector (five year old) is reported here. Degradation in electrical and alpha particle characteristics were not found to be very significant over the period.

  9. Novel Al2O3:C,Mg fluorescent nuclear track detectors for passive neutron dosimetry.

    PubMed

    Sykora, G Jeff; Akselrod, Mark S; Salasky, M; Marino, Stephen A

    2007-01-01

    The latest advances in the development of a fluorescent nuclear track detector (FNTD) for neutron and heavy charged particle dosimetry are described and compared with CR-39 plastic nuclear etched track detectors (PNTDs). The technique combines a new luminescent aluminium oxide single crystal detector (Al(2)O(3):C,Mg) with an imaging technique based on laser scanning and confocal fluorescence detection. Detection efficiency was obtained after irradiations with monoenergetic neutron and proton beams. Dose dependences were measured for different configurations of the detectors exposed in fast- and thermal-neutron fields. A specially developed image processing technique allows for fast fluorescent track identification and counting. The readout method is non-destructive, and detectors can be reused after thermal annealing. PMID:17522030

  10. Mercuric Iodide Photocell Technology for Room Temperature Readout of Scintillators

    SciTech Connect

    Warnick Kernan et al.

    2007-08-31

    Mercuric iodide (HgI2) is a well known material for the direct detection of gamma rays; however, the largest volume achievable is limited by thickness of the detector, which needs to be a small fraction of the average trapping length for electrons. We are reporting here preliminary results in using HgI2 crystals to fabricate photocells used in the readout of various scintillators. The optical spectral response and efficiency of these photocells were measured and will be reported. Preliminary nuclear response from a HgI2 photocell that was optically matched to a Ce3+ :LaBr3 scintillator will also be presented and discussed. Further improvements will be sought by optimizing the transparent contact technology.

  11. Influence of water and water vapour on the characteristics of KI treated HgI 2 detectors

    NASA Astrophysics Data System (ADS)

    Ponpon, J. P.; Amann, M.; Sieskind, M.

    After being cleaned using a potassium iodide solution in water followed by a water rinse, the surface of mercuric iodide is covered by a chemical complex identified as being KHgI 3·H 2O. This compound can adsorb large quantities of water and its electrical properties are strongly sensitive to water and water vapour. The consequences on the manufacturing and storing conditions (especially the relative humidity), of mercuric iodide-based devices are therefore of great concern. They are illustrated by the study of the electrical and spectrometric properties of HgI 2 nuclear radiation detectors.

  12. A parameterization of nuclear track profiles in CR-39 detector

    NASA Astrophysics Data System (ADS)

    Azooz, A. A.; Al-Nia'emi, S. H.; Al-Jubbori, M. A.

    2012-11-01

    _v1_0 TRACK_VISION Computer program TRACK_VISION for simulating optical appearance of etched tracks in CR-39 nuclear track detectors. D. Nikezic, K.N. Yu Comput. Phys. Commun. 178(2008)591

  13. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring DOENA27323-1

    SciTech Connect

    Hull, E.L.

    2006-07-28

    Compact maintenance free mechanical cooling systems are being developed to operate large volume germanium detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~ 1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed 5 years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring. The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be reliably utilized.

  14. Operational comparison of TLD albedo dosemeters and solid state nuclear tracks detectors in fuel fabrication facilities.

    PubMed

    Tsujimura, N; Takada, C; Yoshida, T; Momose, T

    2007-01-01

    The authors carried out an operational study that compared the use of TLD albedo dosemeters and solid state nuclear tracks detector in plutonium environments of Japan Nuclear Cycle Development Institute, Tokai Works. A selected group of workers engaged in the fabrication process of MOX (Plutonium-Uranium mixed oxide) fuel wore both TLD albedo dosemeters and solid state nuclear tracks detectors. The TL readings were generally proportional to the counted etch-pits, and thus the dose equivalent results obtained from TLD albedo dosemeter agreed with those from solid state nuclear tracks detector within a factor of 1.5. This result indicates that, in the workplaces of the MOX fuel plants, the neutron spectrum remained almost constant in terms of time and space, and the appropriate range of field-specific correction with spectrum variations was small in albedo dosimetry. PMID:17337735

  15. Mercuric iodide X-ray camera

    NASA Astrophysics Data System (ADS)

    Patt, B. E.; del Duca, A.; Dolin, R.; Ortale, C.

    1986-02-01

    A prototype X-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1-2 mm at energies below 60 keV and within 5-6 mm at energies on the order of 600 keV.

  16. Large area nuclear particle detectors using ET materials, phase 2

    NASA Technical Reports Server (NTRS)

    Wrigley, Charles Y.; Storti, George M.; Walter, Lee; Mathews, Scott

    1990-01-01

    This report presents work done under a Phase 2 SBIR contract for demonstrating large area detector planes utilizing Quantex electron trapping materials as a film medium for storing high-energy nuclide impingement information. The detector planes utilize energy dissipated by passage of the high-energy nuclides to produce localized populations of electrons stored in traps. Readout of the localized trapped electron populations is effected by scanning the ET plane with near-infrared, which frees the trapped electrons and results in optical emission at visible wavelengths. The effort involved both optimizing fabrication technology for the detector planes and developing a readout system capable of high spatial resolution for displaying the recorded nuclide passage tracks.

  17. Some recent developments in nuclear charged particle detectors

    SciTech Connect

    Stelzer, H.

    1980-08-01

    The latest developments of large-area, position sensitive gas-filled ionization chambers are described. Multi-wire-proportional chambers as position-sensing and parallel-plate-avalanche counters as time-sensing detectors at low pressure (5 torr) have proven to be useful and reliable instruments in heavy ion physics. Gas (proportional) scintillation counters, used mainly for x-ray spectroscopy, have recently been applied as particle detectors. Finally, a brief description of a large plastic scintillator spectrometer, the Plastic Ball, is given and some of the first test and calibration data are shown.

  18. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring

    SciTech Connect

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.; Bowyer, Ted W.

    2006-09-21

    Compact maintenance free mechanical cooling systems are being developed to operate large volume (~570 cm3, ~3 kg, 140% or larger) germanium detectors for field applications. We are using a new generation of Stirling-cycle mechanical coolers for operating the very largest volume germanium detectors with absolutely no maintenance or liquid nitrogen requirements. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed five years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring (NEM). The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be utilized. These mechanically cooled germanium detector systems being developed here will provide the largest, most sensitive detectors possible for use with the RASA. To provide such systems, the appropriate technical fundamentals are being researched. Mechanical cooling of germanium detectors has historically been a difficult endeavor. The success or failure of mechanically cooled germanium detectors stems from three main technical issues: temperature, vacuum, and vibration. These factors affect one another. There is a particularly crucial relationship between vacuum and temperature. These factors will be experimentally studied both separately and together to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system for field use. Using this knowledge, a series of mechanically cooled germanium detector prototype systems are being designed and fabricated. Our collaborators

  19. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  20. Amorphous silicon/crystalline silicon heterojunctions for nuclear radiation detector applications

    SciTech Connect

    Walton, J.T.; Hong, W.S.; Luke, P.N.; Wang, N.W.; Ziemba, F.P.

    1996-10-01

    Results on characterization of electrical properties of amorphous Si films for the 3 different growth methods (RF sputtering, PECVD [plasma enhanced], LPCVD [low pressure]) are reported. Performance of these a-Si films as heterojunctions on high resistivity p-type and n- type crystalline Si is examined by measuring the noise, leakage current, and the alpha particle response of 5mm dia detector structures. It is demonstrated that heterojunction detectors formed by RF sputtered films and PECVD films are comparable in performance with conventional surface barrier detectors. Results indicate that the a-Si/c-Si heterojunctions have the potential to greatly simplify detector fabrication. Directions for future avenues of nuclear particle detector development are indicated.

  1. Evaluation of XRI-UNO CdTe detector for nuclear medical imaging

    NASA Astrophysics Data System (ADS)

    Jambi, L. K.; Lees, J. E.; Bugby, S. L.; Tipper, S.; Alqahtani, M. S.; Perkins, A. C.

    2015-06-01

    Over the last two decades advances in semiconductor detector technology have reached the point where they are sufficiently sensitive to become an alternative to scintillators for high energy gamma ray detection for application in fields such as medical imaging. This paper assessed the Cadmium-Telluride (CdTe) XRI-UNO semiconductor detector produced by X-RAY Imatek for photon energies of interest in nuclear imaging. The XRI-UNO detector was found to have an intrinsic spatial resolution of <0.5mm and a high incident count rate capability up to at least 1680cps. The system spatial resolution, uniformity and sensitivity characteristics are also reported.

  2. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, W.H.; Berliner, R.R.

    1994-09-13

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation. 2 figs.

  3. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, William H.; Berliner, Ronald R.

    1994-01-01

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation.

  4. Large area nuclear particle detectors using ET materials

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The purpose of this SBIR Phase 1 feasibility effort was to demonstrate the usefulness of Quantex electron-trapping (ET) materials for spatial detection of nuclear particles over large areas. This demonstration entailed evaluating the prompt visible scintillation as nuclear particles impinged on films of ET materials, and subsequently detecting the nuclear particle impingement information pattern stored in the ET material, by means of the visible-wavelength luminescence produced by near-infrared interrogation. Readily useful levels of scintillation and luminescence outputs are demonstrated.

  5. A new method for internal calibration of nuclear track detectors

    NASA Technical Reports Server (NTRS)

    Oda, K.; Csige, I.; Henke, R. P.; Benton, E. V.

    1992-01-01

    A new technique is proposed for an internal calibration of a two-layer detector assembly. Spatially coincident pairs of conical tracks on one surface and overetched tracks on the adjacent surface are selected for measurement. Both the etch rate ratio and the particle range can be obtained from the minor and major diameters of the elliptical track and the radii of the circular tracks for two etching steps. This technique was applied to CR-39 detectors exposed to fast neutrons and those flown on a high altitude balloon in order to evaluate the proton response. An improvement by using multi-step etching was also carried out. It was found that not only a single set of the etch rate ratio and the range but also the response curve could be estimated in an extended region by analyzing combined growth curves.

  6. A new method for internal calibration of nuclear track detectors.

    PubMed

    Oda, K; Csige, I; Henke, R P; Benton, E V

    1992-07-01

    A new technique is proposed for an internal calibration of a two-layer detector assembly. Spatially coincident pairs of conical tracks on one surface and overetched tracks on the adjacent surface are selected for measurement. Both the etch rate ratio and the particle range can be obtained from the minor and major diameters of the elliptical track and the radii of the circular tracks for two etching steps. This technique was applied to CR-39 detectors exposed to fast neutrons and those flown on a high altitude balloon in order to evaluate the proton response. An improvement by using multi-step etching was also carried out. It was found that not only a single set of the etch rate ratio and the range but also the response curve could be estimated in an extended region by analyzing combined growth curves. PMID:11537536

  7. Search for anomalons using plastic nuclear track detectors

    NASA Technical Reports Server (NTRS)

    Heinrich, W.; Drechsel, H.; Brechtmann, C.; Dreute, J.

    1985-01-01

    A stack of CR39 track detectors containing Ag foils was exposed to 1.7 GeV/nucleon Fe-56 beam and the anomalous mean free path effect investigated. Neither the whole set of 7517 nor a subset of 2542 interacting fragments produced probably in the Ag target show an effect. By combining the data of this and an earlier experiment we can also exclude an effect for 3219 interacting fragments produced in delta Z=1 collisions.

  8. Polycrystalline CVD diamond pixel array detector for nuclear particles monitoring

    NASA Astrophysics Data System (ADS)

    Pacilli, M.; Allegrini, P.; Girolami, M.; Conte, G.; Spiriti, E.; Ralchenko, V. G.; Komlenok, M. S.; Khomic, A. A.; Konov, V. I.

    2013-02-01

    We report the 90Sr beta response of a polycrystalline diamond pixel detector fabricated using metal-less graphitic ohmic contacts. Laser induced graphitization was used to realize multiple squared conductive contacts with 1mm × 1mm area, 0.2 mm apart, on one detector side while on the other side, for biasing, a 9mm × 9mm large graphite contact was realized. A proximity board was used to wire bonding nine pixels at a time and evaluate the charge collection homogeneity among the 36 detector pixels. Different configurations of biasing were experimented to test the charge collection and noise performance: connecting the pixel at the ground potential of the charge amplifier led to best results and minimum noise pedestal. The expected exponential trend typical of beta particles has been observed. Reversing the bias polarity the pulse height distribution (PHD) does not changes and signal saturation of any pixel was observed around ±200V (0.4 V/μm). Reasonable pixels response uniformity has been evidenced even if smaller pitch 50÷100 μm structures need to be tested.

  9. A parameterization of nuclear track profiles in CR-39 detector

    NASA Astrophysics Data System (ADS)

    Azooz, A. A.; Al-Nia'emi, S. H.; Al-Jubbori, M. A.

    2012-11-01

    In this work, the empirical parameterization describing the alpha particles’ track depth in CR-39 detectors is extended to describe longitudinal track profiles against etching time for protons and alpha particles. MATLAB based software is developed for this purpose. The software calculates and plots the depth, diameter, range, residual range, saturation time, and etch rate versus etching time. The software predictions are compared with other experimental data and with results of calculations using the original software, TRACK_TEST, developed for alpha track calculations. The software related to this work is freely downloadable and performs calculations for protons in addition to alpha particles. Program summary Program title: CR39 Catalog identifier: AENA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENA_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Copyright (c) 2011, Aasim Azooz Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met • Redistributions of source code must retain the above copyright, this list of conditions and the following disclaimer. • Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution This software is provided by the copyright holders and contributors “as is” and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright owner or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and

  10. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  11. International and national security applications of cryogenic detectors - mostly nuclear safeguards

    SciTech Connect

    Rabin, Michael W

    2009-01-01

    As with science, so with security - in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma ray, neutron, and alpha particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invi sible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

  12. Electromagnetic and nuclear radiation detector using micromechanical sensors

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.

    2000-01-01

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  13. Preliminary Results from an Investigation into Nanostructured Nuclear Radiation Detectors for Non-Proliferation Applications

    SciTech Connect

    ,

    2012-10-01

    In recent years, the concept of embedding composite scintillators consisting of nanosized inorganic crystals in an organic matrix has been actively pursued. Nanocomposite detectors have the potential to meet many of the homeland security, non-proliferation, and border and cargo-screening needs of the nation and, by virtue of their superior nuclear identification capability over plastic, at roughly the same cost as plastic, have the potential to replace all plastic detectors. Nanocomposites clearly have the potential of being a gamma ray detection material that would be sensitive yet less expensive and easier to produce on a large scale than growing large, whole crystals of similar sensitivity. These detectors would have a broad energy range and a sufficient energy resolution to perform isotopic identification. The material can also be fabricated on an industrial scale, further reducing cost. This investigation focused on designing and fabricating prototype core/shell and quantum dot (QD) detectors. Fourteen core/shell and four QD detectors, all with the basic consistency of a mixture of nanoparticles in a polymer matrix with different densities of nanoparticles, were prepared. Nanoparticles with sizes <10 nm were fabricated, embedded in a polystyrene matrix, and the resultant scintillators’ radiation detector properties were characterized. This work also attempted to extend the gamma energy response on both low- and high-energy regimes by demonstrating the ability to detect low-energy and high-energy gamma rays. Preliminary results of this investigation are consistent with a significant response of these materials to nuclear radiation.

  14. Development of a Position Sensitive Heavy Ion Detector for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Need, Emily; Blackmon, J. C.; Deibel, C. M.; Lai, J.; Lindhart, L. E.; Macon, K. T.; Matos, M.; Rasco, B. C.; Rogachev, G.; Wiedenhover, I.

    2012-10-01

    The Array for Nuclear Astrophysics Studies with Exotic Nuclei (ANASEN) is a charged-particle detector array used to study reactions with radioactive beams at FSU and the NSCL. One of the main goals is to improve our understanding of nuclear reactions important in stellar explosions. One important component of ANASEN is a heavy ion detector located downstream of the target that is used to identify the atomic number of heavy ions based upon their energy loss through the gas-filled chamber. We have developed a new version of this detector with major design changes to improve data collection and allow much greater selectivity for the reactions of interest. These changes include anodes based on custom printed circuit boards that provide position sensitivity, larger grids to provide greater acceptance, and a change in wire spacing on the grids to improve transmission. We will present the new design and results from initial tests.

  15. 3-D imaging of particle tracks in solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Wertheim, D.; Gillmore, G.; Brown, L.; Petford, N.

    2010-05-01

    It has been suggested that 3 to 5% of total lung cancer deaths in the UK may be associated with elevated radon concentration. Radon gas levels can be assessed using CR-39 plastic detectors which are often assessed by 2-D image analysis of surface images. 3-D analysis has the potential to provide information relating to the angle at which alpha particles impinge on the detector. In this study we used a "LEXT" OLS3100 confocal laser scanning microscope (Olympus Corporation, Tokyo, Japan) to image tracks on five CR-39 detectors. We were able to identify several patterns of single and coalescing tracks from 3-D visualisation. Thus this method may provide a means of detailed 3-D analysis of Solid State Nuclear Track Detectors.

  16. Nuclear reactor pulse tracing using a CdZnTe electro-optic radiation detector

    NASA Astrophysics Data System (ADS)

    Nelson, Kyle A.; Geuther, Jeffrey A.; Neihart, James L.; Riedel, Todd A.; Rojeski, Ronald A.; Ugorowski, Philip B.; McGregor, Douglas S.

    2012-07-01

    CdZnTe has previously been shown to operate as an electro-optic radiation detector by utilizing the Pockels effect to measure steady-state nuclear reactor power levels. In the present work, the detector response to reactor power excursion experiments was investigated. Peak power levels during an excursion were predicted to be between 965 MW and 1009 MW using the Fuchs-Nordheim and Fuchs-Hansen models and confirmed with experimental data from the Kansas State University TRIGA Mark II nuclear reactor. The experimental arrangement of the Pockels cell detector includes collimated laser light passing through a transparent birefringent crystal, located between crossed polarizers, and focused upon a photodiode. The birefringent crystal, CdZnTe in this case, is placed in a neutron beam emanating from a nuclear reactor beam port. After obtaining the voltage-dependent Pockels characteristic response curve with a photodiode, neutron measurements were conducted from reactor pulses with the Pockels cell set at the 1/4 and 3/4 wave bias voltages. The detector responses to nuclear reactor pulses were recorded in real-time using data logging electronics, each showing a sharp increase in photodiode current for the 1/4 wave bias, and a sharp decrease in photodiode current for the 3/4 wave bias. The polarizers were readjusted to equal angles in which the maximum light transmission occurred at 0 V bias, thereby, inverting the detector response to reactor pulses. A high sample rate oscilloscope was also used to more accurately measure the FWHM of the pulse from the electro-optic detector, 64 ms, and is compared to the experimentally obtained FWHM of 16.0 ms obtained with the 10B-lined counter.

  17. Weld monitor and failure detector for nuclear reactor system

    DOEpatents

    Sutton, Jr., Harry G.

    1987-01-01

    Critical but inaccessible welds in a nuclear reactor system are monitored throughout the life of the reactor by providing small aperture means projecting completely through the reactor vessel wall and also through the weld or welds to be monitored. The aperture means is normally sealed from the atmosphere within the reactor. Any incipient failure or cracking of the weld will cause the environment contained within the reactor to pass into the aperture means and thence to the outer surface of the reactor vessel where its presence is readily detected.

  18. Multi-Detector Analysis System for Spent Nuclear Fuel Characterization

    SciTech Connect

    Reber, Edward Lawrence; Aryaeinejad, Rahmat; Cole, Jerald Donald; Drigert, Mark William; Jewell, James Keith; Egger, Ann Elizabeth; Cordes, Gail Adele

    1999-09-01

    The Spent Nuclear Fuel (SNF) Non-Destructive Analysis (NDA) program at INEEL is developing a system to characterize SNF for fissile mass, radiation source term, and fissile isotopic content. The system is based on the integration of the Fission Assay Tomography System (FATS) and the Gamma-Neutron Analysis Technique (GNAT) developed under programs supported by the DOE Office of Non-proliferation and National Security. Both FATS and GNAT were developed as separate systems to provide information on the location of special nuclear material in weapons configuration (FATS role), and to measure isotopic ratios of fissile material to determine if the material was from a weapon (GNAT role). FATS is capable of not only determining the presence and location of fissile material but also the quantity of fissile material present to within 50%. GNAT determines the ratios of the fissile and fissionable material by coincidence methods that allow the two prompt (immediately) produced fission fragments to be identified. Therefore, from the combination of FATS and GNAT, MDAS is able to measure the fissile material, radiation source term, and fissile isotopics content.

  19. Studying the Sun's Nuclear Furnace with a Neutrino Detector Spacecraft in Close Solar Orbit

    NASA Astrophysics Data System (ADS)

    Solomey, Nickolas

    2016-05-01

    A neutrino based detector in close solar orbit would have a neutrino flux 10,000x or more larger flux than on Earth and a smaller detector able to handle high rates with exception energy resolution could be used. We have studied the idea of operating such an experiment in close solar orbits that takes it off the ecliptic plane and in a solar orbit where the distance from the Sun will change distance. This neutrino detector on a space craft could do Solar Astrophysics studying the Solar nuclear furnace, basic nuclear physics and elementary particle physics; some of these ideas are new unique science that can only be preformed from a spacecraft. The harsh environment provides many challenges but if such a detector could be made to work it can be the next major step in this science study. How a small segmented detector can operate and preform in this environment to detect solar neutrinos will be elaborated upon using a combination of signal strength, fast signal timing, shielding and segmentation.

  20. The use of nuclear physics and high energy physics detectors in medical imaging

    NASA Astrophysics Data System (ADS)

    Del Guerra, Alberto; Bisogni, Maria Giuseppina

    2013-06-01

    The development of radiation detectors in the field of nuclear and particle physics has had a terrific impact in medical imaging since this latter discipline took off in late '70 with the invention of the CT scanners. The massive use in Nuclear Physics and High Energy Physics of position sensitive gas detectors, of high Z and high density scintillators coupled to Photomultiplier (PMT) and Position Sensitive Photomultipliers (PSPMT), and of solid state detectors has triggered during the last 30 years a series of novel applications in Medical Imaging with ionizing radiation. The accelerated scientific progression in genetics and molecular biology has finally generated what it is now called Molecular Imaging. This field of research presents additional challenges not only in the technology of radiation detector, but more and more in the ASIC electronics, fast digital readout and parallel software. In this paper we will try to present how Nuclear Physics/High Energy Physics and Medical Imaging have both benefited by the cross-fertilization of research activities between the two fields and how much they will take advantage in the future.

  1. Nuclear security applications of antineutrino detectors : current capabilities and future prospects.

    SciTech Connect

    Bernstein, A.; Goodman, M.; Baldwin, G.; Learned, J.; Lund, J.; Reyna, D.; Svaboda, R.

    2010-12-10

    Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline - Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, there are many applications of interest in nuclear nonproliferation. This paper presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline with other ongoing fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.

  2. A novel Al 2O 3 fluorescent nuclear track detector for heavy charged particles and neutrons

    NASA Astrophysics Data System (ADS)

    Akselrod, G. M.; Akselrod, M. S.; Benton, E. R.; Yasuda, N.

    2006-06-01

    A novel Al2O3 fluorescent nuclear track detector (FNTD), recently developed by Landauer, Inc., has demonstrated sensitivity and functionality superior to that of existing nuclear track detectors. The FNTD is based on single crystals of aluminum oxide doped with carbon and magnesium, and having aggregate oxygen vacancy defects (Al2O3:C,Mg). Radiation-induced color centers in the new material have an absorption band at 620 nm and produce fluorescence at 750 nm with a high quantum yield and a short, 75 ± 5 ns, fluorescence lifetime. Non-destructive readout of the detector is performed using a confocal fluorescence microscope. Scanning of the three-dimensional spatial distribution of fluorescence intensity along the track of a heavy charged particle (HCP) permits reconstruction of particle trajectories through the crystal and the LET can be determined as a function of distance along the trajectory based on the fluorescence intensity. Major advantages of Al2O3:C,Mg FNTD over conventionally processed CR-39 plastic nuclear track detector include superior spatial resolution, a wider range of LET sensitivity, no need for post-irradiation chemical processing of the detector and the capability to anneal and reuse the detector. Preliminary experiments have demonstrated that the material possesses a low-LET threshold of <1 keV/μm, does not saturate at LET in water as high as 1800 keV/μm, and is capable of irradiation to fluences in excess of 106 cm-2 without saturation (track overlap).

  3. Nuclear magnetic resonance tomography with a toroid cavity detector

    SciTech Connect

    Woelk, K.; Rathke, J.W.; Klingler, R.J.

    1995-02-01

    A new type of nuclear magnetic resonance (NMR) tomography has been developed at Argonne National Laboratory. The method uses the strong radio frequency field gradient within a cylindrical toroid cavity to provide high-resolution NMR spectral information while simultaneously resolving distances on the micron scale. The toroid cavity imaging technique differs from conventional magnetic resonance imaging (MRI) in that NMR structural information is not lost during signal processing. The new technique could find a wide range of applications in the characterization of surface layers and in the production of advanced materials. Potential areas of application include in situ monitoring of growth sites during ceramic formation processes, analysis of the oxygen annealing step for wires coated with high-temperature superconducting films, and investigation of the reaction chemistry as a function of distance within the diffusion layer for electrochemical processes.

  4. Defects in CVD Diamond Films from Their Response as Nuclear Detectors

    NASA Astrophysics Data System (ADS)

    Marinelli, Marco; Milani, Enrico; Tucciarone, Aldo; Rinati, Gianluca Verona

    CVD diamond films can be used to realize nuclear detectors with outstanding working capability in harsh environments. Since efficient particle detection requires high drift lengths of the carriers produced by the ionizing particle, the presence of defects severely limits the performance of these detectors. This is a major issue because the fabrication technology of CVD diamond is much less advanced than that of more conventional materials like silicon. The different kinds of defects in CVD diamond and their influence on the detector response are discussed. The connections between the microscopic structure of CVD diamond and the priming (or pumping) effect, which is widely used to increase CVD diamond detector performance, are elucidated. The analysis of the response of CVD diamond-based detectors is used to extract qualitative and quantitative information on the properties of defects limiting the free movement of charge carriers in the detector (e.g., carrier type for which the traps are active, activation energies, geometrical distribution in the film, etc.). Milani-begin

  5. Registration of alpha particles in Makrofol-E nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Rammah, Y. S.; Abdalla, Ayman M.; Ashraf, O.; Ashry, A. H.

    2016-06-01

    Fast detection of alpha particles in the range from 1 to 5 MeV in Makrofol-E polycarbonate nuclear track detectors (PCTDs) using a new chemical etchant was investigated. 252Cf and 241Am-thin open sources were used for irradiating Makrofol-E detectors with fission fragments and alpha particles in air at normal pressure and temperature (NPT). A chain of experimental work has been carried out using new etchants to register alpha particle in short time in Makrofol-E polycarbonate detectors. The etching efficiency were exhibited a clear dependence on the amount of methanol in the etching solution and etching time. The optimized chemical condition obtained at this stage of development for 200 μm Makrofol-E detectors are (8 ml of 10 N NaOH + 2 ml CH3OH) etching solutions at 60 °C for 3 h. In this study; it is possible to observe energy detection windows for Makrofol-E detectors according to applied etching duration. Makrofol-E introduced the characteristic Bragg peak, which indicates the advantages of this detector as alpha spectrometer. Consequently, the suggested new etchant can be developed for heavy ions detection and monitoring radon levels and its daughters.

  6. 2010 IEEE Nuclear Science Symposium, Medical Imaging Conference, and Room Temperature Semiconductor Detectors Workshop

    NASA Astrophysics Data System (ADS)

    The Nuclear Science Symposium (NSS) offers an outstanding opportunity for scientists and engineers interested or actively working in the fields of nuclear science, radiation instrumentation, software and their applications, to meet and discuss with colleagues from around the world. The program emphasizes the latest developments in technology and instrumentation and their implementation in experiments for space sciences, accelerators, other radiation environments, and homeland security. The Medical Imaging Conference (MIC) is the foremost international scientific meeting on the physics, engineering and mathematical aspects of nuclear medicine based imaging. As the field develops, multi-modality approaches are becoming more and more important. The content of the MIC reflects this, with a growing emphasis on the methodologies of X-ray, optical and MR imaging as they relate to nuclear imaging techniques. In addition, specialized topics will be addressed in the Short Courses and Workshops programs. The Workshop on Room-Temperature Semiconductor Detectors (RTSD) represents the largest forum of scientists and engineers developing new semiconductor radiation detectors and imaging arrays. Room-temperature solid-state radiation detectors for X-ray, gamma-ray, and neutron radiation are finding increasing applications in such diverse fields as medicine, homeland security, astrophysics and environmental remediation. The objective of this workshop is to provide a forum for discussion of the state of the art of material development for semiconductor, scintillator, and organic materials for detection, materials characterization, device fabrication and technology, electronics and applications.

  7. Nuclear resonance tomography with a toroid cavity detector

    DOEpatents

    Woelk, K.; Rathke, J.W.; Klingler, R.J.

    1996-11-12

    A toroid cavity detection system is described for determining the spectral properties and distance from a fixed point for a sample using Nuclear Magnetic Resonance. The detection system consists of a toroid with a central conductor oriented along the main axis of the toroidal cylinder and perpendicular to a static uniform magnetic field oriented along the main axis of the toroid. An rf signal is input to the central conductor to produce a magnetic field perpendicular to the central axis of the toroid and whose field strength varies as the inverse of the radius of the toroid. The toroid cavity detection system can be used to encapsulate a sample, or the detection system can be perforated to allow a sample to flow into the detection device or to place the samples in specified sample tubes. The central conductor can also be coated to determine the spectral property of the coating and the coating thickness. The sample is then subjected to the respective magnetic fields and the responses measured to determine the desired properties. 4 figs.

  8. Nuclear resonance tomography with a toroid cavity detector

    DOEpatents

    Woelk, Klaus; Rathke, Jerome W.; Klingler, Robert J.

    1996-01-01

    A toroid cavity detection system for determining the spectral properties and distance from a fixed point for a sample using Nuclear Magnetic Resonance. The detection system consists of a toroid with a central conductor oriented along the main axis of the toroidal cylinder and perpendicular to a static uniform magnetic field oriented along the main axis of the toroid. An rf signal is inputted to the central conductor to produce a magnetic field perpendicular to the central axis of the toroid and whose field strength varies as the inverse of the radius of the toroid. The toroid cavity detection system can be used to encapsulate a sample, or the detection system can be perforated to allow a sample to flow into the detection device or to place the samples in specified sample tubes. The central conductor can also be coated to determine the spectral property of the coating and the coating thickness. The sample is then subjected to the respective magnetic fields and the responses measured to determine the desired properties.

  9. Crystal Growth, Characterization and Fabrication of Cadmium Zinc Telluride-based Nuclear Detectors

    NASA Astrophysics Data System (ADS)

    Krishna, Ramesh M.

    In today's world, nuclear radiation is seeing more and more use by humanity as time goes on. Nuclear power plants are being built to supply humanity's energy needs, nuclear medical imaging is becoming more popular for diagnosing cancer and other diseases, and control of weapons-grade nuclear materials is becoming more and more important for national security. All of these needs require high-performance nuclear radiation detectors which can accurately measure the type and amount of radiation being used. However, most current radiation detection materials available commercially require extensive cooling, or simply do not function adequately for high-energy gamma-ray emitting nuclear materials such as uranium and plutonium. One of the most promising semiconductor materials being considered to create a convenient, field-deployable nuclear detector is cadmium zinc telluride (CdZnTe, or CZT). CZT is a ternary semiconductor compound which can detect high-energy gamma-rays at room temperature. It offers high resistivity (≥ 1010 O-cm), a high band gap (1.55 eV), and good electron transport properties, all of which are required for a nuclear radiation detector. However, one significant issue with CZT is that there is considerable difficulty in growing large, homogeneous, defect-free single crystals of CZT. This significantly increases the cost of producing CZT detectors, making CZT less than ideal for mass-production. Furthermore, CZT suffers from poor hole transport properties, which creates significant problems when using it as a high-energy gamma-ray detector. In this dissertation, a comprehensive investigation is undertaken using a successful growth method for CZT developed at the University of South Carolina. This method, called the solvent-growth technique, reduces the complexity required to grow detector-grade CZT single crystals. It utilizes a lower growth temperature than traditional growth methods by using Te as a solvent, while maintaining the advantages of

  10. Detection of fast neutrons from shielded nuclear materials using a semiconductor alpha detector.

    PubMed

    Pöllänen, R; Siiskonen, T

    2014-08-01

    The response of a semiconductor alpha detector to fast (>1 MeV) neutrons was investigated by using measurements and simulations. A polyethylene converter was placed in front of the detector to register recoil protons generated by elastic collisions between neutrons and hydrogen nuclei of the converter. The developed prototype equipment was tested with shielded radiation sources. The low background of the detector and insensitivity to high-energy gamma rays above 1 MeV are advantages when the detection of neutron-emitting nuclear materials is of importance. In the case of a (252)Cf neutron spectrum, the intrinsic efficiency of fast neutron detection was determined to be 2.5×10(-4), whereas three-fold greater efficiency was obtained for a (241)AmBe neutron spectrum.

  11. Hydrogen iodide decomposition

    DOEpatents

    O'Keefe, Dennis R.; Norman, John H.

    1983-01-01

    Liquid hydrogen iodide is decomposed to form hydrogen and iodine in the presence of water using a soluble catalyst. Decomposition is carried out at a temperature between about 350.degree. K. and about 525.degree. K. and at a corresponding pressure between about 25 and about 300 atmospheres in the presence of an aqueous solution which acts as a carrier for the homogeneous catalyst. Various halides of the platinum group metals, particularly Pd, Rh and Pt, are used, particularly the chlorides and iodides which exhibit good solubility. After separation of the H.sub.2, the stream from the decomposer is countercurrently extracted with nearly dry HI to remove I.sub.2. The wet phase contains most of the catalyst and is recycled directly to the decomposition step. The catalyst in the remaining almost dry HI-I.sub.2 phase is then extracted into a wet phase which is also recycled. The catalyst-free HI-I.sub.2 phase is finally distilled to separate the HI and I.sub.2. The HI is recycled to the reactor; the I.sub.2 is returned to a reactor operating in accordance with the Bunsen equation to create more HI.

  12. 21 CFR 184.1265 - Cuprous iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1265 Cuprous iodide. (a) Cuprous iodide (copper (I) iodide, CuI, CAS Reg. No. 7681-65-4) is a pure white crystalline powder. It is prepared by the reaction of copper...

  13. 21 CFR 184.1265 - Cuprous iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Substances Affirmed as GRAS § 184.1265 Cuprous iodide. (a) Cuprous iodide (copper (I) iodide, CuI, CAS Reg. No. 7681-65-4) is a pure white crystalline powder. It is prepared by the reaction of copper...

  14. 21 CFR 184.1265 - Cuprous iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Substances Affirmed as GRAS § 184.1265 Cuprous iodide. (a) Cuprous iodide (copper (I) iodide, CuI, CAS Reg. No. 7681-65-4) is a pure white crystalline powder. It is prepared by the reaction of copper...

  15. Nuclear Track Detector Characterization via Alpha-Spectrometry for Radioprotection Use

    NASA Astrophysics Data System (ADS)

    Morelli, D.; Immè, G.; Aranzulla, M.; Tazzer, A. L. Rosselli; Catalano, R.; Mangano, G.

    2011-12-01

    Solid Nuclear Track Detectors (SNTDs), CR-39 type, are usually adopted to monitor radon gas concentrations. In order to characterize the detectors according to track geometrical parameters, detectors were irradiated inside a vacuum chamber by alpha particles at twelve energy values, obtained by different Mylar foils in front of a 241Am source. The alpha energy values were verified using a Si detector. After the exposure to the alpha particles, the detectors were chemically etched to enlarge the tracks, which were then analyzed by means of a semiautomatic system composed of an optical microscope equipped with a CCD camera connected to a personal computer to store images. A suitable routine analyzed the track parameters: major and minor axis length and mean grey level, allowing us to differentiate tracks according to the incident alpha energy and then to individuate the discrimination factors for radon alpha tracks. The combined use of geometrical and optical parameters allows one to overcome the ambiguity in the alpha energy determination due to the non-monotonicity of each parameter versus energy. After track parameter determination, a calibration procedure was performed by means of a radon chamber. The calibration was verified through an inter-comparing survey.

  16. Nuclear Track Detector Characterization via Alpha-Spectrometry for Radioprotection Use

    SciTech Connect

    Morelli, D.; Imme, G.; Catalano, R.; Aranzulla, M.; Tazzer, A. L. Rosselli; Mangano, G.

    2011-12-13

    Solid Nuclear Track Detectors (SNTDs), CR-39 type, are usually adopted to monitor radon gas concentrations. In order to characterize the detectors according to track geometrical parameters, detectors were irradiated inside a vacuum chamber by alpha particles at twelve energy values, obtained by different Mylar foils in front of a {sup 241}Am source. The alpha energy values were verified using a Si detector. After the exposure to the alpha particles, the detectors were chemically etched to enlarge the tracks, which were then analyzed by means of a semiautomatic system composed of an optical microscope equipped with a CCD camera connected to a personal computer to store images. A suitable routine analyzed the track parameters: major and minor axis length and mean grey level, allowing us to differentiate tracks according to the incident alpha energy and then to individuate the discrimination factors for radon alpha tracks. The combined use of geometrical and optical parameters allows one to overcome the ambiguity in the alpha energy determination due to the non-monotonicity of each parameter versus energy. After track parameter determination, a calibration procedure was performed by means of a radon chamber. The calibration was verified through an inter-comparing survey.

  17. Development of the strontium iodide coded aperture (SICA) instrument

    NASA Astrophysics Data System (ADS)

    Mitchell, Lee J.; Phlips, Bernard F.; Grove, J. Eric; Cordes, Ryan

    2015-08-01

    The work reports on the development of a Strontium Iodide Coded Aperture (SICA) instrument for use in space-based astrophysics, solar physics, and high-energy atmospheric physics. The Naval Research Laboratory is developing a prototype coded aperture imager that will consist of an 8 x 8 array of SrI2:Eu detectors, each read out by a silicon photomultiplier. The array would be used to demonstrate SrI2:Eu detector performance for space-based missions. Europium-doped strontium iodide (SrI2:Eu) detectors have recently become available, and the material is a strong candidate to replace existing detector technology currently used for space-based gamma-ray astrophysics research. The detectors have a typical energy resolution of 3.2% at 662 keV, a significant improvement over the 6.5% energy resolution of thallium-doped sodium iodide. With a density of 4.59 g/cm and a Zeff of 49, SrI2:Eu has a high efficiency for MeV gamma-ray detection. Coupling this with recent improvements in silicon photomultiplier technology (i.e., no bulky photomultiplier tubes) creates high-density, large-area, low-power detector arrays with good energy resolution. Also, the energy resolution of SrI2:Eu makes it ideal for use as the back plane of a Compton telescope.

  18. 3D visualisation and analysis of single and coalescing tracks in Solid state Nuclear Track Detectors

    NASA Astrophysics Data System (ADS)

    Wertheim, David; Gillmore, Gavin; Brown, Louise; Petford, Nick

    2010-05-01

    Exposure to radon gas (222Rn) and associated ionising decay products can cause lung cancer in humans (1). Solid state Nuclear Track Detectors (SSNTDs) can be used to monitor radon concentrations (2). Radon particles form tracks in the detectors and these tracks can be etched in order to enable 2D surface image analysis. We have previously shown that confocal microscopy can be used for 3D visualisation of etched SSNTDs (3). The aim of the study was to further investigate track angles and patterns in SSNTDs. A 'LEXT' confocal laser scanning microscope (Olympus Corporation, Japan) was used to acquire 3D image datasets of five CR-39 plastic SSNTD's. The resultant 3D visualisations were analysed by eye and inclination angles assessed on selected tracks. From visual assessment, single isolated tracks as well as coalescing tracks were observed on the etched detectors. In addition varying track inclination angles were observed. Several different patterns of track formation were seen such as single isolated and double coalescing tracks. The observed track angles of inclination may help to assess the angle at which alpha particles hit the detector. Darby, S et al. Radon in homes and risk of lung cancer : collaborative analysis of individual data from 13 European case-control studies. British Medical Journal 2005; 330, 223-226. Phillips, P.S., Denman, A.R., Crockett, R.G.M., Gillmore, G., Groves-Kirkby, C.J., Woolridge, A., Comparative Analysis of Weekly vs. Three monthly radon measurements in dwellings. DEFRA Report No., DEFRA/RAS/03.006. (2004). Wertheim D, Gillmore G, Brown L, and Petford N. A new method of imaging particle tracks in Solid State Nuclear Track Detectors. Journal of Microscopy 2010; 237: 1-6.

  19. Effects of etching time on alpha tracks in Solid state Nuclear Track Detectors

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Wertheim, David; Crust, Simon

    2013-04-01

    Inhalation of radon gas is thought to be the cause of about 1100 lung cancer related deaths each year in the UK (1). Radon concentrations can be monitored using Solid State Nuclear Track Detectors (SSNTDs) as the natural decay of radon results in alpha particles which form tracks in the detectors and these tracks can be etched in order to enable microscopic analysis. We have previously shown that confocal microscopy can be used for 3D visualisation of etched SSNTDs (2, 3). The aim of the study was to examine the effect of etching time on the appearance of alpha tracks in SSNTDs. Six SSNTDs were placed in a chamber with a luminous dial watch for a fixed period. The detectors were etched for between 30 minutes and 4.5 hours using 6M NaOH at a temperature of 90oC. A 'LEXT' OLS4000 confocal laser scanning microscope (Olympus Corporation, Japan) was used to acquire 2D and 3D image datasets of CR-39 plastic SSNTDs. Confocal microscope 3D images were acquired using a x50 or x100 objective lens. Data were saved as images and also spreadsheet files with height measurements. Software was written using MATLAB (The MathWorks Inc., USA) to analyse the height data. Comparing the 30 minute and 4 hour etching time detectors, we observed that there were marked differences in track area; the lower the etching time the smaller the track area. The degree to which etching may prevent visualising adjacent tracks also requires further study as it is possible that etching could result in some tracks being subsumed in other tracks. On the other hand if there is too little etching, track sizes would be reduced and hence could be more difficult to image; thus there is a balance required to obtain suitable measurement accuracy. (1) Gray A, Read S, McGale P and Darby S. Lung cancer deaths from indoor radon and the cost effectiveness and potential of policies to reduce them. BMJ 2009; 338: a3110. (2) Wertheim D, Gillmore G, Brown L, and Petford N. A new method of imaging particle tracks in

  20. Formation of cyanogen iodide by lactoperoxidase.

    PubMed

    Schlorke, Denise; Flemmig, Jörg; Birkemeyer, Claudia; Arnhold, Jürgen

    2016-01-01

    The haem protein lactoperoxidase (LPO) is an important component of the anti-microbial immune defence in external secretions and is also applied as preservative in food, oral care and cosmetic products. Upon oxidation of SCN(-) and I(-) by the LPO-hydrogen peroxide system, oxidised species are formed with bacteriostatic and/or bactericidal activity. Here we describe the formation of the inter(pseudo)halogen cyanogen iodide (ICN) by LPO. This product is formed when both, thiocyanate and iodide, are present together in the reaction mixture. Using (13)C nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry we could identify this inter(pseudo)halogen after applying iodide in slight excess over thiocyanate. The formation of ICN is based on the reaction of oxidised iodine species with thiocyanate. Further, we could demonstrate that ICN is also formed by the related haem enzyme myeloperoxidase and, in lower amounts, in the enzyme-free system. As I(-) is not competitive for SCN(-) under physiologically relevant conditions, the formation of ICN is not expected in secretions but may be relevant for LPO-containing products. PMID:26580225

  1. Formation of cyanogen iodide by lactoperoxidase.

    PubMed

    Schlorke, Denise; Flemmig, Jörg; Birkemeyer, Claudia; Arnhold, Jürgen

    2016-01-01

    The haem protein lactoperoxidase (LPO) is an important component of the anti-microbial immune defence in external secretions and is also applied as preservative in food, oral care and cosmetic products. Upon oxidation of SCN(-) and I(-) by the LPO-hydrogen peroxide system, oxidised species are formed with bacteriostatic and/or bactericidal activity. Here we describe the formation of the inter(pseudo)halogen cyanogen iodide (ICN) by LPO. This product is formed when both, thiocyanate and iodide, are present together in the reaction mixture. Using (13)C nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry we could identify this inter(pseudo)halogen after applying iodide in slight excess over thiocyanate. The formation of ICN is based on the reaction of oxidised iodine species with thiocyanate. Further, we could demonstrate that ICN is also formed by the related haem enzyme myeloperoxidase and, in lower amounts, in the enzyme-free system. As I(-) is not competitive for SCN(-) under physiologically relevant conditions, the formation of ICN is not expected in secretions but may be relevant for LPO-containing products.

  2. Automatic neutron dosimetry system based on fluorescent nuclear track detector technology.

    PubMed

    Akselrod, M S; Fomenko, V V; Bartz, J A; Haslett, T L

    2014-10-01

    For the first time, the authors are describing an automatic fluorescent nuclear track detector (FNTD) reader for neutron dosimetry. FNTD is a luminescent integrating type of detector made of aluminium oxide crystals that does not require electronics or batteries during irradiation. Non-destructive optical readout of the detector is performed using a confocal laser scanning fluorescence imaging with near-diffraction limited resolution. The fully automatic table-top reader allows one to load up to 216 detectors on a tray, read their engraved IDs using a CCD camera and optical character recognition, scan and process simultaneously two types of images in fluorescent and reflected laser light contrast to eliminate false-positive tracks related to surface and volume crystal imperfections. The FNTD dosimetry system allows one to measure neutron doses from 0.1 mSv to 20 Sv and covers neutron energies from thermal to 20 MeV. The reader is characterised by a robust, compact optical design, fast data processing electronics and user-friendly software.

  3. Image processing analysis of nuclear track parameters for CR-39 detector irradiated by thermal neutron

    NASA Astrophysics Data System (ADS)

    Al-Jobouri, Hussain A.; Rajab, Mustafa Y.

    2016-03-01

    CR-39 detector which covered with boric acid (H3Bo3) pellet was irradiated by thermal neutrons from (241Am - 9Be) source with activity 12Ci and neutron flux 105 n. cm-2. s-1. The irradiation times -TD for detector were 4h, 8h, 16h and 24h. Chemical etching solution for detector was sodium hydroxide NaOH, 6.25N with 45 min etching time and 60 C˚ temperature. Images of CR-39 detector after chemical etching were taken from digital camera which connected from optical microscope. MATLAB software version 7.0 was used to image processing. The outputs of image processing of MATLAB software were analyzed and found the following relationships: (a) The irradiation time -TD has behavior linear relationships with following nuclear track parameters: i) total track number - NT ii) maximum track number - MRD (relative to track diameter - DT) at response region range 2.5 µm to 4 µm iii) maximum track number - MD (without depending on track diameter - DT). (b) The irradiation time -TD has behavior logarithmic relationship with maximum track number - MA (without depending on track area - AT). The image processing technique principally track diameter - DT can be take into account to classification of α-particle emitters, In addition to the contribution of these technique in preparation of nano- filters and nano-membrane in nanotechnology fields.

  4. Color changes in CR-39 nuclear track detector by gamma and laser irradiation

    NASA Astrophysics Data System (ADS)

    Nouh, S. A.; Said, A. F.; Atta, M. R.; El-Melleegy, W. M.; El-Meniawy, S.

    2006-07-01

    A study of the effect of gamma and laser irradiation on the color changes of polyallyl diglycol (CR-39) solid-state nuclear track detector was performed. CR-39 detector samples were classified into two main groups. The first group was irradiated with gamma doses at levels between 20 and 300 kGy, whereas the second group was exposed to infrared laser radiation with energy fluences at levels between 0.71 and 8.53 J/cm(2) . The transmission of these samples in the wavelength range 300-2500 nm, as well as any color changes, was studied. Using the transmission data, both the tristimulus and the coordinate values of the Commission Internationale de l'Eclairage (CIE) LAB were calculated. Also, the color differences between the non-irradiated samples and those irradiated with different gamma or laser doses were calculated. The results indicate that the CR-39 detector acquires color changes under gamma or laser irradiation, but it has more response to color changes by gamma irradiation. In addition, structural property studies using infrared spectroscopy were performed. The results indicate that the irradiation of a CR-39 detector with gamma or laser radiations causes the cleavage of the carbonate linkage that can be attributed to the H abstraction from the backbone of the polymer, associated with the formation of CO 2 and OH with varying intensities.

