Sample records for ion beam intensity

  1. Intense ion beam generator

    DOEpatents

    Humphries, Jr., Stanley; Sudan, Ravindra N.

    1977-08-30

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation.

  2. Intense ion beam diagnostics for ICF

    NASA Astrophysics Data System (ADS)

    Yasuike, K.; Cuneo, M. E.; Wenger, D. F.; Bailey, J. E.; Hanson, D. L.; Mehlhorn, T. A.; Imasaki, K.; Nakai, S.; Mima, K.

    1998-11-01

    Development of diagnostic methods for high intensity ion beams for ICF is crucial for understanding the ion diode physics. At Osaka University, an arrayed pinhole camera (APC) diagnostic method had been developed to measure the proton beams with an energy of 1 MeV and a J_i. of 100 A/cm^2. on Reiden-SHVS. The APC measures spatial distributions of the beam divergence in r and θ drection and the intensity distribution. An ion image detector capable to acquire a whole temporal evolution within a shot is necessary to measure the higher intensity beams. A fast scintillator with photo-multiplier tubes has been chosen as the image detector. The detector is being tested on a single pinhole camera using a Lithium beam with a particle energy of 5 MeV, a J_i. of 0.5-1 kA/cm^2. and duration of 50 ns, which are very close to the parameters required from ICF, on the SABRE at Sandia National Labs. We will present the diagnostic design and preliminary experiments from SABRE and also present the experimental results from Reiden-SHVS.

  3. Intense Pulsed Heavy Ion Beam Technology

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  4. A new multidimensional diagnostic method for measuring the properties of intense ion beams

    NASA Astrophysics Data System (ADS)

    Yasuike, Kazuhito; Miyamoto, Shuji; Nakai, Sadao

    1996-02-01

    A new arrayed pinhole camera (APC) diagnostic method for intense ion beams has been developed. The APC diagnostic technique permits the acquisition of the angular divergences and the ion fluxes of high intensity ion beams, in one shot, with a spatial resolution on the source of better than 1 mm and an effective angular divergence resolution of better than 10 mrad. A prototype time integrated APC has been designed and evaluated. The demonstration experiments have been performed on a Reiden-IV, 1 MV and 1 Ω pulsed power machine [1 T W (tera-watt or trillion watts)]. Proton beams of 0.7 MeV, with a pulse duration of ˜50 ns and an ion current density of about 100 A/cm2, were generated in an applied-Br type ion diode source using paraffin-filled grooves. These experimental results show that the APC can measure nonuniformities in the ion beam intensity generated from the ion source and the dependence of beam angular divergence on ion beam intensity.

  5. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  6. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, X. P.; Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024; Zhang, Z. C.

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, takingmore » into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.« less

  7. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    NASA Astrophysics Data System (ADS)

    Zhu, X. P.; Zhang, Z. C.; Pushkarev, A. I.; Lei, M. K.

    2016-01-01

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200-300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  8. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    PubMed

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  9. Irradiation of Materials using Short, Intense Ion Beams

    NASA Astrophysics Data System (ADS)

    Seidl, Peter; Ji, Q.; Persaud, A.; Feinberg, E.; Silverman, M.; Sulyman, A.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Gilson, E. P.; Kaganovich, I. D.; Stepanov, A.; Zimmer, M.

    2016-10-01

    We present experiments studying material properties created with nanosecond and millimeter-scale ion beam pulses on the Neutralized Drift Compression Experiment-II at Berkeley Lab. The explored scientific topics include the dynamics of ion induced damage in materials, materials synthesis far from equilibrium, warm dense matter and intense beam-plasma physics. We describe the improved accelerator performance, diagnostics and results of beam-induced irradiation of thin samples of, e.g., tin and silicon. Bunches with >3x1010 ions/pulse with 1-mm radius and 2-30 ns FWHM duration and have been created. To achieve the short pulse durations and mm-scale focal spot radii, the 1.2 MeV He+ ion beam is neutralized in a drift compression section which removes the space charge defocusing effect during the final compression and focusing. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing the accelerator performance and keep pace with the accelerator repetition rate of <1/minute. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0205CH11231 (LBNL), DE-AC52-07NA27344 (LLNL) and DE-AC02-09CH11466 (PPPL).

  10. Hollow structure formation of intense ion beams with sharp edge in background plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Zhang-Hu; Wang, You-Nian, E-mail: ynwang@dlut.edu.cn

    The transport of intense ion beams with sharp radial beam edge in plasmas has been studied with two-dimensional electromagnetic particle simulations. The initial solid beam evolves into a hollow beam due to the nonlinear sharp transverse force peak in the regions of beam edge. The magnitude and nonlinearity of this peak are enhanced as the ion beam travels further into the plasma, due to the self-consistent interactions between the beam ions and the plasma electrons. This structure formation is shown to be independent on the beam radius.

  11. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, William K.

    1986-01-01

    A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

  12. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of negative ions

    DOEpatents

    Hershcovitch, Ady

    1987-01-01

    A process for selectively neutralizing H.sup.- ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H.sup.- ions that are intersected by a beam of laser light. Photodetachment is effected in a uniform magnetic field that is provided around the beam of H.sup.- ions to spin polarize the H.sup.- ions and produce first and second populations or groups of ions, having their respective proton spin aligned either with the magnetic field or opposite to it. The intersecting beam of laser light is directed to selectively neutralize a majority of the ions in only one population, or given spin polarized group of H.sup.- ions, without neutralizing the ions in the other group thereby forming a population of H.sup.- ions each of which has its proton spin down, and a second group or population of H.sup.o atoms having proton spin up. Finally, the two groups of ions are separated from each other by magnetically bending the group of H.sup.- ions away from the group of neutralized ions, thereby to form an intense H.sup.- ion beam that is directed toward a predetermined objective.

  13. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL (invited)a)

    NASA Astrophysics Data System (ADS)

    Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Guo, X. H.; Cao, Y.; Lu, W.; Zhang, Z. M.; Yuan, P.; Song, M. T.; Zhao, H. Y.; Jin, T.; Shang, Y.; Zhan, W. L.; Wei, B. W.; Xie, D. Z.

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6T at injection, 2.2T at extraction, and a radial sextupole field of 2.0T at plasma chamber wall. During the commissioning phase at 18GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5kW by two 18GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810eμA of O7+, 505eμA of Xe20+, 306eμA of Xe27+, and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  14. The Development of High-Intensity Negative Ion Sources and Beams in the USSR

    DTIC Science & Technology

    1981-09-01

    ion beams as the basis for creating neutral beams for injection into mirror traps and tokamaks, for inertial confinement fusion, and possibly for...create intense neutral beams for injection systems for mirror traps and tokamaks and for inertial confinement fusion. These applications require high...Scient. Instr., Vol. 44, 1973, p. 145. 46. Gabovich, M. D., Yu. N. Kozyrev , A. P. Nayda, L. S. Simonenko, I. A. Soloshenko, "H- Ion Beam Limit from a

  15. Development of bipolar-pulse accelerator for intense pulsed ion beam acceleration

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Shimizu, Yuichro; Fujioka, Yuhki; Kitamura, Iwao; Tanoue, Hisao; Arai, Kazuo

    2004-12-01

    To improve the purity of intense pulsed ion beams, a new type of pulsed ion beam accelerator named "bipolar pulse accelerator" was proposed. To confirm the principle of the accelerator a prototype of the experimental system was developed. The system utilizes By type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside the grounded anode. Source plasma (nitrogen) of current density ≈25 A/cm2, duration ≈1.5 μs was injected into the acceleration gap by the plasma gun. The ions were successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 240 kV, duration 100 ns to the drift tube. Pulsed ion beam of current density ≈40 A/cm2, duration ≈50 ns was obtained at 41 mm downstream from the anode surface. To evaluate the irradiation effect of the ion beam to solid material, an amorphous silicon thin film of thickness ≈500 nm was used as the target, which was deposited on the glass substrate. The film was found to be poly-crystallized after 4-shots of the pulsed nitrogen ion beam irradiation.

  16. Intense beams from gases generated by a permanent magnet ECR ion source at PKU.

    PubMed

    Ren, H T; Peng, S X; Lu, P N; Yan, S; Zhou, Q F; Zhao, J; Yuan, Z X; Guo, Z Y; Chen, J E

    2012-02-01

    An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O(+), H(+), and D(+) to N(+), Ar(+), and He(+). Up to now, about 120 mA of H(+), 83 mA of D(+), 50 mA of O(+), 63 mA of N(+), 70 mA of Ar(+), and 65 mA of He(+) extracted at 50 kV through a φ 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 π mm mrad. Tungsten samples were irradiated by H(+) or He(+) beam extracted from this ion source and H∕He holes and bubbles have been observed on the samples. A method to produce a high intensity H∕He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He(+) beam injector for coupled radio frequency quadruple and SFRFQ cavity, He(+) beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He(+) beam.

  17. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  18. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of cold negative ions

    DOEpatents

    Hershcovitch, A.

    1984-02-13

    A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are

  19. Focusing of intense and divergent ion beams in a magnetic mass analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jianlin, Ke; Changgeng, Zhou; Rui, Qiu

    2014-07-15

    A magnetic mass analyzer is used to determine the beam composition of a vacuum arc ion source. In the analyzer, we used the concentric multi-ring electrodes to focus the intense and divergent ion beams. We describe the principle, design, and the test results of the focusing device. The diameter of the beam profile is less than 20 mm when the accelerating voltage is 30 kV and the focusing voltage is about 2.0 kV. The focusing device has been successfully used in the magnetic mass analyzer to separate Ti{sup +}, Ti{sup 2+}, and Ti{sup 3+}.

  20. Modeling of intense pulsed ion beam heated masked targets for extreme materials characterization

    NASA Astrophysics Data System (ADS)

    Barnard, John J.; Schenkel, Thomas

    2017-11-01

    Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce material modifications and phase transitions. Material properties can potentially be stabilized by rapid quenching. Pulsed ion beams with pulse lengths of order ns have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired material's properties fast enough before the target is altered or damaged by, e.g., hydrodynamic expansion. By using a mask, the longitudinal dimension can be large compared to the transverse dimension, allowing the possibility of rapid transverse cooling. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. The model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.

  1. Harmonic plasma waves excitation and structure evolution of intense ion beams in background plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Zhang-Hu, E-mail: zhanghu@dlut.edu.cn; Wang, You-Nian

    2016-08-15

    The long-term dynamic evolutions of intense ion beams in plasmas have been investigated with two-dimensional electromagnetic particle simulations, taking into account the effect of the two-stream instability between beam ions and plasma electrons. Depending on the initial beam radial density profile and velocity distribution, ring structures may be formed in the beam edge regions. At the later stage of beam-plasma interactions, the ion beams are strongly modulated by the two-stream instability and multiple density spikes are formed in the longitudinal direction. The formation of these density spikes is shown to result from the excitation of harmonic plasma waves when themore » instability gets saturated. Comparisons between the beam cases with initial flat-top and Gaussian radial density profiles are made, and a higher instability growth rate is observed for the flat-top profile case.« less

  2. Modeling of intense pulsed ion beam heated masked targets for extreme materials characterization

    DOE PAGES

    Barnard, John J.; Schenkel, Thomas

    2017-11-15

    Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce material modifications and phase transitions. Material properties can potentially be stabilized by rapid quenching. Pulsed ion beams with pulse lengths of order ns have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired material's properties fast enough before the target is altered or damaged by, e.g.,more » hydrodynamic expansion. By using a mask, the longitudinal dimension can be large compared to the transverse dimension, allowing the possibility of rapid transverse cooling. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. In conclusion, the model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.« less

  3. Cleaning techniques for intense ion beam sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menge, P.R.; Cuneo, M.E.; Bailey, J.E.

    Generation of high power lithium ion beams on the SABRE (1TW) and PBFA-X (20 TW) accelerators have been limited by the parallel acceleration of contaminant ions. during the beam pulse lithium is replaced by protons and carbon ions. This replacement is accompanied by rapid impedance decay of the diode. The contaminant hydrogen and carbon is believed to originate from impurity molecules on the surface and in the bulk of the lithium ion source and its substrate material. Cleaning techniques designed to remove hydrocarbons from the ion source have been employed with some success in test stand experiments and on SABRE.more » The test stand experiments have shown that a lithium fluoride (LiF) ion source film can accrue dozens of hydrocarbon monolayers on its surface while sitting in vacuum. Application of 13.5 MHz RF discharge cleaning with 90% Ar/10% O{sub 2} can significantly reduce the surface hydrocarbon layers on the LiF film. On SABRE, combinations of RF discharge cleaning, anode heating, layering gold between the source film (LiF) and its substrate, and cryogenic cathode cooling produced an increase by a factor of 1.5--2 in the quantity of high energy lithium in the ion beam. A corresponding decrease in protons and carbon ions was also observed. Cleaning experiments on PBFA-X are underway. New designs of contamination resistant films and Li ion sources are currently being investigated.« less

  4. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prost, L. R.

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  5. Production of intensive negative lithium beam with caesium sputter-type ion source

    NASA Astrophysics Data System (ADS)

    Lobanov, Nikolai R.

    2018-01-01

    Compounds of lithium oxide, hydroxide and carbonate, mixed with silver, were prepared for use as a cathode in caesium-sputter ion source. The intention was to determine the procedure which would produce the highest intensity negative lithium beams over extended period and with maximum stability. The chemical composition and properties of the samples were analysed using mass-spectrometry, optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analyses (EDX) and Raman spectroscopy. These analyses showed that the chemical transformations with components resulted from pressing, storage and bake out were qualitatively in agreement with expectations. Intensive negative lithium ion beams >1 μA were delivered using cathodes fabricated from materials with multicomponent chemical composition when the following conditions were met: (i) use of components with moderate enthalpy of formation; (ii) low moisture content at final stage of cathode production and (iii) small concentration of water molecules in hydrate phase in the cathode mixture.

  6. Intense laser-driven ion beams in the relativistic-transparency regime: acceleration, control and applications

    NASA Astrophysics Data System (ADS)

    Fernandez, Juan C.

    2016-10-01

    Laser-plasma interactions in the novel regime of relativistically-induced transparency have been harnessed to generate efficiently intense ion beams with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at ``table-top'' scales. We have discovered and utilized a self-organizing scheme that exploits persisting self-generated plasma electric ( 0.1 TV/m) and magnetic ( 104 Tesla) fields to reduce the ion-energy (Ei) spread after the laser exits the plasma, thus separating acceleration from spread reduction. In this way we routinely generate aluminum and carbon beams with narrow spectral peaks at Ei up to 310 MeV and 220 MeV, respectively, with high efficiency ( 5%). The experimental demonstration has been done at the LANL Trident laser with 0.12 PW, high-contrast, 0.65 ps Gaussian laser pulses irradiating planar foils up to 250 nm thick. In this regime, Ei scales empirically with laser intensity (I) as I 1 / 2. Our progress is enabled by high-fidelity, massive computer simulations of the experiments. This work advances next-generation compact accelerators suitable for new applications. E . g ., a carbon beam with Ei 400 MeV and 10% energy spread is suitable for fast ignition (FI) of compressed DT. The observed scaling suggests that is feasible with existing target fabrication and PW-laser technologies, using a sub-ps laser pulse with I 2.5 ×1021 W/cm2. These beams have been used on Trident to generate warm-dense matter at solid-densities, enabling us to investigate its equation of state and mixing of heterogeneous interfaces purely by plasma effects distinct from hydrodynamics. They also drive an intense neutron-beam source with great promise for important applications such as active interrogation of shielded nuclear materials. Considerations on controlling ion-beam divergence for their increased utility are discussed. Funded by the LANL LDRD program.

  7. Low energy ion beam dynamics of NANOGAN ECR ion source

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  8. Studies of the Core Conditions of the Earth and Super-Earths Using Intense Ion Beams at FAIR

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Lomonosov, I. V.; Borm, B.; Piriz, A. R.; Shutov, A.; Neumayer, P.; Bagnoud, V.; Piriz, S. A.

    2017-09-01

    Using detailed numerical simulations, we present the design of an experiment that will generate samples of iron under extreme conditions of density and pressure believed to exist in the interior of the Earth and interior of extrasolar Earth-like planets. In the proposed experiment design, an intense uranium beam is used to implode a multilayered cylindrical target that consists of a thin Fe cylinder enclosed in a thick massive W shell. Such intense uranium beams will be available at the heavy-ion synchrotron, SIS100, at the Facility for Antiprotons and Ion Research (FAIR), at Darmstadt, which is under construction and will become operational in the next few years. It is expected that the beam intensity will increase gradually over a couple of years to its maximum design value. Therefore, in our studies, we have considered a wide range of beam parameters, from the initial beam intensity (“Day One”) to the maximum specified value. It is also worth noting that two different focal spot geometries have been used. In one case, a circular focal spot with a Gaussian transverse intensity distribution is considered, whereas in the other case, an annular focal spot is used. With these two beam geometries, one can access different parts of the Fe phase diagram. For example, heating the sample with a circular focal spot generates a hot liquid state, while an annular focal spot can produce a highly compressed liquid or a highly compressed solid phase depending on the beam intensity.

  9. Accessing defect dynamics using intense, nanosecond pulsed ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persaud, A.; Barnard, J. J.; Guo, H.

    2015-06-18

    Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystalmore » Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.« less

  10. Studies of the Core Conditions of the Earth and Super-Earths Using Intense Ion Beams at FAIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahir, N. A.; Neumayer, P.; Bagnoud, V.

    Using detailed numerical simulations, we present the design of an experiment that will generate samples of iron under extreme conditions of density and pressure believed to exist in the interior of the Earth and interior of extrasolar Earth-like planets. In the proposed experiment design, an intense uranium beam is used to implode a multilayered cylindrical target that consists of a thin Fe cylinder enclosed in a thick massive W shell. Such intense uranium beams will be available at the heavy-ion synchrotron, SIS100, at the Facility for Antiprotons and Ion Research (FAIR), at Darmstadt, which is under construction and will becomemore » operational in the next few years. It is expected that the beam intensity will increase gradually over a couple of years to its maximum design value. Therefore, in our studies, we have considered a wide range of beam parameters, from the initial beam intensity (“Day One”) to the maximum specified value. It is also worth noting that two different focal spot geometries have been used. In one case, a circular focal spot with a Gaussian transverse intensity distribution is considered, whereas in the other case, an annular focal spot is used. With these two beam geometries, one can access different parts of the Fe phase diagram. For example, heating the sample with a circular focal spot generates a hot liquid state, while an annular focal spot can produce a highly compressed liquid or a highly compressed solid phase depending on the beam intensity.« less

  11. An electron cyclotron resonance ion source based low energy ion beam platform.

    PubMed

    Sun, L T; Shang, Y; Ma, B H; Zhang, X Z; Feng, Y C; Li, X X; Wang, H; Guo, X H; Song, M T; Zhao, H Y; Zhang, Z M; Zhao, H W; Xie, D Z

    2008-02-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed.

  12. Ionization and dissociation of molecular ion beams by intense ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Ben-Itzhak, Itzik

    2007-06-01

    Laser-induced dissociation and ionization of a diatomic molecular-ion beam were simultaneously measured using coincidence 3D momentum imaging, with direct separation of the two processes even where the fragment kinetic energy is the same for both processes. We mainly focus on the fundamental H2^+ molecule in 7-135 fs laser pulses having 10^13-10^15 W/cm^2 peak intensity. At high intensities the kinetic energy release (KER) distribution following ionization of H2^+ was measured to be broad and structureless. Its centroid shifts toward higher energies as the laser intensity is increased indicating that ionization shifts to smaller internuclear distances. In contrast, a surprising structure is observed near the ionization threshold, which we call above threshold Coulomb explosion (ATCE) [1]. The angular distributions of the two H^+ fragments are strongly peaked along the laser polarization, and the angular distribution is described well by [cos^2θ]^n, where n is the number of photons predicted by our ATCE model [1]. Our data indicates that n varies with the laser wavelength as predicted by the model. The KER and angular distributions of H2^+ dissociation change dramatically with decreasing pulse width over the 7-135 fs range in contrast to the reported trend for longer pulses. Others contributing to this work: A.M. Sayler, P.Q. Wang, J. McKenna, B. Gaire, Nora G. Johnson, E. Parke, K.D. Carnes, and B.D. Esry. Thank are due to Professor Zenghu Chang for providing the intense laser beams and Dr. Charles Fehrenbach for his help with the ion beams. [1] B.D. Esry, A.M. Sayler, P.Q. Wang, K.D. Carnes, and I. Ben-Itzhak, Phys. Rev. Lett. 97, 013003 (2006).

  13. An intense lithium ion beam source using vacuum baking and discharge cleaning techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moschella, J.J.; Kusse, B.R.; Longfellow, J.P.

    We have developed a high-purity, intense, lithium ion beam source which operates at 500 kV and 120 A/cm{sup 2} with pulse widths of 125 ns full width half maximum. The beams were generated using a lithium chloride anode in planar magnetically insulated geometry. We have found that the combination of vacuum baking of the anode at 250 {degree}C followed by the application of 100 W of pure argon, steady-state, glow discharge cleaning reduced the impurity concentration in the beam to approximately 10% (components other than chlorine or lithium were considered impurities). Although the impurities were low, the concentration of chlorinemore » in the 1+ and 2+ charge states was significant ({similar to}25%). The remaining 65% of the beam consisted of Li{sup +} ions. Without the special cleaning process, over half the beam particles were impurities. It was determined that these impurities entered the beam at the anode surface but came originally from material in the vacuum chamber. After the cleaning process, recontamination was observed to occur in approximately 6 min. This long recontamination time, which was much greater than the expected monolayer formation time, was attributed to the elevated temperature of the anode. We also compared the electrical characteristics of the beams produced by LiCl anodes to those generated by a standard polyethylene proton source. In contrast to the polyethylene anode, the LiCl source exhibited a higher impedance, produced beams of lower ion current efficiency and had longer turn on times.« less

  14. Arc-based smoothing of ion beam intensity on targets

    DOE PAGES

    Friedman, Alex

    2012-06-20

    Manipulating a set of ion beams upstream of a target, makes it possible to arrange a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this ismore » sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. We also found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.« less

  15. Apparatus for reduction of selected ion intensities in confined ion beams

    DOEpatents

    Eiden, Gregory C.; Barinaga, Charles J.; Koppenaal, David W.

    2001-01-01

    An apparatus for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the apparatus has an ion trap or a collision cell containing a reagent gas wherein the reagent gas accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the collision cell as employed in various locations within analytical instruments including an inductively coupled plasma mass spectrometer.

  16. Diagnosis of high-intensity pulsed heavy ion beam generated by a novel magnetically insulated diode with gas puff plasma gun.

    PubMed

    Ito, H; Miyake, H; Masugata, K

    2008-10-01

    Intense pulsed heavy ion beam is expected to be applied to materials processing including surface modification and ion implantation. For those applications, it is very important to generate high-purity ion beams with various ion species. For this purpose, we have developed a new type of a magnetically insulated ion diode with an active ion source of a gas puff plasma gun. When the ion diode was operated at a diode voltage of about 190 kV, a diode current of about 15 kA, and a pulse duration of about 100 ns, the ion beam with an ion current density of 54 A/cm(2) was obtained at 50 mm downstream from the anode. By evaluating the ion species and the energy spectrum of the ion beam via a Thomson parabola spectrometer, it was confirmed that the ion beam consists of nitrogen ions (N(+) and N(2+)) of energy of 100-400 keV and the proton impurities of energy of 90-200 keV. The purity of the beam was evaluated to be 94%. The high-purity pulsed nitrogen ion beam was successfully obtained by the developed ion diode system.

  17. Method for reduction of selected ion intensities in confined ion beams

    DOEpatents

    Eiden, Gregory C.; Barinaga, Charles J.; Koppenaal, David W.

    1998-01-01

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer.

  18. Method for reduction of selected ion intensities in confined ion beams

    DOEpatents

    Eiden, G.C.; Barinaga, C.J.; Koppenaal, D.W.

    1998-06-16

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer. 7 figs.

  19. Enhanced collective focusing of intense neutralized ion beam pulses in the presence of weak solenoidal magnetic fields

    DOE PAGES

    Dorf, Mikhail A.; Davidson, Ronald C.; Kaganovich, Igor D.; ...

    2012-05-31

    In this study, the design of ion drivers for warm dense matter and high energy density physics applications and heavy ion fusion involves transverse focusing and longitudinal compression of intense ion beams to a small spot size on the target. To facilitate the process, the compression occurs in a long drift section filled with a dense background plasma, which neutralizes the intense beam self-fields. Typically, the ion bunch charge is better neutralized than its current, and as a result a net self-pinching (magnetic) force is produced. The self-pinching effect is of particular practical importance, and is used in various ionmore » driver designs in order to control the transverse beam envelope. In the present work we demonstrate that this radial self-focusing force can be significantly enhanced if a weak (B~100 G) solenoidal magnetic field is applied inside the neutralized drift section, thus allowing for substantially improved transport. It is shown that in contrast to magnetic self-pinching, the enhanced collective self-focusing has a radial electric field component and occurs as a result of the overcompensation of the beam charge by plasmaelectrons, whereas the beam current becomes well-neutralized. As the beam leaves the neutralizing drift section, additional transverse focusing can be applied. For instance, in the neutralized drift compression experiments (NDCX) a strong (several Tesla) final focus solenoid is used for this purpose. In the present analysis we propose that the tight final focus in the NDCX experiments may possibly be achieved by using a much weaker (few hundred Gauss) magnetic lens, provided the ion beam carries an equal amount of co-moving neutralizing electrons from the preceding drift section into the lens. In this case the enhanced focusing is provided by the collective electrondynamics strongly affected by a weak applied magnetic field.« less

  20. Double-ring structure formation of intense ion beams with finite radius in a pre-formed plasma

    NASA Astrophysics Data System (ADS)

    Hu, Zhang-Hu; Wang, Xiao-Juan; Zhao, Yong-Tao; Wang, You-Nian

    2017-12-01

    The dynamic structure evolution of intense ion beams with a large edge density gradient is investigated in detail with an analytical model and two-dimensional particle-in-cell (PIC) simulations, with special attention paid to the influence of beam radius. At the initial stage of beam-plasma interactions, the ring structure is formed due to the transverse focusing magnetic field induced by the unneutralized beam current in the beam edge region. As the beam-plasma system evolves self-consistently, a second ring structure appears in the case of ion beams with a radius much larger than the plasma skin depth, due to the polarity change in the transverse magnetic field in the central regions compared with the outer, focusing field. Influences of the current-filamentation and two-stream instability on the ring structure can be clearly observed in PIC simulations by constructing two different simulation planes.

  1. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    NASA Astrophysics Data System (ADS)

    Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  2. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole.

    PubMed

    Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  3. Ion source and injection line for high intensity medical cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, XianLu, E-mail: jiaxl@ciae.ac.cn; Guan, Fengping; Yao, Hongjuan

    2014-02-15

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from themore » extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.« less

  4. Production of negatively charged radioactive ion beams

    DOE PAGES

    Liu, Y.; Stracener, D. W.; Stora, T.

    2017-02-15

    Beams of short-lived radioactive nuclei are needed for frontier experimental research in nuclear structure, reactions, and astrophysics. Negatively charged radioactive ion beams have unique advantages and allow for the use of a tandem accelerator for post-acceleration, which can provide the highest beam quality and continuously variable energies. Negative ion beams can be obtained with high intensity and some unique beam purification techniques based on differences in electronegativity and chemical reactivity can be used to provide beams with high purity. This article describes the production of negative radioactive ion beams at the former holifield radioactive ion beam facility at Oak Ridgemore » National Laboratory and at the CERN ISOLDE facility with emphasis on the development of the negative ion sources employed at these two facilities.« less

  5. Generation of quasi-monoenergetic heavy ion beams via staged shock wave acceleration driven by intense laser pulses in near-critical plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, W. L.; Qiao, B.; Shen, X. F.; You, W. Y.; Huang, T. W.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.

    2016-09-01

    Laser-driven ion acceleration potentially offers a compact, cost-effective alternative to conventional accelerators for scientific, technological, and health-care applications. A novel scheme for heavy ion acceleration in near-critical plasmas via staged shock waves driven by intense laser pulses is proposed, where, in front of the heavy ion target, a light ion layer is used for launching a high-speed electrostatic shock wave. This shock is enhanced at the interface before it is transmitted into the heavy ion plasmas. Monoenergetic heavy ion beam with much higher energy can be generated by the transmitted shock, comparing to the shock wave acceleration in pure heavy ion target. Two-dimensional particle-in-cell simulations show that quasi-monoenergetic {{{C}}}6+ ion beams with peak energy 168 MeV and considerable particle number 2.1 × {10}11 are obtained by laser pulses at intensity of 1.66 × {10}20 {{W}} {{cm}}-2 in such staged shock wave acceleration scheme. Similarly a high-quality {{Al}}10+ ion beam with a well-defined peak with energy 250 MeV and spread δ E/{E}0=30 % can also be obtained in this scheme.

  6. Implosion of multilayered cylindrical targets driven by intense heavy ion beams.

    PubMed

    Piriz, A R; Portugues, R F; Tahir, N A; Hoffmann, D H H

    2002-11-01

    An analytical model for the implosion of a multilayered cylindrical target driven by an intense heavy ion beam has been developed. The target is composed of a cylinder of frozen hydrogen or deuterium, which is enclosed in a thick shell of solid lead. This target has been designed for future high-energy-density matter experiments to be carried out at the Gesellschaft für Schwerionenforschung, Darmstadt. The model describes the implosion dynamics including the motion of the incident shock and the first reflected shock and allows for calculation of the physical conditions of the hydrogen at stagnation. The model predicts that the conditions of the compressed hydrogen are not sensitive to significant variations in target and beam parameters. These predictions are confirmed by one-dimensional numerical simulations and thus allow for a robust target design.

  7. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    DOE PAGES

    Gauthier, M.; Kim, J. B.; Curry, C. B.; ...

    2016-08-24

    Here, we report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetitionmore » rate capability, this target is promising for future applications.« less

  8. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, M., E-mail: maxence.gauthier@stanford.edu; Kim, J. B.; Curry, C. B.

    2016-11-15

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition ratemore » capability, this target is promising for future applications.« less

  9. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, L., E-mail: sunlt@impcas.ac.cn; Lu, W.; Zhang, W. H.

    2016-02-15

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showedmore » its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω{sup 2} scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE{sub 01} and HE{sub 11} modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar{sup 12+}, 0.92 emA Xe{sup 27+}, and so on, will be presented.« less

  10. ITEP MEVVA ion beam for rhenium silicide production.

    PubMed

    Kulevoy, T; Gerasimenko, N; Seleznev, D; Kropachev, G; Kozlov, A; Kuibeda, R; Yakushin, P; Petrenko, S; Medetov, N; Zaporozhan, O

    2010-02-01

    The rhenium silicides are very attractive materials for semiconductor industry. In the Institute for Theoretical and Experimental Physics (ITEP) at the ion source test bench the research program of rhenium silicide production by ion beam implantation are going on. The investigation of silicon wafer after implantation of rhenium ion beam with different energy and with different total dose were carried out by secondary ions mass spectrometry, energy-dispersive x-ray microanalysis, and x-ray diffraction analysis. The first promising results of rhenium silicide film production by high intensity ion beam implantation are presented.

  11. Nonlinear Delta-f Simulations of Collective Effects in Intense Charged Particle Beams

    NASA Astrophysics Data System (ADS)

    Qin, Hong

    2002-11-01

    A nonlinear delta-f particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code, the nonlinear delta-f method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next- generation accelerators and storage rings, such as the Spallation Neutron Source, and heavy ion fusion drivers. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring (PSR) experiment at Los Alamos National Laboratory agree well with experimental observations. Large-scale parallel simulations have also been carried out for the ion-electron two-stream instability in the very high-intensity heavy ion beams envisioned for heavy ion fusion applications. In both cases, the simulation results indicate that the dominant two-stream instability has a dipole-mode (hose-like) structure and can be stabilized by a modest axial momentum spread of the beam particles of less than 0.25collective processes in high-intensity beams, such as anisotropy-driven instabilities, collective eigenmode excitations for perturbations about stable beam equilibria, and the Darwin model for fully electromagnetic perturbations will also be discussed.

  12. Ion beam development for the needs of the JYFL nuclear physics programme.

    PubMed

    Koivisto, H; Suominen, P; Ropponen, T; Ropponen, J; Koponen, T; Savonen, M; Toivanen, V; Wu, X; Machicoane, G; Stetson, J; Zavodszky, P; Doleans, M; Spädtke, P; Vondrasek, R; Tarvainen, O

    2008-02-01

    The increased requirements towards the use of higher ion beam intensities motivated us to initiate the project to improve the overall transmission of the K130 cyclotron facility. With the facility the transport efficiency decreases rapidly as a function of total beam intensity extracted from the JYFL ECR ion sources. According to statistics, the total transmission efficiency is of the order of 10% for low beam intensities (I(total)< or =0.7 mA) and only about 2% for high beam intensities (I(total)>1.5 mA). Requirements towards the use of new metal ion beams for the nuclear physics experiments have also increased. The miniature oven used for the production of metal ion beams at the JYFL is not able to reach the temperature needed for the requested metal ion beams. In order to fulfill these requirements intensive development work has been performed. An inductively and a resistively heated oven has successfully been developed and both are capable of reaching temperatures of about 2000 degrees C. In addition, sputtering technique has been tested. GEANT4 simulations have been started in order to better understand the processes involved with the bremsstrahlung, which gives an extra heat load to cryostat in the case of superconducting ECR ion source. Parallel with this work, a new advanced ECR heating simulation program has been developed. In this article we present the latest results of the above-mentioned projects.

  13. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    DOE PAGES

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Mikkelson, Kenneth A.; ...

    2014-12-15

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometrymore » that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. Furthermore, a new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. Additionally, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.« less

  14. Generation of monoenergetic ion beams via ionization dynamics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lin, Chen; Kim, I. Jong; Yu, Jinqing; Choi, Il Woo; Ma, Wenjun; Yan, Xueqing; Nam, Chang Hee

    2017-05-01

    The research on ion acceleration driven by high intensity laser pulse has attracted significant interests in recent decades due to the developments of laser technology. The intensive study of energetic ion bunches is particularly stimulated by wide applications in nuclear fusion, medical treatment, warm dense matter production and high energy density physics. However, to implement such compact accelerators, challenges are still existing in terms of beam quality and stability, especially in applications that require higher energy and narrow bandwidth spectra ion beams. We report on the acceleration of quasi-mono-energetic ion beams via ionization dynamics in the interaction of an intense laser pulse with a solid target. Using ionization dynamics model in 2D particle-in-cell (PIC) simulations, we found that high charge state contamination ions can only be ionized in the central spot area where the intensity of sheath field surpasses their ionization threshold. These ions automatically form a microstructure target with a width of few micron scale, which is conducive to generate mono-energetic beams. In the experiment of ultraintense (< 10^21 W/cm^2) laser pulses irradiating ultrathin targets each attracted with a contamination layer of nm-thickness, high quality < 100 MeV mono-energetic ion bunches are generated. The peak energy of the self-generated micro-structured target ions with respect to different contamination layer thickness is also examined This is relatively newfound respect, which is confirmed by the consistence between experiment data and the simulation results.

  15. Electron cooling of a bunched ion beam in a storage ring

    NASA Astrophysics Data System (ADS)

    Zhao, He; Mao, Lijun; Yang, Jiancheng; Xia, Jiawen; Yang, Xiaodong; Li, Jie; Tang, Meitang; Shen, Guodong; Ma, Xiaoming; Wu, Bo; Wang, Geng; Ruan, Shuang; Wang, Kedong; Dong, Ziqiang

    2018-02-01

    A combination of electron cooling and rf system is an effective method to compress the beam bunch length in storage rings. A simulation code based on multiparticle tracking was developed to calculate the bunched ion beam cooling process, in which the electron cooling, intrabeam scattering (IBS), ion beam space-charge field, transverse and synchrotron motion are considered. Meanwhile, bunched ion beam cooling experiments have been carried out in the main cooling storage ring (CSRm) of the Heavy Ion Research Facility in Lanzhou, to investigate the minimum bunch length obtained by the cooling method, and study the dependence of the minimum bunch length on beam and machine parameters. The experiments show comparable results to those from simulation. Based on these simulations and experiments, we established an analytical model to describe the limitation of the bunch length of the cooled ion beam. It is observed that the IBS effect is dominant for low intensity beams, and the space-charge effect is much more important for high intensity beams. Moreover, the particles will not be bunched for much higher intensity beam. The experimental results in CSRm show a good agreement with the analytical model in the IBS dominated regime. The simulation work offers us comparable results to those from the analytical model both in IBS dominated and space-charge dominated regimes.

  16. Theoretical studies of defect formation and target heating by intense pulsed ion beams

    NASA Astrophysics Data System (ADS)

    Barnard, J. J.; Schenkel, T.; Persaud, A.; Seidl, P. A.; Friedman, A.; Grote, D. P.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I.

    2015-11-01

    We present results of three studies related to experiments on NDCX-II, the Neutralized Drift Compression Experiment, a short-pulse (~ 1ns), high-current (~ 70A) linear accelerator for 1.2 MeV ions at LBNL. These include: (a) Coupled transverse and longitudinal envelope calculations of the final non-neutral ion beam transport, followed by neutralized drift and final focus, for a number of focus and drift lengths and with a series of ion species (Z =1-19). Predicted target fluences were obtained and target temperatures in the 1 eV range estimated. (b) HYDRA simulations of the target response for Li and He ions and for Al and Au targets at various ion fluences (up to 1012 ions/pulse/mm2) and pulse durations, benchmarking temperature estimates from the envelope calculations. (c) Crystal-Trim simulations of ion channeling through single-crystal lattices, with comparisons to ion transmission data as a function of orientation angle of the crystal foil and for different ion intensities and ion species. This work was performed under the auspices of the U.S. DOE under contracts DE-AC52-07NA27344 (LLNL), DE-AC02-05CH11231 (LBNL) and DE-AC02-76CH0307 (PPPL) and was supported by the US DOE Office of Science, Fusion Energy Sciences. LLNL-ABS-67521.

  17. Beam dynamics in heavy ion induction LINACS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L.

    1981-10-01

    Interest in the use of an induction linac to accelerate heavy ions for the purpose of providing the energy required to initiate an inertially confined fusion reaction has stimulated a theoretical effort to investigate various beam dynamical effects associated with high intensity heavy ion beams. This paper presents a summary of the work that has been done so far; transverse, longitudinal and coupled longitudinal transverse effects are discussed.