  5. Beam loss and backgrounds in the CDF and D0 detectors due to nuclear elastic beam-gas scattering

    SciTech Connect

    Alexandr I. Drozhdin; Valery A. Lebedev; Nikolai V. Mokhov

    2003-05-27

    Detailed simulations were performed on beam loss rates in the vicinity of the Tevatron Collider detectors due to beam-gas nuclear elastic interactions. It turns out that this component can drive the accelerator-related background rates in the CDF and D0 detectors, exceeding those due to outscattering from collimation system, inelastic beam-gas interactions and other processes [1, 2]. Results of realistic simulations with the STRUCT and MARS codes are presented for the interaction region components and the CDF and D0 detectors. It is shown that a steel mask placed upstream of the detectors can reduce the background rates by almost an order of magnitude.

  6. Investigations of protons passing through the CR-39/PM-355 type of solid state nuclear track detectors

    SciTech Connect

    Malinowska, A.; Szydłowski, A.; Jaskóła, M.; Korman, A.; Kuk, M.; Sartowska, B.; Kuehn, T.

    2013-07-15

    Solid State Nuclear Track Detectors of the CR-39/PM-355 type were irradiated with protons with energies in the range from 0.2 to 8.5 MeV. Their intensities and energies were controlled by a Si surface barrier detector located in an accelerator scattering chamber. The ranges of protons with energies of 6–7 MeV were comparable to the thickness of the PM-355 track detectors. Latent tracks in the polymeric detectors were chemically etched under standard conditions to develop the tracks. Standard optical microscope and scanning electron microscopy techniques were used for surface morphology characterization.

  7. Development of Scintillators in Nuclear Medicine.

    PubMed

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Seyed Mohammad; Mahmoudian, Babak

    2015-01-01

    High-quality image is necessary for accurate diagnosis in nuclear medicine. There are many factors in creating a good image and detector is the most important one. In recent years, several detectors are studied to get a better picture. The aim of this paper is comparison of some type of these detectors such as thallium activated sodium iodide bismuth germinate cesium activated yttrium aluminum garnet (YAG: Ce) YAP: Ce "lutetium aluminum garnet activated by cerium" CRY018 "CRY019" lanthanum bromide and cadmium zinc telluride. We studied different properties of these crystals including density, energy resolution and decay times that are more important factors affecting the image quality. PMID:26420984

  8. Excited State Electronic Properties of Sodium Iodide and Cesium Iodide

    SciTech Connect

    Campbell, Luke W.; Gao, Fei

    2013-05-01

    We compute from first principles the dielectric function, loss function, lifetime and scattering rate of quasiparticles due to electronic losses, and secondary particle spectrum due to plasmon decay in two scintillating alkali halides, sodium iodide and cesium iodide. Particular emphasis is placed on quasiparticles within several multiples of the band gap from the band edges. A theory for the decay spectra of plasmons and other electronic excitations in crystals is presented. Applications to Monte Carlo radiation transport codes are discussed.

  9. Influence of high temperature on solid state nuclear track detector parameters

    SciTech Connect

    Malinowska, A.; Szydlowski, A.; Jaskola, M.; Korman, A.

    2012-09-15

    This work concerns the influence of high temperatures on tracks induced in solid state nuclear track detectors of the CR-39/PM-355 type. In order to investigate this effect some samples of the detectors were irradiated with energetic protons and {alpha} particles and subsequently heated under controlled temperatures for different periods of time. After heating the samples were etched and the track evolution was analyzed using an optical microscope. The bulk etch rate V{sub B} of the PM-355 material was also determined as a function of heating temperature. The track etch rate V{sub T} values were estimated for craters induced by protons and {alpha} particles from track diameter measurement as a function of heating temperature.

  10. Position sensitive photon detectors for nuclear physics, particle physics and healthcare applications

    NASA Astrophysics Data System (ADS)

    Seitz, B.

    2012-01-01

    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particles and their momentum vectors. Imaging Cherenkov counters (RICH and DIRC) are frequently employed in nuclear and particle physics experiments. These detectors require high-rate, single-photon capable light detection system with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of rate dependence, cross-talk, time-resolution and position resolution for a range of available photon detection solutions are presented. These properties make these photon detection systems ideal for radionuclide imaging applications. Cherenkov radiation can also be used for medical imaging applications. Two different applications using the Cherenkov effect for radionuclide imaging will be reviewed.

  11. A simple apparatus for quick qualitative analysis of CR39 nuclear track detectors.

    PubMed

    Gautier, D C; Kline, J L; Flippo, K A; Gaillard, S A; Letzring, S A; Hegelich, B M

    2008-10-01

    Quantifying the ion pits in Columbia Resin 39 (CR39) nuclear track detector from Thomson parabolas is a time consuming and tedious process using conventional microscope based techniques. A simple inventive apparatus for fast screening and qualitative analysis of CR39 detectors has been developed, enabling efficient selection of data for a more detailed analysis. The system consists simply of a green He-Ne laser and a high-resolution digital single-lens reflex camera. The laser illuminates the edge of the CR39 at grazing incidence and couples into the plastic, acting as a light pipe. Subsequently, the laser illuminates all ion tracks on the surface. A high-resolution digital camera is used to photograph the scattered light from the ion tracks, enabling one to quickly determine charge states and energies measured by the Thomson parabola. PMID:19044517

  12. A simple apparatus for quick qualitative analysis of CR39 nuclear track detectors

    SciTech Connect

    Gautier, D. C.; Kline, J. L.; Flippo, K. A.; Gaillard, S. A.; Letzring, S. A.; Hegelich, B. M.

    2008-10-15

    Quantifying the ion pits in Columbia Resin 39 (CR39) nuclear track detector from Thomson parabolas is a time consuming and tedious process using conventional microscope based techniques. A simple inventive apparatus for fast screening and qualitative analysis of CR39 detectors has been developed, enabling efficient selection of data for a more detailed analysis. The system consists simply of a green He-Ne laser and a high-resolution digital single-lens reflex camera. The laser illuminates the edge of the CR39 at grazing incidence and couples into the plastic, acting as a light pipe. Subsequently, the laser illuminates all ion tracks on the surface. A high-resolution digital camera is used to photograph the scattered light from the ion tracks, enabling one to quickly determine charge states and energies measured by the Thomson parabola.

  13. The Development of Biomedical Applications of Nuclear Physics Detector Technology at the Thomas Jefferson National Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Weisenberger, Andrew

    2003-10-01

    The Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility (Jefferson Lab) for the United States Department of Energy. As a user facility for physicists worldwide, its primary mission is to conduct basic nuclear physics research of the atom's nucleus at the quark level. Within the Jefferson Lab Physics Division is the Jefferson Lab Detector Group which was formed to support the design and construction of new detector systems during the construction phase of the major detector systems at Jefferson Lab and to act as technical consultants for the lab scientists and users. The Jefferson Lab Detector Group, headed by Dr. Stan Majewski, has technical capabilities in the development and use of radiation detection systems. These capabilities include expertise in nuclear particle detection through the use of gas detectors, scintillation and light guide techniques, standard and position-sensitive photomultiplier tubes (PSPMTs), fast analog readout electronics and data acquisition, and on-line image formation and analysis. In addition to providing nuclear particle detector support to the lab, the group has for several years (starting in 1996) applied these technologies to the development of novel high resolution gamma-ray imaging systems for biomedical applications and x-ray imaging techniques. The Detector Group has developed detector systems for breast cancer detection, brain cancer therapy and small animal imaging to support biomedical research. An overview will be presented of how this small nuclear physics detector research group by teaming with universities, medical facilities, industry and other national laboratories applies technology originating from basic nuclear physics research to biomedical applications.

  14. Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors.

    PubMed

    Niklas, M; Bartz, J A; Akselrod, M S; Abollahi, A; Jäkel, O; Greilich, S

    2013-09-21

    Fluorescent nuclear track detectors (FNTDs) based on Al2O3: C, Mg single crystal combined with confocal microscopy provide 3D information on ion tracks with a resolution only limited by light diffraction. FNTDs are also ideal substrates to be coated with cells to engineer cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). This radiobiological tool enables a novel platform linking cell responses to physical dose deposition on a sub-cellular level in proton and heavy ion therapies. To achieve spatial correlation between single ion hits in the cell coating and its biological response the ion traversals have to be reconstructed in 3D using the depth information gained by the FNTD read-out. FNTDs were coated with a confluent human lung adenocarcinoma epithelial (A549) cell layer. Carbon ion irradiation of the hybrid detector was performed perpendicular and angular to the detector surface. In situ imaging of the fluorescently labeled cell layer and the FNTD was performed in a sequential read-out. Making use of the trajectory information provided by the FNTD the accuracy of 3D track reconstruction of single particles traversing the hybrid detector was studied. The accuracy is strongly influenced by the irradiation angle and therefore by complexity of the FNTD signal. Perpendicular irradiation results in highest accuracy with error of smaller than 0.10°. The ability of FNTD technology to provide accurate 3D ion track reconstruction makes it a powerful tool for radiobiological investigations in clinical ion beams, either being used as a substrate to be coated with living tissue or being implanted in vivo. PMID:23965401

  15. Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Niklas, M.; Bartz, J. A.; Akselrod, M. S.; Abollahi, A.; Jäkel, O.; Greilich, S.

    2013-09-01

    Fluorescent nuclear track detectors (FNTDs) based on Al2O3: C, Mg single crystal combined with confocal microscopy provide 3D information on ion tracks with a resolution only limited by light diffraction. FNTDs are also ideal substrates to be coated with cells to engineer cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). This radiobiological tool enables a novel platform linking cell responses to physical dose deposition on a sub-cellular level in proton and heavy ion therapies. To achieve spatial correlation between single ion hits in the cell coating and its biological response the ion traversals have to be reconstructed in 3D using the depth information gained by the FNTD read-out. FNTDs were coated with a confluent human lung adenocarcinoma epithelial (A549) cell layer. Carbon ion irradiation of the hybrid detector was performed perpendicular and angular to the detector surface. In situ imaging of the fluorescently labeled cell layer and the FNTD was performed in a sequential read-out. Making use of the trajectory information provided by the FNTD the accuracy of 3D track reconstruction of single particles traversing the hybrid detector was studied. The accuracy is strongly influenced by the irradiation angle and therefore by complexity of the FNTD signal. Perpendicular irradiation results in highest accuracy with error of smaller than 0.10°. The ability of FNTD technology to provide accurate 3D ion track reconstruction makes it a powerful tool for radiobiological investigations in clinical ion beams, either being used as a substrate to be coated with living tissue or being implanted in vivo.

  16. Diffraction pattern by rotated conical tracks in solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Stevanovic, N.; Markovic, V. M.

    2016-06-01

    The method for determination of diffraction pattern for irregular 3D objects with application on rotated conical tracks in solid state nuclear track detector (SSNTD) wasdescribed in this paper. The model can be applied for different types of the diffraction (Fresnel, Fraunhofer) and arbitrary shapes of the obstacle. By applying the developed model on conical tracks it was fond that diffraction pattern strongly depends from radius, length and rotation angle of the conical tracks. These dependences were investigated in this paper and results can be applied for determination of inner tracks structure via diffraction pattern.

  17. Nuclear reactor pulse calibration using a CdZnTe electro-optic radiation detector.

    PubMed

    Nelson, Kyle A; Geuther, Jeffrey A; Neihart, James L; Riedel, Todd A; Rojeski, Ronald A; Saddler, Jeffrey L; Schmidt, Aaron J; McGregor, Douglas S

    2012-07-01

    A CdZnTe electro-optic radiation detector was used to calibrate nuclear reactor pulses. The standard configuration of the Pockels cell has collimated light passing through an optically transparent CdZnTe crystal located between crossed polarizers. The transmitted light was focused onto an IR sensitive photodiode. Calibrations of reactor pulses were performed using the CdZnTe Pockels cell by measuring the change in the photodiode current, repeated 10 times for each set of reactor pulses, set between 1.00 and 2.50 dollars in 0.50 increments of reactivity.

  18. History of the bubble chamber and related active- and internal-target nuclear tracking detectors

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.

    2015-06-01

    Donald Glaser, 1960 Nobel laureate in Physics, recently passed away (2013), as have many of his colleagues who were involved with the early development of bubble chambers at the University of Michigan. In this paper I will review those early years and the subsequent wide-spread application of active-target (AT) bubble chambers that dominated high-energy physics (HEP) research for over thirty years. Some of the related, but more modern nuclear tracking detectors being used in HEP, neutrino astrophysics and dark-matter searches also will be discussed.

  19. Iodide transport and breast cancer.

    PubMed

    Poole, Vikki L; McCabe, Christopher J

    2015-10-01

    Breast cancer is the second most common cancer worldwide and the leading cause of cancer death in women, with incidence rates that continue to rise. The heterogeneity of the disease makes breast cancer exceptionally difficult to treat, particularly for those patients with triple-negative disease. To address the therapeutic complexity of these tumours, new strategies for diagnosis and treatment are urgently required. The ability of lactating and malignant breast cells to uptake and transport iodide has led to the hypothesis that radioiodide therapy could be a potentially viable treatment for many breast cancer patients. Understanding how iodide is transported, and the factors regulating the expression and function of the proteins responsible for iodide transport, is critical for translating this hypothesis into reality. This review covers the three known iodide transporters - the sodium iodide symporter, pendrin and the sodium-coupled monocarboxylate transporter - and their role in iodide transport in breast cells, along with efforts to manipulate them to increase the potential for radioiodide therapy as a treatment for breast cancer.

  20. Testing and Calibration of Novel Detectors for Nuclear and Plasma Physics Diagnostic Applications

    NASA Astrophysics Data System (ADS)

    Ali, Zaheer; Haugh, Mike; Tellinghuisen, Jim; Glebov, Vladimir; Roberts, Sam; Stoeckl, Christian; Sangster, Craig

    2008-10-01

    Calibrated chemical vapor deposition (CVD) diamond diodes, X-ray diodes (XRDs), and PIN diodes are used in nuclear and plasma physics diagnostic experiments, such as those conducted at the National Ignition Facility at Lawrence Livermore National Laboratory (LLNL). Calibrations of these diodes are conducted at the OMEGA Laser at the Lab for Laser Energetics of the University of Rochester, as well as at the Titan Laser in the Jupiter Laser Facility at LLNL. The OMEGA Laser is a 30-kilojoule one-nanosecond system designed for inertial confinement fusion and nuclear physics research. The Titan Laser is a picosecond system designed for plasma and X-ray studies. In addition, National Security Technologies, LLC, (NSTec) has built a new hard X-ray calibration facility (the ``HEX Laboratory''), where X-ray detector systems are also calibrated. In this paper we will present our methods of absolute and relative calibration, results of calibration, and the capabilities of the HEX Laboratory.

  1. Radon measurements by nuclear track detectors in secondary schools in Oke-Ogun region, Nigeria.

    PubMed

    Obed, R I; Ademola, A K; Vascotto, M; Giannini, G

    2011-11-01

    Radon measurements were performed in secondary schools in the Oke-Ogun area, South-west, Nigeria, by solid state nuclear track detectors (SSNTDs). About seventy CR-39 detectors were distributed in 35 high schools of the Oke-Ogun area. The CR-39 detectors were exposed in the schools for 3 months and then etched in NaOH 6 N solution at 90 °C for 3 h. The tracks were counted manually at the microscope and the radon concentration was determined at the Radioactivity Laboratory, Department of Physics, University of Trieste, Trieste, Italy. The overall average radon concentration in the surveyed area was 45 ± 27 Bq m(-3). The results indicate no radiological health hazard. The research also focused on parameters affecting radon concentrations such as the age of the building in relation to building materials and floor number of the classrooms. The results show that radon concentrations in ground floors are higher than in upper floors.

  2. Evaluation of solid state nuclear track detector stacks exposed on the international space station.

    PubMed

    Pálfalvi, J K; Akatov, Yu; Szabó, J; Sajó-Bohus, L; Eördögh, I

    2004-01-01

    The aim of the study was to investigate the contribution of secondary neutrons to the total dose inside the International Space Station (ISS). For this purpose solid-state nuclear track detector (SSNTD) stacks were used. Each stack consisted of three CR-39 sheets. The first and second sheets were separated by a Ti plate, and the second and third sheets sandwiched a Lexan polycarbonate foil. The neutron and proton responses of each sheet were studied through MC calculations and experimentally, utilising monoenergetic protons. Seven stacks were exposed in 2001 for 249 days at different locations of the Russian segment 'Zvezda'. The total storage time before and after the exposure onboard was estimated to be seven months. Another eight stacks were exposed at the CERF high-energy neutron field for calibration purposes. The CR-39 detectors were evaluated in four steps: after 2, 6, 12 and 20 h etching in 6 N NaOH at 70 degrees C (VB = 1.34 microm h(-1)). All the individual tracks were investigated and recorded using an image analyser. The stacks provided the averaged neutron ambient dose equivalent (H*) between 200 keV and 20 MeV, and the values varied from 39 to 73 microSv d(-1), depending on the location. The Lexan detectors were used to detect the dose originating from high-charge and high-energy (HZE) particles. These results will be published elsewhere.

  3. Thermodynamics of post-growth annealing of cadmium zinc telluride nuclear radiation detectors

    NASA Astrophysics Data System (ADS)

    Adams, Aaron Lee

    Nuclear Radiation Detectors are used for detecting, tracking, and identifying radioactive materials which emit high-energy gamma and X-rays. The use of Cadmium Zinc Telluride (CdZnTe) detectors is particularly attractive because of the detector's ability to operate at room temperature and measure the energy spectra of gamma-ray sources with a high resolution, typically less than 1% at 662 keV. While CdZnTe detectors are acceptable imperfections in the crystals limit their full market potential. One of the major imperfections are Tellurium inclusions generated during the crystal growth process by the retrograde solubility of Tellurium and Tellurium-rich melt trapped at the growth interface. Tellurium inclusions trap charge carriers generated by gamma and X-ray photons and thus reduce the portion of generated charge carriers that reach the electrodes for collection and conversion into a readable signal which is representative of the ionizing radiation's energy and intensity. One approach in resolving this problem is post-growth annealing which has the potential of removing the Tellurium inclusions and associated impurities. The goal of this project is to use experimental techniques to study the thermodynamics of Tellurium inclusion migration in post-growth annealing of CdZnTe nuclear detectors with the temperature gradient zone migration (TGZM) technique. Systematic experiments will be carried out to provide adequate thermodynamic data that will inform the engineering community of the optimum annealing parameters. Additionally, multivariable correlations that involve the Tellurium diffusion coefficient, annealing parameters, and CdZnTe properties will be analyzed. The experimental approach will involve systematic annealing experiments (in Cd vapor overpressure) on different sizes of CdZnTe crystals at varying temperature gradients ranging from 0 to 60°C/mm (used to migrate the Tellurium inclusion to one side of the crystal), and at annealing temperatures ranging

  4. 3D imaging of particle tracks in Solid State Nuclear Track Detectors

    NASA Astrophysics Data System (ADS)

    Wertheim, D.; Gillmore, G.; Brown, L.; Petford, N.

    2009-04-01

    Inhalation of radon gas (222Rn) and associated ionizing decay products is known to cause lung cancer in human. In the U.K., it has been suggested that 3 to 5 % of total lung cancer deaths can be linked to elevated radon concentrations in the home and/or workplace. Radon monitoring in buildings is therefore routinely undertaken in areas of known risk. Indeed, some organisations such as the Radon Council in the UK and the Environmental Protection Agency in the USA, advocate a ‘to test is best' policy. Radon gas occurs naturally, emanating from the decay of 238U in rock and soils. Its concentration can be measured using CR?39 plastic detectors which conventionally are assessed by 2D image analysis of the surface; however there can be some variation in outcomes / readings even in closely spaced detectors. A number of radon measurement methods are currently in use (for examples, activated carbon and electrets) but the most widely used are CR?39 solid state nuclear track?etch detectors (SSNTDs). In this technique, heavily ionizing alpha particles leave tracks in the form of radiation damage (via interaction between alpha particles and the atoms making up the CR?39 polymer). 3D imaging of the tracks has the potential to provide information relating to angle and energy of alpha particles but this could be time consuming. Here we describe a new method for rapid high resolution 3D imaging of SSNTDs. A ‘LEXT' OLS3100 confocal laser scanning microscope was used in confocal mode to successfully obtain 3D image data on four CR?39 plastic detectors. 3D visualisation and image analysis enabled characterisation of track features. This method may provide a means of rapid and detailed 3D analysis of SSNTDs. Keywords: Radon; SSNTDs; confocal laser scanning microscope; 3D imaging; LEXT

  5. Growth of mercuric iodide single crystals from dimethylsulfoxide

    DOEpatents

    Carlston, Richard C.

    1976-07-13

    Dimethylsulfoxide is used as a solvent for the growth of red mercuric iodide (HgI.sub.2) crystals for use in radiation detectors. The hygroscopic property of the solvent allows controlled amounts of water to enter into the solvent phase and diminish the large solubility of HgI.sub.2 so that the precipitating solid collects as well-defined euhedral crystals which grow into a volume of several cc.

  6. Elemental impurity analysis of mercuric iodide by ICP/MS

    SciTech Connect

    Cross, E.S. . Santa Barbara Operations); Mroz, E.; Olivares, J.A. )

    1993-01-01

    A method has been developed to analyze mercuric iodide (HgI[sub 2]) for elemental contamination using Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS). This paper will discuss the ICP/MS method, the effectiveness of purification schemes for removing impurities from HgI[sub 2], as well as preliminary correlations between HgI[sub 2] detector performance and elemental contamination levels.

  7. Note: Application of CR-39 plastic nuclear track detectors for quality assurance of mixed oxide fuel pellets

    SciTech Connect

    Kodaira, S. Kurano, M.; Hosogane, T.; Ishikawa, F.; Kageyama, T.; Sato, M.; Kayano, M.; Yasuda, N.

    2015-05-15

    A CR-39 plastic nuclear track detector was used for quality assurance of mixed oxide fuel pellets for next-generation nuclear power plants. Plutonium (Pu) spot sizes and concentrations in the pellets are significant parameters for safe use in the plants. We developed an automatic Pu detection system based on dense α-radiation tracks in the CR-39 detectors. This system would greatly improve image processing time and measurement accuracy, and will be a powerful tool for rapid pellet quality assurance screening.

  8. Note: Application of CR-39 plastic nuclear track detectors for quality assurance of mixed oxide fuel pellets.

    PubMed

    Kodaira, S; Kurano, M; Hosogane, T; Ishikawa, F; Kageyama, T; Sato, M; Kayano, M; Yasuda, N

    2015-05-01

    A CR-39 plastic nuclear track detector was used for quality assurance of mixed oxide fuel pellets for next-generation nuclear power plants. Plutonium (Pu) spot sizes and concentrations in the pellets are significant parameters for safe use in the plants. We developed an automatic Pu detection system based on dense α-radiation tracks in the CR-39 detectors. This system would greatly improve image processing time and measurement accuracy, and will be a powerful tool for rapid pellet quality assurance screening.

  9. Note: Application of CR-39 plastic nuclear track detectors for quality assurance of mixed oxide fuel pellets.

    PubMed

    Kodaira, S; Kurano, M; Hosogane, T; Ishikawa, F; Kageyama, T; Sato, M; Kayano, M; Yasuda, N

    2015-05-01

    A CR-39 plastic nuclear track detector was used for quality assurance of mixed oxide fuel pellets for next-generation nuclear power plants. Plutonium (Pu) spot sizes and concentrations in the pellets are significant parameters for safe use in the plants. We developed an automatic Pu detection system based on dense α-radiation tracks in the CR-39 detectors. This system would greatly improve image processing time and measurement accuracy, and will be a powerful tool for rapid pellet quality assurance screening. PMID:26026564

  10. Note: Application of CR-39 plastic nuclear track detectors for quality assurance of mixed oxide fuel pellets

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Kurano, M.; Hosogane, T.; Ishikawa, F.; Kageyama, T.; Sato, M.; Kayano, M.; Yasuda, N.

    2015-05-01

    A CR-39 plastic nuclear track detector was used for quality assurance of mixed oxide fuel pellets for next-generation nuclear power plants. Plutonium (Pu) spot sizes and concentrations in the pellets are significant parameters for safe use in the plants. We developed an automatic Pu detection system based on dense α-radiation tracks in the CR-39 detectors. This system would greatly improve image processing time and measurement accuracy, and will be a powerful tool for rapid pellet quality assurance screening.

  11. Phase II: Field Detector Development For Undeclared/Declared Nuclear Testing For Treaty Verfiation Monitoring

    SciTech Connect

    Kriz, M.; Hunter, D.; Riley, T.

    2015-10-02

    Radioactive xenon isotopes are a critical part of the Comprehensive Nuclear Test Ban Treaty (CTBT) for the detection or confirmation of nuclear weapons tests as well as on-site treaty verification monitoring. On-site monitoring is not currently conducted because there are no commercially available small/robust field detector devices to measure the radioactive xenon isotopes. Xenon is an ideal signature to detect clandestine nuclear events since they are difficult to contain and can diffuse and migrate through soils due to their inert nature. There are four key radioxenon isotopes used in monitoring: 135Xe (9 hour half-life), 133mXe (2 day half-life), 133Xe (5 day half-life) and 131mXe (12 day half-life) that decay through beta emission and gamma emission. Savannah River National Laboratory (SRNL) is a leader in the field of gas collections and has developed highly selective molecular sieves that allow for the collection of xenon gas directly from air. Phase I assessed the development of a small, robust beta-gamma coincidence counting system, that combines collection and in situ detection methodologies. Phase II of the project began development of the custom electronics enabling 2D beta-gamma coincidence analysis in a field portable system. This will be a significant advancement for field detection/quantification of short-lived xenon isotopes that would not survive transport time for laboratory analysis.

  12. Front-end Design and Characterization for the ν-Angra Nuclear Reactor Monitoring Detector

    NASA Astrophysics Data System (ADS)

    Dornelas, T. I.; Araújo, F. T. H.; Cerqueira, A. S.; Costa, J. A.; Nóbrega, R. A.

    2016-07-01

    The Neutrinos Angra (ν-Angra) Experiment aims to construct an antineutrinos detection device capable of monitoring the Angra dos Reis nuclear reactor activity. Nuclear reactors are intense sources of antineutrinos, and the thermal power released in the fission process is directly related to the flow rate of these particles. The antineutrinos energy spectrum also provides valuable information on the nuclear source isotopic composition. The proposed detector will be equipped with photomultipliers tubes (PMT) which will be readout by a custom Amplifier-Shaper-Discriminator circuit designed to condition its output signals to the acquisition modules to be digitized and processed by an FPGA. The readout circuit should be sensitive to single photoelectron signals, process fast signals, with a full-width-half-amplitude of about 5 ns, have a narrow enough output pulse width to detect both particles coming out from the inverse beta decay (bar nue+p → n + e+), and its output amplitude should be linear to the number of photoelectrons generated inside the PMT, used for energy estimation. In this work, some of the main PMT characteristics are measured and a new readout circuit is proposed, described and characterized.

  13. Neutron angular distribution in a plasma focus obtained using nuclear track detectors.

    PubMed

    Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G

    2002-01-01

    The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation.

  14. The response of CR-39 nuclear track detector to 1-9 MeV protons

    SciTech Connect

    Sinenian, N.; Rosenberg, M. J.; Manuel, M.; McDuffee, S. C.; Casey, D. T.; Zylstra, A. B.; Rinderknecht, H. G.; Johnson, M. Gatu; Seguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.

    2011-10-28

    The response of CR-39 nuclear track detector (TasTrak®) to protons in the energy range of 0.92-9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. The effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather than the age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.

  15. The response of CR-39 nuclear track detector to 1-9 MeV protons

    SciTech Connect

    Sinenian, N.; Rosenberg, M. J.; Manuel, M.; McDuffee, S. C.; Casey, D. T.; Zylstra, A. B.; Rinderknecht, H. G.; Gatu Johnson, M.; Seguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.

    2011-10-15

    The response of CR-39 nuclear track detector (TasTrak) to protons in the energy range of 0.92-9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. Effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather than the age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.

  16. Copper Nano- and Micro Wires Electrodeposited in Etched Cellulose Nitrate and Makrofol KG Nuclear Track Detector

    NASA Astrophysics Data System (ADS)

    Jooybari, B. Shakeri; Afarideh, H.; Lamehi-Racti, M.; Moghimi, R.; Ghergherehchi, M.

    Cellulose Nitrate and Makrofol KG nuclear track detector foils of 96 μm and 20 μm thicknesses were irradiated with 238U ions (kinetic energy 17.7 MeV/u, fluence 105 ion/cm2) and 208Pd (kinetic energy 14.0MeV/u, fluence 105 ion/cm2), respectively. By etching of damage trail caused by the ion, templates containing conical pore were prepared. By electrochemical deposition of copper in homemade design electrolytic cell, conical wires were obtained. The electric current recorded during electrodeposition reflects the geometry of the pore. The lengths of wires were 96 μm and 20 μm, corresponding to the thickness of membranes. X-Ray Diffraction analysis indicated that texture and orientation of Cu wire were polycrystalline.

  17. The response of CR-39 nuclear track detector to 1-9 MeV protons

    DOE PAGES

    Sinenian, N.; Rosenberg, M. J.; Manuel, M.; McDuffee, S. C.; Casey, D. T.; Zylstra, A. B.; Rinderknecht, H. G.; Johnson, M. Gatu; Seguin, F. H.; Frenje, J. A.; et al

    2011-10-28

    The response of CR-39 nuclear track detector (TasTrak®) to protons in the energy range of 0.92-9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. The effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather thanmore » the age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.« less

  18. Characterisation of radiation field for irradiation of biological samples at nuclear reactor-comparison of twin detector and recombination methods.

    PubMed

    Golnik, N; Gryziński, M A; Kowalska, M; Meronka, K; Tulik, P

    2014-10-01

    Central Laboratory for Radiological Protection is involved in achieving scientific project on biological dosimetry. The project includes irradiation of blood samples in radiation fields of nuclear reactor. A simple facility for irradiation of biological samples has been prepared at horizontal channel of the nuclear reactor MARIA in NCBJ in Poland. The radiation field, composed mainly of gamma radiation and thermal neutrons, has been characterised in terms of tissue kerma using twin-detector technique and recombination chambers.

  19. A Novel Nuclear Recoil Calibration in the LUX Detector Using a D-D Neutron Generator

    NASA Astrophysics Data System (ADS)

    Verbus, James; LUX Collaboration

    2015-04-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. I will describe a novel calibration of nuclear recoils (NR) in liquid xenon (LXe) performed in-situ in the LUX detector using mono-energetic 2.45 MeV neutrons produced by a D-D neutron generator. This technique was used to measure the NR charge yield in LXe (Qy) to < 1 keV recoil energy with an absolute determination of the deposited energy. The LUX Qy result is a factor of × 5 lower in energy compared to any other previous measurement in the field, and provides a significant improvement in calibration uncertainties. We also present a measurement of the NR light yield in LXe (Leff) to recoil energies as low as ~ 2 keV using the LUX D-D data. The Leff result is also lower in energy with smaller uncertainties than has been previously achieved. These absolute, ultra-low energy calibrations of the NR signal yields in LXe are a clear confirmation of the detector response used for the first LUX WIMP search analysis. Strategies for extending this calibration technique to even lower energies and smaller uncertainties will be discussed.

  20. Photoluminescence detection of alpha particle using DAM-ADC nuclear detector

    NASA Astrophysics Data System (ADS)

    Abdalla, Ayman M.; Harraz, Farid A.; Ali, Atif M.; Al-Sayari, S. A.; Al-Hajry, A.

    2016-09-01

    The photoluminescence (PL) and UV-vis spectral analysis of DAM-ADC (diallyl maleate: DAM, polyallyl diglycol carbonate: ADC) nuclear detector are demonstrated for the first time. The DAM-ADC surfaces were exposed to thin 241Am disk source that emits alpha particles with activity 333 kBq. It is found that the track density of the irradiated samples remarkably influences the PL characteristics of the DAM-ADC detector. The spectral peak heights and the integrated intensities under the peaks exhibit linear correlations with correlation coefficient R2=0.9636 and 0.9806, respectively for different alpha particle fluences ranging from 8.16-40.82×107 particles/cm2. Additionally, a correlation coefficient R2=0.9734 was achieved for the UV-vis spectral analysis. The linear fitting functions, along with the corresponding fitting parameters were evaluated in each case. Both the PL and the UV-vis data of the irradiated DAM-ADC samples showed considerable spectral differences, and hence they would be used to offer sensitive approaches for alpha particle detection.

  1. IODIDE DEFICIENCY, THYROID HORMONES, AND NEURODEVELOPMENT

    EPA Science Inventory

    ABSTRACT BODY: Iodide is an essential nutrient for thyroid hormone synthesis. Severe iodide insufficiency during early development is associated with cognitive deficits. Environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under conditio...

  2. Transmutation detectors

    NASA Astrophysics Data System (ADS)

    Viererbl, L.; Lahodová, Z.; Klupák, V.; Sus, F.; Kučera, J.; Kůs, P.; Marek, M.

    2011-03-01

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  3. Detection of special nuclear material by observation of delayed neutrons with a novel fast neutron composite detector

    NASA Astrophysics Data System (ADS)

    Mayer, Michael; Nattress, Jason; Barhoumi Meddeb, Amira; Foster, Albert; Trivelpiece, Cory; Rose, Paul; Erickson, Anna; Ounaies, Zoubeida; Jovanovic, Igor

    2015-10-01

    Detection of shielded special nuclear material is crucial to countering nuclear terrorism and proliferation, but its detection is challenging. By observing the emission of delayed neutrons, which is a unique signature of nuclear fission, the presence of nuclear material can be inferred. We report on the observation of delayed neutrons from natural uranium by using monoenergetic photons and neutrons to induce fission. An interrogating beam of 4.4 MeV and 15.1 MeV gamma-rays and neutrons was produced using the 11B(d,n-γ)12C reaction and used to probe different targets. Neutron detectors with complementary Cherenkov detectors then discriminate material undergoing fission. A Li-doped glass-polymer composite neutron detector was used, which displays excellent n/ γ discrimination even at low energies, to observe delayed neutrons from uranium fission. Delayed neutrons have relatively low energies (~0.5 MeV) compared to prompt neutrons, which makes them difficult to detect using recoil-based detectors. Neutrons were counted and timed after the beam was turned off to observe the characteristic decaying time profile of delayed neutrons. The expected decay of neutron emission rate is in agreement with the common parametrization into six delayed neutron groups.

  4. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  5. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  6. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium... reacting hydriodic acid (HI) with potassium bicarbonate (KHCO3). (b) The ingredient meets...

  7. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  8. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  9. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  10. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  11. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  12. Detection of fast neutrons from D-T nuclear reaction using a 4H-SiC radiation detector

    NASA Astrophysics Data System (ADS)

    Zatko, Bohumir; Sagatova, Andrea; Sedlackova, Katarina; Necas, Vladimir; Dubecky, Frantisek; Solar, Michael; Granja, Carlos

    2016-09-01

    The particle detector based on a high purity epitaxial layer of 4H-SiC exhibits promising properties in detection of various types of ionizing radiation. Due to the wide band gap of 4H-SiC semiconductor material, the detector can reliably operate at room and also elevated temperatures. In this work we focused on detection of fast neutrons generated the by D-T (deuterium-tritium) nuclear reaction. The epitaxial layer with a thickness of 105 μm was used as a detection part. A circular Schottky contact of a Au/Ni double layer was evaporated on both sides of the detector material. The detector structure was characterized by current-voltage and capacitance-voltage measurements, at first. The results show very low current density (<0.1 nA/cm2) at room temperature and good homogeneity of free carrier concentration in the investigated depth. The fabricated detectors were tested for detection of fast neutrons generated by the D-T reaction. The energies of detected fast neutrons varied from 16.0 MeV to 18.3 MeV according to the acceleration potential of deuterons, which increased from 600 kV up to 2 MV. Detection of fast neutrons in the SiC detector is caused by the elastic and inelastic scattering on the silicon or carbide component of the detector material. Another possibility that increases the detection efficiency is the use of a conversion layer. In our measurements, we glued a HDPE (high density polyethylene) conversion layer on the detector Schottky contact to transform fast neutrons to protons. Hydrogen atoms contained in the conversion layer have a high probability of interaction with neutrons through elastic scattering. Secondary generated protons flying to the detector can be easily detected. The detection properties of detectors with and without the HDPE conversion layer were compared.

  13. Elemental impurity analysis of mercuric iodide by ICP/MS

    SciTech Connect

    Cross, E.S.; Mroz, E.; Olivares, J.A.

    1994-06-01

    A method has been developed to analyze mercuric iodide (HgI{sub 2}) for elemental contamination using Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS). This paper discusses the ICP/MS method, the effectiveness of purification schemes for removing impurities from HgI{sub 2}, as well as preliminary correlations between HgI{sub 2} detector performance and elemental contamination levels. The purified HgI{sub 2} is grown into a single crystal by physical vapor transport. The crystal are cut into slices and they are fabricated into room temperature radiation detectors and photocells. Crystals that produce good resolution gamma detector do not necessarily make good resolution photocells or x-ray detectors. Many factors other than elemental impurities may contribute to these differences in performance.

  14. Digital radiography: Present detectors and future developments

    SciTech Connect

    Perez-Mendez, V.

    1990-08-01

    Present detectors for digital radiography are of two classes: real time detectors and storage (non real time) types. Present real time detectors consist of image intensifier tubes with an internal cesium iodide layer x-ray converter. Non real time detectors involve linear sweep arrays or storage detectors such as film. Future detectors discussed here can be of both types utilizing new technologies such as hydrogenated amorphous silicon photodiode arrays coupled to thin film transistor arrays. 17 refs., 10 figs.

  15. A convenient iodination method for alcohols using cesium iodide/methanesulfonic acid and its comparison using cesium iodide/p-toluenesulfonic acid or cesium iodide/aluminium chloride.

    PubMed

    Khan, Khalid Mohammed; Zia-Ullah; Perveen, Shahnaz; Hayat, Safdar; Ali, Muhammad; Voelter, Wolfgang

    2008-01-01

    In situ generation of hydrogen iodide from cesium iodide/methanesulfonic acid was found to be an attractive reagent combination for the conversion of alkyl, allyl, and benzyl alcohols to their corresponding iodides under mild conditions. The method is compared with that using cesium iodide/p-toluenesulfonic acid or cesium iodide/aluminium chloride.

  16. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect

    Nick Soelberg; Tony Watson

    2014-08-01

    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that

  17. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  18. MCNPX simulations of the silicon carbide semiconductor detector response to fast neutrons from D-T nuclear reaction

    NASA Astrophysics Data System (ADS)

    Sedlačková, Katarína; Šagátová, Andrea; Zat'ko, Bohumír; Nečas, Vladimír; Solar, Michael; Granja, Carlos

    2016-09-01

    Silicon Carbide (SiC) has been long recognized as a suitable semiconductor material for use in nuclear radiation detectors of high-energy charged particles, gamma rays, X-rays and neutrons. The nuclear interactions occurring in the semiconductor are complex and can be quantified using a Monte Carlo-based computer code. In this work, the MCNPX (Monte Carlo N-Particle eXtended) code was employed to support detector design and analysis. MCNPX is widely used to simulate interaction of radiation with matter and supports the transport of 34 particle types including heavy ions in broad energy ranges. The code also supports complex 3D geometries and both nuclear data tables and physics models. In our model, monoenergetic neutrons from D-T nuclear reaction were assumed as a source of fast neutrons. Their energy varied between 16 and 18.2 MeV, according to the accelerating voltage of the deuterons participating in D-T reaction. First, the simulations were used to calculate the optimum thickness of the reactive film composed of High Density PolyEthylene (HDPE), which converts neutral particles to charged particles and thusly enhancing detection efficiency. The dependency of the optimal thickness of the HDPE layer on the energy of the incident neutrons has been shown for the inspected energy range. Further, from the energy deposited by secondary charged particles and recoiled ions, the detector response was modeled and the effect of the conversion layer on detector response was demonstrated. The results from the simulations were compared with experimental data obtained for a detector covered by a 600 and 1300 μm thick conversion layer. Some limitations of the simulations using MCNPX code are also discussed.

  19. Electrodeposition of Epitaxial Lead Iodide and Conversion to Textured Methylammonium Lead Iodide Perovskite.

    PubMed

    Hill, James C; Koza, Jakub A; Switzer, Jay A

    2015-12-01

    Applications for lead iodide, such as lasing, luminescence, radiation detection, and as a precursor for methylammonium lead iodide perovskite photovoltaic cells, require highly ordered crystalline thin films. Here, an electrochemical synthesis route is introduced that yields textured and epitaxial films of lead iodide at room temperature by reducing molecular iodine to iodide ions in the presence of lead ions. Lead iodide grows with a [0001] fiber texture on polycrystalline substrates such as fluorine-doped tin oxide. On single-crystal Au(100), Au(111), and Au(110) the out-of-plane orientation of lead iodide is also [0001], but the in-plane orientation is controlled by the single-crystal substrate. The epitaxial lead iodide on single-crystal gold is converted to textured methylammonium lead iodide perovskite with a preferred [110] orientation via methylammonium iodide vapor-assisted chemical transformation of the solid. PMID:26565593

  20. Superoxide Production by a Manganese-Oxidizing Bacterium Facilitates Iodide Oxidation

    PubMed Central

    Li, Hsiu-Ping; Daniel, Benjamin; Creeley, Danielle; Grandbois, Russell; Zhang, Saijin; Xu, Chen; Ho, Yi-Fang; Schwehr, Kathy A.; Kaplan, Daniel I.; Santschi, Peter H.; Hansel, Colleen M.

    2014-01-01

    The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I−), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2−). In the absence of Mn2+, Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 μM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments. PMID:24561582

  1. Intermediate Energies for Nuclear Astrophysics and the Development of a Position Sensitive Microstrip Detector System

    SciTech Connect

    Sobotka, Lee G.; Blackmon, J.; Bertulani, C.

    2015-12-30

    The chemical elements are made at astrophysical sites through a sequence of nuclear reactions often involving unstable nuclei. The overarching aim of this project is to construct a system that allows for the inverse process of nucleosynthesis (i.e. breakup of heavier nuclei into lighter ones) to be studied in high efficiency. The specific problem to be overcome with this grant is inadequate dynamic range and (triggering) threshold to detect the products of the breakup which include both heavy ions (with large energy and large deposited energy in a detector system) and protons (with little energy and deposited energy.) Early on in the grant we provided both TAMU and RIKEN (the site of the eventual experiments) with working systems based on the existing technology. This technology could be used with either an external preamplifier that was to be designed and fabricated by our RIKEN collaborators or upgraded by replacing the existing chip with one we designed. The RIKEN external preamplifier project never can to completion but our revised chip was designed, fabricated, used in a test experiment and performs as required.

  2. Nuclear Recoil Calibrations in the LUX Detector Using Direct and Backscattered D-D Neutrons

    NASA Astrophysics Data System (ADS)

    Rhyne, Casey; LUX Collaboration

    2016-03-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. I will discuss the latest calibration of the nuclear recoil (NR) response in liquid xenon (LXe), performed in-situ in the LUX detector using mono-energetic 2.45 MeV neutrons produced via the Adelphi Technologies, Inc. DD108 D-D neutron generator. The calibration measured the NR charge yield in LXe (Qy) to 0.7 keVnr recoil energy with an absolute determination of deposited energy and the NR light yield in LXe (Ly) to recoil energies of 1.1 keVnr, both of which improve upon all previous measurements. I will then focus in depth on the extension of this calibration using a new technique for generating a beam of sub-300 keV quasi-mono-energetic neutrons via the backscatter of 2.45 MeV neutrons off a deuterium-based reflector. Current simulations work optimizing the technique, its advantages, and its impact on future research will be discussed, including the extension of the NR Qy calibration down to 0.14 keVnr, an independent NR Ly calibration, and an a priori estimate of the expected 8B solar neutrino-nucleus coherent scattering signal in the upcoming LUX-ZEPLIN experiment.

  3. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    SciTech Connect

    Soelberg, Nicholas Ray; Watson, Tony Leroy

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  4. The durability of iodide sodalite

    NASA Astrophysics Data System (ADS)

    Maddrell, Ewan; Gandy, Amy; Stennett, Martin

    2014-06-01

    An iodide sodalite wasteform has been prepared by Hot Isostatic Pressing of powder produced by hydrothermal synthesis. The wasteform was free of leachable secondary phases which can mask leaching mechanisms. Leaching is by congruent dissolution and leach rates decrease as Si and Al accumulate in the leachate. Differential normalised leach rates are 0.005-0.01 g m-2 d-1 during the 7-14 day period. This indicates that sodalite dissolution in natural groundwater, already saturated in these elements, will be very low.

  5. Uptake of iodide in the marine haptophyte Isochrysis sp. (T.ISO) driven by iodide oxidation.

    PubMed

    van Bergeijk, Stef A; Hernández Javier, Laura; Heyland, Andreas; Manchado, Manuel; Pedro Cañavate, José

    2013-08-01

    Uptake of iodide was studied in the marine microalga Isochrysis sp. (isol. Haines, T.ISO) during short-term incubations with radioactive iodide ((125) I(-) ). Typical inhibitors of the sodium/iodide symporter (NIS) did not inhibit iodide uptake, suggesting that iodide is not taken up through this transport protein, as is the case in most vertebrate animals. Oxidation of iodide was found to be an essential step for its uptake by T.ISO and it seemed likely that hypoiodous acid (HOI) was the form of iodine taken up. Uptake of iodide was inhibited by the addition of thiourea and of other reducing agents, like L-ascorbic acid, L-glutathione and L-cysteine and increased after the addition of oxidized forms of the transition metals Fe and Mn. The simultaneous addition of both hydrogen peroxide (H2 O2 ) and a known iodide-oxidizing myeloperoxidase (MPO) significantly increased iodine uptake, but the addition of H2 O2 or MPO separately, had no effect on uptake. This confirms the observation that iodide is oxidized prior to uptake, but it puts into doubt the involvement of H2 O2 excretion and membrane-bound or extracellular haloperoxidase activity of T.ISO. The increase of iodide uptake by T.ISO upon Fe(III) addition suggests the nonenzymatic oxidation of iodide by Fe(III) in a redox reaction and subsequent influx of HOI. This is the first report on the mechanism of iodide uptake in a marine microalga.

  6. Optical transmission measurements on monocrystalline and polycrystalline cesium iodide

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Arens, J. F.; Simon, M.

    1973-01-01

    A summary is presented of optical measurements performed on a variety of cesium iodide samples to characterize quantitatively the optical quality of the materials, and to define and measure parameters which determine its suitability as a detector material for high energy cosmic ray experiments on HEAO-A. The general case of light transmission through a long rectangular slab under multiple internal reflections is discussed along with transmission and scattering as a function of wavelength at normal incidence. Scattering parameters are tabulated for encapsulated single crystal CsI and polyscin.

  7. First-principles Electronic Structure Calculations for Scintillation Phosphor Nuclear Detector Materials

    NASA Astrophysics Data System (ADS)

    Canning, Andrew

    2013-03-01

    Inorganic scintillation phosphors (scintillators) are extensively employed as radiation detector materials in many fields of applied and fundamental research such as medical imaging, high energy physics, astrophysics, oil exploration and nuclear materials detection for homeland security and other applications. The ideal scintillator for gamma ray detection must have exceptional performance in terms of stopping power, luminosity, proportionality, speed, and cost. Recently, trivalent lanthanide dopants such as Ce and Eu have received greater attention for fast and bright scintillators as the optical 5d to 4f transition is relatively fast. However, crystal growth and production costs remain challenging for these new materials so there is still a need for new higher performing scintillators that meet the needs of the different application areas. First principles calculations can provide a useful insight into the chemical and electronic properties of such materials and hence can aid in the search for better new scintillators. In the past there has been little first-principles work done on scintillator materials in part because it means modeling f electrons in lanthanides as well as complex excited state and scattering processes. In this talk I will give an overview of the scintillation process and show how first-principles calculations can be applied to such systems to gain a better understanding of the physics involved. I will also present work on a high-throughput first principles approach to select new scintillator materials for fabrication as well as present more detailed calculations to study trapping process etc. that can limit their brightness. This work in collaboration with experimental groups has lead to the discovery of some new bright scintillators. Work supported by the U.S. Department of Homeland Security and carried out under U.S. Department of Energy Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

  8. Chloride, bromide and iodide scintillators with europium

    DOEpatents

    Zhuravleva, Mariya; Yang, Kan

    2016-09-27

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  9. SPECT detectors: the Anger Camera and beyond

    NASA Astrophysics Data System (ADS)

    Peterson, Todd E.; Furenlid, Lars R.