  18. Multiaperture ion beam extraction from gas-dynamic electron cyclotron resonance source of multicharged ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidorov, A.; Dorf, M.; Zorin, V.

    2008-02-15

    Electron cyclotron resonance ion source with quasi-gas-dynamic regime of plasma confinement (ReGIS), constructed at the Institute of Applied Physics, Russia, provides opportunities for extracting intense and high-brightness multicharged ion beams. Despite the short plasma lifetime in a magnetic trap of a ReGIS, the degree of multiple ionization may be significantly enhanced by the increase in power and frequency of the applied microwave radiation. The present work is focused on studying the intense beam quality of this source by the pepper-pot method. A single beamlet emittance measured by the pepper-pot method was found to be {approx}70 {pi} mm mrad, and themore » total extracted beam current obtained at 14 kV extraction voltage was {approx}25 mA. The results of the numerical simulations of ion beam extraction are found to be in good agreement with experimental data.« less

  19. Lithium ion beam divergence on SABRE extraction ion diode experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, D.L.; Cuneo, M.E.; Johnson, D.J.

    Intense lithium beams are of particular interest for light ion inertial confinement fusion applications because lithium ions can be accelerated at high voltage in a single charge state (Li{sup +}) with a high mass-to-charge ratio and appropriate range for efficient focusing and heating of a hohlraum ICF target. Scaling to ion power densities adequate to drive high gain pellet implosions (600 TW at 30 MeV) will require a large number of beams transported, temporally bunched, and focused onto a target, with the necessary target standoff to ensure survival of the driver modules. For efficient long distance transport and focusing tomore » a small pellet, lithium beam divergence must be reduced to about 12 mrad or less (depending on the transport scheme). To support the eventual development of a light ion driver module for ICF applications, the authors are currently working to improve the composition, uniformity, and divergence of lithium ion beams produced by both passive LiF and active laser-generated lithium ion sources on extraction applied-B ion diodes on the SABRE accelerator (1 TW, 5 MV, 250 kA). While lithium beam divergence accounting and control are an essential goal of these experiments, divergence measurements for lithium beams present some unique problems not encountered to the same degree in divergence measurements on proton sources. To avoid these difficulties, the authors have developed a large aperture ion imaging diagnostic for time-resolved lithium divergence measurements. The authors will report on the operation of this lithium beam divergence diagnostic and on results of time-resolved divergence measurements in progress for passive LiF ion sources and laser-produced active lithium sources operated in diode configurations designed to control divergence growth. Comparisons will also be made with time-integrated divergence results obtained with small entrance aperture ultracompact pinhole cameras.« less

  20. Performance test of electron cyclotron resonance ion sources for the Hyogo Ion Beam Medical Center

    NASA Astrophysics Data System (ADS)

    Sawada, K.; Sawada, J.; Sakata, T.; Uno, K.; Okanishi, K.; Harada, H.; Itano, A.; Higashi, A.; Akagi, T.; Yamada, S.; Noda, K.; Torikoshi, M.; Kitagawa, A.

    2000-02-01

    Two electron cyclotron resonance (ECR) ion sources were manufactured for the accelerator facility at the Hyogo Ion Beam Medical Center. H2+, He2+, and C4+ were chosen as the accelerating ions because they have the highest charge to mass ratio among ion states which satisfy the required intensity and quality. The sources have the same structure as the 10 GHz ECR source at the Heavy Ion Medical Accelerator in Chiba except for a few improvements in the magnetic structure. Their performance was investigated at the Sumitomo Heavy Industries factory before shipment. The maximum intensity was 1500 μA for H2+, 1320 μA for He2+, and 580 μA for C4+ at the end of the ion source beam transport line. These are several times higher than required. Sufficient performance was also observed in the flatness and long-term stability of the pulsed beams. These test results satisfy the requirements for medical use.

  1. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renk, T. J., E-mail: tjrenk@sandia.gov; Harper-Slaboszewicz, V.; Mikkelson, K. A.

    2014-12-15

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometry thatmore » has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. A new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. In addition, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.« less

  2. Collective acceleration of ions in picosecond pinched electron beams

    NASA Astrophysics Data System (ADS)

    Baryshnikov, V. I.; Paperny, V. L.; Shipayev, I. V.

    2017-10-01

    Сharacteristics of intense electron-ion beams emitted by a high-voltage (280 kV) electron accelerator with a pulse duration of 200 ps and current 5 kA are studied. The capture phenomena and the subsequent collective acceleration of multi charged ions of the cathode material by the electric field of the electron beam are observed. It is shown that the electron-ion beam diameter does not exceed 30 µm therein in the case of lighter ions, and the decay of the pinched beam occurs at a shorter distance from the cathode. It is established that the ions of the cathode material Tin+ captured by the electron beam are accelerated up to an energy of  ⩽10 MeV, and the ion fluence reaches 1017 ion cm-2 in the pulse. These ions are effectively embedded into the lattice sites of the irradiated substrate (sapphire crystal), forming the luminescent areas of the micron scale.

  3. Production of highly charged ion beams with SECRALa)

    NASA Astrophysics Data System (ADS)

    Sun, L. T.; Zhao, H. W.; Lu, W.; Zhang, X. Z.; Feng, Y. C.; Li, J. Y.; Cao, Y.; Guo, X. H.; Ma, H. Y.; Zhao, H. Y.; Shang, Y.; Ma, B. H.; Wang, H.; Li, X. X.; Jin, T.; Xie, D. Z.

    2010-02-01

    Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e μA of Xe37+, 1 e μA of Xe43+, and 0.16 e μA of Ne-like Xe44+. To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi31+ beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e μA of Bi31+, 22 e μA of Bi41+, and 1.5 e μA of Bi50+ have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.

  4. BEARS: Radioactive Ion Beams at Berkeley

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, J.; Joosten, R.; Donahue, C.A.

    2000-03-14

    A light-isotope radioactive ion beam capability has been added to the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory by coupling to the production cyclotron of the Berkeley Isotope Facility. The connection required the development and construction of a 350 m gas transport system between the two accelerators as well as automated cryogenic separation of the produced activity. The first beam developed, {sup 11}C, has been successfully accelerated with an on-target intensity of 1 x 10{sup 8} ions/sec at energies of around 10 MeV/u.

  5. Short intense ion pulses for materials and warm dense matter research

    DOE PAGES

    Seidl, Peter A.; Persaud, Arun; Waldron, William L.; ...

    2015-08-14

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 10 10 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li + ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientificmore » topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Finally, we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.« less

  6. Short intense ion pulses for materials and warm dense matter research

    NASA Astrophysics Data System (ADS)

    Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas

    2015-11-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.

  7. Charge breeding simulations for radioactive ion beam production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Variale, V.; Raino, A. C.; Clauser, T.

    2012-02-15

    The charge breeding technique is used for radioactive ion beam (RIB) production in order of optimizing the re-acceleration of the radioactive element ions produced by a primary beam in a thick target. Charge breeding is achieved by means of a device capable of increasing the ion charge state from 1+ to a desired value n+. In order to get high intensity RIB, experiments with charge breeding of very high efficiency could be required. To reach this goal, the charge breeding simulation could help to optimize the high charge state production efficiency by finding more proper parameters for the radioactive 1+more » ions. In this paper a device based on an electron beam ion source (EBIS) is considered. In order to study that problem, a code already developed for studying the ion selective containment in an EBIS with RF quadrupoles, BRICTEST, has been modified to simulate the ion charge state breeding rate for different 1+ ion injection conditions. Particularly, the charge breeding simulations for an EBIS with a hollow electron beam have been studied.« less

  8. DIN 1.7035 Steel Modification with High Intensity Nitrogen Ion Implantation

    NASA Astrophysics Data System (ADS)

    Ryabchikov, A. I.; Sivin, D. O.; Anan'in, P. S.; Ivanova, A. I.; Uglov, V. V.; Korneva, O. S.

    2018-06-01

    The paper presents research results on the formation of deep ion-modified layers of the grade DIN 1.7035 alloy steel due to a high intensity, repetitively-pulsed nitrogen ion beams with the ion current density of up to 0.5 A/cm2. The formation of a low-energy, high intensity nitrogen ion beam is based on a plasma immersion ion extraction followed by the ballistic focusing in the equipotential drift region. The nitrogen ion implantation in steel specimens is performed at a 1.2 keV energy and 450, 500, 580 and 650°C temperatures during 60 minutes. The morphology, elementary composition and mechanical properties are investigated in deep layers of steel specimens alloyed with nitrogen ions.

  9. Longitudinal dynamics of an intense electron beam

    NASA Astrophysics Data System (ADS)

    Harris, John Richardson

    2005-11-01

    The dynamics of charged particle beams are governed by the particles' thermal velocities, external focusing forces, and Coulomb forces. Beams in which Coulomb forces play the dominant role are known as space charge dominated, or intense. Intense beams are of great interest for heavy ion fusion, spallation neutron sources, free-electron lasers, and other applications. In addition, all beams of interest are dominated by space charge forces when they are first created, so an understanding of space charge effects is critical to explain the later evolution of any beam. Historically, more attention has been paid to the transverse dynamics of beams. However, many interesting and important effects in beams occur along their length. These longitudinal effects can be limiting factors in many systems. For example, modulation or structure applied to the beam at low energy will evolve under space charge forces. Depending on the intended use of the beam and the nature of the modulation, this may result in improved or degraded performance. To study longitudinal dynamics in intense beams, experiments were conducted using the University of Maryland Electron Ring, a 10 keV, 100 mA electron transport system. These experiments concentrated on space charge driven changes in beam length in parabolic and rectangular beams, beam density and velocity modulation, and space charge wave propagation. Coupling between the transverse and longitudinal dynamics was also investigated. These experiments involved operating the UMER gun in space charge limited, temperature limited, triode amplification, photon limited, and hybrid modes. Results of these experiments are presented here, along with a theoretical framework for understanding the longitudinal dynamics of intense beams.

  10. Advances in Heavy Ion Beam Probe Technology and Operation on MST

    NASA Astrophysics Data System (ADS)

    Demers, D. R.; Connor, K. A.; Schoch, P. M.; Radke, R. J.; Anderson, J. K.; Craig, D.; den Hartog, D. J.

    2003-10-01

    A technique to map the magnetic field of a plasma via spectral imaging is being developed with the Heavy Ion Beam Probe on the Madison Symmetric Torus. The technique will utilize two-dimensional images of the ion beam in the plasma, acquired by two CCD cameras, to generate a three-dimensional reconstruction of the beam trajectory. This trajectory, and the known beam ion mass, energy and charge-state, will be used to determine the magnetic field of the plasma. A suitable emission line has not yet been observed since radiation from the MST plasma is both broadband and intense. An effort to raise the emission intensity from the ion beam by increasing beam focus and current has been undertaken. Simulations of the accelerator ion optics and beam characteristics led to a technique, confirmed by experiment, that achieves a narrower beam and marked increase in ion current near the plasma surface. The improvements arising from these simulations will be discussed. Realization of the magnetic field mapping technique is contingent upon accurate reconstruction of the beam trajectory from the camera images. Simulations of two camera CCD images, including the interior of MST, its various landmarks and beam trajectories have been developed. These simulations accept user input such as camera locations, resolution via pixellization and noise. The quality of the images simulated with these and other variables will help guide the selection of viewing port pairs, image size and camera specifications. The results of these simulations will be presented.

  11. Numerical studies of acceleration of thorium ions by a laser pulse of ultra-relativistic intensity

    NASA Astrophysics Data System (ADS)

    Domanski, Jaroslaw; Badziak, Jan

    2018-01-01

    One of the key scientific projects of ELI-Nuclear Physics is to study the production of extremely neutron-rich nuclides by a new reaction mechanism called fission-fusion using laser-accelerated thorium (232Th) ions. This research is of crucial importance for understanding the nature of the creation of heavy elements in the Universe; however, they require Th ion beams of very high beam fluencies and intensities which are inaccessible in conventional accelerators. This contribution is a first attempt to investigate the possibility of the generation of intense Th ion beams by a fs laser pulse of ultra-relativistic intensity. The investigation was performed with the use of fully electromagnetic relativistic particle-in-cell code. A sub-μm thorium target was irradiated by a circularly polarized 20-fs laser pulse of intensity up to 1023 W/cm2, predicted to be attainable at ELI-NP. At the laser intensity 1023 W/cm2 and an optimum target thickness, the maximum energies of Th ions approach 9.3 GeV, the ion beam intensity is > 1020 W/cm2 and the total ion fluence reaches values 1019 ions/cm2. The last two values are much higher than attainable in conventional accelerators and are fairly promising for the planned ELI-NP experiment.

  12. Nanostructures by ion beams

    NASA Astrophysics Data System (ADS)

    Schmidt, B.

    Ion beam techniques, including conventional broad beam ion implantation, ion beam synthesis and ion irradiation of thin layers, as well as local ion implantation with fine-focused ion beams have been applied in different fields of micro- and nanotechnology. The ion beam synthesis of nanoparticles in high-dose ion-implanted solids is explained as phase separation of nanostructures from a super-saturated solid state through precipitation and Ostwald ripening during subsequent thermal treatment of the ion-implanted samples. A special topic will be addressed to self-organization processes of nanoparticles during ion irradiation of flat and curved solid-state interfaces. As an example of silicon nanocrystal application, the fabrication of silicon nanocrystal non-volatile memories will be described. Finally, the fabrication possibilities of nanostructures, such as nanowires and chains of nanoparticles (e.g. CoSi2), by ion beam synthesis using a focused Co+ ion beam will be demonstrated and possible applications will be mentioned.

  13. Electrical shielding box measurement of the negative hydrogen beam from Penning ion gauge ion source.

    PubMed

    Wang, T; Yang, Z; Dong, P; long, J D; He, X Z; Wang, X; Zhang, K Z; Zhang, L W

    2012-06-01

    The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.

  14. Generation of narrow energy spread ion beams via collisionless shock waves using ultra-intense 1 um wavelength laser systems

    NASA Astrophysics Data System (ADS)

    Albert, Felicie; Pak, A.; Kerr, S.; Lemos, N.; Link, A.; Patel, P.; Pollock, B. B.; Haberberger, D.; Froula, D.; Gauthier, M.; Glenzer, S. H.; Longman, A.; Manzoor, L.; Fedosejevs, R.; Tochitsky, S.; Joshi, C.; Fiuza, F.

    2017-10-01

    In this work, we report on electrostatic collisionless shock wave acceleration experiments that produced proton beams with peak energies between 10-17.5 MeV, with narrow energy spreads between Δ E / E of 10-20%, and with a total number of protons in these peaks of 1e7-1e8. These beams of ions were created by driving an electrostatic collisionless shock wave in a tailored near critical density plasma target using the ultra-intense ps duration Titan laser that operates at a wavelength of 1 um. The near critical density target was produced through the ablation of an initially 0.5 um thick Mylar foil with a separate low intensity laser. A narrow energy spread distribution of carbon / oxygen ions with a similar velocity to the accelerated proton distribution, consistent with the reflection and acceleration of ions from an electrostatic field, was also observed. This work was supported by Lawrence Livermore National Laboratory's Laboratory Directed Research and Development program under project 15-LW-095, and the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734.

  15. Effect on structure and mechanical property of tungsten irradiated by high intensity pulsed ion beam

    NASA Astrophysics Data System (ADS)

    Mei, Xianxiu; Zhang, Xiaonan; Liu, Xiaofei; Wang, Younian

    2017-09-01

    The anti-thermal radiation performance of tungsten was investigated by high intensity pulsed ion beam technology. The ion beam was mainly composed of Cn+ (70%) and H+ (30%) at an acceleration voltage of 250 kV under different energy densities for different number of pulses. GIXRD analysis showed that no obvious phase structural changes occurred on the tungsten, and microstress generated. SEM analysis exhibited that there was no apparent irradiation damage on the surface of tungsten at the low irradiation frequency (3 times and 10 times) and at the low energy density (0.25 J/cm2 and 0.7 J/cm2). Cracks appeared on the surface of tungsten after 100-time and 300-time irradiation. Shedding phenomenon even appeared on the surface of tungsten at the energy densities of 1.4 J/cm2 and 2.0 J/cm2. The surface nano-hardness of tungsten decreased with the increase of the pulse times and the energy density. The tungsten has good anti-thermal radiation properties under certain heat load environment.

  16. High-intensity polarized H- ion source for the RHIC SPIN physics

    NASA Astrophysics Data System (ADS)

    Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Kolmogorov, A.; Davydenko, V.

    2017-08-01

    A novel polarization technique had been successfully implemented for the RHIC polarized H- ion source upgrade to higher intensity and polarization. In this technique a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gas ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically-pumped Rb vapour. The use of high-brightness primary beam and large cross-sections of charge-exchange cross-sections resulted in production of high intensity H- ion beam of 85% polarization. High beam brightness and polarization resulted in 75% polarization at 23 GeV out of AGS and 60-65% beam polarization at 100-250 GeV colliding beams in RHIC. The status of un-polarized magnetron type (Cs-vapour loaded) BNL source is also discussed.

  17. Ion Beam Propulsion Study

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  18. Short-pulse, compressed ion beams at the Neutralized Drift Compression Experiment

    DOE PAGES

    Seidl, P. A.; Barnard, J. J.; Davidson, R. C.; ...

    2016-05-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted onmore » the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.« less

  19. A prototype scintillating fibre beam profile monitor for Ion Therapy beams

    NASA Astrophysics Data System (ADS)

    Leverington, B. D.; Dziewiecki, M.; Renner, L.; Runze, R.

    2018-05-01

    A prototype plastic scintillating fibre based beam profile monitor was tested at the Heidelberg Ion Therapy Centre/Heidelberg Ionenstrahl Therapiezentrum (HIT) in 2016 to determine its beam property reconstruction performance and the feasibility of further developing an expanded system. At HIT protons, helium, carbon, and oxygen ions are available for therapy and experiments. The beam can be scanned in two dimensions using fast deflection magnets. A tracking system is used to monitor beam position and to adjust scanning magnet currents online. A new detector system with a finer granularity and without the drift time delay of the current MWPC system with a similar amount of material along the beamline would prove valuable in patient treatment. The sensitive detector components in the tested prototype detector are double-clad Kuraray SCSF-78MJ scintillating fibres with a diameter of 0.250 mm wound as a thin multi-layer ribbon. The scintillation light is detected at the end of the ribbon with Hamamatsu S11865-64 photodiode arrays with a pitch of 0.8 mm. Commercial or readily available readout electronics have been used to evaluate the system feasibility. The results shown in this paper include the linearity with respect to beam intensity, the RMS of the beam intensity as measured by two planes, along with the RMS of the mean position, and the measured beam width RMS. The Signal-to-Noise ratio of the current system is also measured as an indicator of potential performance. Additionally, the non-linear light yield of the scintillating fibres as measured by the photodiode arrays is compared to two models which describe the light yield as a function of the ion stopping power and Lorentz β.

  20. Short Intense Ion Pulses for Materials and Warm Dense Matter Research

    NASA Astrophysics Data System (ADS)

    Seidl, Peter; Ji, Q.; Lidia, S. M.; Persaud, A.; Stettler, M.; Takakuwa, J. H.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.

    2015-11-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r <1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li + ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. We will describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminium perovskite using the fully integrated accelerator and neutralized drift compression components (arXiv:1506.05839). This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  1. Towards pump-probe experiments of defect dynamics with short ion beam pulses

    NASA Astrophysics Data System (ADS)

    Schenkel, T.; Lidia, S. M.; Weis, C. D.; Waldron, W. L.; Schwartz, J.; Minor, A. M.; Hosemann, P.; Kwan, J. W.

    2013-11-01

    A novel, induction type linear accelerator, the Neutralized Drift Compression eXperiment (NDCX-II), is currently being commissioned at Berkeley Lab. This accelerator is designed to deliver intense (up to 3 × 1011 ions/pulse), 0.6 to ∼600 ns duration pulses of 0.05-1.2 MeV lithium ions at a rate of about 2 pulses per minute onto 1-10 mm scale target areas. When focused to mm-diameter spots, the beam is predicted to volumetrically heat micrometer thick foils to temperatures of ∼30,000 °K. At lower beam power densities, the short excitation pulse with tunable intensity and time profile enables pump-probe type studies of defect dynamics in a broad range of materials. We briefly describe the accelerator concept and design, present results from beam pulse shaping experiments and discuss examples of pump-probe type studies of defect dynamics following irradiation of materials with intense, short ion beam pulses from NDCX-II.

  2. Spectroscopic investigations of beam-plasma interactions in an ion plume

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.; Friedly, V. J.; Peng, X.; Celenza, J. A.; Keefer, D.

    1993-01-01

    We report the results of spectroscopic investigations of beam-plasma interactions in the plume from a 3 cm ion source operated on argon. Ion-electron, ion-neutral, and electron-neutral scattering are identified by studying the dependence of neutral and ion emission intensities on chamber pressure and mass flow rate, and by analyzing the emission lineshapes at a non-orthogonal angle to the plume axis. Through the Doppler shift, we are able to separate contributions from fast beam ions and fast charge-exchange neutrals on the one hand, and of slow neutrals and slow ions on the other. We discuss the application of this new technique to the characterization of beam plasma interactions in the downstream region of ion thruster engines, and its potential for identifying the processes which lead to grid erosion.

  3. Broad beam ion implanter

    DOEpatents

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  4. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  5. Towards ion beam therapy based on laser plasma accelerators.

    PubMed

    Karsch, Leonhard; Beyreuther, Elke; Enghardt, Wolfgang; Gotz, Malte; Masood, Umar; Schramm, Ulrich; Zeil, Karl; Pawelke, Jörg

    2017-11-01

    Only few ten radiotherapy facilities worldwide provide ion beams, in spite of their physical advantage of better achievable tumor conformity of the dose compared to conventional photon beams. Since, mainly the large size and high costs hinder their wider spread, great efforts are ongoing to develop more compact ion therapy facilities. One promising approach for smaller facilities is the acceleration of ions on micrometre scale by high intensity lasers. Laser accelerators deliver pulsed beams with a low pulse repetition rate, but a high number of ions per pulse, broad energy spectra and high divergences. A clinical use of a laser based ion beam facility requires not only a laser accelerator providing beams of therapeutic quality, but also new approaches for beam transport, dosimetric control and tumor conformal dose delivery procedure together with the knowledge of the radiobiological effectiveness of laser-driven beams. Over the last decade research was mainly focused on protons and progress was achieved in all important challenges. Although currently the maximum proton energy is not yet high enough for patient irradiation, suggestions and solutions have been reported for compact beam transport and dose delivery procedures, respectively, as well as for precise dosimetric control. Radiobiological in vitro and in vivo studies show no indications of an altered biological effectiveness of laser-driven beams. Laser based facilities will hardly improve the availability of ion beams for patient treatment in the next decade. Nevertheless, there are possibilities for a need of laser based therapy facilities in future.

  6. First test of BNL electron beam ion source with high current density electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, themore » EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.« less

  7. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  8. Perturbative Particle Simulation for an Intense Ion Beam in a Periodic Quadrupole Focusing Field

    NASA Astrophysics Data System (ADS)

    Lee, W. W.

    1996-11-01

    footnotetext[1]This work is supported the DOE contract DE-AC02-76-CHO-3073. footnotetext[2]In collaboration with Q. Qian and R. C. Davidson, PPPL. Stability and transport properties of an intense ion beam propagating through an alternating-gradient quadrupole focusing field with initial Kapchinskij-Vladimirskij (KV) distribution(I. M. Kapchinksij and V. V. Vladimirskj, Proceedings of the International Conference on High Energy Accelerators and Instrumentation (CERN Geneva, 1959), p. 274.) are studied using newly-developed perturbative particle simulation techniques. Specifically, two different schemes have been investigated: the first is based on the δ f scheme originally developed for tokamak plasmas,(A. Dimits and W. W. Lee, J. Comput. Phys. 107), 309 (1993); S. Parker and W. W. Lee, Phys. Fluids B 5, 77 (1993). and the other is related to the linearized trajectory scheme.(J. Byers, Proceedings of the 4th Conference on Numerical Simulation of Plasmas, (NRL, Washington D.C., 1970),p.496.) While the former is useful for both linear and nonlinear simulations, the latter can be used for benchmark purpose. Stability properties and associated mode structures are investigated over a wide range of beam current and focusing field strength. The new schemes are found to be highly effective in describing detailed properties of beam stability and propagation over long distances. For example, a stable KV beam can indeed propagate over hundreds of lattice period in the simulation with negligible growth. On the other hand, in the unstable region when the beam current is sufficiently high,(I. Hoffman, L. Laslett, L. Smith, and I. Haber, Particle Accelerators 13), 145 (1983). large-amplitude density perturbations with (δ n)_max/hatn0 ~ 1 with low azimuthal harmonic numbers, concentrated near the beam surface, are observed. The corresponding mode structures are of Gaussian shape in the radial direction. The physics of nonlinear saturation and emittance growth will be discussed

  9. A low cost ion beam profile monitor

    NASA Astrophysics Data System (ADS)

    Godfrey, L.; Hoyes, G. G.; Pairsuwan, W.

    1990-09-01

    An intercepting multiwire ion beam profile monitor, of thickness 0.9 cm and active area 5 × 5 cm, has been developed for use with the low-intensity deuteron beamline at the Fast Neutron Research Facility (FNRF), Chiang Mai University. It has been used to optimise the transport of a continuous ion beam of current up to 200 μA and kinetic energy up to 140 keV. The monitor enables the determination of the two-dimensional beam profile using closely-spaced samples at 1.5 mm, and the measurement of relative beam current. The design incorporates low material and labour costs, elimination of the need for commercial vacuum feedthroughs, a minimal amount of devoted electronics with no need for preamplifiers, and permits quick insertion of the monitors, wherever needed along the beamline, with minimum disruption to neighbouring elements.

  10. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Y., E-mail: yjma@ciae.ac.cn; Cui, B.; Ma, R.

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will bemore » installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.« less

  11. Ion recombination correction in carbon ion beams.

    PubMed

    Rossomme, S; Hopfgartner, J; Lee, N D; Delor, A; Thomas, R A S; Romano, F; Fukumura, A; Vynckier, S; Palmans, H

    2016-07-01

    In this work, ion recombination is studied as a function of energy and depth in carbon ion beams. Measurements were performed in three different passively scattered carbon ion beams with energies of 62 MeV/n, 135 MeV/n, and 290 MeV/n using various types of plane-parallel ionization chambers. Experimental results were compared with two analytical models for initial recombination. One model is generally used for photon beams and the other model, developed by Jaffé, takes into account the ionization density along the ion track. An investigation was carried out to ascertain the effect on the ion recombination correction with varying ionization chamber orientation with respect to the direction of the ion tracks. The variation of the ion recombination correction factors as a function of depth was studied for a Markus ionization chamber in the 62 MeV/n nonmodulated carbon ion beam. This variation can be related to the depth distribution of linear energy transfer. Results show that the theory for photon beams is not applicable to carbon ion beams. On the other hand, by optimizing the value of the ionization density and the initial mean-square radius, good agreement is found between Jaffé's theory and the experimental results. As predicted by Jaffé's theory, the results confirm that ion recombination corrections strongly decrease with an increasing angle between the ion tracks and the electric field lines. For the Markus ionization chamber, the variation of the ion recombination correction factor with depth was modeled adequately by a sigmoid function, which is approximately constant in the plateau and strongly increasing in the Bragg peak region to values of up to 1.06. Except in the distal edge region, all experimental results are accurately described by Jaffé's theory. Experimental results confirm that ion recombination in the investigated carbon ion beams is dominated by initial recombination. Ion recombination corrections are found to be significant and cannot be

  12. Nuclear Structure Studies with Stable and Radioactive Beams: The SPES radioactive ion beam project

    NASA Astrophysics Data System (ADS)

    de Angelis, G.; SPES Collaboration; Prete, G.; Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Rossignoli, M.; Monetti, A.; Lollo, M.; Calderolla, M.; Vasquez, J.; Zafiropoulos, D.; Sarchiapone, L.; Benini, D.; Favaron, P.; Rigato, M.; Pegoraro, R.; Maniero, D.; Calabretta, L.; Comunian, M.; Maggiore, M.; Lombardi, A.; Piazza, L.; Porcellato, A. M.; Roncolato, C.; Bisoffi, G.; Pisent, A.; Galatà, A.; Giacchini, M.; Bassato, G.; Canella, S.; Gramegna, F.; Valiente, J.; Bermudez, J.; Mastinu, P. F.; Esposito, J.; Wyss, J.; Russo, A.; Zanella, S.

    2015-04-01

    A new Radioactive Ion Beam (RIB) facility (SPES) is presently under construction at the Legnaro National Laboratories of INFN. The SPES facility is based on the ISOL method using an UCx Direct Target able to sustain a power of 10 kW. The primary proton beam is provided by a high current Cyclotron accelerator with energy of 35-70 MeV and a beam current of 0.2-0.5 mA. Neutron-rich radioactive ions are produced by proton induced fission on an Uranium target at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes are re-accelerated by the ALPI superconducting LINAC at energies of 10A MeV for masses in the region A=130 amu. The expected secondary beam rates are of the order of 107 - 109 pps. Aim of the SPES facility is to deliver high intensity radioactive ion beams of neutron rich nuclei for nuclear physics research as well as to be an interdisciplinary research centre for radio-isotopes production for medicine and for neutron beams.

  13. Studies on low energy beam transport for high intensity high charged ions at IMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y., E-mail: yangyao@impcas.ac.cn; Lu, W.; Fang, X.

    2014-02-15

    Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) is an advanced fully superconducting ECR ion source at IMP designed to be operational at the microwave frequency of 18–24 GHz. The existing SECRAL beam transmission line is composed of a solenoid lens and a 110° analyzing magnet. Simulations of particle tracking with 3D space charge effect and realistic 3D magnetic fields through the line were performed using particle-in-cell code. The results of the beam dynamics show that such a low energy beam is very sensitive to the space charge effect and significantly suffers from the second-order aberrationmore » of the analyzing magnet resulting in large emittance. However, the second-order aberration could be reduced by adding compensating sextupole components in the beam line. On this basis, a new 110° analyzing magnet with relatively larger acceptance and smaller aberration is designed and will be used in the design of low energy beam transport line for a new superconducting ECR ion source SECRAL-II. The features of the analyzer and the corresponding beam trajectory calculation will be detailed and discussed in this paper.« less

  14. Use of a Gafchromic film HD-V2 for the profile measurement of energetic ion beams

    NASA Astrophysics Data System (ADS)

    Yuri, Yosuke; Ishizaka, Tomohisa; Agematsu, Takashi; Yuyama, Takahiro; Seito, Hajime; Okumura, Susumu

    2017-09-01

    The coloration response of a radiochromic film, Gafchromic HD-V2, to ion beams was investigated to apply the film to measuring the transverse intensity distribution of large-area ion beams. HD-V2 films were, therefore, irradiated with proton (10 MeV) and several heavy-ion (4.1-27 MeV/u) beams in a wide fluence range at the azimuthally-varying-field cyclotron facility in National Institutes for Quantum and Radiological Science and Technology, and read with an image scanner to analyze changes in the optical density. It was shown that the available fluence range (106-1011 ions/cm2) of HD-V2 depends strongly on ion species, i.e., linear energy transfer (LET). In addition, the reduction of the sensitivity to dose was shown over a wide LET range. The transverse intensity distribution of a large-area ion beam was measured using a response function determined from the measured data. We have demonstrated that the Gafchromic film HD-V2 is useful for measuring the intensity distribution at a low fluence and thus evaluating the characteristics of various ion beams.

  15. A Multicusp Ion Source for Radioactive Ion Beams

    NASA Astrophysics Data System (ADS)

    Wutte, D.; Freedman, S.; Gough, R.; Lee, Y.; Leitner, M.; Leung, K. N.; Lyneis, C.; Picard, D. S.; Sun, L.; Williams, M. D.; Xie, Z. Q.

    1997-05-01

    In order to produce a radioactive ion beam of (14)O+, a 10-cm-diameter, 13.56 MHz radio frequency (rf) driven multicusp ion source is now being developed at Lawrence Berkeley National Laboratory. In this paper we describe the specific ion source design and the basic ion source characteristics using Ar, Xe and a 90types of measurements have been performed: extractable ion current, ion species distributions, gas efficiency, axial energy spread and ion beam emittance measurements. The source can generate ion current densities of approximately 60 mA/cm2 . In addition the design of the ion beam extraction/transport system for the actual experimental setup for the radioactive beam line will be presented.

  16. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited).

    PubMed

    Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  17. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, H. Y., E-mail: zhaohy@impcas.ac.cn; Zhang, J. J.; Jin, Q. Y.

    2016-02-15

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production ofmore » highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10{sup 13} W cm{sup −2} in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.« less

  18. A pepper-pot emittance meter for low-energy heavy-ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kremers, H. R.; Beijers, J. P. M.; Brandenburg, S.

    2013-02-15

    A novel emittance meter has been developed to measure the four-dimensional, transverse phase-space distribution of a low-energy ion beam using the pepper-pot technique. A characteristic feature of this instrument is that the pepper-pot plate, which has a linear array of holes in the vertical direction, is scanned horizontally through the ion beam. This has the advantage that the emittance can also be measured at locations along the beam line where the beam has a large horizontal divergence. A set of multi-channel plates, scintillation screen, and ccd camera is used as a position-sensitive ion detector allowing a large range of beammore » intensities that can be handled. This paper describes the design, construction, and operation of the instrument as well as the data analysis used to reconstruct the four-dimensional phase-space distribution of an ion beam. Measurements on a 15 keV He{sup +} beam are used as an example.« less

  19. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.

    PubMed

    Adonin, A A; Hollinger, R

    2014-02-01

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  20. Scattering effects in passive foil focusing of ion beams

    DOE PAGES

    Yuen, Albert; Lund, Steven M.; Barnard, John J.; ...

    2015-09-11

    A stack of thin, closely spaced conducting foils has been investigated by Lund et al. [ Phys. Rev. ST Accel. Beams 16, 044202 (2013)] as a passive focusing lens for intense ion beams. The foils mitigate space-charge defocusing forces to enable the beam self-magnetic field to focus. In this study, we analyze possible degradation of focusing due to scattering of beam ions resulting from finite foil thickness using an envelope model and numerical simulations with the particle-in-cell code WARP. Ranges of kinetic energy where scattering effects are sufficient to destroy passive focusing are quantified. The scheme may be utilized tomore » focus protons produced in intense laser-solid accelerator schemes. The spot size of an initially collimated 30 MeV proton beam with initial rms radius 200 μm, perveance Q=1.8×10 -2, and initial transverse emittance ϵ x,rms=0.87 mm mrad propagating through a stack of 6.4 μm thick foils, spaced 100 μm apart, gives a 127.5 μm spot with scattering and a 81.0 μm spot without scattering, illustrating the importance of including scattering effects.« less

  1. Large area multiarc ion beam source {open_quote}MAIS{close_quote}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelko, V.; Giese, H.; Schalk, S.

    1996-12-31

    A pulsed large area intense ion beam source is described, in which the ion emitting plasma is built up by an array of individual discharge units, homogeneously distributed over the surface of a common discharge electrode. A particularly advantageous feature of the source is that for plasma generation and subsequent acceleration of the ions only one common energy supply is necessary. This allows to simplify the source design and provides inherent synchronization of plasma production and ion extraction. The homogeneity of the plasma density was found to be superior to plasma sources using plasma expanders. Originally conceived for the productionmore » of proton beams, the source can easily be modified for the production of beams composed of carbon and metal ions or mixed ion species. Results of investigations of the source performance for the production of a proton beam are presented. The maximum beam current achieved to date is of the order of 100 A, with a particle kinetic energy of 15 - 30 keV and a pulse length in the range of 10 {mu}s.« less

  2. Ion beam texturing

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.

    1976-01-01

    A microscopic surface texture is created by sputter etching a surface while simultaneously sputter depositing a lower sputter yield material onto the surface. A xenon ion beam source has been used to perform this texturing process on samples as large as three centimeters in diameter. Ion beam textured surface structures have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, Stainless steel, Au, and Ag. Surfaces have been textured using a variety of low sputter yield materials - Ta, Mo, Nb, and Ti. The initial stages of the texture creation have been documented, and the technique of ion beam sputter removal of any remaining deposited material has been studied. A number of other texturing parameters have been studied such as the variation of the texture with ion beam power, surface temperature, and the rate of texture growth with sputter etching time.

  3. Neutralized ion beam modification of cellulose membranes for study of ion charge effect on ion-beam-induced DNA transfer

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.

    2012-02-01

    Low-energy ion beam biotechnology (IBBT) has recently been rapidly developed worldwide. Ion-beam-induced DNA transfer is one of the important applications of IBBT. However, mechanisms involved in this application are not yet well understood. In this study plasma-neutralized ion beam was applied to investigate ion charge effect on induction of DNA transfer. Argon ion beam at 7.5 keV was neutralized by RF-driven plasma in the beam path and then bombarded cellulose membranes which were used as the mimetic plant cell envelope. Electrical properties such as impedance and capacitance of the membranes were measured after the bombardment. An in vitro experiment on plasmid DNA transfer through the cellulose membrane was followed up. The results showed that the ion charge input played an important role in the impedance and capacitance changes which would affect DNA transfer. Generally speaking, neutral particle beam bombardment of biologic cells was more effective in inducing DNA transfer than charged ion beam bombardment.

  4. Development of a beam ion velocity detector for the heavy ion beam probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fimognari, P. J., E-mail: PJFimognari@XanthoTechnologies.com; Crowley, T. P.; Demers, D. R.

    2016-11-15

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected bymore » the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.« less

  5. Demonstrated Efficient Quasi-Monoenergetic Carbon-Ion Beams Approaching Fast Ignition (FI) Requirements

    NASA Astrophysics Data System (ADS)

    Fernández, Juan C.; Palaniyappan, S.; Huang, C.; Gautier, D. C.; Santiago, M.

    2015-11-01

    Using massive computer simulations of relativistic laser-plasma interactions, we have identified a self-organizing scheme that exploits persisting self-generated plasma electric (~TV/m) and magnetic (~104 Tesla) fields to reduce the ion energy spread of intense laser-driven ion beams after the laser exits the plasma. Consistent with the scheme, we have demonstrated on the LANL Trident laser carbon-ion beams with narrow spectral peaks at 220 MeV, with high conversion efficiency (~ 5%). These parameters are within a factor of 2 of FI requirements. The remaining gap may be bridged by increasing the laser intensity by a factor of 4, according to our data. We also discuss how this beam may be focused, to address the remaining requirement for FI, besides the total laser energy. This work is sponsored by the LANL LDRD Program.

  6. Surface modification of LiNbO3 and KTa1-xNbxO3 crystals irradiated by intense pulsed ion beam

    NASA Astrophysics Data System (ADS)

    Cui, Xiaojun; Shen, Jie; Zhong, Haowen; Zhang, Jie; Yu, Xiao; Liang, Guoying; Qu, Miao; Yan, Sha; Zhang, Xiaofu; Le, Xiaoyun

    2017-10-01

    In this work, we studied the surface modification of LiNbO3 and KTa1-xNbxO3 irradiated by intense pulsed ion beam, which was mainly composed of H+ (70%) and Cn+ (30%) at an acceleration voltage of about 450 kV. The surface morphologies, microstructural evolution and elemental analysis of the sample surfaces after IPIB irradiation have been analyzed by scanning electron microscope, atomic force microscope, X-ray diffraction and energy dispersive spectrometer techniques, respectively. The results show that the surface morphologies have significant difference impacted by the irradiation effect. Regular gully damages range from 200 to 400 nm in depth appeared in LiNbO3 under 2 J/cm2 energy density for 1 pulse, block cracking appeared in KTa1-xNbxO3 at the same condition. Surface of the crystals have melted and were darkened with the increasing number up to 5 pulses. Crystal lattice arrangement is believed to be the dominant reason for the different experimental results irradiated by intense pulsed ion beam.

  7. Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Hermes, P. D.; Bruce, R.; Jowett, J. M.; Redaelli, S.; Salvachua Ferrando, B.; Valentino, G.; Wollmann, D.

    2016-05-01

    The Large Hadron Collider (LHC) at CERN pushes forward to new regimes in terms of beam energy and intensity. In view of the combination of very energetic and intense beams together with sensitive machine components, in particular the superconducting magnets, the LHC is equipped with a collimation system to provide protection and intercept uncontrolled beam losses. Beam losses could cause a superconducting magnet to quench, or in the worst case, damage the hardware. The collimation system, which is optimized to provide a good protection with proton beams, has shown a cleaning efficiency with heavy-ion beams which is worse by up to two orders of magnitude. The reason for this reduced cleaning efficiency is the fragmentation of heavy-ion beams into isotopes with a different mass to charge ratios because of the interaction with the collimator material. In order to ensure sufficient collimation performance in future ion runs, a detailed theoretical understanding of ion collimation is needed. The simulation of heavy-ion collimation must include processes in which 82 + 208Pb ions fragment into dozens of new isotopes. The ions and their fragments must be tracked inside the magnetic lattice of the LHC to determine their loss positions. This paper gives an overview of physical processes important for the description of heavy-ion loss patterns. Loss maps simulated by means of the two tools ICOSIM [1,2] and the newly developed STIER (SixTrack with Ion-Equivalent Rigidities) are compared with experimental data measured during LHC operation. The comparison shows that the tool STIER is in better agreement.

  8. Energetic Ion Beam Production by a Low-Pressure Plasma Focus Discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, L. K.; Yap, S. L.; Wong, C. S.

    Energetic ion beam emissions in a 3 kJ Mather type plasma focus operating at low-pressure regime are investigated. Deuterium gas is used and the discharge is operated in a low-pressure regime of below 1 mbar. Formation of the current sheath during the breakdown phase at the back wall is assisted by a set delayed trigger pulse. Energetic and intense ion beams with good reproducibility have been obtained for the operating pressure ranging from 0.05 mbar to 0.5 mbar. Deuteron beam is determined by time resolved measurement by making use of three biased ion collectors placed at the end on direction.more » The average energies of deuteron beams are resolved by using time-of flight method. Correlation between the ion emissions and the current sheath dynamics is also discussed.« less

  9. A specialized bioengineering ion beam line

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Sangyuenyongpipat, S.; Sriprom, C.; Thongleurm, C.; Suwanksum, R.; Tondee, N.; Prakrajang, K.; Vilaithong, T.; Brown, I. G.; Wiedemann, H.

    2007-04-01

    A specialized bioengineering ion beam line has recently been completed at Chiang Mai University to meet rapidly growing needs of research and application development in low-energy ion beam biotechnology. This beam line possesses special features: vertical main beam line, low-energy (30 keV) ion beams, double swerve of the beam, a fast pumped target chamber, and an in-situ atomic force microscope (AFM) system chamber. The whole beam line is situated in a bioclean environment, occupying two stories. The quality of the ion beam has been studied. It has proved that this beam line has significantly contributed to our research work on low-energy ion beam biotechnology.

  10. Plasma effects of active ion beam injections in the ionosphere at rocket altitudes

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.; Cahill, L. J., Jr.; Kintner, P. M.; Moore, T. E.; Pollock, C. J.

    1992-01-01

    Data from ARCS rocket ion beam injection experiments are primarily discussed. There are three results from this series of active experiments that are of particular interest in space plasma physics. These are the transverse acceleration of ambient ions in the large beam volume, the scattering of beam ions near the release payload, and the possible acceleration of electrons very close to the plasma generator which produce intense high frequency waves. The ability of 100 ma ion beam injections into the upper E and F regions of the ionosphere to produce these phenomena appear to be related solely to the process by which the plasma release payload and the ion beam are neutralized. Since the electrons in the plasma release do not convect with the plasma ions, the neutralization of both the payload and beam must be accomplished by large field-aligned currents (milliamperes/square meter) which are very unstable to wave growth of various modes.

  11. Electron beam ion source and electron beam ion trap (invited).

    PubMed

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  12. High intensity proton injector for facility of antiproton and ion research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berezov, R., E-mail: r.berezov@gsi.de; Brodhage, R.; Fils, J.

    The high current ion source with the low energy beam transport (LEBT) will serve as injector into the proton LINAC to provide primary proton beam for the production of antiprotons. The pulsed ion source developed and built in CEA/Saclay operates with a frequency of 2.45 GHz based on ECR plasma production with two coils with 87.5 mT magnetic field necessary for the electron cyclotron resonance. The compact LEBT consists of two solenoids with a maximum magnetic field of 500 mT including two integrated magnetic steerers to adjust the horizontal and vertical beam positions. The total length of the compact LEBTmore » is 2.3 m and was made as short as possible to reduced emittance growth along the beam line. To measure ion beam intensity behind the pentode extraction system, between solenoids and at the end of the beam line, two current transformers and a Faraday cup are installed. To get information about the beam quality and position, the diagnostic chamber with different equipment will be installed between the two solenoids. This article reports the current status of the proton injector for the facility of antiproton and ion research.« less

  13. A Core-Particle Model for Periodically Focused Ion Beams with Intense Space-Charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, S M; Barnard, J J; Bukh, B

    2006-08-02

    A core-particle model is derived to analyze transverse orbits of test particles evolving in the presence of a core ion beam described by the KV distribution. The core beam has uniform density within an elliptical cross-section and can be applied to model both quadrupole and solenoidal focused beams in periodic or aperiodic lattices. Efficient analytical descriptions of electrostatic space-charge fields external to the beam core are derived to simplify model equations. Image charge effects are analyzed for an elliptical beam centered in a round, conducting pipe to estimate model corrections resulting from image charge nonlinearities. Transformations are employed to removemore » coherent utter motion associated with oscillations of the ion beam core due to rapidly varying, linear applied focusing forces. Diagnostics for particle trajectories, Poincare phase-space projections, and single-particle emittances based on these transformations better illustrate the effects of nonlinear forces acting on particles evolving outside the core. A numerical code has been written based on this model. Example applications illustrate model characteristics. The core-particle model described has recently been applied to identify physical processes leading to space-charge transport limits for an rms matched beam in a periodic quadrupole focusing channel [Lund and Chawla, Nuc. Instr. and Meth. A 561, 203 (2006)]. Further characteristics of these processes are presented here.« less

  14. A combined thermal dissociation and electron impact ionization source for radioactive ion beam generation{sup a}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alton, G.D.; Williams, C.

    1996-04-01

    The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, inmore » principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. {copyright} {ital 1996 American Institute of Physics.}« less

  15. First heavy ion beam tests with a superconducting multigap CH cavity

    NASA Astrophysics Data System (ADS)

    Barth, W.; Aulenbacher, K.; Basten, M.; Busch, M.; Dziuba, F.; Gettmann, V.; Heilmann, M.; Kürzeder, T.; Miski-Oglu, M.; Podlech, H.; Rubin, A.; Schnase, A.; Schwarz, M.; Yaramyshev, S.

    2018-02-01

    Very compact accelerating-focusing structures, as well as short focusing periods, high accelerating gradients and short drift spaces are strongly required for superconducting (sc) accelerator sections operating at low and medium energies for continuous wave (cw) heavy ion beams. To keep the GSI-super heavy element (SHE) program competitive on a high level and even beyond, a standalone sc cw linac (Helmholtz linear accelerator) in combination with the GSI high charge state injector (HLI), upgraded for cw operation, is envisaged. Recently the first linac section (financed by Helmholtz Institute Mainz (HIM) and GSI) as a demonstration of the capability of 217 MHz multigap crossbar H-mode structures (CH) has been commissioned and extensively tested with heavy ion beam from the HLI. The demonstrator setup reached acceleration of heavy ions up to the design beam energy. The required acceleration gain was achieved with heavy ion beams even above the design mass to charge ratio at high beam intensity and full beam transmission. This paper presents systematic beam measurements with varying rf amplitudes and phases of the CH cavity, as well as phase space measurements for heavy ion beams with different mass to charge ratio. The worldwide first and successful beam test with a superconducting multigap CH cavity is a milestone of the R&D work of HIM and GSI in collaboration with IAP in preparation of the HELIAC project and other cw-ion beam applications.

  16. Probing the Relationship Between Detected Ion Intensity, Laser Fluence, and Beam Profile in Thin Film and Tissue in MALDI MSI

    NASA Astrophysics Data System (ADS)

    Steven, Rory T.; Race, Alan M.; Bunch, Josephine

    2016-08-01

    Matrix assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) is increasingly widely used to provide information regarding molecular location within tissue samples. The nature of the photon distribution within the irradiated region, the laser beam profile, and fluence, will significantly affect the form and abundance of the detected ions. Previous studies into these phenomena have focused on circular-core optic fibers or Gaussian beam profiles irradiating dried droplet preparations, where peptides were employed as the analyte of interest. Within this work, we use both round and novel square core optic fibers of 100 and 50 μm diameter to deliver the laser photons to the sample. The laser beam profiles were recorded and analyzed to quantify aspects of the photon distributions and their relation to the spectral data obtained with each optic fiber. Beam profiles with a relatively small number of large beam profile features were found to give rise to the lowest threshold fluence. The detected ion intensity versus fluence relationship was investigated, for the first time, in both thin films of α-cyano-4-hydroxycinnamic acid (CHCA) with phosphatidylcholine (PC) 34:1 lipid standard and in CHCA coated murine tissue sections for both the square and round optic fibers in continuous raster imaging mode. The fluence threshold of ion detection was found to occur at between ~14 and ~64 J/m2 higher in tissue compared with thin film for the same lipid, depending upon the optic fiber employed. The image quality is also observed to depend upon the fluence employed during image acquisition.

  17. Measurement of the transverse four-dimensional beam rms-emittance of an intense uranium beam at 11.4 MeV/u

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Groening, L.; Gerhard, P.; Maier, M.; Mickat, S.; Vormann, H.

    2016-06-01

    Knowledge of the transverse four-dimensional beam rms-parameters is essential for applications that involve lattice elements that couple the two transverse degrees of freedom (planes). Usually pepper-pots are used for measuring these beam parameters. However, for ions their application is limited to energies below 150 keV/u. This contribution is on measurements of the full transverse four-dimensional second-moments beam matrix of high intensity uranium ions at an energy of 11.4 MeV/u. The combination of skew quadrupoles with a slit/grid emittance measurement device has been successfully applied.

  18. Acceleration of plasma electrons by intense nonrelativistic ion and electron beams propagating in background plasma due to two-stream instability

    NASA Astrophysics Data System (ADS)

    Kaganovich, Igor D.

    2015-11-01

    In this paper we study the effects of the two-stream instability on the propagation of intense nonrelativistic ion and electron beams in background plasma. Development of the two-stream instability between the beam ions and plasma electrons leads to beam breakup, a slowing down of the beam particles, acceleration of the plasma particles, and transfer of the beam energy to the plasma particles and wave excitations. Making use of the particle-in-cell codes EDIPIC and LSP, and analytic theory we have simulated the effects of the two-stream instability on beam propagation over a wide range of beam and plasma parameters. Because of the two-stream instability the plasma electrons can be accelerated to velocities as high as twice the beam velocity. The resulting return current of the accelerated electrons may completely change the structure of the beam self - magnetic field, thereby changing its effect on the beam from focusing to defocusing. Therefore, previous theories of beam self-electromagnetic fields that did not take into account the effects of the two-stream instability must be significantly modified. This effect can be observed on the National Drift Compression Experiment-II (NDCX-II) facility by measuring the spot size of the extracted beamlet propagating through several meters of plasma. Particle-in-cell, fluid simulations, and analytical theory also reveal the rich complexity of beam- plasma interaction phenomena: intermittency and multiple regimes of the two-stream instability in dc discharges; band structure of the growth rate of the two-stream instability of an electron beam propagating in a bounded plasma and repeated acceleration of electrons in a finite system. In collaboration with E. Tokluoglu, D. Sydorenko, E. A. Startsev, J. Carlsson, and R. C. Davidson. Research supported by the U.S. Department of Energy.

  19. High spatial resolution and high brightness ion beam probe for in-situ elemental and isotopic analysis

    NASA Astrophysics Data System (ADS)

    Long, Tao; Clement, Stephen W. J.; Bao, Zemin; Wang, Peizhi; Tian, Di; Liu, Dunyi

    2018-03-01

    A high spatial resolution and high brightness ion beam from a cold cathode duoplasmatron source and primary ion optics are presented and applied to in-situ analysis of micro-scale geological material with complex structural and chemical features. The magnetic field in the source as well as the influence of relative permeability of magnetic materials on source performance was simulated using COMSOL to confirm the magnetic field strength of the source. Based on SIMION simulation, a high brightness and high spatial resolution negative ion optical system has been developed to achieve Critical (Gaussian) illumination mode. The ion source and primary column are installed on a new Time-of-Flight secondary ion mass spectrometer for analysis of geological samples. The diameter of the ion beam was measured by the knife-edge method and a scanning electron microscope (SEM). Results show that an O2- beam of ca. 5 μm diameter with a beam intensity of ∼5 nA and an O- beam of ca. 5 μm diameter with a beam intensity of ∼50 nA were obtained, respectively. This design will open new possibilities for in-situ elemental and isotopic analysis in geological studies.

  20. A new compact structure for a high intensity low-energy heavy-ion accelerator

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Jun; He, Yuan; A. Kolomiets, A.; Liu, Shu-Hui; Du, Xiao-Nan; Jia, Huan; Li, Chao; Wang, Wang-Sheng; Chen, Xi-Meng

    2013-12-01

    A new compact accelerating structure named Hybrid RFQ is proposed to accelerate a high-intensity low-energy heavy ion beam in HISCL (High Intensive heavy ion SuperConducting Linear accelerator), which is an injector of HIAF (Heavy Ion Advanced Research Facility). It is combined by an alternative series of acceleration gaps and RFQ sections. The proposed structure has a high accelerating ability compared with a conventional RFQ and is more compact than traditional DTLs. A Hybrid RFQ is designed to accelerate 238U34+ from 0.38 MeV/u to 1.33 MeV/u. The operation frequency is described to be 81.25 MHz at CW (continuous wave) mode. The design beam current is 1.0 mA. The results of beam dynamics and RF simulation of the Hybrid RFQ show that the structure has a good performance at the energy range for ion acceleration. The emittance growth is less than 5% in both directions and the RF power is less than 150 kW. In this paper, the results of beam dynamics and RF simulation of the Hybrid RFQ are presented.

  1. A CW radiofrequency ion source for production of negative hydrogen ion beams for cyclotrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalvas, T.; Tarvainen, O.; Komppula, J.

    2015-04-08

    A CW 13.56 MHz radiofrequency-driven ion source RADIS for production of H{sup −} and D{sup −} beams is under development for replacing the filament-driven ion source of the MCC30/15 cyclotron. The RF ion source has a 16-pole multicusp plasma chamber, an electromagnet-based magnetic filter and an external planar spiral RF antenna behind an AlN window. The extraction is a 5-electrode system with an adjustable puller electrode voltage for optimizing the beam formation, a water-cooled electron dump electrode and an accelerating einzel lens. At 2650 W of RF power, the source produces 1 mA of H{sup −} (2.6 mA/cm{sup 2}), which is the intensity neededmore » at injection for production of 200 µA H{sup +} with the filament-driven ion source. A simple pepperpot device has been developed for characterizing the beam emittance. Plans for improving the power efficiency with the use of a new permanent magnet front plate is discussed.« less

  2. Development of electron beam ion source for nanoprocess using highly charged ions

    NASA Astrophysics Data System (ADS)

    Sakurai, Makoto; Nakajima, Fumiharu; Fukumoto, Takunori; Nakamura, Nobuyuki; Ohtani, Shunsuke; Mashiko, Shinro; Sakaue, Hiroyuki

    2005-07-01

    Highly charged ion is useful to produce nanostructure on various materials, and is key tool to realize single ion implantation technique. On such demands for the application to nanotechnology, we have designed an electron bean ion source. The design stresses on the volume of drift tubes where highly charged ions are confined and the efficiency of ion extraction from the drift tube through collector electrode in order to obtain intense ion beam as much as possible. The ion source uses a discrete superconducting magnet cooled by a closed-cycle refrigerator in order to reduce the running costs and to simplify the operating procedures. The electrodes of electron gun, drift tubes, and collector are enclosed in ultrahigh vacuum tube that is inserted into the bore of the magnet system.

  3. Experimental measurement of the 4-d transverse phase space map of a heavy ion beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, H S

    1997-12-01

    The development and employment of a new diagnostic instrument for characterizing intense, heavy ion beams is reported on. This instrument, the ''Gated Beam Imager'' or ''GBI'' was designed for use on Lawrence Livermore National Laboratory Heavy Ion Fusion Project's ''Small Recirculator'', an integrated, scaled physics experiment and engineering development project for studying the transport and control of intense heavy ion beams as inertial fusion drivers in the production of electric power. The GBI allows rapid measurement and calculation of a heavy ion beam's characteristics to include all the first and second moments of the transverse phase space distribution, transverse emittance,more » envelope parameters and beam centroid. The GBI, with appropriate gating produces a time history of the beam resulting in a 4-D phase-space and time ''map'' of the beam. A unique capability of the GBI over existing diagnostic instruments is its ability to measure the ''cross'' moments between the two transverse orthogonal directions. Non-zero ''cross'' moments in the alternating gradient lattice of the Small Recirculator are indicative of focusing element rotational misalignments contributing to beam emittance growth. This emittance growth, while having the same effect on the ability to focus a beam as emittance growth caused by non-linear effects, is in principle removable by an appropriate number of focusing elements. The instrument uses the pepperpot method of introducing a plate with many pinholes into the beam and observing the images of the resulting beamlets as they interact with a detector after an appropriate drift distance. In order to produce adequate optical signal and repeatability, the detector was chosen to be a microchannel plate (MCP) with a phosphor readout screen. The heavy ions in the pepperpot beamlets are stopped in the MCP's thin front metal anode and the resulting secondary electron signal is amplified and proximity-focused onto the phosphor while

  4. A combined thermal dissociation and electron impact ionization source for radioactive ion beam generation (abstract){sup a}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alton, G.D.; Williams, C.

    1996-03-01

    The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, inmore » principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. {copyright} {ital 1996 American Institute of Physics.}« less

  5. Space-Charge Waves and Instabilities in Intense Beams

    NASA Astrophysics Data System (ADS)

    Wang, J. G.

    1997-11-01

    Advancced accelerator applications, such as drivers for heavy ion inertial fusion, high-intensity synchrotrons for spallation neutron sources, high energy boosters, free electron lasers, high-power microwave generators, etc., require ever-increasing beam intensity. An important beam dynamics issue in such beams is the collective behavior of charged particles due to their space charge effects. This includes the phenomena of space-charge waves and instabilities excited on beams by external perturbations. It is very crucial to fully understand these phenomena in order to develop advanced accelerators for various applications. At the University of Maryland we have been conducting experimental programs to study space-charge waves and longitudinal instabilities by employing low-energy, high-current, space-charge dominated electron beams. Localized perturbations on the beams are generated from a gridded electron gun. In a conducting transport channel focused by short solenoids, these perturbations evolve into space-charge waves propagating on the beams. The wave speed is measured and many beam parameters are determined with this technique. The reflection of space-charge waves at the shoulder of an initially rectangular beam bunch is also observed. In a resistive-wall channel focused by a uniform long solenoid, the space-charge waves suffer longitudinal instability. The properties of the instabilities are studied in detail in the long wavelength range. In this talk we review our experimental results on the waves and instabilities and compare with theory.

  6. Spes: An intense source of Neutron-Rich Radioactive Beams at Legnaro

    NASA Astrophysics Data System (ADS)

    Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Ballan, M.; Borgna, F.; D'Agostini, F.; Gramegna, F.; Prete, G.; Meneghetti, G.; Ferrari, M.; Zenoni, A.

    2018-02-01

    The Isotope Separation On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) is attracting significant interest in the worldwide nuclear physics community. Within this context the SPES (Selective Production of Exotic Species) RIB facility is now under construction at INFN LNL (Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Legnaro). This technique is established as one of the main techniques for high intensity and high quality beams production. The SPES facility will produce n-rich isotopes by means of a 40 MeV proton beam, emitted by a cyclotron, impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe the most important results obtained by the study of the on-line behavior of the SPES production target assembly. This target system will produce RIBs at a rate of about 1013 fissions per second, it will be able to dissipate a total power of up to 10 kW, and it is planned to work continuously for 2 week-runs of irradiation. ISOL beams of 24 different elements will be produced, therefore a target and ion source development is ongoing to ensure a great variety of produced isotopes and to improve the beam intensity and purity.

  7. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  8. Development of NIRS pencil beam scanning system for carbon ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Furukawa, T.; Hara, Y.; Mizushima, K.; Saotome, N.; Tansho, R.; Saraya, Y.; Inaniwa, T.; Mori, S.; Iwata, Y.; Shirai, T.; Noda, K.

    2017-09-01

    At Heavy Ion Medical Accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences (NIRS), more than 9000 patients have been successfully treated by carbon ion beams since 1994. The successful results of treatments have led us to construct a new treatment facility equipped with a three-dimensional pencil beam scanning irradiation system, which is one of sophisticated techniques for cancer therapy with high energetic ion beam. This new facility comprises two treatment rooms having fixed beam lines and one treatment room having rotating gantry line. The challenge of this project is to realize treatment of a moving target by scanning irradiation. Thus, to realize this, the development of the fast scanning system is one of the most important issues in this project. After intense commissioning and quality assurance tests, the treatment with scanned ion beam was started in May 2011. After treatment of static target starts, we have developed related technologies. As a result, we can start treatment of moving target and treatment without range shifter plates since 2015. In this paper, the developments of the scanning irradiation system are described.

  9. Laser acceleration of quasi-monoenergetic MeV ion beams.

    PubMed

    Hegelich, B M; Albright, B J; Cobble, J; Flippo, K; Letzring, S; Paffett, M; Ruhl, H; Schreiber, J; Schulze, R K; Fernández, J C

    2006-01-26

    Acceleration of particles by intense laser-plasma interactions represents a rapidly evolving field of interest, as highlighted by the recent demonstration of laser-driven relativistic beams of monoenergetic electrons. Ultrahigh-intensity lasers can produce accelerating fields of 10 TV m(-1) (1 TV = 10(12) V), surpassing those in conventional accelerators by six orders of magnitude. Laser-driven ions with energies of several MeV per nucleon have also been produced. Such ion beams exhibit unprecedented characteristics--short pulse lengths, high currents and low transverse emittance--but their exponential energy spectra have almost 100% energy spread. This large energy spread, which is a consequence of the experimental conditions used to date, remains the biggest impediment to the wider use of this technology. Here we report the production of quasi-monoenergetic laser-driven C5+ ions with a vastly reduced energy spread of 17%. The ions have a mean energy of 3 MeV per nucleon (full-width at half-maximum approximately 0.5 MeV per nucleon) and a longitudinal emittance of less than 2 x 10(-6) eV s for pulse durations shorter than 1 ps. Such laser-driven, high-current, quasi-monoenergetic ion sources may enable significant advances in the development of compact MeV ion accelerators, new diagnostics, medical physics, inertial confinement fusion and fast ignition.

  10. High intensity ion beams from an atmospheric pressure inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Al Moussalami, S.; Chen, W.; Collings, B. A.; Douglas, D. J.

    2002-02-01

    This work is directed towards substantially improving the sensitivity of an inductively coupled plasma mass spectrometer (ICP-MS). Ions produced in the ICP at atmospheric pressure have been extracted with comparatively high current densities. The conventional approach to ion extraction, based on a skimmed molecular beam, has been abandoned, and a high extraction field arrangement has been adopted. Although the new approach is not optimized, current densities more than 180 times greater than that of a conventional interface have been extracted and analyte sensitivities ˜10-100× greater than those reported previously for quadrupole ICP-MS have been measured.

  11. Characterization of a Gafchromic film for the two-dimensional profile measurement of low-energy heavy-ion beams

    NASA Astrophysics Data System (ADS)

    Yuri, Yosuke; Narumi, Kazumasa; Yuyama, Takahiro

    2016-08-01

    The feasibility of the transverse intensity distribution measurement of low-energy (keV/u range) heavy-ion beams using radiochromic films is experimentally explored. We employ a Gafchromic radiochromic film, HD-V2, whose active layer is not laminated by a surface-protection layer. The coloration response of films irradiated with several ion beams is characterized in terms of optical density (OD) by reading the films with a general-purpose scanner. To explore the energy dependence of the film response widely, the kinetic energy of the beams is varied from 1.5 keV/u to 27 MeV/u. We have found that the coloration of HD-V2 films is induced by irradiation with low-energy ion beams of the order of 10 keV/u. The range of the beams is considerably shorter than the thickness of the film's active layer. The dependence of OD response on ion species is also discussed. We demonstrate that the Gafchromic film used here is useful for measuring the intensity distribution of such low-energy ion beams.

  12. Focused electron and ion beam systems

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  13. Focused ion beam system

    DOEpatents

    Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  14. Focused ion beam system

    DOEpatents

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  15. Design study of a radio-frequency quadrupole for high-intensity beams

    NASA Astrophysics Data System (ADS)

    Bahng, Jungbae; Kim, Eun-San; Choi, Bong-Hyuk

    2017-07-01

    The Rare isotope Accelerator Of Newness (RAON) heavy-ion accelerator has been designed for the Rare Isotope Science Project (RISP) in Korea. The RAON will produce heavy-ion beams from 660-MeV-proton to 200-MeV/u-uranium with continuous wave (CW) power of 400 kW to support research in various scientific fields. Its system consists of an ECR ion source, LEBTs with 10 keV/u, CW RFQ accelerator with 81.25 MHz and 500 keV/u, a MEBT system, and a SC linac. In detail, the driver linac system consists of a Quarter Wave Resonator (QWR) section with 81.25 MHz and a Half Wave Resonator (HWR) section with 162.5 MHz, Linac-1, and a Spoke Cavity section with 325 MHz, Linac-2. These linacs have been designed to optimize the beam parameters to meet the required design goals. At the same time, a light-heavy ion accelerator with high-intensity beam, such as proton, deuteron, and helium beams, is required for experiments. In this paper, we present the design study of the high intensity RFQ for a deuteron beam with energies from 30 keV/u to 1.5 MeV/u and currents in the mA range. This system is composed of an Penning Ionization Gauge ion source, short LEBT with a RF deflector, and shared SC Linac. In order to increase acceleration efficiency in a short length with low cost, the 2nd harmonic of 162.5 MHz is applied as the operation frequency in the D+ RFQ design. The D+ RFQ is designed with 4.97 m, 1.52 bravery factor. Since it operates with 2nd harmonic frequency, the beam should be 50% of the duty factor while the cavity should be operated in CW mode, to protect the downstream linac system. We focus on avoiding emittance growth by the space-charge effect and optimizing the RFQ to achieve a high transmission and low emittance growth. Both the RFQ beam dynamics study and RFQ cavity design study for two and three dimensions will be discussed. Supported by Korea University Future Research Grant

  16. Commissioning of the ECR ion source of the high intensity proton injector of the Facility for Antiproton and Ion Research (FAIR)

    NASA Astrophysics Data System (ADS)

    Tuske, O.; Chauvin, N.; Delferriere, O.; Fils, J.; Gauthier, Y.

    2018-05-01

    The CEA at Saclay is in charge of developing and building the ion source and the low energy line of the proton linac of the FAIR (Facility for Antiproton and Ion Research) accelerator complex located at GSI (Darmstadt) in Germany. The FAIR facility will deliver stable and rare isotope beams covering a huge range of intensities and beam energies for experiments in the fields of atomic physics, plasma physics, nuclear physics, hadron physics, nuclear matter physics, material physics, and biophysics. A significant part of the experimental program at FAIR is dedicated to antiproton physics that requires an ultimate number 7 × 1010 cooled pbar/h. The high-intensity proton beam that is necessary for antiproton production will be delivered by a dedicated 75 mA/70 MeV proton linac. A 2.45 GHz microwave ion source will deliver a 100 mA H+ beam pulsed at 4 Hz with an energy of 95 keV. A 2 solenoids low energy beam transport line allows the injection of the proton beam into the radio frequency quadrupole (RFQ) within an acceptance of 0.3π mm mrad (norm. rms). An electrostatic chopper system located between the second solenoid and the RFQ is used to cut the beam macro-pulse from the source to inject 36 μs long beam pulses into the RFQ. At present time, a Ladder-RFQ is under construction at the University of Frankfurt. This article reports the first beam measurements obtained since mid of 2016. Proton beams have been extracted from the ECR ion source and analyzed just after the extraction column on a dedicated diagnostic chamber. Emittance measurements as well as extracted current and species proportion analysis have been performed in different configurations of ion source parameters, such as magnetic field profile, radio frequency power, gas injection, and puller electrode voltage.

  17. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, W., E-mail: luwang@impcas.ac.cn; Qian, C.; Sun, L. T.

    2016-02-15

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage tomore » the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O{sup 7+}, 620 eμA of Ar{sup 11+}, 430 eμA of Ar{sup 12+}, 430 eμA of Xe{sup 20+}, and so on. The comparison will be discussed in the paper.« less

  18. Back-streaming ion emission and beam focusing on high power linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Chen, Nan; Yu, Haijun; Jiang, Xiaoguo; Wang, Yuan; Dai, Wenhua; Gao, Feng; Wang, Minhong; Li, Jin; Shi, Jinshui

    2011-08-01

    Ions released from target surfaces by impact of a high intensity and current electron beam can be accelerated and trapped in the beam potential, and further destroy the beam focus. By solving the 2D Poisson equation, we found that the charge neutralization factor of the ions to the beam under space charge limited condition is 1/3, which is large enough to disrupt the spot size. Therefore, the ion emission at the target in a single-pulse beam/target system must be source limited. Experimental results on the time-resolved beam profile measurement have also proven that. A new focus scheme is proposed in this paper to focus the beam to a small spot size with the existence of back-streaming ions. We found that the focal spot will move upstream as the charge neutralization factor increases. By comparing the theoretical and experimental focal length of the Dragon-I accelerator (20 MeV, 2.5 kA, 60 ns flattop), we found that the average neutralization factor is about 5% in the beam/target system.

  19. Ion beam sputtering of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Etching and deposition of fluoropolymers are of considerable industrial interest for applications dealing with adhesion, chemical inertness, hydrophobicity, and dielectric properties. This paper describes ion beam sputter processing rates as well as pertinent characteristics of etched targets and films. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Also presented are sputter target and film characteristics which were documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs.

  20. Ion-beam-induced nanodots formation from Au/Si thin films on quartz surface

    NASA Astrophysics Data System (ADS)

    Datta, D. P.; Siva, V.; Singh, A.; Joshi, S. R.; Kanjilal, D.; Sahoo, P. K.

    2016-07-01

    We report the synthesis of Si nanodots on quartz surface using ion irradiation. When a bi-layer of ultrathin Au and Si on quartz surface is irradiated by 500 keV Xe-ion beam, the bi-layer spontaneously transforms into nanodots at a fluence of 5 × 1014 ions cm-2. The spatial density and diameter of the nanodots are reduced with increase in applied ion fluence. The nanostructures exhibit photoluminescence in the visible range at room temperature where the intensity and wavelength depends upon ion fluence. The observed evolution seems to be correlated to ion beam mixing induced silicide formation at Au-Si interface.

  1. High flux, beamed neutron sources employing deuteron-rich ion beams from D2O-ice layered targets

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Krygier, A. G.; Ahmed, H.; Morrison, J. T.; Clarke, R. J.; Fuchs, J.; Green, A.; Green, J. S.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.; Kar, S.

    2017-06-01

    A forwardly-peaked bright neutron source was produced using a laser-driven, deuteron-rich ion beam in a pitcher-catcher scenario. A proton-free ion source was produced via target normal sheath acceleration from Au foils having a thin layer of D2O ice at the rear side, irradiated by sub-petawatt laser pulses (˜200 J, ˜750 fs) at peak intensity ˜ 2× {10}20 {{W}} {{cm}}-2. The neutrons were preferentially produced in a beam of ˜70° FWHM cone along the ion beam forward direction, with maximum energy up to ˜40 MeV and a peak flux along the axis ˜ 2× {10}9 {{n}} {{sr}}-1 for neutron energy above 2.5 MeV. The experimental data is in good agreement with the simulations carried out for the d(d,n)3He reaction using the deuteron beam produced by the ice-layered target.

  2. Generation and focusing of pulsed intense ion beams: Final report, 1 July 1987--30 September 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammer, D.A.; Kusse, B.R.; Sudan, R.N.

    1989-08-03

    This paper discusses the following experiments: ion diode experiments at 0.5 /times/ 10/sup 12/ W on the LION accelerator; spectroscopic studies of ion diodes; ion beam-plasma channel transport research; and plasma opening switch experiments.

  3. ION BEAM FOCUSING MEANS FOR CALUTRON

    DOEpatents

    Backus, J.G.

    1959-06-01

    An ion beam focusing arrangement for calutrons is described. It provides a virtual focus of origin for the ion beam so that the ions may be withdrawn from an arc plasma of considerable width providing greater beam current and accuracy. (T.R.H.)

  4. Pulsed ion beam source

    DOEpatents

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  5. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1997-01-01

    An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.

  6. Cooling rates and intensity limitations for laser-cooled ions at relativistic energies

    NASA Astrophysics Data System (ADS)

    Eidam, Lewin; Boine-Frankenheim, Oliver; Winters, Danyal

    2018-04-01

    The ability of laser cooling for relativistic ion beams is investigated. For this purpose, the excitation of relativistic ions with a continuous wave and a pulsed laser is analyzed, utilizing the optical Bloch equations. The laser cooling force is derived in detail and its scaling with the relativistic factor γ is discussed. The cooling processes with a continuous wave and a pulsed laser system are investigated. Optimized cooling scenarios and times are obtained in order to determine the required properties of the laser and the ion beam for the planed experiments. The impact of beam intensity effects, like intrabeam scattering and space charge are analyzed. Predictions from simplified models are compared to particle-in-cell simulations and are found to be in good agreement. Finally two realistic example cases of Carbon ions in the ESR and relativistic Titanium ions in SIS100 are compared in order to discuss prospects for future laser cooling experiments.

  7. Positive and negative ion beam merging system for neutral beam production

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani

    2005-12-13

    The positive and negative ion beam merging system extracts positive and negative ions of the same species and of the same energy from two separate ion sources. The positive and negative ions from both sources pass through a bending magnetic field region between the pole faces of an electromagnet. Since the positive and negative ions come from mirror image positions on opposite sides of a beam axis, and the positive and negative ions are identical, the trajectories will be symmetrical and the positive and negative ion beams will merge into a single neutral beam as they leave the pole face of the electromagnet. The ion sources are preferably multicusp plasma ion sources. The ion sources may include a multi-aperture extraction system for increasing ion current from the sources.

  8. An electron beam ion trap and source for re-acceleration of rare-isotope ion beams at TRIUMF

    NASA Astrophysics Data System (ADS)

    Blessenohl, M. A.; Dobrodey, S.; Warnecke, C.; Rosner, M. K.; Graham, L.; Paul, S.; Baumann, T. M.; Hockenbery, Z.; Hubele, R.; Pfeifer, T.; Ames, F.; Dilling, J.; Crespo López-Urrutia, J. R.

    2018-05-01

    Electron beam driven ionization can produce highly charged ions (HCIs) in a few well-defined charge states. Ideal conditions for this are maximally focused electron beams and an extremely clean vacuum environment. A cryogenic electron beam ion trap fulfills these prerequisites and delivers very pure HCI beams. The Canadian rare isotope facility with electron beam ion source-electron beam ion sources developed at the Max-Planck-Institut für Kernphysik (MPIK) reaches already for a 5 keV electron beam and a current of 1 A with a density in excess of 5000 A/cm2 by means of a 6 T axial magnetic field. Within the trap, the beam quickly generates a dense HCI population, tightly confined by a space-charge potential of the order of 1 keV times the ionic charge state. Emitting HCI bunches of ≈107 ions at up to 100 Hz repetition rate, the device will charge-breed rare-isotope beams with the mass-over-charge ratio required for re-acceleration at the Advanced Rare IsotopE Laboratory (ARIEL) facility at TRIUMF. We present here its design and results from commissioning runs at MPIK, including X-ray diagnostics of the electron beam and charge-breeding process, as well as ion injection and HCI-extraction measurements.

  9. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  10. Electromagnetic and geometric characterization of accelerated ion beams by laser ablation

    NASA Astrophysics Data System (ADS)

    Nassisi, V.; Velardi, L.; Side, D. Delle

    2013-05-01

    Laser ion sources offer the possibility to get ion beam useful to improve particle accelerators. Pulsed lasers at intensities of the order of 108 W/cm2 and of ns pulse duration, interacting with solid matter in vacuum, produce plasma of high temperature and density. The charge state distribution of the plasma generates high electric fields which accelerate ions along the normal to the target surface. The energy of emitted ions has a Maxwell-Boltzmann distribution which depends on the ion charge state. To increase the ion energy, a post-acceleration system can be employed by means of high voltage power supplies of about 100 kV. The post acceleration system results to be a good method to obtain high ion currents by a not expensive system and the final ion beams find interesting applications in the field of the ion implantation, scientific applications and industrial use. In this work we compare the electromagnetic and geometric properties, like emittance, of the beams delivered by pure Cu, Y and Ag targets. The characterization of the plasma was performed by a Faraday cup for the electromagnetic characteristics, whereas a pepper pot system was used for the geometric ones. At 60 kV accelerating voltage the three examined ion bunches get a current peak of 5.5, 7.3 and 15 mA, with a normalized beam emittance of 0.22, 0.12 and 0.09 π mm mrad for the targets of Cu, Y, and Ag, respectively.