    2011-09-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic.

  10. SPECT detectors: the Anger Camera and beyond.

    PubMed

    Peterson, Todd E; Furenlid, Lars R

    2011-09-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. PMID:21828904

  11. Determination of Nuclear Charge Distributions of Fission Fragments from ^{235}U (n_th, f) with Calorimetric Low Temperature Detectors

    NASA Astrophysics Data System (ADS)

    Grabitz, P.; Andrianov, V.; Bishop, S.; Blanc, A.; Dubey, S.; Echler, A.; Egelhof, P.; Faust, H.; Gönnenwein, F.; Gomez-Guzman, J. M.; Köster, U.; Kraft-Bermuth, S.; Mutterer, M.; Scholz, P.; Stolte, S.

    2016-08-01

    Calorimetric low temperature detectors (CLTD's) for heavy-ion detection have been combined with the LOHENGRIN recoil separator at the ILL Grenoble for the determination of nuclear charge distributions of fission fragments produced by thermal neutron-induced fission of ^{235}U. The LOHENGRIN spectrometer separates fission fragments according to their mass-to-ionic-charge ratio and their kinetic energy, but has no selectivity with respect to nuclear charges Z. For the separation of the nuclear charges, one can exploit the nuclear charge-dependent energy loss of the fragments passing through an energy degrader foil (absorber method). This separation requires detector systems with high energy resolution and negligible pulse height defect, as well as degrader foils which are optimized with respect to thickness, homogeneity, and energy loss straggling. In the present, contribution results of test measurements at the Maier Leibnitz tandem accelerator facility in Munich with ^{109}Ag and ^{127}I beams with the aim to determine the most suitable degrader material, as well as measurements at the Institut Laue-Langevin will be presented. These include a systematic study of the quality of Z-separation of fission fragments in the mass range 82le A le 132 and a systematic measurement of ^{92}Rb fission yields, as well as investigations of fission yields toward the symmetry region.

  12. Refractive Index of Sodium Iodide

    SciTech Connect

    Jellison Jr, Gerald Earle; Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A; Ramey, Lucas A; Singh, David J

    2012-01-01

    The refractive index of sodium iodide, an important scintillator material that is widely used for radiation detection, is based on a single measurement made by Spangenberg at one wavelength using the index-matching liquid immersion method (Z. Kristallogr., 57, 494-534 (1923)). In the present paper, we present new results for the refractive index of sodium iodide as measured by the minimum deviation technique at six wavelengths between 436 nm (n=1.839 0.002) and 633 nm (n=1.786 0.002). These 6 measurements can be fit to a Sellmeier model, resulting in a 2 of 1.02, indicating a good fit to the data. In addition, we report on ellipsometry measurements, which suggest that the near-surface region of the air sensitive NaI crystal seriously degrades, even in a moisture-free environment, resulting in a significantly lower value of the refractive index near the surface. First-principles theoretical calculations of the NaI refractive index that agree with the measured values within 0.025-0.045 are also presented and discussed.

  13. Factors affecting the retention of methyl iodide by iodide-impregnated carbon

    SciTech Connect

    Hyder, M.L.; Malstrom, R.A.

    1990-12-31

    Iodide-impregnated activated carbon that had been in use for up to 30 months was studied to characterize those factors that affect its interaction with and retention of methyl iodide. Humidity and competing organic sorbents were observed to decrease the residence time of the methyl iodide on the carbon bed. Additionally, changes in the effective surface area and the loss of iodide from the surface are both important in determining the effectiveness of the carbon for retaining radioactive iodine from methyl iodide. A simple model incorporating both factors gave a fairly good fit to the experimental data.

  14. Factors affecting the retention of methyl iodide by iodide-impregnated carbon

    SciTech Connect

    Hyder, M.L.; Malstrom, R.A.

    1990-01-01

    Iodide-impregnated activated carbon that had been in use for up to 30 months was studied to characterize those factors that affect its interaction with and retention of methyl iodide. Humidity and competing organic sorbents were observed to decrease the residence time of the methyl iodide on the carbon bed. Additionally, changes in the effective surface area and the loss of iodide from the surface are both important in determining the effectiveness of the carbon for retaining radioactive iodine from methyl iodide. A simple model incorporating both factors gave a fairly good fit to the experimental data.

  15. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c... salt as a source of dietary iodine in accordance with good manufacturing or feeding practice....

  16. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c... salt as a source of dietary iodine in accordance with good manufacturing or feeding practice....

  17. Resonant nuclear scattering of synchrotron radiation: Detector development and specular scattering from a thin layer of {sup 57}Fe

    SciTech Connect

    Baron, A.Q.R.

    1995-04-01

    This thesis explores resonant nudear scattering of synchrotron radiation. An introductory chapter describes some useful concepts, such as speedup and coherent enhancement, in the context of some basic physical principles. Methods of producing highly monochromatic synchrotron beams usmg either electronic or nuclear scattering are also discussed. The body of the thesis concentrates on detector development and specular scattering from iynthetic layered materials. A detector employing n-dcrochannel plate electron multipliers is shown to have good ({approximately}50%) effidency for detecting 14.4 key x-rays incident at small ({approximately}0.5 degree) grazing angles onto Au or CsI photocathodes. However, being complicated to use, it was replaced with a large area (>=lan2) avalanche photodiode (APD) detector. The APD`s are simpler to use and have comparable (30--70%) efficiencies at 14.4 key, subnanosecond time resolution, large dynan-dc range (usable at rates up to {approximately}10{sup 8} photons/second) and low (<{approximately}0.01 cts/sec) background rates. Maxwell`s equations are used to derive the specular x-ray reflectivity of layered materials with resonant transitions and complex polarization dependencies. The effects of interfadal roughness are treated with some care, and the distorted wave Born approximation (DWBA) used to describe electronic scattering is generalized to the nuclear case. The implications of the theory are discussed in the context of grazing incidence measurements with emphasis on the kinematic and dynamical aspects of the scattering.

  18. Error reduction in gamma-spectrometric measurements of nuclear materials enrichment

    NASA Astrophysics Data System (ADS)

    Zaplatkina, D.; Semenov, A.; Tarasova, E.; Zakusilov, V.; Kuznetsov, M.

    2016-06-01

    The paper provides the analysis of the uncertainty in determining the uranium samples enrichment using non-destructive methods to ensure the functioning of the nuclear materials accounting and control system. The measurements were performed by a scintillation detector based on a sodium iodide crystal and the semiconductor germanium detector. Samples containing uranium oxide of different masses were used for the measurements. Statistical analysis of the results showed that the maximum enrichment error in a scintillation detector measurement can reach 82%. The bias correction, calculated from the data obtained by the semiconductor detector, reduces the error in the determination of uranium enrichment by 47.2% in average. Thus, the use of bias correction, calculated by the statistical methods, allows the use of scintillation detectors to account and control nuclear materials.

  19. Neutron dosimetry: Spectrometry with CR 39 polymer solid state nuclear track detector

    NASA Astrophysics Data System (ADS)

    Spurny, F.

    1991-05-01

    Studies were performed with two commercial CR-39 etch track materials to enhance their application to neutron dosimetry and spectrometry. The work included: (1) Validation and optimization of the etching procedures used to process selected CR-39 plastic track etch detectors for measurement of fast neutrons; (2) Design of a multi-sample etch chamber capable of processing up to 100 track detectors; (3) Verification of uniform bulk etching homogeneity for the selected materials studied; (4) Evaluation of two commercial image analysis systems for measurement of neutron induced etch track densities in plastic track detectors; (5) Confirmation of the dose equivalent response of selected CR-39 track detectors for 3 benchmark neutron spectra (Cf-252, (241)AmBe, and 14 MeV); (6) Test and evaluation of a method for passive neutron spectrometry using a variety of etch track detectors with different energy responses; and (7) Determination of the dose equivalent response of selected CR-39 track detectors in two high energy accelerator fields. The conclusions drawn by the chief investigator include: (1) The signal-to-noise ratio of the CR-39 track detectors can be improved by removing some of the surface layer, either by chemical etching or mechanical brushing; (2) Reproducibility is highly dependent on the time profile of the etch chamber temperature; and (3) Use of a multi-sample etching chamber simplifies manipulation and solves some important problems such as etchant break through.

  20. Fabrication and characterization of cubic SrI2(Eu) scintillators for use in array detectors

    NASA Astrophysics Data System (ADS)

    Shimazoe, K.; Koyama, A.; Takahashi, H.; Sakuragi, S.; Yamasaki, Y.

    2016-02-01

    Strontium iodide (SrI2(Eu)) is a promising spectroscopic detector for use in both nuclear security and medical imaging owing to its excellent energy resolution and low internal background radiation. A cubic form is preferable when coupling with a silicon-based photosensor in order to build an array detector for use in applications such as Compton cameras. Here, cubic SrI2(Eu) crystals with 10 mm sides were fabricated and evaluated. The cubic SrI2(Eu) samples coupled to an avalanche photodiode exhibited an energy resolution of approximately 3.6% at 662 keV when using a shaping time of 3 μs. An increase in light output and an improvement of energy resolution were also observed at lower temperatures. The excellent energy resolution of these devices indicates that these crystals are promising potential detectors for use in Compton cameras and other imaging detectors.

  1. Power monitoring in space nuclear reactors using silicon carbide radiation detectors

    NASA Technical Reports Server (NTRS)

    Ruddy, Frank H.; Patel, Jagdish U.; Williams, John G.

    2005-01-01

    Space reactor power monitors based on silicon carbide (SiC) semiconductor neutron detectors are proposed. Detection of fast leakage neutrons using SiC detectors in ex-core locations could be used to determine reactor power: Neutron fluxes, gamma-ray dose rates and ambient temperatures have been calculated as a function of distance from the reactor core, and the feasibility of power monitoring with SiC detectors has been evaluated at several ex-core locations. Arrays of SiC diodes can be configured to provide the required count rates to monitor reactor power from startup to full power Due to their resistance to temperature and the effects of neutron and gamma-ray exposure, SiC detectors can be expected to provide power monitoring information for the fill mission of a space reactor.

  2. Predissociation dynamics of lithium iodide

    SciTech Connect

    Schmidt, H.; Vangerow, J. von; Stienkemeier, F.; Mudrich, M.; Bogomolov, A. S.; Baklanov, A. V.; Reich, D. M.; Skomorowski, W.; Koch, C. P.

    2015-01-28

    The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li{sup +} and LiI{sup +} ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant V{sub XA} = 650(20) cm{sup −1}. The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

  3. Active Inspection of Nuclear Materials Using {sup 4}He Scintillation Detectors

    SciTech Connect

    Davatz, G.; Howard, A.; Chandra, R.; Gendotti, U.

    2011-12-13

    The detection of fissionable materials by neutron and high-energy photon active interrogation methods is explored using {sup 4}He scintillation detectors to search for prompt and delayed neutron signature. The low electron density of {sup 4}He in addition to its pulse shape discrimination capability allows strong rejection of gamma radiation. For the detection of the prompt neutron signatures, this capability is important as the signal produced by induced fission is accompanied by intense gamma radiation. The nanosecond time resolution of {sup 4}He scintillation detectors can be used for time-of-flight measurements aimed at determining the energy of the emitted neutrons. For delayed neutron detection, the insensitivity to the low energy neutrons present from non-signal reactions is inherent. Unlike detectors requiring a moderator, this technology can easily be collimated to reduce sensitivity to neutrons from outside the field of interest. The performance of the detectors for these applications is studied using GEANT4 computer modeling, based on measured detector parameters. A comparison is made with technologies typically used for these applications, i.e. heavily shielded organic scintillators for prompt neutron detection and Cd-lined {sup 3}He neutron detectors for the detection of delayed neutrons.

  4. Atomic force microscopy methods for the analysis of high-LET tracks in CR-39 plastic nuclear track detector

    NASA Astrophysics Data System (ADS)

    Johnson, Carl E., Jr.

    Scope and Method of Study. Proton- and neutron-induced target fragmentation reactions generate short-range (˜1-10 mum), high-linear energy transfer (LET) heavy nuclear recoil (HNR) particles that contribute to total radiation dose deposited in healthy tissue in patients undergoing proton cancer therapy and to astronauts during spaceflight. Conventional detection using CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy fails because the required bulk etch, B ≈ 40 mum removes short-range tracks. We have developed a method based on Atomic Force Microscopy (AFM) to directly measure HNR particle tracks in CR-39 PNTD. Novel algorithms using least squares ellipse fitting and estimation of fitting in an iterative process were developed to enable the analysis of nuclear tracks in AFM data. In irradiations conducted at the Loma Linda University Medical Center (LLUMC) Proton Therapy Facility and the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), targets of varying composition, including a number of elemental targets of high Z, were exposed in contact with layers of CR-39 PNTD to beams of 60 MeV, 230 MeV, and 1 GeV protons at doses between 2 and 10 Gy. Chemical etching of the CR-39 PNTD was performed under standard conditions (50°C, 6.25 N NaOH) for 2-4 hours (removed layer B = 0.5-1.0 mum). Findings and Conclusions. The use of a short duration chemical etch yielded densities of secondary tracks of 105-10 6 cm-2 using the analysis methods presented in this work for accelerator-based experiments. LET spectra were obtained with good statistics between 200 and 1500 keV/mum and the results were consistent with nonelastic nuclear cross sections. Absorbed dose measurements were also completed for selected detectors, ˜7 x 10-10 Gy ion -1 was measured for 230 MeV protons. Additionally our data are consistent with an isotropic HNR particle production mechanism. The semi

  5. Threshold self-powered gamma detector for use as a monitor of power in a nuclear reactor

    DOEpatents

    LeVert, Francis E.; Cox, Samson A.

    1978-01-01

    A self-powered gamma monitor for placement near the core of a nuclear reactor comprises a lead prism surrounded by a coaxial thin nickel sheet, the combination forming a collector. A coaxial polyethylene electron barrier encloses the collector and is separated from the nickel sheet by a vacuum region. The electron barrier is enclosed by a coaxial stainless steel emitter which, in turn, is enclosed within a lead casing. When the detector is placed in a flux of gamma rays, a measure of the current flow in an external circuit between emitter and collector provides a measure of the power level of the reactor.

  6. Study of a new design of p-N semiconductor detector array for nuclear medicine imaging by monte carlo simulation codes.

    PubMed

    Hajizadeh-Safar, M; Ghorbani, M; Khoshkharam, S; Ashrafi, Z

    2014-07-01

    Gamma camera is an important apparatus in nuclear medicine imaging. Its detection part is consists of a scintillation detector with a heavy collimator. Substitution of semiconductor detectors instead of scintillator in these cameras has been effectively studied. In this study, it is aimed to introduce a new design of P-N semiconductor detector array for nuclear medicine imaging. A P-N semiconductor detector composed of N-SnO2 :F, and P-NiO:Li, has been introduced through simulating with MCNPX monte carlo codes. Its sensitivity with different factors such as thickness, dimension, and direction of emission photons were investigated. It is then used to configure a new design of an array in one-dimension and study its spatial resolution for nuclear medicine imaging. One-dimension array with 39 detectors was simulated to measure a predefined linear distribution of Tc(99_m) activity and its spatial resolution. The activity distribution was calculated from detector responses through mathematical linear optimization using LINPROG code on MATLAB software. Three different configurations of one-dimension detector array, horizontal, vertical one sided, and vertical double-sided were simulated. In all of these configurations, the energy windows of the photopeak were ± 1%. The results show that the detector response increases with an increase of dimension and thickness of the detector with the highest sensitivity for emission photons 15-30° above the surface. Horizontal configuration array of detectors is not suitable for imaging of line activity sources. The measured activity distribution with vertical configuration array, double-side detectors, has no similarity with emission sources and hence is not suitable for imaging purposes. Measured activity distribution using vertical configuration array, single side detectors has a good similarity with sources. Therefore, it could be introduced as a suitable configuration for nuclear medicine imaging. It has been shown that using

  7. Study of a New Design of P-N Semiconductor Detector Array for Nuclear Medicine Imaging by Monte Carlo Simulation Codes

    PubMed Central

    Hajizadeh-Safar, M.; Ghorbani, M.; Khoshkharam, S.; Ashrafi, Z.

    2014-01-01

    Gamma camera is an important apparatus in nuclear medicine imaging. Its detection part is consists of a scintillation detector with a heavy collimator. Substitution of semiconductor detectors instead of scintillator in these cameras has been effectively studied. In this study, it is aimed to introduce a new design of P-N semiconductor detector array for nuclear medicine imaging. A P-N semiconductor detector composed of N-SnO2 :F, and P-NiO:Li, has been introduced through simulating with MCNPX monte carlo codes. Its sensitivity with different factors such as thickness, dimension, and direction of emission photons were investigated. It is then used to configure a new design of an array in one-dimension and study its spatial resolution for nuclear medicine imaging. One-dimension array with 39 detectors was simulated to measure a predefined linear distribution of Tc99_m activity and its spatial resolution. The activity distribution was calculated from detector responses through mathematical linear optimization using LINPROG code on MATLAB software. Three different configurations of one-dimension detector array, horizontal, vertical one sided, and vertical double-sided were simulated. In all of these configurations, the energy windows of the photopeak were ± 1%. The results show that the detector response increases with an increase of dimension and thickness of the detector with the highest sensitivity for emission photons 15-30° above the surface. Horizontal configuration array of detectors is not suitable for imaging of line activity sources. The measured activity distribution with vertical configuration array, double-side detectors, has no similarity with emission sources and hence is not suitable for imaging purposes. Measured activity distribution using vertical configuration array, single side detectors has a good similarity with sources. Therefore, it could be introduced as a suitable configuration for nuclear medicine imaging. It has been shown that using

  8. Characterization of strontium iodide scintillators with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Mitchell, Lee J.; Phlips, Bernard

    2016-06-01

    This work characterizes a commercially available europium-doped strontium iodide detector recently developed by Radiation Monitoring Devices (RMD). The detector has been chosen for a space-based mission scheduled to launch in early 2017. The primary goal of this work was to characterize the detector's response over the expected operational range of -10 °C to 30 °C as well as the expected operational voltage range of +26.5-+28.5 V and identify background interferences that may develop due to neutron activation produced by cosmic-ray interactions. The 8 mm×8 mm×20 mm detectors use KETEK silicon photomultipliers (SiPM), with an active area of 6 mmx6 mm (KETEK PM6660). Our results show substantial integral nonlinearity due to the SiPM ranging from 0% to 25% at room temperature over the energy range of 80-2614 keV. The nonlinearity, a function of temperature and overvoltage, leads to an underestimate of the full width at half max (FWHM), which is 2.6% uncorrected at 662 keV and 3.8% corrected at 662 keV. The temperature dependence of the detector results in a noise threshold that increases substantially above 30 °C due to the SiPM dark rate. In an effort to simulate the harsh environment of space, neutron activation of the detector was also explored. Gamma-ray lines at 127 keV and 164 keV were observed in the detector along with Kα x-rays associated with europium. Beta decay from europium- and iodine-activation products were also observed within the detector.

  9. Iodide Protects Heart Tissue from Reperfusion Injury

    PubMed Central

    Iwata, Akiko; Morrison, Michael L.; Roth, Mark B.

    2014-01-01

    Iodine is an elemental nutrient that is essential for mammals. Here we provide evidence for an acute therapeutic role for iodine in ischemia reperfusion injury. Infusion of the reduced form, iodide, but not the oxidized form iodate, reduces heart damage by as much as 75% when delivered intravenously following temporary loss of blood flow but prior to reperfusion of the heart in a mouse model of acute myocardial infarction. Normal thyroid function may be required because loss of thyroid activity abrogates the iodide benefit. Given the high degree of protection and the high degree of safety, iodide should be explored further as a therapy for reperfusion injury. PMID:25379708

  10. Lithium iodide cardiac pacemakers: initial clinical experience.

    PubMed Central

    Burr, L. H.

    1976-01-01

    A new long-life cardiac pacemaker pulse generator powered by a lithium iodide fuel cell was introduced in Canada in 1973. The compact, hermetically sealed unit is easily implanted and reliable, has excellent patient acceptance and has an anticipated battery life of almost 14 years. Among 105 patients who received a lithium iodide pacemaker, complications occurred in 18. The lithium iodide pacemaker represents a significant advance in pacemaker generator technology and is recommended for long-term cardiac pacing; the manufacturer guarantees the pulse generator for 6 years. Images FIG. 1 PMID:974965

  11. External bremsstrahlung of 90Sr-90Y, 147Pm and 204Tl in detector compounds

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.; Rudraswamy, B.

    2013-04-01

    External Bremsstrahlung spectra produced by the complete absorption of beta particles from 90Sr to 90Y, 147Pm and 204Tl in nuclear radiation detection compounds like Cesium iodide (CsI) and Sodium Iodide (NaI) has been measured using 0.038 m×0.038 m NaI(Tl) crystal and is compared with Tseng-Pratt theory. The Bremsstrahlung yields are calculated using the unfolded spectra. This paper also describes a new procedure for the calculation of effective absorption coefficient of Bremsstrahlung from the Bremsstrahlung spectra. The measured spectra show fairly good agreement at low energy end of spectrum and some deviation at higher energy end of spectrum with the theory. The measured Bremsstrahlung yields may be useful to apply corrections, whenever beta particle passes through CsI and NaI detectors.

  12. Semi-insulating GaAs detectors with HDPE layer for detection of fast neutrons from D-T nuclear reaction

    NASA Astrophysics Data System (ADS)

    Sagatova, Andrea; Zatko, Bohumir; Sedlackova, Katarina; Pavlovic, Marius; Necas, Vladimir; Fulop, Marko; Solar, Michael; Granja, Carlos

    2016-09-01

    Bulk semi-insulating (SI) GaAs detectors optimized for fast-neutron detection were examined using mono-energetic neutrons. The detectors have an active area of 7.36 mm2 defined by a multi-pixel structure of a AuZn Schottky contact allowing a relatively high breakdown voltage (300 V) sufficient for full depletion of the detector structure. The Schottky contact is covered by a HDPE (high density polyethylene) conversion layer, where neutrons transfer their kinetic energy to hydrogen atoms through elastic nuclear collisions. The detectors were exposed to mono-energetic neutrons generated by a deuterium (D)-tritium (T) nuclear reaction at a Van de Graaff accelerator. Neutrons reached a kinetic energy of 16.8 MeV when deuterons were accelerated by 1 MV potential. The influence of the HDPE layer thickness on the detection efficiency of the fast neutrons was studied. The thickness of the conversion layer varied from 50 μm to 1300 μm. The increase of the HDPE layer thickness led to a higher detection efficiency due to higher conversion efficiency of the HDPE layer. The effect of the active detector thickness modified by the detector reverse bias voltage on the detection efficiency was also evaluated. By increasing the detector reverse voltage, the detector active volume expands to the depth and also to the sides, slightly increasing the neutron detection efficiency.

  13. A Dual-Sided Coded-Aperture Radiation Detection System , Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment

    SciTech Connect

    Ziock, Klaus-Peter; Fabris, Lorenzo

    2010-01-01

    We report the development of a large-area, mobile, coded-aperture radiation imaging system for localizing compact radioactive sources in three dimensions while rejecting distributed background. The 3D Stand-Off Radiation Detection System (SORDS-3D) has been tested at speeds up to 95 km/h and has detected and located sources in the millicurie range at distances of over 100 m. Radiation data are imaged to a geospatially mapped world grid with a nominal 1.25- to 2.5-m pixel pitch at distances out to 120 m on either side of the platform. Source elevation is also extracted. Imaged radiation alarms are superimposed on a side-facing video log that can be played back for direct localization of sources in buildings in urban environments. The system utilizes a 37-element array of 5 x 5 x 50 cm{sup 3} cesium-iodide (sodium) detectors. Scintillation light is collected by a pair of photomultiplier tubes placed at either end of each detector, with the detectors achieving an energy resolution of 6.15% FWHM (662 keV) and a position resolution along their length of 5 cm FWHM. The imaging system generates a dual-sided two-dimensional image allowing users to efficiently survey a large area. Imaged radiation data and raw spectra are forwarded to the RadioNuclide Analysis Kit (RNAK), developed by our collaborators, for isotope ID. An intuitive real-time display aids users in performing searches. Detector calibration is dynamically maintained by monitoring the potassium-40 peak and digitally adjusting individual detector gains. We have recently realized improvements, both in isotope identification and in distinguishing compact sources from background, through the installation of optimal-filter reconstruction kernels.

  14. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    NASA Astrophysics Data System (ADS)

    Szabó, J.; Pálfalvi, J. K.

    2012-12-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008-2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.

  15. Instructions for calibrating gamma detectors using the Canberra-Nuclear Data Genie Gamma Spectroscopy System

    SciTech Connect

    Brunk, J.L.

    1995-09-01

    A straight forward protocol provides a way to guide the calibration of a gamma detector for a particular geometry and material. Several programs have used the Low Level Gamma Counting Facility of the Health and Ecological Assessment Division of the Lawrence Livermore National Laboratory to count a variety of large environmental samples contained in several unique geometries. The equipment and calibration requirements needed to analyze these types of samples are explained. This document describes the calibration protocol that has been developed and describes how it is used to calibrate the detectors.

  16. On the Absorber Thickness of Microcalorimetric Detectors in Experiments at Nuclear Storage Rings

    NASA Astrophysics Data System (ADS)

    Andrianov, V. A.; Kraft-Bermuth, S.; Scholz, P.

    2016-07-01

    Low-temperature calorimetric detectors are now successfully used in experiments on Lamb-Shift measurements at experimental storage rings. Strong Doppler broadening of the detected X-ray lines is a prominent feature of these experiments. Accordingly, an optimization procedure for the absorber thickness is proposed that considers the self-width of the X-ray detector line, the Doppler broadening, and the absorption efficiency, taking into account the possibility of the escape of secondary radiation. The optimum thickness for Sn-absorbers in this type of experiments is determined as 0.17 mm.

  17. Nanostructured LaF{sub 3}:Ce Quantum Dot Nuclear Radiation Detector

    SciTech Connect

    Guss, P., Guise, R., Reed, M., Mukhopadhyay, S., Yuan, D.

    2010-11-01

    Many radioactive isotopes have low energy X-rays and high energy gamma rays of interest for detection. The goal of the work presented was to demonstrate the possibility of measuring both low-energy X-rays and relatively high-energy gamma rays simultaneously using the nano-structured lanthanum bromide, lanthanum fluoride, or cerium bromide. The key accomplishments of the project was the building and acquisition of the LaF3:Ce nanocomposite detectors. Nanocomposite detectors are sensitive to {gamma}’s as well as n’s and X-rays.

  18. Matrix elimination ion chromatography method for the determination of trace levels of anionic impurities in high purity cesium iodide.

    PubMed

    Ayushi; Kumar, Sangita D; Reddy, A V R

    2012-01-01

    In the present study an ion chromatographic method based on matrix elimination has been developed for the determination of anionic impurities in high purity cesium iodide crystals. The presence of impurities has a detrimental effect on the characteristics of detectors based on cesium iodide crystals. In particular, oxygen-containing anions inhibit the resolving power of scintillators and decrease the optical absorption. The quantitative determination of anions (fluoride, chloride, bromide, nitrate, phosphate, and sulphate) simultaneously in the high-purity cesium iodide crystals has not been carried out before. The large concentration of iodide poses a challenge in the determination of anions (especially phosphate and sulphate); hence, matrix elimination is accomplished by adopting a sample pretreatment technique. The method is validated for linearity, accuracy, and precision. The limit of detection for different anions is in the range of 0.3-3 µg/g, and the relative standard deviation is in the range of 4-6% for the overall method.

  19. Monolithic circuits for barium fluoride detectors used in nuclear physics experiments. CRADA final report

    SciTech Connect

    Varner, R.L.; Blankenship, J.L.; Beene, J.R.; Todd, R.A.

    1998-02-01

    Custom monolithic electronic circuits have been developed recently for large detector applications in high energy physics where subsystems require tens of thousands of channels of signal processing and data acquisition. In the design and construction of these enormous detectors, it has been found that monolithic circuits offer significant advantages over discrete implementations through increased performance, flexible packaging, lower power and reduced cost per channel. Much of the integrated circuit design for the high energy physics community is directly applicable to intermediate energy heavy-ion and electron physics. This STTR project conducted in collaboration with researchers at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory, sought to develop a new integrated circuit chip set for barium fluoride (BaF{sub 2}) detector arrays based upon existing CMOS monolithic circuit designs created for the high energy physics experiments. The work under the STTR Phase 1 demonstrated through the design, simulation, and testing of several prototype chips the feasibility of using custom CMOS integrated circuits for processing signals from BaF{sub 2} detectors. Function blocks including charge-sensitive amplifiers, comparators, one shots, time-to-amplitude converters, analog memory circuits and buffer amplifiers were implemented during Phase 1 effort. Experimental results from bench testing and laboratory testing with sources were documented.

  20. Investigation of the Electronic Properties of Cadmium Zinc Telluride (CZT) Detectors using a Nuclear Microprobe

    SciTech Connect

    BRUNETT,BRUCE A.; DOYLE,BARNEY L.; JAMES,RALPH B.; VIZKELETHY,GYORGY; WALSH,DAVID S.

    1999-10-18

    The electronic transport properties of Cadmium Zinc Telluride (CZT) determine the charge collection efficiency (i.e. the signal quality) of CZT detectors. These properties vary on both macroscopic and microscopic scale and depend on the presence of impurities and defects introduced during the crystal growth. Ion Beam Induced Charge Collection (IBICC) is a proven method to measure the charge collection efficiency. Using an ion microbeam, the charge collection efficiency can be mapped with submicron resolution, and the map of electronic properties (such as drift length) can be calculated from the measurement. A more sophisticated version of IBICC, the Time Resolved IBICC (TRIBICC) allows them to determine the mobility and the life time of the charge carriers by recording and analyzing the transient waveform of the detector signal. Furthermore, lateral IBICC and TRIBICC can provide information how the charge collection efficiency depends on the depth where the charge carriers are generated. This allows one to deduce information on the distribution of the electric field and transport properties of the charge carriers along the detector axis. IBICC and TRIBICC were used at the Sandia microbeam facility to image electronic properties of several CZT detectors. From the lateral TRIBICC measurement the electron and hole drift length profiles were calculated.

  1. Externally-Modulated Electro-Optically Coupled Detector Architecture for Nuclear Physics Instrumentation

    SciTech Connect

    Xi, Wenze; McKisson, John E.; Weisenberger, Andrew G.; Zhang, Shukui; Zorn, Carl J.

    2014-06-01

    A new laser-based externally-modulated electro-optically coupled detector (EOCD) architecture is being developed to enable high-density readout for radiation detectors with accurate analog radiation pulse shape and timing preservation. Unlike digital conversion before electro-optical modulation, the EOCD implements complete analog optical signal modulation and multiplexing in its detector front-end. The result is a compact, high performance detector readout that can be both radiation tolerant and immune to magnetic fields. In this work, the feasibility of EOCD was explored by constructing a two-wavelength laser-based externally-modulated EOCD, and testing analog pulse shape preservation and wavelength-division multiplexing (WDM) crosstalk. Comparisons were first made between the corresponding initial pulses and the electro-optically coupled analog pulses. This confirmed an excellent analog pulse preservation over $ sim {hbox {29}}% $ of the modulator’s switching voltage range. Optical spectrum analysis revealed less than $-{hbox {14}}~hbox{dB}$ crosstalk with 1.2 nm WDM wavelength bandgap, and provided insight on experimental conditions that could lead to increased inter-wavelength crosstalk. Further discussions and previous research on the radiation tolerance and magnetic field immunity of the candidate materials were also given, and quantitative device testing is proposed in the future.

  2. 1-Alkenylcalcium iodide: synthesis and stability.

    PubMed

    Köhler, Mathias; Görls, Helmar; Langer, Jens; Westerhausen, Matthias

    2014-04-25

    To enhance the scope of heavy calcium-based Grignard reagents, 1,2-dihydro-4-iodonaphthalene (1) was reduced with calcium in THF giving tetrakis(thf) (1,2-dihydronaphth-4-yl)calcium iodide (2). This derivative represents a 1-alkenylcalcium complex based on X-ray structure determination and NMR data. The stability of this compound is significantly reduced compared with the aromatic naphthylcalcium iodide. PMID:24677436

  3. Recovery of anhydrous hydrogen iodide

    DOEpatents

    O'Keefe, Dennis R.; McCorkle, Jr., Kenneth H.; de Graaf, Johannes D.

    1982-01-01

    Relatively dry hydrogen iodide can be recovered from a mixture of HI, I.sub.2 and H.sub.2 O. After the composition of the mixture is adjusted so that the amounts of H.sub.2 O and I.sub.2 do not exceed certain maximum limits, subjection of the mixture to superatmospheric pressure in an amount equal to about the vapor pressure of HI at the temperature in question causes distinct liquid phases to appear. One of the liquid phases contains HI and not more than about 1 weight percent water. Often the adjustment in the composition will include the step of vaporization, and the distinct layers appear following the increase in pressure of the vapor mixture. Adjustment in the composition may also include the addition of an extraction agent, such as H.sub.3 PO.sub.4, and even though the adjusted composition mixture contains a significant amount of such an agent, the creation of the distinct liquid phases is not adversely affected.

  4. Development of Scintillators in Nuclear Medicine

    PubMed Central

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Seyed Mohammad; Mahmoudian, Babak

    2015-01-01

    High-quality image is necessary for accurate diagnosis in nuclear medicine. There are many factors in creating a good image and detector is the most important one. In recent years, several detectors are studied to get a better picture. The aim of this paper is comparison of some type of these detectors such as thallium activated sodium iodide bismuth germinate cesium activated yttrium aluminum garnet (YAG: Ce) YAP: Ce “lutetium aluminum garnet activated by cerium” CRY018 “CRY019” lanthanum bromide and cadmium zinc telluride. We studied different properties of these crystals including density, energy resolution and decay times that are more important factors affecting the image quality. PMID:26420984

  5. Study of the effect of the stress on CdTe nuclear detectors

    SciTech Connect

    Ayoub, M.; Radley, I.; Mullins, J. T.; Hage-Ali, M.

    2013-09-14

    CdTe detectors are commonly used for X and γ ray applications. The performance of these detectors is strongly affected by different types of mechanical stress; such as that caused by differential expansion between the semiconductor and its intimate metallic contacts and that caused by applied pressure during the bonding process. The aim of this work was to study the effects of stress on the performance of CdTe detectors. A difference in expansion coefficients induces transverse stress under the metallic contact, while contact pressure induces longitudinal stress. These stresses have been simulated by applying known static pressures. For the longitudinal case, the pressure was applied directly to the metallic contact; while in the transverse case, it was applied to the side. We have studied the effect of longitudinal and transverse stresses on the electrical characteristics including leakage current measurements and γ-ray detection performance. We have also investigated induced defects, their nature, activation energies, cross sections, and concentrations under the applied stress by using photo-induced current transient spectroscopy and thermoelectric effect spectroscopy techniques. The operational stress limit is also given.

  6. Strontium Iodide Instrument Development for Gamma Spectroscopy and Radioisotope Identification

    SciTech Connect

    Beck, P; Cherepy, Nerine; Payne, Stephen A.; Swanberg, E.; Nelson, K.; Thelin, P; Fisher, S E; Hunter, Steve; Wihl, B; Shah, Kanai; Hawrami, Rastgo; Burger, Arnold; Boatner, Lynn A; Momayezi, M; Stevens, K; Randles, M H; Solodovnikov, D

    2014-01-01

    Development of the Europium-doped Strontium Iodide scintillator, SrI2(Eu), has progressed significantly in recent years. SrI2(Eu) has excellent material properties for gamma ray spectroscopy: high light yield (>80,000 ph/MeV), excellent light yield proportionality, and high effective atomic number (Z=49) for high photoelectric cross-section. High quality 1.5 and 2 diameter boules are now available due to rapid advances in SrI2(Eu) crystal growth. In these large SrI2(Eu) crystals, optical self-absorption by Eu2+ degrades the energy resolution as measured by analog electronics, but we mitigate this effect through on-the-fly correction of the scintillation pulses by digital readout electronics. Using this digital correction technique we have demonstrated energy resolution of 2.9% FWHM at 662 keV for a 4 in3 SrI2(Eu) crystal, over 2.6 inches long. Based on this digital readout technology, we have developed a detector prototype with greatly improved radioisotope identification capability compared to Sodium Iodide, NaI(Tl). The higher resolution of SrI2(Eu) yields a factor of 2 to 5 improvement in radioisotope identification (RIID) error rate compared to NaI(Tl).

  7. Nuclear resonant scattering measurements on {sup 57}Fe by multichannel scaling with a 64-pixel silicon avalanche photodiode linear-array detector

    SciTech Connect

    Kishimoto, S. Haruki, R.; Mitsui, T.; Yoda, Y.; Taniguchi, T.; Shimazaki, S.; Ikeno, M.; Saito, M.; Tanaka, M.

    2014-11-15

    We developed a silicon avalanche photodiode (Si-APD) linear-array detector for use in nuclear resonant scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm{sup 2}) with a pixel pitch of 150 μm and depletion depth of 10 μm. An ultrafast frontend circuit allows the X-ray detector to obtain a high output rate of >10{sup 7} cps per pixel. High-performance integrated circuits achieve multichannel scaling over 1024 continuous time bins with a 1 ns resolution for each pixel without dead time. The multichannel scaling method enabled us to record a time spectrum of the 14.4 keV nuclear radiation at each pixel with a time resolution of 1.4 ns (FWHM). This method was successfully applied to nuclear forward scattering and nuclear small-angle scattering on {sup 57}Fe.

  8. Determination of the characteristic limits and responses of nuclear track detectors in mixed radon and thoron atmospheres.

    PubMed

    Röttger, Annette; Honig, Anja; Schrammel, Dieter; Strauss, Heinrich F

    2016-03-01

    Closed nuclear track detectors are widely used for the determination of Rn-222 exposures. There are also partial open systems available, which are specially designed for the determination of the exposure to Rn-220, which is a relevant exposure in special workplaces or in specific regions of the world. This paper presents data and a detail analysis of how to determine the cross-correlation by calibration in pure Rn-222 and pure Rn-220 atm. By these means calibration coefficients for the analysis of real mixed atmospheres can be obtained. The respective decision threshold, detection limit and limits of the confidence interval were determined according to ISO 11929 (ISO 11929:2010, 2010). The exposure of detectors was performed at the radon reference chamber and the thoron progeny chamber of the Physikalisch-Technische Bundesanstalt (PTB). The analysis of track response was done at Parc RGM, while the analytical routines were developed in the Leibniz University Hanover, Institute Radioökologie und Strahlenschutz IRS at the working Group AK SIGMA (Arbeitskreis Nachweisgrenzen).

  9. E sub T distributions, nuclear stopping'', and correlations among measurements from the 4 detector systems in AGS E802

    SciTech Connect

    Tannenbaum, M.J.

    1990-04-01

    As part of AGS Experiment 802, an array of 245 Lead Glass blocks, covering half the azimuth, with a polar angular acceptance approximately 8{degree} {le} {theta} {le} 32{degree}, which corresponds roughly to a laboratory pseudo rapidity range 1.25 {le} {eta} {le} 2.50 with good acceptance, when edges and corners are taken into account, measured the transverse energy (E{sub T}) distributions from primary beams of protons, {sup 16}O, and {sup 28}Si, at 14.6 A Gev/c, incident on targets of Be, Al, Cu and Au. The lead glass is most sensitive to electromagnetic radiation, but also responds to charged hadrons. The total detector response provides a good measure of the global pion yield in the central rapidity region of these reactions. Correlations among the 4 detector systems in E802 are shown to be a powerful diagnostic tool. Latest results of the analysis in progress, including dE{sub T}/d{eta} distributions, are presented, with emphasis on the proton -- nucleus data. Additionally, these data, and previous measurements of pseudorapidity distributions of multiplicity and Transverse Energy at both the AGS and CERN are analyzed in an acceptance-independent and model-independent method, with the conclusion that simple considerations of nuclear geometry do not provide an explanation of the different {radical}{sup s}NN dependences observed in {sup 16}O + Au and p-p reactions. 37 refs., 25 figs.

  10. Computer program TRACK_VISION for simulating optical appearance of etched tracks in CR-39 nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Nikezic, D.; Yu, K. N.

    2008-04-01

    A computer program called TRACK_VISION for determining the optical appearances of tracks in nuclear track materials resulted from light-ion irradiation and subsequent chemical etching was described. A previously published software, TRACK_TEST, was the starting point for the present software TRACK_VISION, which contained TRACK_TEST as its subset. The programming steps were outlined. Descriptions of the program were given, including the built-in V functions for the commonly employed nuclear track material commercially known as CR-39 (polyallyldiglycol carbonate) irradiated by alpha particles. Program summaryProgram title: TRACK_VISION Catalogue identifier: AEAF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4084 No. of bytes in distributed program, including test data, etc.: 71 117 Distribution format: tar.gz Programming language: Fortran 90 Computer: Pentium PC Operating system: Windows 95+ RAM: 256 MB Classification: 17.5, 18 External routines: The entire code must be linked with the MSFLIB library. MSFLib is a collection of C and C++ modules which provides a general framework for processing IBM's AFP datastream. MSFLIB is specific to Visual Fortran (Digital, Compaq or Intel flavors). Nature of problem: Nuclear track detectors are commonly used for radon measurements through studying the tracks generated by the incident alpha particles. Optical microscopes are often used for this purpose but the process is relatively tedious and time consuming. Several automatic and semi-automatic systems have been developed in order to facilitate determination of track densities. In all these automatic systems, the optical appearance of the tracks is important. However, not much has been done so far to obtaining the

  11. Fundamental studies of methyl iodide adsorption in DABCO impregnated activated carbons.

    PubMed

    Herdes, Carmelo; Prosenjak, Claudia; Román, Silvia; Müller, Erich A

    2013-06-11

    Methyl iodide capture from a water vapor stream using 1,4-diazabicyclo[2.2.2]octane (DABCO)-impregnated activated carbons is, for the first time, fundamentally described here on the atomic level by means of both molecular dynamics and grand canonical Monte Carlo simulations. A molecular dynamics annealing strategy was adopted to mimic the DABCO experimental impregnation procedure in a selected slitlike carbon pore. Predictions, restricted to the micropore region, are made about the adsorption isotherms of methyl iodide, water, and nitrogen on both impregnated and bare activated carbon models. Experimental and simulated nitrogen adsorption isotherms are compared for the validation of the impregnation strategy. Selectivity analyses of the preferential adsorption toward methyl iodide over water are also reported. These simulated adsorption isotherms sum up to previous experimental studies to provide an enhanced picture for this adsorption system of widespread use at nuclear plant HVAC facilities for the capture of radioactive iodine compounds. PMID:23679202

  12. Nanocomposite scintillator, detector, and method

    DOEpatents

    Cooke, D. Wayne; McKigney, Edward A.; Muenchausen, Ross E.; Bennett, Bryan L.

    2009-04-28

    A compact includes a mixture of a solid binder and at least one nanopowder phosphor chosen from yttrium oxide, yttrium tantalate, barium fluoride, cesium fluoride, bismuth germanate, zinc gallate, calcium magnesium pyrosilicate, calcium molybdate, calcium chlorovanadate, barium titanium pyrophosphate, a metal tungstate, a cerium doped nanophosphor, a bismuth doped nanophosphor, a lead doped nanophosphor, a thallium doped sodium iodide, a doped cesium iodide, a rare earth doped pyrosilicate, or a lanthanide halide. The compact can be used in a radiation detector for detecting ionizing radiation.

  13. Calibration of a solid state nuclear track detector (SSNTD) with high detection threshold to search for rare events in cosmic rays

    NASA Astrophysics Data System (ADS)

    Dey, S.; Gupta, D.; Maulik, A.; Raha, Sibaji; Saha, Swapan K.; Syam, D.; Pakarinen, J.; Voulot, D.; Wenander, F.

    2011-06-01

    We have investigated a commercially available polymer for its suitability as a solid state nuclear track detector (SSNTD). We identified that polymer to be polyethylene terephthalate (PET) and found that it has a higher detection threshold compared to many other widely used SSNTDs which makes this detector particularly suitable for rare event search in cosmic rays as it eliminates the dominant low Z background. Systematic studies were carried out to determine its charge response which is essential before any new material can be used as an SSNTD. In this paper we describe the charge response of PET to 129Xe, 78Kr and 49Ti ions from the REX-ISOLDE facility at CERN, present the calibration curve for PET and characterize it as a nuclear track detector.

  14. Proceedings of the symposium on RHIC detector R&D

    SciTech Connect

    Makdisi, Y.; Stevens, A.J.

    1991-12-31

    This report contains papers on the following topics: Development of Analog Memories for RHIC Detector Front-end Electronic Systems; Monolithic Circuit Development for RHIC at Oak Ridge National Laboratory; Highly Integrated Electronics for the STAR TPC; Monolithic Readout Circuits for RHIC; New Methods for Trigger Electronics Development; Neurocomputing methods for Pattern Recognition in Nuclear Physics; The Development of a Silicon Multiplicity Detector System; The Vertex Detector for the Lepton/Photon Collaboration; Simulations of Silicon Vertex Tracker for STAR Experiment at RHIC; Calorimeter/Absorber Optimization for a RHIC Dimuon Experiment (RD-10 Project); Applications of the LAHET simulation Code to Relativistic Heavy Ion Detectors; Highly Segmented, High Resolution Time-of-Flight System; Research and Development on a Sub 100 Picosecond Time-of-Flight System Based on Silicon Avalance Diodes; Behavior of TPC`s in a High Particle Flux Environment; Generic R&D on Undoped Cesium Iodide and Lead Fluoride; and A Transition Radiation Detector for RHIC Featuring Accurate Tracking and dE/dx Particle Identification. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  15. Design and characterization of a compact multi-detector gamma spectrometer for studies of triggered energy release from nuclear isomers

    NASA Astrophysics Data System (ADS)

    Ugorowski, Philip; Propri, Ronald J.; Caldwell, Nathan; Lazich, Joseph; Carroll, James J.

    2004-10-01

    Nuclear Isomers are long-lived nuclear excited states, with lifetimes ranging up to decades or longer. Recently, attention has focused on the second isomeric state of 178-Hf (31-year natural half-life). The spontaneous decay takes the form of a cascade of gamma photons, totaling 2.45 MeV of energy per nucleus and corresponding to an energy density of 1.3 GigaJoules/gram. Since the ground state is stable, there is no radioactive residue and the 2.4 MeV therefore represents a ``clean'' release of energy. It has been suggested that isomers like this could be used for applications and that would require some means of causing an energy release upon demand. Thus, experiments have been performed to determine the cross-sections for x-ray induced decay, if it occurs. Positive indications by one group have been plagued by poor statistical accuracy in looking for triggered increases in the numbers of photons that correspond to the natural decay cascades. A refined technique based on calorimetry of gamma cascades has been devised to avoid these problems and a portable multi-detector array has been constructed for this purpose. This talk will discuss the design and characterization of this system.

  16. Glycosyl iodides. History and recent advances.

    PubMed

    Meloncelli, Peter J; Martin, Alan D; Lowary, Todd L

    2009-06-12

    The use of glycosyl iodides as an effective method for the preparation of glycosides has had a recent resurgence in carbohydrate chemistry, despite its early roots in which these species were believed to be of limited use. Renewed interest in these species as glycosylating agents has been spurred by their demonstrated utility in the stereoselective preparation of O-glycosides, and other glycosylic compounds. This review provides a brief historical account followed by an examination of the use of glycosyl iodides in the synthesis of oligosaccharides and other glycomimetics, including C-glycosylic compounds, glycosyl azides and N-glycosides.

  17. Characterization of scintillator materials for fast-ion loss detectors in nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Jiménez-Ramos, M. C.; García López, J.; García-Muñoz, M.; Rodríguez-Ramos, M.; Carmona Gázquez, M.; Zurro, B.

    2014-08-01

    In fusion plasma reactors, fast ion generated by heating systems and fusion born particles must be well confined. The presence of magnetohydrodynamic (MHD) instabilities can lead to a significant loss of these ions, which may reduce drastically the heating efficiency and may cause damage to plasma facing components in the vacuum vessel. In order to understand the physics underlying the fast ion loss mechanism, scintillator based detectors have been installed in several fusion devices. In this work we present the absolute photon yield and its degradation with ion fluence in terms of the number of photons emitted per incident ion of several scintillators thin coatings: SrGa2S4:Eu2+ (TG-Green), Y3Al5O12:Ce3+ (P46) and Y2O3:Eu3+ (P56) when irradiated with light ions of different masses (deuterium ions, protons and α-particles) at energies between approximately 575 keV and 3 MeV. The photon yield will be discussed in terms of the energy deposited by the particles into the scintillator. For that, the actual composition and thickness of the thin layers were determined by Rutherford Backscattering Spectrometry (RBS). A collimator with 1 mm of diameter, which defines the beam size for the experiments, placed at the entrance of the chamber. An electrically isolated sample holder biased to +300 V to collect the secondary electrons, connected to a digital current integrator (model 439 by Ortec) to measure the incident beam current. A home made device has been used to store the real-time evolution of the beam current in a computer file allowing the correction of the IL yields due to the current fluctuations. The target holder is a rectangle of 150 × 112 mm2 and can be tilted. The X and Y movements are controlled through stepping motors, which permits a fine control of the beam spot positioning as well as the study of several samples without venting the chamber. A silica optical fiber of 1 mm diameter fixed to the vacuum chamber, which collects the light from the scintillators

  18. Characterization of scintillator materials for fast-ion loss detectors in nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Jiménez-Ramos, M. C.; García López, J.; García-Muñoz, M.; Rodríguez-Ramos, M.; Carmona Gázquez, M.; Zurro, B.

    2014-08-01

    In fusion plasma reactors, fast ion generated by heating systems and fusion born particles must be well confined. The presence of magnetohydrodynamic (MHD) instabilities can lead to a significant loss of these ions, which may reduce drastically the heating efficiency and may cause damage to plasma facing components in the vacuum vessel. In order to understand the physics underlying the fast ion loss mechanism, scintillator based detectors have been installed in several fusion devices. In this work we present the absolute photon yield and its degradation with ion fluence in terms of the number of photons emitted per incident ion of several scintillators thin coatings: SrGa2S4:Eu2+ (TG-Green), Y3Al5O12:Ce3+ (P46) and Y2O3:Eu3+ (P56) when irradiated with light ions of different masses (deuterium ions, protons and α-particles) at energies between approximately 575 keV and 3 MeV. The photon yield will be discussed in terms of the energy deposited by the particles into the scintillator. For that, the actual composition and thickness of the thin layers were determined by Rutherford Backscattering Spectrometry (RBS). A collimator with 1 mm of diameter, which defines the beam size for the experiments, placed at the entrance of the chamber. An electrically isolated sample holder biased to +300 V to collect the secondary electrons, connected to a digital current integrator (model 439 by Ortec) to measure the incident beam current. A home made device has been used to store the real-time evolution of the beam current in a computer file allowing the correction of the IL yields due to the current fluctuations. The target holder is a rectangle of 150 × 112 mm2 and can be tilted. The X and Y movements are controlled through stepping motors, which permits a fine control of the beam spot positioning as well as the study of several samples without venting the chamber. A silica optical fiber of 1 mm diameter fixed to the vacuum chamber, which collects the light from the scintillators

  19. Methyl Iodide Fumigation of Bacillus anthracis Spores.

    PubMed

    Sutton, Mark; Kane, Staci R; Wollard, Jessica R

    2015-09-01

    Fumigation techniques such as chlorine dioxide, vaporous hydrogen peroxide, and paraformaldehyde previously used to decontaminate items, rooms, and buildings following contamination with Bacillus anthracis spores are often incompatible with materials (e.g., porous surfaces, organics, and metals), causing damage or residue. Alternative fumigation with methyl bromide is subject to U.S. and international restrictions due to its ozone-depleting properties. Methyl iodide, however, does not pose a risk to the ozone layer and has previously been demonstrated as a fumigant for fungi, insects, and nematodes. Until now, methyl iodide has not been evaluated against Bacillus anthracis. Sterne strain Bacillus anthracis spores were subjected to methyl iodide fumigation at room temperature and at 550C. Efficacy was measured on a log-scale with a 6-log reduction in CFUs being considered successful compared to the U.S. Environmental Protection Agency biocide standard. Such efficacies were obtained after just one hour at 55 °C and after 12 hours at room temperature. No detrimental effects were observed on glassware, PTFE O-rings, or stainless steel. This is the first reported efficacy of methyl iodide in the reduction of Bacillus anthracis spore contamination at ambient and elevated temperatures. PMID:26502561

  20. Scintillator handbook with emphasis on cesium iodide

    NASA Technical Reports Server (NTRS)

    Tidd, J. L.; Dabbs, J. R.; Levine, N.

    1973-01-01

    This report provides a background of reasonable depth and reference material on scintillators in general. Particular attention is paid to the cesium iodide scintillators as used in the High Energy Astronomy Observatory (HEAO) experiments. It is intended especially for use by persons such as laboratory test personnel who need to obtain a working knowledge of these materials and their characteristics in a short time.

  1. 21 CFR 184.1265 - Cuprous iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the following specific limitations: Category of food Maximum treatment level in food Functional use... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Cuprous iodide. 184.1265 Section 184.1265 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  2. Methyl Iodide Fumigation of Bacillus anthracis Spores.

    PubMed

    Sutton, Mark; Kane, Staci R; Wollard, Jessica R

    2015-09-01

    Fumigation techniques such as chlorine dioxide, vaporous hydrogen peroxide, and paraformaldehyde previously used to decontaminate items, rooms, and buildings following contamination with Bacillus anthracis spores are often incompatible with materials (e.g., porous surfaces, organics, and metals), causing damage or residue. Alternative fumigation with methyl bromide is subject to U.S. and international restrictions due to its ozone-depleting properties. Methyl iodide, however, does not pose a risk to the ozone layer and has previously been demonstrated as a fumigant for fungi, insects, and nematodes. Until now, methyl iodide has not been evaluated against Bacillus anthracis. Sterne strain Bacillus anthracis spores were subjected to methyl iodide fumigation at room temperature and at 550C. Efficacy was measured on a log-scale with a 6-log reduction in CFUs being considered successful compared to the U.S. Environmental Protection Agency biocide standard. Such efficacies were obtained after just one hour at 55 °C and after 12 hours at room temperature. No detrimental effects were observed on glassware, PTFE O-rings, or stainless steel. This is the first reported efficacy of methyl iodide in the reduction of Bacillus anthracis spore contamination at ambient and elevated temperatures.

  3. 21 CFR 184.1265 - Cuprous iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Cuprous iodide. 184.1265 Section 184.1265 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD... accordance with § 184.1(b)(2), the ingredient is used in food only within the following specific...

  4. Simplest Formula of Copper Iodide: A Stoichiometry Experiment.

    ERIC Educational Resources Information Center

    MacDonald, D. J.

    1983-01-01

    Describes an experiment presented to students as a problem in determining the stoichiometry of "copper iodide" to decide whether it is cuprous iodide or cupric iodide. The experiment illustrates stoichiometry principles, providing experiences with laboratory techniques and numerical computation. Detailed outline (written for student use) is…

  5. Study of Anomalous Nuclear Projectile Fragments in CR-39 Etched Track Detectors

    NASA Astrophysics Data System (ADS)

    Tincknell, Mark Leslie

    This report describes three years of experimental investigation into the phenomenon of anomalously short mean free paths (mfp's) of relativistic nuclear projectile fragments (Anomalous Projectile Fragments, or "Anomalons"). The experimental data were obtained through manual microscopic measurements of etched nuclear tracks in CR-39 plastic. There are five chapters in this report. The first introduces the subject, and extensively reviews and evaluates the experimental history of the effect. The second chapter describes the background physics and methods used. The third chapter examines in detail the statistical techniques used by almost all modern anomalon experiments. Many useful expressions are given and several mfp estimators are compared. The conventional methods are shown to have acceptably small biases. The fourth chapter discusses several experiments performed and analyzed in 1982-1983, mostly with an Ar beam exposure. These experiments found the mfp's of several primary nuclei, established that fragment nuclei are integrally charged, and confirmed the anomalon effect in a medium other than nuclear emulsion. The secondary mfp's were found to be depressed by (TURN)15% in the first 2 cm after the primary interactions, at the (TURN)95-99% confidence level (C.L.). The parameterized abundance of anomalons was (TURN)3.6%, with an anomalous mfp of (TURN)1 cm. The fifth chapter presents the results from experiments conducted in 1983-1984 with an Fe beam. A larger and more sophisticated repeat experiment obtained a weak and oddly-behaved anomalon effect, and was marginally consistent with a null result. The secondary mfp's in the 0.6 (LESSTHEQ) x (LESSTHEQ) 1.1 cm interval beyond the primary interactions were (TURN)2.5(sigma) low; all other points, including 0.1 (LESSTHEQ) x (LESSTHEQ) 0.6cm, were consistent with normal. The total mfp depression in the first cm was (TURN)10%, significant at the (TURN)90 -95% C.L. The tertiary mfp's were consistent with the secondaries

  6. Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Titov, Maxim

    Since long time, the compelling scientific goals of future high-energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volumes with low mass budget, have been playing an important role in many fields of physics. Advances in photolithography and microprocessing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high-energy physics, MPGD applications have expanded to nuclear physics, photon detection, astroparticle and neutrino physics, neutron detection, and medical imaging.

  7. Search for rare nuclear decays with HPGe detectors at the STELLA facility of the LNGS

    SciTech Connect

    Belli, P.; Di Marco, A.; Bernabei, R.; D'Angelo, S.; Cappella, F.; D'Angelo, A.; Incicchitti, A.; Cerulli, R.; Di Vacri, M. L.; Laubenstein, M.; Nisi, S.; Danevich, F. A.; Kobychev, V. V.; Poda, D. V.; Tretyak, V. I.; Kovtun, G. P.; Kovtun, N. G.; Shcherban, A. P.; Solopikhin, D. A.; Polischuk, O. G.; and others

    2013-12-30

    Results on the search for rare nuclear decays with the ultra low background facility STELLA at the LNGS using gamma ray spectrometry are presented. In particular, the best T{sub 1/2} limits were obtained for double beta processes in {sup 96}Ru and {sup 104}Ru. Several isotopes, which potentially decay through different 2β channels, including also possible resonant double electron captures, were investigated for the first time ({sup 156}Dy, {sup 158}Dy, {sup 184}Os, {sup 192}Os, {sup 190}Pt, {sup 198}Pt). Search for resonant absorption of solar {sup 7}Li axions in a LiF crystal gave the best limit for the mass of {sup 7}Li axions (< 8.6 keV). Rare alpha decay of {sup 190}Pt to the first excited level of {sup 186}Os(E{sub exc} = 137.2keV) was observed for the first time.

  8. Modifications induced by gamma irradiation to Makrofol polymer nuclear track detector

    PubMed Central

    Tayel, A.; Zaki, M.F.; El Basaty, A.B.; Hegazy, Tarek M.

    2014-01-01

    The aim of the present study was extended from obtaining information about the interaction of gamma rays with Makrofol DE 7-2 track detector to introduce the basis that can be used in concerning simple sensor for gamma irradiation and bio-engineering applications. Makrofol polymer samples were irradiated with 1.25 MeV 60Co gamma radiations at doses ranging from 20 to 1000 kG y. The modifications of irradiated samples so induced were analyzed using UV–vis spectrometry, photoluminescence spectroscopy, and the measurements of Vickers’ hardness. Moreover, the change in wettability of irradiated Makrofol was investigated by the contact angle determination of the distilled water. UV–vis spectroscopy shows a noticeable decrease in the energy band gap due to gamma irradiation. This decrease could be attributed to the appearance of a shift to UV spectra toward higher wavelength region after irradiation. Photoluminescence spectra reveal a remarkable change in the integrated photoluminescence intensity with increasing gamma doses, which may be resulted from some matrix disorder through the creation of some defected states in the irradiated polymer. The hardness was found to increase from 4.78 MPa for the unirradiated sample to 23.67 MPa for the highest gamma dose. The contact angle investigations show that the wettability of the modified samples increases with increasing the gamma doses. The result obtained from present investigation furnishes evidence that the gamma irradiations are a successful technique to modify the Makrofol DE 7-2 polymer properties to use it in suitable applications. PMID:25750755

  9. Xenon Gamma Detector Project Support

    SciTech Connect

    Vanier,P.E.; Forman, L.

    2008-04-01

    This project provided funding of $48,500 for part of one year to support the development of compressed xenon spectrometers at BNL. This report describes upgrades that were made to the existing detector system electronics during that period, as well as subsequent testing with check sources and Special Nuclear Materials. Previous testing of the equipment extended only up to the energy of 1.3 MeV, and did not include a spectrum of Pu-239. The new electronics allowed one-button activation of the high voltage ramp that was previously controlled by manual adjustments. Mechanical relays of the charging circuit were replaced by a tera-ohm resistor chain and an optical switch. The preamplifier and shaping amplifier were replaced by more modern custom designs. We found that the xenon purity had not been degraded since the chamber was filled 10 years earlier. The resulting spectra showed significantly better resolution than sodium iodide spectra, and could be analyzed quite effectively by methods using peak area templates.

  10. Determination of iodide in urine by ion-pair chromatography with electrochemical detection.

    PubMed

    Below, H; Kahlert, H

    2001-10-01

    A variety of parameters affecting the determination of iodide in biological materials by ion-pair chromatography and electrochemical detection were examined in detail. It became apparent that the pH value, the ion-pair concentration, the proportion of organic solvent and of organic bases as a component of the buffer solution, as well as the salt concentration in the eluent system could effectively influence the retention characteristics of iodide in the chromatographic system, resulting in the separation of potential interfering substances. The presence of other anions in the sample matrix has to be taken into consideration, particularly thiocyanate because of its long retention time. Investigations of the electrochemical detection mechanism revealed that the reaction hitherto assumed to be responsible for detector signal generation (formation of AgI) is incorrect. In addition, a much more sensitive detection of iodide than that cited in the literature to date is possible if the detector potential is optimally selected and any anticipated interfering substances are removed by chromatography. Use of a gold electrode rather than a silver electrode also considerably enhances the reliability of the procedure.

  11. A novel approach for long-term determination of indoor 222Rn progeny equilibrium factor using nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Amgarou, K.; Font, Ll.; Baixeras, C.

    2003-06-01

    A detailed study of the measurement principles of airborne 222Rn decay products by means of nuclear track detectors (NTDs), taking into account the range of variation of the parameters influencing their concentration indoors, has shown that it is not possible for the existing methods to obtain the associated long-term equilibrium factor with an appropriate accuracy. For this reason, we have established a novel approach based on the new concept of reduced equilibrium factor, which can be obtained from the only measurement of airborne 222Rn and its α-emitter daughter ( 218Po and 214Po) concentrations using a passive, integrating and multi-component system of NTDs. We have found that the equilibrium factor has a linear dependence on the reduced equilibrium factor regardless the values taken for the rates of ventilation, of aerosol attachment and of surface deposition. By using well-controlled exposures in a reference laboratory, we have shown that the equilibrium factor values determined with our system agree with those obtained by active monitors. Finally, as a pilot test, several dosimeters were exposed in an inhabited Swedish single-family house. The results of this exposure suggest the usefulness of this method to perform routine surveys in private homes and in workplaces in order to estimate the annual effective dose received by the general public and the workers due to the presence of 222Rn daughters.

  12. Co-visualization of DNA damage and ion traversals in live mammalian cells using a fluorescent nuclear track detector.

    PubMed

    Kodaira, Satoshi; Konishi, Teruaki; Kobayashi, Alisa; Maeda, Takeshi; Ahmad, Tengku Ahbrizal Farizal Tengku; Yang, Gen; Akselrod, Mark S; Furusawa, Yoshiya; Uchihori, Yukio

    2015-03-01

    The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effect. Single ion traversal through a cellular nucleus produces complex and massive DNA damage at a nanometer level, leading to cell inactivation, mutations and transformation. We present a novel approach that uses a fluorescent nuclear track detector (FNTD) for the simultaneous detection of the geometrical images of ion traversals and DNA damage in single cells using confocal microscopy. HT1080 or HT1080-53BP1-GFP cells were cultured on the surface of a FNTD and exposed to 5.1-MeV/n neon ions. The positions of the ion traversals were obtained as fluorescent images of a FNTD. Localized DNA damage in cells was identified as fluorescent spots of γ-H2AX or 53BP1-GFP. These track images and images of damaged DNA were obtained in a short time using a confocal laser scanning microscope. The geometrical distribution of DNA damage indicated by fluorescent γ-H2AX spots in fixed cells or fluorescent 53BP1-GFP spots in living cells was found to correlate well with the distribution of the ion traversals. This method will be useful for evaluating the number of ion hits on individual cells, not only for micro-beam but also for random-beam experiments.

  13. Co-visualization of DNA damage and ion traversals in live mammalian cells using a fluorescent nuclear track detector.

    PubMed

    Kodaira, Satoshi; Konishi, Teruaki; Kobayashi, Alisa; Maeda, Takeshi; Ahmad, Tengku Ahbrizal Farizal Tengku; Yang, Gen; Akselrod, Mark S; Furusawa, Yoshiya; Uchihori, Yukio

    2015-03-01

    The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effect. Single ion traversal through a cellular nucleus produces complex and massive DNA damage at a nanometer level, leading to cell inactivation, mutations and transformation. We present a novel approach that uses a fluorescent nuclear track detector (FNTD) for the simultaneous detection of the geometrical images of ion traversals and DNA damage in single cells using confocal microscopy. HT1080 or HT1080-53BP1-GFP cells were cultured on the surface of a FNTD and exposed to 5.1-MeV/n neon ions. The positions of the ion traversals were obtained as fluorescent images of a FNTD. Localized DNA damage in cells was identified as fluorescent spots of γ-H2AX or 53BP1-GFP. These track images and images of damaged DNA were obtained in a short time using a confocal laser scanning microscope. The geometrical distribution of DNA damage indicated by fluorescent γ-H2AX spots in fixed cells or fluorescent 53BP1-GFP spots in living cells was found to correlate well with the distribution of the ion traversals. This method will be useful for evaluating the number of ion hits on individual cells, not only for micro-beam but also for random-beam experiments. PMID:25324538

  14. Co-visualization of DNA damage and ion traversals in live mammalian cells using a fluorescent nuclear track detector

    PubMed Central

    Kodaira, Satoshi; Konishi, Teruaki; Kobayashi, Alisa; Maeda, Takeshi; Ahmad, Tengku Ahbrizal Farizal Tengku; Yang, Gen; Akselrod, Mark S.; Furusawa, Yoshiya; Uchihori, Yukio

    2015-01-01

    The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effect. Single ion traversal through a cellular nucleus produces complex and massive DNA damage at a nanometer level, leading to cell inactivation, mutations and transformation. We present a novel approach that uses a fluorescent nuclear track detector (FNTD) for the simultaneous detection of the geometrical images of ion traversals and DNA damage in single cells using confocal microscopy. HT1080 or HT1080–53BP1-GFP cells were cultured on the surface of a FNTD and exposed to 5.1-MeV/n neon ions. The positions of the ion traversals were obtained as fluorescent images of a FNTD. Localized DNA damage in cells was identified as fluorescent spots of γ-H2AX or 53BP1-GFP. These track images and images of damaged DNA were obtained in a short time using a confocal laser scanning microscope. The geometrical distribution of DNA damage indicated by fluorescent γ-H2AX spots in fixed cells or fluorescent 53BP1-GFP spots in living cells was found to correlate well with the distribution of the ion traversals. This method will be useful for evaluating the number of ion hits on individual cells, not only for micro-beam but also for random-beam experiments. PMID:25324538

  15. The growth and crystallography of bismuth tri-iodide crystals grown by vapor transport

    SciTech Connect

    Nason, D.; Keller, L.

    1995-10-01

    A single crystal of bismuth tri-iodide (BiI{sub 3}) of dimensions 1.2 {times} 1.2 {times} 0.4 cm{sup 3} has been grown by physical vapor transport. The lattice parameters of the hexagonal crystal and its polycrystaleme powder precursor were measured by x-ray diffraction (XRD) and were in agreement, indicating that the vapor phase growth and sublimation purification processing at temperatures below 330{degree}C did not significantly affect the stoichiometry. X-ray rocking measurements of the single crystal showed low angle boundaries of the order of 0.05{degree}. In tests as gamma radiation detectors, neither melt grown nor vapor grown crystals were satisfactory, but the vapor grown crystals were promising. Several observations suggest that better performance may be achievable with purer bismuth tri-iodide.

  16. Mechanical Properties Of Large Sodium Iodide Crystals

    NASA Technical Reports Server (NTRS)

    Lee, Henry M.

    1988-01-01

    Report presents data on mechanical properties of large crystals of thallium-doped sodium iodide. Five specimens in shape of circular flat plates subjected to mechanical tests. Presents test results for each specimen as plots of differential pressure versus center displacement and differential pressure versus stress at center. Also tabulates raw data. Test program also developed procedure for screening candidate crystals for gamma-ray sensor. Procedure eliminates potentially weak crystals before installed and ensures material yielding kept to minimum.

  17. Transport properties of iodide in a sandy aquifer: Hydrogeological modelling and field tracer tests

    NASA Astrophysics Data System (ADS)

    Razafindratsima, Stephen; Péron, Olivier; Piscitelli, Anne; Gégout, Claire; Schneider, Vincent; Barbecot, Florent; Giffaut, Eric; Robinet, Jean-Charles; Le Cointe, Pierre; Montavon, Gilles

    2015-01-01

    The release of radioactive iodine into geological media from nuclear waste disposal is an issue that has to be considered since iodine is a biophilic element. 129I is, with 99Tc, one of the two long-lived radionuclides that have the highest mobility in radioactive waste disposal. Within this context, iodide retardation is still a matter of debate. A low value of the retardation factor is generally accepted in soils without organic matter, but the possibility for sorption cannot be completely ruled out. Since isotopic exchange with naturally occurring iodine is one of the main potential sorption mechanisms, site-specific retention parameters are needed. In the present paper, we study iodide transport in a sandy aquifer. A hydrogeological model was built to fit deuterium, bromide and iodide breakthrough data from in situ tracer test experiments. Within the precision range of the fitting, iodide is excluded from 2.5% of the effective porosity by anionic exclusion and presents a field retention factor (Kd) lower than 0.025 L/kg.

  18. Formulation and optimization of potassium iodide tablets

    PubMed Central

    Al-Achi, Antoine; Patel, Binit

    2014-01-01

    The use of potassium iodide (KI) as a protective agent against accidental radioactive exposure is well established. In this study, we aimed to prepare a KI tablet formulation using a direct compression method. We utilized Design of Experiment (DoE)/mixture design to define the best formulation with predetermined physical qualities as to its dissolution, hardness, assay, disintegration, and angle of repose. Based on the results from the DoE, the formulation had the following components (%w/w): Avicel 48.70%, silicon dioxide 0.27%, stearic acid (1.00%), magnesium stearate 2.45%, and dicalcium phosphate 18.69%, in addition to potassium iodide 28.89% (130 mg/tablet). This formulation was scaled-up using two tablet presses, a single-punch press and a rotary mini tablet press. The final scaled-up formulation was subjected to a variety of quality control tests, including photo-stability testing. The results indicate that potassium iodide tablets prepared by a rotary mini tablet press had good pharmaceutical characteristics and a shelf-life of 25 days when stored at room temperature protected from light. PMID:25685048

  19. Methyl iodide production in the open ocean

    NASA Astrophysics Data System (ADS)

    Stemmler, I.; Hense, I.; Quack, B.; Maier-Reimer, E.

    2014-08-01

    Production pathways of the prominent volatile organic halogen compound methyl iodide (CH3I) are not fully understood. Based on observations, production of CH3I via photochemical degradation of organic material or via phytoplankton production has been proposed. Additional insights could not be gained from correlations between observed biological and environmental variables or from biogeochemical modeling to identify unambiguously the source of methyl iodide. In this study, we aim to address this question of source mechanisms with a three-dimensional global ocean general circulation model including biogeochemistry (MPIOM-HAMOCC (MPIOM - Max Planck Institute Ocean Model HAMOCC - HAMburg Ocean Carbon Cycle model)) by carrying out a series of sensitivity experiments. The simulated fields are compared with a newly available global data set. Simulated distribution patterns and emissions of CH3I differ largely for the two different production pathways. The evaluation of our model results with observations shows that, on the global scale, observed surface concentrations of CH3I can be best explained by the photochemical production pathway. Our results further emphasize that correlations between CH3I and abiotic or biotic factors do not necessarily provide meaningful insights concerning the source of origin. Overall, we find a net global annual CH3I air-sea flux that ranges between 70 and 260 Gg yr-1. On the global scale, the ocean acts as a net source of methyl iodide for the atmosphere, though in some regions in boreal winter, fluxes are of the opposite direction (from the atmosphere to the ocean).

  20. Formulation and optimization of potassium iodide tablets.

    PubMed

    Al-Achi, Antoine; Patel, Binit

    2015-01-01

    The use of potassium iodide (KI) as a protective agent against accidental radioactive exposure is well established. In this study, we aimed to prepare a KI tablet formulation using a direct compression method. We utilized Design of Experiment (DoE)/mixture design to define the best formulation with predetermined physical qualities as to its dissolution, hardness, assay, disintegration, and angle of repose. Based on the results from the DoE, the formulation had the following components (%w/w): Avicel 48.70%, silicon dioxide 0.27%, stearic acid (1.00%), magnesium stearate 2.45%, and dicalcium phosphate 18.69%, in addition to potassium iodide 28.89% (130 mg/tablet). This formulation was scaled-up using two tablet presses, a single-punch press and a rotary mini tablet press. The final scaled-up formulation was subjected to a variety of quality control tests, including photo-stability testing. The results indicate that potassium iodide tablets prepared by a rotary mini tablet press had good pharmaceutical characteristics and a shelf-life of 25 days when stored at room temperature protected from light. PMID:25685048

  1. Ultrafast Extreme Ultraviolet Spectroscopy of Lead Iodide and Methylammonium Lead Iodide

    NASA Astrophysics Data System (ADS)

    Verkamp, Max; Lin, Ming-Fu; Ryland, Elizabeth; Vura-Weis, Josh

    Methylammonium lead iodide (perovskite) is a leading candidate for use in next-generation solar cell devices. However, the photophysics of perovskite responsible for its strong photovoltaic qualities are not fully understood. Ultrafast extreme ultraviolet (XUV) spectroscopy was used to investigate relaxation dynamics in perovskite and its precursor, lead iodide, with carrier-specific signals arising from transitions from a common inner-shell level (I 4d) to the valence and conduction bands. Ultrashort (30 fs) pulses of XUV radiation in a broad spectrum (40-70 eV) were obtained using high-harmonic generation in a tabletop instrument. Transient absorption measurements with visible pump (3.1 eV) and XUV probe directly observed the relaxation of charge carriers after above band excitation for both perovskite and lead iodide in the femtosecond and picosecond time ranges.

  2. WE-D-BRF-01: FEATURED PRESENTATION - Investigating Particle Track Structures Using Fluorescent Nuclear Track Detectors and Monte Carlo Simulations

    SciTech Connect

    Dowdell, S; Paganetti, H; Schuemann, J; Greilich, S; Zimmerman, F; Evans, C

    2014-06-15

    Purpose: To report on the efforts funded by the AAPM seed funding grant to develop the basis for fluorescent nuclear track detector (FNTD) based radiobiological experiments in combination with dedicated Monte Carlo simulations (MCS) on the nanometer scale. Methods: Two confocal microscopes were utilized in this study. Two FNTD samples were used to find the optimal microscope settings, one FNTD irradiated with 11.1 MeV/u Gold ions and one irradiated with 428.77 MeV/u Carbon ions. The first sample provided a brightly luminescent central track while the latter is used to test the capabilities to observe secondary electrons. MCS were performed using TOPAS beta9 version, layered on top of Geant4.9.6p02. Two sets of simulations were performed, one with the Geant4-DNA physics list and approximating the FNTDs by water, a second set using the Penelope physics list in a water-approximated FNTD and a aluminum-oxide FNTD. Results: Within the first half of the funding period, we have successfully established readout capabilities of FNTDs at our institute. Due to technical limitations, our microscope setup is significantly different from the approach implemented at the DKFZ, Germany. However, we can clearly reconstruct Carbon tracks in 3D with electron track resolution of 200 nm. A second microscope with superior readout capabilities will be tested in the second half of the funding period, we expect an improvement in signal to background ratio with the same the resolution.We have successfully simulated tracks in FNTDs. The more accurate Geant4-DNA track simulations can be used to reconstruct the track energy from the size and brightness of the observed tracks. Conclusion: We have achieved the goals set in the seed funding proposal: the setup of FNTD readout and simulation capabilities. We will work on improving the readout resolution to validate our MCS track structures down to the nanometer scales.

  3. Proton-induced radioactivity in NaI (Tl) scintillation detectors

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1977-01-01

    Radioactivity induced by protons in sodium iodide scintillation crystals were calculated and directly measured. These data are useful in determining trapped radiation and cosmic-ray induced, background-counting rates in spaceborne detectors.

  4. Copper-Catalyzed Carboxylation of Aryl Iodides with Carbon Dioxide.

    PubMed

    Tran-Vu, Hung; Daugulis, Olafs

    2013-10-01

    A method for carboxylation of aryl iodides with carbon dioxide has been developed. The reaction employs low loadings of copper iodide/TMEDA or DMEDA catalyst, 1 atm of CO2, DMSO or DMA solvent, and proceeds at 25-70 °C. Good functional group tolerance is observed, with ester, bromide, chloride, fluoride, ether, hydroxy, amino, and ketone functionalities tolerated. Additionally, hindered aryl iodides such as iodomesitylene can also be carboxylated. PMID:24288654

  5. Iodide transport and its regulation in the thyroid gland

    SciTech Connect

    Price, D.J.

    1987-01-01

    This study was undertaken to examine the autoregulatory mechanism of iodide induced suppression of subsequently determined iodide transport activity in the thyroid gland. Two model systems were developed to identify the putative, transport-related, iodine-containing, inhibitory factor responsible for autoregulation. The first system was a maternal and fetal rabbit thyroid tissue slice preparation in which iodide pretreatment inhibited the maternal /sup 125/I-T/M ratio by 30% and had no significant effect on fetal iodide transport. In the second system, the role of protein synthesis in the autoregulatory phenomenon was studied. Cat thyroid slices pretreated with0.1 mM cycloheximide for 60 min prior to preexposure to excess iodide demonstrated a significant reduction in the degree of iodide included autoregulation. In both of these systems iodide induced suppression of cAMP accumulation remained intact. These findings suggest (1) fetal rabbit thyroid lacks the autoregulatory mechanism of iodide transport and (2) protein synthesis is involved in the mechanism of thyroid autoregulation of iodide transport.

  6. Gamma-Ray Background Variability in Mobile Detectors

    NASA Astrophysics Data System (ADS)

    Aucott, Timothy John

    Gamma-ray background radiation significantly reduces detection sensitivity when searching for radioactive sources in the field, such as in wide-area searches for homeland security applications. Mobile detector systems in particular must contend with a variable background that is not necessarily known or even measurable a priori. This work will present measurements of the spatial and temporal variability of the background, with the goal of merging gamma-ray detection, spectroscopy, and imaging with contextual information--a "nuclear street view" of the ubiquitous background radiation. The gamma-ray background originates from a variety of sources, both natural and anthropogenic. The dominant sources in the field are the primordial isotopes potassium-40, uranium-238, and thorium-232, as well as their decay daughters. In addition to the natural background, many artificially-created isotopes are used for industrial or medical purposes, and contamination from fission products can be found in many environments. Regardless of origin, these backgrounds will reduce detection sensitivity by adding both statistical as well as systematic uncertainty. In particular, large detector arrays will be limited by the systematic uncertainty in the background and will suffer from a high rate of false alarms. The goal of this work is to provide a comprehensive characterization of the gamma-ray background and its variability in order to improve detection sensitivity and evaluate the performance of mobile detectors in the field. Large quantities of data are measured in order to study their performance at very low false alarm rates. Two different approaches, spectroscopy and imaging, are compared in a controlled study in the presence of this measured background. Furthermore, there is additional information that can be gained by correlating the gamma-ray data with contextual data streams (such as cameras and global positioning systems) in order to reduce the variability in the background

  7. Practical application of HgI2 detectors to a space-flight scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Bradley, J. G.; Conley, J. M.; Albee, A. L.; Iwanczyk, J. S.; Dabrowski, A. J.

    1989-01-01

    Mercuric iodide X-ray detectors have been undergoing tests in a prototype scanning electron microscope system being developed for unmanned space flight. The detector program addresses the issues of geometric configuration in the SEM, compact packaging that includes separate thermoelectric coolers for the detector and FET, X-ray transparent hermetic encapsulation and electrical contacts, and a clean vacuum environment.

  8. Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities

    SciTech Connect

    Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

    2014-07-01

    Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that can quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team

  9. Europium-doped barium bromide iodide

    SciTech Connect

    Gundiah, Gautam; Hanrahan, Stephen M.; Hollander, Fredrick J.; Bourret-Courchesne, Edith D.

    2009-10-21

    Single crystals of Ba0.96Eu0.04BrI (barium europium bromide iodide) were grown by the Bridgman technique. The title compound adopts the ordered PbCl2 structure [Braekken (1932). Z. Kristallogr. 83, 222-282]. All atoms occupy the fourfold special positions (4c, site symmetry m) of the space group Pnma with a statistical distribution of Ba and Eu. They lie on the mirror planes, perpendicular to the b axis at y = +-0.25. Each cation is coordinated by nine anions in a tricapped trigonal prismatic arrangement.

  10. The addition of iodine to tetramethylammonium iodide

    USGS Publications Warehouse

    Foote, H.W.; Fleischer, M.

    1953-01-01

    The system tetramethylammonium iodide-iodine-toluene has been studied by the solubility method at 6 and at 25??. The compounds (CH3)4NI3, (CH3)4NI5 and (CH3)4NI11 were found to be stable phases at both temperatures. In addition, the compound (CH3)4NI10 was found at 6?? and the compound (CH3)4NI9 at 25??. The dissociation pressures of the compounds at these temperatures were calculated from the solubility data.

  11. Chloride, bromide and iodide scintillators with europium doping

    DOEpatents

    Zhuravleva, Mariya; Yang, Kan

    2014-08-26

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  12. Uptake of iodide by a mixture of metallic copper and cupric compounds

    SciTech Connect

    Lefevre, G.; Alnot, M.; Ehrhardt, J.J.; Bessiere, J.

    1999-05-15

    Environmental contaminants harmful to the health of present and future generations involve nuclear fission products as iodine radioisotopes. {sup 129}I is potentially one of the more mobile products because of its long half-life and its tendency to go into solution as an anion that is not retarded with silicate minerals. Ability of copper/cupric compound mixtures to remove iodide from solution was investigated to predict sorption of radioactive iodine in the environment and to assess their use in a nuclear reprocessing method. Thermodynamic calculations were performed to study the stability of such mixtures in solution and to obtain equilibrium constants of Cu(0)/Cu(II)/I{sup {minus}} and Cu(0)/Cu(II)/Cl{sup {minus}} systems. Both calculations and experimental results showed that a Cu(0)/Cu{sub 3}(OH){sub 2}(CO{sub 3}){sub 2} (azurite) mixture selectively uptakes iodide ions (initial concentrations: 10{sup {minus}2} and 10{sup {minus}1} M) in the presence of 10{sup {minus}1} M chloride ions. Reaction of iodide with copper powder and azurite crystal or copper plate and azurite powder have also been investigated, leading to precipitation of CuI onto massive copper phase. The different solids were separately analyzed by XPS and MEB-EDX, giving some insight in the uptake mechanism. It is proposed that soluble copper released by the cupric compound is reduced at the surface of metallic copper, leading to a preferential precipitation of CuI on copper surface.

  13. Taming the Reactivity of Glycosyl Iodides To Achieve Stereoselective Glycosidation.

    PubMed

    Gervay-Hague, Jacquelyn

    2016-01-19

    Although glycosyl iodides have been known for more than 100 years, it was not until the 21st century that their full potential began to be harnessed for complex glycoconjugate synthesis. Mechanistic studies in the late 1990s probed glycosyl iodide formation by NMR spectroscopy and revealed important reactivity features embedded in protecting-group stereoelectronics. Differentially protected sugars having an anomeric acetate were reacted with trimethylsilyl iodide (TMSI) to generate the glycosyl iodides. In the absence of C-2 participation, generation of the glycosyl iodide proceeded by inversion of the starting anomeric acetate stereochemistry. Once formed, the glycosyl iodide readily underwent in situ anomerization, and in the presence of excess iodide, equilibrium concentrations of α- and β-iodides were established. Reactivity profiles depended upon the identity of the sugar and the protecting groups adorning it. Consistent with the modern idea of disarmed versus armed sugars, ester protecting groups diminished the reactivity of glycosyl iodides and ether protecting groups enhanced the reactivity. Thus, acetylated sugars were slower to form the iodide and anomerize than their benzylated analogues, and these disarmed glycosyl iodides could be isolated and purified, whereas armed ether-protected iodides could only be generated and reacted in situ. All other things being equal, the β-iodide was orders of magnitude more reactive than the thermodynamically more stable α-iodide, consistent with the idea of in situ anomerization introduced by Lemieux in the mid-20th century. Glycosyl iodides are far more reactive than the corresponding bromides, and with the increased reactivity comes increased stereocontrol, particularly when forming α-linked linear and branched oligosaccharides. Reactions with per-O-silylated glycosyl iodides are especially useful for the synthesis of α-linked glycoconjugates. Silyl ether protecting groups make the glycosyl iodide so reactive

  14. Taming the Reactivity of Glycosyl Iodides To Achieve Stereoselective Glycosidation.

    PubMed

    Gervay-Hague, Jacquelyn

    2016-01-19

    Although glycosyl iodides have been known for more than 100 years, it was not until the 21st century that their full potential began to be harnessed for complex glycoconjugate synthesis. Mechanistic studies in the late 1990s probed glycosyl iodide formation by NMR spectroscopy and revealed important reactivity features embedded in protecting-group stereoelectronics. Differentially protected sugars having an anomeric acetate were reacted with trimethylsilyl iodide (TMSI) to generate the glycosyl iodides. In the absence of C-2 participation, generation of the glycosyl iodide proceeded by inversion of the starting anomeric acetate stereochemistry. Once formed, the glycosyl iodide readily underwent in situ anomerization, and in the presence of excess iodide, equilibrium concentrations of α- and β-iodides were established. Reactivity profiles depended upon the identity of the sugar and the protecting groups adorning it. Consistent with the modern idea of disarmed versus armed sugars, ester protecting groups diminished the reactivity of glycosyl iodides and ether protecting groups enhanced the reactivity. Thus, acetylated sugars were slower to form the iodide and anomerize than their benzylated analogues, and these disarmed glycosyl iodides could be isolated and purified, whereas armed ether-protected iodides could only be generated and reacted in situ. All other things being equal, the β-iodide was orders of magnitude more reactive than the thermodynamically more stable α-iodide, consistent with the idea of in situ anomerization introduced by Lemieux in the mid-20th century. Glycosyl iodides are far more reactive than the corresponding bromides, and with the increased reactivity comes increased stereocontrol, particularly when forming α-linked linear and branched oligosaccharides. Reactions with per-O-silylated glycosyl iodides are especially useful for the synthesis of α-linked glycoconjugates. Silyl ether protecting groups make the glycosyl iodide so reactive

  15. Production of Molecular Iodine and Tri-iodide in the Frozen Solution of Iodide: Implication for Polar Atmosphere.

    PubMed

    Kim, Kitae; Yabushita, Akihiro; Okumura, Masanori; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Blaszczak-Boxe, Christopher S; Min, Dae Wi; Yoon, Ho-Il; Choi, Wonyong

    2016-02-01

    The chemistry of reactive halogens in the polar atmosphere plays important roles in ozone and mercury depletion events, oxidizing capacity, and dimethylsulfide oxidation to form cloud-condensation nuclei. Among halogen species, the sources and emission mechanisms of inorganic iodine compounds in the polar boundary layer remain unknown. Here, we demonstrate that the production of tri-iodide (I3(-)) via iodide oxidation, which is negligible in aqueous solution, is significantly accelerated in frozen solution, both in the presence and the absence of solar irradiation. Field experiments carried out in the Antarctic region (King George Island, 62°13'S, 58°47'W) also showed that the generation of tri-iodide via solar photo-oxidation was enhanced when iodide was added to various ice media. The emission of gaseous I2 from the irradiated frozen solution of iodide to the gas phase was detected by using cavity ring-down spectroscopy, which was observed both in the frozen state at 253 K and after thawing the ice at 298 K. The accelerated (photo-)oxidation of iodide and the subsequent formation of tri-iodide and I2 in ice appear to be related with the freeze concentration of iodide and dissolved O2 trapped in the ice crystal grain boundaries. We propose that an accelerated abiotic transformation of iodide to gaseous I2 in ice media provides a previously unrecognized formation pathway of active iodine species in the polar atmosphere. PMID:26745029

  16. Production of Molecular Iodine and Tri-iodide in the Frozen Solution of Iodide: Implication for Polar Atmosphere.

    PubMed

    Kim, Kitae; Yabushita, Akihiro; Okumura, Masanori; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Blaszczak-Boxe, Christopher S; Min, Dae Wi; Yoon, Ho-Il; Choi, Wonyong

    2016-02-01

    The chemistry of reactive halogens in the polar atmosphere plays important roles in ozone and mercury depletion events, oxidizing capacity, and dimethylsulfide oxidation to form cloud-condensation nuclei. Among halogen species, the sources and emission mechanisms of inorganic iodine compounds in the polar boundary layer remain unknown. Here, we demonstrate that the production of tri-iodide (I3(-)) via iodide oxidation, which is negligible in aqueous solution, is significantly accelerated in frozen solution, both in the presence and the absence of solar irradiation. Field experiments carried out in the Antarctic region (King George Island, 62°13'S, 58°47'W) also showed that the generation of tri-iodide via solar photo-oxidation was enhanced when iodide was added to various ice media. The emission of gaseous I2 from the irradiated frozen solution of iodide to the gas phase was detected by using cavity ring-down spectroscopy, which was observed both in the frozen state at 253 K and after thawing the ice at 298 K. The accelerated (photo-)oxidation of iodide and the subsequent formation of tri-iodide and I2 in ice appear to be related with the freeze concentration of iodide and dissolved O2 trapped in the ice crystal grain boundaries. We propose that an accelerated abiotic transformation of iodide to gaseous I2 in ice media provides a previously unrecognized formation pathway of active iodine species in the polar atmosphere.

  17. Charge, energy and LET spectra of high LET primary and secondary particles in CR-39 plastic nuclear track detectors of the P0006 experiment

    NASA Technical Reports Server (NTRS)

    Csige, I.; Frigo, L. A.; Benton, E. V.; Oda, K.

    1995-01-01

    We have measured the charge, energy and linear energy transfer (LET) spectra of about 800 high LET (LET(sub infinity) H2O greater than 50 keV/micron) particles in CR-39 plastic nuclear track detectors in the P0006 experiment of LDEF. Primary particles with residual range at the reference surface greater than about 2 microns and secondary particles produced in the detector material with total range greater than about 4 microns were measured. We have used a multi-etch technique and an internal calibration to identify and measure the energy of the particles at the reference surface. The LET spectrum was obtained from the charge and energy distribution of the particles.

  18. Correlation of individual cosmic ray nuclei with the observation of light flashes by Apollo astronauts. [nuclear emulsion detector design and operation

    NASA Technical Reports Server (NTRS)

    Pinsky, L. S.; Osborne, W. Z.; Bailey, J. V.

    1975-01-01

    A nuclear emulsion detector known as the Apollo Light Flash Moving Emulsion Detector (ALFMED) was designed: (1) to record tracks of primary cosmic rays; (2) to provide time-of-passage information via a relative plate translation technique; (3) to provide particle trajectory information; and (4) to fit into a masklike device that could be located about the head and eyes of an astronaut. An ALFMED device was worn by an astronaut observing light flashes for 60 minutes on each of the last two Apollo missions. During the Apollo 17 experiment seventeen separate flashes were reported by the observer. With one-third of the total plate area completely analyzed, two definite correlations have been found between Z greater than 8 cosmic ray nuclei traversing an eye and the reports of visual sensations.

  19. On the interpretation of observed data from C-dE/dx detectors. [Cerenkov light cosmic ray nuclear charge

    NASA Technical Reports Server (NTRS)

    Benegas, J. C.; Israel, M. H.; Klarmann, J.

    1975-01-01

    The paper describes a Cerenkov detector system designed to obtain abundances and energy spectra of cosmic ray nuclei above charge 12 and above 350 MeV/nucleon. The detector system consists of three pulse ionization chambers, a Lucite Cerenkov counter and a plastic scintillation-counter hodoscope. The data analysis follows from the standard dE/dx-C technique. It is shown that by using the relativistic ionization rise, the resolution and pulse height corresponding to charged particles of Beta ? 1 in Cerenkov detectors can be determined. Least-squares-fit procedures are used to obtain area and time variations of detector response from flight data and to extract elemental abundances from data with charge resolution of roughly 0.3 charge units.

  20. Results from the characterisation of Advanced GAmma Tracking Array prototype detectors and their consequences for the next-generation nuclear physics spectrometer

    NASA Astrophysics Data System (ADS)

    Dimmock, M. R.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Nelson, L.; Nolan, P.; Rigby, S.; Unsworth, C.; Lazarus, I.; Simpson, J.; Medina, P.; Parisel, C.; Santos, C.

    2007-09-01

    The Advanced GAmma Tracking Array (AGATA) is a European project that is aiming to construct a complete 4π High Purity Germanium (HPGe) gamma-ray spectrometer for nuclear structure studies at future Radioactive Ion Beam (RIB) Facilities. The proposed array will utilise digital electronics, Pulse Shape Analysis (PSA) and Gamma-Ray Tracking (GRT) algorithms, to overcome the limited efficiencies encountered by current Escape Suppressed Spectrometers (ESS), whilst maintaining the high Peak-to-Total ratio. Two AGATA symmetrical segmented Canberra Eurisys (CE) prototype HPGe detectors have been tested at the University of Liverpool. A highly collimated Cs-137 (662keV) beam was raster scanned across each detector and data were collected in both singles and coincidence modes. The charge sensitive preamplifier output pulse shapes from all 37 channels (one for each of the 36 segments and one for the centre contact) were digitised and stored for offline analysis. The shapes of the real charge and image charge pulses have been studied to give detailed information on the position dependent response of each detector. 1mm position sensitivity has been achieved with the parameterisation of average pulse shapes, calculated from data collected with each of the detectors. The coincidence data has also been utilised to validate the electric field simulation code Multi Geometry Simulation (MGS). The precisely determined 3D interaction positions allow the comparison of experimental pulse shapes from single site interactions with those generated by the simulation. It is intended that the validated software will be used to calculate a basis data set of pulse shapes for the array, from which any interaction site can be determined through a χ2 minimisation of the digitized pulse with linear combinations of basis pulseshapes. The results from this partial validation, along with those from the investigation into the position sensitivity of each detector are presented.

  1. Estimation of immediate fallout after the accident at Fukushima Daiichi Nuclear Power Plant by using HPGe detector and EGS5 code.

    PubMed

    Unno, Yasuhiro; Yunoki, Akira; Sato, Yasushi; Hino, Yoshio

    2013-11-01

    After the accident at the Fukushima Daiichi nuclear power plant, we managed to carry out emergency measurements of the radioactive fallout. The included nuclides were identified via gamma-ray spectrometry using an HPGe detector. Quantifications of each radionuclide in the fallout were determined based on the efficiency calibrations and relevant corrections. The collected samples had a variety of shapes, densities, and compositions. EGS5 Monte Carlo code was used for the flexible estimation of these parameters. The measurement results show the temporal changes in the fallout quantity about a month after the accident.

  2. 21 CFR 520.763 - Dithiazanine iodide oral dosage forms.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dithiazanine iodide oral dosage forms. 520.763... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763 Dithiazanine iodide oral dosage forms....

  3. 21 CFR 520.763 - Dithiazanine iodide oral dosage forms.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide oral dosage forms. 520.763... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763 Dithiazanine iodide oral dosage forms....

  4. 21 CFR 520.763 - Dithiazanine iodide oral dosage forms.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Dithiazanine iodide oral dosage forms. 520.763... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763 Dithiazanine iodide oral dosage forms....

  5. 21 CFR 520.763 - Dithiazanine iodide oral dosage forms.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Dithiazanine iodide oral dosage forms. 520.763... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763 Dithiazanine iodide oral dosage forms....

  6. 21 CFR 520.763 - Dithiazanine iodide oral dosage forms.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Dithiazanine iodide oral dosage forms. 520.763... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763 Dithiazanine iodide oral dosage forms....