  11. Measurements of the energy distribution of a high brightness rubidium ion beam.

    PubMed

    Ten Haaf, G; Wouters, S H W; Nijhof, D F J; Mutsaers, P H A; Vredenbregt, E J D

    2018-07-01

    The energy distribution of a high brightness rubidium ion beam, which is intended to be used as the source for a focused ion beam instrument, is measured with a retarding field analyzer. The ions are created from a laser-cooled and compressed atomic beam by two-step photoionization in which the ionization laser power is enhanced in a build-up cavity. Particle tracing simulations are performed to ensure the analyzer is able to resolve the distribution. The lowest achieved full width 50% energy spread is (0.205 ± 0.006) eV, which is measured at a beam current of 9 pA. The energy spread originates from the variation in the ionization position of the ions which are created inside an extraction electric field. This extraction field is essential to limit disorder-induced heating which can decrease the ion beam brightness. The ionization position distribution is limited by a tightly focused excitation laser beam. Energy distributions are measured for various ionization and excitation laser intensities and compared with calculations based on numerical solutions of the optical Bloch equations including ionization. A good agreement is found between measurements and calculations. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. A vacuum spark ion source: High charge state metal ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Nikolaev, A. G.; Frolova, V. P.

    2016-02-15

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less thanmore » 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.« less

  13. Pseudo ribbon metal ion beam source.

    PubMed

    Stepanov, Igor B; Ryabchikov, Alexander I; Sivin, Denis O; Verigin, Dan A

    2014-02-01

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  14. Method of enhancing cyclotron beam intensity

    DOEpatents

    Hudson, Ed D.; Mallory, Merrit L.

    1977-01-01

    When an easily ionized support gas such as xenon is added to the cold cathode in sources of the Oak Ridge Isochronous Cyclotron, large beam enhancements are produced. For example, .sup.20 Ne.sup.7+ is increased from 0.05 enA to 27 enA, and .sup.16 O.sup.5+ intensities in excess of 35 e.mu.A have been extracted for periods up to 30 minutes. Approximately 0.15 cc/min of the easily ionized support gas is supplied to the ion source through a separate gas feed line and the primary gas flow is reduced by about 30%.

  15. Ion acceleration from thin foil and extended plasma targets by slow electromagnetic wave and related ion-ion beam instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, S. V.; A. M. Prokhorov Institute of General Physics RAS, Moscow, 119991; Esirkepov, T. Zh.

    When ions are accelerated by the radiation pressure of a laser pulse, their velocity cannot exceed the pulse group velocity which can be considerably smaller than the speed of light in vacuum. This is demonstrated in two cases corresponding to a thin foil target irradiated by high intensity laser light and to the hole boring produced in an extended plasma by the laser pulse. It is found that the beams of accelerated ions are unstable against Buneman-like and Weibel-like instabilities which results in the broadening of the ion energy spectrum.

  16. Ion-beam nanopatterning: experimental results with chemically-assisted beam

    NASA Astrophysics Data System (ADS)

    Pochon, Sebastien C. R.

    2018-03-01

    The need for forming gratings (for example used in VR headsets) in materials such as SiO2 has seen a recent surge in the use of Ion beam etching techniques. However, when using an argon-only beam, the selectivity is limited as it is a physical process. Typically, gases such as CHF3, SF6, O2 and Cl2 can be added to argon in order to increase selectivity; depending on where the gas is injected, the process is known as Reactive Ion Beam Etching (RIBE) or Chemically Assisted Ion Beam Etching (CAIBE). The substrate holder can rotate in order to provide an axisymmetric etch rate profile. It can also be tilted over a range of angles to the beam direction. This enables control over the sidewall profile as well as radial uniformity optimisation. Ion beam directionality in conjunction with variable incident beam angle via platen angle setting enables profile control and feature shaping during nanopatterning. These hardware features unique to the Ion Beam etching methods can be used to create angled etch features. The CAIBE technique is also well suited to laser diode facet etch (for optoelectronic devices); these typically use III-V materials like InP. Here, we report on materials such as SiO2 etched without rotation and at a fixed platen angle allowing the formation of gratings and InP etched at a fixed angle with rotation allowing the formation of nanopillars and laser facets.

  17. Extraction of space-charge-dominated ion beams from an ECR ion source: Theory and simulation

    NASA Astrophysics Data System (ADS)

    Alton, G. D.; Bilheux, H.

    2004-05-01

    Extraction of high quality space-charge-dominated ion beams from plasma ion sources constitutes an optimization problem centered about finding an optimal concave plasma emission boundary that minimizes half-angular divergence for a given charge state, independent of the presence or lack thereof of a magnetic field in the extraction region. The curvature of the emission boundary acts to converge/diverge the low velocity beam during extraction. Beams of highest quality are extracted whenever the half-angular divergence, ω, is minimized. Under minimum half-angular divergence conditions, the plasma emission boundary has an optimum curvature and the perveance, P, current density, j+ext, and extraction gap, d, have optimum values for a given charge state, q. Optimum values for each of the independent variables (P, j+ext and d) are found to be in close agreement with those derived from elementary analytical theory for extraction with a simple two-electrode extraction system, independent of the presence of a magnetic field. The magnetic field only increases the emittances of beams through additional aberrational effects caused by increased angular divergences through coupling of the longitudinal to the transverse velocity components of particles as they pass though the mirror region of the electron cyclotron resonance (ECR) ion source. This article reviews the underlying theory of elementary extraction optics and presents results derived from simulation studies of extraction of space-charge dominated heavy-ion beams of varying mass, charge state, and intensity from an ECR ion source with emphasis on magnetic field induced effects.

  18. Ion beams in multi-species plasmas

    NASA Astrophysics Data System (ADS)

    Aguirre, E. M.; Scime, E. E.; Good, T. N.

    2018-04-01

    Argon and xenon ion velocity distribution functions are measured in Ar-He, Ar-Xe, and Xe-He expanding helicon plasmas to determine if ion beam velocity is enhanced by the presence of lighter ions. Contrary to observations in mixed gas sheath experiments, we find that adding a lighter ion does not increase the ion beam speed. The predominant effect is a reduction of ion beam velocity consistent with increased drag arising from increased gas pressure under all conditions: constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for the acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in expanding helicon plasmas.

  19. Development of a pepper-pot emittance meter for diagnostics of low-energy multiply charged heavy ion beams extracted from an ECR ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagatomo, T., E-mail: nagatomo@riken.jp; Kase, M.; Kamigaito, O.

    2016-02-15

    Several fluorescent materials were tested for use in the imaging screen of a pepper-pot emittance meter that is suitable for investigating the beam dynamics of multiply charged heavy ions extracted from an ECR ion source. SiO{sub 2} (quartz), KBr, Eu-doped CaF{sub 2}, and Tl-doped CsI crystals were first irradiated with 6.52-keV protons to determine the effects of radiation damage on their fluorescence emission properties. For such a low-energy proton beam, only the quartz was found to be a suitable fluorescent material, since the other materials suffered a decay in fluorescence intensity with irradiation time. Subsequently, quartz was irradiated with heavymore » {sup 12}C{sup 4+}, {sup 16}O{sup 4+}, and {sup 40}Ar{sup 11+} ions, but it was found that the fluorescence intensity decreased too rapidly to measure the emittance of these heavy-ion beams. These results suggest that a different energy loss mechanism occurs for heavier ions and for protons.« less

  20. Method for thermal and structural evaluation of shallow intense-beam deposition in matter

    NASA Astrophysics Data System (ADS)

    Pilan Zanoni, André

    2018-05-01

    The projected range of high-intensity proton and heavy-ion beams at energies below a few tens of MeV/A in matter can be as short as a few micrometers. For the evaluation of temperature and stresses from a shallow beam energy deposition in matter conventional numerical 3D models require minuscule element sizes for acceptable element aspect ratio as well as extremely short time steps for numerical convergence. In order to simulate energy deposition using a manageable number of elements this article presents a method using layered elements. This method is applied to beam stoppers and accidental intense-beam impact onto UHV sector valves. In those cases the thermal results from the new method are congruent to those from conventional solid-element and adiabatic models.

  1. Redundancy Technology With A Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Komano, Haruki; Hashimoto, Kazuhiko; Takigawa, Tadahiro

    1989-08-01

    Fuse cutting with a focused ion beam to activate redundancy circuits is proposed. In order to verify its potential usefulness, experiments have been performed. Fuse-cutting time was evaluated using aluminum fuses with a thin passivation layer, which are difficult to cut by conventional laser-beam technology due to the material's high reflectivity. The fuse width and thickness were 2 and 0.8 μm, respectively. The fuse was cut in 5 seconds with a 30 keV focused ion beam of 0.3 A/cm2 current density. Since the fuses used in DRAMs will be smaller, their cutting time will become shorter by scanning an ion beam on narrower areas. Moreover, it can be shortened by increasing current density. Fuses for redundancy technology in 256 k CMOS SRAMs were cut with a focused ion beam. The operation of the memories was checked with a memory tester. It was confirmed that memories which had failure cells operated normally after focused-ion-beam fuse-cutting. Focused ion beam irradiation effects upon a device have been studied. When a 30 keV gallium focused ion beam was irradiated near the gate of MOSFETs, a threshold voltage shift was not observed at an ion dose of 0.3 C/cm2 which corresponded to the ion dose in cutting a fuse. However, when irradiated on the gate, a threshold voltage shift was observed at ion doses of more than 8 x 10-4 C/cm2. The voltage shift was caused by the charge of ions within the passivation layer. It is necessary at least not to irradiate a focused ion beam on a device in cutting fuses. It is concluded that the focused-ion-beam method will be advantageous for future redundancy technology application.

  2. A future, intense source of negative hydrogen ions

    NASA Technical Reports Server (NTRS)

    Siefken, Hugh; Stein, Charles

    1994-01-01

    By directly heating lithium hydride in a vacuum, up to 18 micro-A/sq cm of negative hydrogen has been obtained from the crystal lattice. The amount of ion current extracted and analyzed is closely related to the temperature of the sample and to the rate at which the temperature is changed. The ion current appears to be emission limited and saturates with extraction voltage. For a fixed extraction voltage, the ion current could be maximized by placing a grid between the sample surface and the extraction electrode. Electrons accompanying the negative ions were removed by a magnetic trap. A Wein velocity filter was designed and built to provide definitive mass analysis of the extracted ion species. This technique when applied to other alkali hydrides may produce even higher intensity beams possessing low values of emittance.

  3. Ion energy distribution near a plasma meniscus with beam extraction for multi element focused ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, Jose V.; Paul, Samit; Bhattacharjee, Sudeep

    2010-05-15

    An earlier study of the axial ion energy distribution in the extraction region (plasma meniscus) of a compact microwave plasma ion source showed that the axial ion energy spread near the meniscus is small ({approx}5 eV) and comparable to that of a liquid metal ion source, making it a promising candidate for focused ion beam (FIB) applications [J. V. Mathew and S. Bhattacharjee, J. Appl. Phys. 105, 96101 (2009)]. In the present work we have investigated the radial ion energy distribution (IED) under the influence of beam extraction. Initially a single Einzel lens system has been used for beam extractionmore » with potentials up to -6 kV for obtaining parallel beams. In situ measurements of IED with extraction voltages upto -5 kV indicates that beam extraction has a weak influence on the energy spread ({+-}0.5 eV) which is of significance from the point of view of FIB applications. It is found that by reducing the geometrical acceptance angle at the ion energy analyzer probe, close to unidirectional distribution can be obtained with a spread that is smaller by at least 1 eV.« less

  4. Study on the coloration response of a radiochromic film to MeV cluster ion beams

    NASA Astrophysics Data System (ADS)

    Yuri, Yosuke; Narumi, Kazumasa; Chiba, Atsuya; Hirano, Yoshimi; Saitoh, Yuichi

    2017-11-01

    A radiochromic film, Gafchromic HD-V2, is applied to a possible method of measuring a two-dimensional (2D) spatial profile of MeV cluster ion beams. The coloration responses of the HD-V2 film to MeV carbon and gold cluster ion beams are experimentally investigated since some cluster effect may appear. The degree of the film coloration is quantified as a change in optical density (OD) by reading the films with an image scanner for high-resolution measurement of the 2D beam profile. The OD response of HD-V2 is characterized as a function of the ion and atom fluence for comparison. The dependences of the OD response on the cluster size, kinetic energy, and ion species are discussed. It is found that the sensitivity of the OD change is reduced when the cluster size is large. The beam profile of MeV cluster ion beams delivered from the tandem accelerator in TIARA is characterized from the measurement result using HD-V2 films. The present results show that the use of the Gafchromic HD-V2 film is suitable for the detail beam profile measurement of MeV cluster ions, especially C60 ions, whose available intensity is rather low in comparison with that of monatomic ion beams.

  5. Optical monitoring of ion beam Y-Ba-Cu-O sputtering

    NASA Astrophysics Data System (ADS)

    Klein, J. D.; Yen, A.

    1990-11-01

    The emission spectra resulting from ion beam sputtering a Y-Ba-Cu-O target were observed as a function of beam voltage and beam current. The spectra were relatively clean with several peaks readily attributed to each of Y, Ba, and Ar. Monitoring of copper and oxygen was more difficult with a single CuO peak and one O peak evident. The intensities of the cation peaks were linear with respect to beam voltage above 400 V. Since target current was found not to be directly proportional to beam current, target power was defined as the product of beam voltage and target current. The response of cation peak height to changes in target power was linear and similar for variations of either beam voltage or target current.

  6. Ion beam technology applications study. [ion impact, implantation, and surface finishing

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Zafran, S.; Komatsu, G. K.

    1978-01-01

    Specific perceptions and possible ion beam technology applications were obtained as a result of a literature search and contact interviews with various institutions and individuals which took place over a 5-month period. The use of broad beam electron bombardment ion sources is assessed for materials deposition, removal, and alteration. Special techniques examined include: (1) cleaning, cutting, and texturing for surface treatment; (2) crosslinking of polymers, stress relief in deposited layers, and the creation of defect states in crystalline material by ion impact; and (3) ion implantation during epitaxial growth and the deposition of neutral materials sputtered by the ion beam. The aspects, advantages, and disadvantages of ion beam technology and the competitive role of alternative technologies are discussed.

  7. Experiments on Ion Beam Deflection Using Ion Optics with Slit Apertures

    NASA Astrophysics Data System (ADS)

    Okawa, Yasushi; Hayakawa, Yukio; Kitamura, Shoji

    2004-03-01

    An experimental investigation on ion beam deflection by grid translation was performed. The ion beam deflection in ion optics is a desired technology for ion thrusters because thrust vector control utilizing this technique can eliminate the need for conventional gimbaling devices and thus reduce propulsion system mass. A grid translation mechanism consisting of a piezoelectric motor, a ceramic lever, and carbon-based grids with slit apertures was fabricated and high repeatability in beam deflection characteristics was obtained using this mechanism. Results showed that the beam deflection angle was proportional to the grid translation distance and independent of slit width and grid voltage. A numerical simulation successfully reproduced the beam deflection characteristics in a qualitative and quantitative sense. A maximum beam deflection angle of approximately plus or minus 6 degrees, which was comparable to that of the ordinary gimbaling devices used in space, was obtained without a severe drain current. Therefore, the beam deflection by grid translation is promising as a thrust vectoring method in ion thrusters.

  8. Laser ion source for high brightness heavy ion beam

    DOE PAGES

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion sourcemore » for regular operation.« less

  9. Electrostatic lens to focus an ion beam to uniform density

    DOEpatents

    Johnson, Cleland H.

    1977-01-11

    A focusing lens for an ion beam having a gaussian or similar density profile is provided. The lens is constructed to provide an inner zero electrostatic field, and an outer electrostatic field such that ions entering this outer field are deflected by an amount that is a function of their distance from the edge of the inner field. The result is a beam that focuses to a uniform density in a manner analogous to that of an optical ring lens. In one embodiment, a conically-shaped network of fine wires is enclosed within a cylindrical anode. The wire net together with the anode produces a voltage field that re-directs the outer particles of the beam while the axial particles pass undeflected through a zero field inside the wire net. The result is a focused beam having a uniform intensity over a given target area and at a given distance from the lens.

  10. Generation of forerunner electron beam during interaction of ion beam pulse with plasma

    NASA Astrophysics Data System (ADS)

    Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.

    2018-01-01

    The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is set up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. The beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.

  11. Generation of forerunner electron beam during interaction of ion beam pulse with plasma

    DOE PAGES

    Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.

    2018-01-01

    The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is setmore » up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. Finally, the beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.« less

  12. Generation of forerunner electron beam during interaction of ion beam pulse with plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.

    The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is setmore » up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. Finally, the beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.« less

  13. Numerical simulation of laser ion acceleration at ultra high intensity

    NASA Astrophysics Data System (ADS)

    Tatomirescu, Dragos; Popescu, Alexandra; d'Humières, Emmanuel; Vizman, Daniel

    2017-01-01

    With the latest advances in attainable laser intensity, the need to obtain better quality ion and electron beams has been a major field of research. This paper studies the effects of different target density profiles on the spatial distribution of the accelerated particles, the maximum energies achieved, and the characteristics of the electromagnetic fields using the same laser pulse parameters. The study starts by describing a baseline for a flat target which presents a proton-rich microdot on its backside. The effects of introducing a target curvature and, further on, a cone laser focusing structure are compared with the flat target baseline results. The maximum energy obtained increases when using complex structures, and also a smaller divergence of the ion beam is observed.

  14. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  15. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  16. Investigations of the emittance and brightness of ion beams from an electron beam ion source of the Dresden EBIS type.

    PubMed

    Silze, Alexandra; Ritter, Erik; Zschornack, Günter; Schwan, Andreas; Ullmann, Falk

    2010-02-01

    We have characterized ion beams extracted from the Dresden EBIS-A, a compact room-temperature electron beam ion source (EBIS) with a permanent magnet system for electron beam compression, using a pepper-pot emittance meter. The EBIS-A is the precursor to the Dresden EBIS-SC in which the permanent magnets have been replaced by superconducting solenoids for the use of the source in high-ion-current applications such as heavy-ion cancer therapy. Beam emittance and brightness values were calculated from data sets acquired for a variety of source parameters, in leaky as well as pulsed ion extraction mode. With box shaped pulses of C(4+) ions at an energy of 39 keV root mean square emittances of 1-4 mm mrad and a brightness of 10 nA mm(-2) mrad(-2) were achieved. The results meet the expectations for high quality ion beams generated by an electron beam ion source.

  17. Kinetic energy offsets for multicharged ions from an electron beam ion source.

    PubMed

    Kulkarni, D D; Ahl, C D; Shore, A M; Miller, A J; Harriss, J E; Sosolik, C E; Marler, J P

    2017-08-01

    Using a retarding field analyzer, we have measured offsets between the nominal and measured kinetic energy of multicharged ions extracted from an electron beam ion source (EBIS). By varying source parameters, a shift in ion kinetic energy was attributed to the trapping potential produced by the space charge of the electron beam within the EBIS. The space charge of the electron beam depends on its charge density, which in turn depends on the amount of negative charge (electron beam current) and its velocity (electron beam energy). The electron beam current and electron beam energy were both varied to obtain electron beams of varying space charge and these were related to the observed kinetic energy offsets for Ar 4+ and Ar 8+ ion beams. Knowledge of these offsets is important for studies that seek to utilize slow, i.e., low kinetic energy, multicharged ions to exploit their high potential energies for processes such as surface modification. In addition, we show that these offsets can be utilized to estimate the effective radius of the electron beam inside the trap.

  18. High-resolution fluence verification for treatment plan specific QA in ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Martišíková, Mária; Brons, Stephan; Hesse, Bernd M.; Jäkel, Oliver

    2013-03-01

    Ion beam radiotherapy exploits the finite range of ion beams and the increased dose deposition of ions toward the end of their range in material. This results in high dose conformation to the target region, which can be further increased using scanning ion beams. The standard method for patient-plan verification in ion beam therapy is ionization chamber dosimetry. The spatial resolution of this method is given by the distance between the chambers (typically 1 cm). However, steep dose gradients created by scanning ion beams call for more information and improved spatial resolution. Here we propose a clinically applicable method, supplementary to standard patient-plan verification. It is based on ion fluence measurements in the entrance region with high spatial resolution in the plane perpendicular to the beam, separately for each energy slice. In this paper the usability of the RID256 L amorphous silicon flat-panel detector for the measurements proposed is demonstrated for carbon ion beams. The detector provides sufficient spatial resolution for this kind of measurement (pixel pitch 0.8 mm). The experiments were performed at the Heidelberg Ion-Beam Therapy Center in Germany. This facility is equipped with a synchrotron capable of accelerating ions from protons up to oxygen to energies between 48 and 430 MeV u-1. Beam application is based on beam scanning technology. The measured signal corresponding to single energy slices was translated to ion fluence on a pixel-by-pixel basis, using calibration, which is dependent on energy and ion type. To quantify the agreement of the fluence distributions measured with those planned, a gamma-index criterion was used. In the patient field investigated excellent agreement was found between the two distributions. At least 95% of the slices contained more than 96% of points agreeing with our criteria. Due to the high spatial resolution, this method is especially valuable for measurements of strongly inhomogeneous fluence

  19. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS.

    PubMed

    Thomae, R; Conradie, J; Fourie, D; Mira, J; Nemulodi, F; Kuechler, D; Toivanen, V

    2016-02-01

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  20. Electron Production and Collective Field Generation in Intense Particle Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molvik, A W; Vay, J; Cohen, R

    Electron cloud effects (ECEs) are increasingly recognized as important, but incompletely understood, dynamical phenomena, which can severely limit the performance of present electron colliders, the next generation of high-intensity rings, such as PEP-II upgrade, LHC, and the SNS, the SIS 100/200, or future high-intensity heavy ion accelerators such as envisioned in Heavy Ion Inertial Fusion (HIF). Deleterious effects include ion-electron instabilities, emittance growth, particle loss, increase in vacuum pressure, added heat load at the vacuum chamber walls, and interference with certain beam diagnostics. Extrapolation of present experience to significantly higher beam intensities is uncertain given the present level of understanding.more » With coordinated LDRD projects at LLNL and LBNL, we undertook a comprehensive R&D program including experiments, theory and simulations to better understand the phenomena, establish the essential parameters, and develop mitigating mechanisms. This LDRD project laid the essential groundwork for such a program. We developed insights into the essential processes, modeled the relevant physics, and implemented these models in computational production tools that can be used for self-consistent study of the effect on ion beams. We validated the models and tools through comparison with experimental data, including data from new diagnostics that we developed as part of this work and validated on the High-Current Experiment (HCX) at LBNL. We applied these models to High-Energy Physics (HEP) and other advanced accelerators. This project was highly successful, as evidenced by the two paragraphs above, and six paragraphs following that are taken from our 2003 proposal with minor editing that mostly consisted of changing the tense. Further benchmarks of outstanding performance are: we had 13 publications with 8 of them in refereed journals, our work was recognized by the accelerator and plasma physics communities by 8 invited papers and we

  1. Ion-beam technology and applications

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Robson, R. R.; Sovey, J. S.

    1977-01-01

    Ion propulsion research and development yields a mature technology that is transferable to a wide range of nonpropulsive applications, including terrestrial and space manufacturing. A xenon ion source was used for an investigation into potential ion-beam applications. The results of cathode tests and discharge-chamber experiments are presented. A series of experiments encompassing a wide range of potential applications is discussed. Two types of processes, sputter deposition, and erosion were studied. Some of the potential applications are thin-film Teflon capacitor fabrication, lubrication applications, ion-beam cleaning and polishing, and surface texturing.

  2. Focused helium-ion-beam-induced deposition

    NASA Astrophysics Data System (ADS)

    Alkemade, P. F. A.; Miro, H.

    2014-12-01

    The recent introduction of the helium ion microscope (HIM) offers new possibilities for materials modification and fabrication with spatial resolution below 10 nm. In particular, the specific interaction of He+ ions in the tens of keV energy range with materials—i.e., minimal deflection and mainly energy loss via electronic excitations—renders the HIM a special tool for ion-beam-induced deposition. In this work, an overview is given of all studies of helium-ion-beam-induced deposition (He-IBID) that appeared in the literature before summer 2014. Continuum models that describe the deposition processes are presented in detail, with emphasis on precursor depletion and replenishment. In addition, a Monte Carlo model is discussed. Basic experimental He-IBID studies are critically examined. They show deposition rates of up to 0.1 nm3/ion. Analysis by means of a continuum model yields the precursor diffusion constant and the cross sections for beam-induced precursor decomposition and beam-induced desorption. Moreover, it is shown that deposition takes place only in a small zone around the beam impact point. Furthermore, the characterization of deposited materials is discussed in terms of microstructure and resistivity. It is shown that He-IBID material resembles more electron-beam-induced-deposition (EBID) material than Ga-ion-beam-induced-deposition (Ga-IBID) material. Nevertheless, the spatial resolution for He-IBID is in general better than for EBID and Ga-IBID; in particular, proximity effects are minimal.

  3. Plasma formed ion beam projection lithography system

    DOEpatents

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette; Ngo, Vinh; Zahir, Nastaran

    2002-01-01

    A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

  4. Radiation-pressure acceleration of ion beams from nanofoil targets: the leaky light-sail regime.

    PubMed

    Qiao, B; Zepf, M; Borghesi, M; Dromey, B; Geissler, M; Karmakar, A; Gibbon, P

    2010-10-08

    A new ion radiation-pressure acceleration regime, the "leaky light sail," is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10¹⁹  W/cm². 100 MeV proton beams are obtained by increasing the intensities to 2 × 10²⁰  W/cm².

  5. Numerical simulation of ion charge breeding in electron beam ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, L., E-mail: zhao@far-tech.com; Kim, Jin-Soo

    2014-02-15

    The Electron Beam Ion Source particle-in-cell code (EBIS-PIC) tracks ions in an EBIS electron beam while updating electric potential self-consistently and atomic processes by the Monte Carlo method. Recent improvements to the code are reported in this paper. The ionization module has been improved by using experimental ionization energies and shell effects. The acceptance of injected ions and the emittance of extracted ion beam are calculated by extending EBIS-PIC to the beam line transport region. An EBIS-PIC simulation is performed for a Cs charge-breeding experiment at BNL. The charge state distribution agrees well with experiments, and additional simulation results ofmore » radial profiles and velocity space distributions of the trapped ions are presented.« less

  6. Isochoric heating of solid gold targets with the PW-laser-driven ion beams

    NASA Astrophysics Data System (ADS)

    Steinke, Sven; Ji, Qing; Bulanov, Stepan; Barnard, John; Schenkel, Thomas; Esarey, Eric; Leemans, Wim

    2016-10-01

    We present an end-to-end simulation for isochoric heating of solid gold targets using ion beams produced with the BELLA PW laser at LBNL: (i) 2D Particle-In-Cell (PIC) simulations are applied to study the ion source characteristics of the PW laser-target interaction at the long focal length (f/#65) beamline at laser intensities of 5x1019W/cm2 at spot size of ω0 = 52 μm on a CH target. (ii) In order to transport the ion beams to an EMP-free environment, an active plasma lens will be used. This was modeled by calculating the Twiss parameters of the ion beam from the appropriate transport matrixes using the source parameters obtained from the PIC simulation. Space charge effects were considered as well. (iii) Hydrodynamic simulations indicate that these ion beams can isochorically heat a 1 mm3 gold target to the Warm Dense Matter state. This work was supported by Fusion Energy Science, and LDRD funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  7. High efficiency ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1981-01-01

    An ion accelerator system that successfully combines geometrical and electrostatic focusing principles is presented. This accelerator system uses thin, concave, multiple-hole, closely spaced graphite screen and focusing grids which are coupled to single slot accelerator and decelerator grids to provide high ion extraction efficiency and good focusing. Tests with the system showed a substantial improvement in ion beam current density and collimation as compared with a Pierce electrode configuration. Durability of the thin graphite screen and focusing grids has been proven, and tests are being performed to determine the minimum screen and focusing grid spacing and thickness required to extract the maximum reliable beam current density. Compared with present neutral beam injector accelerator systems, this one has more efficient ion extraction, easier grid alignment, easier fabrication, a less cumbersome design, and the capacity to be constructed in a modular fashion. Conceptual neutral beam injector designs using this modular approach have electrostatic beam deflection plates downstream of each module.

  8. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomae, R., E-mail: rthomae@tlabs.ac.za; Conradie, J.; Fourie, D.

    2016-02-15

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the resultsmore » of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.« less

  9. Focusing Intense Charged Particle Beams with Achromatic Effects for Heavy Ion Fusion

    NASA Astrophysics Data System (ADS)

    Mitrani, James; Kaganovich, Igor

    2012-10-01

    Final focusing systems designed to minimize the effects of chromatic aberrations in the Neutralized Drift Compression Experiment (NDCX-II) are described. NDCX-II is a linear induction accelerator, designed to accelerate short bunches at high current. Previous experiments showed that neutralized drift compression significantly compresses the beam longitudinally (˜60x) in the z-direction, resulting in a narrow distribution in z-space, but a wide distribution in pz-space. Using simple lenses (e.g., solenoids, quadrupoles) to focus beam bunches with wide distributions in pz-space results in chromatic aberrations, leading to lower beam intensities (J/cm^2). Therefore, the final focusing system must be designed to compensate for chromatic aberrations. The paraxial ray equations and beam envelope equations are numerically solved for parameters appropriate to NDCX-II. Based on these results, conceptual designs for final focusing systems using a combination of solenoids and/or quadrupoles are optimized to compensate for chromatic aberrations. Lens aberrations and emittance growth will be investigated, and analytical results will be compared with results from numerical particle-in-cell (PIC) simulation codes.

  10. Graphene engineering by neon ion beams

    DOE PAGES

    Iberi, Vighter; Ievlev, Anton V.; Vlassiouk, Ivan; ...

    2016-02-18

    Achieving the ultimate limits of materials and device performance necessitates the engineering of matter with atomic, molecular, and mesoscale fidelity. While common for organic and macromolecular chemistry, these capabilities are virtually absent for 2D materials. In contrast to the undesired effect of ion implantation from focused ion beam (FIB) lithography with gallium ions, and proximity effects in standard e-beam lithography techniques, the shorter mean free path and interaction volumes of helium and neon ions offer a new route for clean, resist free nanofabrication. Furthermore, with the advent of scanning helium ion microscopy, maskless He + and Ne + beam lithographymore » of graphene based nanoelectronics is coming to the forefront. Here, we will discuss the use of energetic Ne ions in engineering graphene devices and explore the mechanical, electromechanical and chemical properties of the ion-milled devices using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we demonstrate that the mechanical, electrical and optical properties of the exact same devices can be quantitatively extracted. Additionally, the effect of defects inherent in ion beam direct-write lithography, on the overall performance of the fabricated devices is elucidated.« less

  11. Experimental Validation of an Ion Beam Optics Code with a Visualized Ion Thruster

    NASA Astrophysics Data System (ADS)

    Nakayama, Yoshinori; Nakano, Masakatsu

    For validation of an ion beam optics code, the behavior of ion beam optics was experimentally observed and evaluated with a two-dimensional visualized ion thruster (VIT). Since the observed beam focus positions, sheath positions and measured ion beam currents were in good agreement with the numerical results, it was confirmed that the numerical model of this code was appropriated. In addition, it was also confirmed that the beam focus position was moved on center axis of grid hole according to the applied grid potentials, which differs from conventional understanding/assumption. The VIT operations may be useful not only for the validation of ion beam optics codes but also for the fundamental and intuitive understanding of the Child Law Sheath theory.

  12. Development of a pepper pot emittance probe and its application for ECR ion beam studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondrashev, S.; Barcikowski, A.; Mustapha, B.

    2009-07-21

    A pepper pot-scintillator screen system has been developed and used to measure the emittance of DC ion beams extracted from a high-intensity permanent magnet ECR ion source. The system includes a fast beam shutter with a minimum dwell time of 18 ms to reduce the degradation of the CsI(Tl) scintillator by DC ion beam irradiation and a CCD camera with a variable shutter speed in the range of 1 {micro}s-65 s. On-line emittance measurements are performed by an application code developed on a LabVIEW platform. The sensitivity of the device is sufficient to measure the emittance of DC ion beamsmore » with current densities down to about 100 nA/cm{sup 2}. The emittance of all ion species extracted from the ECR ion source and post-accelerated to an energy of 75-90 keV/charge have been measured downstream of the LEBT. As the mass-to-charge ratio of ion species increases, the normalized RMS emittances in both transverse phase planes decrease from 0.5-1.0 {pi} mm mrad for light ions to 0.05-0.09 {pi} mm mrad for highly charged {sup 209}Bi ions. The dependence of the emittance on ion's mass-to-charge ratio follows very well the dependence expected from beam rotation induced by decreasing ECR axial magnetic field. The measured emittance values cannot be explained by only ion beam rotation for all ion species and the contribution to emittance of ion temperature in plasma, non-linear electric fields and non-linear space charge is comparable or even higher than the contribution of ion beam rotation.« less

  13. The Influence of High-Power Ion Beams and High-Intensity Short-Pulse Implantation of Ions on the Properties of Ceramic Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Kabyshev, A. V.; Konusov, F. V.; Pavlov, S. K.; Remnev, G. E.

    2016-02-01

    The paper is focused on the study of the structural, electrical and optical characteristics of the ceramic silicon carbide before and after irradiation in the regimes of the high-power ion beams (HPIB) and high-intensity short-pulse implantation (HISPI) of carbon ions. The dominant mechanism of transport of charge carriers, their type and the energy spectrum of localized states (LS) of defects determining the properties of SiC were established. Electrical and optical characteristics of ceramic before and after irradiation are determined by the biographical and radiation defects whose band gap (BG) energy levels have a continuous energetic distribution. A dominant p-type activation component of conduction with participation of shallow acceptor levels 0.05-0.16 eV is complemented by hopping mechanism of conduction involving the defects LS with a density of 1.2T017-2.4T018 eV-Am-3 distributed near the Fermi level.The effect of radiation defects with deep levels in the BG on properties change dominates after HISPI. A new material with the changed electronic structure and properties is formed in the near surface layer of SiC after the impact of the HPIB.

  14. Calibrating ion density profile measurements in ion thruster beam plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Zun; Tang, Haibin; Ren, Junxue; Zhang, Zhe; Wang, Joseph

    2016-11-01

    The ion thruster beam plasma is characterized by high directed ion velocity (104 m/s) and low plasma density (1015 m-3). Interpretation of measurements of such a plasma based on classical Langmuir probe theory can yield a large experimental error. This paper presents an indirect method to calibrate ion density determination in an ion thruster beam plasma using a Faraday probe, a retarding potential analyzer, and a Langmuir probe. This new method is applied to determine the plasma emitted from a 20-cm-diameter Kaufman ion thruster. The results show that the ion density calibrated by the new method can be as much as 40% less than that without any ion current density and ion velocity calibration.

  15. Ions beams and ferroelectric plasma sources

    NASA Astrophysics Data System (ADS)

    Stepanov, Anton

    Near-perfect space-charge neutralization is required for the transverse compression of high perveance ion beams for ion-beam-driven warm dense matter experiments, such as the Neutralized Drift Compression eXperiment (NDCX). Neutralization can be accomplished by introducing a plasma in the beam path, which provides free electrons that compensate the positive space charge of the ion beam. In this thesis, charge neutralization of a 40 keV, perveance-dominated Ar+ beam by a Ferroelectric Plasma Source (FEPS) is investigated. First, the parameters of the ion beam, such as divergence due to the extraction optics, charge neutralization fraction, and emittance were measured. The ion beam was propagated through the FEPS plasma, and the effects of charge neutralization were inferred from time-resolved measurements of the transverse beam profile. In addition, the dependence of FEPS plasma parameters on the configuration of the driving pulser circuit was studied to optimize pulser design. An ion accelerator was constructed that produced a 30-50 keV Ar + beam with pulse duration <300 mus and dimensionless perveance Q up to 8 x 10-4. Transverse profile measurements 33 cm downstream of the ion source showed that the dependence of beam radius on Q was consistent with space charge expansion. It was concluded that the beam was perveance-dominated with a charge neutralization fraction of approximately zero in the absence of neutralizing plasma. Since beam expansion occurred primarily due to space charge, the decrease in effective perveance due to neutralization by FEPS plasma can be inferred from the reduction in beam radius. Results on propagation of the ion beam through FEPS plasma demonstrate that after the FEPS is triggered, the beam radius decreases to its neutralized value in about 5 mus. The duration of neutralization was about 10 mus at a charging voltage VFEPS = 5.5 kV and 35 mus at VFEPS = 6.5 kV. With VFEPS = 6.5 kV, the transverse current density profile 33 cm downstream

  16. Highly charged ion beams and their applications

    NASA Astrophysics Data System (ADS)

    Marler, Joan

    2018-01-01

    While much previous work with highly charged ions has been performed with the ions in the plasma state in which they were formed, beams of highly charged ions hold promise for exciting new experiments. Specifically low energy beams with a high degree of charge state purity are a prerequisite for momentum resolved cross section measurements and for efficient loading of highly charged ions into UHV traps for spectroscopy. The Clemson University facility is optimized for the delivery of such beams of highly charged ions with low kinetic energies. Near term experiments include energy resolved charge exchange with neutral targets.

  17. The tensile effect on crack formation in single crystal silicon irradiated by intense pulsed ion beam

    NASA Astrophysics Data System (ADS)

    Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun

    2017-10-01

    Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.

  18. Production of N[sup +] ions from a multicusp ion beam apparatus

    DOEpatents

    Kango Leung; Kunkel, W.B.; Walther, S.R.

    1993-03-30

    A method of generating a high purity (at least 98%) N[sup +] ion beam using a multicusp ion source having a chamber formed by a cylindrical chamber wall surrounded by a plurality of magnets, a filament centrally disposed in said chamber, a plasma electrode having an extraction orifice at one end of the chamber, a magnetic filter having two parallel magnets spaced from said plasma electrode and dividing the chamber into arc discharge and extraction regions. The method includes ionizing nitrogen gas in the arc discharge region of the chamber, maintaining the chamber wall at a positive voltage relative to the filament and at a magnitude for an optimum percentage of N[sup +] ions in the extracted ion beams, disposing a hot liner within the chamber and near the chamber wall to limit recombination of N[sup +] ions into the N[sub 2][sup +] ions, spacing the magnets of the magnetic filter from each other for optimum percentage of N[sup 3] ions in the extracted ion beams, and maintaining a relatively low pressure downstream of the extraction orifice and of a magnitude (preferably within the range of 3-8[times]10[sup [minus]4] torr) for an optimum percentage of N[sup +] ions in the extracted ion beam.