  7. Iodide sensing via electrochemical etching of ultrathin gold films

    NASA Astrophysics Data System (ADS)

    Dielacher, Bernd; Tiefenauer, Raphael F.; Junesch, Juliane; Vörös, János

    2015-01-01

    Iodide is an essential element for humans and animals and insufficient intake is still a major problem. Affordable and accurate methods are required to quantify iodide concentrations in biological and environmental fluids. A simple and low cost sensing device is presented which is based on iodide induced electrochemical etching of ultrathin gold films. The sensitivity of resistance measurements to film thickness changes is increased by using films with a thickness smaller than the electron mean free path. The underlying mechanism is demonstrated by simultaneous cyclic voltammetry experiments and resistance change measurements in a buffer solution. Iodide sensing is conducted in buffer solutions as well as in lake water with limits of detection in the range of 1 μM (127 μg L-1) and 2 μM (254 μg L-1), respectively. In addition, nanoholes embedded in the thin films are tested for suitability of optical iodide sensing based on localized surface plasmon resonance.

  8. Equations of state for crystalline zirconium iodide: The role of dispersion

    NASA Astrophysics Data System (ADS)

    Rossi, Matthew L.; Taylor, Christopher D.

    2013-02-01

    We present the first-principle equations of state of several zirconium iodides, ZrI2, ZrI3, and ZrI4, computed using density functional theory methods that apply various methods for introducing the dispersion correction. Iodides formed due to reaction of molecular or atomic iodine with zirconium and zircaloys are of particular interest due to their application to the cladding material used in the fabrication of nuclear fuel rods. Stress corrosion cracking (SCC), associated with fission product chemistry with the clad material, is a major concern in the life cycle of nuclear fuels, as many of the observed rod failures have occurred due to pellet-cladding chemical interactions (PCCI) [A. Atrens, G. Dannhäuser, G. Bäro, Stress-corrosion-cracking of zircaloy-4 cladding tubes, Journal of Nuclear Materials 126 (1984) 91-102; P. Rudling, R. Adamson, B. Cox, F. Garzarolli, A. Strasser, High burn-up fuel issues, Nuclear Engineering and Technology 40 (2008) 1-8]. A proper understanding of the physical properties of the corrosion products is, therefore, required for the development of a comprehensive SCC model. In this particular work, we emphasize that, while existing modeling techniques include methods to compute crystal structures and associated properties, it is important to capture intermolecular forces not traditionally included, such as van der Waals (dispersion) correction. Furthermore, crystal structures with stoichiometries favoring a high I:Zr ratio are found to be particularly sensitive, such that traditional density functional theory approaches that do not incorporate dispersion incorrectly predict significantly larger volumes of the lattice. This latter point is related to the diffuse nature of the iodide electron cloud.

  9. Contribution of plated-out 218Po and 214Po to measurements of airborne 222Rn and daughters with plastic (CR-39) nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Kahn, Bernd; Wang, Zuoyuan; Sensistaffar, Edwin

    1984-01-01

    The fraction of alpha-particle tracks due to radioactivity plated out on its surface was measured for CR-39 nuclear track detector foils used to determine working level values in air. Bare foils were exposed to known concentrations of airborne 222Rn and its short-lived daughters in a calibration chamber. The amounts of 218Po and 214Po on the foil surface were measured with a calibrated diffused junction detector-spectrometer system immediately after the foils were removed from the chamber. Deposition was mostly by 218Po, with some 214Pb but essentially no 214Bi. The track density due to the plated-out radionuclides and the 222Rn, 218Po, and 214Po in chamber air was calculated and compared to the value measured by electrochemical etching. The calculated values generally were slightly above the measured values. On the basis of these calculations, the deposited radioactivity contributed slightly less than one-half of the total tracks in one test and slightly more than two-thirds in another. This effect complicates calibration of the detector relative to airborne radon daughters.

  10. Characterization of solid state nuclear track detectors of the polyallyl-diglycol-carbonate (CR-39/PM-355) type for light charged particle spectroscopy

    SciTech Connect

    Malinowska, A. Jaskóła, M.; Korman, A.; Kuk, M.; Szydłowski, A.

    2014-12-15

    This paper presents a method which uses the characteristics of the etch pits induced in a polyallyl-diglycol-carbonate (PADC) detector of the CR-39/PM-355 type to estimate particle energy. This method is based on the data provided by a semiautomatic system that selects tracks according to two parameters, crater diameters, and mean gray level values. In this paper we used the results of the calibration measurements that were obtained in our laboratory in the period 2000–2014. Combining the information on the two parameters it is possible to determine unambiguously the incident projectile energy values. The paper presents the results of an attempt to estimate the energy resolution of the method when analyzing the tracks produced in the CR-39/PM-355 detector by energetic ions such as alpha particles, protons, and deuterons. We discuss the energy resolution of the measurement of light charged particle energy which is based on the parameters (crater diameter and mean gray level value) of tracks induced in solid state nuclear track detectors of the PADC type.

  11. Silver iodide sodalite for 129I immobilisation

    NASA Astrophysics Data System (ADS)

    Vance, E. R.; Gregg, D. J.; Grant, C.; Stopic, A.; Maddrell, E. R.

    2016-11-01

    Silver iodide sodalite was initially synthesised as a fine-grained major phase in a nominally stoichiometric composition following hot isostatic pressing at 850 °C with 100 MPa and its composition, Ag4Al3Si3O12I, was approximately verified by scanning electron microscopy. An alternative preparative method yielded a more dense and stoichiometric AgI sodalite on sintering and HIPing. As found for AgI, the I is released from AgI sodalite much more readily in reducing water than in ordinary water. Thus in normal PCT-B tests, the I release was <0.3 g/L in water, but it was ∼70 g/L under highly reducing conditions. This is an important point with regard to can material if HIPing is used for consolidation.

  12. Growth of single crystals of mercuric iodide (HgI/sub 2/) in spacelab III

    SciTech Connect

    Van Den Berg, L.; Schnepple, W.F.

    1981-01-01

    Continued development of a system designed to grow crystals by physical vapor transport in the environment of Spacelab III will be described, with special emphasis on simulation of expected space conditions, adjustment of crystal growth parameters, and on board observation and control of the experiment by crew members and ground personnel. A critical factor in the use of mercuric iodide for semiconductor detectors of x-rays and gamma-rays is the crystalline quality of the material. The twofold purpose of the Spacelab III experiment is therefore to grow single crystals with superior electronic properties as an indirect result of the greatly reduced gravity field during the growth, and to obtain data which will lead to improved understanding of the vapor transport mechanism. The experiments planned to evaluate the space crystals, including gamma-ray diffractometry and measurements of stoichiometry, lattice dimensions, mechanical strength, luminescense, and detector performance are discussed.

  13. Potassium iodide as a thyroid blocker--Three Mile Island to today.

    PubMed

    Halperin, J A

    1989-05-01

    The Three Mile Island (TMI) nuclear emergency in the U.S. in March 1979 marked the first occasion when use of potassium iodide (KI) was considered for thyroid blocking of the population in the vicinity of a potentially serious release of fission products from a nuclear power reactor. In face of a demand that could not be satisfied by commercial supplies of low-dose KI drug products from the U.S. pharmaceutical industry, the Food and Drug Administration directed the manufacture and stockpiling of sufficient quantities of saturated solution of potassium iodide (SSKI) to provide protection for one million people in the event of a large-scale release of radioiodines. Although the drug was not used, the experience of producing, stockpiling, and making ready for use a large quantity of the drug resulted in significant public policy, regulatory, and logistical issues. A number of these issues have been resolved through scientific debate and consensus, development of official guidance regarding the proper role of KI in nuclear emergencies, and the approval of New Drug Applications for KI products specifically intended for thyroid blocking in nuclear emergencies. Other issues regarding broad-scale implementation of the guidelines remain today. This paper traces the history of the development and implementation of the use of KI from pre-TMI to the present. PMID:2471366

  14. Iodide Sorption to Clays and the Relationship to Surface Charge and Clay Texture - 12356

    SciTech Connect

    Miller, Andrew; Kruichiak, Jessica; Tellez, Hernesto; Wang, Yifeng

    2012-07-01

    Iodine is assumed to behave conservatively in clay barriers around nuclear waste repositories and in natural sediments. Batch experiments tend to show little to no sorption, while in column experiments iodine is often retarded relative to tritiated water. Current surface complexation theory cannot account for negatively charged ion sorption to a negatively charged clay particle. Surface protonation and iodide sorption to clay minerals were examined using surface titrations and batch sorption experiments with a suite of clay minerals. Surface titrations were completed spanning a range of both pH values and ionic strengths. For reference, similar titrations were performed on pure forms of an Al-O powder. The titration curves were deconvoluted to attain the pKa distribution for each material at each ionic strength. The pKa distribution for the Al-O shows two distinct peaks at 4.8 and 7.5, which are invariant with ionic strength. The pKa distribution of clays was highly variable between the different minerals and as a function of ionic strength. Iodide sorption experiments were completed at high solid:solution ratios to exacerbate sorption properties. Palygorskite and kaolinite had the highest amount of iodide sorption and montmorillonite had the least. (authors)

  15. Novel Surface Preparation and Contacts for CdZnTe Nuclear Radiation Detectors Using Patterned Films of Semiconductors and Insulators

    NASA Astrophysics Data System (ADS)

    Burger, Arnold; Groza, Michael; Conway, Adam; Payne, Steve

    2013-04-01

    The semiconductor Cadmium Zinc Telluride (CZT) has emerged as the material of choice for room temperature detection of X-rays and gamma-rays. The detectors will cover the energy range from 30 keV to several MeV, and will achieve excellent 662 keV energy resolution. The development of high resolution gamma ray detectors based on CZT is dependent on low electronic noise levels. One common source of noise is the surface leakage current, which limits the performance of advanced readout schemes such as the coplanar grid and pixelated architectures with steering grids. Excessive bulk leakage current can result from one of several surface effects: leaky native oxides, unsatisfied bonds, and surface damage. We propose to fabricate and test oriented [111] CZT crystals with thicknesses up to 1.5 cm with an innovative detection technique based on co-planar or other electron only transport designs using plasma processing, thin film sputtering, chemical passivation and wet etching techniques. Compared to conventional pixel detectors, the proposed contact configuration needs lower power consumption and a lower cost. The detector design can be used for building very low-cost handheld radiation detection devices.

  16. The distribution of iodide at the sea surface.

    PubMed

    Chance, Rosie; Baker, Alex R; Carpenter, Lucy; Jickells, Tim D

    2014-08-01

    Recent studies have highlighted the impact of sea surface iodide concentrations on the deposition of ozone to the sea surface and the sea to air flux of reactive iodine. The use of models to predict this flux demands accurate, spatially distributed sea surface iodide concentrations, but to date, the observational data required to support this is sparse and mostly arises from independent studies conducted on small geographical and temporal scales. We have compiled the available measurements of sea surface iodide to produce a data set spanning latitudes from 69°S to 66°N, which reveals a coherent, large scale distribution pattern, with highest concentrations observed in tropical waters. Relationships between iodide concentration and more readily available parameters (chlorophyll, nitrate, sea surface temperature, salinity, mixed layer depth) are evaluated as tools to predict iodide concentration. Of the variables tested, sea surface temperature is the strongest predictor of iodide concentration. Nitrate was also strongly inversely associated with iodide concentration, but chlorophyll-a was not.

  17. Deployment of a three-dimensional array of Micro-Pocket Fission Detector triads (MPFD3) for real-time, in-core neutron flux measurements in the Kansas State University TRIGA Mark-II Nuclear Reactor

    NASA Astrophysics Data System (ADS)

    Ohmes, Martin Francis

    A Micro-Pocket Fission Detector (MPFD) is a miniaturized type of fission chamber developed for use inside a nuclear reactor. Their unique design allows them to be located between or even inside fuel pins while being built from materials which give them an operational lifetime comparable to or exceeding the life of the fuel. While other types of neutron detectors have been made for use inside a nuclear reactor, the MPFD is the first neutron detector which can survive sustained use inside a nuclear reactor while providing a real-time measurement of the neutron flux. This dissertation covers the deployment of MPFDs as a large three-dimensional array inside the Kansas State University TRIGA Mark-II Nuclear Reactor for real-time neutron flux measurements. This entails advancements in the design, construction, and packaging of the Micro-Pocket Fission Detector Triads with incorporated Thermocouple, or MPFD3-T. Specialized electronics and software also had to be designed and built in order to make a functional system capable of collecting real-time data from up to 60 MPFD3-Ts, or 180 individual MPFDs and 60 thermocouples. Design of the electronics required the development of detailed simulations and analysis for determining the theoretical response of the detectors and determination of their size. The results of this research shows that MPFDs can operate for extended times inside a nuclear reactor and can be utilized toward the use as distributed neutron detector arrays for advanced reactor control systems and power mapping. These functions are critical for continued gains in efficiency of nuclear power reactors while also improving safety through relatively inexpensive redundancy.

  18. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  19. Effect of environmental conditions on radon concentration-track density calibration factor of solid-state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    El-Sersy, A.; Mansy, M.; Hussein, A.

    2004-04-01

    In this work, the effect of environmental conditions viz., temperature (T) and relative humidity (RH) on the track density--radon concentrations calibration factor (K) has been studied for CR-39 and LR-115 track detectors. The factor K was determined using a reference radon chamber in the National Institute for Standards (NIS) in Egypt. Track detectors were etched at the recommended optimum etching conditions. It is found that, the calibration factor K varies with both T and RH, so they should be considered for the sake of uncertainty reduction. Good agreement is found between the calculated and measured values of K and the compatibility between them is in the range of experimental uncertainty.

  20. Origin of a signal detected with the LSD detector after the accident at the chernobyl nuclear power plant

    NASA Astrophysics Data System (ADS)

    Agafonova, N. Yu.; Malgin, A. S.; Fulgione, W.

    2013-08-01

    A rare signal was detected at 23:53 Moscow time on April 27, 1986 with the LSD low-background scintillation detector located under Mont Blanc at a distance of 1820 km from Chernobyl. To reveal the origin of this signal, we discuss the results obtained with other instruments operating within a similar program, as well as analyze the characteristics of the pulses of the signal and facts referring to the explosion of the Chernobyl reactor. A hypothesis based on detection with the LSD of gamma-quanta from β decays of 135I nuclei ejected into atmosphere by the reactor explosion and carried in the underground detector camera with air of positive ventilation is considered. The explosion origin of the LSD signal indicates a new technogenic source of the background in the search for neutrino bursts from cores of collapsing stars.

  1. Origin of a signal detected with the LSD detector after the accident at the chernobyl nuclear power plant

    SciTech Connect

    Agafonova, N. Yu. Malgin, A. S.; Fulgione, W.

    2013-08-15

    A rare signal was detected at 23:53 Moscow time on April 27, 1986 with the LSD low-background scintillation detector located under Mont Blanc at a distance of 1820 km from Chernobyl. To reveal the origin of this signal, we discuss the results obtained with other instruments operating within a similar program, as well as analyze the characteristics of the pulses of the signal and facts referring to the explosion of the Chernobyl reactor. A hypothesis based on detection with the LSD of gamma-quanta from {beta} decays of {sup 135}I nuclei ejected into atmosphere by the reactor explosion and carried in the underground detector camera with air of positive ventilation is considered. The explosion origin of the LSD signal indicates a new technogenic source of the background in the search for neutrino bursts from cores of collapsing stars.

  2. A comparison of CsI:Tl and GOS in a scintillator-CCD detector for nuclear medicine imaging

    NASA Astrophysics Data System (ADS)

    Bugby, S. L.; Jambi, L. K.; Lees, J. E.

    2016-09-01

    A number of portable gamma cameras for medical imaging use scintillator-CCD based detectors. This paper compares the performance of a scintillator-CCD based portable gamma camera with either a columnar CsI:Tl or a pixelated GOS scintillator installed. The CsI:Tl scintillator has a sensitivity of 40% at 140.5 keV compared to 54% with the GOS scintillator. The intrinsic spatial resolution of the pixelated GOS detector was 1.09 mm, over 4 times poorer than for CsI:Tl. Count rate capability was also found to be significantly lower when the GOS scintillator was used. The uniformity was comparable for both scintillators.

  3. Fabrication and characterization of Cd0.9Zn0.1Te Schottky diodes for nuclear radiation detectors

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Muzykov, Peter G.; Krishna, Ramesh M.; Hayes, Timothy C.

    2011-09-01

    We have fabricated and characterized cadmium zinc telluride (CZT) Schottky diodes with low reverse leakage current for high resolution radiation detector applications. The diodes were made using Cd0.9Zn0.1Te detector grade crystals grown by the low temperature tellurium solvent method. The diodes were characterized using electron beam induced current (EBIC) technique to investigate crystallographic defects. The EBIC images were correlated with transmission infrared (TIR) images of CZT crystals and the EBIC contrast was attributed to the nonuniformities in spatial distribution of Te. Further characterization by the thermally stimulated current (TSC) spectroscopy revealed shallow and deep level centers with activation energies 0.25- 0.4 eV and 0.65 - 0.8 eV respectively, which we attribute to intrinsic defects associated with excess of Te. Pulse height spectra (PHS) measurements were carried out using a 241Am (59.6 keV) radiation source on the Frisch collar radiation detectors made from the suitable portions of the CZT ingot used for Schottky diode fabrication, and an energy resolution of ~4.2% FWHM was obtained.

  4. Reaction of N-sulfonyltellurimides with methyl iodide

    SciTech Connect

    Naddaka, V.I.; Avanesyan, K.V.; Cherkinskaya, M.L.; Minkin, V.I.

    1987-09-20

    While developing researches into the reactivity of tellurimides, the authors studied the previously unknown reaction of N-sulonyltellurimides with methyl iodide. The authors established that bis(diphenyltellurium) oxide and N-methyl-p-toluenesulfonamide are formed when the tellurimide is boiled in methyl iodide. Such a direction is evidently due to the fact that the telluronium salt produced during the reaction is readily hydrolyzed at the Te-N bond on account of the presence of traces of moisture in the methyl iodide. However, the heating of the tellurimides with an excess of anhydrous methyl iodide in a sealed tube leads to diaryltellurium diiodides and N,N-dimethylsulfonamides. The PMR spectra of solutions of the substances in deuterochloroform were recorded on a Tesla-BS-487 spectrometer at 80 MHz with HMDS as internal standard. The IR spectra were obtained on a Specord 71-IR instrument in Vaseline oil.

  5. Laboratory measurements of parameters affecting wet deposition of methyl iodide

    SciTech Connect

    Maeck, W.J.; Honkus, R.J.; Keller, J.H.; Voilleque, P.G.

    1984-09-01

    The transfer of gaseous methyl iodide (CH/sub 3/I) to raindrops and the initial retention by vegetation of CH/sub 3/I in raindrops have been studied in a laboratory experimental program. The measured air-to-drop transfer parameters and initial retention factors both affect the wet deposition of methyl iodide onto vegetation. No large effects on the air-to-drop transfer due to methyl iodide concentration, temperature, acidity, or rain type were observed. Differences between laboratory measurements and theoretical values of the mass transfer coefficient were found. Pasture grass, lettuce, and alfalfa were used to study the initial retention of methyl iodide by vegetation. Only a small fraction of the incident CH/sub 3/I in raindrops was held by any of the three vegetation types.

  6. Nanochemistry: Iron cluster reactions with methyl iodide

    SciTech Connect

    McCarter, B.E.; Bililign, S.; Feigerle, C.S.; Miller, J.C.

    1999-08-26

    Previous experiments have shown that the ionization/dissociation of iron pentacarbonyl clusters can lead to the formation of iron ions and iron cluster ions that that these species can further react with dopant molecules to yield chemically rearranged products. The present experiments characterize similar reactions with methyl iodide molecules and clusters. Heteroclusters of the form [Fe(CO){sub 5}]{sub m}(CH{sub 3}I){sub n}Ar{sub p} are created in an expanding supersonic jet of the component molecules. Following ionization by a 30 ps, 266 nm laser pulse, extensive dissociation, aggregation, and chemical rearrangement occur leading to ionic products, which are characterized by mass spectrometry. Cluster ions of the type Fe{sub m}I{sub n}{sup +}, Fe(CH{sub 3}I){sub n}{sup +} are observed as products. The stability of the binary parent ion Fe(CH{sub 3}I){sup +} is demonstrated for the first time.

  7. Structural diversity in hybrid organic-inorganic lead iodide materials.

    PubMed

    Weber, Oliver J; Marshall, Kayleigh L; Dyson, Lewis M; Weller, Mark T

    2015-12-01

    The structural chemistry of hybrid organic-inorganic lead iodide materials has become of increasing significance for energy applications since the discovery and development of perovskite solar cells based on methylammonium lead iodide. Seven new hybrid lead iodide compounds have been synthesized and structurally characterized using single-crystal X-ray diffraction. The lead iodide units in materials templated with bipyridyl, 1,2-bis(4-pyridyl)ethane, 1,2-di(4-pyridyl)ethylene and imidazole adopt one-dimensional chain structures, while crystallization from solutions containing piperazinium cations generates a salt containing isolated [PbI6](4-) octahedral anions. Templating with 4-chlorobenzylammonium lead iodide adopts the well known two-dimensional layered perovskite structure with vertex shared sheets of composition [PbI4](2-) separated by double layers of organic cations. The relationships between the various structures determined, their compositions, stability and hydrogen bonding between the protonated amine and the iodide ions of the PbI6 octahedra are described. PMID:26634723

  8. A performance test of a new high-surface-quality and high-sensitivity CR-39 plastic nuclear track detector - TechnoTrak

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Morishige, K.; Kawashima, H.; Kitamura, H.; Kurano, M.; Hasebe, N.; Koguchi, Y.; Shinozaki, W.; Ogura, K.

    2016-09-01

    We have studied the performance of a newly-commercialized CR-39 plastic nuclear track detector (PNTD), "TechnoTrak", in energetic heavy ion measurements. The advantages of TechnoTrak are derived from its use of a purified CR-39 monomer to improve surface quality combined with an antioxidant to improve sensitivity to low-linear-energy-transfer (LET) particles. We irradiated these detectors with various heavy ions (from protons to krypton) with various energies (30-500 MeV/u) at the heavy ion accelerator facilities in the National Institute of Radiological Sciences (NIRS). The surface roughness after chemical etching was improved to be 59% of that of the conventional high-sensitivity CR-39 detector (HARZLAS/TD-1). The detectable dynamic range of LET was found to be 3.5-600 keV/μm. The LET and charge resolutions for three ions tested ranged from 5.1% to 1.5% and 0.14 to 0.22 c.u. (charge unit), respectively, in the LET range of 17-230 keV/μm, which represents an improvement over conventional products (HARZLAS/TD-1 and BARYOTRAK). A correction factor for the angular dependence was determined for correcting the LET spectrum in an isotropic radiation field. We have demonstrated the potential of TechnoTrak, with its two key features of high surface quality and high sensitivity to low-LET particles, to improve automatic analysis protocols in radiation dosimetry and various other radiological applications.

  9. Charge-carrier mobilities in Cd(0.8)Zn(0.2)Te single crystals used as nuclear radiation detectors

    NASA Technical Reports Server (NTRS)

    Burshtein, Z.; Jayatirtha, H. N.; Burger, A.; Butler, J. F.; Apotovsky, B.; Doty, F. P.

    1993-01-01

    Charge-carrier mobilities were measured for the first time in Cd(0.8)Zn(0.2)Te single crystals using time-of-flight measurements of charge carriers produced by short (10 ns) light pulses from a frequency-doubled Nd:YAG laser (532 nm). The electron mobility displayed a T exp -1.1 dependence on the absolute temperature T in the range 200-320 K, with a room-temperature mobility of 1350 sq cm/V s. The hole mobility displayed a T exp -2.0 dependence in the same temperature range, with a room-temperature mobility of 120 sq cm/V s. Cd(0.8)Zn(0.2)Te appears to be a very favorable material for a room-temperature electronic nuclear radiation detector.

  10. Characterization of the Oum Er Rbia (Morocco) high basin karstic water sources by using solid state nuclear track detectors and radon as a natural tracer.

    PubMed

    Khalil, N; Misdaq, M A; Berrazzouk, S; Mania, J

    2002-06-01

    Uranium and thorium contents as well as radon alpha-activities per unit volume were evaluated inside different water samples by using a method based on calculating the CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs) detection efficiencies for the emitted alpha-particles and measuring the resulting track density rates. The validity of the SSNTD technique utilized was checked by analysing uranyl nitrate (UO2(NO3)26H2O) standard solutions. A relationship between water radon concentration and water transmission of different water sources belonging to two regions of the Middle Atlas (Morocco) water reservoir was found. The influence of the water flow rate as well as the permeability and fracture system of the host rocks of the sources studied was investigated.

  11. Measurements of the Nuclear Modification Factor for Jets in Pb +Pb Collisions at √{sNN}=2.76 TeV with the ATLAS Detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H. Å.; Kesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Almond, J.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batley, J. R.; Battaglia, M.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boddy, C. R.; Boehler, M.; Boek, T. T.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bundock, A. C.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuciuc, C.-M.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J. A.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Dwuznik, M.; Dyndal, M.; Ebke, J.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernandez Perez, S.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Franz, S.; Fraternali, M.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gandrajula, R. P.; Gao, J.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.; Grout, Z. J.; Guan, L.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Gunther, J.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keil, M.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; La Rosa, A.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leone, S.; Leonhardt, K.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Lester, C. M.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, B. A.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marques, C. N.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moraes, A.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Narayan, R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'Grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Przysiezniak, H.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Qureshi, A.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Ridel, M.; Rieck, P.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodrigues, L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sacerdoti, S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sauvage, G.; Sauvan, E.; Savard, P.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Will, J. Z.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wright, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.; Yao, L.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi Della Porta, G.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration

    2015-02-01

    Measurements of inclusive jet production are performed in p p and Pb +Pb collisions at √{sNN}=2.76 TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 and 0.14 nb-1 , respectively. The jets are identified with the anti-kt algorithm with R =0.4 , and the spectra are measured over the kinematic range of jet transverse momentum 32 nuclear modification factor RAA is evaluated, and jets are found to be suppressed by approximately a factor of 2 in central collisions compared to p p collisions. The RAA shows a slight increase with pT and no significant variation with rapidity.

  12. Mapping of the thermal neutron distribution in the lead block assembly of the PS-211 experiment at CERN, using thermoluminescence and nuclear track detectors.

    PubMed

    Savvidis, E; Eleftheriadis, C A; Kitis, G

    2002-01-01

    The main purpose of the TARC (Transmutation by Adiabatic Resonance Crossing) experiment (PS-211), was to demonstrate the possibility to destroy efficiently Long-Lived Fission Fragments (LLFF) in Accelerator Driven Systems (ADS). The experimental set-up which consisted of a lead block with dimensions 3.3 x 3.3 x 3 m3, was installed in a CERN Proton Synchrotron (PS) beam line. The proton beam at 2.5 GeV/c and 3.5 GeV/c, was incident in the centre of the lead block assembly producing neutrons via spallation reactions. In this study, neutron flux measurements are presented in the lead block assembly using thermoluminescence and nuclear track detectors. The results are in good agreement with Monte Carlo calculations as well as with the results of the other methods used in the framework of the TARC experiment.

  13. Changes in the thermal properties of PADC film-based nuclear track detectors produced by high doses of γ-radiation

    NASA Astrophysics Data System (ADS)

    Saad, A. F.; Saad, Noura; Abdalla, Y. K.

    2014-04-01

    Irradiation effects on the thermal properties of poly allyl diglycol carbonate (PADC) polymer-based nuclear track detectors (in the form of CR-39) have been investigated. PADC films were exposed to γ-rays at high doses ranging from 5.0 × 105 to 1.0 × 106 Gy. The induced modifications were analyzed by means of thermogravimetric analysis, which indicated that the PADC film decomposed in three main stages. The activation energy for thermal decomposition was determined using a type of Arrhenius equation based on the TGA experimental results. This study presents quantitative results showing that the exposed PADC films do not undergo continual further degradation from high-energy γ-photons with increase in dose. The experimental results also provide insight into the specific property changes induced by γ-rays, which may be of use for industrial applications.

  14. Theoretical feasibility study on neutron spectrometry with the polyallyldiglycol carbonate (PADC) solid-state nuclear track detector

    NASA Astrophysics Data System (ADS)

    Nikezic, D.; Yu, K. N.

    2015-01-01

    Neutron spectrometry with the polyallyldiglycol carbonate (PADC) film detector was analyzed in detail. The computer codes TRACK_TEST and TRACK_VISION, which were originally developed for studies on alpha-particle tracks, were modified to compute parameters of etched proton tracks developed in the PADC film detector and to simulate their appearance under an optical microscope in the transmission mode. It was shown that protons with same energy and recoil angle could produce different etched tracks with various size and shape, depending on the point of their creation. As such, it was necessary to employ multiple etching, and to measure the removed layer thickness and to record the track appearance after each etching step. A new variable, namely, the effective removed layer heff, was introduced as the difference between the total removed layer and the depth where the proton was created in the detector. A program modified from the TRACK_VISION code was used to plot the appearance of a number of representative etched proton tracks. For proton energies larger than 2 MeV, the V function for protons in PADC was found to be almost constant, so the simple formulas for major and minor axes of proton track openings could be used to determine the proton energy, recoiled angle as well as the energy of the neutron which caused the proton recoil. For lower proton energies, a databank of various proton tracks showing the track opening appearances and the track profiles should be created for comparison to facilitate the determination of the proton energy.

  15. Two CdZnTe Detector-Equipped Gamma-ray Spectrometers for Attribute Measurements on Irradiated Nuclear Fuel

    SciTech Connect

    Hartwell, John Kelvin; Winston, Philip Lon; Marts, Donna Jeanne; Moore-McAteer, Lisa Dawn; Taylor, Steven Cheney

    2003-04-01

    Some United States Department of Energy-owned spent fuel elements from foreign research reactors (FRRs) are presently being shipped from the reactor location to the US for storage at the Idaho National Engineering and Environmental Laboratory (INEEL). Two cadmium zinc telluride detector-based gamma-ray spectrometers have been developed to confirm the irradiation status of these fuels. One spectrometer is configured to operate underwater in the spent fuel pool of the shipping location, while the other is configured to interrogate elements on receipt in the dry transfer cell at the INEEL’s Interim Fuel Storage Facility (IFSF). Both units have been operationally tested at the INEEL.

  16. Calibration of the Politrack® system based on CR39 solid-state nuclear track detectors for passive indoor radon concentration measurements.

    PubMed

    Kropat, G; Baechler, S; Bailat, C; Barazza, F; Bochud, F; Damet, J; Meyer, N; Palacios Gruson, M; Butterweck, G

    2015-11-01

    Swiss national requirements for measuring radon gas exposures demand a lower detection limit of 50 kBq h m(-3), representing the Swiss concentration average of 70 Bq m(-3) over a 1-month period. A solid-state nuclear track detector (SSNTD) system (Politrack, Mi.am s.r.l., Italy) has been acquired to fulfil these requirements. This work was aimed at the calibration of the Politrack system with traceability to international standards and the development of a procedure to check the stability of the system. A total of 275 SSNTDs was exposed to 11 different radon exposures in the radon chamber of the Secondary Calibration Laboratory at the Paul Scherrer Institute, Switzerland. The exposures ranged from 50 to 15000 kBq h m(-3). For each exposure of 20 detectors, 5 SSNTDs were used to monitor possible background exposures during transport and storage. The response curve and the calibration factor of the whole system were determined using a Monte Carlo fitting procedure. A device to produce CR39 samples with a reference number of tracks using a (241)Am source was developed for checking the long-term stability of the Politrack system. The characteristic limits for the detection of a possible system drift were determined following ISO Standard 11929.

  17. Engineering and design properties of thallium-doped sodium iodide and selected properties of sodium-doped cesium iodide

    NASA Technical Reports Server (NTRS)

    Forrest, K.; Haehner, C.; Heslin, T.; Magida, M.; Uber, J.; Freiman, S.; Hicho, G.; Polvani, R.

    1984-01-01

    Mechanical and thermal properties, not available in the literature but necessary to structural design, using thallium doped sodium iodide and sodium doped cesium iodide were determined to be coefficient of linear thermal expansion, thermal conductivity, thermal shock resistance, heat capacity, elastic constants, ultimate strengths, creep, hardness, susceptibility to subcritical crack growth, and ingot variation of strength. These properties were measured for single and polycrystalline materials at room temperature.

  18. Detector frontier: Theoretical expectations and dreams

    SciTech Connect

    Nazarewicz, W.

    1992-12-31

    The new large detector systems are certain to shed new light on many aspects of nuclear structure. Some of these areas for future studies are discussed. In this contribution the author concentrates on several aspects of nuclear spectroscopy, that will be accessible by modern detector systems (e.g., {gamma}-ray crystal balls or new-generation particle detectors).

  19. Radon measurements by nuclear track detectors in dwellings in Oke-Ogun area, South-Western, Nigeria.

    PubMed

    Obed, R I; Ademola, A K; Ogundare, F O

    2012-03-01

    An indoor radon survey of a total of 77 dwellings randomly selected in 10 districts in Oke-Ogun area of Oyo state, South-western Nigeria was carried out using CR-39 detectors. The CR-39 detectors were placed in the bedrooms and living rooms and exposed for 6 months and then etched in NaOH 6.25 N solution at 90 °C for 3 h. Mean concentrations amount to 255 ± 47 and 259 ± 67 Bq m(-3) in the living rooms and bedrooms, respectively. The lowest radon concentration (77 ± 29 Bq m(-3)) was found in Igbeti, whereas the highest was found in Okeho (627 ± 125 Bq m(-3)). The annual exposure of dwellers was estimated to fall <10 mSv (6.4 and 6.5 mSv y(-1) n living rooms and bedrooms, respectively), which is the upper range of action levels recommended by the International Commission on Radiological Protection. The average excess lung cancer risk was estimated 24.8 and 25.2 per million person-years in both living rooms and bedrooms. It is believed that the high radon level in this part of the country may be attributed to its geographic location. The data presented here will serve as a baseline survey for radon concentration in dwellings in the area.

  20. DETECTORS AND EXPERIMENTAL METHODS: Study of the characteristics of a scintillation array and single pixels for nuclear medicine imaging applications

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Ma, Hong-Guang; Ma, Wen-Yan; Zeng, Hui; Wang, Zhao-Min; Xu, Zi-Zong

    2009-04-01

    By using a pixelized Nal(Tl) crystal array coupled to a R2486 PSPMT, the characteristics of the array and of a single pixel, such as the light output, energy resolution, peak-to-valley ratio (P/V) and imaging performance of the detector were studied. The pixel size of the NaI(TI) scintillation pixel array is 2 mm×2 mm×5 mm. There are in total 484 pixels in a 22 × 22 matrix. In the pixel spectrum an average peak-to-valley ratio (P/V) of 16 was obtained. In the image of all the pixels, good values for the Peak-to-Valley ratios could be achieved, namely a mean of 17, a maximum of 45 and the average peak FWHM (the average value of intrinsic spatial resolution) of 2.3 mm. However, the PSPMT non-uniform response and the scintillation pixels array inhomogeneities degrade the imaging performance of the detector.

  1. Iodide iontophoresis as a treatment for dry eye syndrome

    PubMed Central

    Horwath-Winter, J; Schmut, O; Haller-Schober, E-M; Gruber, A; Rieger, G

    2005-01-01

    Background/aims: Among the causes related to the development or perpetuation and aggravation of dry eye disease, oxidative reactions may have a role in the pathogenesis of this disorder. Antioxidants, such as iodide, have shown a strong effect in preventing the oxidative damage to constituents of the anterior part of the eye. In this clinical trial the effectiveness of iodide iontophoresis and iodide application without current in moderate to severe dry eye patients was compared. Methods: 16 patients were treated with iodide iontophoresis and 12 patients with iodide application without current for 10 days. Subjective improvement, frequency of artificial tear application, tear function parameters (break up time, Schirmer test without local anaesthesia), vital staining (fluorescein and rose bengal staining) as well as impression cytology of the bulbar conjunctiva were evaluated before treatment, 1 week, 1 month, and 3 months after treatment. Results: A reduction in subjective symptoms, frequency of artificial tear substitute application, and an improvement in certain tear film and ocular surface factors could be observed in both groups. A stronger positive influence was seen after application of iodide with current (iontophoresis), as observed in a distinct improvement in break up time, fluorescein and rose bengal staining, and in a longer duration of this effect compared with the non-current group. No significant change in Schirmer test results and impression cytology were observed in both groups. Conclusions: Iodide iontophoresis has been demonstrated to be a safe and well tolerated method of improving subjective and objective dry eye factors in patients with ocular surface disease. PMID:15615744

  2. Purification and Crystal Growth of Lead Iodide by Physical Vapor Transport Method

    NASA Technical Reports Server (NTRS)

    Wright, G. W.; Cole, M.; Chen, Y.-F.; Chen, K.-T.; Chen, H.; Chattopadhyay, K.; Burger, A.

    1998-01-01

    Lead iodide (PbI2) is a layered compound semiconductor being developed as room temperature x- and gamma-ray detector. Compared to the more studied material, mercuric iodide, PbI2 has a higher melting temperature and no phase transition until liquid phase which are indications of better mechanical properties. In this study, the source material was purified by the zone-refining process, and the purest section was extracted from center of the the zone-refined ingot to be grown by physical vapor transport (PVT) method. The zone-refined material and as-grown crystals were characterized by optical microscopy and differential scanning calorimetry (DSC) to reveal the surface morphology, purity and stoichiometry. The results shows that both materials are near-stoichiometric composition, with the purity of the as-grown crystals higher than zone-refined materials. The resistivity of the as-grown crystal (10" Omega-cm) was derived from current-voltage (I-V) measurement, and is 10 times higher than the zone-refined materials. Detail results will be presented and discussed.

  3. High-Performance Doped Strontium Iodide Crystal Growth Using a Modified Bridgman Method

    NASA Astrophysics Data System (ADS)

    Rowe, Emmanuel

    The importance of gamma-ray spectroscopy---the science of determining the distribution of energy in a gamma field---can rarely be overstated. High performance scintillators for gamma-ray spectroscopy in Nuclear Nonproliferation applications and homeland security require excellent energy resolution to distinguish neighboring element and isotope lines while minimizing the time and exposure to do so. Semiconductor detectors operate by converting incident photons directly into electrical pulses, but often have problems of high costs due to constituent segregation and surface states as is the case for Cadmium Zinc Telluride. The ideal scintillator material for gamma spectrometer will therefore requires high light yield, excellent proportionality between light yield and gamma photon energy, and material uniformity. A scintillator should possess the following properties; it should convert the kinetic energy of the generated charged particles (typically K-shell electrons) into detectable visible light. This conversion should be linear-the light yield should be proportional to deposited energy over as wide a range as possible. For good light collection, the medium should be transparent to the wavelength of its own emission. The decay time of the induced luminescence should be short so that fast signal pulses can be generated. The medium should be of good optical quality and subject to manufacture in sizes large enough to be of interest as a practical detector. Its index of refraction should be near that of glass (~1.5) to permit efficient coupling of scintillation light to a photomultiplier tube or other photo-sensor. In the past decade, inorganic scintillator research has focused less on improving the characteristics of known scintillators, but rather on the search for new hosts capable of fast response and high energy resolution. Extensive searches have been made for hosts doped with lanthanide activators utilizing the allowed 5d-4f transition. These 5d-4f transitions are

  4. Field Deployable Gamma Radiation Detectors for DHS Use

    SciTech Connect

    Sanjoy Mukhopadhyay

    2007-08-31

    Recently, the U.S. Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS’s requirements in terms of sensitivity, resolution, response time and reach back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron’s identiFINDER™, which primarily uses sodium iodide crystals (3.18-cm x 2.54-cm cylinders) as gamma detector, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack™ that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity (comparable to that of a 7.62-cm x 7.62-cm sodium iodide crystal at low gamma energy ranging from 30 keV to 3,000 keV), better resolution (< 3.0 percent at 662 keV), faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets

  5. Cesium-iodide-based nanocrystal for the detection of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Farzaneh, Azadeh; Abdi, Mohammad Reza; Saraee, Khadijeh Rezaee Ebrahim; Mostajaboddavati, Mojtaba; Quaranta, A.

    2016-05-01

    We report on the synthesis of cesium-iodide nanoparticles using sol-gel technique. The structural properties of CsI nanoparticles were characterized by X-ray diffraction and optical properties were followed by optical absorption and UV-vis fluorescence. Intense photoluminescence is also observed, with some spectral tuning possible with ripening time getting a range of emission photon wavelength approximately from 366 to 350 nm. The size effect on CsI luminescence leads to an increase in scintillation light yield, a redshift of the emission bands of the on_center and off_center self_trapped excitons (STEs) and an increase in the contribution of the off_center STEs to the net intrinsic emission yield. The energy transfer from the matrix to CsI nanoparticles is a key characteristic for scintillation detectors. So the scintillation spectra and decay curve to alpha particles of sample were monitored.

  6. Mercuric iodide composite films using polyamide, polycarbonate and polystyrene fabricated by casting

    NASA Astrophysics Data System (ADS)

    Ugucioni, J. C.; Ghilardi Netto, T.; Mulato, M.

    2010-10-01

    Mercuric iodide (HgI2) composite films were obtained by using the casting technique. Insulator polymers such as polyamide, polycarbonate and polystyrene were mixed to HgI2 crystallites forming a final sub-millimeter thick self-standing film. Fabrication temperature varied from 10 to 100 °C, and total fabrication time reached at most 5 min. The larger the fabrication temperature, the thinner the film and the smaller its electrical resistivity. Electrical characterization was performed in the dark, under UV illumination and under mammographic X-ray exposure. The final properties of the films are discussed and related to fabrication conditions. The optimized composite film might be a better candidate for use as X-ray detector for medical imaging, in place of the single HgI2 crystalline device.

  7. Macrosegregation during Plane Front Solidification of Cesium Iodide wt Percent Thallium Iodide Alloy

    NASA Astrophysics Data System (ADS)

    Sidawi, Ibrahim M. S.

    Macrosegregation produced during directional solidification of CsI-1 wt% TlI by vertical Bridgman technique has been examined in crucibles of varying diameter, from 0.5 to 2.0 cm. Phase diagram and temperature dependence of the thermal conductivity have been determined. The experimentally observed liquid-solid interface shape and the fluid flow behavior have been compared with that computed from the commercially available code FIDAP. Thallium iodide content of the alloy was observed to increase along the length of the directionally solidified specimens, resulting in continuously decreasing light output. The experimentally observed solutal distribution agrees with predictions from the boundary layer model of Favier. The observed macrosegregation behavior suggests that there is a significant convection in the melt even in the smallest crucible diameter of 0.5 cm.

  8. PIN Diode Detectors

    NASA Astrophysics Data System (ADS)

    Ramírez-Jiménez, F. J.

    2008-07-01

    A review of the application of PIN diodes as radiation detectors in particle counting, X- and γ-ray spectroscopy, medical applications and charged particle spectroscopy is presented. As a practical example of its usefulness, a PIN diode and a low noise preamplifier are included in a nuclear spectroscopy chain for X-ray measurements. This is a laboratory session designed to review the main concepts needed to set up the detector-preamplifier array and to make measurements of X-ray energy spectra with a room temperature PIN diode. The results obtained are compared with those obtained with a high resolution cooled Si-Li detector.

  9. A study of indoor radon levels in rural dwellings of Ezine (Canakkale, Turkey) using solid-state nuclear track detectors.

    PubMed

    Orgün, Y; Altinsoy, N; Sahin, S Y; Ataksor, B; Celebi, N

    2008-01-01

    Indoor radon activity level and radon effective dose (ED) rate have been carried out in the rural dwellings of Ezine (Canakkale) during the summer season using Radosys-2000, a complete set suitable to radon concentration measurements with CR-39 plastic alpha track detectors. The range of radon concentration varied between 9 and 300 Bq m(-3), with an average of 67.9 (39.9 SD) Bq m(-3). Assuming an indoor occupancy factor of 0.8 and 0.4 for the equilibrium factor of radon indoors, it has been found that the 222Rn ED rate in the dwellings studied ranges from 0.4 to 5.2 mSv y(-1), with an average value of 1.7 (1.0) mSv y(-1). There is a possibility that low radon concentrations exist indoors during the summer season in the study area because of relatively high ventilation rates in the dwellings. A winter survey will be needed for future estimation of the annual ED.

  10. A high count rate position decoding and energy measuring method for nuclear cameras using Anger logic detectors

    SciTech Connect

    Wong, W.H.; Li, H.; Uribe, J.

    1998-06-01

    A new method for processing signals from Anger position-sensitive detectors used in gamma cameras and PET is proposed for very high count-rate imaging where multiple-event pileups are the norm. This method is designed to sort out and recover every impinging event from multiple-event pileups while maximizing the collection of scintillation signal for every event to achieve optimal accuracy in the measurement of energy and position. For every detected event, this method cancels the remnant signals from previous events, and excludes the pileup of signals from following events. The remnant subtraction is exact even for multiple pileup events. A prototype circuit for energy recovery demonstrated that the maximum count rates can be increased by more than 10 times comparing to the pulse-shaping method, and the energy resolution is as good as pulse shaping (or fixed integration) at low count rates. At 2 {times} 10{sup 6} events/sec on NaI(Tl), the true counts acquired with this method is 3.3 times more than the delay-line clipping method (256 ns clipping) due to events recovered from pileups. Pulse-height spectra up to 3.5 {times} 10{sup 6} events/sec have been studied. Monte Carlo simulation studies have been performed for image-quality comparisons between different processing methods.

  11. Iodide Sorption to Clays and the Relationship to the Surface Charge Environment

    NASA Astrophysics Data System (ADS)

    Miller, A. W.; Wang, Y.

    2011-12-01

    In performance assessments of nuclear waste repositories, iodine-129 is often the major contributor to dose at time scales ≥10,000 years. The breakthrough behavior of iodine is determined by the monovalent, anionic nature and the assumed lack of surface reactivity of the iodide ion. This assumption is corroborated by batch sorption data where iodide sorption to clays is typically very small, and only measurable under specific conditions. This result is consistent with charge repulsion arguments due to the fixed negative charge of clays repelling the anionic iodide. However, in compacted column diffusion experiments, iodide is routinely retarded relative to tritium, and is described with Kd values from ≈0.001-2.9ml/g. While small, these values can dramatically change the dose profile in performance assessment calculations. We hypothesize that contributions from the basal plane and edge charge of individual clay particles as well as the physical morphology of the clay particles are contributing to the conflicting behavior. In a series of experiments involving a wide range of clay minerals from the clay bank repository, both surface charge and iodide sorption were examined using surface titrations and batch sorption experiments. The clay minerals studied include: kaolinite, ripidolite, illite, montmorillonite, palygorskite, sepiolite, and an illite/smectite mixed layer clay. Each of these clays was characterized using XRD, and surface titrations in 0.01, 0.1, and 0.5 M NaCl electrolyte. The titrations spanned the pH range from 2.5-10.5 and were automated using an autotitrator. For reference, similar titrations were performed on pure forms of an Al-O powder. The titration curves were interpreted using an inversion method to attain the pKa distribution for each clay and metal oxide at each ionic strength. The pKa distribution for the Al-O shows two distinct peaks at 4.8 and 7.5, which are invariant with ionic strength. The pKa distribution of clays was highly

  12. Thyroid effects of iodine and iodide in potable water

    NASA Technical Reports Server (NTRS)

    Bull, Richard J.; Thrall, Karla D.; Sherer, Todd T.

    1991-01-01

    Experiments are reviewed which examine the comparative toxicological effects of iodide (I) and iodine (I2) when used to disinfect drinking water. References are made to a subchronic study in rats, a comparison of the distribution of radiolabeled I and I2, and a demonstration of thyroxine formation in the gastrointestinal tract. The results of the study of the rats are examined in detail; the findings show that I and I2 have opposite effects on the concentrations of thyroid hormones in blood. Iodide slightly decreases circulating thyroxine, while I2 significantly increases the thyroxine concentrations, decreases triiodothyronine levels, and does not change the weight of the thyroid gland. The related effects of I2 ingestion are set forth in detail and are shown to be unique to I2 contamination. Iodine can counteract the effects of iodide and should therefore be used as a disinfectant in drinking water.

  13. Standard free energy of formation of iron iodide

    NASA Technical Reports Server (NTRS)

    Khandkar, A.; Tare, V. B.; Wagner, J. B., Jr.

    1983-01-01

    An experiment is reported where silver iodide is used to determine the standard free energy of formation of iron iodide. By using silver iodide as a solid electrolyte, a galvanic cell, Ag/AgI/Fe-FeI2, is formulated. The standard free energy of formation of AgI is known, and hence it is possible to estimate the standard free energy of formation of FeI2 by measuring the open-circuit emf of the above cell as a function of temperature. The free standard energy of formation of FeI2 determined by this method is -38784 + 24.165T cal/mol. It is estimated that the maximum error associated with this method is plus or minus 2500 cal/mol.

  14. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector.