  19. Two-dimensional silicon-based detectors for ion beam therapy

    NASA Astrophysics Data System (ADS)

    Martišíková, M.; Granja, C.; Jakůbek, J.; Hartmann, B.; Telsemeyer, J.; Huber, L.; Brons, S.; Pospíšil, S.; Jäkel, O.

    2012-02-01

    Radiation therapy with ion beams is a highly precise kind of cancer treatment. As ion beams traverse material, the highest ionization density occurs at the end of their path. Due to this Bragg-peak, ion beams enable higher dose conformation to the tumor and increased sparing of the surrounding tissue, in comparison to standard radiation therapy using high energy photons. Ions heavier than protons offer in addition increased biological effectiveness and lower scattering. The Heidelberg Ion Beam Therapy Center (HIT) is a state-of-the-art ion beam therapy facility and the first hospital-based facility in Europe. It provides proton and carbon ion treatments. A synchrotron is used for ion acceleration. For dose delivery to the patient, narrow pencil-like beams are scanned over the target volume.

  20. High-energy accelerator for beams of heavy ions

    DOEpatents

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  1. Beam diagnostics at high-intensity storage rings

    NASA Astrophysics Data System (ADS)

    Plum, Mike

    1994-10-01

    Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics, issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. I will discuss in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of our discussion is inspired by the problems we have encountered and the useful things we have learned while commissioning and developing the PSR. Another inspiration is our work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).

  2. Ion Temperature Measurements in an electron beam ion trap (EBIT)

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Decaux, V.; Widmann, K.

    1997-11-01

    An electron beam ion trap consists of a Penning-type cylindrical trap traversed by a high-energy (<= 200 keV), high-density (Ne <= 10^13 cm-3) electron beam. Ions are trapped by the space charge potential of the electron beam, a static potential on the end electrodes, and a 3-T axial magnetic field [1]. The ions are heated by the electron beam and leave the trap once their kinetic energy suffices to overcome the potential barriers. Using high-resolution x-ray spectroscopy, we have made systematic measurements of the temperature of Ti^20+ and Cs^45+ ions in the trap [2]. The dependence of the ion temperature on operating parameters, such as trapping potential, beam current, and neutral gas pressure, will be presented. Temperatures as low as 15.4 ± 4.4 eV and as high as 2 keV were observed. *Work performed under the auspices of the U.S.D.o.E. by Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48. [1] M. Levine et al., Phys. Scripta T22, 157 (1989). [2]P. Beiersdorfer et al., PRL 77, 5356 (1996); P. Beiersdorfer, in AIP Conf. Proc. No. 389, p. 121 (1997).

  3. Focused ion beam source method and apparatus

    DOEpatents

    Pellin, Michael J.; Lykke, Keith R.; Lill, Thorsten B.

    2000-01-01

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  4. Fan-beam intensity modulated proton therapy.

    PubMed

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-01

    This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0-255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage. Overall, the sharp distal

  5. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    PubMed

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  6. Study of beam optics and beam halo by integrated modeling of negative ion beams from plasma meniscus formation to beam acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, K.; Okuda, S.; Hatayama, A.

    2013-01-14

    To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.

  7. Quasi-monoenergetic ion beam acceleration by laser-driven shock and solitary waves in near-critical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, W. L.; Qiao, B., E-mail: bqiao@pku.edu.cn; Huang, T. W.

    2016-07-15

    Ion acceleration in near-critical plasmas driven by intense laser pulses is investigated theoretically and numerically. A theoretical model has been given for clarification of the ion acceleration dynamics in relation to different laser and target parameters. Two distinct regimes have been identified, where ions are accelerated by, respectively, the laser-induced shock wave in the weakly driven regime (comparatively low laser intensity) and the nonlinear solitary wave in the strongly driven regime (comparatively high laser intensity). Two-dimensional particle-in-cell simulations show that quasi-monoenergetic proton beams with a peak energy of 94.6 MeV and an energy spread 15.8% are obtained by intense laser pulsesmore » at intensity I{sub 0} = 3 × 10{sup 20 }W/cm{sup 2} and pulse duration τ = 0.5 ps in the strongly driven regime, which is more advantageous than that got in the weakly driven regime. In addition, 233 MeV proton beams with narrow spread can be produced by extending τ to 1.0 ps in the strongly driven regime.« less

  8. Ion beam modification of biological materials in nanoscale

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Anuntalabhochai, S.

    2012-07-01

    Ion interaction with biological objects in nanoscale is a novel research area stemming from applications of low-energy ion beams in biotechnology and biomedicine. Although the ion beam applications in biotechnology and biomedicine have achieved great successes, many mechanisms remain unclear and many new applications are to be explored. We have carried out some research on exploring the mechanisms and new applications besides attaining ion beam induction of mutation breeding and gene transformation. In the studies on the mechanisms, we focused our investigations on the direct interaction in nanoscale between ions and biological living materials. Our research topics have included the low-energy ion range in DNA, low-energy ion or neutral beam bombardment effect on DNA topological form change and mutation, low-energy ion or neutral beam bombardment effect on the cell envelope and gene transformation, and molecular dynamics simulation of ultra-low-energy ion irradiation of DNA. In the exploration of new applications, we have started experiments on ion irradiation or bombardment, in the nanoscaled depth or area, of human cells for biomedical research. This paper introduces our experiments and reports interesting results.

  9. Production of N.sup.+ ions from a multicusp ion beam apparatus

    DOEpatents

    Leung, Ka-Ngo; Kunkel, Wulf B.; Walther, Steven R.

    1993-01-01

    A method of generating a high purity (at least 98%) N.sup.+ ion beam using a multicusp ion source (10) having a chamber (11) formed by a cylindrical chamber wall (12) surrounded by a plurality of magnets (13), a filament (57) centrally disposed in said chamber, a plasma electrode (36) having an extraction orifice (41) at one end of the chamber, a magnetic filter having two parallel magnets (21, 22) spaced from said plasma electrode (36) and dividing the chamber (11) into arc discharge and extraction regions. The method includes ionizing nitrogen gas in the arc discharge region of the chamber (11), maintaining the chamber wall (12) at a positive voltage relative to the filament (57) and at a magnitude for an optimum percentage of N.sup.+ ions in the extracted ion beams, disposing a hot liner (45) within the chamber and near the chamber wall (12) to limit recombination of N.sup.+ ions into the N.sub.2.sup.+ ions, spacing the magnets (21, 22) of the magnetic filter from each other for optimum percentage of N.sup.3 ions in the extracted ion beams, and maintaining a relatively low pressure downstream of the extraction orifice and of a magnitude (preferably within the range of 3-8.times.10.sup.-4 torr) for an optimum percentage of N.sup.+ ions in the extracted ion beam.

  10. High sensitivity charge amplifier for ion beam uniformity monitor

    DOEpatents

    Johnson, Gary W.

    2001-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  11. An ion source module for the Beijing Radioactive Ion-beam Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, B., E-mail: cui@ciae.ac.cn; Huang, Q.; Tang, B.

    2014-02-15

    An ion source module is developed for Beijing Radioactive Ion-beam Facility. The ion source module is designed to meet the requirements of remote handling. The connection and disconnection of the electricity, cooling and vacuum between the module and peripheral units can be executed without on-site manual work. The primary test of the target ion source has been carried out and a Li{sup +} beam has been extracted. Details of the ion source module and its primary test results are described.

  12. Studies of thermophysical properties of high-energy-density states in matter using intense heavy ion beams at the future FAIR accelerator facilities: The HEDgeHOB collaboration

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Shutov, A.; Lomonosov, I. V.; Gryaznov, V.; Deutsch, C.; Fortov, V. E.; Hoffmann, D. H. H.; Ni, P.; Piriz, A. R.; Udrea, S.; Varentsov, D.; Wouchuk, G.

    2006-06-01

    Intense beams of energetic heavy ions are believed to be a very efficient and novel tool to create states of High-Energy-Density (HED) in matter. This paper shows with the help of numerical simulations that the heavy ion beams that will be generated at the future Facility for Antiprotons and Ion Research (FAIR)[W.F. Henning, Nucl. Instr. Meth. B 214, 211 (2004)] will allow one to use two different experimental schemes to study HED states in matter. First scheme named HIHEX (Heavy Ion Heating and EXpansion), will generate high-pressure, high-entropy states in matter by volumetric isochoric heating. The heated material will then be allowed to expand isentropically. Using this scheme, it will be possible to study important regions of the phase diagram that are either difficult to access or are even unaccessible using traditional methods of shock compression. The second scheme would allow one to achieve low-entropy compression of a sample material like hydrogen or water to produce conditions that are believed to exist in the interiors of the giant planets. This scheme is named LAPLAS (LAboratory PLAnetary Sciences).

  13. First storage of ion beams in the Double Electrostatic Ion-Ring Experiment: DESIREE.

    PubMed

    Schmidt, H T; Thomas, R D; Gatchell, M; Rosén, S; Reinhed, P; Löfgren, P; Brännholm, L; Blom, M; Björkhage, M; Bäckström, E; Alexander, J D; Leontein, S; Hanstorp, D; Zettergren, H; Liljeby, L; Källberg, A; Simonsson, A; Hellberg, F; Mannervik, S; Larsson, M; Geppert, W D; Rensfelt, K G; Danared, H; Paál, A; Masuda, M; Halldén, P; Andler, G; Stockett, M H; Chen, T; Källersjö, G; Weimer, J; Hansen, K; Hartman, H; Cederquist, H

    2013-05-01

    We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C(n)(-), n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C2 (-) molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s ± 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10(-14) mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.

  14. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade.

    PubMed

    Kolmogorov, A; Atoian, G; Davydenko, V; Ivanov, A; Ritter, J; Stupishin, N; Zelenski, A

    2014-02-01

    The RHIC polarized H(-) ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H2 gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ∼0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce "geometrical" beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  15. University of Wisconsin Ion Beam Laboratory: A facility for irradiated materials and ion beam analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, K. G.; Wetteland, C. J.; Cao, G.

    2013-04-19

    The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to {approx}200 {mu}A and {approx}5 {mu}A, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiationmore » of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.« less

  16. Paul trap simulator experiment to model intense-beam propagation in alternating-gradient transport systems.

    PubMed

    Gilson, Erik P; Davidson, Ronald C; Efthimion, Philip C; Majeski, Richard

    2004-04-16

    The results presented here demonstrate that the Paul trap simulator experiment (PTSX) simulates the propagation of intense charged particle beams over distances of many kilometers through magnetic alternating-gradient (AG) transport systems by making use of the similarity between the transverse dynamics of particles in the two systems. Plasmas have been trapped that correspond to normalized intensity parameters s=omega(2)(p)(0)/2omega(2)(q)beam is consistent with a model, equally applicable to both PTSX and AG systems. The PTSX device confines one-component cesium ion plasmas for hundreds of milliseconds, which is equivalent to over 10 km of beam propagation.

  17. Plasma focus ion beam-scaling laws

    NASA Astrophysics Data System (ADS)

    Saw, S. H.

    2014-08-01

    Measurements on plasma focus ion beams include various advanced techniques producing a variety of data which has yet to produce benchmark numbers. Recent numerical experiments using an extended version of the Lee Code has produced reference numbers and scaling trends for number and energy fluence of deuteron beams as functions of stored energy E0. At the pinch exit the ion number fluence (ions m-2) and energy fluence (J m-2) computed as 2.4-7.8×1020 and 2.2-33×106 respectively were found to be independent of E0 from 0.4 - 486 kJ. This work was extended to the ion beams for various gases. The results show that, for a given plasma focus, the fluence, flux, ion number and ion current decrease from the lightest to the heaviest gas except for trend-breaking higher values for Ar fluence and flux. The energy fluence, energy flux, power flow and damage factors are relatively constant from H2 to N2 but increase for Ne, Ar, Kr and Xe due to radiative cooling and collapse effects. This paper reviews this work and in a concluding section attempts to put the accumulating large amounts of data into the form of a scaling law of beam energy Ebeam versus storage energy E0 taking the form for deuteron as: {Ebeam} = 18.2{E}01.23; where Ebeam is in J and E0 is in kJ. It is hoped that the establishment of such scaling laws places on a firm footing the reference quantitative ideas for plasma focus ion beams.

  18. Helium ion beam imaging for image guided ion radiotherapy.

    PubMed

    Martišíková, M; Gehrke, T; Berke, S; Aricò, G; Jäkel, O

    2018-06-14

    Ion beam radiotherapy provides potential for increased dose conformation to the target volume. To translate it into a clinical advantage, it is necessary to guarantee a precise alignment of the actual internal patient geometry with the treatment beam. This is in particular challenging for inter- and intrafractional variations, including movement. Ion beams have the potential for a high sensitivity imaging of the patient geometry. However, the research on suitable imaging methods is not conclusive yet. Here we summarize the research activities within the "Clinical research group heavy ion therapy" funded by the DFG (KFO214). Our aim was to develop a method for the visualization of a 1 mm thickness difference with a spatial resolution of about 1 mm at clinically applicable doses. We designed and built a dedicated system prototype for ion radiography using exclusively the pixelated semiconductor technology Timepix developed at CERN. Helium ions were chosen as imaging radiation due to their decreased scattering in comparison to protons, and lower damaging potential compared to carbon ions. The data acquisition procedure and a dedicated information processing algorithm were established. The performance of the method was evaluated at the ion beam therapy facility HIT in Germany with geometrical phantoms. The quality of the images was quantified by contrast-to-noise ratio (CNR) and spatial resolution (SR) considering the imaging dose. Using the unique method for single ion identification, degradation of the images due to the inherent contamination of the outgoing beam with light secondary fragments (hydrogen) was avoided. We demonstrated experimentally that the developed data processing increases the CNR by 350%. Consideration of the measured ion track directions improved the SR by 150%. Compared to proton radiographs at the same dose, helium radiographs exhibited 50% higher SR (0.56 ± 0.04lp/mm vs. 0.37 ± 0.02lp/mm) at a comparable CNR in the middle of the

  19. Amplification due to two-stream instability of self-electric and magnetic fields of an ion beam propagating in background plasma

    NASA Astrophysics Data System (ADS)

    Tokluoglu, Erinc K.; Kaganovich, Igor D.; Carlsson, Johan A.; Hara, Kentaro; Startsev, Edward A.

    2018-05-01

    Propagation of charged particle beams in background plasma as a method of space charge neutralization has been shown to achieve a high degree of charge and current neutralization and therefore enables nearly ballistic propagation and focusing of charged particle beams. Correspondingly, the use of plasmas for propagation of charged particle beams has important applications for transport and focusing of intense particle beams in inertial fusion and high energy density laboratory plasma physics. However, the streaming of beam ions through a background plasma can lead to the development of two-stream instability between the beam ions and the plasma electrons. The beam electric and magnetic fields enhanced by the two-stream instability can lead to defocusing of the ion beam. Using particle-in-cell simulations, we study the scaling of the instability-driven self-electromagnetic fields and consequent defocusing forces with the background plasma density and beam ion mass. We identify plasma parameters where the defocusing forces can be reduced.

  20. Ion beam generating apparatus

    DOEpatents

    Brown, I.G.; Galvin, J.

    1987-12-22

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  1. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, J.

    1984-01-01

    The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.

  2. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondrasek, R.; Levand, A.; Pardo, R.

    2012-02-15

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi {sup 252}Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci {sup 252}Cf source to produce radioactive beamsmore » with intensities up to 10{sup 6} ions/s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for {sup 23}Na{sup 8+}, 15.6% for {sup 84}Kr{sup 17+}, and 13.7% for {sup 85}Rb{sup 19+} with typical breeding times of 10 ms/charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for {sup 143}Cs{sup 27+} and 14.7% for {sup 143}Ba{sup 27+}. The project has been commissioned with a radioactive beam of {sup 143}Ba{sup 27+} accelerated to 6.1 MeV/u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.« less

  3. Variable-spot ion beam figuring

    NASA Astrophysics Data System (ADS)

    Wu, Lixiang; Qiu, Keqiang; Fu, Shaojun

    2016-03-01

    This paper introduces a new scheme of ion beam figuring (IBF), or rather variable-spot IBF, which is conducted at a constant scanning velocity with variable-spot ion beam collimated by a variable diaphragm. It aims at improving the reachability and adaptation of the figuring process within the limits of machine dynamics by varying the ion beam spot size instead of the scanning velocity. In contrast to the dwell time algorithm in the conventional IBF, the variable-spot IBF adopts a new algorithm, which consists of the scan path programming and the trajectory optimization using pattern search. In this algorithm, instead of the dwell time, a new concept, integral etching time, is proposed to interpret the process of variable-spot IBF. We conducted simulations to verify its feasibility and practicality. The simulation results indicate the variable-spot IBF is a promising alternative to the conventional approach.

  4. Industrial ion source technology. [for ion beam etching, surface texturing, and deposition

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1977-01-01

    Plasma probe surveys were conducted in a 30-cm source to verify that the uniformity in the ion beam is the result of a corresponding uniformity in the discharge-chamber plasma. A 15 cm permanent magnet multipole ion source was designed, fabricated, and demonstrated. Procedures were investigated for texturing a variety of seed and surface materials for controlling secondary electron emission, increasing electron absorption of light, and improved attachment of biological tissue for medical implants using argon and tetrafluoromethane as the working gases. The cross section for argon-argon elastic collisions in the ion-beam energy range was calculated from interaction potentials and permits calculation of beam interaction effects that can determine system pumping requirements. The data also indicate that different optimizations of ion-beam machines will be advantageous for long and short runs, with 1 mA-hr/cm being the rough dividing line for run length. The capacity to simultaneously optimize components in an ion-beam machine for a single application, a capacity that is not evident in competitive approaches such as diode sputtering is emphasized.

  5. Ion-optical studies for a range adaptation method in ion beam therapy using a static wedge degrader combined with magnetic beam deflection.

    PubMed

    Chaudhri, Naved; Saito, Nami; Bert, Christoph; Franczak, Bernhard; Steidl, Peter; Durante, Marco; Rietzel, Eike; Schardt, Dieter

    2010-06-21

    Fast radiological range adaptation of the ion beam is essential when target motion is mitigated by beam tracking using scanned ion beams for dose delivery. Electromagnetically controlled deflection of a well-focused ion beam on a small static wedge degrader positioned between two dipole magnets, inside the beam delivery system, has been considered as a fast range adaptation method. The principle of the range adaptation method was tested in experiments and Monte Carlo simulations for the therapy beam line at the GSI Helmholtz Centre for Heavy Ions Research. Based on the simulations, ion optical settings of beam deflection and realignment of the adapted beam were experimentally applied to the beam line, and additional tuning was manually performed. Different degrader shapes were employed for the energy adaptation. Measured and simulated beam profiles, i.e. lateral distribution and range in water at isocentre, were analysed and compared with the therapy beam values for beam scanning. Deflected beam positions of up to +/-28 mm on degrader were performed which resulted in a range adaptation of up to +/-15 mm water equivalence (WE). The maximum deviation between the measured adapted range from the nominal range adaptation was below 0.4 mm WE. In experiments, the width of the adapted beam at the isocentre was adjustable between 5 and 11 mm full width at half maximum. The results demonstrate the feasibility/proof of the proposed range adaptation method for beam tracking from the beam quality point of view.

  6. Ion beam collimating grid to reduce added defects

    DOEpatents

    Lindquist, Walter B.; Kearney, Patrick A.

    2003-01-01

    A collimating grid for an ion source located after the exit grid. The collimating grid collimates the ion beamlets and disallows beam spread and limits the beam divergence during transients and steady state operation. The additional exit or collimating grid prevents beam divergence during turn-on and turn-off and prevents ions from hitting the periphery of the target where there is re-deposited material or from missing the target and hitting the wall of the vessel where there is deposited material, thereby preventing defects from being deposited on a substrate to be coated. Thus, the addition of a collimating grid to an ion source ensures that the ion beam will hit and be confined to a specific target area.

  7. Self-proton/ion radiography of laser-produced proton/ion beam from thin foil targets

    NASA Astrophysics Data System (ADS)

    Paudel, Y.; Renard-Le Galloudec, N.; Nicolai, Ph.; d'Humieres, E.; Ya. Faenov, A.; Kantsyrev, V. L.; Safronova, A. S.; Shrestha, I.; Osborne, G. C.; Shlyaptseva, V. V.; Sentoku, Y.

    2012-12-01

    Protons and multicharged ions generated from high-intensity laser interactions with thin foil targets have been studied with a 100 TW laser system. Protons/ions with energies up to 10 MeV are accelerated either from the front or the rear surface of the target material. We have observed for the first time that the protons/ions accelerated from the front surface of the target, in a direction opposite to the laser propagation direction, are turned around and pulled back to the rear surface, in the laser propagation direction. This proton/ion beam is able to create a self-radiograph of the target and glass stalk holding the target itself recorded through the radiochromic film stack. This unique result indicates strong long-living (ns time scale) magnetic fields present in the laser-produced plasma, which are extremely important in energy transport during the intense laser irradiation. The magnetic field from laser main pulse expands rapidly in the preformed plasma to rotate the laser produced protons. Radiation hydrodynamic simulations and ray tracing found that the magnetic field created by the amplified spontaneous emission prepulse is not sufficient to explain the particle trajectories, but the additional field created by the main pulse interaction estimated from particle-in-cell simulation is able to change the particle trajectories.

  8. Low energy ion beam induced changes in ETFE polymer

    NASA Astrophysics Data System (ADS)

    Parada, M. A.; Delalez, N.; de Almeida, A.; Muntele, C.; Muntele, I.; Ila, D.

    2006-01-01

    Low energy ion beam bombardment of ethylenetetrafluoroethylene (ETFE) modifies the physical and chemical properties of the polymer surface in ways that enhance or compromise applications in the technological and medical physics fields. When a material is exposed to ionizing radiation, its changes depends on the type, energy and intensity of the applied radiation. In order to determine the nature of the induced radiation changes, ETFE films were bombarded with fluences from 1012 up to 1015 ions/cm2 of keV N and protons. The emission of gaseous species during the bombardments was monitored with a residual gas analyser (RGA). The bombarded films were analysed with optical absorption photospectrometry (OAP), Fourier transform infrared (FTIR) and micro-Raman spectrometries that determine the chemical nature of the structural changes caused by ions bombardment.

  9. Ion beam driven ion-acoustic waves in a plasma cylinder with negative ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Suresh C.; Gahlot, Ajay

    2008-07-15

    An ion beam propagating through a magnetized plasma cylinder containing K{sup +} positive ions, electrons, and SF{sub 6}{sup -} negative ions drives electrostatic ion-acoustic (IA) waves to instability via Cerenkov interaction. Two electrostatic IA wave modes in presence of K{sup +} and SF{sub 6}{sup -} ions are studied. The phase velocity of the sound wave in presence of positive and negative ions increase with the relative density of negative ions. The unstable wave frequencies and the growth rate of both the modes in presence of positive and negative ions increase with the relative density of negative ions. The growth ratemore » of both the unstable modes in presence of SF{sub 6}{sup -} and K{sup +} ions scales as the one-third power of the beam density. Numerical calculations of the phase velocity, growth rate, and mode frequencies have been carried out for the parameters of the experiment of Song et al. [Phys. Fluids B 3, 284 (1991)].« less

  10. Storage-ring Electron Cooler for Relativistic Ion Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Fanglei; Derbenev, Yaroslav; Douglas, David R.

    Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This papermore » reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler is presented.« less

  11. Ultrafast third-harmonic spectroscopy of single nanoantennas fabricated using helium-ion beam lithography

    NASA Astrophysics Data System (ADS)

    Kollmann, H.; Esmann, M.; Becker, S. F.; Piao, X.; Huynh, C.; Kautschor, L.-O.; Bösker, G.; Vieker, H.; Beyer, A.; Gölzhäuser, A.; Park, N.; Silies, M.; Lienau, C.

    2016-03-01

    Metallic nanoantennas are able to spatially localize far-field electromagnetic waves on a few nanometer length scale in the form of surface plasmon excitations 1-3. Standard tools for fabricating bowtie and rod antennas with sub-20 nm feature sizes are Electron Beam Lithography or Ga-based Focused Ion Beam (FIB) Milling. These structures, however, often suffer from surface roughness and hence show only a limited optical polarization contrast and therefore a limited electric field localization. Here, we combine Ga- and He-ion based milling (HIM) for the fabrication of gold bowtie and rod antennas with gap sizes of less than 6 nm combined with a high aspect ratio. Using polarization-sensitive Third-Harmonic (TH) spectroscopy, we compare the nonlinear optical properties of single HIM-antennas with sub-6-nm gaps with those produced by standard Ga-based FIB. We find a pronounced enhancement of the total TH intensity of more than three in comparison to Ga-FIB antennas and a highly improved polarization contrast of the TH intensity of 250:1 for Heion produced antennas 4. These findings combined with Finite-Element Method calculations demonstrate a field enhancement of up to one hundred in the few-nanometer gap of the antenna. This makes He-ion beam milling a highly attractive and promising new tool for the fabrication of plasmonic nanoantennas with few-nanometer feature sizes.

  12. Isochoric heating of solid gold targets with the PW-laser-driven ion beams (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Steinke, Sven; Ji, Qing; Bulanov, Stepan S.; Barnard, John; Vincenti, Henri; Schenkel, Thomas; Esarey, Eric H.; Leemans, Wim P.

    2017-05-01

    We present first results on ion acceleration with the BELLA PW laser as well as end-to-end simulation for isochoric heating of solid gold targets using PW-laser generated ion beams: (i) 2D Particle-In-Cell (PIC) simulations are applied to study the ion source characteristics of the PW laser-target interaction at the long focal length (f/65) beamline at laser intensities of ˜[5×10]^19 Wcm-2 at spot size of 0=53 μm on a CH target. (ii) In order to transport the ion beams to an EMP-free environment, an active plasma lens will be used. This was modeled [1] by calculating the Twiss parameters of the ion beam from the appropriate transport matrixes taking the source parameters obtained from the PIC simulation. (iii) Hydrodynamic simulations indicate that these ion beams can isochorically heat a 1 mm3 gold target to the Warm Dense Matter state. Reference: J. van Tilborg et al, Phys. Rev. Lett. 115, 184802 (2015). This work was supported by Laboratory Directed Research and Development (LDRD) funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  13. Production of multi-, oligo- and single-pore membranes using a continuous ion beam

    NASA Astrophysics Data System (ADS)

    Apel, P. Yu.; Ivanov, O. M.; Lizunov, N. E.; Mamonova, T. I.; Nechaev, A. N.; Olejniczak, K.; Vacik, J.; Dmitriev, S. N.

    2015-12-01

    Ion track membranes (ITM) have attracted significant interest over the past two decades due to their numerous applications in physical, biological, chemical, biochemical and medical experimental works. A particular feature of ITM technology is the possibility to fabricate samples with a predetermined number of pores, including single-pore membranes. The present report describes a procedure that allowed for the production of multi-, oligo- and single-pore membranes using a continuous ion beam from an IC-100 cyclotron. The beam was scanned over a set of small diaphragms, from 17 to ∼1000 μm in diameter. Ions passed through the apertures and impinged two sandwiched polymer foils, with the total thickness close to the ion range in the polymer. The foils were pulled across the ion beam at a constant speed. The ratio between the transport speed and the scanning frequency determined the distance between irradiation spots. The beam intensity and the aperture diameters were adjusted such that either several, one or no ions passed through the diaphragms during one half-period of scanning. After irradiation, the lower foil was separated from the upper foil and was etched to obtain pores 6-8 μm in diameter. The pores were found using a color chemical reaction between two reagents placed on opposite sides of the foil. The located pores were further confirmed using SEM and optical microscopy. The numbers of tracks in the irradiation spots were consistent with the Poisson statistics. Samples with single or few tracks obtained in this way were employed to study fine phenomena in ion track nanopores.

  14. Drag of ballistic electrons by an ion beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurevich, V. L.; Muradov, M. I., E-mail: mag.muradov@mail.ioffe.ru

    2015-12-15

    Drag of electrons of a one-dimensional ballistic nanowire by a nearby one-dimensional beam of ions is considered. We assume that the ion beam is represented by an ensemble of heavy ions of the same velocity V. The ratio of the drag current to the primary current carried by the ion beam is calculated. The drag current turns out to be a nonmonotonic function of velocity V. It has a sharp maximum for V near v{sub nF}/2, where n is the number of the uppermost electron miniband (channel) taking part in conduction and v{sub nF} is the corresponding Fermi velocity. Thismore » means that the phenomenon of ion beam drag can be used for investigation of the electron spectra of ballistic nanostructures. We note that whereas observation of the Coulomb drag between two parallel quantum wires may in general be complicated by phenomena such as tunneling and phonon drag, the Coulomb drag of electrons of a one-dimensional ballistic nanowire by an ion beam is free of such spurious effects.« less

  15. Biological effects of mixed-ion beams. Part 1: Effect of irradiation of the CHO-K1 cells with a mixed-ion beam containing the carbon and oxygen ions.

    PubMed

    Czub, Joanna; Banaś, Dariusz; Braziewicz, Janusz; Buraczewska, Iwona; Jaskóła, Marian; Kaźmierczak, Urszula; Korman, Andrzej; Lankoff, Anna; Lisowska, Halina; Szefliński, Zygmunt; Wojewódzka, Maria; Wójcik, Andrzej

    2018-05-30

    Carbon and oxygen ions were accelerated simultaneously to estimate the effect of irradiation of living cells with the two different ions. This mixed ion beam was used to irradiate the CHO-K1 cells, and a survival test was performed. The type of the effect of the mixed ion beam on the cells was determined with the isobologram method, whereby survival curves for irradiations with individual ion beams were also used. An additive effect of irradiation with the two ions was found. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. A Hybrid Ion/Electron Beam Fast Ignition Concept

    NASA Astrophysics Data System (ADS)

    Albright, B. J.

    2009-11-01

    Fast ignition (FI) inertial confinement fusion is an approach to high-gain inertial fusion, whereby a dense core of deuterium/tritium fuel is assembled via direct or indirect drive and then a hot spot within the core is heated rapidly (over a time scale of order 10 ps) to ignition conditions by beams of fast charged particles. These particle beams are generated outside the capsule by the interaction of ultra-intense laser pulses with solid density targets. Most study of FI to date has focused on the use of electron [Tabak et al., Phys. Plasmas 1, 1696 (1994)] or ion [Fern'andez et al., Nuclear Fusion 49, 065004 (2009)] beams, however a hybrid approach involving both may have advantages. This paper will describe recent work in this arena. Work performed under the auspices of the U. S. Dept. of Energy by the Los Alamos National Security, Los Alamos National Laboratory. This work was supported by LANL Laboratory Directed Research and Development (LDRD).

  17. Generating High-Brightness Ion Beams for Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Cuneo, M. E.

    1997-11-01

    The generation of high current density ion beams with applied-B ion diodes showed promise in the late-1980's as an efficient, rep-rate, focusable driver for inertial confinement fusion. These devices use several Tesla insulating magnetic fields to restrict electron motion across anode-cathode gaps of order 1-2 cm, while accelerating ions to generate ≈ 1 kA/cm^2, 5 - 15 MeV beams. These beams have been used to heat hohlraums to about 65 eV. However, meeting the ICF driver requirements for low-divergence and high-brightness lithium ion beams has been more technically challenging than initially thought. Experimental and theoretical work over the last 5 years shows that high-brightness beams meeting the requirements for inertial confinement fusion are possible. The production of these beams requires the simultaneous integration of at least four conditions: 1) rigorous vacuum cleaning techniques for control of undesired anode, cathode, ion source and limiter plasma formation from electrode contaminants to control impurity ions and impedance collapse; 2) carefully tailored insulating magnetic field geometry for uniform beam generation; 3) high magnetic fields (V_crit/V > 2) and other techniques to control the electron sheath and the onset of a high divergence electromagnetic instability that couples strongly to the ion beam; and 4) an active, pre-formed, uniform lithium plasma for low source divergence which is compatible with the above electron-sheath control techniques. These four conditions have never been simultaneously present in any lithium beam experiment, but simulations and experimental tests of individual conditions have been done. The integration of these conditions is a goal of the present ion beam generation program at Sandia. This talk will focus on the vacuum cleaning techniques for ion diodes and pulsed power devices in general, including experimental results obtained on the SABRE and PBFA-II accelerators over the last 3 years. The current status of

  18. Ion beam lithography system

    DOEpatents

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  19. Collective Temperature Anisotropy Instabilities in Intense Charged Particle Beams

    NASA Astrophysics Data System (ADS)

    Startsev, Edward

    2006-10-01

    Periodic focusing accelerators, transport systems and storage rings have a wide range of applications ranging from basic scientific research in high energy and nuclear physics, to applications such as ion-beam-driven high energy density physics and fusion, and spallation neutron sources. Of particular importance at the high beam currents and charge densities of practical interest, are the effects of the intense self fields produced by the beam space charge and current on determining the detailed equilibrium, stability and transport properties. Charged particle beams confined by external focusing fields represent an example of nonneutral plasma. A characteristic feature of such plasmas is the non-uniformity of the equilibrium density profiles and the nonlinearity of the self fields, which makes detailed analytical investigation very difficult. The development and application of advanced numerical tools such as eigenmode codes [1] and Monte-Carlo particle simulation methods [2] are often the only tractable approach to understand the underlying physics of different instabilities familiar in electrically neutral plasmas which may cause a degradation in beam quality. Two such instabilities are the electrostatic Harris instability [2] and the electromagnetic Weibel instability [1], both driven by a large temperature anisotropy which develops naturally in accelerators. The beam acceleration causes a large reduction in the longitudinal temperature and provides the free energy to drive collective temperature anisotropy instabilities. Such instabilities may lead to an increase in the longitudinal velocity spread, which will make focusing the beam difficult, and may impose a limit on the beam luminosity and the minimum spot size achievable in focusing experiments. This paper reviews recent advances in the theory and simulation of collective instabilities in intense charged particle beams caused by temperature anisotropy. We also describe new simulation tools that have been

  20. Mutation breeding of ornamental plants using ion beams.

    PubMed

    Yamaguchi, Hiroyasu

    2018-01-01

    Ornamental plants that have a rich variety of flower colors and shapes are highly prized in the commercial flower market, and therefore, mutant cultivars that produce different types of flowers while retaining their growth habits are in demand. Furthermore, mutation breeding is well suited for ornamental plants because many species can be easily vegetatively propagated, facilitating the production of spontaneous and induced mutants. The use of ion beams in mutation breeding has rapidly expanded since the 1990s in Japan, with the prospect that more ion beam-specific mutants will be generated. There are currently four irradiation facilities in Japan that provide ion beam irradiation for plant materials. The development of mutant cultivars using ion beams has been attempted on many ornamental plants thus far, and some species have been used to investigate the process of mutagenesis. In addition, progress is being made in clarifying the genetic mechanism for expressing important traits, which will probably result in the development of more efficient mutation breeding methods for ornamental plants. This review not only provides examples of successful mutation breeding results using ion beams, but it also describes research on mutagenesis and compares results of ion beam and gamma ray breeding using ornamental plants.

  1. Mutation breeding of ornamental plants using ion beams

    PubMed Central

    Yamaguchi, Hiroyasu

    2018-01-01

    Ornamental plants that have a rich variety of flower colors and shapes are highly prized in the commercial flower market, and therefore, mutant cultivars that produce different types of flowers while retaining their growth habits are in demand. Furthermore, mutation breeding is well suited for ornamental plants because many species can be easily vegetatively propagated, facilitating the production of spontaneous and induced mutants. The use of ion beams in mutation breeding has rapidly expanded since the 1990s in Japan, with the prospect that more ion beam-specific mutants will be generated. There are currently four irradiation facilities in Japan that provide ion beam irradiation for plant materials. The development of mutant cultivars using ion beams has been attempted on many ornamental plants thus far, and some species have been used to investigate the process of mutagenesis. In addition, progress is being made in clarifying the genetic mechanism for expressing important traits, which will probably result in the development of more efficient mutation breeding methods for ornamental plants. This review not only provides examples of successful mutation breeding results using ion beams, but it also describes research on mutagenesis and compares results of ion beam and gamma ray breeding using ornamental plants. PMID:29681749

  2. Mass spectrometer and methods of increasing dispersion between ion beams

    DOEpatents

    Appelhans, Anthony D.; Olson, John E.; Delmore, James E.

    2006-01-10

    A mass spectrometer includes a magnetic sector configured to separate a plurality of ion beams, and an electrostatic sector configured to receive the plurality of ion beams from the magnetic sector and increase separation between the ion beams, the electrostatic sector being used as a dispersive element following magnetic separation of the plurality of ion beams. Other apparatus and methods are provided.

  3. BEARS: Radioactive ion beams at LBNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, J.; Guo, F.Q.; Haustein, P.E.

    1998-07-01

    BEARS (Berkeley Experiments with Accelerated Radioactive Species) is an initiative to develop a radioactive ion-beam capability at Lawrence Berkeley National Laboratory. The aim is to produce isotopes at an existing medical cyclotron and to accelerate them at the 88 inch Cyclotron. To overcome the 300-meter physical separation of these two accelerators, a carrier-gas transport system will be used. At the terminus of the capillary, the carrier gas will be separated and the isotopes will be injected into the 88 inch Cyclotron`s Electron Cyclotron Resonance (ECR) ion source. The first radioactive beams to be developed will include 20-min {sup 11}C andmore » 70-sec {sup 14}O, produced by (p,n) and (p,{alpha}) reactions on low-Z targets. A test program is currently being conducted at the 88 inch Cyclotron to develop the parts of the BEARS system. Preliminary results of these tests lead to projections of initial {sup 11}C beams of up to 2.5 {times} 10{sup 7} ions/sec and {sup 14}O beams of 3 {times} 10{sup 5} ions/sec.« less

  4. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak.

    PubMed

    Zou, G Q; Lei, G J; Cao, J Y; Duan, X R

    2012-07-01

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage (∼100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  5. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  6. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y. Simon

    1991-01-01

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  7. Design of a fast multileaf collimator for radiobiological optimized IMRT with scanned beams of photons, electrons, and light ions.