    PubMed

    Kulkarni, A; Ha, S; Joshirao, P; Manchanda, V; Bak, M S; Kim, T

    2015-06-01

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO3)4 ⋅ 5H2O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories. PMID:26133876

  15. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector.

    PubMed

    Kulkarni, A; Ha, S; Joshirao, P; Manchanda, V; Bak, M S; Kim, T

    2015-06-01

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO3)4 ⋅ 5H2O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  16. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector

    SciTech Connect

    Kulkarni, A.; Bak, M. S. E-mail: moonsoo@skku.edu; Ha, S.; Joshirao, P.; Manchanda, V.; Kim, T. E-mail: moonsoo@skku.edu

    2015-06-15

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO{sub 3}){sub 4} ⋅ 5H{sub 2}O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  17. A new experimental procedure for determination of photoelectric efficiency of a NaI(Tl) detector used for nuclear medicine liquid waste monitoring with traceability to a reference standard radionuclide calibrator.

    PubMed

    Ceccatelli, A; Campanella, F; Ciofetta, G; Marracino, F M; Cannatà, V

    2010-02-01

    To determine photopeak efficiency for (99m)Tc of the NaI(Tl) detector used for liquid waste monitoring at the Nuclear Medicine Unit of IRCCS Paediatric Hospital Bambino Gesù in Rome, a specific experimental procedure, with traceability to primary standards, was developed. Working with the Italian National Institute for Occupational Prevention and Safety, two different calibration source geometries were employed and the detector response dependence on geometry was investigated. The large percentage difference (almost 40%) between the two efficiency values obtained showed that geometrical effects cannot be neglected.

  18. Enhanced Olefin Cross Metathesis Reactions: The Copper Iodide Effect

    PubMed Central

    Voigtritter, Karl; Ghorai, Subir

    2011-01-01

    Copper iodide has been shown to be an effective co-catalyst for the olefin cross metathesis reaction. In particular, it has both a catalyst stabilizing effect due to iodide ion, as well as copper(I)-based phosphine-scavenging properties that apply to use of the Grubbs-2 catalyst. A variety of Michael acceptors and olefinic partners can be cross-coupled under mild conditions in refluxing diethyl ether that avoid chlorinated solvents. This effect has also been applied to chemistry in water at room temperature using the new surfactant TPGS-750-M. PMID:21528868

  19. γ-Selective Allylation of (E)-Alkenylzinc Iodides Prepared by Reductive Coupling of Arylacetylenes with Alkyl Iodides.

    PubMed

    Zhurkin, Fedor E; Hu, Xile

    2016-07-01

    The first examples of Cu-catalyzed γ-selective allylic alkenylation using organozinc reagents are reported. (E)-Alkenylzinc iodides were prepared by Fe-catalyzed reductive coupling of terminal arylalkynes with alkyl iodides. In the presence of a copper catalyst, these reagents reacted with allylic bromides derived from Morita-Baylis-Hillman alcohols to give 1,4-dienes in high yields. The reactions are highly γ-selective (generally γ/α > 49:1) and tolerate a wide range of functional groups such as ester, cyano, keto, and nitro. PMID:27285459

  20. Safe disposal of radioactive iodide ions from solutions by Ag2O grafted sodium niobate nanofibers.

    PubMed

    Mu, Wanjun; Li, Xingliang; Liu, Guoping; Yu, Qianhong; Xie, Xiang; Wei, Hongyuan; Jian, Yuan

    2016-01-14

    Radioactive iodine isotopes are released into the environment by the nuclear industry and medical research institutions using radioactive materials, and have negative effects on organisms living within the ecosystem. Thus, safe disposal of radioactive iodine is necessary and crucial. For this reason, the uptake of iodide ions was investigated in Ag2O nanocrystal grafted sodium niobate nanofibers, which were prepared by forming a well-matched phase coherent interface between them. The resulting composite was applied as an efficient adsorbent for I(-) anions by forming an AgI precipitate, which also remained firmly attached to the substrates. Due to their one-dimensional morphology, the new adsorbents can be easily dispersed in liquids and readily separated after purification. This significantly enhances the adsorption efficiency and reduces the separation costs. The change in structure from the pristine sodium niobate to Ag2O anchored sodium niobate and to the used adsorbent was examined by using various characterization techniques. The effects of Ag(+) concentration, pH, equilibration time, ionic strength and competing ions on the iodide ion removal ability of the composite were studied. The Ag2O nanocrystal grafted sodium niobate adsorbent showed a high adsorption capacity and excellent selectivity for I(-) anions in basic solutions. Our results are useful for the further development of improved adsorbents for removing I(-) anions from basic wastewater.

  1. Selective capture of iodide from solutions by microrosette-like δ-Bi₂O₃.

    PubMed

    Liu, Long; Liu, Wei; Zhao, Xiaoliang; Chen, Daimei; Cai, Rongsheng; Yang, Weiyou; Komarneni, Sridhar; Yang, Dongjiang

    2014-09-24

    Radioactive iodine isotopes that are produced in nuclear power plants and used in medical research institutes could be a serious threat to the health of many people if accidentally released to the environment because the thyroid gland can absorb and concentrate them from a liquid. For this reason, uptake of iodide anions was investigated on microrosette-like δ-Bi2O3 (MR-δ-Bi2O3). The MR-δ-Bi2O3 adsorbent showed a very high uptake capacity of 1.44 mmol g(-1) by forming insoluble Bi4I2O5 phase. The MR-δ-Bi2O3 also displayed fast uptake kinetics and could be easily separated from a liquid after use because of its novel morphology. In addition, the adsorbent showed excellent selectivity for I(-) anions in the presence of large concentrations of competitive anions such as Cl(-) and CO3(2-), and could work in a wide pH range of 4-11. This study led to a new and highly efficient Bi-based adsorbent for iodide capture from solutions. PMID:25170974

  2. Physical property measurements of doped cesium iodide crystals

    NASA Technical Reports Server (NTRS)

    Synder, R. S.; Clotfelter, W. N.

    1974-01-01

    Mechanical and thermal property values are reported for crystalline cesium iodide doped with sodium and thallium. Young's modulus, bulk modulus, shear modulus, and Poisson's ratio were obtained from ultrasonic measurements. Young's modulus and the samples' elastic and plastic behavior were also measured under tension and compression. Thermal expansion and thermal conductivity were the temperature dependent measurements that were made.

  3. Degradation of Methyl Iodide in Soil: Effects of Environmental Factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl iodide (MeI) is a promising alternative to the phased-out fumigant methyl bromide, and its environmental fate following soil fumigation is of great concern. Experiments were conducted to investigate the effect of various environmental factors on the degradation rate of MeI in soil. The chem...

  4. DEGRADATION OF METHYL IODIDE IN SOIL: EFFECTS OF ENVIRONMENTAL FACTORS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl iodide (MeI) is a promising alternative to the phased-out fumigant methyl bromide; however, there are concerns about its environmental fate following soil fumigation. Laboratory experiments were conducted to investigate the effect of various environmental factors on the degradation rate of ...

  5. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  6. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  7. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  8. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  9. Palladium-catalyzed direct C-H arylation of cyclic enaminones with aryl iodides.

    PubMed

    Yu, Yi-Yun; Bi, Lei; Georg, Gunda I

    2013-06-21

    A ligand-free method for the Pd-catalyzed direct arylation of cyclic enaminones using aryl iodides was developed. This method can be applied to a wide range of cyclic enaminones and aryl iodides with excellent C5-regioselectivity. Using widely available aryl iodides, the generality of this transformation provides easy access to a variety of 3-arylpiperidine structural motifs.

  10. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  11. Charge transport properties of p-CdTe/n-CdTe/n{sup +}-Si diode-type nuclear radiation detectors based on metalorganic vapor-phase epitaxy-grown epilayers

    SciTech Connect

    Niraula, M.; Yasuda, K.; Wajima, Y.; Yamashita, H.; Tsukamoto, Y.; Suzuki, Y.; Matsumoto, M.; Takai, N.; Tsukamoto, Y.; Agata, Y.

    2013-10-28

    Charge transport properties of p-CdTe/n-CdTe/n{sup +}-Si diode-type nuclear radiation detectors, fabricated by growing p-and n-type CdTe epilayers on (211) n{sup +}-Si substrates using metalorganic vapor-phase epitaxy (MOVPE), were studied by analyzing current-voltage characteristics measured at various temperatures. The diode fabricated shows good rectification properties, however, both forward and reverse biased currents deviate from their ideal behavior. The forward current exhibits typical feature of multi-step tunneling at lower biases; however, becomes space charge limited type when the bias is increased. On the other hand, the reverse current exhibits thermally activated tunneling-type current. It was found that trapping centers at the p-CdTe/n-CdTe junction, which were formed due to the growth induced defects, determine the currents of this diode, and hence limit the performance of the nuclear radiation detectors developed.

  12. Low energy X-ray spectra measured with a mercuric iodide energy dispersive spectrometer in a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Dabrowski, A. J.; Huth, G. C.; Bradley, J. G.; Conley, J. M.

    1986-01-01

    A mercuric iodide energy dispersive X-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-K(alpha) at 5.9 keV and 195 eV (FWHM) for the Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies.

  13. Multiple detectors "Influence Method".

    PubMed

    Rios, I J; Mayer, R E

    2016-05-01

    The "Influence Method" is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency and without the need to register coincidences of any kind. This method exploits the influence of the presence of one detector in the count rate of another detector, when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency (Rios and Mayer, 2015a). Its detailed mathematical description was recently published (Rios and Mayer, 2015b) and its practical implementation in the measurement of a moderated neutron flux arising from an isotopic neutron source was exemplified in (Rios and Mayer, 2016). With the objective of further reducing the measurement uncertainties, in this article we extend the method for the case of multiple detectors placed one behind the other. The new estimators for the number of particles and the detection efficiency are herein derived.

  14. Multiple detectors "Influence Method".

    PubMed

    Rios, I J; Mayer, R E

    2016-05-01

    The "Influence Method" is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency and without the need to register coincidences of any kind. This method exploits the influence of the presence of one detector in the count rate of another detector, when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency (Rios and Mayer, 2015a). Its detailed mathematical description was recently published (Rios and Mayer, 2015b) and its practical implementation in the measurement of a moderated neutron flux arising from an isotopic neutron source was exemplified in (Rios and Mayer, 2016). With the objective of further reducing the measurement uncertainties, in this article we extend the method for the case of multiple detectors placed one behind the other. The new estimators for the number of particles and the detection efficiency are herein derived. PMID:26943904

  15. TRIPLICATE SODIUM IODIDE GAMMA RAY MONITORS FOR THE SMALL COLUMN ION EXCHANGE PROGRAM

    SciTech Connect

    Couture, A.

    2011-09-20

    This technical report contains recommendations from the Analytical Development (AD) organization of the Savannah River National Laboratory (SRNL) for a system of triplicate Sodium Iodide (NaI) detectors to be used to monitor Cesium-137 ({sup 137}Cs) content of the Decontaminated Salt Solution (DSS) output of the Small Column Ion Exchange (SCIX) process. These detectors need to be gain stabilized with respect to temperature shifts since they will be installed on top of Tank 41 at the Savannah River Site (SRS). This will be accomplished using NaI crystals doped with the alpha-emitting isotope, Americium-241({sup 241}Am). Two energy regions of the detector output will be monitored using single-channel analyzers (SCAs), the {sup 137}Cs full-energy {gamma}-ray peak and the {sup 241}Am alpha peak. The count rate in the gamma peak region will be proportional to the {sup 137}Cs content in the DSS output. The constant rate of alpha decay in the NaI crystal will be monitored and used as feedback to adjust the high voltage supply to the detector in response to temperature variation. An analysis of theoretical {sup 137}Cs breakthrough curves was used to estimate the gamma activity expected in the DSS output during a single iteration of the process. Count rates arising from the DSS and background sources were predicted using Microshield modeling software. The current plan for shielding the detectors within an enclosure with four-inch thick steel walls should allow the detectors to operate with the sensitivity required to perform these measurements. Calibration, testing, and maintenance requirements for the detector system are outlined as well. The purpose of SCIX is to remove and concentrate high-level radioisotopes from SRS salt waste resulting in two waste streams. The concentrated high-level waste containing {sup 137}Cs will be sent to the Defense Waste Processing Facility (DWPF) for vitrification and the low-level DSS will be sent to the Saltstone Production Facility (SPF

  16. Synthesis of (/sup 75/Se)trimethylselenonium iodide from (/sup 75/Se)selenocystine

    SciTech Connect

    Foster, S.J.; Ganther, H.E.

    1984-02-15

    The synthesis of (/sup 75/Se)trimethylselenonium iodide from (/sup 75/)selenocystine is described. The starting compound is reduced to (/sup 75/Se)selenocysteine with borohydride and reacted with methyl iodide to form (/sup 75/Se)Se-methyl-selenocysteine, then treated with methyl iodide in formic acid solution to form Se-dimethyl-selenocysteine selenonium iodide. Over a period of days, the selenonium intermediate undergoes spontaneous elimination to form alanine and dimethyl selenide, which reacts with methyl iodide to give the trimethylselenonium product in over 90% yield. 15 references.

  17. Direct vapor/solid synthesis of mercuric iodide using compounds of mercury and iodine

    DOEpatents

    Skinner, Nathan L.

    1990-01-01

    A process is disclosed for producing high purity mercuric iodide by passing a gaseous source of a mercuric compound through a particulate bed of a low vapor pressure iodide compound which is maintained at an elevated temperature which is the lower of either: (a) just below the melting or volatilization temperature of the iodide compound (which ever is lower); or (b) just below the volatilization point of the other reaction product formed during the reaction; to cause the mercuric compound to react with the iodide compound to form mercuric iodide which then passes as a vapor out of the bed into a cooler condensation region.

  18. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC. Employing a Cerenkov detector for the thickness measurement of X-rays in a scattering background

    NASA Astrophysics Data System (ADS)

    Li, Shu-Wei; Kang, Ke-Jun; Wang, Yi; Li, Jin; Li, Yuan-Jing; Zhang, Qing-Jun

    2010-12-01

    The variation in environmental scattering background is a major source of systematic errors in X-ray inspection and measurement systems. As the energy of these photons consisting of environmental scattering background is much lower generally, the Cerenkov detectors having the detection threshold are likely insensitive to them and able to exclude their influence. A thickness measurement experiment is designed to verify the idea by employing a Cerenkov detector and an ionizing chamber for comparison. Furthermore, it is also found that the application of the Cerenkov detectors is helpful to exclude another systematic error from the variation of low energy components in the spectrum incident on the detector volume.

  19. Defective organification of iodide causing congenital goitrous hypothyroidism.

    PubMed

    Ishikawa, N; Eguchi, K; Ohmori, T; Momotani, N; Nagayama, Y; Hosoya, T; Oguchi, H; Mimura, T; Kimura, S; Nagataki, S; Ito, K

    1996-01-01

    A 26-yr-old Japanese woman with congenital goitrous hypo-thyroidism and sensorineural deafness underwent a thyroidectomy. Examination of the thyroid gland revealed characteristic features of multinodular goiter. The T3 and T4 content in thyroglobulin (Tg) were 0.03 and 0.02 mol/mol Tg, respectively. Iodide incorporation into Tg, using slices of the thyroid tissue, revealed that iodide organification of thyroid tissue from our patient was markedly lower than that of normal controls. Then, guaiacol and iodide oxidation activities of thyroid peroxidase (TPO) in our patient's thyroid tissue were lower than those of normal controls (guaiacol assay: 1.92 vs. 30.0 +/- 5.7 mGU/mg protein; iodide assay: 1.1 vs. 6.6 +/- 2.8 mIU/mg protein). Lineweaver-Burk plot analysis of the oxidation rates of guaiacol and iodide indicated that this patient's TPO had a defect in the binding of guaiacol and iodide, but the coupling activity of the patient's TPO was not decreased compared with those of two normal thyroids. In this case and in control subjects, Nothern gel analysis of TPO messenger RNA from unstimulated and TSH-stimulated thyroid cells revealed a 3.2 kilobase species in the former and four distinct messenger RNA species of 4.0, 3.2, 2.1, and 1.7 kilobases in the latter. Western blot analysis of TPOs obtained from this patient and from control subjects identified the same 107 kDa protein, using antimicrosomal antibody-positive serum. We analyzed the coding sequence in the patient's TPO gene by using polymerase chain reaction technique. A single point mutation of G-->C at 1265 base pair was detected only in the TPO gene, but this point mutation does not alter the amino acid residue. It is possible that posttranslational modification such as abnormal glycosylation may occur in the TPO molecules. Furthermore, it is possible that there are differences in the tertiary structures of the TPO molecules between our patient and normal subjects. The above abnormalities of TPO molecules

  20. Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts

    DOE PAGES

    Lopez-Hilfiker, Felipe D.; Iyer, Siddarth; Mohr, Claudia; Lee, Ben H.; D'Ambro, Emma L.; Kurtén, Theo; Thornton, Joel A.

    2016-04-06

    The sensitivity of a chemical ionization mass spectrometer (ions formed per number density of analytes) is fundamentally limited by the collision frequency between reagent ions and analytes, known as the collision limit, the ion–molecule reaction time, and the transmission efficiency of product ions to the detector. We use the response of a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) to N2O5, known to react with iodide at the collision limit, to constrain the combined effects of ion–molecule reaction time, which is strongly influenced by mixing and ion losses in the ion–molecule reaction drift tube. A mass spectrometric voltage scanning procedure elucidatesmore » the relative binding energies of the ion adducts, which influence the transmission efficiency of molecular ions through the electric fields within the vacuum chamber. Together, this information provides a critical constraint on the sensitivity of a ToF-CIMS towards a wide suite of routinely detected multifunctional organic molecules for which no calibration standards exist. We describe the scanning procedure and collision limit determination, and we show results from the application of these constraints to the measurement of organic aerosol composition at two different field locations.« less

  1. Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, Felipe D.; Iyer, Siddarth; Mohr, Claudia; Lee, Ben H.; D'Ambro, Emma L.; Kurtén, Theo; Thornton, Joel A.

    2016-04-01

    The sensitivity of a chemical ionization mass spectrometer (ions formed per number density of analytes) is fundamentally limited by the collision frequency between reagent ions and analytes, known as the collision limit, the ion-molecule reaction time, and the transmission efficiency of product ions to the detector. We use the response of a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) to N2O5, known to react with iodide at the collision limit, to constrain the combined effects of ion-molecule reaction time, which is strongly influenced by mixing and ion losses in the ion-molecule reaction drift tube. A mass spectrometric voltage scanning procedure elucidates the relative binding energies of the ion adducts, which influence the transmission efficiency of molecular ions through the electric fields within the vacuum chamber. Together, this information provides a critical constraint on the sensitivity of a ToF-CIMS towards a wide suite of routinely detected multifunctional organic molecules for which no calibration standards exist. We describe the scanning procedure and collision limit determination, and we show results from the application of these constraints to the measurement of organic aerosol composition at two different field locations.

  2. Resource Letter PD-1 on Particle Detectors

    ERIC Educational Resources Information Center

    Trower, W. Peter

    1970-01-01

    Intended to guide college physicists to literature on nuclear and sub-nuclear particle detectors. The paper contains a discussion of (1) interactions of particles with matter and (2) individual particle detectors, each section being followed by an annotated bibliography of selected reference materials. Rankings are given to the articles on the…

  3. Methyl iodide production in the ocean: Implications for climate change

    NASA Astrophysics Data System (ADS)

    Smythe-Wright, Denise; Boswell, Stephen M.; Breithaupt, Petra; Davidson, Russell D.; Dimmer, Claudia H.; Eiras Diaz, Ledicia B.

    2006-09-01

    Methyl iodide concentrations of up to 45 pmol L-1, which flux into the marine boundary layer, have been found in low latitude waters of the Atlantic and Indian oceans. These high concentrations correlate well with the abundance of Prochlorococcus, and we have confirmed the release of methyl iodide by this species in laboratory culture experiments. Extrapolating, we estimate the global ocean flux of iodine to the marine boundary layer from this single source to be 5.3 × 1011 g I yr-1, which is a large fraction of the previously estimated total global flux and the implications are far reaching. Climate prediction models suggest increases in sea surface temperature and changes in biogeographical provenances in response to global warming. Such changes are likely to increase the abundance of Prochlorococcus, and we estimate a concomitant ˜15% increase in the release of iodine species to the atmosphere. Potentially, this could help mitigate global warming.

  4. A Halogen-Bond-Induced Triple Helicate Encapsulates Iodide.

    PubMed

    Massena, Casey J; Wageling, Nicholas B; Decato, Daniel A; Martin Rodriguez, Enrique; Rose, Ariana M; Berryman, Orion B

    2016-09-26

    The self-assembly of higher-order anion helicates in solution remains an elusive goal. Herein, we present the first triple helicate to encapsulate iodide in organic and aqueous media as well as the solid state. The triple helicate self-assembles from three tricationic arylethynyl strands and resembles a tubular anion channel lined with nine halogen bond donors. Eight strong iodine⋅⋅⋅iodide halogen bonds and numerous buried π-surfaces endow the triplex with remarkable stability, even at elevated temperatures. We suggest that the natural rise of a single-strand helix renders its linear halogen-bond donors non-convergent. Thus, the stringent linearity of halogen bonding is a powerful tool for the synthesis of multi-strand anion helicates. PMID:27411932

  5. Purification and deposition of silicon by an iodide disproportionation reaction

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2002-01-01

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  6. Iodide and albumin kinetics in normal canine wrists and knees

    SciTech Connect

    Simkin, P.A.; Benedict, R.S. )

    1990-01-01

    The clearance rates of free iodide and of radioiodinated serum albumin were measured in the knee and wrist joints of 9 normal adult dogs. Iodide clearance from the knee was 3 times greater than that from the wrist. In contrast, radioiodinated serum albumin clearance from the knee was only slightly greater than that from the wrist. Interpreted as respective indices of effective synovial plasma flow and lymphatic drainage, these values indicate that the filtration fraction is normally greater in microvessels of the wrist than in those of the knee. These findings complement the results of companion studies of Starling forces that indicate a higher pressure microvascular bed in the wrist than in the knee.

  7. Structural insight into iodide uptake by AFm phases.

    PubMed

    Aimoz, Laure; Wieland, Erich; Taviot-Guého, Christine; Dähn, Rainer; Vespa, Marika; Churakov, Sergey V

    2012-04-01

    The ability of cement phases carrying positively charged surfaces to retard the mobility of (129)I, present as iodide (I(-)) in groundwater, was investigated in the context of safe disposal of radioactive waste. (125)I sorption experiments on ettringite, hydrotalcite, chloride-, carbonate- and sulfate-containing AFm phases indicated that calcium-monosulfate (AFm-SO(4)) is the only phase that takes up trace levels of iodide. The structures of AFm phases prepared by coprecipitating iodide with other anions were investigated in order to understand this preferential uptake mechanism. X-ray diffraction (XRD) investigations showed a segregation of monoiodide (AFm-I(2)) and Friedel's salt (AFm-Cl(2)) for I-Cl mixtures, whereas interstratifications of AFm-I(2) and hemicarboaluminate (AFm-OH-(CO(3))(0.5)) were observed for the I-CO(3) systems. In contrast, XRD measurements indicated the formation of a solid solution between AFm-I(2) and AFm-SO(4) for the I-SO(4) mixtures. Extended X-ray absorption fine structure spectroscopy showed a modification of the coordination environment of iodine in I-CO(3) and in I-SO(4) samples compared to pure AFm-I(2). This is assumed to be due to the introduction of stacking faults in I-CO(3) samples on one hand and due to the presence of sulfate and associated space-filling water molecules as close neighbors in I-SO(4) samples on the other hand. The formation of a solid solution between AFm-I(2) and AFm-SO(4), with a short-range mixing of iodide and sulfate, implies that AFm-SO(4) bears the potential to retard (129)I. PMID:22376086

  8. Photochemical versus biological production of methyl iodide during Meteor 55

    NASA Astrophysics Data System (ADS)

    Richter, U.; Wallace, D.

    2003-04-01

    The flux of methyl iodide from sea to air represents the largest flux of iodine from the ocean to the atmosphere. Surface water concentrations and hence fluxes are particularly high in tropical regions. This flux may be responsible for the enrichment of iodine in the marine aerosol and may contribute to important processes in the marine boundary layer, including particle formation. Methyl iodide is commonly referred to as a biogenic gas, with both macroalgae and phytoplankton identified as important sources. On the other hand experimental and field data have shown the importance of photochemical production that is not necessarily associated directly with biological activity. During the Meteor cruise 55 along 11°N in the tropical Atlantic Ocean, a series of experiments were conducted to examine the biological vs. photochemical production of methyl iodide. A total of eight separate experiments were conducted. Production of CH3I in quartz glass flasks during 24 hour incubations (dark and natural sunlight) was measured under three experimental treatments: untreated seawater, filtered seawater (0.1 um pore size filter to exclude most phytoplankton and bacteria), and seawater that was poisoned with mercuric chloride. There were two clear findings from these experiments: (1) methyl iodide production was significantly higher in all the incubations that were exposed to the light than in the dark incubations; (2) there was no significant difference between CH3I production under the three experimental treatments. These results argue very strongly for the primary importance of photochemical production of CH3I as opposed to biogenic production at least for the tropical open ocean surface waters. Further experiments are required to investigate the reactants involved, their sources, the wavelength and depth dependence of production, etc. as well as (possibly related) sink processes.

  9. Infrared attenuation of thallium bromo-iodide fibers

    NASA Technical Reports Server (NTRS)

    Magilavy, B.; Goebel, J.

    1986-01-01

    Analysis of attenuation measurements in the near infrared of an unclad fiber of Thallium Bromo-Iodide (Th(Br,I)), a polycrystalline thallium halide, is presented. A general overview is given of the properties of fiber optics. Two groups of attenuation measurements, for the region 1.2 to 3.4 and for 3 to 11 microns, respectively, are presented, analyzed, and compared with those of two other groups of researchers.

  10. Corrosion mechanism of cuprous oxide/iodide solar electrochemical cell

    NASA Astrophysics Data System (ADS)

    Tennakone, K.; Gurunnanselage, W.; Dharmaratne, D.; Jayewardena, S. C.

    1982-01-01

    Mechanisms for cuprous oxide corrosion in an iodide solution are investigated in light of the importance of instability effects arising from semiconductor electrode corrosion in solar electrochemical cells. Experiments involved the use of a potassium iodide solution containing a trace of iodine as the redox electrolyte, with a cuprous oxide-coated copper plate as the photocathode and a copper window coated with cupric sulphide as the counterelectrode. Measurement of the time dependence of the short circuit current at constant illumination intensity reveals it to undergo a rapid decay accompanied by the formation of a cuprous iodide-cupric oxide deposit on the photocathode surface. The region surrounding a circular patch of light focussed on the photocathode is found to exhibit CuO and CuI deposits signalling corrosion in the anodic region surrounding the cathodic spot. Measurements of the time dependence of the open circuit voltage furthermore indicate that the saturation voltage decays with time, due to short circuiting in the photocathode between anodic and cathodic regions.

  11. Gold nanoelectrode ensembles for direct trace electroanalysis of iodide.

    PubMed

    Pereira, Francisco C; Moretto, Ligia M; De Leo, Manuela; Zanoni, Maria V Boldrin; Ugo, Paolo

    2006-08-01

    A procedure for the standardization of ensembles of gold nanodisk electrodes (NEE) of 30 nm diameter is presented, which is based on the analytical comparison between experimental cyclic voltammograms (CV) obtained at the NEEs in diluted solutions of redox probes and CV patterns obtained by digital simulation. Possible origins of defects sometimes found in NEEs are discussed. Selected NEEs are then employed for the study of the electrochemical oxidation of iodide in acidic solutions. CV patterns display typical quasi-reversible behavior which involves associated chemical reactions between adsorbed and solution species. The main CV characteristics at the NEE compare with those observed at millimeter sized gold disk electrodes (Au-macro), apart a slight shift in E1/2 values and slightly higher peak to peak separation at the NEE. The detection limit (DL) at NEEs is 0.3 microM, which is more than one order of magnitude lower than DL at the Au-macro (4 microM). The mechanism of the electrochemical oxidation of iodide at NEEs is discussed. Finally, NEEs are applied to the direct determination of iodide at micromolar concentration levels in real samples, namely in some ophthalmic drugs and iodized table salt.

  12. Mitigating iodomethane emissions and iodide residues in fumigated soils.

    PubMed

    Xuan, Richeng; Ashworth, Daniel J; Wu, Laosheng; Yates, Scott R

    2013-11-19

    Although long-regarded as an excellent soil fumigant for killing plant pests, methyl bromide (MeBr) was phased out in 2005 in the USA, because it can deplete the stratospheric ozone layer. Iodomethane (MeI) has been identified as an effective alternative to MeBr and is used in a number of countries for preplant pest control. However, MeI is highly volatile and potentially carcinogenic to humans if inhaled. In addition, iodide anions, a breakdown product of MeI, can build up in fumigated soils and potentially cause plant toxicity and contaminate groundwater via leaching. In order to overcome the above two obstacles in MeI application, a method is proposed to place reactive bags containing ammonium hydroxide solution (NH4OH) on the soil surface underneath an impermeable plastic film covering the fumigated area. Our research showed that using this approach, over 99% of the applied MeI was quantitatively transferred to iodide. Of all the resulting iodide, only 2.7% remained in the fumigated soil, and 97.3% was contained in the reactive bag that can be easily removed after fumigation.

  13. Iodide mumps following fistulogram in a haemodialysis patient.

    PubMed

    Ghosh, Raktim K; Somasundaram, Mey; Ravakhah, Keyvan

    2016-01-01

    Iodide mumps, or contrast-induced acute sialadenitis, is characterised by rapid, painless enlargement of the salivary glands, following the use of iodinated contrast dye. The underlying mechanism of this adverse reaction is not completely understood. It could be due to an idiosyncratic reaction or related to deposition of iodide in the ductal systems of the salivary glands causing blockage and inflammation. With increasing renal dysfunction, the elimination half-life of the iodine-containing contrast dye gets prolonged. The course of iodine-induced sialadenitis is usually benign, and rapid resolution of symptoms is expected without definite treatment. The symptomatic management includes treatment with a parenteral non-steroidal anti-inflammatory drug (NSAID), steroids and dialysis. However, the role of steroids has been found to be controversial in previously published case reports. Pancreatic mumps and transient thyroid dysfunction were also reported in patients following iodinated contrast administration; the aetiology of this is thought to be similar to iodide-induced sialadenitis. PMID:26838304

  14. Smoke Detector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo, Fire Chief Jay Stout of Safety Harbor, Florida, is explaining to young Richard Davis the workings of the Honeywell smoke and fire detector which probably saved Richard's life and that of his teen-age brother. Alerted by the detector's warning, the pair were able to escape their burning home. The detector in the Davis home was one of 1,500 installed in Safety Harbor residences in a cooperative program conducted by the city and Honeywell Inc.

  15. Analysis of Cadmium Based Neutron Detector Configurations

    NASA Astrophysics Data System (ADS)

    James, Brian; Rees, Lawrence; Czirr, J. Bart

    2012-10-01

    Due to national security concerns pertaining to the smuggling of special nuclear materials and a small supply of He-3 for use in neutron detectors, there is currently a need for a new kind of neutron detector. Using Monte Carlo techniques I have studied the neutron capture efficiency of an array of cadmium wedge detectors in the presence of a californium source. By using varying numbers of wedges and comparing their capture ratios we will be better able to design future detectors.

  16. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils.

    PubMed

    Seki, Miharu; Oikawa, Jun-ichi; Taguchi, Taro; Ohnuki, Toshihiko; Muramatsu, Yasuyuki; Sakamoto, Kazunori; Amachi, Seigo

    2013-01-01

    Laccase oxidizes iodide to molecular iodine or hypoiodous acid, both of which are easily incorporated into natural soil organic matter. In this study, iodide sorption and laccase activity in 2 types of Japanese soil were determined under various experimental conditions to evaluate possible involvement of this enzyme in the sorption of iodide. Batch sorption experiment using radioactive iodide tracer ((125)I(-)) revealed that the sorption was significantly inhibited by autoclaving (121 °C, 40 min), heat treatment (80 and 100 °C, 10 min), γ-irradiation (30 kGy), N(2) gas flushing, and addition of reducing agents and general laccase inhibitors (KCN and NaN(3)). Interestingly, very similar tendency of inhibition was observed in soil laccase activity, which was determined using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as a substrate. The partition coefficient (K(d): mL g(-1)) for iodide and specific activity of laccase in soils (Unit g(-1)) showed significant positive correlation in both soil samples. Addition of a bacterial laccase with an iodide-oxidizing activity to the soils strongly enhanced the sorption of iodide. Furthermore, the enzyme addition partially restored iodide sorption capacity of the autoclaved soil samples. These results suggest that microbial laccase is involved in iodide sorption on soils through the oxidation of iodide.

  17. A thalium-doped sodium iodide well counter for radioactive tracer applications with naturally-abundant 40K

    NASA Astrophysics Data System (ADS)

    Parker, Andrew J.; Boxall, Colin; Joyce, Malcolm J.; Schotanus, Paul

    2013-09-01

    The use of a thallium-doped sodium-iodide well-type scintillation detector for the assay of the low-activity radioisotope 40K, in open-source potassium chloride aqueous solutions, is described. The hazards, safety concerns and radiowaste generation associated with using open-source radioactive isotopes can present significant difficulties, the use of hot cells and escalated costs in radioanalytical laboratory research. A solution to this is the use of low-hazard alternatives that mimic the migration and dispersion characteristics of notable fission products (in this case 137Cs). The use of NaI(Tl) as a detection medium for naturally-abundant levels of 40K in a range of media is widespread, but the use of 40K as a radioactive tracer has not been reported. The use of such low-activity sources is often complicated by the ability to detect them efficiently. In this paper a scintillator detector designed to detect the naturally-abundant 40K present in potassium chloride in tracer applications is described. Examples of the use of potassium chloride as a tracer are given in the context of ion exchange and electrochemical migration studies, and comparisons in performance are drawn from literature with hyper pure germanium semiconductor detectors, which are more commonly utilised detectors in high-resolution counting applications.

  18. Determination of high mitochondrial membrane potential in spermatozoa loaded with the mitochondrial probe 5,5',6,6'tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) using flow cytometry.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A flow cytometric method was developed to identify viable, energized sperm cells with high mitochondrial inner transmembrane potential (''m), > 80-100 mV using the mitochondrial probe 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) and the impermeant nuclear ...

  19. Use of InSpector{sup TM} 1 1000 Instrument with LaBr{sub 3} for Nuclear Criticality Safety (NCS) Applications at the Westinghouse Hematite Decommissioning Project (HDP) - 13132

    SciTech Connect

    Pritchard, Megan; Guido, Joe

    2013-07-01

    The Westinghouse Hematite Decommissioning Project (HDP) is a former nuclear fuel cycle facility that is currently undergoing decommissioning. One aspect of the decommissioning scope is remediation of buried nuclear waste in unlined burial pits. The current Nuclear Criticality Safety program relies on application of criticality controls based on radiological setpoints from a 2 x 2 Sodium Iodide (NaI) detector. Because of the nature of the material buried (Low Enriched Uranium (LEU), depleted uranium, thorium, and radium) and the stringent threshold for application of criticality controls based on waste management (0.1 g {sup 235}U/L), a better method for {sup 235}U identification and quantification has been developed. This paper outlines the early stages of a quick, in-field nuclear material assay and {sup 235}U mass estimation process currently being deployed at HDP. Nuclear material initially classified such that NCS controls are necessary can be demonstrated not to require such controls and dispositioned as desired by project operations. Using Monte Carlo techniques and a high resolution Lanthanum Bromide (LaBr) detector with portable Multi-Channel Analyzer (MCA), a bounding {sup 235}U mass is assigned to basic geometries of nuclear material as it is excavated. The deployment of these methods and techniques has saved large amounts of time and money in the nuclear material remediation process. (authors)

  20. Refining Radchem Detectors: Iridium

    NASA Astrophysics Data System (ADS)

    Arnold, C. W.; Bredeweg, T. A.; Vieira, D. J.; Bond, E. M.; Jandel, M.; Rusev, G.; Moody, W. A.; Ullmann, J. L.; Couture, A. J.; Mosby, S.; O'Donnell, J. M.; Haight, R. C.

    2013-10-01

    Accurate determination of neutron fluence is an important diagnostic of nuclear device performance, whether the device is a commercial reactor, a critical assembly or an explosive device. One important method for neutron fluence determination, generally referred to as dosimetry, is based on exploiting various threshold reactions of elements such as iridium. It is possible to infer details about the integrated neutron energy spectrum to which the dosimetry sample or ``radiochemical detector'' was exposed by measuring specific activation products post-irradiation. The ability of radchem detectors like iridium to give accurate neutron fluence measurements is limited by the precision of the cross-sections in the production/destruction network (189Ir-193Ir). The Detector for Advanced Neutron Capture Experiments (DANCE) located at LANSCE is ideal for refining neutron capture cross sections of iridium isotopes. Recent results from a measurement of neutron capture on 193-Ir are promising. Plans to measure other iridium isotopes are underway.

  1. Optical Detectors

    NASA Astrophysics Data System (ADS)

    Goushcha, Alexander; Tabbert, Bernd

    Optical detectors are applied in all fields of human activities - from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  2. Optical Detectors

    NASA Astrophysics Data System (ADS)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  3. Advances in the growth of alkaline-earth halide single crystals for scintillator detectors

    SciTech Connect

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A; Neal, John S; Cherepy, Nerine; Payne, Stephen A.; Beck, P; Burger, Arnold; Rowe, E; Bhattacharya, P.

    2014-01-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystal-growth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  4. Advances in the growth of alkaline-Earth halide single crystals for scintillator detectors

    NASA Astrophysics Data System (ADS)

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, J. S.; Cherepy, N. J.; Beck, P. R.; Payne, S. A.; Burger, A.; Rowe, E.; Bhattacharya, P.

    2014-09-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystalgrowth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  5. Electrodeposition as an alternate method for preparation of environmental samples for iodide by AMS

    NASA Astrophysics Data System (ADS)

    Adamic, M. L.; Lister, T. E.; Dufek, E. J.; Jenson, D. D.; Olson, J. E.; Vockenhuber, C.; Watrous, M. G.

    2015-10-01

    This paper presents an evaluation of an alternate method for preparing environmental samples for 129I analysis by accelerator mass spectrometry (AMS) at Idaho National Laboratory. The optimal sample preparation method is characterized by ease of preparation, capability of processing very small quantities of iodide, and ease of loading into a cathode. Electrodeposition of iodide on a silver wire was evaluated using these criteria. This study indicates that the electrochemically-formed silver iodide deposits produce ion currents similar to those from precipitated silver iodide for the same sample mass. Precipitated silver iodide samples are usually mixed with niobium or silver powder prior to loading in a cathode. Using electrodeposition, the silver is already mixed with the sample and can simply be picked up with tweezers, placed in the sample die, and pressed into a cathode. The major advantage of this method is that the silver wire/electrodeposited silver iodide is much easier to load into a cathode.

  6. Electrodeposition as an alternate method for preparation of environmental samples for iodide by AMS

    SciTech Connect

    Adamic, M. L.; Lister, T. E.; Dufek, E. J.; Jenson, D. D.; Olson, J. E.; Vockenhuber, C.; Watrous, M. G.

    2015-03-25

    This paper presents an evaluation of an alternate method for preparing environmental samples for 129I analysis by accelerator mass spectrometry (AMS) at Idaho National Laboratory. The optimal sample preparation method is characterized by ease of preparation, capability of processing very small quantities of iodide, and ease of loading into a cathode. Electrodeposition of iodide on a silver wire was evaluated using these criteria. This study indicates that the electrochemically-formed silver iodide deposits produce ion currents similar to those from precipitated silver iodide for the same sample mass. Furthermore, precipitated silver iodide samples are usually mixed with niobium or silver powder prior to loading in a cathode. Using electrodeposition, the silver is already mixed with the sample and can simply be picked up with tweezers, placed in the sample die, and pressed into a cathode. The major advantage of this method is that the silver wire/electrodeposited silver iodide is much easier to load into a cathode.

  7. Report on Advanced Detector Development

    SciTech Connect

    James K. Jewell

    2012-09-01

    Neutron, gamma and charged particle detection improvements are key to supporting many of the foreseen measurements and systems envisioned in the R&D programs and the future fuel cycle requirements, such as basic nuclear physics and data, modeling and simulation, reactor instrumentation, criticality safety, materials management and safeguards. This task will focus on the developmental needs of the FCR&D experimental programs, such as elastic/inelastic scattering, total cross sections and fission neutron spectra measurements, and will leverage a number of existing neutron detector development efforts and programs, such as those at LANL, PNNL, INL, and IAC as well as those at many universities, some of whom are funded under NE grants and contracts. Novel materials and fabrication processes combined with state-of-the-art electronics and computing provide new opportunities for revolutionary detector systems that will be able to meet the high precision needs of the program. This work will be closely coordinated with the Nuclear Data Crosscut. The Advanced Detector Development effort is a broadly-focused activity that supports the development of improved nuclear data measurements and improved detection of nuclear reactions and reactor conditions. This work supports the design and construction of large-scale, multiple component detectors to provide nuclear reaction data of unprecedented quality and precision. Examples include the Time Projection Chamber (TPC) and the DANCE detector at LANL. This work also supports the fabrication and end-user application of novel scintillator materials detection and monitoring.

  8. Real-Time Remediation Utilizing The Backpack Sodium Iodide System And The U.S. EPA Triad Approach

    SciTech Connect

    John R. Giles; Michael V. Carpenter; Lyle G. Roybal; C. P. Oertel; J. J. Jacobson; D. L. Eaton; G. L. Schwendiman

    2006-03-01

    Real-time characterization during remediation activities is being accomplished at the Idaho National Laboratory (INL) with the use of the backpack sodium iodide system (BaSIS). The BaSIS is comprised of a 3-in. by 5-in. sodium iodide (NaI) detector, differential corrected global positioning system (GPS), and portable computer, integrated into a lightweight backpack deployment platform. The system is operated with specialized software that allows the operator and/or remediation field manager to view data as they are collected. Upon completion of planned excavation stages, the area is surveyed for residual radiological contamination. After data collection is complete, data is available to the remediation field manager as a contour map showing the area(s) that require further excavation. The use of real-time measurement systems, rapid turn-around time of data, and dynamic work strategy support the U.S. Environmental Protection Agency’s (EPA) Triad approach. Decisions are made in real-time as to the need for further remediation. This paper describes the BaSIS system calibration, testing and use, and outlines negotiations with the appropriate CERCLA regulatory agencies (U.S. Environmental Protection Agency, Idaho Department of Environmental Quality, and U.S. Department of Energy Idaho Operations Office) to allow the use of real-time instrumentation during the remediation process, and for confirmation surveys. By using the BaSIS in such a manner, the INL seeks to demonstrate compliance with remediation objectives.

  9. Palladium-catalyzed Heck-type cross-couplings of unactivated alkyl iodides.

    PubMed

    McMahon, Caitlin M; Alexanian, Erik J

    2014-06-01

    A palladium-catalyzed, intermolecular Heck-type coupling of alkyl iodides and alkenes is described. This process is successful with a variety of primary and secondary unactivated alkyl iodides as reaction partners, including those with hydrogen atoms in the β position. The mild catalytic conditions enable intermolecular C-C bond formations with a diverse set of alkyl iodides and alkenes, including substrates containing base- or nucleophile-sensitive functionality.

  10. Iron-catalyzed 1,2-addition of perfluoroalkyl iodides to alkynes and alkenes.

    PubMed

    Xu, Tao; Cheung, Chi Wai; Hu, Xile

    2014-05-01

    Iron catalysis has been developed for the intermolecular 1,2-addition of perfluoroalkyl iodides to alkynes and alkenes. The catalysis has a wide substrate scope and high functional-group tolerance. A variety of perfluoroalkyl iodides including CF3 I can be employed. The resulting perfluoroalkylated alkyl and alkenyl iodides can be further functionalized by cross-coupling reactions. This methodology provides a straightforward and streamlined access to perfluoroalkylated organic molecules.

  11. Excess iodide decreases transcription of NIS and VEGF genes in rat FRTL-5 thyroid cells

    PubMed Central

    Suzuki, Koichi; Kimura, Hiroaki; Wu, Huhehasi; Kudo, Naoko; Kim, Won Bae; Suzuki, Sayuri; Yoshida, Akio; Caturegli, Patrizio; Kohn, Leonard D.

    2010-01-01

    Although it is well known that an excess of iodide suppresses thyroid function and blood flow in vivo, the underlying molecular mechanisms are not fully known. The functional effect of iodide occurs at multiple steps, which include inhibition of sodium/iodide symporter (NIS) expression, transient block of organification, and inhibition of hormonal release. The vascular effect likely involves suppression of the vascular endothelial growth factor (VEGF) gene. In this report, we show that excess iodide coordinately suppresses the expression of the NIS and VEGF genes in FRTL-5 thyroid cells. We also demonstrate that the mechanism of iodide suppression of NIS gene expression is transcriptional, which is synergized by the addition of thyroglobulin. Based on the findings of reporter gene assays and electrophoretic gel mobility shift analysis, we also report two novel DNA binding proteins that responded specifically to iodide and modulated NIS promoter activity. The results suggest that excess iodide affects thyroid vascular function in addition to iodide uptake. This study provides additional insights into the mechanism of action of excess iodide on thyroid function. PMID:20132794

  12. Carbon aging mechanisms and effects on retention of organic iodides

    SciTech Connect

    Hyder, M.L.

    1985-01-01

    The activated carbon used to treat the off-gas from the Savannah River Plant prodution reactor building was studied to determine the chemical changes occurring in this carbon during its service life. The carbon is a coconut-shell charcoal impregnated with 1% triethylenediamine (TEDA) and 2% KI. It was known that during its 30-month service life the carbon becomes more acidic and less effective for retaining iodine in organic form. The study showed that the most important change occurring in the carbon is the reaction of KI to give other chemical forms of iodine. The reacted iodine is unavailable for exchange with alkyl iodides. The results suggest that the carbon reacts with KI to form organic compounds, but small amounts of oxidized iodine may also be presnt. There is also evidence that some iodide is lost from the carbon altogether. The TEDA impregnant is lost from the carbon very quickly, and has no importance after a few months. The specific reactions by which the impregnant is lost have not been identified. However, mathematical analysis shows that the carbon performance data are consistent with the reaction of iodide impregnant with impurities in the air flowing through the carbon bed. Additional mathematical analysis, based on electron microscopic observation of the carbon particles, indicates that the external surfaces of the carbon are mainly responsible for their effectiveness in retaining iodine. Consequently, the condition of the impregnants on a relatively small fraction of the carbon surface can have a large effect on its performance. 4 refs., 14 figs., 2 tabs.

  13. Stochastic dynamics of the chlorite-iodide reaction

    NASA Astrophysics Data System (ADS)

    Sagués, F.; Ramírez-Piscina, L.; Sancho, J. M.

    1990-04-01

    A recently proposed theoretical framework appropriate to the study of the stochastic behavior of several chemical systems is used to analyze the irreproducibility of the observed reaction times in the chlorite-iodide clock reaction. Noise terms are incorporated through the kinetic constants and their intensity is further correlated with the inverse of the stirring rate. Analytical and simulation results are obtained for the first moments of the reaction time distribution. These results are compared with recent experimental data obtained by Nagypál and Epstein.

  14. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry.

    PubMed

    Crowley, Lisa C; Scott, Adrian P; Marfell, Brooke J; Boughaba, Jeanne A; Chojnowski, Grace; Waterhouse, Nigel J

    2016-01-01

    Propidium iodide (PI) is a small fluorescent molecule that binds to DNA but cannot passively traverse into cells that possess an intact plasma membrane. PI uptake versus exclusion can be used to discriminate dead cells, in which plasma membranes become permeable regardless of the mechanism of death, from live cells with intact membranes. PI is excited by wavelengths between 400 and 600 nm and emits light between 600 and 700 nm, and is therefore compatible with lasers and photodetectors commonly available in flow cytometers. This protocol for PI staining can be used to quantitate cell death in most modern research facilities and universities. PMID:27371595

  15. Temperature dependent energy levels of methylammonium lead iodide perovskite

    SciTech Connect

    Foley, Benjamin J.; Marlowe, Daniel L.; Choi, Joshua J. E-mail: mgupta@virginia.edu; Sun, Keye; Gupta, Mool C. E-mail: mgupta@virginia.edu; Saidi, Wissam A.; Scudiero, Louis E-mail: mgupta@virginia.edu

    2015-06-15

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  16. Low-temperature photoluminescence studies of mercuric-iodide photodetectors

    NASA Astrophysics Data System (ADS)

    James, R. B.; Bao, X. J.; Schlesinger, T. E.; Markakis, J. M.; Cheng, A. Y.; Ortale, C.