    PubMed

    Svensson, Roger; Larsson, Susanne; Gudowska, Irena; Holmberg, Rickard; Brahme, Anders

    2007-03-01

    Intensity modulated radiation therapy is rapidly becoming the treatment of choice for most tumors with respect to minimizing damage to the normal tissues and maximizing tumor control. Today, intensity modulated beams are most commonly delivered using segmental multileaf collimation, although an increasing number of radiation therapy departments are employing dynamic multileaf collimation. The irradiation time using dynamic multileaf collimation depends strongly on the nature of the desired dose distribution, and it is difficult to reduce this time to less than the sum of the irradiation times for all individual peak heights using dynamic leaf collimation [Svensson et al., Phys. Med. Biol. 39, 37-61 (1994)]. Therefore, the intensity modulation will considerably increase the total treatment time. A more cost-effective procedure for rapid intensity modulation is using narrow scanned photon, electron, and light ion beams in combination with fast multileaf collimator penumbra trimming. With this approach, the irradiation time is largely independent of the complexity of the desired intensity distribution and, in the case of photon beams, may even be shorter than with uniform beams. The intensity modulation is achieved primarily by scanning of a narrow elementary photon pencil beam generated by directing a narrow well focused high energy electron beam onto a thin bremsstrahlung target. In the present study, the design of a fast low-weight multileaf collimator that is capable of further sharpening the penumbra at the edge of the elementary scanned beam has been simulated, in order to minimize the dose or radiation response of healthy tissues. In the case of photon beams, such a multileaf collimator can be placed relatively close to the bremsstrahlung target to minimize its size. It can also be flat and thin, i.e., only 15-25 mm thick in the direction of the beam with edges made of tungsten or preferably osmium to optimize the sharpening of the penumbra. The low height of

  8. A Lunar-Based Spacecraft Propulsion Concept - The Ion Beam Sail

    NASA Technical Reports Server (NTRS)

    Brown, Ian G.; Lane, John E.; Youngquist, Robert C.

    2006-01-01

    We describe a concept for spacecraft propulsion by means of an energetic ion beam, with the ion source fixed at the spacecraft starting point (e.g., a lunar-based ion beam generator) and not onboard the vessel. This approach avoids the substantial mass penalty associated with the onboard ion source and power supply hardware, and vastly more energetic ion beam systems can be entertained. We estimate the ion beam parameters required for various scenarios, and consider some of the constraints limiting the concept. We find that the "ion beam sail' approach can be viable and attractive for journey distances not too great, for example within the Earth-Moon system, and could potentially provide support for journeys to the inner planets.

  9. Towards highest peak intensities for ultra-short MeV-range ion bunches

    NASA Astrophysics Data System (ADS)

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-07-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches.

  10. Towards highest peak intensities for ultra-short MeV-range ion bunches

    PubMed Central

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-01-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches. PMID:26212024

  11. Microfabricated Ion Beam Drivers for Magnetized Target Fusion

    NASA Astrophysics Data System (ADS)

    Persaud, Arun; Seidl, Peter; Ji, Qing; Ardanuc, Serhan; Miller, Joseph; Lal, Amit; Schenkel, Thomas

    2015-11-01

    Efficient, low-cost drivers are important for Magnetized Target Fusion (MTF). Ion beams offer a high degree of control to deliver the required mega joules of driver energy for MTF and they can be matched to several types of magnetized fuel targets, including compact toroids and solid targets. We describe an ion beam driver approach based on the MEQALAC concept (Multiple Electrostatic Quadrupole Array Linear Accelerator) with many beamlets in an array of micro-fabricated channels. The channels consist of a lattice of electrostatic quadrupoles (ESQ) for focusing and of radio-frequency (RF) electrodes for ion acceleration. Simulations with particle-in-cell and beam envelope codes predict >10x higher current densities compared to state-of-the-art ion accelerators. This increase results from dividing the total ion beam current up into many beamlets to control space charge forces. Focusing elements can be biased taking advantage of high breakdown electric fields in sub-mm structures formed using MEMS techniques (Micro-Electro-Mechanical Systems). We will present results on ion beam transport and acceleration in MEMS based beamlets. Acknowledgments: This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

  12. Ion-beam-induced bending of semiconductor nanowires.

    PubMed

    Hanif, Imran; Camara, Osmane; Tunes, Matheus A; Harrison, Robert W; Greaves, Graeme; Donnelly, Stephen E; Hinks, Jonathan A

    2018-08-17

    The miniaturisation of technology increasingly requires the development of both new structures as well as novel techniques for their manufacture and modification. Semiconductor nanowires (NWs) are a prime example of this and as such have been the subject of intense scientific research for applications ranging from microelectronics to nano-electromechanical devices. Ion irradiation has long been a key processing step for semiconductors and the natural extension of this technique to the modification of semiconductor NWs has led to the discovery of ion beam-induced deformation effects. In this work, transmission electron microscopy with in situ ion bombardment has been used to directly observe the evolution of individual silicon and germanium NWs under irradiation. Silicon NWs were irradiated with either 6 keV neon ions or xenon ions at 5, 7 or 9.5 keV with a flux of 3 × 10 13 ions cm -2 s -1 . Germanium NWs were irradiated with 30 or 70 keV xenon ions with a flux of 10 13 ions cm -2 s -1 . These new results are combined with those reported in the literature in a systematic analysis using a custom implementation of the transport of ions in matter Monte Carlo computer code to facilitate a direct comparison with experimental results taking into account the wide range of experimental conditions. Across the various studies this has revealed underlying trends and forms the basis of a critical review of the various mechanisms which have been proposed to explain the deformation of semiconductor NWs under ion irradiation.

  13. Microchip and wedge ion funnels and planar ion beam analyzers using same

    DOEpatents

    Shvartsburg, Alexandre A; Anderson, Gordon A; Smith, Richard D

    2012-10-30

    Electrodynamic ion funnels confine, guide, or focus ions in gases using the Dehmelt potential of oscillatory electric field. New funnel designs operating at or close to atmospheric gas pressure are described. Effective ion focusing at such pressures is enabled by fields of extreme amplitude and frequency, allowed in microscopic gaps that have much higher electrical breakdown thresholds in any gas than the macroscopic gaps of present funnels. The new microscopic-gap funnels are useful for interfacing atmospheric-pressure ionization sources to mass spectrometry (MS) and ion mobility separation (IMS) stages including differential IMS or FAIMS, as well as IMS and MS stages in various configurations. In particular, "wedge" funnels comprising two planar surfaces positioned at an angle and wedge funnel traps derived therefrom can compress ion beams in one dimension, producing narrow belt-shaped beams and laterally elongated cuboid packets. This beam profile reduces the ion density and thus space-charge effects, mitigating the adverse impact thereof on the resolving power, measurement accuracy, and dynamic range of MS and IMS analyzers, while a greater overlap with coplanar light or particle beams can benefit spectroscopic methods.

  14. Improving depth resolutions in positron beam spectroscopy by concurrent ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    John, Marco; Dalla, Ayham; Ibrahim, Alaa M.; Anwand, Wolfgang; Wagner, Andreas; Böttger, Roman; Krause-Rehberg, Reinhard

    2018-05-01

    The depth resolution of mono-energetic positron annihilation spectroscopy using a positron beam is shown to improve by concurrently removing the sample surface layer during positron beam spectroscopy. During ion-beam sputtering with argon ions, Doppler-broadening spectroscopy is performed with energies ranging from 3 keV to 5 keV allowing for high-resolution defect studies just below the sputtered surface. With this technique, significantly improved depth resolutions could be obtained even at larger depths when compared to standard positron beam experiments which suffer from extended positron implantation profiles at higher positron energies. Our results show that it is possible to investigate layered structures with a thickness of about 4 microns with significantly improved depth resolution. We demonstrated that a purposely generated ion-beam induced defect profile in a silicon sample could be resolved employing the new technique. A depth resolution of less than 100 nm could be reached.

  15. Method and apparatus for efficient photodetachment and purification of negative ion beams

    DOEpatents

    Beene, James R [Oak Ridge, TN; Liu, Yuan [Knoxville, TN; Havener, Charles C [Knoxville, TN

    2008-02-26

    Methods and apparatus are described for efficient photodetachment and purification of negative ion beams. A method of purifying an ion beam includes: inputting the ion beam into a gas-filled multipole ion guide, the ion beam including a plurality of ions; increasing a laser-ion interaction time by collisional cooling the plurality of ions using the gas-filled multipole ion guide, the plurality of ions including at least one contaminant; and suppressing the at least one contaminant by selectively removing the at least one contaminant from the ion beam by electron photodetaching at least a portion of the at least one contaminant using a laser beam.

  16. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  17. Long-pulse beam acceleration of MeV-class H(-) ion beams for ITER NB accelerator.

    PubMed

    Umeda, N; Kashiwagi, M; Taniguchi, M; Tobari, H; Watanabe, K; Dairaku, M; Yamanaka, H; Inoue, T; Kojima, A; Hanada, M

    2014-02-01

    In order to realize neutral beam systems in International Thermonuclear Experimental Reactor whose target is to produce a 1 MeV, 200 A/m(2) during 3600 s D(-) ion beam, the electrostatic five-stages negative ion accelerator so-called "MeV accelerator" has been developed at Japan Atomic Energy Agency. To extend pulse length, heat load of the acceleration grids was reduced by controlling the ion beam trajectory. Namely, the beam deflection due to the residual magnetic field of filter magnet was suppressed with the newly developed extractor with a 0.5 mm off-set aperture displacement. The new extractor improved the deflection angle from 6 mrad to 1 mrad, resulting in the reduction of direct interception of negative ions from 23% to 15% of the total acceleration power, respectively. As a result, the pulse length of 130 A/m(2), 881 keV H(-) ion beam has been successfully extended from a previous value of 0.4 s to 8.7 s. This is the first long pulse negative ion beam acceleration over 100 MW/m(2).

  18. Lateral damage in graphene carved by high energy focused gallium ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Zhongquan, E-mail: zhongquan.liao@ikts-md.fraunhofer.de; Dresden Center for Nanoanalysis; Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Hallwachsstraße 3, 01069 Dresden

    2015-07-06

    Raman mapping is performed to study the lateral damage in supported monolayer graphene carved by 30 keV focused Ga{sup +} beams. The evolution of the lateral damage is tracked based on the profiles of the intensity ratio between the D (1341 cm{sup −1}) and G (1582 cm{sup −1}) peaks (I{sub D}/I{sub G}) of the Raman spectra. The I{sub D}/I{sub G} profile clearly reveals the transition from stage 2 disorder into stage 1 disorder in graphene along the direction away from the carved area. The critical lateral damage distance spans from <1 μm up to more than 30 μm in the experiment, depending on the parametersmore » used for carving the graphene. The wide damage in the lateral direction is attributed to the deleterious tail of unfocused ions in the ion beam probe. The study raises the attention on potential sample damage during direct patterning of graphene nanostructures using the focused ion beam technique. Minimizing the total carving time is recommended to mitigate the lateral damage.« less

  19. Radioactive ion beam acceleration at MAFF

    NASA Astrophysics Data System (ADS)

    Pasini, M.; Kester, O.; Habs, D.; Groß, M.; Sieber, T.; Maier, H. J.; Assmann, W.; Krüken, R.; Faestermann, T.; Schempp, A.; Ratzinger, U.; Safvan, C. P.

    2004-12-01

    In April 2003, the German safety commission has given the final approval for the oper- ation of the high flux reactor FRM-II. This is an important step towards the development and installation of the Munich accelerator for fission fragments (MAFF), which will deliver highest intensities of neutron rich fission fragments. The acceleration chain of MAFF [1] consists of a charge breeder, which will deliver the ions with a mass to charge ratio of A/q ⩽ 6.3 irrespective of the mass range, and with a repetition rate of maximum 50 Hz. The LINAC operating at 10% duty cycle is composed of a 101.28 IH-RFQ, which will boost up the energy from 2.5 up to 300 keV/u, three IH-tanks that will deliver an energy of 5.4 MeV/u and 2 seven gap IH-resonators that are used to vary the final energy up to a maximum of 5.9 MeV/u. Currently beam dynamics revisions are in progress especially in the low energy section, since the experimental program has requested specific time structures of the beam for TOF experiments. The status of the beam dynamics studies as well as the status of the single components of the accelerator will be presented in this paper.

  20. DUHOCAMIS: a dual hollow cathode ion source for metal ion beams.

    PubMed

    Zhao, W J; Müller, M W O; Janik, J; Liu, K X; Ren, X T

    2008-02-01

    In this paper we describe a novel ion source named DUHOCAMIS for multiply charged metal ion beams. This ion source is derived from the hot cathode Penning ion gauge ion source (JINR, Dubna, 1957). A notable characteristic is the modified Penning geometry in the form of a hollow sputter electrode, coaxially positioned in a compact bottle-magnetic field along the central magnetic line of force. The interaction of the discharge geometry with the inhomogeneous but symmetrical magnetic field enables this device to be operated as hollow cathode discharge and Penning discharge as well. The main features of the ion source are the very high metal ion efficiency (up to 25%), good operational reproducibility, flexible and efficient operations for low charged as well as highly charged ions, compact setup, and easy maintenance. For light ions, e.g., up to titanium, well-collimated beams in the range of several tens of milliamperes of pulsed ion current (1 ms, 10/s) have been reliably performed in long time runs.

  1. Spatial structure of ion beams in an expanding plasma

    NASA Astrophysics Data System (ADS)

    Aguirre, E. M.; Scime, E. E.; Thompson, D. S.; Good, T. N.

    2017-12-01

    We report spatially resolved perpendicular and parallel, to the magnetic field, ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v ≈ 8000 m/s flowing downstream and confined to the center of the discharge. The ion beam is measurable for tens of centimeters along the expansion axis before the LIF signal fades, likely a result of metastable quenching of the beam ions. The parallel ion beam velocity slows in agreement with expectations for the measured parallel electric field. The perpendicular IVDFs show an ion population with a radially outward flow that increases with distance from the plasma axis. Structures aligned to the expanding magnetic field appear in the DC electric field, the electron temperature, and the plasma density in the plasma plume. These measurements demonstrate that at least two-dimensional and perhaps fully three-dimensional models are needed to accurately describe the spontaneous acceleration of ion beams in expanding plasmas.

  2. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, developmentmore » of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.« less

  3. Dynamics of Intense Pulsed Proton Beam in the Nagaoka ETIGO-I

    NASA Astrophysics Data System (ADS)

    Tanaka, Hajime; Konno, Kohji; Masugata, Katsumi; Yatsui, Kiyoshi; Matsui, Masao

    1982-10-01

    Dynamics of an intense pulsed proton beam have been studied by measuring nuclear reactions as well as by a biased ion-collector (BIC). When the ion-current density (Ji) is small such that Ji<30 A/cm2, the proton number measured by BIC is in good agreement with that by nuclear activation. Good linearity exists between time integrated γ-ray signal and proton number measured by the activation. Hence, it would be possible to obtain the proton number quantitatively even when a target “blow-off” takes place at Ji>1 kA/cm2. Prompt γ-ray is also measured by the time-of-flight method to yield reasonable agreement with the applied peak potential.

  4. Nonuniformity for rotated beam illumination in directly driven heavy-ion fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Runge, J.; Logan, B.G.

    A key issue in heavy-ion beam inertial confinement fusion is target interaction, especially implosion symmetry. In this paper the 2D beam irradiation nonuniformity on the surface of a spherical target is studied. This is a first step to studies of 3D dynamical effects on target implosion. So far non-rotated beams have been studied. Because normal incidence may increase Rayleigh-Taylor instabilities, it has been suggested to rotate beams (to increase average uniformity) and hit the target tangentially. The level of beam irradiation uniformity, beam spill and normal incidence is calculated in this paper. In Mathematica the rotated beams are modeled asmore » an annular integrated Gaussian beam. To simplify the chamber geometry, the illumination scheme is not a 4{pi} system, but the beams are arranged on few polar rings around the target. The position of the beam spot rings is efficiently optimized using the analytical model. The number of rings and beams, rotation radii and widths are studied to optimize uniformity and spilled intensity. The results demonstrate that for a 60-beam system on four rings Peak-To-Valley nonuniformities of under 0.5% are possible.« less

  5. Surface microroughness of ion-beam etched optical surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savvides, N.

    2005-03-01

    Ion-beam etching (IBE) and ion-beam figuring techniques using low-energy ion-beam sources have been applied for more than ten years in the fabrication and finishing of extremely smooth high-performance optics. We used optical interferometric techniques and atomic force microscopy to study the evolution of the surface root-mean-square (rms) microroughness, Rq, as a function of depth of a material removed (0-3000 nm) by a broad ion-beam source (Ar{sup +} ions of energy 600 eV and ion current density of 1 mA cm{sup -2}). Highly polished samples of fused silica and Zerodur (Rq{approx}3.5 A) showed a small decrease in microroughness (to 2.5 A)more » after 3000-nm IBE removal while an ultrapolished single-crystal sapphire sample (Rq{approx}1 A rms) retained its very low microroughness during IBE. Power spectral density functions over the spatial frequency interval of measurement (f=5x10{sup -3}-25 {mu}m{sup -1}) indicate that the IBE surfaces have minimal subsurface damage and low optical scatter.« less

  6. Atomic Oxygen (ATOX) simulation of Teflon FEP and Kapton H surfaces using a high intensity, low energy, mass selected, ion beam facility

    NASA Technical Reports Server (NTRS)

    Vered, R.; Grossman, E.; Lempert, G. D.; Lifshitz, Y.

    1994-01-01

    A high intensity (greater than 10(exp 15) ions/sq cm) low energy (down to 5 eV) mass selected ion beam (MSIB) facility was used to study the effects of ATOX on two polymers commonly used for space applications (Kapton H and Teflon FEP). The polymers were exposed to O(+) and Ne(+) fluences on 10(exp 15) - 10(exp 19) ions/sq cm, using 30eV ions. A variety of analytical methods were used to analyze the eroded surfaces including: (1) atomic force microscopy (AFM) for morphology measurements; (2) total mass loss measurements using a microbalance; (3) surface chemical composition using x-ray photoelectron spectroscopy (XPS), and (4) residual gas analysis (RGA) of the released gases during bombardment. The relative significance of the collisional and chemical degradation processes was evaluated by comparing the effects of Ne(+) and O(+) bombardment. For 30 eV ions it was found that the Kapton is eroded via chemical mechanisms while Teflon FEP is eroded via collisional mechanisms. AFM analysis was found very powerful in revealing the evolution of the damage from its initial atomic scale (roughness of approx. 1 nm) to its final microscopic scale (roughness greater than 1 micron). Both the surface morphology and the average roughness of the bombarded surfaces (averaged over 1 micron x 1 micron images by the system's computer) were determined for each sample. For 30 eV a non linear increase of the Kapton roughness with the O(+) fluence was discovered (a slow increase rate for fluences phi less than 5 x 10(exp 17) O(+)/sq cm, and a rapid increase rate for phi greater than 5 x 10(exp 17) O(+)/sq cm). Comparative studies on the same materials exposed to RF and DC oxygen plasmas indicate that the specific details of the erosion depend on the simulation facility emphasizing the advantages of the ion beam facility.

  7. Excitation of Ion Cyclotron Waves by Ion and Electron Beams in Compensated-current System

    NASA Astrophysics Data System (ADS)

    Xiang, L.; Wu, D. J.; Chen, L.

    2018-04-01

    Ion cyclotron waves (ICWs) can play important roles in the energization of plasma particles. Charged particle beams are ubiquitous in space, and astrophysical plasmas and can effectively lead to the generation of ICWs. Based on linear kinetic theory, we consider the excitation of ICWs by ion and electron beams in a compensated-current system. We also investigate the competition between reactive and kinetic instabilities. The results show that ion and electron beams both are capable of generating ICWs. For ICWs driven by ion beams, there is a critical beam velocity, v bi c , and critical wavenumber, k z c , for a fixed beam density; the reactive instability dominates the growth of ICWs when the ion-beam velocity {v}{bi}> {v}{bi}c and the wavenumber {k}z< {k}zc, and the maximal growth rate is reached at {k}z≃ 2{k}zc/3 for a given {v}{bi}> {v}{bi}c. For the slow ion beams with {v}{bi}< {v}{bi}c, the kinetic instability can provide important growth rates of ICWs. On the other hand, ICWs driven by electron beams are excited only by the reactive instability, but require a critical velocity, {v}{be}c\\gg {v}{{A}} (the Alfvén velocity). In addition, the comparison between the approximate analytical results based on the kinetic theory and the exact numerical calculation based on the fluid model demonstrates that the reactive instabilities can well agree quantitatively with the numerical results by the fluid model. Finally, some possible applications of the present results to ICWs observed in the solar wind are briefly discussed.

  8. Ion beam microtexturing and enhanced surface diffusion

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1982-01-01

    Ion beam interactions with solid surfaces are discussed with particular emphasis on microtexturing induced by the deliberate deposition of controllable amounts of an impurity material onto a solid surface while simultaneously sputtering the surface with an ion beam. Experimental study of the optical properties of microtextured surfaces is described. Measurements of both absorptance as a function of wavelength and emissivity are presented. A computer code is described that models the sputtering and ion reflection processes involved in microtexture formation.

  9. High resolution energy analyzer for broad ion beam characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanarov, V.; Hayes, A.; Yevtukhov, R.

    2008-09-15

    Characterization of the ion energy distribution function (IEDF) of low energy high current density ion beams by conventional retarding field and deflection type energy analyzers is limited due to finite ion beam emittance and beam space charge spreading inside the analyzer. These deficiencies are, to a large extent, overcome with the recent development of the variable-focusing retarding field energy analyzer (RFEA), which has a cylindrical focusing electrode preceding the planar retarding grid. The principal concept of this analyzer is conversion of a divergent charged particle beam into a quasiparallel beam before analyzing it by the planar retarding field. This allowsmore » analysis of the beam particle total kinetic energy distribution with greatly improved energy resolution. Whereas this concept was first applied to analyze 5-10 keV pulsed electron beams, the present authors have adapted it to analyze the energy distribution of a low energy ({<=}1 KeV) broad ion beam. In this paper we describe the RFEA design, which was modified from the original, mainly as required by the specifics of broad ion beam energy analysis, and the device experimental characterization and modeling results. Among the modifications, an orifice electrode placed in front of the RFEA provides better spatial resolution of the broad ion beam ion optics emission region and reduces the beam plasma density in the vicinity of analyzer entry. An electron repeller grid placed in front of the RFEA collector was found critical for suppressing secondary electrons, both those incoming to the collector and those released from its surface, and improved energy spectrum measurement repeatability and accuracy. The use of finer mesh single- and double-grid retarding structures reduces the retarding grid lens effect and improves the analyzer energy resolution and accuracy of the measured spectrum mean energy. However, additional analyzer component and configuration improvements did not further change the

  10. Intra-pulse transition between ion acceleration mechanisms in intense laser-foil interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padda, H.; King, M.; Gray, R. J.

    Multiple ion acceleration mechanisms can occur when an ultrathin foil is irradiated with an intense laser pulse, with the dominant mechanism changing over the course of the interaction. Measurement of the spatial-intensity distribution of the beam of energetic protons is used to investigate the transition from radiation pressure acceleration to transparency-driven processes. It is shown numerically that radiation pressure drives an increased expansion of the target ions within the spatial extent of the laser focal spot, which induces a radial deflection of relatively low energy sheath-accelerated protons to form an annular distribution. Through variation of the target foil thickness, themore » opening angle of the ring is shown to be correlated to the point in time transparency occurs during the interaction and is maximized when it occurs at the peak of the laser intensity profile. Corresponding experimental measurements of the ring size variation with target thickness exhibit the same trends and provide insight into the intra-pulse laser-plasma evolution.« less

  11. Computers and the design of ion beam optical systems

    NASA Astrophysics Data System (ADS)

    White, Nicholas R.

    Advances in microcomputers have made it possible to maintain a library of advanced ion optical programs which can be used on inexpensive computer hardware, which are suitable for the design of a variety of ion beam systems including ion implanters, giving excellent results. This paper describes in outline the steps typically involved in designing a complete ion beam system for materials modification applications. Two computer programs are described which, although based largely on algorithms which have been in use for many years, make possible detailed beam optical calculations using microcomputers, specifically the IBM PC. OPTICIAN is an interactive first-order program for tracing beam envelopes through complex optical systems. SORCERY is a versatile program for solving Laplace's and Poisson's equations by finite difference methods using successive over-relaxation. Ion and electron trajectories can be traced through these potential fields, and plots of beam emittance obtained.

  12. Development of an energy analyzer as diagnostic of beam-generated plasma in negative ion beam systems

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Carozzi, G.; Veltri, P.; Spolaore, M.; Cavazzana, R.; Antoni, V.; Serianni, G.

    2017-08-01

    The measurement of the plasma potential and the energy spectrum of secondary particles in the drift region of a negative ion beam offers an insight into beam-induced plasma formation and beam transport in low pressure gasses. Plasma formation in negative-ion beam systems, and the characteristics of such a plasma are of interest especially for space charge compensation, plasma formation in neutralizers, and the development of improved schemes of beam-induced plasma neutralisers for future fusion devices. All these aspects have direct implications in the ITER Heating Neutral Beam and the operation of the prototypes, SPIDER and MITICA, and also have important role in the conceptual studies for NBI systems of DEMO, while at present experimental data are lacking. In this paper we present the design and development of an ion energy analyzer to measure the beam plasma formation and space charge compensation in negative ion beams. The diagnostic is a retarding field energy analyzer (RFEA), and will measure the transverse energy spectra of plasma molecular ions. The calculations that supported the design are reported, and a method to interpret the measurements in negative ion beam systems is also proposed. Finally, the experimental results of the first test in a magnetron plasma are presented.

  13. R & D of a Gas-Filled RF Beam Profile Monitor for Intense Neutrino Beam Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yonehara, K.; Backfish, M.; Moretti, A.

    We report the R&D of a novel radiation-robust hadron beam profile monitor based on a gas-filled RF cavity for intense neutrino beam experiments. An equivalent RF circuit model was made and simulated to optimize the RF parameter in a wide beam intensity range. As a result, the maximum acceptable beam intensity in the monitor is significantly increased by using a low-quality factor RF cavity. The plan for the demonstration test is set up to prepare for future neutrino beam experiments.

  14. Accelerating Radioactive Ion Beams With REX-ISOLDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ames, F.; Emhofer, S.; Habs, D.

    2003-08-26

    The post accelerator REX-ISOLDE is installed at the ISOLDE facility at CERN, where a broad variety of radioactive ions can be addressed. Since the end of 2001 beams at the final energy of 2.2 MeV/u are available. REX-ISOLDE uses a unique system of beam bunching and charge breeding. First a Penning trap accumulates and bunches the ions, which are delivered as a quasi-continuous beam from the ISOLDE target-ion-source, and then an electron beam ion source (EBIS) charge-breeds them to a mass-to-charge ratio below 4.5. This enables a very compact design for the following LINAC, consisting of a 4 rod RFQ,more » an IH structure and three 7-gap-resonators. The later ones allow a variation of the final energy between 0.8 and 2.2 MeV/u. Although the machine is still in the commissioning phase, first physics experiments have been done with neutron rich Na and Mg isotopes and 9Li. A total efficiency of several percent has already been obtained.« less

  15. Dynamics of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.; Ji, Qing; Persaud, Arun; Seidl, Peter A.; Schenkel, Thomas

    2016-10-01

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams. Here we present experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a FEPS plasma. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Near-complete charge neutralization is established 5 μs after the driving pulse is applied to the FEPS, and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub- μs surface discharge. Measurements of current flow in the driving circuit of the FEPS suggest that plasma can be generated for tens of μs after the high voltage pulse is applied. This is confirmed by fast photography of the plasma in the 1-meter long FEPS on NDCX-II, where effective charge neutralization of the beam was achieved with the optimized FEPS timing. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0209CH11466 (PPPL) and DE-AC0205CH11231 (LBNL).

  16. Heavy ion beam-ionosphere interactions - Electron acceleration

    NASA Technical Reports Server (NTRS)

    Kaufmann, R. L.; Arnoldy, R. L.; Moore, T. E.; Kintner, P. M.; Cahill, L. J., Jr.

    1985-01-01

    Moore et al. (1982) described a number of unexpected effects which were observed during the first Argon Release Controlled Study (ARCS 1, or rocket flight 29:014). The present paper provides a description of detailed analyses of the interaction of the argon beam with the ionosphere. An important feature of the considered test was that all detectors and the Ar(+) gun remained attached to the rocket throughout the flight. It is pointed out that the most dramatic effect of ion gun operation on ARCS 1 involved large changes in the fluxes of electrons with energies below about 600 eV. The observations are discussed, taking into account the distribution functions, azimuth dependence, and electron and ion trajectories. Attention is given to the perpendicular ion beam, the parallel ion beam, the acceleration of downgoing and upgoing electrons, and aspects of wave generation.

  17. Ion source research and development at University of Jyväskylä: Studies of different plasma processes and towards the higher beam intensities.

    PubMed

    Koivisto, H; Kalvas, T; Tarvainen, O; Komppula, J; Laulainen, J; Kronholm, R; Ranttila, K; Tuunanen, J; Thuillier, T; Xie, D; Machicoane, G

    2016-02-01

    Several ion source related research and development projects are in progress at the Department of Physics, University of Jyväskylä (JYFL). The work can be divided into investigation of the ion source plasma and development of ion sources, ion beams, and diagnostics. The investigation covers the Electron Cyclotron Resonance Ion Source (ECRIS) plasma instabilities, vacuum ultraviolet (VUV) and visible light emission, photon induced electron emission, and the development of plasma diagnostics. The ion source development covers the work performed for radiofrequency-driven negative ion source, RADIS, beam line upgrade of the JYFL 14 GHz ECRIS, and the development of a new room-temperature-magnet 18 GHz ECRIS, HIISI.

  18. Dynamics of ion beam charge neutralization by ferroelectric plasma sources

    DOE PAGES

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; ...

    2016-04-27

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar + beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15V before neutralization to 0.3more » V, implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established similar to –5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-mu s surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of mu s after the high voltage pulse is applied. Lastly, it is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.« less

  19. Temperature measurements during high flux ion beam irradiations

    DOE PAGES

    Crespillo, Miguel L.; Graham, Joseph T.; Zhang, Yanwen; ...

    2016-02-16

    A systematic study of the ion beam heating effect was performed in a temperature range of –170 to 900 °C using a 10 MeV Au 3+ ion beam and a Yttria stabilized Zirconia (YSZ) sample at a flux of 5.5 × 10 12 cm –2 s –1. Different geometric configurations of beam, sample, thermocouple positioning, and sample holder were compared to understand the heat/charge transport mechanisms responsible for the observed temperature increase. The beam heating exhibited a strong dependence on the background (initial) sample temperature with the largest temperature increases occurring at cryogenic temperatures and decreasing with increasing temperature. Comparisonmore » with numerical calculations suggests that the observed heating effect is, in reality, a predominantly electronic effect and the true temperature rise is small. Furthermore, a simple model was developed to explain this electronic effect in terms of an electrostatic potential that forms during ion irradiation. Such an artificial beam heating effect is potentially problematic in thermostated ion irradiation and ion beamanalysis apparatus, as the operation of temperature feedback systems can be significantly distorted by this effect.« less

  20. Nuclear reactions with carbon-11 and oxygen-14 radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Guo, Fanqing

    Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2 x 10 8 pps intensity on target and an 14O beam of up to 3 x 104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn) 208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of alpha decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p) 14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F were fitted with an R-matrix calculation. Spins and parities were assigned to the two observed resonances. This new measurement of the 15F ground state supports the disappearance of

  1. Nuclear reactions with 11C and 14O radioactive ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Fanqing

    2004-01-01

    Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x10 8 pps intensity onmore » target and an 14O beam of up to 3x10 4 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au( 11C,xn) 208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p( 14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p( 14N,p) 14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F were fitted with an R-matrix calculation. Spins and parities were assigned to the two observed resonances. This new measurement of the 15F ground state supports the

  2. Potential biomedical applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Babbush, C. A.; Vankampen, C. L.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic pros-thesis fixtion, and dental implants.

  3. Potential biomedical applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Van Kampen, C. L.; Babbush, C. A.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic prosthesis fixation, and dental implants.

  4. Short rise time intense electron beam generator

    DOEpatents

    Olson, Craig L.

    1987-01-01

    A generator for producing an intense relativistic electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  5. Short rise time intense electron beam generator

    DOEpatents

    Olson, C.L.

    1984-03-16

    A generator for producing an intense relativisitc electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  6. Beam halo collimation in heavy ion synchrotrons

    NASA Astrophysics Data System (ADS)

    Strašík, I.; Prokhorov, I.; Boine-Frankenheim, O.

    2015-08-01

    This paper presents a systematic study of the halo collimation of ion beams from proton up to uranium in synchrotrons. The projected Facility for Antiproton and Ion Research synchrotron SIS100 is used as a reference case. The concepts are separated into fully stripped (e.g., 238U92+ ) and partially stripped (e.g., 238U28+ ) ion collimation. An application of the two-stage betatron collimation system, well established for proton accelerators, is intended also for fully stripped ions. The two-stage system consists of a primary collimator (a scattering foil) and secondary collimators (bulky absorbers). Interaction of the particles with the primary collimator (scattering, momentum losses, and nuclear interactions) was simulated by using fluka. Particle-tracking simulations were performed by using mad-x. Finally, the dependence of the collimation efficiency on the primary ion species was determined. The influence of the collimation system adjustment, lattice imperfections, and beam parameters was estimated. The concept for the collimation of partially stripped ions employs a thin stripping foil in order to change their charge state. These ions are subsequently deflected towards a dump location using a beam optical element. The charge state distribution after the stripping foil was obtained from global. The ions were tracked by using mad-x.

  7. Preliminary result of rapid solenoid for controlling heavy-ion beam parameters of laser ion source

    DOE PAGES

    Okamura, M.; Sekine, M.; Ikeda, S.; ...

    2015-03-13

    To realize a heavy ion inertial fusion driver, we have studied a possibility of laser ion source (LIS). A LIS can provide high current high brightness heavy ion beams, however it was difficult to manipulate the beam parameters. To overcome the issue, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The rapid ramping magnetic field could enhance limited time slice of the current and simultaneously the beam emittance changed accordingly. This approach may also useful to realize an ion source for HIF power plant.

  8. New ion source for KSTAR neutral beam injection system.

    PubMed

    Kim, Tae-Seong; Jeong, Seung Ho; In, Sang-Ryul

    2012-02-01

    The neutral beam injection system (NBI-1) of the KSTAR tokamak can accommodate three ion sources; however, it is currently equipped with only one prototype ion source. In the 2010 and 2011 KSTAR campaigns, this ion source supplied deuterium neutral beam power of 0.7-1.6 MW to the KSTAR plasma with a beam energy of 70-100 keV. A new ion source will be prepared for the 2012 KSTAR campaign with a much advanced performance compared with the previous one. The newly designed ion source has a very large transparency (∼56%) without deteriorating the beam optics, which is designed to deliver a 2 MW injection power of deuterium beams at 100 keV. The plasma generator of the ion source is of a horizontally cusped bucket type, and the whole inner wall, except the cathode filaments and plasma grid side, functions as an anode. The accelerator assembly consists of four multi-circular aperture grids made of copper and four electrode flanges made of aluminum alloy. The electrodes are insulated using PEEK. The ion source will be completed and tested in 2011.

  9. Atomic-scale thermocapillary flow in focused ion beam milling

    NASA Astrophysics Data System (ADS)

    Das, Kallol; Johnson, Harley; Freund, Jonathan

    2016-11-01

    Focused ion beams (FIB) offer an attractive tool for nanometer-scale manufacturing and material processing, particularly because they can be focused to a few nanometer diameter spot. This motivates their use for many applications, such as sample preparation for transmission electron microscopy (TEM), forming nanometer scale pores in thin films for DNA sequencing. Despite its widespread use, the specific mechanisms of FIB milling, especially at high ion fluxes for which significant phase change might occur, remains incompletely understood. Here we investigate the process of nanopore fabrication in thin Si films using molecular dynamics simulation where Ga+ ions are used as the focused ions. For a range of ion intensities in a realistic configuration, a recirculating melt region develops, which is seen to flow with a symmetrical pattern, counter to how it would flow were it is driven by the ion momentum flux. Such flow is potentially important for the shape and composition of the formed structures. Relevant stress scales and estimated physical properties of silicon under these extreme conditions support the importance thermocapillary effects. A continuum flow model with Marangoni forcing reproduces the flow.

  10. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  11. Visualization and analysis of pulsed ion beam energy density profile with infrared imaging

    NASA Astrophysics Data System (ADS)

    Isakova, Y. I.; Pushkarev, A. I.

    2018-03-01

    Infrared imaging technique was used as a surface temperature-mapping tool to characterize the energy density distribution of intense pulsed ion beams on a thin metal target. The technique enables the measuring of the total ion beam energy and the energy density distribution along the cross section and allows one to optimize the operation of an ion diode and control target irradiation mode. The diagnostics was tested on the TEMP-4M accelerator at TPU, Tomsk, Russia and on the TEMP-6 accelerator at DUT, Dalian, China. The diagnostics was applied in studies of the dynamics of the target cooling in vacuum after irradiation and in the experiments with target ablation. Errors caused by the target ablation and target cooling during measurements have been analyzed. For Fluke Ti10 and Fluke Ti400 infrared cameras, the technique can achieve surface energy density sensitivity of 0.05 J/cm2 and spatial resolution of 1-2 mm. The thermal imaging diagnostics does not require expensive consumed materials. The measurement time does not exceed 0.1 s; therefore, this diagnostics can be used for the prompt evaluation of the energy density distribution of a pulsed ion beam and during automation of the irradiation process.

  12. Generation of multicomponent ion beams by a vacuum arc ion source with compound cathode.

    PubMed

    Savkin, K P; Yushkov, Yu G; Nikolaev, A G; Oks, E M; Yushkov, G Yu

    2010-02-01

    This paper presents the results of time-of-flight mass spectrometry studies of the elemental and mass-to-charge state compositions of metal ion beams produced by a vacuum arc ion source with compound cathode (WC-Co(0.5), Cu-Cr(0.25), Ti-Cu(0.1)). We found that the ion beam composition agrees well with the stoichiometric composition of the cathode material from which the beam is derived, and the maximum ion charge state of the different plasma components is determined by the ionization capability of electrons within the cathode spot plasma, which is common to all components. The beam mass-to-charge state spectrum from a compound cathode features a greater fraction of multiply charged ions for those materials with lower electron temperature in the vacuum arc cathode spot, and a smaller fraction for those with higher electron temperature within the spot. We propose a potential diagram method for determination of attainable ion charge states for all components of the compound cathodes.