    1989-09-01

    Mercuric-iodide (HgI2 ) photodetectors with sputtered indium-tin-oxide (ITO) entrance electrodes were studied using low-temperature photoluminescence spectroscopy. The photoluminescence spectrum obtained on each photodetector was found to differ for points beneath the ITO contact and points adjacent to it, indicating that the contact fabrication process introduces new carrier traps and radiative recombination centers within the ITO-HgI2 interfacial region. In particular, a new broad band was observed in the spectra taken from points beneath the ITO electrode. Photocurrent-versus-position measurements showed that the intensity of this broad band was enhanced in regions having relatively poor photoresponse.

  17. Polarized spectral complexes of optical functions of monovalent mercury iodide

    NASA Astrophysics Data System (ADS)

    Sobolev, V. V.; Sobolev, V. Val.; Anisimov, D. V.

    2015-12-01

    Spectral complexes of optical functions of monovalent mercury iodide Hg2I2 were determined for E ⊥ c and E || c polarizations in the range from 2 to 5.5 eV at 4.2 K. The permittivity and characteristic electron energy loss spectra were expanded in simple components with the determination of their main parameters, including the energy of the maximum and the oscillator strength. The calculations were performed based on known reflectance spectra. Computer programs based on Kramers-Kronig relations and the improved parameter-free method of Argand diagrams were used.

  18. Copper-catalyzed selective arylations of benzoxazoles with aryl iodides.

    PubMed

    Kim, Donghae; Yoo, Kwangho; Kim, Se Eun; Cho, Hee Jin; Lee, Junseong; Kim, Youngjo; Kim, Min

    2015-04-01

    A copper-catalyzed direct ring-opening double N-arylation of benzoxazoles with aryl iodides has been developed. The present system exhibits high selectivity despite competition from C-arylation. The selectivity between ring-opening N-arylation and C-arylation was controlled by the choice of reaction vessel. The nitrile bound bis(triphenylphosphine)copper cyanide was identified as the active catalytic species for both reactions, and when combined with a nitrile-containing solvent, enhanced the reaction efficiency.

  19. Mechanical testing of large thallium doped sodium iodide single crystals

    NASA Technical Reports Server (NTRS)

    Lee, H. M.

    1985-01-01

    The findings of mechanical tests performed on five thallium-doped sodium iodide NaI(Tl) crystals are presented. These crystals are all in the shape of circular flat plates, 20.0 in. in diameter an d0.5 in. thick. The test setup, testing procedure, and the test data are presented. Large crystals exhibit a high degree of material plasticity, as well as a much higher strength than previously anticipated, on the order of 500 psi. Also revealed from the testing is the fact that crystal with a large number of grain boundaries developed less plasticity, and therefore less permanent deformation, than those with fewer grain boundaries.

  20. Au25(SG)18 as a fluorescent iodide sensor

    NASA Astrophysics Data System (ADS)

    Wang, Man; Wu, Zhikun; Yang, Jiao; Wang, Guozhong; Wang, Hongzhi; Cai, Weiping

    2012-06-01

    The recently emerging gold nanoclusters (GNC) are of major importance for both basic science studies and practical applications. Based on its surface-induced fluorescence properties, we investigated the potential use of Au25(SG)18 (GSH: glutathione) as a fluorescent iodide sensor. The current detection limit of 400 nM, which can possibly be further enhanced by optimizing the conditions, and excellent selectivity among 12 types of anion (F-, Cl-, Br-, I-, NO3-, ClO4-, HCO3-, IO3-, SO42-, SO32-, CH3COO- and C6H5O73-) make Au25(SG)18 a good candidate for iodide sensing. Furthermore, our work has revealed the particular sensing mechanism, which was found to be affinity-induced ratiometric and enhanced fluorescence (abbreviated to AIREF), which has rarely been reported previously and may provide an alternative strategy for devising nanoparticle-based sensors.The recently emerging gold nanoclusters (GNC) are of major importance for both basic science studies and practical applications. Based on its surface-induced fluorescence properties, we investigated the potential use of Au25(SG)18 (GSH: glutathione) as a fluorescent iodide sensor. The current detection limit of 400 nM, which can possibly be further enhanced by optimizing the conditions, and excellent selectivity among 12 types of anion (F-, Cl-, Br-, I-, NO3-, ClO4-, HCO3-, IO3-, SO42-, SO32-, CH3COO- and C6H5O73-) make Au25(SG)18 a good candidate for iodide sensing. Furthermore, our work has revealed the particular sensing mechanism, which was found to be affinity-induced ratiometric and enhanced fluorescence (abbreviated to AIREF), which has rarely been reported previously and may provide an alternative strategy for devising nanoparticle-based sensors. Electronic supplementary information (ESI) available: fluorescence spectra of Au25(SG)18 (1.6 μM in H2O) with successive titration of I- and the time-dependent fluorescence of Au25(SG)18. See DOI: 10.1039/c2nr30169e.

  1. The MINERνA detector

    SciTech Connect

    Fiorentini, G. A.

    2015-05-15

    MINERνA (Main INjector Experiment for ν-A) is a dedicated neutrino-nucleus scattering experiment at Fermilab. It uses a fine-grained fully active detector to make precision measurements of neutrino and antineutrino interactions on a variety of different nuclear targets (plastic scintillator, C, Fe, Pb, He and H2O) for energies up to few GeV. An overview of the experiment and a description of the detector are presented.

  2. FEASIBILITY STUDY FOR POTASSIUM IODIDE (KI) DISTRIBUTION IN NEW YORK CITY.

    SciTech Connect

    MOSS, STEVEN

    2005-04-29

    The New York City Department of Health and Mental Hygiene (DOHMH), Bureau of Environmental Science and Engineering, Office of Radiological Health (ORH) [as the primary local technical consultant in the event of a radiological or nuclear incident within the boundaries of New York City] requested the assistance of Brookhaven National Laboratory (BNL) with the development of a Feasibility Study for Potassium Iodide (KI) distribution in the unlikely event of a significant release of radioactive iodine in or near New York City. Brookhaven National Laboratory had previously provided support for New York City with the development of the radiological/nuclear portions of its All Hazards Emergency Response Plans. The work is funded by Medical and Health Research Association (MHRA) of New York City, Inc., under a work grant by the Federal Centers for Disease Control (CDC) for Public Health Preparedness and Response for Bioterrorism. This report is part of the result of that effort. The conclusions of this report are that: (1) There is no credible radiological scenario that would prompt the need for large segments of the general population of New York City to take KI as a result of a projected plume exposure to radioiodine reaching even the lowest threshold of 5 rem to the thyroid; and (2) KI should be stockpiled in amounts and locations sufficient for use by first responders/emergency responders in response to any localized release of radioiodine.

  3. MS Detectors

    SciTech Connect

    Koppenaal, David W.; Barinaga, Charles J.; Denton, M Bonner B.; Sperline, Roger P.; Hieftje, Gary M.; Schilling, G. D.; Andrade, Francisco J.; Barnes IV., James H.

    2005-11-01

    Good eyesight is often taken for granted, a situation that everyone appreciates once vision begins to fade with age. New eyeglasses or contact lenses are traditional ways to improve vision, but recent new technology, i.e. LASIK laser eye surgery, provides a new and exciting means for marked vision restoration and improvement. In mass spectrometry, detectors are the 'eyes' of the MS instrument. These 'eyes' have also been taken for granted. New detectors and new technologies are likewise needed to correct, improve, and extend ion detection and hence, our 'chemical vision'. The purpose of this report is to review and assess current MS detector technology and to provide a glimpse towards future detector technologies. It is hoped that the report will also serve to motivate interest, prompt ideas, and inspire new visions for ion detection research.

  4. Seal system with integral detector

    DOEpatents

    Fiarman, Sidney

    1985-01-01

    There is disclosed a seal system for materials where security is of the essence, such as nuclear materials, which is tamper-indicating, which indicates changes in environmental conditions that evidence attempts to by-pass the seal, which is unique and cost effective, said seal system comprised of a seal where an optical signal is transmitted through a loop, with a detector to read said signal, and one or more additional detectors designed to detect environmental changes, these detectors being operatively associated with the seal so that detection of a break in the optical signal or detection of environmental changes will cause an observable change in the seal.

  5. Seal system with integral detector

    DOEpatents

    Fiarman, S.

    1982-08-12

    A seal system is disclosed for materials where security is of the essence, such as nuclear materials. The seal is tamper-indicating, indicates changes in environmental conditions that evidence attempts to bypass the seal, is unique and cost effective. The seal system is comprised of a seal where an optical signal is transmitted through a loop, with a detector to read said signal, and one or more additional detectors designed to detect environmental changes, these detectors being operatively associated with the seal so that detection of a break in the optical signal or detection of environmental changes will cause an observable change in the seal.

  6. Solid state neutron detector array

    DOEpatents

    Seidel, John G.; Ruddy, Frank H.; Brandt, Charles D.; Dulloo, Abdul R.; Lott, Randy G.; Sirianni, Ernest; Wilson, Randall O.

    1999-01-01

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  7. Solid state neutron detector array

    DOEpatents

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  8. Relationship of dietary iodide and drinking water disinfectants to thyroid function in experimental animals

    SciTech Connect

    Revis, N.W.; McCauley, P.; Holdsworth, G.

    1986-11-01

    The importance of dietary iodide on the reported hypothyroid effect of drinking water disinfectants on thyroid function was investigated. Previous studies have also showed differences in the relative sensitivity of pigeons and rabbits to chlorinated water. Pigeons and rabbits were exposed for 3 months to diets containing high (950 ppb) or low (300 ppb) levels of iodide and to drinking water containing two levels of chlorine. Results showed that the high-iodide diet prevented the hypothyroid effect observed in pigeons given the low-iodide diet and chlorinated drinking water. Similar trends were observed in rabbits exposed to the same treatment; however, significant hypothyroid effects were not observed in this animal model. The factor associated with the observed effect of dietary iodide on the chlorine-induced change in thyroid function is unknown, as is the relative sensitivity of rabbits and pigeons to the effect of chlorine. Several factors may explain the importance of dietary iodide and the relative sensitivity of these species. For example, the iodine formed by the known reaction of chlorine with iodide could result in a decrease in the plasma level of iodide because of the relative absorption rates of iodide and iodine in the intestinal tract, and the various types and concentrations of chloroorganics (metabolites) formed in the diet following the exposure of various dietary constituents to chlorine could affect the thyroid function. The former factor was investigated in the present studies. Results do not confirm a consistent, significant reduction in the plasma level of iodide in rabbits and pigeons exposed to chlorinated water and the low-iodide diet. The latter factor is being investigated.

  9. CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification

    SciTech Connect

    Baccou, C. Yahia, V.; Labaune, C.; Depierreux, S.; Neuville, C.; Goyon, C.; Consoli, F.; De Angelis, R.; Ducret, J. E.; Boutoux, G.; Rafelski, J.

    2015-08-15

    Laser-accelerated ion beams can be used in many applications and, especially, to initiate nuclear reactions out of thermal equilibrium. We have experimentally studied aneutronic fusion reactions induced by protons accelerated by the Target Normal Sheath Acceleration mechanism, colliding with a boron target. Such experiments require a rigorous method to identify the reaction products (alpha particles) collected in detectors among a few other ion species such as protons or carbon ions, for example. CR-39 track detectors are widely used because they are mostly sensitive to ions and their efficiency is near 100%. We present a complete calibration of CR-39 track detector for protons, alpha particles, and carbon ions. We give measurements of their track diameters for energy ranging from hundreds of keV to a few MeV and for etching times between 1 and 8 h. We used these results to identify alpha particles in our experiments on proton-boron fusion reactions initiated by laser-accelerated protons. We show that their number clearly increases when the boron fuel is preformed in a plasma state.

  10. CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification.

    PubMed

    Baccou, C; Yahia, V; Depierreux, S; Neuville, C; Goyon, C; Consoli, F; De Angelis, R; Ducret, J E; Boutoux, G; Rafelski, J; Labaune, C

    2015-08-01

    Laser-accelerated ion beams can be used in many applications and, especially, to initiate nuclear reactions out of thermal equilibrium. We have experimentally studied aneutronic fusion reactions induced by protons accelerated by the Target Normal Sheath Acceleration mechanism, colliding with a boron target. Such experiments require a rigorous method to identify the reaction products (alpha particles) collected in detectors among a few other ion species such as protons or carbon ions, for example. CR-39 track detectors are widely used because they are mostly sensitive to ions and their efficiency is near 100%. We present a complete calibration of CR-39 track detector for protons, alpha particles, and carbon ions. We give measurements of their track diameters for energy ranging from hundreds of keV to a few MeV and for etching times between 1 and 8 h. We used these results to identify alpha particles in our experiments on proton-boron fusion reactions initiated by laser-accelerated protons. We show that their number clearly increases when the boron fuel is preformed in a plasma state.

  11. CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification.

    PubMed

    Baccou, C; Yahia, V; Depierreux, S; Neuville, C; Goyon, C; Consoli, F; De Angelis, R; Ducret, J E; Boutoux, G; Rafelski, J; Labaune, C

    2015-08-01

    Laser-accelerated ion beams can be used in many applications and, especially, to initiate nuclear reactions out of thermal equilibrium. We have experimentally studied aneutronic fusion reactions induced by protons accelerated by the Target Normal Sheath Acceleration mechanism, colliding with a boron target. Such experiments require a rigorous method to identify the reaction products (alpha particles) collected in detectors among a few other ion species such as protons or carbon ions, for example. CR-39 track detectors are widely used because they are mostly sensitive to ions and their efficiency is near 100%. We present a complete calibration of CR-39 track detector for protons, alpha particles, and carbon ions. We give measurements of their track diameters for energy ranging from hundreds of keV to a few MeV and for etching times between 1 and 8 h. We used these results to identify alpha particles in our experiments on proton-boron fusion reactions initiated by laser-accelerated protons. We show that their number clearly increases when the boron fuel is preformed in a plasma state. PMID:26329181

  12. Ionic transport in hybrid lead iodide perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Eames, Christopher; Frost, Jarvist M.; Barnes, Piers R. F.; O'Regan, Brian C.; Walsh, Aron; Islam, M. Saiful

    2015-06-01

    Solar cells based on organic-inorganic halide perovskites have recently shown rapidly rising power conversion efficiencies, but exhibit unusual behaviour such as current-voltage hysteresis and a low-frequency giant dielectric response. Ionic transport has been suggested to be an important factor contributing to these effects; however, the chemical origin of this transport and the mobile species are unclear. Here, the activation energies for ionic migration in methylammonium lead iodide (CH3NH3PbI3) are derived from first principles, and are compared with kinetic data extracted from the current-voltage response of a perovskite-based solar cell. We identify the microscopic transport mechanisms, and find facile vacancy-assisted migration of iodide ions with an activation energy of 0.6 eV, in good agreement with the kinetic measurements. The results of this combined computational and experimental study suggest that hybrid halide perovskites are mixed ionic-electronic conductors, a finding that has major implications for solar cell device architectures.

  13. Ionic transport in hybrid lead iodide perovskite solar cells

    PubMed Central

    Eames, Christopher; Frost, Jarvist M.; Barnes, Piers R. F.; O'Regan, Brian C.; Walsh, Aron; Islam, M. Saiful

    2015-01-01

    Solar cells based on organic–inorganic halide perovskites have recently shown rapidly rising power conversion efficiencies, but exhibit unusual behaviour such as current–voltage hysteresis and a low-frequency giant dielectric response. Ionic transport has been suggested to be an important factor contributing to these effects; however, the chemical origin of this transport and the mobile species are unclear. Here, the activation energies for ionic migration in methylammonium lead iodide (CH3NH3PbI3) are derived from first principles, and are compared with kinetic data extracted from the current–voltage response of a perovskite-based solar cell. We identify the microscopic transport mechanisms, and find facile vacancy-assisted migration of iodide ions with an activation energy of 0.6 eV, in good agreement with the kinetic measurements. The results of this combined computational and experimental study suggest that hybrid halide perovskites are mixed ionic–electronic conductors, a finding that has major implications for solar cell device architectures. PMID:26105623

  14. Crystal growth and scintillation properties of strontium iodide scintillators

    SciTech Connect

    van Loef, Edgar; Wilson, Cody; Cherepy, Nerine; Payne, Steven; Choong, Woon-Seng; Moses, William W.; Shah, Kanai

    2009-06-01

    Single crystals of SrI{sub 2}:Eu and SrI{sub 2}:Ce/Na were grown from anhydrous iodides by the vertical Bridgman technique in evacuated silica ampoules. Growth rates were of the order of 5-30 mm/day. Radioluminescence spectra of SrI{sub 2}:Eu and SrI{sub 2}:Ce/Na exhibit a broad band due to Eu{sup 2+} and Ce{sup 3+} emission, respectively. The maximum in the luminescence spectrum of SrI{sub 2}:Eu is found at 435 nm. The spectrum of SrI{sub 2}:Ce/Na exhibits a doublet peaking at 404 and 435 nm attributed to Ce{sup 3+} emission, while additional impurity - or defected - related emission is present at approximately 525 nm. The strontium iodide scintillators show very high light yields of up to 120,000 photons/MeV, have energy resolutions down to 3% at 662 keV (Full Width Half Maximum) and exhibit excellent light yield proportionality with a standard deviation of less than 5% between 6 and 460 keV.

  15. 9-O-Ethyl­berberrubinium iodide monohydrate

    PubMed Central

    Grundt, Peter; Pernat, Jennifer; Krivogorsky, Bogdana; Halverson, Melanie A.; Berry, Steven M.

    2010-01-01

    In the title compound (systematic name: 9-eth­oxy-10-meth­oxy-5,6-dihydro-1,3-dioxolo[4,5-g]isoquinolino­[3,2-a]isoquin­olin-7-ium iodide monohydrate), 2C21H20NO4 +·2I−·H2O, two independent mol­ecules pack in the unit cell, where interactions between the molecules are stabilized by weak inter­molecular π–π stacking inter­actions [centroid–centroid distances in the range 3.571 (4) to 3.815 (4)Å]. Inter­molecular C—H⋯O inter­actions are also observed. The iodide anions are disordered with occupancy ratios of 0.94 (1):0.06 (1) and 0.91 (1):0.09 (1). The cationic molecule is planar in structure with a small torsion resulting from the dihydropyridine ring. PMID:21587567

  16. Iodide-catalyzed ozonation of terpenes on aqueous surfaces

    NASA Astrophysics Data System (ADS)

    Enami, S.; Hayase, S.; Kawasaki, M.; Hoffmann, M. R.; Colussi, A. J.

    2011-12-01

    Biogenic terpenes are the dominant global source of volatile organic compounds (VOC) and secondary organic aerosols (SOA). Their atmospheric chemistry has therefore major direct and indirect impacts on global climate change. At the same time, it has become apparent that organic and inorganic iodine species of marine origin are ubiquitous in the troposphere. They are found over the open ocean (even in the absence of biogenic sources), the Antarctic coast, in rain, aerosols, ice, and snow, and participate in HOx/NOx cycles in the troposphere. Here we report that iodide catalyzes the ozonation of alpha-pinene on aqueous surfaces. Nebulizer-assisted online electrospray mass spectrometry of alpha-pinene solutions briefly exposed to gaseous ozone reveals that alpha-pinene, which is unreactive during 10 microsecond contact times, is converted into acids (e.g., pinonic acid) and previously unreported iodine-containing species in the presence of millimolar iodide. These newly found products were characterized by MS/MS in conjunction with isotope and kinetic studies, and may account for unidentified organoiodine species observed in recent field measurements.

  17. Peptide quantitation with methyl iodide isotopic tags and mass spectrometry.

    PubMed

    Blagojevic, Voislav; Zhidkov, Nickholas; Tharmaratnam, Samuel; Pham, Van Thong; Kaplan, Harvey; Bohme, Diethard K

    2010-06-01

    A novel method is presented for the quantitation of peptides based on their methylation by in vacuo chemical reaction with methyl iodide. Samples of two small peptides, hexaglycine and pentaalanine, were labeled with CH(3)I and CD(3)I, representing the "unknown" and "standard" respectively, and then subjected to a series of tests using mass spectrometry to ascertain the suitability of the isotopic labels for peptide quantitation. The experiments show methyl iodide to be a very quantitative label, exhibiting a linear relationship in concentration over the dynamic range of the mass spectrometer used in the analysis (up to 4 orders of magnitude) both as pure samples and in a complex mixture of peptides. The tendency of trimethylated peptides to preferentially form a(2) fragment ions in MS(2) produces a significant increase in sensitivity, especially when the mass spectrometer is used in the MRM mode. Tests were also performed to verify the stability of the label against H/D exchange and its suitability for long-term storage, showing little degradation while in solution and during subsequent chemical processing.

  18. The Next Generation of Crystal Detectors

    NASA Astrophysics Data System (ADS)

    Zhu, Ren-Yuan

    2015-02-01

    Crystal detectors have been used widely for decades in high energy and nuclear physics experiments, medical instruments and homeland security applications. Novel crystal detectors are continuously being found. Future HEP experiments require bright and fast crystal detectors with excellent radiation hardness. Cost-effectiveness is also a crucial issue for crystal detectors to be used in a large volume. To face these new challenges a thorough R&D program is required to investigate and develop crystal detectors for future HEP experiments in all frontiers.

  19. Photon detectors

    SciTech Connect

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  20. Oxygen-hydrogen fuel cell with an iodine-iodide cathode - A concept

    NASA Technical Reports Server (NTRS)

    Javet, P.

    1970-01-01

    Fuel cell uses a porous cathode through which is fed a solution of iodine in aqueous iodide solution, the anode is a hydrogen electrode. No activation polarization appears on the cathode because of the high exchange-current density of the iodine-iodide electrode.

  1. Effects of radiation and temperature on iodide sorption by surfactant-modified bentonite.

    PubMed

    Choung, Sungwook; Kim, Minkyung; Yang, Jung-Seok; Kim, Min-Gyu; Um, Wooyong

    2014-08-19

    Bentonite, which is used as an engineered barrier in geological repositories, is ineffective for sorbing anionic radionuclides because of its negatively charged surface. This study modified raw bentonite using a cationic surfactant (i.e., hexadecyltrimethylammonium [HDTMA]-Br) to improve its sorption capability for radioactive iodide. The effects of temperature and radiation on the iodide sorption of surfactant-modified bentonite (SMB) were also evaluated under alkaline pH condition similar to that found in repository environments. Different amounts of surfactant, equivalent to the 50, 100, and 200% cation-exchange capacity of the bentonite, were used to produce the HDTMA-SMB for iodide sorption. The sorption reaction of the SMB with iodide reached equilibrium rapidly within 10 min regardless of temperature and radiation conditions. The rate of iodide sorption increased as the amount of the added surfactant was increased and nonlinear sorption behavior was exhibited. However, high temperature and γ-irradiation ((60)Co) resulted in significantly (∼2-10 times) lower iodide Kd values for the SMB. The results of FTIR, NMR, and XANES spectroscopy analysis suggested that the decrease in iodide sorption may be caused by weakened physical electrostatic force between the HDTMA and iodide, and by the surfactant becoming detached from the SMB during the heating and irradiation processes.

  2. Effects of Radiation and Temperature on Iodide Sorption by Surfactant-Modified Bentonite

    SciTech Connect

    Choung, Sungwook; Kim, Min Kyung; Yang, Jungseok; Kim, Min-Gyu; Um, Wooyong

    2014-08-04

    Bentonite, which is used as an engineered barrier in geological repositories, is ineffective for sorbing anionic radionuclides because of its negatively charged surface. This study modified raw bentonite using a cationic surfactant (i.e., hexadecyltrimethylammonium [HDTMA]-Br) to improve its sorption capability for radioactive iodide. The effects of temperature and radiation on the iodide sorption of surfactant-modified bentonite (SMB) were evaluated under alkaline pH condition similar to that found in repository environments. Different amounts of surfactant, equivalent to the 50, 100, and 200% cation-exchange capacity of the bentonite, were used to produce the HDTMA-SMB for iodide sorption. The sorption reaction of the SMB with iodide reached equilibrium rapidly within 10 min regardless of temperature and radiation conditions. The rate of iodide sorption increased as the amount of the added surfactant was increased and nonlinear sorption behavior was exhibited. However, high temperature and γ-irradiation (60Co) resulted in significantly (~2–10 times) lower iodide Kd values for the SMB. The results of Fourier transform infrared spectroscopy analysis suggested that the decrease in iodide sorption may be caused by weakened physical electrostatic force between the HDTMA and iodide, and by the surfactant becoming detached from the SMB during the heating and irradiation processes.

  3. 21 CFR 520.763c - Dithiazanine iodide and piperazine citrate suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide and piperazine citrate... § 520.763c Dithiazanine iodide and piperazine citrate suspension. (a) Specifications. Each milliliter of... piperazine citrate). (b) Sponsor. See 000010 in § 510.600(c) of this chapter. (c) NAS/NRC status....

  4. 21 CFR 520.763c - Dithiazanine iodide and piperazine citrate suspension.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dithiazanine iodide and piperazine citrate... § 520.763c Dithiazanine iodide and piperazine citrate suspension. (a) Specifications. Each milliliter of... piperazine citrate). (b) Sponsor. See 000010 in § 510.600(c) of this chapter. (c) NAS/NRC status....

  5. Efficient copper-catalyzed trifluoromethylation of aromatic and heteroaromatic iodides: the beneficial anchoring effect of borates.

    PubMed

    Gonda, Zsombor; Kovács, Szabolcs; Wéber, Csaba; Gáti, Tamás; Mészáros, Attila; Kotschy, András; Novák, Zoltán

    2014-08-15

    Efficient copper-catalyzed trifluoromethylation of aromatic iodides was achieved with TMSCF3 in the presence of trimethylborate. The Lewis acid was used to anchor the in situ generated trifluoromethyl anion and suppress its rapid decomposition. Broad applicability of the new trifluoromethylating reaction was demonstrated in the functionalization of different aromatic and heteroaromatic iodides. PMID:25068681

  6. Abiotic formation of methyl iodide on synthetic birnessite: a mechanistic study.

    PubMed

    Allard, Sébastien; Gallard, Hervé

    2013-10-01

    Methyl iodide is a well-known volatile halogenated organic compound that contributes to the iodine content in the troposphere, potentially resulting in damage to the ozone layer. Most methyl iodide sources derive from biological activity in oceans and soils with very few abiotic mechanisms proposed in the literature. In this study we report that synthetic manganese oxide (birnessite δ-MnO2) can catalyze the formation of methyl iodide in the presence of natural organic matter (NOM) and iodide. Methyl iodide formation was only observed at acidic pH (4-5) where iodide is oxidized to iodine and NOM is adsorbed on δ-MnO2. The effect of δ-MnO2, iodide and NOM concentrations, nature of NOM and ionic strength was investigated. High concentrations of methyl iodide were formed in experiments conducted with the model compound pyruvate. The Lewis acid property of δ-MnO2 leads to a polarization of the iodine molecule, and catalyzes the reaction with natural organic matter. As manganese oxides are strong oxidants and are ubiquitous in the environment, this mechanism could significantly contribute to the global atmospheric input of iodine.

  7. Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide.

    PubMed

    Liao, Weiqiang; Zhao, Dewei; Yu, Yue; Shrestha, Niraj; Ghimire, Kiran; Grice, Corey R; Wang, Changlei; Xiao, Yuqing; Cimaroli, Alexander J; Ellingson, Randy J; Podraza, Nikolas J; Zhu, Kai; Xiong, Ren-Gen; Yan, Yanfa

    2016-09-28

    Mixed tin (Sn)-lead (Pb) perovskites with high Sn content exhibit low bandgaps suitable for fabricating the bottom cell of perovskite-based tandem solar cells. In this work, we report on the fabrication of efficient mixed Sn-Pb perovskite solar cells using precursors combining formamidinium tin iodide (FASnI3) and methylammonium lead iodide (MAPbI3). The best-performing cell fabricated using a (FASnI3)0.6(MAPbI3)0.4 absorber with an absorption edge of ∼1.2 eV achieved a power conversion efficiency (PCE) of 15.08 (15.00)% with an open-circuit voltage of 0.795 (0.799) V, a short-circuit current density of 26.86(26.82) mA/cm(2), and a fill factor of 70.6(70.0)% when measured under forward (reverse) voltage scan. The average PCE of 50 cells we have fabricated is 14.39 ± 0.33%, indicating good reproducibility. PMID:27622903

  8. Dose-Response Analysis of Developmental Iodide Deficiency: Reductions in Thyroid Hormones and Impaired Hippocampal Synaptic Transmission

    EPA Science Inventory

    Iodide is an essential nutrient for thyroid hormone synthesis and severe iodide deficiency (ID) during early development is associated with neurological impairments. Several environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under cond...

  9. [Flat Panel Detector Philips introduced and its system direction].

    PubMed

    Yamada, Shinichi

    2002-01-01

    We introduced digital X-ray diagnostic systems with Flat panel detector both in general X-ray systems and in Angiography systems. Our introduced Flat Panel Detector has the latest technology and has Cesium Iodide (CsI) that absorbs X-ray energy and generates visible light. Detected light signals make digital X-ray images. CsI is the most important material because its absorption rate of X-ray influences the strength of output digital signal. The purpose in this paper is checking that is latest Flat Panel Detector pulls out enough capability CsI has. Especially the thickness of CsI relates to X-ray absorption. X-ray absorption rate depended on the thickness of CsI was calculated by using simulated X-ray model and the future direction of Flat Panel Detector system was discussed. PMID:12766268

  10. Pyroelectric detectors

    NASA Technical Reports Server (NTRS)

    Haller, Eugene E.; Beeman, Jeffrey; Hansen, William L.; Hubbard, G. Scott; Mcmurray, Robert E., Jr.

    1990-01-01

    The multi-agency, long-term Global Change programs, and specifically NASA's Earth Observing system, will require some new and advanced photon detector technology which must be specifically tailored for long-term stability, broad spectral range, cooling constraints, and other parameters. Whereas MCT and GaAs alloy based photovoltaic detectors and detector arrays reach most impressive results to wavelengths as long as 12 microns when cooled to below 70 K, other materials, such as ferroelectrics and pyroelectrics, appear to offer special opportunities beyond 12 microns and above 70 K. These materials have found very broad use in a wide variety of room temperature applications. Little is known about these classes of materials at sub-room temperatures and no photon detector results have been reported. From the limited information available, researchers conclude that the room temperature values of D asterisk greater than or equal to 10(exp 9) cm Hz(exp 1/2)/W may be improved by one to two orders of magnitude upon cooling to temperatures around 70 K. Improvements of up to one order of magnitude appear feasible for temperatures achievable by passive cooling. The flat detector response over a wavelength range reaching from the visible to beyond 50 microns, which is an intrinsic advantage of bolometric devices, makes for easy calibration. The fact that these materials have been developed for reduced temperature applications makes ferro- and pyroelectric materials most attractive candidates for serious exploration.

  11. Solvent-free synthesis of alkylbenzimidazolium iodides and their applications in dye-sensitized solar cells

    SciTech Connect

    Xia, Mei; Shi, Chengwu; Sun, Renjie; Liu, Zhaokun; Cai, Molang

    2010-10-15

    In this paper, the synthesis of 1-hexyl-3-methylbenzimidazolium iodide (HMBI) and 1-hexyl-3-propylbenzimidazolium iodide (HPBI) was developed by quaternization reaction of 1-hexylbenzimidazole and alkyl iodide under solvent-free condition using Teflon-lined, stainless autoclaves. Their thermal properties were measured on the thermo gravimetric analysis and differential scanning calorimeter. The influence of HMBI, HPBI and 1-methyl-3-propylimidazolium iodide (MPII) on redox behavior of I{sub 3}{sup -} and I{sup -} was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. It was found that the resulting HMBI and HPBI had high purity and the reaction time was shortened to 3 h. The thermal stability of HMBI and HPBI was better than that of alkylimidazolium iodides, and HMBI and HPBI were prone to exhibit the supercooling phenomena. The DSCs with HMBI, HPBI and MPII gave photoelectric conversion efficiency of 5.49%, 5.34% and 5.54%, respectively. (author)

  12. Gamma detectors in explosives and narcotics detection systems

    NASA Astrophysics Data System (ADS)

    Bystritsky, V. M.; Zubarev, E. V.; Krasnoperov, A. V.; Porohovoi, S. Yu.; Rapatskii, V. L.; Rogov, Yu. N.; Sadovskii, A. B.; Salamatin, A. V.; Salmin, R. A.; Slepnev, V. M.; Andreev, E. I.

    2013-11-01

    Gamma detectors based on BGO crystals were designed and developed at the Joint Institute for Nuclear Research. These detectors are used in explosives and narcotics detection systems. Key specifications and design features of the detectors are presented. A software temperature-compensation method that makes it possible to stabilize the gamma detector response and operate the detector in a temperature range from -20 to 50°C is described.

  13. The Watchman Detector Design

    NASA Astrophysics Data System (ADS)

    Dazeley, Steven

    2014-03-01

    The Watchman collaboration is proposing a kiloton scale antineutrino detector of reactor-based antineutrinos for non-proliferation purposes. As an added bonus the detector will also have the capability to search for evidence of sterile neutrino oscillation, super-nova antineutrinos and, in a second phase, measure the neutrino mass hierarchy. Despite that fact that KamLAND demonstrated the feasibility of kiloton scale, long distance antineutrino detection with liquid scintillator, similar detectors at the megaton scale remain problematic for environmental, cost and light attenuation reasons. Water, with gadolinium added for neutron sensitivity, may be the detection medium of choice if its efficiency can be shown to be competitive with scintillator. The goal of the Watchman project, therefore, is to demonstrate medium distance reactor antineutrino detection, and thus demonstrate the feasibility of moving to water-based megaton scale antineutrino detectors in the future. In this talk I will describe the scope of the experiment, the physics and engineering challenges involved, the proposed design and the predicted performance of the experimental non-proliferation and high-energy physics program. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. Release number LLNL-ABS-648381.

  14. Transport of Iodide Ion in Compacted Bentonite Containing Ag{sub 2}O - 12111

    SciTech Connect

    Yim, Sung Paal; Lee, Ji-Hyun; Choi, Heui-Joo; Choi, Jong-Won; Lee, Cheo Kyung

    2012-07-01

    Observations of the transport of iodide through compacted bentonite containing Ag{sub 2}O as additive and that without additive were made. Compacted bentonite samples with densities of 1.41 g/cm{sup 3} and 1.60 g/cm{sup 3} were used in the experiment. The amount of Ag{sub 2}O added to the compacted bentonite was in the range of 0.0064 ∼ 0.0468 wt/wt%. Two diffusion solutions were used: one in which iodide ion was dissolved in demineralized water (pure iodide solution), and one in which iodide ion was dissolved in 0.1 M NaCl solution (0.1 M NaCl-iodide solution). Experimental results confirmed that iodide ion was transported by the diffusion process in the compacted bentonite containing Ag{sub 2}O as well as in the compacted bentonite without Ag{sub 2}O. The time-lag of diffusion of iodide ion in the compacted bentonite containing Ag{sub 2}O is larger than that in the compacted bentonite without Ag{sub 2}O. The increase of the time-lag of diffusion was observed in pure iodide ion solution as well as in 0.1 M NaCl-iodide solution. The apparent diffusion coefficient of iodide ion in the compacted bentonite containing Ag{sub 2}O was smaller than in the compacted bentonite without Ag{sub 2}O. The effective diffusion coefficient decreased as the amount of Ag{sub 2}O in the compacted bentonite increased. (authors)

  15. Electrochemical quantification of iodide ions in synthetic urine using silver nanoparticles: a proof-of-concept.

    PubMed

    Toh, Her Shuang; Tschulik, Kristina; Batchelor-McAuley, Christopher; Compton, Richard G

    2014-08-21

    Typical urinary iodide concentrations range from 0.3 μM to 6.0 μM. The conventional analytical method is based on the Sandell-Kolthoff reaction. It involves the toxic reagent, arsenic acid, and a waiting time of 30 minutes for the iodide ions to reduce the cerium(iv) ions. In the presented work, an alternative fast electrochemical method based on a silver nanoparticle modified electrode is proposed. Cyclic voltammetry was performed with a freshly modified electrode in presence of iodide ions and the voltammetric peaks corresponding to the oxidation of silver to silver iodide and the reverse reaction were recorded. The peak height of the reduction signal of silver iodide was used to plot a calibration line for the iodide ions. Two calibration plots for the iodide ions were obtained, one in 0.1 M sodium nitrate (a chloride-ion free environment to circumvent any interference from the other halides) and another in synthetic urine (which contains 0.2 M KCl). In both of the calibration plots, linear relationships were found between the reduction peak height and the iodide ion concentration of 0.3 μM to 6.0 μM. A slope of 1.46 × 10(-2) A M(-1) and a R(2) value of 0.999 were obtained for the iodide detection in sodium nitrate. For the synthetic urine experiments, a slope of 3.58 × 10(-3) A M(-1) and a R(2) value of 0.942 were measured. A robust iodide sensor with the potential to be developed into a point-of-care system has been validated.

  16. PHASE DETECTOR

    DOEpatents

    Kippenhan, D.O.

    1959-09-01

    A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

  17. Field Deployable Gamma Radiation Detectors for DHS Use

    SciTech Connect

    Sanjoy Mukhopadhyay

    2007-08-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER{trademark}, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack{trademark} that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant

  18. Field-deployable gamma-radiation detectors for DHS use

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy

    2007-09-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS' requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER TM, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack TM that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field1. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant spectral data and

  19. Hydrogen detector

    DOEpatents

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  20. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  1. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  2. Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Sadrozinski, Hartmut

    2014-03-01

    The use of silicon detectors has experienced an exponential growth in accelerator and space based experiments, similar to trends in the semiconductor industry as a whole, usually paraphrased as ``Moore's Law.'' Some of the essentials for this phenomenon will be presented, together with examples of the exciting science results which it enabled. With the establishment of a ``semiconductor culture'' in universities and laboratories around the world, an increased understanding of the sensors results in thinner, faster, more radiation-resistant detectors, spawning an amazing wealth of new technologies and applications, which will be the main subject of the presentation.

  3. Microwave detector

    SciTech Connect

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1986-12-02

    A detector is described for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations, the detector comprising: a B-dot loop linking the magnetic field of the microwave pulse; a biased ferrite, that produces a magnetization field flux that links the B-dot loop. The ferrite is positioned within the B-dot loop so that the magnetic field of the microwave pulse interacts with the ferrite and thereby participates in the formation of the magnetization field flux; and high-frequency insensitive means for measuring electric voltage or current induced in the B-dot loop.

  4. Project Overview: Inhibition of the Sodium-Iodide Symporter by Perchlorate: Evaluation of Lifestage Sensitivity Using PBPK Modeling

    EPA Science Inventory

    Perchlorate (ClO4-) competitively inhibits uptake of iodide by the sodium-iodide symporter (NIS) in laboratory animals and humans. NIS is found in many tissues, but is primarily responsible for sequestering iodide into the thyroid, enabling biosynthesis of thyroid hormones. The N...

  5. Horizontal Ampoule Growth and Characterization of Mercuric Iodide at Controlled Gas Pressures for X-Ray and Gamma Ray Spectrometers

    SciTech Connect

    McGregor, Douglas S.; Ariesanti, Elsa; Corcoran, Bridget

    2004-04-30

    The project developed a new method for producing high quality mercuric iodide crystals of x-ray and gamma spectrometers. Included are characterization of mercuric iodide crystal properties as a function of growth environment and fabrication and demonstration of room-temperature-operated high-resolution mercuric iodide spectrometers.

  6. Further development of a set of low sensitivity detectors for the measurement of nuclear radiation for application in Transient Radiation Effects on Electronics (TREE) research

    NASA Astrophysics Data System (ADS)

    Tremblay, K.; Clifford, T.; Mason, S.; Webb, W.; Noulty, R. A.; Ing, H.

    1991-03-01

    A miniaturized version of the neutron bubble spectrometer capable of measuring high neutron doses (approx. 100 rads) is being developed for the requirements of the Transient Radiation Effects on Electronics (TREE) program. Four specific detectors having neutron energy thresholds of 10, 100, 1000, and 2500 keV have been prepared. These detectors are capable of measuring neutron spectral information at small localized areas. They have been calibrated and the results of measurements at Aberdeen Proving Ground and Royal Military College (Kingston, Ontario) are given. Also included is an assessment of the method of homogeneous nucleation as a viable approach to the making of miniature droplets and the building of improved Rh foil spectrometer. Recommendations are made regarding additional research needs.

  7. Photon recycling in lead iodide perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Pazos-Outón, Luis M.; Szumilo, Monika; Lamboll, Robin; Richter, Johannes M.; Crespo-Quesada, Micaela; Abdi-Jalebi, Mojtaba; Beeson, Harry J.; Vrućinić, Milan; Alsari, Mejd; Snaith, Henry J.; Ehrler, Bruno; Friend, Richard H.; Deschler, Felix

    2016-03-01

    Lead-halide perovskites have emerged as high-performance photovoltaic materials. We mapped the propagation of photogenerated luminescence and charges from a local photoexcitation spot in thin films of lead tri-iodide perovskites. We observed light emission at distances of ≥50 micrometers and found that the peak of the internal photon spectrum red-shifts from 765 to ≥800 nanometers. We used a lateral-contact solar cell with selective electron- and hole-collecting contacts and observed that charge extraction for photoexcitation >50 micrometers away from the contacts arose from repeated recycling between photons and electron-hole pairs. Thus, energy transport is not limited by diffusive charge transport but can occur over long distances through multiple absorption-diffusion-emission events. This process creates high excitation densities within the perovskite layer and allows high open-circuit voltages.

  8. Ultrafast Extreme Ultraviolet Absorption Spectroscopy of Methylammonium Lead Iodide Perovskite

    NASA Astrophysics Data System (ADS)

    Verkamp, Max A.; Lin, Ming-Fu; Ryland, Elizabeth S.; Vura-Weis, Josh

    2016-06-01

    Methylammonium lead iodide (perovskite) is a leading candidate for use in next-generation solar cell devices. However, the photophysics responsible for its strong photovoltaic qualities are not fully understood. Ultrafast extreme ultraviolet (XUV) absorption was used to investigate electron and hole dynamics in perovskite by observing transitions from a common inner-shell level (I 4d) to the valence and conduction bands. Ultrashort (30 fs) pulses of XUV radiation with a broad spectrum (40-70 eV) were generated via high-harmonic generation using a tabletop instrument. Transient absorption measurements with visible pump and XUV probe directly observed the relaxation of charge carriers in perovskite after above-band excitation in the femtosecond and picosecond time ranges.

  9. Photon recycling in lead iodide perovskite solar cells.

    PubMed

    Pazos-Outón, Luis M; Szumilo, Monika; Lamboll, Robin; Richter, Johannes M; Crespo-Quesada, Micaela; Abdi-Jalebi, Mojtaba; Beeson, Harry J; Vrućinić, Milan; Alsari, Mejd; Snaith, Henry J; Ehrler, Bruno; Friend, Richard H; Deschler, Felix

    2016-03-25

    Lead-halide perovskites have emerged as high-performance photovoltaic materials. We mapped the propagation of photogenerated luminescence and charges from a local photoexcitation spot in thin films of lead tri-iodide perovskites. We observed light emission at distances of ≥50 micrometers and found that the peak of the internal photon spectrum red-shifts from 765 to ≥800 nanometers. We used a lateral-contact solar cell with selective electron- and hole-collecting contacts and observed that charge extraction for photoexcitation >50 micrometers away from the contacts arose from repeated recycling between photons and electron-hole pairs. Thus, energy transport is not limited by diffusive charge transport but can occur over long distances through multiple absorption-diffusion-emission events. This process creates high excitation densities within the perovskite layer and allows high open-circuit voltages.

  10. High temperature infrared spectrum of sodium iodide (NaI)

    NASA Astrophysics Data System (ADS)

    Maki, Arthur G.

    2014-09-01

    The absorption spectrum of sodium iodide vapor between 200 and 275 cm-1 has been measured with a resolution of 0.006 cm-1 at a temperature of 1096 K. The Δv = 1 transitions from v = 1 ← 0 to v = 13 ← 12 have been measured. Dunham constants are given from an least-squares analysis of 1285 fairly well resolved transitions. The band center for the fundamental band is ν0 = 257.2837 ± 0.0002 cm-1. The relative intensities of the Δv = 1 transitions from different vibrational states are studied and it is shown that the intensity is roughly proportional to v″ + 1 as expected from the harmonic oscillator approximation. From measurements of the Herman-Wallis constant, α1,0 = -0.0054 ± 0.0008, it is estimated that the transition moment must be μ1,0 ≈ 0.135 ± 0.020 debye.

  11. Photodissociation of alkyl iodides in helium nanodroplets. III. Recombination

    SciTech Connect

    Braun, Andreas; Drabbels, Marcel

    2007-09-21

    The recombination of fragments resulting from the photodissociation of (fluorinated) alkyl iodides in helium nanodroplets at a wavelength of 266 nm has been investigated by means of ion imaging techniques. It is found that in the case of CH{sub 3}I an appreciable fraction of the fragments recombine in the aftermath of the photolysis. The proposed mechanism involves a complete translational relaxation of both photofragments inside the nanodroplets followed by geminate recombination of the fragments. In contrast with CH{sub 3}I, no recombination is observed for CF{sub 3}I. This is attributed to the larger masses and the different initial kinetic energies of the fragments produced by the photolysis of CF{sub 3}I, which strongly diminishes the fragment thermalization efficiency.

  12. Coulomb Screening and Coherent Phonon in Methylammonium Lead Iodide Perovskites.

    PubMed

    Wang, He; Valkunas, Leonas; Cao, Thu; Whittaker-Brooks, Luisa; Fleming, Graham R

    2016-08-18

    Methylammonium lead iodide (CH3NH3PbI3) hybrid perovskite in the tetragonal and orthorhombic phases have different exciton binding energies and demonstrate different excitation kinetics. Here, we explore the role that crystal structure plays in the kinetics via fluence dependent transient absorption spectroscopy. We observe stronger saturation of the free carrier concentration under high pump energy density in the orthorhombic phase relative to the tetragonal phase. We attribute this phenomenon to small dielectric constant, large exciton binding energy, and weak Coulomb screening, which results in difficult exciton dissociation under high light intensity in the orthorhombic phase. At higher excitation intensities, we observe a coherent phonon with an oscillation frequency of 23.4 cm(-1) at 77 K, whose amplitude tracks the increase of the first-order lifetime. PMID:27485190

  13. Rapid sonochemical preparation of shape-selective lead iodide

    SciTech Connect

    Huang, Baojun; He, Qin; Fa, Wenjun; Li, Pinjiang; Zhang, Yange; Zheng, Zhi

    2012-09-15

    Graphical abstract: SEM morphologies of various PbI2 products obtained with the iodine concentration of 6.7 g/L and irradiation time of 1 minute at the reaction temperatures of 35 °C (a), 25 °C (b), and 15 °C (c). Highlights: ► PbI{sub 2} with various morphologies were rapidly formed at room temperature. ► We could well control the morphologies of PbI{sub 2} by changing reaction conditions. ► The PbI{sub 2} films could better resist rolling in a liquid media. -- Abstract: Lead iodide (PbI{sub 2}) films/crystals with various nano/micro morphologies (e.g., Nanoflake, block and microrod) were rapidly synthesized by taking advantage of a simple sonochemical method. The PbI{sub 2} crystals with uniform nanoflake structures could be fabricated directly on lead foils with the irradiation time as short as 36 s via interfacial reaction between lead foils and elemental iodine in ethanol at ambient temperature. It was found experimentally that the morphologies of the resulting thin films/crystals could be well controlled by the adjustment of several parameters including irradiation time, reaction solvents, iodine concentration, ultrasonic power, and reaction temperature. Most importantly, the resultant PbI{sub 2} films are stable enough to resist rolling under the drastic ultrasound irradiation in a liquid media. This method is believed to be the fastest way for in situ fabrication of morphology-controlled semiconductor films on various metal substrates for subsequent applications related to the other metal iodide or metal sulfide semiconductor films.