  13. Methods and apparatus for altering material using ion beams

    DOEpatents

    Bloomquist, Douglas D.; Buchheit, Rudy; Greenly, John B.; McIntyre, Dale C.; Neau, Eugene L.; Stinnett, Regan W.

    1996-01-01

    A method and apparatus for treating material surfaces using a repetitively pulsed ion beam. In particular, a method of treating magnetic material surfaces in order to reduce surface defects, and produce amorphous fine grained magnetic material with properties that can be tailored by adjusting treatment parameters of a pulsed ion beam. In addition to a method of surface treating materials for wear and corrosion resistance using pulsed particle ion beams.

  14. Laser-driven ion acceleration: methods, challenges and prospects

    NASA Astrophysics Data System (ADS)

    Badziak, J.

    2018-01-01

    The recent development of laser technology has resulted in the construction of short-pulse lasers capable of generating fs light pulses with PW powers and intensities exceeding 1021 W/cm2, and has laid the basis for the multi-PW lasers, just being built in Europe, that will produce fs pulses of ultra-relativistic intensities ~ 1023 - 1024 W/cm2. The interaction of such an intense laser pulse with a dense target can result in the generation of collimated beams of ions of multi-MeV to GeV energies of sub-ps time durations and of extremely high beam intensities and ion fluencies, barely attainable with conventional RF-driven accelerators. Ion beams with such unique features have the potential for application in various fields of scientific research as well as in medical and technological developments. This paper provides a brief review of state-of-the art in laser-driven ion acceleration, with a focus on basic ion acceleration mechanisms and the production of ultra-intense ion beams. The challenges facing laser-driven ion acceleration studies, in particular those connected with potential applications of laser-accelerated ion beams, are also discussed.

  15. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    DOEpatents

    Campbell, A.N.; Soden, J.M.

    1998-12-01

    An ion-beam apparatus and method for analyzing and controlling integrated circuits are disclosed. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal. 4 figs.

  16. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    DOEpatents

    Campbell, Ann N.; Soden, Jerry M.

    1998-01-01

    An ion-beam apparatus and method for analyzing and controlling integrated circuits. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal.

  17. High brilliance negative ion and neutral beam source

    DOEpatents

    Compton, Robert N.

    1991-01-01

    A high brilliance mass selected (Z-selected) negative ion and neutral beam source having good energy resolution. The source is based upon laser resonance ionization of atoms or molecules in a small gaseous medium followed by charge exchange through an alkali oven. The source is capable of producing microampere beams of an extremely wide variety of negative ions, and milliampere beams when operated in the pulsed mode.

  18. Improvement of uniformity of the negative ion beams by tent-shaped magnetic field in the JT-60 negative ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Masafumi, E-mail: yoshida.masafumi@jaea.go.jp; Hanada, Masaya; Kojima, Atsushi

    2014-02-15

    Non-uniformity of the negative ion beams in the JT-60 negative ion source with the world-largest ion extraction area was improved by modifying the magnetic filter in the source from the plasma grid (PG) filter to a tent-shaped filter. The magnetic design via electron trajectory calculation showed that the tent-shaped filter was expected to suppress the localization of the primary electrons emitted from the filaments and created uniform plasma with positive ions and atoms of the parent particles for the negative ions. By modifying the magnetic filter to the tent-shaped filter, the uniformity defined as the deviation from the averaged beammore » intensity was reduced from 14% of the PG filter to ∼10% without a reduction of the negative ion production.« less

  19. Dual-beam focused ion beam/electron microscopy processing and metrology of redeposition during ion-surface 3D interactions, from micromachining to self-organized picostructures.

    PubMed

    Moberlychan, Warren J

    2009-06-03

    Focused ion beam (FIB) tools have become a mainstay for processing and metrology of small structures. In order to expand the understanding of an ion impinging a surface (Sigmund sputtering theory) to our processing of small structures, the significance of 3D boundary conditions must be realized. We consider ion erosion for patterning/lithography, and optimize yields using the angle of incidence and chemical enhancement, but we find that the critical 3D parameters are aspect ratio and redeposition. We consider focused ion beam sputtering for micromachining small holes through membranes, but we find that the critical 3D considerations are implantation and redeposition. We consider ion beam self-assembly of nanostructures, but we find that control of the redeposition by ion and/or electron beams enables the growth of nanostructures and picostructures.

  20. Ion Beam Characterization of a NEXT Multi-Thruster Array Plume

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Foster, John E.; Patterson, Michael J.; Diaz, Esther M.; Van Noord, Jonathan L.; McEwen, Heather K.

    2006-01-01

    Three operational, engineering model, 7-kW ion thrusters and one instrumented, dormant thruster were installed in a cluster array in a large vacuum facility at NASA Glenn Research Center. A series of engineering demonstration tests were performed to evaluate the system performance impacts of operating various multiple-thruster configurations in an array. A suite of diagnostics was installed to investigate multiple-thruster operation impact on thruster performance and life, thermal interactions, and alternative system modes and architectures. The ion beam characterization included measuring ion current density profiles and ion energy distribution with Faraday probes and retarding potential analyzers, respectively. This report focuses on the ion beam characterization during single thruster operation, multiple thruster operation, various neutralizer configurations, and thruster gimbal articulation. Comparison of beam profiles collected during single and multiple thruster operation demonstrated the utility of superimposing single engine beam profiles to predict multi-thruster beam profiles. High energy ions were detected in the region 45 off the thruster axis, independent of thruster power, number of operating thrusters, and facility background pressure, which indicated that the most probable ion energy was not effected by multiple-thruster operation. There were no significant changes to the beam profiles collected during alternate thruster-neutralizer configurations, therefore supporting the viability of alternative system configuration options. Articulation of one thruster shifted its beam profile, whereas the beam profile of a stationary thruster nearby did not change, indicating there were no beam interactions which was consistent with the behavior of a collisionless beam expansion.

  1. Multiple ion beam irradiation for the study of radiation damage in materials

    NASA Astrophysics Data System (ADS)

    Taller, Stephen; Woodley, David; Getto, Elizabeth; Monterrosa, Anthony M.; Jiao, Zhijie; Toader, Ovidiu; Naab, Fabian; Kubley, Thomas; Dwaraknath, Shyam; Was, Gary S.

    2017-12-01

    The effects of transmutation produced helium and hydrogen must be included in ion irradiation experiments to emulate the microstructure of reactor irradiated materials. Descriptions of the criteria and systems necessary for multiple ion beam irradiation are presented and validated experimentally. A calculation methodology was developed to quantify the spatial distribution, implantation depth and amount of energy-degraded and implanted light ions when using a thin foil rotating energy degrader during multi-ion beam irradiation. A dual ion implantation using 1.34 MeV Fe+ ions and energy-degraded D+ ions was conducted on single crystal silicon to benchmark the dosimetry used for multi-ion beam irradiations. Secondary Ion Mass Spectroscopy (SIMS) analysis showed good agreement with calculations of the peak implantation depth and the total amount of iron and deuterium implanted. The results establish the capability to quantify the ion fluence from both heavy ion beams and energy-degraded light ion beams for the purpose of using multi-ion beam irradiations to emulate reactor irradiated microstructures.

  2. Ion traps for precision experiments at rare-isotope-beam facilities

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Anna

    2016-09-01

    Ion traps first entered experimental nuclear physics when the ISOLTRAP team demonstrated Penning trap mass spectrometry of radionuclides. From then on, the demand for ion traps has grown at radioactive-ion-beam (RIB) facilities since beams can be tailored for the desired experiment. Ion traps have been deployed for beam preparation, from bunching (thereby allowing time coincidences) to beam purification. Isomerically pure beams needed for nuclear-structure investigations can be prepared for trap-assisted or in-trap decay spectroscopy. The latter permits studies of highly charged ions for stellar evolution, which would be impossible with traditional experimental nuclear-physics methods. Moreover, the textbook-like conditions and advanced ion manipulation - even of a single ion - permit high-precision experiments. Consequently, the most accurate and precise mass measurements are now performed in Penning traps. After a brief introduction to ion trapping, I will focus on examples which showcase the versatility and utility of the technique at RIB facilities. I will demonstrate how this atomic-physics technique has been integrated into nuclear science, accelerator physics, and chemistry. DOE.

  3. Monte Carlo simulations of nanoscale focused neon ion beam sputtering.

    PubMed

    Timilsina, Rajendra; Rack, Philip D

    2013-12-13

    A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed.

  4. Radiation Damage in Si Diodes from Short, Intense Ion Pulses

    NASA Astrophysics Data System (ADS)

    de Leon, S. J.; Ludewigt, B. A.; Persaud, A.; Seidl, P. A.; Schenkel, T.

    2017-10-01

    The Neutralized Drift Compression Experiment (NDCX-II) at Berkeley Lab is an induction accelerator studying the effects that concentrated ion beams have on various materials. Charged particle radiation damage was the focus of this research - we have characterized a series of Si diodes using an electrometer and calibrated the diodes response using an 241Am alpha source, both before and after exposing the diodes to 1 MeV He ions in the accelerator. The key part here is that the high intensity pulses from NDCX-II (>1010 ions/cm2 per pulse in <20 ns) enabled a systematic study of dose-rate effects. An example of a dose-rate effect in Si diodes is increased accumulation of defects due to damage from ions that bombard them in a short pulse. This accumulated damage leads to a reduction in the charge collection efficiency and an increase in leakage current. Testing dose-rate effects in Si diodes and other semiconductors is a crucial step in designing sustainable instruments that can encounter high doses of radiation, such as high intensity accelerators, fusion energy experiments and space applications and results from short pulses can inform models of radiation damage evolution. This work was supported by the Office of Science of the US Department of Energy under contract DE-AC0205CH11231.

  5. Electron cyclotron resonance ion source experience at the Heidelberg Ion Beam Therapy Centera)

    NASA Astrophysics Data System (ADS)

    Winkelmann, T.; Cee, R.; Haberer, T.; Naas, B.; Peters, A.; Scheloske, S.; Spädtke, P.; Tinschert, K.

    2008-02-01

    Radiotherapy with heavy ions is an upcoming cancer treatment method with to date unparalleled precision. It associates higher control rates particularly for radiation resistant tumor species with reduced adverse effects compared to conventional photon therapy. The accelerator beam lines and structures of the Heidelberg Ion Beam Therapy Center (HIT) have been designed under the leadership of GSI, Darmstadt with contributions of the IAP Frankfurt. Currently, the accelerator is under commissioning, while the injector linac has been completed. When the patient treatment begins in 2008, HIT will be the first medical heavy ion accelerator in Europe. This presentation will provide an overview about the project, with special attention given to the 14.5GHz electron cyclotron resonance (ECR) ion sources in operation with carbon, hydrogen, helium, and oxygen, and the experience of one year of continuous operation. It also displays examples for beam emittances, measured in the low energy beam transport. In addition to the outlook of further developments at the ECR ion sources for a continuously stable operation, this paper focuses on some of the technical processings of the past year.

  6. A neutron beam facility for radioactive ion beams and other applications

    NASA Astrophysics Data System (ADS)

    Tecchio, L. B.

    1999-06-01

    In the framework of the Italian participation in the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involved in the design and construction of same prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has already been supported financially and the work is in progress. In this context LNL has proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by means of the ISOL method. The final goal is the production of neutron rich RIBs with masses ranging from 30 to 150 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is expected to be developed in about 10 years from new and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). During that period the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production and to the neutron physics, is proposed. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed. Besides the RIBs production, neutron beams for the BNCT applications and neutron physics are also planned.

  7. The Electron Beam Ion Source (EBIS)

    ScienceCinema

    Brookhaven Lab

    2017-12-09

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  8. Spatial Studies of Ion Beams in an Expanding Plasma

    NASA Astrophysics Data System (ADS)

    Aguirre, Evan; Good, Timothy; Scime, Earl; Thompson, Derek

    2017-10-01

    We report spatially resolved perpendicular and parallel ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v 8 km/s flowing downstream that is confined to the center of the discharge. The ion beam is confined to within a few centimeters radially and is measurable for tens of centimeters axially before the LIF signal fades, likely a result of metastable quenching of the beam ions. The axial ion beam velocity slows in agreement with collisional processes. The perpendicular IVDFs show an ion population with a radially outward flow that increases with radial location. The DC electric field, electron temperature, and the plasma density in the double layer plume are all consistent with magnetic field aligned structures. The upstream and downstream electric field measurements show clear evidence of an ion hole that maps along the magnetic field at the edge of the plasma. Current theories and simulations of double layers, which are one-dimensional, completely miss these critically important two-dimensional features.

  9. A comparative study on low-energy ion beam and neutralized beam modifications of naked DNA and biological effect on mutation

    NASA Astrophysics Data System (ADS)

    Sarapirom, S.; Thongkumkoon, P.; Prakrajang, K.; Anuntalabhochai, S.; Yu, L. D.

    2012-02-01

    DNA conformation change or damage induced by low-energy ion irradiation has been of great interest owing to research developments in ion beam biotechnology and ion beam application in biomedicine. Mechanisms involved in the induction of DNA damage may account for effect from implanting ion charge. In order to check this effect, we used both ion beam and neutralized beam at keV energy to bombard naked DNA. Argon or nitrogen ion beam was generated and extracted from a radiofrequency (RF) ion source and neutralized by microwave-driven plasma in the beam path. Plasmid DNA pGFP samples were irradiated with the ion or neutralized beam in vacuum, followed by gel electrophoresis to observe changes in the DNA conformations. It was revealed that the ion charge played a certain role in inducing DNA conformation change. The subsequent DNA transfer into bacteria Escherichia coli ( E. coli) for mutation analysis indicated that the charged ion beam induced DNA change had high potential in mutation induction while neutralized beam did not. The intrinsic reason was attributed to additional DNA deformation and contortion caused by ion charge exchange effect so that the ion beam induced DNA damage could hardly be completely repaired, whereas the neutralized beam induced DNA change could be more easily recoverable owing to absence of the additional DNA deformation and contortion.

  10. Studies on ion scattering and sputtering processes relevant to ion beam sputter deposition of multicomponent thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auciello, O.; Ameen, M.S.; Kingon, A.I.

    1989-01-01

    Results from computer simulation and experiments on ion scattering and sputtering processes in ion beam sputter deposition of high Tc superconducting and ferroelectric thin films are presented. It is demonstrated that scattering of neutralized ions from the targets can result in undesirable erosion of, and inert gas incorporation in, the growing films, depending on the ion/target atom ass ratio and ion beam angle of incidence/target/substrate geometry. The studies indicate that sputtering Kr{sup +} or Xe{sup +} ions is preferable to the most commonly used Ar{sup +} ions, since the undesirable phenomena mentioned above are minimized for the first two ions.more » These results are used to determine optimum sputter deposition geometry and ion beam parameters for growing multicomponent oxide thin films by ion beam sputter-deposition. 10 refs., 5 figs.« less

  11. ARCS 3 ionospheric artificial argon ion beam injections - Waves near the heavy ion gyrofrequencies

    NASA Technical Reports Server (NTRS)

    Erlandson, R. E.; Cahill, L. J., Jr.; Kaufmann, R. L.; Arnoldy, R. L.; Pollock, C. J.

    1989-01-01

    Low-frequency electric field data below the proton gyrofrequency are presented for the duration of the argon ion beam experiment conducted as part of the Argon Release for Controlled Studies (ARCS) program. An argon ion beam was injected from the subpayload antiparallel or perpendicular to the magnetic field at altitudes from 250 to 405 km. During the injections, the wave spectra were broadband near the subpayload and narrow-band near heavy ion gyrofrequencies at perpendicular separation distances between 42 and 254 m. It is suggested that the narrow-band waves are associated with both the perpendicular argon ion beam and an unexpected flux of low-energy ions which peaked in energy near 15 eV and pitch angle near 90 deg with respect to the magnetic field.

  12. Compact electrostatic beam optics for multi-element focused ion beams: simulation and experiments.

    PubMed

    Mathew, Jose V; Bhattacharjee, Sudeep

    2011-01-01

    Electrostatic beam optics for a multi-element focused ion beam (MEFIB) system comprising of a microwave multicusp plasma (ion) source is designed with the help of two widely known and commercially available beam simulation codes: AXCEL-INP and SIMION. The input parameters to the simulations are obtained from experiments carried out in the system. A single and a double Einzel lens system (ELS) with and without beam limiting apertures (S) have been investigated. For a 1 mm beam at the plasma electrode aperture, the rms emittance of the focused ion beam is found to reduce from ∼0.9 mm mrad for single ELS to ∼0.5 mm mrad for a double ELS, when S of 0.5 mm aperture size is employed. The emittance can be further improved to ∼0.1 mm mrad by maintaining S at ground potential, leading to reduction in beam spot size (∼10 μm). The double ELS design is optimized for different electrode geometrical parameters with tolerances of ±1 mm in electrode thickness, electrode aperture, inter electrode distance, and ±1° in electrode angle, providing a robust design. Experimental results obtained with the double ELS for the focused beam current and spot size, agree reasonably well with the simulations.

  13. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source.

    PubMed

    Roychowdhury, P; Mishra, L; Kewlani, H; Patil, D S; Mittal, K C

    2014-03-01

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20-40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, -2 to -4 kV, and 0 kV, respectively. The total ion beam current of 30-40 mA is recorded on Faraday cup at 40 keV of beam energy at 600-1000 W of microwave power, 800-1000 G axial magnetic field and (1.2-3.9) × 10(-3) mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  14. A review of studies on ion thruster beam and charge-exchange plasmas

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1982-01-01

    Various experimental and analytical studies of the primary beam and charge-exchange plasmas of ion thrusters are reviewed. The history of plasma beam research is recounted, emphasizing experiments on beam neutralization, expansion of the beam, and determination of beam parameters such as electron temperature, plasma density, and plasma potential. The development of modern electron bombardment ion thrusters is treated, detailing experimental results. Studies on charge-exchange plasma are discussed, showing results such as the relationship between neutralizer emission current and plasma beam potential, ion energies as a function of neutralizer bias, charge-exchange ion current collected by an axially moving Faraday cup-RPA for 8-cm and 30-cm ion thrusters, beam density and potential data from a 15-cm ion thruster, and charge-exchange ion flow around a 30-cm thruster. A 20-cm thruster electrical configuration is depicted and facility effects are discussed. Finally, plasma modeling is covered in detail for plasma beam and charge-exchange plasma.

  15. Beam ion susceptibility to loss in NSTX-U plasmas

    NASA Astrophysics Data System (ADS)

    Darrow, Douglass; Fredrickson, Eric; Podesta, Mario; Liu, Deyong; White, Roscoe

    2016-10-01

    NSTX-U has operated with three additional neutral beam sources whose tangency radii of 1.1, 1.2, and 1.3 m are significantly larger than the 0.5, 0.6, and 0.7 m tangency radii of the neutral beams previously used in NSTX. These latter beams have also be retained for NSTX-U. Here, we present an estimate of the susceptibility of the beam ions from all the various sources to loss under a range of NSTX-U plasma conditions. This estimation is based upon TRANSP calculations of beam ion deposition in phase space, and the location of the FLR-corrected loss boundary in that phase space. Since losses are often observed at the injection energy, a simple measure of loss susceptibility is the change in canonical toroidal momentum required to move beam ions from their deposition point to the loss boundary, as a function of magnetic moment. To augment this simple estimate, we intend to report some associated transport coefficients of beam ions due to AE activity. Work supported by U.S. DOE DE-AC0209CH11466, DE-FG02-06ER54867, and DE-FG03-02ER54681.

  16. Rhenium ion beam for implantation into semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulevoy, T. V.; Seleznev, D. N.; Alyoshin, M. E.

    2012-02-15

    At the ion source test bench in Institute for Theoretical and Experimental Physics the program of ion source development for semiconductor industry is in progress. In framework of the program the Metal Vapor Vacuum Arc ion source for germanium and rhenium ion beam generation was developed and investigated. It was shown that at special conditions of ion beam implantation it is possible to fabricate not only homogenous layers of rhenium silicides solid solutions but also clusters of this compound with properties of quantum dots. At the present moment the compound is very interesting for semiconductor industry, especially for nanoelectronics andmore » nanophotonics, but there is no very developed technology for production of nanostructures (for example quantum sized structures) with required parameters. The results of materials synthesis and exploration are presented.« less

  17. First experimental-based characterization of oxygen ion beam depth dose distributions at the Heidelberg Ion-Beam Therapy Center

    NASA Astrophysics Data System (ADS)

    Kurz, C.; Mairani, A.; Parodi, K.

    2012-08-01

    Over the last decades, the application of proton and heavy-ion beams to external beam radiotherapy has rapidly increased. Due to the favourable lateral and depth dose profile, the superposition of narrow ion pencil beams may enable a highly conformal dose delivery to the tumour, with better sparing of the surrounding healthy tissue in comparison to conventional radiation therapy with photons. To fully exploit the promised clinical advantages of ion beams, an accurate planning of the patient treatments is required. The clinical treatment planning system (TPS) at the Heidelberg Ion-Beam Therapy Center (HIT) is based on a fast performing analytical algorithm for dose calculation, relying, among others, on laterally integrated depth dose distributions (DDDs) simulated with the FLUKA Monte Carlo (MC) code. Important input parameters of these simulations need to be derived from a comparison of the simulated DDDs with measurements. In this work, the first measurements of 16O ion DDDs at HIT are presented with a focus on the determined Bragg peak positions and the understanding of factors influencing the shape of the distributions. The measurements are compared to different simulation approaches aiming to reproduce the acquired data at best. A simplified geometrical model is first used to optimize important input parameters, not known a priori, in the simulations. This method is then compared to a more realistic, but also more time-consuming simulation approach better accounting for the experimental set-up and the measuring process. The results of this work contributed to a pre-clinical oxygen ion beam database, which is currently used by a research TPS for corresponding radio-biological cell experiments. A future extension to a clinical database used by the clinical TPS at HIT is foreseen. As a side effect, the performed investigations showed that the typical water equivalent calibration approach of experimental data acquired with water column systems leads to slight

  18. Pump-probe studies of radiation induced defects and formation of warm dense matter with pulsed ion beams

    NASA Astrophysics Data System (ADS)

    Schenkel, T.; Persaud, A.; Gua, H.; Seidl, P. A.; Waldron, W. L.; Gilson, E. P.; Kaganovich, I. D.; Davidson, R. C.; Friedman, A.; Barnard, J. J.; Minior, A. M.

    2014-10-01

    We report results from the 2nd generation Neutralized Drift Compression Experiment at Berkeley Lab. NDCX-II is a pulsed, linear induction accelerator designed to drive thin foils to warm dense matter (WDM) states with peak temperatures of ~ 1 eV using intense, short pulses of 1.2 MeV lithium ions. Tunability of the ion beam enables pump-probe studies of radiation effects in solids as a function of excitation density, from isolated collision cascades to the onset of phase-transitions and WDM. Ion channeling is an in situ diagnostic of damage evolution during ion pulses with a sensitivity of <0.1% displacements per atom. We will report results from damage evolution studies in thin silicon crystals with Li + and K + beams. Detection of channeled ions tracks lattice disorder evolution with a resolution of ~ 1 ns using fast current measurements. We will discuss pump-probe experiments with pulsed ion beams and the development of diagnostics for WDM and multi-scale (ms to fs) access to the materials physics of collision cascades e.g. in fusion reactor materials. Work performed under auspices of the US DOE under Contract No. DE-AC02-05CH11231.

  19. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  20. H- Ion Sources for High Intensity Proton Drivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rolland Paul; Dudnikov, Vadim

    2015-02-20

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H + and H - ion generation around 3 to 5 mA/cm 2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm 2 per kW of RF power at 13.56more » MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.« less

  1. Three dimensional reconstruction of therapeutic carbon ion beams in phantoms using single secondary ion tracks

    NASA Astrophysics Data System (ADS)

    Reinhart, Anna Merle; Spindeldreier, Claudia Katharina; Jakubek, Jan; Martišíková, Mária

    2017-06-01

    Carbon ion beam radiotherapy enables a very localised dose deposition. However, even small changes in the patient geometry or positioning errors can significantly distort the dose distribution. A live, non-invasive monitoring system of the beam delivery within the patient is therefore highly desirable, and could improve patient treatment. We present a novel three-dimensional method for imaging the beam in the irradiated object, exploiting the measured tracks of single secondary ions emerging under irradiation. The secondary particle tracks are detected with a TimePix stack—a set of parallel pixelated semiconductor detectors. We developed a three-dimensional reconstruction algorithm based on maximum likelihood expectation maximization. We demonstrate the applicability of the new method in the irradiation of a cylindrical PMMA phantom of human head size with a carbon ion pencil beam of {226} MeV u-1. The beam image in the phantom is reconstructed from a set of nine discrete detector positions between {-80}^\\circ and {50}^\\circ from the beam axis. Furthermore, we demonstrate the potential to visualize inhomogeneities by irradiating a PMMA phantom with an air gap as well as bone and adipose tissue surrogate inserts. We successfully reconstructed a three-dimensional image of the treatment beam in the phantom from single secondary ion tracks. The beam image corresponds well to the beam direction and energy. In addition, cylindrical inhomogeneities with a diameter of {2.85} cm and density differences down to {0.3} g cm-3 to the surrounding material are clearly visualized. This novel three-dimensional method to image a therapeutic carbon ion beam in the irradiated object does not interfere with the treatment and requires knowledge only of single secondary ion tracks. Even with detectors with only a small angular coverage, the three-dimensional reconstruction of the fragmentation points presented in this work was found to be feasible.

  2. Three dimensional reconstruction of therapeutic carbon ion beams in phantoms using single secondary ion tracks.

    PubMed

    Reinhart, Anna Merle; Spindeldreier, Claudia Katharina; Jakubek, Jan; Martišíková, Mária

    2017-06-21

    Carbon ion beam radiotherapy enables a very localised dose deposition. However, even small changes in the patient geometry or positioning errors can significantly distort the dose distribution. A live, non-invasive monitoring system of the beam delivery within the patient is therefore highly desirable, and could improve patient treatment. We present a novel three-dimensional method for imaging the beam in the irradiated object, exploiting the measured tracks of single secondary ions emerging under irradiation. The secondary particle tracks are detected with a TimePix stack-a set of parallel pixelated semiconductor detectors. We developed a three-dimensional reconstruction algorithm based on maximum likelihood expectation maximization. We demonstrate the applicability of the new method in the irradiation of a cylindrical PMMA phantom of human head size with a carbon ion pencil beam of [Formula: see text] MeV u -1 . The beam image in the phantom is reconstructed from a set of nine discrete detector positions between [Formula: see text] and [Formula: see text] from the beam axis. Furthermore, we demonstrate the potential to visualize inhomogeneities by irradiating a PMMA phantom with an air gap as well as bone and adipose tissue surrogate inserts. We successfully reconstructed a three-dimensional image of the treatment beam in the phantom from single secondary ion tracks. The beam image corresponds well to the beam direction and energy. In addition, cylindrical inhomogeneities with a diameter of [Formula: see text] cm and density differences down to [Formula: see text] g cm -3 to the surrounding material are clearly visualized. This novel three-dimensional method to image a therapeutic carbon ion beam in the irradiated object does not interfere with the treatment and requires knowledge only of single secondary ion tracks. Even with detectors with only a small angular coverage, the three-dimensional reconstruction of the fragmentation points presented in this work was

  3. Analysis of Neutron Production in Passively Scattered Ion-Beam Therapy.

    PubMed

    Heo, Seunguk; Yoo, Seunghoon; Song, Yongkeun; Kim, Eunho; Shin, Jaeik; Han, Soorim; Jung, Wongyun; Nam, Sanghee; Lee, Rena; Lee, Kitae; Cho, Sungho

    2017-07-01

    A new treatment facility for heavy ion therapy since 2010 was constructed. In the broad beam, a range shifter, ridge filter and multi leaf collimator (MLC) for the generation of the spread-out Bragg peak is used. In this case, secondary neutrons produced by the interactions of the ion field with beam-modifying devices (e.g. double-scattering system, beam shaping collimators and range compensators) are very important for patient safety. Therefore, these components must be carefully examined in the context of secondary neutron yield and associated secondary cancer risk. In this article, Monte Carlo simulation has been carried out with the FLUktuierende KAskade particle transport code, the fluence and distribution of neutron generation and the neutron dose equivalent from the broad beam components are compared using carbon and proton beams. As a result, it is confirmed that the yield of neutron production using a carbon beam from all components of the broad beam was higher than using a proton beam. The ambient dose by neutrons per heavy ion and proton ion from the MLC surface was 0.12-0.18 and 0.0067-0.0087 pSv, respectively, which shows that heavy ions generate more neutrons than protons. However, ambient dose per treatment 2 Gy, which means physical dose during treatment by ion beam, is higher than carbon beam because proton therapy needs more beam flux to make 2-Gy prescription dose. Therefore, the neutron production from the MLC, which is closed to the patient, is a very important parameter for patient safety. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Correlation of ion and beam current densities in Kaufman thrusters.

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1973-01-01

    In the absence of direct impingement erosion, electrostatic thruster accelerator grid lifetime is defined by the charge exchange erosion that occurs at peak values of the ion beam current density. In order to maximize the thrust from an engine with a specified grid lifetime, the ion beam current density profile should therefore be as flat as possible. Knauer (1970) has suggested this can be achieved by establishing a radial plasma uniformity within the thruster discharge chamber; his tests with the radial field thruster provide an example of uniform plasma properties within the chamber and a flat ion beam profile occurring together. It is shown that, in particular, the ion density profile within the chamber determines the beam current density profile, and that a uniform ion density profile at the screen grid end of the discharge chamber should lead to a flat beam current density profile.

  5. Ion beam sputtering of fluoropolymers. [etching polymer films and target surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Ion beam sputter processing rates as well as pertinent characteristics of etched targets and films are described. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Sputter target and film characteristics documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs are included.

  6. In situ electrostatic characterisation of ion beams in the region of ion acceleration

    NASA Astrophysics Data System (ADS)

    Bennet, Alexander; Charles, Christine; Boswell, Rod

    2018-02-01

    In situ and ex situ techniques have been used to measure directional ion beams created by a sharp axial potential drop in low pressure expanding plasmas. Although Retarding Field Energy Analysers (RFEAs) are the most convenient technique to measure the ion velocities and plasma potentials along with the plasma density, they are bulky and are contained in a grounded shield that may perturb the electric potential profile of the expanding plasma. In principle, ex situ techniques produce a more reliable measurement and Laser Induced Fluorescence spectroscopy (LIF) has previously been used to characterise the spatial velocity profile of ion beams in the same region of acceleration for a range of pressures. Here, satisfactory agreement between the ion velocity profiles measured by LIF and RFEA techniques has allowed the RFEA method to be confidently used to probe the ion beam characteristics in the regions of high gradients in plasma density and DC electric fields which have previously proven difficult.

  7. Favorable target positions for intense laser acceleration of electrons in hydrogen-like, highly-charged ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pi, Liang-Wen; Starace, Anthony F.; Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030

    2015-09-15

    Classical relativistic Monte Carlo simulations of petawatt laser acceleration of electrons bound initially in hydrogen-like, highly-charged ions show that both the angles and energies of the laser-accelerated electrons depend on the initial ion positions with respect to the laser focus. Electrons bound in ions located after the laser focus generally acquire higher (≈GeV) energies and are ejected at smaller angles with respect to the laser beam. Our simulations assume a tightly-focused linearly-polarized laser pulse with intensity approaching 10{sup 22 }W/cm{sup 2}. Up to fifth order corrections to the paraxial approximation of the laser field in the focal region are taken intomore » account. In addition to the laser intensity, the Rayleigh length in the focal region is shown to play a significant role in maximizing the final energy of the accelerated electrons. Results are presented for both Ne{sup 9+} and Ar{sup 17+} target ions.« less

  8. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si ++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm 2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si ++ ions and 60 keV Li + ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  9. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    DOE PAGES

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; ...

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si ++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm 2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si ++ ions and 60 keV Li + ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  10. The Radioactive Ion Beams in Brazil (RIBRAS) facility. Description, program, main results, future plans

    NASA Astrophysics Data System (ADS)

    Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.

    2014-08-01

    RIBRAS (Radioactive Ion Beams in Brazil) is a facility installed at the Institute of Physics of the University of São Paulo (IFUSP), Brazil. The RIBRAS system consists of two superconducting solenoids and uses the "in-flight method" to produce radioactive ion beams using the primary beam provided by the 8UD Pelletron Tandem of IFUSP. The ion beams produced so far by RIBRAS are 6He, 8Li, 7Be, 10Be, 8B, 12B with intensities that can vary from 104 to 106 pps. Initially the experimental program covered the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo (6He and 8B projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, has also been included in our experimental program. Also, transfer reactions of astrophysical interest and fusion reactions induced by halo nuclei are part of the near-future research program. Our recent results on elastic scattering, alpha-particle production and total reaction cross sections, as well as the resonant elastic and transfer reactions, are presented. Our plans for the near future are related to the installation of a new beam line and a cave for gamma-ray detection. We intend to place in operation a large area neutron detector available in our laboratory. The long-range plans could be the move of the RIBRAS system to the more energetic beam line of the LINAC post-accelerator (10MeV/nucleon primary beams) still in construction in our laboratory.

  11. Non-invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions.

    PubMed

    Gwosch, K; Hartmann, B; Jakubek, J; Granja, C; Soukup, P; Jäkel, O; Martišíková, M

    2013-06-07

    Radiotherapy with narrow scanned carbon ion beams enables a highly accurate treatment of tumours while sparing the surrounding healthy tissue. Changes in the patient's geometry can alter the actual ion range in tissue and result in unfavourable changes in the dose distribution. Consequently, it is desired to verify the actual beam delivery within the patient. Real-time and non-invasive measurement methods are preferable. Currently, the only technically feasible method to monitor the delivered dose distribution within the patient is based on tissue activation measurements by means of positron emission tomography (PET). An alternative monitoring method based on tracking of prompt secondary ions leaving a patient irradiated with carbon ion beams has been previously suggested. It is expected to help in overcoming the limitations of the PET-based technique like physiological washout of the beam induced activity, low signal and to allow for real-time measurements. In this paper, measurements of secondary charged particle tracks around a head-sized homogeneous PMMA phantom irradiated with pencil-like carbon ion beams are presented. The investigated energies and beam widths are within the therapeutically used range. The aim of the study is to deduce properties of the primary beam from the distribution of the secondary charged particles. Experiments were performed at the Heidelberg Ion Beam Therapy Center, Germany. The directions of secondary charged particles emerging from the PMMA phantom were measured using an arrangement of two parallel pixelated silicon detectors (Timepix). The distribution of the registered particle tracks was analysed to deduce its dependence on clinically important beam parameters: beam range, width and position. Distinct dependencies of the secondary particle tracks on the properties of the primary carbon ion beam were observed. In the particular experimental set-up used, beam range differences of 1.3 mm were detectable. In addition, variations in

  12. Ion beam figuring of silicon aspheres

    NASA Astrophysics Data System (ADS)

    Demmler, Marcel; Zeuner, Michael; Luca, Alfonz; Dunger, Thoralf; Rost, Dirk; Kiontke, Sven; Krüger, Marcus

    2011-03-01

    Silicon lenses are widely used for infrared applications. Especially for portable devices the size and weight of the optical system are very important factors. The use of aspherical silicon lenses instead of spherical silicon lenses results in a significant reduction of weight and size. The manufacture of silicon lenses is more challenging than the manufacture of standard glass lenses. Typically conventional methods like diamond turning, grinding and polishing are used. However, due to the high hardness of silicon, diamond turning is very difficult and requires a lot of experience. To achieve surfaces of a high quality a polishing step is mandatory within the manufacturing process. Nevertheless, the required surface form accuracy cannot be achieved through the use of conventional polishing methods because of the unpredictable behavior of the polishing tools, which leads to an unstable removal rate. To overcome these disadvantages a method called Ion Beam Figuring can be used to manufacture silicon lenses with high surface form accuracies. The general advantage of the Ion Beam Figuring technology is a contactless polishing process without any aging effects of the tool. Due to this an excellent stability of the removal rate without any mechanical surface damage is achieved. The related physical process - called sputtering - can be applied to any material and is therefore also applicable to materials of high hardness like Silicon (SiC, WC). The process is realized through the commercially available ion beam figuring system IonScan 3D. During the process, the substrate is moved in front of a focused broad ion beam. The local milling rate is controlled via a modulated velocity profile, which is calculated specifically for each surface topology in order to mill the material at the associated positions to the target geometry. The authors will present aspherical silicon lenses with very high surface form accuracies compared to conventionally manufactured lenses.

  13. Excitation of transverse dipole and quadrupole modes in a pure ion plasma in a linear Paul trap to study collective processes in intense beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilson, Erik P.; Davidson, Ronald C.; Efthimion, Philip C.

    Transverse dipole and quadrupole modes have been excited in a one-component cesium ion plasma trapped in the Paul Trap Simulator Experiment (PTSX) in order to characterize their properties and understand the effect of their excitation on equivalent long-distance beam propagation. The PTSX device is a compact laboratory Paul trap that simulates the transverse dynamics of a long, intense charge bunch propagating through an alternating-gradient transport system by putting the physicist in the beam's frame of reference. A pair of arbitrary function generators was used to apply trapping voltage waveform perturbations with a range of frequencies and, by changing which electrodesmore » were driven with the perturbation, with either a dipole or quadrupole spatial structure. The results presented in this paper explore the dependence of the perturbation voltage's effect on the perturbation duration and amplitude. Perturbations were also applied that simulate the effect of random lattice errors that exist in an accelerator with quadrupole magnets that are misaligned or have variance in their field strength. The experimental results quantify the growth in the equivalent transverse beam emittance that occurs due to the applied noise and demonstrate that the random lattice errors interact with the trapped plasma through the plasma's internal collective modes. Coherent periodic perturbations were applied to simulate the effects of magnet errors in circular machines such as storage rings. The trapped one component plasma is strongly affected when the perturbation frequency is commensurate with a plasma mode frequency. The experimental results, which help to understand the physics of quiescent intense beam propagation over large distances, are compared with analytic models.« less

  14. Radioactive ion beams at ISOLDE/CERN recent developments and perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georg, U.; Catherall, R.; Giles, T.