  14. Improvement in thallium hydride generation using iodide and Rhodamine B.

    PubMed

    Picón, David; Carrero, Pablo; Valero, Maribel; de Peña, Yaneira Petit; Gutiérrez, Luís

    2015-05-01

    A continuous flow hydride generation atomic absorption spectrometry (CF-HG-AAS) system was used to study the enhancement effect of different substances for conventional chemical HG of thallium. At room temperature, the acidified sample solution containing the respective enhancement reagent merged with the aqueous NaBH4 solution. The generated thallium hydride was stripped from the eluent solution by the addition of a nitrogen flow and thereafter the bulk phases were separated in a gas-liquid separator. The main factors under study were concentration and type of enhancement reagent (Te, iodide added as KI, Rhodamine B, malachite green and crystal violet) and acid (HCl, H2SO4 or HNO3). Other parameters affecting the thallium hydride generation, such as: NaBH4 concentration, carrier gas flow rate, length of reaction-mixing coil and reagents flow rates, were studied and optimized. Among the enhancement reagents tested, the combination of Rhodamine B and iodide produced the best results. A linear response was obtained between the detection limit (LOD (3σ)) of 1.5μg L(-1) and 1000μg L(-1). The RSD% (n=10) for a solution containing 15μg L(-1) of Tl was 2.9%. The recoveries of thallium in environmental water samples by spiking the samples with 10 and 20µg L(-1) of Tl were in the 97.0-102.5% range. The accuracy for Tl determination was further confirmed by the analysis of a water standard reference material (1643e form NIST, USA). Finally, it was demonstrated that malachite green and crystal violet showed similar enhancement effect like Rhodamine B for thallium HG.

  15. Improvement in thallium hydride generation using iodide and Rhodamine B.

    PubMed

    Picón, David; Carrero, Pablo; Valero, Maribel; de Peña, Yaneira Petit; Gutiérrez, Luís

    2015-05-01

    A continuous flow hydride generation atomic absorption spectrometry (CF-HG-AAS) system was used to study the enhancement effect of different substances for conventional chemical HG of thallium. At room temperature, the acidified sample solution containing the respective enhancement reagent merged with the aqueous NaBH4 solution. The generated thallium hydride was stripped from the eluent solution by the addition of a nitrogen flow and thereafter the bulk phases were separated in a gas-liquid separator. The main factors under study were concentration and type of enhancement reagent (Te, iodide added as KI, Rhodamine B, malachite green and crystal violet) and acid (HCl, H2SO4 or HNO3). Other parameters affecting the thallium hydride generation, such as: NaBH4 concentration, carrier gas flow rate, length of reaction-mixing coil and reagents flow rates, were studied and optimized. Among the enhancement reagents tested, the combination of Rhodamine B and iodide produced the best results. A linear response was obtained between the detection limit (LOD (3σ)) of 1.5μg L(-1) and 1000μg L(-1). The RSD% (n=10) for a solution containing 15μg L(-1) of Tl was 2.9%. The recoveries of thallium in environmental water samples by spiking the samples with 10 and 20µg L(-1) of Tl were in the 97.0-102.5% range. The accuracy for Tl determination was further confirmed by the analysis of a water standard reference material (1643e form NIST, USA). Finally, it was demonstrated that malachite green and crystal violet showed similar enhancement effect like Rhodamine B for thallium HG. PMID:25702995

  16. A passive ozone sampler based on a reaction with iodide.

    PubMed

    Yanagisawa, Y

    1994-02-01

    A new passive sampler for ozone and its simple analytical system have been developed. Because it is small and sensitive, the sampler can be used for determining personal exposures to ozone and oxidants and for multilocation measurements. The sampler consists of an electrode, a spacer, and several layers of membrane filters and Teflon meshes. The electrode is a carbon paper disk coated with nylon-6 polymer and potassium iodide. The membrane filters are used to remove interferences. A sampling rate of ozone is controlled by the spacer and Teflon meshes. Iodine is liberated by an oxidation reaction of potassium iodide with ozone. The iodine is stabilized by forming a charge transfer complex with nylon-6 and is accumulated in the nylon-6 layer. The amount of iodine, which is proportional to the level of ozone exposure, is quantified by constant current coulometry. The discharge time of a galvanic battery is measured using the electrode as a positive electrode and a zinc plate as a counter electrode. A time-weighted average concentration of ozone is derived from the discharge time after exposing the electrode to ozone. The effects of various environmental conditions on the sampler's performance were investigated. The results indicated that the sampler showed a linear response to ozone exposure up to 1,450 parts per billion for every hour of use (ppb.hour). The minimum detectable exposure was about 400 ppb.hour. The effects of surface wind velocity, temperature, and humidity were small. However, a relative humidity below 20% resulted in an underestimation of the ozone concentration. Because the electrode requires no pretreatment and the analytical method is very simple, this method is suitable for large-scale studies of personal exposures to ozone and oxidants using multilocation measurements.

  17. (Data acquisition for Ge detector arrays)

    SciTech Connect

    Hensley, D.C.

    1989-10-09

    The traveler presented three invited lectures entitled An Overview of Data Acquisition for Ge Detector Arrays,'' Specialized Data Acquisition for Ge Detector Arrays,'' and Gamma-Ray Angular Correlations from Heavy-Ion Inelastic Scattering Measured in the Spin Spectrometer'' and acted as a Study Group Coordinator at the Nuclear Structure in the Era of New Spectroscopy Workshop in Copenhagen, Denmark.

  18. REMOVAL OF IODIDE FROM GROUNDWATER USING SILVER CHLORIDE WHITE PAPER

    SciTech Connect

    Johns, M

    2008-11-26

    Releases from the F and H Area Seepage Basins on the Savannah River Site (SRS) have caused groundwater plumes that contain a variety of contaminants. These plumes are releasing contaminants into Fourmile Branch, which is a small tributary of the Savannah River. The metallic contaminant releases to the branch are being controlled by base injection. The base injection targets cationic contaminants and was not intended to reduce the concentration of I-129 in groundwater. SRS and the regulatory agencies believe it is appropriate to investigate remedial alternatives that could reduce the I-129. The Savannah River Site Area Closures Projects (ACP) and the Savannah River National Laboratory (SRNL) are developing an innovative in situ treatment for I-129 using silver chloride (AgCl). The proposed AgCl amendment has a very small particle size and is designed to be injected into the contaminated aquifer to capture I-129. The solubility of AgI is several orders of magnitude lower than the solubility of AgCl. Thus, when I-129 comes in contact with AgCl it forms silver iodide (AgI), which is very stable and essentially insoluble in water. SRNL has been performing bench-scale column tests on the effectiveness of silver chloride to capture iodine in an aqueous solution. These initial tests evaluate silver chloride in four different particle sizes; 4-5 millimeters (standard reagent silver chloride), approximately 1 millimeters (sieved reagent silver chloride), approximately 2 micrometers (ultra fine grind without a grinding agent), and <1 micrometer (ultra fine grind with a grinding agent). The first two experiments with macro-sized particles were proof of principle tests. In these the AgCl was mechanically mixed into a portion of the soil filling the columns. The last two were to test the effectiveness of injecting particles suspended in an aqueous solution--the ability to inject the particles, their retention in the column and their effectiveness at removing dissolved iodide

  19. Vertex detectors

    SciTech Connect

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10{sup {minus}13} s, among them the {tau} lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation.

  20. Background Radiation Survey of the Radiological/Nuclear Countermeasures Test and Evaluation Center

    SciTech Connect

    Colin Okada

    2010-09-16

    In preparation for operations at the Radiological/Nuclear Countermeasures Test and Evaluation Complex (Rad/NucCTEC), the Department of Homeland Security Domestic Nuclear Detection Office (DHS/DNDO) requested that personnel from the Remote Sensing Laboratory (RSL) conduct a survey of the present radiological conditions at the facility. The measurements consist of the exposure rate from a high-pressure ion chamber (HPIC), high-resolution spectra from a high-purity germanium (HPGe) system in an in situ configuration, and low-resolution spectra from a sodium iodide (NaI) detector in a radiation detection backpack. Measurements with these systems were collected at discrete locations within the facility. Measurements were also collected by carrying the VECTOR backpack throughout the complex to generate a map of the entire area. The area was also to be surveyed with the Kiwi (an array of eight-2-inch x 4-inch x 16-inch NaI detectors) from the Aerial Measuring Systems; however, conflicts with test preparation activities at the site prevented this from being accomplished.

  1. Testing iodized activated carbon filters with non-radioactive methyl iodide. Final report

    SciTech Connect

    Deitz, V.R.; Romans, J.B.

    1980-05-30

    Iodized carbons, impregnated with KIx(KI + xI2), were evaluated for trapping methyl iodide-127. In this method the complete effluent of the carbon is sampled and analyzed continuously. In contrast, the RDT-M16 test procedure counts the carbon and the back-up beds for the accumulated 131 species and no information is obtained for the interaction of the large amount of carrier methyl iodide-127 with the iodized charcoal. The test apparatus to measure the penetration of methyl iodide-127 is described and the calibration procedures are detailed. Results are given for the penetration of methyl iodide-127 through new activated carbons, carbons in service, and exhausted carbons withdrawn from service. The reduction in trapping efficiency with service is accompanied by the development of a maximum in the concentration of methyl iodide-127 during the air purge after the dose period. This behavior has escaped notice with methyl iodide-131 due to the way that test is made. The chromatographic holdup of methyl iodide-127 by carbons in service, together with the subsequent slow desorption step, could result in a dilution of the penetration iodine to acceptable levels under some conditions encountered in plant filter operations.

  2. Modeling the effect of iodide distribution on ozone deposition to seawater surface

    NASA Astrophysics Data System (ADS)

    Oh, In-Bo; Byun, Daewon W.; Kim, Hyun-Cheol; Kim, Soontae; Cameron, Bob

    Spatial changes in the dry deposition of ozone to the sea surface associated with ozone uptake by the dissolved iodide ions were analyzed in the northwestern Gulf of Mexico using the Community Multiscale Air Quality Model (CMAQ). The dry deposition module in CMAQ was modified using a formula developed by Chang et al. [2004. Ozone deposition to the sea surface: chemical enhancement and wind speed dependence. Atmospheric Environment 38, 1053-1059], which accounts for chemical enhancement by iodide reacting with ozone in seawater. In addition, an attempt was made to incorporate iodide concentrations from the satellite-derived estimates of near-surface chlorophyll a concentrations into the CMAQ gridded fields. One-month CMAQ simulations conducted with the modified module including iodide reaction showed a significant increase in the dry deposition velocity of ozone onto the sea surface, especially Texas and Louisiana Coast corresponding to the area with high iodide concentrations. On average, about 70% enhancement of ozone dry deposition velocity over the seawater was attributed to the iodide effect alone and the rest is mostly due to the effects of wind. The enhanced deposition velocity by iodide effect led to the marked increase in dry deposition amounts mostly near the coast, resulting in some changes in ambient ozone concentration. Interestingly, a small decrease in deposition amounts was found just inland from the shoreline, indicating that the iodide interaction can also affect ozone concentration in the inland coastal area. An in-depth analysis of a 2-day simulation showed the iodide effects on changes in the spatiotemporal distributions of the ozone deposition and concentration, which are highly dependent on coastal winds.

  3. Concentrations of 222Rn, 220Rn and their decay products measured in outdoor air in various rural zones (Morocco) by using solid-state nuclear track detectors and resulting radiation dose to the rural populations.

    PubMed

    Misdaq, M A; Amrane, M; Ouguidi, J

    2010-03-01

    Alpha and beta activities per unit volume of air due to radon ((222)Rn), thoron ((220)Rn) and their progenies were measured in the outdoor air at different locations in Morocco by using both CR-39 and LR-115 type II solid-state nuclear track detectors (SSNTDs). In addition, the radon concentration was continuously measured in one location by using the methods with SSNTDs and AlphaGuard counter. The influence of the geological and meteorological conditions as well as phosphate and building material dust on the radon concentration in the outdoor air of the areas studied was investigated. The committed equivalent doses due to (218)Po and (214)Po radon short-lived progeny were evaluated in different tissues of the respiratory tract of the members of the public from the inhalation of outdoor air. The annual effective dose due to radon short-lived progeny from the inhalation of outdoor air by the members of the rural population was estimated.

  4. Measurements of the Nuclear Modification Factor for Jets in Pb+Pb Collisions at √(s)NN]=2.76  TeV with the ATLAS detector.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Almond, J; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Araque, J P; Arce, A T H; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Azuelos, G; Azuma, Y; Baak, M A; Baas, A E; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bartsch, V; Bassalat, A; Basye, A; Bates, R L; Batley, J R; Battaglia, M; Battistin, M; Bauer, F; Bawa, H S; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernat, P; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boddy, C R; Boehler, M; Boek, T T; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Brendlinger, K; Brennan, A J; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bundock, A C; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charfeddine, D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiefari, G; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Chouridou, S; Chow, B K B; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Coggeshall, J; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuciuc, C-M; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Daniells, A C; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J A; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, A R; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dimitrievska, A; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobos, D; Doglioni, C; Doherty, T; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudziak, F; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Dwuznik, M; Dyndal, M; Ebke, J; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernandez Perez, S; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, J; Fisher, W C; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franconi, L; Franklin, M; Franz, S; Fraternali, M; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gandrajula, R P; Gao, J; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giorgi, F M; Giraud, P F; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Glonti, G L; Goblirsch-Kolb, M; Goddard, J R; Godfrey, J; Godlewski, J; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Grebenyuk, O G; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Groth-Jensen, J; Grout, Z J; Guan, L; Guescini, F; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Gunther, J; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guttman, N; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hoffman, J; Hoffmann, D; Hofmann, J I; Hohlfeld, M; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, K E; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jungst, R M; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karastathis, N; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; La Rosa, A; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laier, H; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leone, S; Leonhardt, K; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Lester, C M; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, B A; Long, J D; Long, R E; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lou, X; Lounis, A; Love, J; Love, P A; Lowe, A J; Lu, F; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Maiani, C; Maidantchik, C; Maier, A A; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, L; March, L; Marchand, J F; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marques, C N; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Mitsui, S; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Moraes, A; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Mueller, T; Muenstermann, D; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Narayan, R; Nattermann, T; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Przysiezniak, H; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Qureshi, A; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Randle-Conde, A S; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Ridel, M; Rieck, P; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodrigues, L; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, M; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sacerdoti, S; Saddique, A; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sartisohn, G; Sasaki, O; Sasaki, Y; Sauvage, G; Sauvan, E; Savard, P; Savu, D O; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellers, G; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skottowe, H P; Skovpen, K Yu; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urbaniec, D; Urquijo, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weigell, P; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; White, A; White, M J; White, R; White, S; Whiteson, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilkens, H G; Will, J Z; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wright, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wyatt, T R; Wynne, B M; Xella, S; Xiao, M; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, U K; Yang, Y; Yanush, S; Yao, L; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zevi Della Porta, G; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, X; Zhang, Z; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zutshi, V; Zwalinski, L

    2015-02-20

    Measurements of inclusive jet production are performed in pp and Pb+Pb collisions at √(s)NN=2.76  TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 and 0.14  nb(-1), respectively. The jets are identified with the anti-k(t) algorithm with R=0.4, and the spectra are measured over the kinematic range of jet transverse momentum 32nuclear modification factor R(AA) is evaluated, and jets are found to be suppressed by approximately a factor of 2 in central collisions compared to pp collisions. The R(AA) shows a slight increase with p(T) and no significant variation with rapidity.

  5. Measurement of 238U and 232Th in Petrol, Gas-oil and Lubricant Samples by Using Nuclear Track Detectors and Resulting Radiation Doses to the Skin of Mechanic Workers.

    PubMed

    Misdaq, M A; Chaouqi, A; Ouguidi, J; Touti, R; Mortassim, A

    2015-10-01

    Workers in repair shops of vehicles (cars, buses, truck, etc.) clean carburetors, check fuel distribution, and perform oil changes and greasing. To explore the exposure pathway of (238)U and (232)Th and its decay products to the skin of mechanic workers, these radionuclides were measured inside petrol, gas-oil, and lubricant material samples by means of CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs), and corresponding annual committed equivalent doses to skin were determined. The maximum total equivalent effective dose to skin due to the (238)U and (232)Th series from the application of different petrol, gas-oil, and lubricant samples by mechanic workers was found equal to 1.2 mSv y(-1) cm(-2).

  6. Measurements of gamma (γ)-emitting radionuclides with a high-purity germanium detector: the methods and reliability of our environmental assessments on the Fukushima 1 Nuclear Power Plant accident.

    PubMed

    Mimura, Tetsuro; Mimura, Mari; Komiyama, Chiyo; Miyamoto, Masaaki; Kitamura, Akira

    2014-01-01

    The severe accident of Fukushima 1 Nuclear Power Plant due to the Tohoku Region Pacific Coast Earthquake in 11 March 2011 caused wide contamination and pollution by radionuclides in Fukushima and surrounding prefectures. In the current JPR symposium, a group of plant scientists attempted to examine the impact of the radioactive contamination on wild and cultivated plants. Measurements of gamma (γ) radiation from radionuclides in "Fukushima samples", which we called and collected from natural and agricultural areas in Fukushima prefecture were mostly done with a high-purity Ge detector in the Graduate School of Maritime Sciences, Kobe University. In this technical note, we describe the methods of sample preparation and measurements of radioactivity of the samples and discuss the reliability of our data in regards to the International Atomic Energy Agency (IAEA) Interlaboratory comparisons and proficiency test (IAEA proficiency test).

  7. Measurement of 238U and 232Th in Petrol, Gas-oil and Lubricant Samples by Using Nuclear Track Detectors and Resulting Radiation Doses to the Skin of Mechanic Workers.

    PubMed

    Misdaq, M A; Chaouqi, A; Ouguidi, J; Touti, R; Mortassim, A

    2015-10-01

    Workers in repair shops of vehicles (cars, buses, truck, etc.) clean carburetors, check fuel distribution, and perform oil changes and greasing. To explore the exposure pathway of (238)U and (232)Th and its decay products to the skin of mechanic workers, these radionuclides were measured inside petrol, gas-oil, and lubricant material samples by means of CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs), and corresponding annual committed equivalent doses to skin were determined. The maximum total equivalent effective dose to skin due to the (238)U and (232)Th series from the application of different petrol, gas-oil, and lubricant samples by mechanic workers was found equal to 1.2 mSv y(-1) cm(-2). PMID:26313584

  8. Measurements of the Nuclear Modification Factor for Jets in Pb+Pb Collisions at √(s)NN]=2.76  TeV with the ATLAS detector.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Almond, J; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Araque, J P; Arce, A T H; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Azuelos, G; Azuma, Y; Baak, M A; Baas, A E; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bartsch, V; Bassalat, A; Basye, A; Bates, R L; Batley, J R; Battaglia, M; Battistin, M; Bauer, F; Bawa, H S; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernat, P; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boddy, C R; Boehler, M; Boek, T T; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Brendlinger, K; Brennan, A J; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bundock, A C; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charfeddine, D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiefari, G; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Chouridou, S; Chow, B K B; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Coggeshall, J; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuciuc, C-M; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Daniells, A C; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J A; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, A R; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dimitrievska, A; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobos, D; Doglioni, C; Doherty, T; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudziak, F; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Dwuznik, M; Dyndal, M; Ebke, J; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernandez Perez, S; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, J; Fisher, W C; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franconi, L; Franklin, M; Franz, S; Fraternali, M; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gandrajula, R P; Gao, J; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giorgi, F M; Giraud, P F; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Glonti, G L; Goblirsch-Kolb, M; Goddard, J R; Godfrey, J; Godlewski, J; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Grebenyuk, O G; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Groth-Jensen, J; Grout, Z J; Guan, L; Guescini, F; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Gunther, J; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guttman, N; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hoffman, J; Hoffmann, D; Hofmann, J I; Hohlfeld, M; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, K E; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jungst, R M; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karastathis, N; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; La Rosa, A; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laier, H; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leone, S; Leonhardt, K; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Lester, C M; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, B A; Long, J D; Long, R E; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lou, X; Lounis, A; Love, J; Love, P A; Lowe, A J; Lu, F; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Maiani, C; Maidantchik, C; Maier, A A; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, L; March, L; Marchand, J F; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marques, C N; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Mitsui, S; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Moraes, A; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Mueller, T; Muenstermann, D; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Narayan, R; Nattermann, T; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Przysiezniak, H; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Qureshi, A; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Randle-Conde, A S; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Ridel, M; Rieck, P; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodrigues, L; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, M; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sacerdoti, S; Saddique, A; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sartisohn, G; Sasaki, O; Sasaki, Y; Sauvage, G; Sauvan, E; Savard, P; Savu, D O; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellers, G; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skottowe, H P; Skovpen, K Yu; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urbaniec, D; Urquijo, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weigell, P; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; White, A; White, M J; White, R; White, S; Whiteson, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilkens, H G; Will, J Z; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wright, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wyatt, T R; Wynne, B M; Xella, S; Xiao, M; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, U K; Yang, Y; Yanush, S; Yao, L; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zevi Della Porta, G; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, X; Zhang, Z; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zutshi, V; Zwalinski, L

    2015-02-20

    Measurements of inclusive jet production are performed in pp and Pb+Pb collisions at √(s)NN=2.76  TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 and 0.14  nb(-1), respectively. The jets are identified with the anti-k(t) algorithm with R=0.4, and the spectra are measured over the kinematic range of jet transverse momentum 32nuclear modification factor R(AA) is evaluated, and jets are found to be suppressed by approximately a factor of 2 in central collisions compared to pp collisions. The R(AA) shows a slight increase with p(T) and no significant variation with rapidity. PMID:25763955

  9. Problem of the sorption trapping of radioactive iodine in the form of methyl iodide

    SciTech Connect

    Nakhutin, I.E.; Smirnova, N.M.; Poluektov, P.P.; Tret'yak, S.A.

    1987-12-01

    The purpose of this work is to study possibilities for raising the efficiency of the removal of methyl iodide from gases. The authors investigated the sorption trapping of methyl iodide in a chromatographic column with activated carbon of the SKT type with different bulk density without impregnants and after impregnation, and in addition the moisture content of the air was varied in different experiments. We studied the effect of the gas velocity in the column on the purification process. A scheme is proposed for processing the experimental data, and recommendations are given for selecting the carbon for removing methyl iodide from gases.

  10. Neural networks for nuclear spectroscopy

    SciTech Connect

    Keller, P.E.; Kangas, L.J.; Hashem, S.; Kouzes, R.T.

    1995-12-31

    In this paper two applications of artificial neural networks (ANNs) in nuclear spectroscopy analysis are discussed. In the first application, an ANN assigns quality coefficients to alpha particle energy spectra. These spectra are used to detect plutonium contamination in the work environment. The quality coefficients represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with quality coefficients by an expert and used to train the ANN expert system. Our investigation shows that the expert knowledge of spectral quality can be transferred to an ANN system. The second application combines a portable gamma-ray spectrometer with an ANN. In this system the ANN is used to automatically identify, radioactive isotopes in real-time from their gamma-ray spectra. Two neural network paradigms are examined: the linear perception and the optimal linear associative memory (OLAM). A comparison of the two paradigms shows that OLAM is superior to linear perception for this application. Both networks have a linear response and are useful in determining the composition of an unknown sample when the spectrum of the unknown is a linear superposition of known spectra. One feature of this technique is that it uses the whole spectrum in the identification process instead of only the individual photo-peaks. For this reason, it is potentially more useful for processing data from lower resolution gamma-ray spectrometers. This approach has been tested with data generated by Monte Carlo simulations and with field data from sodium iodide and Germanium detectors. With the ANN approach, the intense computation takes place during the training process. Once the network is trained, normal operation consists of propagating the data through the network, which results in rapid identification of samples. This approach is useful in situations that require fast response where precise quantification is less important.

  11. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  12. Neutron detector

    SciTech Connect

    Stephan, Andrew C; Jardret, Vincent D

    2009-04-07

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  13. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  14. Flame Detector

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.

  15. A comparison of the use of sodium iodide and lanthanum bromide scintillation crystals for airborne surveys

    NASA Astrophysics Data System (ADS)

    Bailey, Derek M.

    The Environmental Protection Agency (EPA) Aerial Spectral Environmental Collection Technology (ASPECT) program performs aerial radiological and chemical characterization of geographical regions of interest. Airborne surveys are performed to characterize environmental radionuclide content, for mineral exploration, as well as for emergency scenarios such as major releases or lost sources. Two radiological detection systems are used by the ASPECT team for gamma-ray detection and characterization: lanthanum bromide [LaBr 3(Ce)] and sodium iodide [NaI(Tl)] scintillation systems. An aerial survey of a uranium mine in the western United States was performed using both NaI(Tl) and LaBr3(Ce) detection systems. Analyses of the survey data were performed with RadAssist software and applying International Atomic Energy Agency (IAEA) airborne gamma ray mapping guidelines. The data for the survey were corrected for cross-over, which is spectral interference from higher energy photons as a result of Compton scattering, height attenuation, cosmic ray contribution to signal, and Radon contribution to signal. Two radiation survey contours were generated from each discrete data set. Based on analysis of the uranium mine survey results, LaBr3(Ce) produced a product comparable to that of NaI(Tl). The LaBr3(Ce) detection system contained 1/16th the scintillating volume and had a total system weight that was 1/4th that of the NaI(Tl) system. LaBr3(Ce) demonstrated a clear advantage over NaI(Tl) detectors in system mobility, and weight factors in airborne gamma ray spectroscopy.

  16. Hybrid superconducting neutron detectors

    SciTech Connect

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  17. Hybrid superconducting neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-01

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  18. Breakup of loosely bound nuclei at intermediate energies for nuclear astrophysics and the development of a position sensitive microstrip detector system and its readout electronics using ASICs technologies

    SciTech Connect

    Tribble, Robert E.; Sobotka, Lee G.; Blackmon, Jeff C.; Bertulani, Carlos A.

    2015-12-29

    The work performed under this grant has led to the development of a detection system that will be used to measure reaction rates for proton or neutron capture reactions at stellar energies on radioactive ions far from stability. The reaction rates are needed to better understand the physics of nucleosynthesis in explosive stellar processes such as supernovae and x-ray burst events. The radioactive ions will be produced at the Radioactive Ion Beam Facility (RIBF) at RIKEN near Tokyo, Japan. During the course of this work, the group involved in this project has expanded by several institutions in Europe and Japan and now involves collaborators from the U.S., Japan, Hungary, Romania, Germany, Spain, Italy, China, and South Korea. As part of the project, a novel design based on large-area silicon detectors has been built and tested and the performance characterized in a series of tests using particle beams with a variety of atomic numbers at the Cyclotron Institute of Texas A&M University and the Heavy Ion Medical Accelerator in Chiba facility (HIMAC) in Chiba, Japan. The work has involved mechanical construction of a special purpose vacuum chamber, with a precision mounting system for the silicon detectors, development of a new ASICs readout system that has applications with a wide variety of silicon detector systems, and the development of a data acquisition system that is integrated into the computer system being used at RIBF. The parts noted above that are needed to carry out the research program are completed and ready for installation. Several approved experiments that will use this system will be carried out in the near future. The experimental work has been delayed due to a large increase in the cost and availability of electrical power for RIBF that occurred following the massive earthquake and tsunami that hit Japan in the spring of 2011. Another component of the research carried out with this grant involved developing the theoretical tools that are required

  19. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells.

    PubMed

    Wang, Mingkui; Chamberland, Nathalie; Breau, Livain; Moser, Jacques-E; Humphry-Baker, Robin; Marsan, Benoît; Zakeeruddin, Shaik M; Grätzel, Michael

    2010-05-01

    Dye-sensitized solar cells (DSCs) have achieved impressive conversion efficiencies for solar energy of over 11% with an electrolyte that contains triiodide/iodide as a redox couple. Although triiodide/iodide redox couples work efficiently in DSCs, they suffer from two major disadvantages: electrolytes that contain triiodide/iodide corrode electrical contacts made of silver (which reduces the options for the scale up of DSCs to module size) and triiodide partially absorbs visible light. Here, we present a new disulfide/thiolate redox couple that has negligible absorption in the visible spectral range, a very attractive feature for flexible DSCs that use transparent conductors as current collectors. Using this novel, iodide-free redox electrolyte in conjunction with a sensitized heterojunction, we achieved an unprecedented efficiency of 6.4% under standard illumination test conditions. This novel redox couple offers a viable pathway to develop efficient DSCs with attractive properties for scale up and practical applications.

  20. Moisture proof columnar Cesium Iodide (CsI) layers for gas avalanche microdetectors

    SciTech Connect

    Park, I.J.; Cho, H.S.; Hong, W.S.; Perez-Mendez, V.; Kadyk, J.

    1999-05-05

    Cesium iodide columnar layers having a diameter of 3 {micro}m, and wall spacing of {approx} 1 {micro}m act as secondary electron emitters and can be used for detection of radiation: charged particles, X-rays and gamma rays. With a large enough electric field across the columnar layers, {approx} 400 {micro}m in thickness, gas avalanche gain is evident when placed in a suitable gas, such as P10 or argon-ethane mixtures. The cesium iodide columns are damaged by ambient moisture. This damage can be prevented by evaporating protective layers of insoluble, low boiling point inorganic materials, such as mercuric iodide. Columnar layers with 20 nm coatings of mercuric iodide yield more than 30,000 electrons on average when traversed by electrons from a {sup 90}Sr beta source.

  1. Kinetics and mechanism of the mercury(II)-assisted hydrolysis of methyl iodide.

    PubMed

    Celo, Valbona; Scott, Susannah L

    2005-04-01

    The kinetics and mechanism of the reaction of aqueous Hg(II) with methyl iodide have been investigated. The overall reaction is best described as Hg(II)-assisted hydrolysis, resulting in quantitative formation of methanol and, in the presence of excess methyl iodide, ultimately, HgI2 via the intermediate HgI+. The kinetics are biexponential when methyl iodide is in excess. At 25 degrees C, the acceleration provided by Hg2+ is 7.5 times greater than that caused by HgI+, while assistance of hydrolysis was not observed for HgI2. Thus, the reactions are not catalytic in Hg(II). The kinetics are consistent with an SN2-M+ mechanism involving electrophilic attack at iodide. As expected, methylation of mercury is not a reaction pathway; traces of methylmercury(II) are artifacts of the extraction/preconcentration procedure used for methylmercury analysis.

  2. Fluorescence characteristics of 5-amino salicylic acid: An iodide recognition study

    NASA Astrophysics Data System (ADS)

    Arora, Priyanka; Suyal, Kanchan; Joshi, Neeraj K.; Joshi, Hem Chandra; Pant, Sanjay

    In this paper we report the effect of iodide on the fluorescence of 5-amino salicylic acid (5-ASA). In the absence of iodide, prominent blue green (BG) emission band at ˜465 nm (broad) is observed in aprotic solvents whereas violet (V) emission at ˜408 nm, blue green (BG) at ˜480 nm and green (G) at ˜500 nm are observed in case of protic solvents. On the addition of iodide ion (I-), the intensity of BG fluorescence is enhanced in case of aprotic solvents. On the other hand the G band is enhanced in protic solvents and decrease in the intensity of the V band is observed. The effect of hydrogen bonding as well as the interplay of neutral and ionic species is invoked to explain the observed results. The study projects the application of this system in iodide recognition in protic/aprotic environments.

  3. A prototype neutron veto for dark matter detectors

    NASA Astrophysics Data System (ADS)

    Westerdale, S.; Shields, E.; Calaprice, F.

    2016-06-01

    Neutrons are a particularly dangerous background for direct WIMP dark matter searches; their nuclear recoils with the target nuclei are often indistinguishable from nuclear recoils produced by WIMP-nuclear collisions. In this study, we explore the concept of a liquid scintillator neutron veto detector that would allow direct dark matter detectors to potentially reject neutrons with greater than 99% efficiency. Here we outline the construction and testing of a small prototype detector and the potential implications of this technology for future dark matter detectors.

  4. Horseradish Peroxidase-Mediated, Iodide-Catalyzed Cascade Reaction for Plasmonic Immunoassays.

    PubMed

    Xianyu, Yunlei; Chen, Yiping; Jiang, Xingyu

    2015-11-01

    This report outlines an enzymatic cascade reaction for signal transduction and amplification for plasmonic immunoassays by using horseradish peroxidase (HRP)-mediated aggregation of gold nanoparticles (AuNPs). HRP-catalyzed oxidation of iodide and iodide-catalyzed oxidation of cysteine is employed to modulate the plasmonic signals of AuNPs. It agrees well with the current immunoassay platforms and allows naked-eye readout with enhanced sensitivity, which holds great promise for applications in resource-constrained settings. PMID:26460152

  5. Permeation of iodide from iodine-enriched yeast through porcine intestine.

    PubMed

    Ryszka, Florian; Dolińska, Barbara; Zieliński, Michał; Chyra, Dagmara; Dobrzański, Zbigniew

    2013-01-01

    Iodine deficiency is a common phenomenon, threatening the whole global human population. Recommended daily intake of iodine is 150 μg for adults and 250 μg for pregnant and breastfeeding women. About 50% of human population can be at risk of moderate iodine deficiency. Due to this fact, increased iodine supplementation is recommended, through intake of iodized mineral water and salt iodization. The aim of this study was to investigate permeation and absorption of iodide from iodine bioplex (experimental group) in comparison with potassium iodide (controls). Permeation and absorption processes were investigated in vitro using a porcine intestine. The experimental model was based on a standard Franz diffusion cell (FD-Cell). The iodine bioplex was produced using Saccharomyces cerevisiae yeast and whey powder: iodine content - 388 μg/g, total protein - 28.5%, total fat - 0.9%., glutamic acid - 41.2%, asparaginic acid - 29.4%, lysine - 24.8%; purchased from: F.Z.N.P. Biochefa, Sosnowiec, Poland. Potassium iodide was used as controls, at 388 μg iodine concentration, which was the same as in iodine-enriched yeast bioplex. A statistically significant increase in iodide permeation was observed for iodine-enriched yeast bioplex in comparison with controls - potassium iodide. After 5h the total amount of permeated iodide from iodine-enriched yeast bioplex was 85%, which is ~ 2-fold higher than controls - 37%. Iodide absorption was by contrast statistically significantly higher in controls - 7.3%, in comparison with 4.5% in experimental group with iodine-enriched yeast bioplex. Presented results show that iodide permeation process dominates over absorption in case of iodine-enriched yeast bioplex.

  6. Determination of iodide in ground water and soil by ion chromatography.

    PubMed

    Tucker, H L; Flack, R W

    1998-04-24

    Comprehensive elemental analysis of samples from the Bear Creek Valley near the Oak Ridge Y-12 Plant, and its floodplain have been performed in order to allow an unclassified assessment of possible elemental contamination within this area. A rapid ion Chromatographic method, with isocratic separation and micromembrane suppression is discussed within this paper for the analysis of iodide in soils, and floodplain ground waters. This developmental method will be used for future routine iodide analysis.

  7. Horseradish Peroxidase-Mediated, Iodide-Catalyzed Cascade Reaction for Plasmonic Immunoassays.

    PubMed

    Xianyu, Yunlei; Chen, Yiping; Jiang, Xingyu

    2015-11-01

    This report outlines an enzymatic cascade reaction for signal transduction and amplification for plasmonic immunoassays by using horseradish peroxidase (HRP)-mediated aggregation of gold nanoparticles (AuNPs). HRP-catalyzed oxidation of iodide and iodide-catalyzed oxidation of cysteine is employed to modulate the plasmonic signals of AuNPs. It agrees well with the current immunoassay platforms and allows naked-eye readout with enhanced sensitivity, which holds great promise for applications in resource-constrained settings.

  8. Chlorine-free pyrotechnics: copper(I) iodide as a "green" blue-light emitter.

    PubMed

    Klapötke, Thomas M; Rusan, Magdalena; Sabatini, Jesse J

    2014-09-01

    The generation of blue-light-emitting pyrotechnic formulations without the use of chlorine-containing compounds is reported. Suitable blue-light emission has been achieved through the generation of molecular emitting copper(I) iodide. The most optimal copper(I) iodide based blue-light-emitting formulation was found to have performances exceeding those of chlorine-containing compositions, and was found to be insensitive to various ignition stimuli.

  9. Chlorine-free pyrotechnics: copper(I) iodide as a "green" blue-light emitter.

    PubMed

    Klapötke, Thomas M; Rusan, Magdalena; Sabatini, Jesse J

    2014-09-01

    The generation of blue-light-emitting pyrotechnic formulations without the use of chlorine-containing compounds is reported. Suitable blue-light emission has been achieved through the generation of molecular emitting copper(I) iodide. The most optimal copper(I) iodide based blue-light-emitting formulation was found to have performances exceeding those of chlorine-containing compositions, and was found to be insensitive to various ignition stimuli. PMID:25044436

  10. Room temperature semiconductor detectors for safeguards measurements

    NASA Astrophysics Data System (ADS)

    Arlt, R.; Rundquist, D. E.

    A summary is given of the principal areas of application where CdTe detectors are presently used by the IAEA in nuclear material safeguards. Hemispheric detectors with a sensitive volume of about 20 mm 3 have their principal application in the verification of irradiated nuclear material. Larger volume hemispheric detectors are used for the verification of unirradiated material. Their availability, however, is still limited. Problems with the commercial supply of detectors and with ruggedizing the design of the miniature detection probes need to be solved. New results which are relevant for future applications are described. It has been shown that hemispheric detectors made of CdZnTe provide a resolution of 3-4% and a peak/Compton ratio larger than two for 137Cs. Large volume planar CdZnTe have been used in conjunction with pulse shape discrimination electronics. The detector efficiency, however, still remains below the values expected from their geometric dimensions. A new technique to achieve single charge collection in large volume CdZnTe detectors has been developed. Planar detectors with PIN structure and Peltier cooling have further improved. However, the problem of long term stability has not been solved yet. Silicon detectors are increasingly used in unattended radiation monitoring systems. They have a proven long term stability and can cover a signal range of 5-6 decades if used with fast pulse counting electronics.

  11. Physical mechanisms for anisotropic plasma etching of cesium iodide

    SciTech Connect

    Yang Xiaoji; Hopwood, Jeffrey A.

    2004-11-01

    The physical mechanisms for the interaction between a reactive plasma and a cesium iodide surface are investigated. Under conditions of ion bombardment and elevated substrate temperature, CsI is found to sputter etch slowly (15 nm/min). If atomic fluorine, fluorocarbon radicals, of SF{sub x} radicals are present in the discharge, however, CsI is reactively etched at substantially higher rates (up to 200 nm/min). The roles of plasma radicals and energetic ion bombardment are investigated by first exposing the surface to plasma radicals and then bombarding the surface with argon ions. The optical emission from Cs and I atoms is found to correlate with the etch rate of CsI and is used as an in situ monitor of radical-enhanced etching. Small surface exposures to CF{sub x}, SF{sub x}, and F radicals are shown to enhance the etch rate of CsI. If the exposure of the CsI surface is increased, however, these same radical species act as etch inhibitors. A simple model for reactive etching of CsI is proposed, and this model is shown to compare reasonably well with experimental etch rates.

  12. Lead iodide perovskite light-emitting field-effect transistor

    PubMed Central

    Chin, Xin Yu; Cortecchia, Daniele; Yin, Jun; Bruno, Annalisa; Soci, Cesare

    2015-01-01

    Despite the widespread use of solution-processable hybrid organic–inorganic perovskites in photovoltaic and light-emitting applications, determination of their intrinsic charge transport parameters has been elusive due to the variability of film preparation and history-dependent device performance. Here we show that screening effects associated to ionic transport can be effectively eliminated by lowering the operating temperature of methylammonium lead iodide perovskite (CH3NH3PbI3) field-effect transistors. Field-effect carrier mobility is found to increase by almost two orders of magnitude below 200 K, consistent with phonon scattering-limited transport. Under balanced ambipolar carrier injection, gate-dependent electroluminescence is also observed from the transistor channel, with spectra revealing the tetragonal to orthorhombic phase transition. This demonstration of CH3NH3PbI3 light-emitting field-effect transistors provides intrinsic transport parameters to guide materials and solar cell optimization, and will drive the development of new electro-optic device concepts, such as gated light-emitting diodes and lasers operating at room temperature. PMID:26108967

  13. Polarization Effects in Methylammonium Lead Iodide Electronic Devices

    NASA Astrophysics Data System (ADS)

    Labram, John; Fabini, Douglas; Perry, Erin; Lehner, Anna; Wang, Hengbin; Glaudell, Anne; Wu, Guang; Evans, Hayden; Buck, David; Cotta, Robert; Echegoyen, Luis; Wudl, Fred; Seshadri, Ram; Chabinyc, Michael

    The immense success of group IV and III-V semiconductors has resulted in disruptive new photovoltaic (PV) cell technologies emerging extremely infrequently. For this reason, the recent progress in Methylammonium Lead Iodide (MAPbI3) solar cells can be viewed as a highly significant historic event. Despite the staggering recent progress made in reported power conversion efficiency (PCE), debate remains intense on the nature of the various instabilities synonymous with these devices. Using various electronic device measurements, we here present a body of experimental evidence consistent with the existence of a mobile ionic species within the MAPbI3 perovskite. Temperature-dependent transistor measurements reveal operating FET devices only below approximately 210K. This is attributed to ionic screening of the (otherwise charge-neutral) semiconductor-dielectric interface. Temperature-dependent pulsed-gate and impedance spectroscopy experiments also reveal behavior consistent with this interpretation. MAPbI3 PV cells were found to possess a PCE which decreases significantly below 210K. Combined, these set of measurements provide an interesting and consistent description of the internal processes at play within the MAPbI3 perovskite structure.

  14. Lead iodide perovskite light-emitting field-effect transistor

    NASA Astrophysics Data System (ADS)

    Chin, Xin Yu; Cortecchia, Daniele; Yin, Jun; Bruno, Annalisa; Soci, Cesare

    2015-06-01

    Despite the widespread use of solution-processable hybrid organic-inorganic perovskites in photovoltaic and light-emitting applications, determination of their intrinsic charge transport parameters has been elusive due to the variability of film preparation and history-dependent device performance. Here we show that screening effects associated to ionic transport can be effectively eliminated by lowering the operating temperature of methylammonium lead iodide perovskite (CH3NH3PbI3) field-effect transistors. Field-effect carrier mobility is found to increase by almost two orders of magnitude below 200 K, consistent with phonon scattering-limited transport. Under balanced ambipolar carrier injection, gate-dependent electroluminescence is also observed from the transistor channel, with spectra revealing the tetragonal to orthorhombic phase transition. This demonstration of CH3NH3PbI3 light-emitting field-effect transistors provides intrinsic transport parameters to guide materials and solar cell optimization, and will drive the development of new electro-optic device concepts, such as gated light-emitting diodes and lasers operating at room temperature.

  15. Structural Effects on the Bandstructure of Methylammonium Lead Iodide

    NASA Astrophysics Data System (ADS)

    Bernardi, Marco; Barker, Bradford A.; Vigil-Fowler, Derek; Neaton, Jeffrey B.; Louie, Steven G.; Louie Team

    Metal-organic halide perovskites possess peculiar physical properties. The carrier diffusion length in methylammonium lead iodide (MAPbI) exceeds 1 μm, but this unusually high value for a solution-processed material is poorly understood. We developed first-principles calculations of carrier lifetimes and diffusion lengths in semiconductors, which require accurate knowledge of the bandstructure. In this talk, we show that in MAPbI the structure strongly affects the bandstructure and band edges, and that density functional theory (DFT) is unable to predict the room temperature tetragonal structure due to the polymorphism of MAPbI. The Rashba splitting induced by the spin-orbit interaction, and the DFT band gap and effective masses, all depend strongly on the chosen structure, a point that previous work failed to address. Working with multiple stochastic realizations of large unit cells with random methylammonium orientations, we compute average effective masses and show that the effective mass depends linearly on the band gap. The average Rashba coefficient we find is an order of magnitude smaller than previously reported, and the band edges are almost parabolic. Our structures possess the correct symmetry and are free of the spurious Pb off-centering assumed in previous work. We identify the correct starting point for GW bandstructure calculations and to compute the carrier lifetime and diffusion length.

  16. Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films.

    PubMed

    Yin, Jun; Cortecchia, Daniele; Krishna, Anurag; Chen, Shi; Mathews, Nripan; Grimsdale, Andrew C; Soci, Cesare

    2015-04-16

    Solar cells based on organic-inorganic lead iodide perovskite (CH3NH3PbI3) exhibit remarkably high power conversion efficiency (PCE). One of the key issues in solution-processed films is that often the polycrystalline domain orientation is not well-defined, which makes it difficult to predict energy alignment and charge transfer efficiency. Here we combine ab initio calculations and photoelectron spectroscopy to unravel the electronic structure and charge redistribution at the interface between different surfaces of CH3NH3PbI3 and typical organic hole acceptor Spiro-OMeTAD and electron acceptor PCBM. We find that both hole and electron interfacial transfer depend strongly on the CH3NH3PbI3 surface orientation: while the (001) and (110) surfaces tend to favor hole injection to Spiro-OMeTAD, the (100) surface facilitates electron transfer to PCBM due to surface delocalized charges and hole/electron accumulation at the CH3NH3PbI3/organic interfaces. Molecular dynamic simulations indicate that this is due to strong orbital interactions under thermal fluctuations at room temperature, suggesting the possibility to further improve charge separation and extraction in perovskite-based solar cells by controlling perovskite film crystallization and surface orientation.

  17. Dust Detector

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.

    2001-01-01

    We discuss a recent sounding rocket experiment which found charged dust in the Earth's tropical mesosphere. The dust detector was designed to measure small (5000 - 10000 amu.) charged dust particles, most likely of meteoric origin. A 5 km thick layer of positively charged dust was found at an altitude of 90 km, in the vicinity of an observed sporadic sodium layer and sporadic E layer. The observed dust was positively charged in the bulk of the dust layer, but was negatively charged near the bottom.

  18. Ion detector

    DOEpatents

    Tullis, Andrew M.

    1987-01-01

    An improved ion detector device of the ionization detection device chamber ype comprises an ionization chamber having a central electrode therein surrounded by a cylindrical electrode member within the chamber with a collar frictionally fitted around at least one of the electrodes. The collar has electrical contact means carried in an annular groove in an inner bore of the collar to contact the outer surface of the electrode to provide electrical contact between an external terminal and the electrode without the need to solder leads to the electrode.

  19. Mechanistic aspects of ingested chlorine dioxide on thyroid function: impact of oxidants on iodide metabolism

    SciTech Connect

    Bercz, J.P.; Jones, L.L.; Harrington, R.M.; Bawa, R.; Condie, L.

    1986-11-01

    Toxicological studies dealing with recent findings of health effects of drinking water disinfectants are reviewed. Experiments with monkeys and rodents indicate that the biological activity of ingested disinfectants is expressed via their chemical interaction with the mucosal epithelia, secretory products, and nutritional contents of the alimentary tract. Evidence exists that a principal partner of this redox interaction is the iodide of nutritional origin that is ubiquitous in the gastrointestinal tract. Thus the observation that subchronic exposure to chlorine dioxide (ClO/sub 2/) in drinking water decreases serum thyroxine levels in mammalian species can be best explained with changes produced in the chemical form of the bioavailable iodide. Ongoing and previously reported mechanistic studies indicate that oxidizing agents such as chlorine-based disinfectants oxidize the basal iodide content of the gastrointestinal tract. The resulting reactive iodine species readily attaches to organic matter by covalent bonding. Evidence suggests that the extent to which such iodinated organics are formed is proportional to the magnitude of the electromotive force and stoichiometry of the redox couple between iodide and the disinfectant. Because the extent of thyroid uptake of the bioavailable iodide does not decrease during ClO/sub 2/ ingestion, it seems that ClO/sub 2/ does not cause iodide deficiency of sufficient magnitude to account for the decease in hormonogenesis. Absorption of one or more of iodinated molecules, e.g., nutrient, hormones, or cellular constituents of the alimentary tract having thyromimetic or thyroid inhibitory properties, is a better hypothesis for the effects seen.

  20. Electrodeposition as an alternate method for preparation of environmental samples for iodide by AMS

    DOE PAGES

    Adamic, M. L.; Lister, T. E.; Dufek, E. J.; Jenson, D. D.; Olson, J. E.; Vockenhuber, C.; Watrous, M. G.

    2015-03-25

    This paper presents an evaluation of an alternate method for preparing environmental samples for 129I analysis by accelerator mass spectrometry (AMS) at Idaho National Laboratory. The optimal sample preparation method is characterized by ease of preparation, capability of processing very small quantities of iodide, and ease of loading into a cathode. Electrodeposition of iodide on a silver wire was evaluated using these criteria. This study indicates that the electrochemically-formed silver iodide deposits produce ion currents similar to those from precipitated silver iodide for the same sample mass. Furthermore, precipitated silver iodide samples are usually mixed with niobium or silver powdermore » prior to loading in a cathode. Using electrodeposition, the silver is already mixed with the sample and can simply be picked up with tweezers, placed in the sample die, and pressed into a cathode. The major advantage of this method is that the silver wire/electrodeposited silver iodide is much easier to load into a cathode.« less