    1999-11-16

    Since the move of ISOLDE from CERN's synchrocyclotron (SC) to the Proton Synchrotron Booster (PSB) in 1992 extensive work has been devoted to the development of new beams, i.e. the production of new isotopes, beams of higher intensity and the ionization of further elements. Most of these developments were driven by the particular needs of the physics community proposing new experiments. The main achievements were the adaption of liquid metal targets to the pulsed proton beam to prevent shockwaves and splashing inside the target container and systematic studies on the time structure of the release of the isotopes from themore » target. Furthermore the work on laser ion-sources already started at ISOLDE-2 was continued, the so-called RIST target was developed, and most recently first tests on the isotope production while increasing the proton energy from 1 GeV to 1.4 GeV were done. The latter topics are discussed in this paper.« less

  15. Radioactive Ion Beams at ISOLDE/CERN Recent Developments and Perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U. Georg; J.R.J. Bennett; U.C. Bergmann

    1999-12-31

    Since the move of ISOLDE from CERN's synchrocyclotron (SC) to the Proton Synchrotron Booster (PSB) in 1992 extensive work has been devoted to the development of new beams, i.e. the production of new isotopes, beams of higher intensity and the ionization of further elements. Most of these developments were driven by the particular needs of the physics community proposing new experiments. The main achievements were the adaption of liquid metal targets to the pulsed proton beam to prevent shockwaves and splashing inside the target container and systematic studies on the time structure of the release of the isotopes from themore » target. Furthermore the work on laser ion-sources already started at ISOLDE-2 was continued, the so-called RIST target was developed, and most recently first tests on the isotope production while increasing the proton energy from 1 GeV to 1.4 GeV were done. The latter topics are discussed in this paper.« less

  16. Development of a simple, low cost, indirect ion beam fluence measurement system for ion implanters, accelerators

    NASA Astrophysics Data System (ADS)

    Suresh, K.; Balaji, S.; Saravanan, K.; Navas, J.; David, C.; Panigrahi, B. K.

    2018-02-01

    We developed a simple, low cost user-friendly automated indirect ion beam fluence measurement system for ion irradiation and analysis experiments requiring indirect beam fluence measurements unperturbed by sample conditions like low temperature, high temperature, sample biasing as well as in regular ion implantation experiments in the ion implanters and electrostatic accelerators with continuous beam. The system, which uses simple, low cost, off-the-shelf components/systems and two distinct layers of in-house built softwarenot only eliminates the need for costly data acquisition systems but also overcomes difficulties in using properietry software. The hardware of the system is centered around a personal computer, a PIC16F887 based embedded system, a Faraday cup drive cum monitor circuit, a pair of Faraday Cups and a beam current integrator and the in-house developed software include C based microcontroller firmware and LABVIEW based virtual instrument automation software. The automatic fluence measurement involves two important phases, a current sampling phase lasting over 20-30 seconds during which the ion beam current is continuously measured by intercepting the ion beam and the averaged beam current value is computed. A subsequent charge computation phase lasting 700-900 seconds is executed making the ion beam to irradiate the samples and the incremental fluence received by the sampleis estimated usingthe latest averaged beam current value from the ion beam current sampling phase. The cycle of current sampling-charge computation is repeated till the required fluence is reached. Besides simplicity and cost-effectiveness, other important advantages of the developed system include easy reconfiguration of the system to suit customisation of experiments, scalability, easy debug and maintenance of the hardware/software, ability to work as a standalone system. The system was tested with different set of samples and ion fluences and the results were verified using

  17. Ion-beam doping of GaAs with low-energy (100 eV) C + using combined ion-beam and molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Iida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-ichiro

    1995-01-01

    A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV-30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C+) irradiation during MBE growth of GaAs was carried out at substrate temperatures Tg between 500 and 590 °C. C+-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. CAs acceptor-related emissions such as ``g,'' [g-g], and [g-g]β are observed and their spectra are significantly changed with increasing C+ beam current density Ic. PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for Tg as low as 500 °C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C+ with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.

  18. Ion-beam doping of GaAs with low-energy (100 eV) C(+) using combined ion-beam and molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-Ichiro

    1995-01-01

    A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV - 30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C(+)) irradiation during MBE growth of GaAs was carried out at substrate temperatures T(sub g) between 500 and 590 C. C(+)-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. C(sub As) acceptor-related emissions such as 'g', (g-g), and (g-g)(sub beta) are observed and their spectra are significantly changed with increasing C(+) beam current density I(sub c). PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for T(sub g) as low as 500 C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C(+) with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.

  19. Investigation of ion-beam machining methods for replicated x-ray optics

    NASA Technical Reports Server (NTRS)

    Drueding, Thomas W.

    1996-01-01

    The final figuring step in the fabrication of an optical component involves imparting a specified contour onto the surface. This can be expensive and time consuming step. The recent development of ion beam figuring provides a method for performing the figuring process with advantages over standard mechanical methods. Ion figuring has proven effective in figuring large optical components. The process of ion beam figuring removes material by transferring kinetic energy from impinging neutral particles. The process utilizes a Kaufman type ion source, where a plasma is generated in a discharge chamber by controlled electric potentials. Charged grids extract and accelerate ions from the chamber. The accelerated ions form a directional beam. A neutralizer outside the accelerator grids supplies electrons to the positive ion beam. It is necessary to neutralize the beam to prevent charging workpieces and to avoid bending the beam with extraneous electro-magnetic fields. When the directed beam strikes the workpiece, material sputters in a predicable manner. The amount and distribution of material sputtered is a function of the energy of the beam, material of the component, distance from the workpiece, and angle of incidence of the beam. The figuring method described here assumes a constant beam removal, so that the process can be represented by a convolution operation. A fixed beam energy maintains a constant sputtering rate. This temporally and spatially stable beam is held perpendicular to the workpiece at a fixed distance. For non-constant removal, corrections would be required to model the process as a convolution operation. Specific figures (contours) are achieved by rastering the beam over the workpiece at varying velocities. A unique deconvolution is performed, using series-derivative solution developed for the system, to determine these velocities.

  20. Investigation of High-Intensity Ion Beam Generation in the Diode with External Magnetic Insulation and Explosive Plasma Emission Source

    NASA Astrophysics Data System (ADS)

    Shamanin, V. I.; Stepanov, A. V.; Rysbaev, K. Zh.

    2018-04-01

    The ion Br-diode in which plasma is generated under the action of a negative pre-pulse voltage is presented. Preliminary plasma formation allows the energy released in the diode during a positive voltage pulse to be increased. The high-energy ion beam parameters are investigated for the magnetic field induction changing from 0.8Bcr to 1.7Bcr.

  1. Longitudinal density modulation and energy conversion in intense beams.

    PubMed

    Harris, J R; Neumann, J G; Tian, K; O'Shea, P G

    2007-08-01

    Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may, under some circumstances, be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams and discusses three recent experiments related to the dynamics of density-modulated electron beams.

  2. Narrow Energy Spread Protons and Ions from High-Intensity, High-Contrast Laser Solid Target Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dollar, Franklin; Matsuoka, Takeshi; McGuffey, Christopher

    2010-11-04

    Recent simulations show that an idealized, high intensity, short pulse laser can generate quasi-monoenergetic proton beams with energies over 100 MeV in an interaction with a thin film. However, most short pulse laser facilities with sufficient intensity have difficulty controlling the nanosecond and picosecond contrast necessary to realize such a regime. Experiments were performed to investigate proton and ion acceleration from a high contrast, short pulse laser by employing dual plasma mirrors along with a deformable mirror at the HERCULES laser facility at the Center for Ultrafast Optical Sciences, University of Michigan. Plasma mirrors were characterized, allowing a 50% throughputmore » with an intensity contrast increase of 105. The focal spot quality was also exceptional, showing a 1.1 micron full width at half maximum (FWHM) focal diameter. Experiments were done using temporally cleaned 30 TW, 32 fs pulses to achieve an intensity of up to 10{sup 21} Wcm{sup -2} on Si{sub 3}N{sub 4} and Mylar targets with thicknesses ranging 50 nm to 13 microns. Proton beams with energy spreads below 2 MeV were observed from all thicknesses, peaking with energies up to 10.3 MeV and an energy spread of 0.8 MeV. Similar narrow energy spreads were observed for oxygen, nitrogen, and carbon at the silicon nitride thickness of 50 nm with energies up to 24 MeV with an energy spread of 3 MeV, whereas the energy spread is greatly increased at a larger thickness. Maximum energies were confirmed with CR39 track detectors, while a Thomson ion spectrometer was used to gauge the monoenergetic nature of the beam.« less

  3. Maskless micro-ion-beam reduction lithography system

    DOEpatents

    Leung, Ka-Ngo; Barletta, William A.; Patterson, David O.; Gough, Richard A.

    2005-05-03

    A maskless micro-ion-beam reduction lithography system is a system for projecting patterns onto a resist layer on a wafer with feature size down to below 100 nm. The MMRL system operates without a stencil mask. The patterns are generated by switching beamlets on and off from a two electrode blanking system or pattern generator. The pattern generator controllably extracts the beamlet pattern from an ion source and is followed by a beam reduction and acceleration column.

  4. Radiochromic film diagnostics for laser-driven ion beams

    NASA Astrophysics Data System (ADS)

    Kaufman, J.; Margarone, Daniele; Candiano, Giacomo; Kim, I. Jong; Jeong, Tae Moon; Pšikal, Jan; Romano, F.; Cirrone, P.; Scuderi, V.; Korn, Georg

    2015-05-01

    Radiochromic film (RCF) based multichannel diagnostics utilizes the concept of a stack detector comprised of alternating layers of RCFs and shielding aluminium layers. An algorithm based on SRIM simulations is used to correct the accumulated dose. Among the standard information that can be obtained is the maximum ion energy and to some extend the beam energy spectrum. The main area where this detector shines though is the geometrical characterization of the beam. Whereas other detectors such as Thomson parabola spectrometer or Faraday cups detect only a fraction of the outburst cone, the RCF stack placed right behind the target absorbs the whole beam. A complete 2D and to some extend 3D imprint of the ion beam allows us to determine parameters such as divergence or beam center shift with respect to the target normal. The obvious drawback of such diagnostics is its invasive character. But considering that only a few successful shots (2-3) are needed per one kind of target to perform the analysis, the drawbacks are acceptable. In this work, we present results obtained with the RCF diagnostics using both conventional accelerators and laser-driven ion beams during 2 experimental campaigns.

  5. Ion beam machining error control and correction for small scale optics.

    PubMed

    Xie, Xuhui; Zhou, Lin; Dai, Yifan; Li, Shengyi

    2011-09-20

    Ion beam figuring (IBF) technology for small scale optical components is discussed. Since the small removal function can be obtained in IBF, it makes computer-controlled optical surfacing technology possible to machine precision centimeter- or millimeter-scale optical components deterministically. Using a small ion beam to machine small optical components, there are some key problems, such as small ion beam positioning on the optical surface, material removal rate, ion beam scanning pitch control on the optical surface, and so on, that must be seriously considered. The main reasons for the problems are that it is more sensitive to the above problems than a big ion beam because of its small beam diameter and lower material ratio. In this paper, we discuss these problems and their influences in machining small optical components in detail. Based on the identification-compensation principle, an iterative machining compensation method is deduced for correcting the positioning error of an ion beam with the material removal rate estimated by a selected optimal scanning pitch. Experiments on ϕ10 mm Zerodur planar and spherical samples are made, and the final surface errors are both smaller than λ/100 measured by a Zygo GPI interferometer.

  6. Lifetimes of relativistic heavy-ion beams in the High Energy Storage Ring of FAIR

    NASA Astrophysics Data System (ADS)

    Shevelko, V. P.; Litvinov, Yu. A.; Stöhlker, Th.; Tolstikhina, I. Yu.

    2018-04-01

    The High Energy Storage Ring, HESR, will be constructed at the Facility for Antiproton and Ion Research, FAIR, Darmstadt. For the first time, it will be possible to perform experiments with cooled high-intensity stable and radioactive heavy ions at highly relativistic energies. To design experiments at the HESR, realistic estimations of beam lifetimes are indispensable. Here we report calculated cross sections and lifetimes for typical U88+ , U90+ , U92+ , Sn49+ and Sn50+ ions in the energy range E = 400 MeV/u-5 GeV/u, relevant for the HESR. Interactions with the residual gas and with internal gas-jet targets are also considered.

  7. Effects of carbon-ion beams on human pancreatic cancer cell lines that differ in genetic status.

    PubMed

    Matsui, Yoshifumi; Asano, Takehide; Kenmochi, Takashi; Iwakawa, Mayumi; Imai, Takashi; Ochiai, Takenori

    2004-02-01

    The relative biologic effectiveness (RBE) of carbon-ion beams at 3 different linear energy transfer (LET) values (13, 50, and 80 keV/microm) accelerated by the Heavy Ion Medical Accelerator in Chiba on human pancreatic cancer cell lines differing in genetic status was determined. The RBE values were calculated as D10, the dose (Gy) required to reduce the surviving fraction to 10%, relative to X-rays. We also investigated apoptosis and the relationship between D10 and the cell cycle checkpoint using morphologic examination and flow cytometry analysis, respectively. The RBE values calculated by the D10 values ranged from 1.16 to 1.77 for the 13-keV/microm beam and from 1.83 to 2.46 for the 80-keV/microm beam. A correlation between the D10 values of each cell line and intensity of G2/M arrest was observed. In contrast, LET values did not clearly correlate with induction of apoptosis. These results suggest that carbon-ion beam therapy is a promising modality. Elucidation of the mechanisms of G2/M arrest and apoptosis may provide clues to enhancing the effects of radiation on pancreatic cancer.

  8. Applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Gelerinter, E.; Spielberg, N.

    1980-01-01

    Wire adhesion in steel belted radial tires; carbon fibers and composite; cold welding, brazing, and fabrication; hydrogen production, separation, and storage; membrane use; catalysis; sputtering and texture; and ion beam implantation are discussed.

  9. Graphene defects induced by ion beam

    NASA Astrophysics Data System (ADS)

    Gawlik, Grzegorz; Ciepielewski, Paweł; Baranowski, Jacek; Jagielski, Jacek

    2017-10-01

    The CVD graphene deposited on the glass substrate was bombarded by molecular carbon ions C3+ C6+ hydrocarbon ions C3H4+ and atomic ions He+, C+, N+, Ar+, Kr+ Yb+. Size and density of ion induced defects were estimated from evolution of relative intensities of Raman lines D (∼1350 1/cm), G (∼1600 1/cm), and D‧ (∼1620 1/cm) with ion fluence. The efficiency of defect generation by atomic ions depend on ion mass and energy similarly as vacancy generation directly by ion predicted by SRIM simulations. However, efficiency of defect generation in graphene by molecular carbon ions is essentially higher than summarized efficiency of similar group of separate atomic carbon ions of the same energy that each carbon ion in a cluster. The evolution of the D/D‧ ratio of Raman lines intensities with ion fluence was observed. This effect may indicate evolution of defect nature from sp3-like at low fluence to a vacancy-like at high fluence. Observed ion graphene interactions suggest that the molecular ion interacts with graphene as single integrated object and should not be considered as a group of atomic ions with partial energy.

  10. A new ion beam facility based on a 3 MV Tandetron™ at IFIN-HH, Romania

    NASA Astrophysics Data System (ADS)

    Burducea, I.; Straticiuc, M.; Ghiță, D. G.; Moșu, D. V.; Călinescu, C. I.; Podaru, N. C.; Mous, D. J. W.; Ursu, I.; Zamfir, N. V.

    2015-09-01

    A 3 MV Tandetron™ accelerator system has been installed and commissioned at the "Horia Hulubei" National Institute for Physics and Nuclear Engineering - IFIN-HH, Măgurele, Romania. The main purpose of this machine is to strengthen applied nuclear physics research ongoing in our institute for more than four decades. The accelerator system was developed by High Voltage Engineering Europa B.V. (HVE) and comprises three high energy beam lines. The first beam line is dedicated to ion beam analysis (IBA) techniques: Rutherford Backscattering Spectrometry - RBS, Nuclear Reaction Analysis - NRA, Particle Induced X-ray and γ-ray Emission - PIXE and PIGE and micro-beam experiments - μ-PIXE. The second beam line is dedicated to high energy ion implantation experiments and the third beam line was designed mainly for nuclear cross-sections measurements used in nuclear astrophysics. A unique feature, the first time in operation at an accelerator facility is the Na charge exchange canal (CEC), which is used to obtain high intensity beams of He- of at least 3 μA. The results of the acceptance tests demonstrate the huge potential of this new facility in various fields, from IBA to radiation hardness studies and from medical or environmental applications to astrophysics. The main features of the accelerator are presented in this paper.

  11. Development of high resolution linear-cut beam position monitor for heavy-ion synchrotron of KHIMA project

    NASA Astrophysics Data System (ADS)

    Hwang, Ji-Gwang; Yang, Tae-Keun; Forck, Peter; Noh, Seon Yeong; Hahn, Garam; Choi, Minkyoo

    2017-04-01

    A beam position monitor with high precision and resolution is required to control the beam trajectory for matching to the injection orbit and acceleration in a heavy-ion synchrotron. It will be also used for measuring the beta function, tune, and chromaticity. Since the bunch length at heavy ion synchrotron is relatively long, a few meters, a boxlike device with plates of typically 20 cm length is used to enhance the signal strength and to get a precise linear dependence with respect to the beam displacement. Especially, the linear-cut beam position monitor is adopted to satisfy the position resolution of 100 μm and accuracy of 200 μm for a nominal beam intensity in the KHIMA synchrotron of ∼ 7 ×108 particles for the carbon beams and ∼ 2 ×1010 for the proton beams. In this paper, we show the electromagnetic design of the electrode and surroundings to satisfy the resolution of 100 μm, the criteria for mechanical aspect to satisfy the position accuracy of 200 μm, the measurement results by using wire test-bench, design and measurement of a high input impedance pre-amplifier, and the beam-test results with long (∼1.6 μs) electron beam in Pohang accelerator laboratory (PAL).

  12. Perspectives of the Pixel Detector Timepix for Needs of Ion Beam Therapy

    NASA Astrophysics Data System (ADS)

    Martišíková, M.; Hartmann, B.; Jäkel, O.; Granja, C.; Jakubek, J.

    2012-08-01

    Radiation therapy with ion beams is a highly precise kind of cancer treatment. In ion beam therapy the finite range of the ion beams in tissue and the increase of ionization density at the end of their path, the Bragg-peak, are exploited. Ions heavier than protons offer in addition increased biological effectiveness and decreased scattering. In this contribution we discuss the potential of a quantum counting and position sensitive semiconductor detector Timepix for its applications in ion beam therapy measurements. It provides high sensitivity and high spatial resolution (pixel pitch 55 μm). The detector, developed by the Medipix Collaboration, consists of a silicon sensor bump bonded to a pixelated readout chip (256 × 256 pixels with 55 μm pitch). An integrated USB-based readout interface together with the Pixelman software enable registering single particles online with 2D-track visualization. The experiments were performed at the Heidelberg Ion Beam Therapy Center (HIT), which is a modern ion beam therapy facility. Patient treatments are performed with proton and carbon ions, which are accelerated by a synchrotron. For dose delivery to the patient an active technique is used: narrow pencil-like beams are scanned over the target volume. The possibility to use the detector for two different applications was investigated: ion spectroscopy and beam delivery monitoring by measurement of secondary charged particles around the patient. During carbon ion therapy, a variety of ion species is created by nuclear fragmentation processes of the primary beam. Since they differ in their biological effectiveness, it is of large interest to measure the ion spectra created under different conditions and to visualize their spatial distribution. The possibility of measurements of ion energy loss in silicon makes Timepix a promising detector for ion-spectroscopic studies in patient-like phantoms. Unpredictable changes in the patient can alter the range of the ion beam in the body

  13. Materials science education: ion beam modification and analysis of materials

    NASA Astrophysics Data System (ADS)

    Zimmerman, Robert; Muntele, Claudiu; Ila, Daryush

    2012-08-01

    The Center for Irradiation of Materials (CIM) at Alabama A&M University (http://cim.aamu.edu) was established in 1990 to serve the University in its research, education and services to the need of the local community and industry. CIM irradiation capabilities are oriented around two tandem-type ion accelerators with seven beam lines providing high-resolution Rutherford backscattering spectrometry, MeV focus ion beam, high-energy ion implantation and irradiation damage studies, particle-induced X-ray emission, particle-induced gamma emission and ion-induced nuclear reaction analysis in addition to fully automated ion channeling. One of the two tandem ion accelerators is designed to produce high-flux ion beam for MeV ion implantation and ion irradiation damage studies. The facility is well equipped with a variety of surface analysis systems, such as SEM, ESCA, as well as scanning micro-Raman analysis, UV-VIS Spectrometry, luminescence spectroscopy, thermal conductivity, electrical conductivity, IV/CV systems, mechanical test systems, AFM, FTIR, voltammetry analysis as well as low-energy implanters, ion beam-assisted deposition and MBE systems. In this presentation, we will demonstrate how the facility is used in material science education, as well as providing services to university, government and industry researches.

  14. A large ion beam device for laboratory solar wind studies

    NASA Astrophysics Data System (ADS)

    Ulibarri, Zach; Han, Jia; Horányi, Mihály; Munsat, Tobin; Wang, Xu; Whittall-Scherfee, Guy; Yeo, Li Hsia

    2017-11-01

    The Colorado Solar Wind Experiment is a new device constructed at the Institute for Modeling Plasma, Atmospheres, and Cosmic Dust at the University of Colorado. A large cross-sectional Kaufman ion source is used to create steady state plasma flow to model the solar wind in an experimental vacuum chamber. The plasma beam has a diameter of 12 cm at the source, ion energies of up to 1 keV, and ion flows of up to 0.1 mA/cm2. Chamber pressure can be reduced to 4 × 10-5 Torr under operating conditions to suppress ion-neutral collisions and create a monoenergetic ion beam. The beam profile has been characterized by a Langmuir probe and an ion energy analyzer mounted on a two-dimensional translation stage. The beam profile meets the requirements for planned experiments that will study solar wind interaction with lunar magnetic anomalies, the charging and dynamics of dust in the solar wind, plasma wakes and refilling, and the wakes of topographic features such as craters or boulders. This article describes the technical details of the device, initial operation and beam characterization, and the planned experiments.

  15. Irradiation of materials with short, intense ion pulses at NDCX-II

    NASA Astrophysics Data System (ADS)

    Seidl, P. A.; Barnard, J. J.; Feinberg, E.; Friedman, A.; Gilson, E. P.; Grote, D. P.; Ji, Q.; Kaganovich, I. D.; Ludewigt, B.; Persaud, A.; Sierra, C.; Silverman, M.; Stepanov, A. D.; Sulyman, A.; Treffert, F.; Waldron, W. L.; Zimmer, M.; Schenkel, T.

    2017-06-01

    We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10^11 ions, 1-mm radius, and 2-30 ns FWHM duration have been created with corresponding fluences in the range of 0.1 to 0.7 J/cm^2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV He+ ion beam is neutralized in a drift compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing accelerator performance.

  16. Surface and bulk investigations at the high intensity positron beam facility NEPOMUC

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Dollinger, G.; Egger, W.; Kögel, G.; Löwe, B.; Mayer, J.; Pikart, P.; Piochacz, C.; Repper, R.; Schreckenbach, K.; Sperr, P.; Stadlbauer, M.

    2008-10-01

    The NEutron-induced POsitron source MUniCh (NEPOMUC) at the research reactor FRM II delivers a low-energy positron beam ( E = 15-1000 eV) of high intensity in the range between 4 × 10 7 and 5 × 10 8 moderated positrons per second. At present four experimental facilities are in operation at NEPOMUC: a coincident Doppler-broadening spectrometer (CDBS) for defect spectroscopy and investigations of the chemical vicinity of defects, a positron annihilation-induced Auger-electron spectrometer (PAES) for surface studies and an apparatus for the production of the negatively charged positronium ion Ps -. Recently, the pulsed low-energy positron system (PLEPS) has been connected to the NEPOMUC beam line, and first positron lifetime spectra were recorded within short measurement times. A positron remoderation unit which is operated with a tungsten single crystal in back reflection geometry has been implemented in order to improve the beam brilliance. An overview of NEPOMUC's status, experimental results and recent developments at the running spectrometers are presented.

  17. High-intensity low energy titanium ion implantation into zirconium alloy

    NASA Astrophysics Data System (ADS)

    Ryabchikov, A. I.; Kashkarov, E. B.; Pushilina, N. S.; Syrtanov, M. S.; Shevelev, A. E.; Korneva, O. S.; Sutygina, A. N.; Lider, A. M.

    2018-05-01

    This research describes the possibility of ultra-high dose deep titanium ion implantation for surface modification of zirconium alloy Zr-1Nb. The developed method based on repetitively pulsed high intensity low energy titanium ion implantation was used to modify the surface layer. The DC vacuum arc source was used to produce metal plasma. Plasma immersion titanium ions extraction and their ballistic focusing in equipotential space of biased electrode were used to produce high intensity titanium ion beam with the amplitude of 0.5 A at the ion current density 120 and 170 mA/cm2. The solar eclipse effect was used to prevent vacuum arc titanium macroparticles from appearing in the implantation area of Zr sample. Titanium low energy (mean ion energy E = 3 keV) ions were implanted into zirconium alloy with the dose in the range of (5.4-9.56) × 1020 ion/cm2. The effect of ion current density, implantation dose on the phase composition, microstructure and distribution of elements was studied by X-ray diffraction, scanning electron microscopy and glow-discharge optical emission spectroscopy, respectively. The results show the appearance of Zr-Ti intermetallic phases of different stoichiometry after Ti implantation. The intermetallic phases are transformed from both Zr0.7Ti0.3 and Zr0.5Ti0.5 to single Zr0.6Ti0.4 phase with the increase in the implantation dose. The changes in phase composition are attributed to Ti dissolution in zirconium lattice accompanied by the lattice distortions and appearance of macrostrains in intermetallic phases. The depth of Ti penetration into the bulk of Zr increases from 6 to 13 μm with the implantation dose. The hardness and wear resistance of the Ti-implanted zirconium alloy were increased by 1.5 and 1.4 times, respectively. The higher current density (170 mA/cm2) leads to the increase in the grain size and surface roughness negatively affecting the tribological properties of the alloy.

  18. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li{sup +} ion beam-driven hohlraums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fehl, D.L.; Chandler, G.A.; Biggs, F.

    X-ray-producing hohlraums are being studied as indirect drives for Inertial Confinement Fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li{sup +} ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The UFO unfold code and its suite of auxiliary functions were used extensively in obtaining time- resolved x-ray spectra and radiation temperatures from this diagnostic. UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parametersmore » (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies ({le} 100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time-history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum.« less

  19. Bright focused ion beam sources based on laser-cooled atoms

    PubMed Central

    McClelland, J. J.; Steele, A. V.; Knuffman, B.; Twedt, K. A.; Schwarzkopf, A.; Wilson, T. M.

    2016-01-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future. PMID:27239245

  20. Bright focused ion beam sources based on laser-cooled atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClelland, J. J.; Wilson, T. M.; Steele, A. V.

    2016-03-15

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of themore » industry standard Ga{sup +} liquid metal ion source. In this review, we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future.« less

  1. Targets used in the production of radioactive ion beams at the HRIBF

    NASA Astrophysics Data System (ADS)

    Stracener, D. W.; Alton, G. D.; Auble, R. L.; Beene, J. R.; Mueller, P. E.; Bilheux, J. C.

    2004-03-01

    Radioactive ion beams are produced at the Holifield Radioactive Ion Beam Facility using the Isotope Separation On-Line (ISOL) technique where the atoms are produced in a thick target, transported to an ion source, ionized, and extracted from the ion source to form an ion beam. These radioactive ion beams are then accelerated to energies of a few MeV per nucleon and delivered to experimental stations for use in nuclear physics and nuclear astrophysics experiments. At the heart of this facility is the RIB production target, where the radioactive nuclei are produced using beams of light ions (p, d, 3He, α) to induce nuclear reactions in the target nuclei. Several target materials have been developed and used successfully, including Al 2O 3, HfO 2, SiC, CeS, liquid Ge, liquid Ni, and a low-density matrix of uranium carbide. The details of these targets and some of the target developments that led to the delivery of high-quality radioactive ion beams are discussed in this paper.

  2. High-intensity pulsed beam source with tunable operation mode

    NASA Astrophysics Data System (ADS)

    Nashilevskiy, A. V.; Kanaev, G. G.; Ezhov, V. V.; Shamanin, V. I.

    2017-05-01

    The report presents the design of an electron and an ion pulsed accelerator. The powerful high-voltage pulse generator of the accelerator and the vacuum bushing insulator is able to change the polarity of the output voltage. The low-inductance matching transformer provides an increase in the DFL output impedance by 4 times. The generator based on a high voltage pulse transformer and a pseudo spark switch is applied for DFL charging. The high-impedance magnetically insulated focusing diode with Br magnetic field and the “passive” anode was used to realize the ion beam generation mode. The plasma is formed on the surface of the anode caused by an electrical breakdown at the voltage edge pulse; as a result, the carbon ion and proton beam is generated. This beam has the following parameters: the current density is about 400 A/cm2 (in focus): the applied voltage is up to 450 kV. The accelerator is designed for the research on the interaction of the charged particle pulsed beams with materials and for the development of technological processes of a material modification.

  3. Ion beam processing of surgical materials

    NASA Astrophysics Data System (ADS)

    Williams, James M.; Buchanan, Raymond A.; Lee, In-Seop

    1989-02-01

    Ion beam processing has now achieved a secure place in surface treatment of biomaterials. This development is largely a result of the success of the process for wear prevention of orthopedic Ti-alloy in rubbing contact with ultrahigh molecular-weight polyethylene. Basic contributions of the authors in this area, together with other pertinent literature will be reviewed. Research in ion beam processing of biomaterials is turning to other areas. Among these, bioelectronics is considered to be a promising area for further effort. Pertinent experiments on effects of implantation of iridium into titanium and Ti-6Al-4V alloy on corrosion and charge injection properties are presented.

  4. Using neutral beams as a light ion beam probe (invited)

    DOE PAGES

    Chen, Xi; Heidbrink, William W.; Van Zeeland, Michael A.; ...

    2014-08-05

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of 1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge, and 2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fieldsmore » appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g. Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally-imposed 3D fields, e.g. magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. Additionally, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.« less

  5. Using neutral beams as a light ion beam probe (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi, E-mail: chenxi@fusion.gat.com; Heidbrink, W. W.; Van Zeeland, M. A.

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of (1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge and (2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fieldsmore » appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g., Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally imposed 3D fields, e.g., magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. In addition, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.« less

  6. Using neutral beams as a light ion beam probe (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Heidbrink, William W.; Van Zeeland, Michael A.

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of 1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge, and 2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fieldsmore » appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g. Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally-imposed 3D fields, e.g. magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. Additionally, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.« less

  7. Axial energy spread measurements of an accelerated positive ion beam

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Gough, R. A.; Kunkel, W. B.; Leung, K. N.; Perkins, L. T.; Pickard, D. S.; Sun, L.; Vujic, J.; Williams, M. D.; Wutte, D.; Mondelli, Alfred A.; Stengl, Gerhard

    1997-01-01

    A multicusp ion source has been designed for use in ion projection lithography. Longitudinal energy spreads of the extracted positive hydrogen ion beam have been studied using a retarding field energy analyzer. It has been found that the filament-discharge multicusp ion source can deliver a beam with an energy spread less than 3 eV which is required for the ALG-1000 machine. The multicusp ion source can also deliver the current required for the application.

  8. Coherence and dimensionality of intense spatiospectral twin beams

    NASA Astrophysics Data System (ADS)

    Peřina, Jan

    2015-07-01

    Spatiospectral properties of twin beams at their transition from low to high intensities are analyzed in parametric and paraxial approximations using decomposition into paired spatial and spectral modes. Intensity auto- and cross-correlation functions are determined and compared in the spectral and temporal domains as well as the transverse wave-vector and crystal output planes. Whereas the spectral, temporal, and transverse wave-vector coherence increases with the increasing pump intensity, coherence in the crystal output plane is almost independent of the pump intensity owing to the mode structure in this plane. The corresponding auto- and cross-correlation functions approach each other for larger pump intensities. The entanglement dimensionality of a twin beam is determined with a comparison of several approaches.

  9. Acceleration of 500 keV Negative Ion Beams By Tuning Vacuum Insulation Distance On JT-60 Negative Ion Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, A.; Hanada, M.; Tanaka, Y.

    2011-09-26

    Acceleration of a 500 keV beam up to 2.8 A has been achieved on a JT-60U negative ion source with a three-stage accelerator by overcoming low voltage holding which is one of the critical issues for realization of the JT-60SA ion source. In order to improve the voltage holding, preliminary voltage holding tests with small-size grids with uniform and locally intense electric fields were carried out, and suggested that the voltage holding was degraded by both the size and local electric field effects. Therefore, the local electric field was reduced by tuning gap lengths between the large size grids andmore » grid support structures of the accelerator. Moreover, a beam radiation shield which limited extension of the minimum gap length was also optimized so as to reduce the local electric field while maintaining the shielding effect. These modifications were based on the experiment results, and significantly increased the voltage holding from <150 kV/stage for the original configuration to 200 kV/stage. These techniques for improvement of voltage holding should also be applicable to other large ion sources accelerators such as those for ITER.« less

  10. Discrimination of ionic species from broad-beam ion sources

    NASA Technical Reports Server (NTRS)

    Anderson, J. R.

    1993-01-01

    The performance of a broad-beam, three-grid, ion extraction system incorporating radio frequency (RF) mass discrimination was investigated experimentally. This testing demonstrated that the system, based on a modified single-stage Bennett mass spectrometer, can discriminate between ionic species having about a 2-to-1 mass ratio while producing a broad-beam of ions with low kinetic energy (less than 15 eV). Testing was conducted using either argon and krypton ions or atomic and diatomic oxygen ions. A simple one-dimensional model, which ignores magnetic field and space-charge effects, was developed to predict the species separation capabilities as well as the kinetic energies of the extracted ions. The experimental results correlated well with the model predictions. This RF mass discrimination system can be used in applications where both atomic and diatomic ions are produced, but a beam of only one of the species is desired. An example of such an application is a 5 eV atomic oxygen source. This source would produce a beam of atomic oxygen with 5 eV kinetic energy, which would be directed onto a material specimen, to simulate the interaction between the surface of a satellite and the rarefied atmosphere encountered in low-Earth orbit.

  11. Improving the intensity of a focused laser beam

    NASA Astrophysics Data System (ADS)

    Haddadi, Sofiane; Fromager, Michael; Louhibi, Djelloul; Hasnaoui, Abdelkrim; Harfouche, Ali; Cagniot, Emmanuel; ńit-Ameur, Kamel

    2015-03-01

    Let us consider the family of symmetrical Laguerre-Gaus modes of zero azimuthal order which will be denoted as LGp0 . The latter is made up of central lobe surrounded by p concentric rings of light. The fundamental mode LG00 is a Gaussian beam of width W. The focusing of a LGp0 beam of power P by a converging lens of focal length f produces a focal spot keeping the LGp0 -shape and having a central intensity I0= 2PW2/(λf)2 whatever the value of the radial order p. Many applications of lasers (laser marking, laser ablation, …) seek nowadays for a focal laser spot with the highest as possible intensity. For a given power P, increasing intensity I0 can be achieved by increasing W and reducing the focal length f. However, this way of doing is in fact limited because the ratio W/f cannot increase indefinitely at the risk of introducing a huge truncation upon the edge of the lens. In fact, it is possible to produce a single-lobed focal spot with a central intensity of about p times the intensity I0. This result has been obtained by reshaping (rectification) a LGp0 beam thanks to a proper Binary Diffractive Optical Element (BDOE). In addition, forcing a laser cavity to oscillate upon a LGp0 can improve the power extract due to a mode volume increasing with the mode order p. This could allow envisaging an economy of scale in term of laser pumping power for producing a given intensity I0. In addition, we have demonstrated that a rectified LGp0 beam better stand the lens spherical aberration than the usual Gaussian beam.

  12. Development of a negative ion-based neutral beam injector in Novosibirsk.

    PubMed

    Ivanov, A A; Abdrashitov, G F; Anashin, V V; Belchenko, Yu I; Burdakov, A V; Davydenko, V I; Deichuli, P P; Dimov, G I; Dranichnikov, A N; Kapitonov, V A; Kolmogorov, V V; Kondakov, A A; Sanin, A L; Shikhovtsev, I V; Stupishin, N V; Sorokin, A V; Popov, S S; Tiunov, M A; Belov, V P; Gorbovsky, A I; Kobets, V V; Binderbauer, M; Putvinski, S; Smirnov, A; Sevier, L

    2014-02-01

    A 1000 keV, 5 MW, 1000 s neutral beam injector based on negative ions is being developed in the Budker Institute of Nuclear Physics, Novosibirsk in collaboration with Tri Alpha Energy, Inc. The innovative design of the injector features the spatially separated ion source and an electrostatic accelerator. Plasma or photon neutralizer and energy recuperation of the remaining ion species is employed in the injector to provide an overall energy efficiency of the system as high as 80%. A test stand for the beam acceleration is now under construction. A prototype of the negative ion beam source has been fabricated and installed at the test stand. The prototype ion source is designed to produce 120 keV, 1.5 A beam.

  13. Experimental observation of ion beams in the Madison Helicon eXperiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiebold, Matt; Sung, Yung-Ta; Scharer, John E.

    2011-06-15

    Argon ion beams up to E{sub b} = 165 eV at P{sub rf} = 500 W are observed in the Madison Helicon eXperiment (MadHeX) helicon source with a magnetic nozzle. A two-grid retarding potential analyzer (RPA) is used to measure the ion energy distribution, and emissive and rf-filtered Langmuir probes measure the plasma potential, electron density, and temperature. The supersonic ion beam (M = v{sub i}/c{sub s} up to 5) forms over tens of Debye lengths and extends spatially for a few ion-neutral charge-exchange mean free paths. The parametric variation of the ion beam energy is explored, including flow rate,more » rf power, and magnetic field dependence. The beam energy is equal to the difference in plasma potentials in the Pyrex chamber and the grounded expansion chamber. The plasma potential in the expansion chamber remains near the predicted eV{sub p} {approx} 5kT{sub e} for argon, but the upstream potential is much higher, likely due to wall charging, resulting in accelerated ion beam energies E{sub b} = e[V{sub beam} - V{sub plasma}] > 10kT{sub e}.« less

  14. Improvements for extending the time between maintenance periods for the Heidelberg ion beam therapy center (HIT) ion sources.

    PubMed

    Winkelmann, Tim; Cee, Rainer; Haberer, Thomas; Naas, Bernd; Peters, Andreas; Schreiner, Jochen

    2014-02-01

    The clinical operation at the Heidelberg Ion Beam Therapy Center (HIT) started in November 2009; since then more than 1600 patients have been treated. In a 24/7 operation scheme two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce protons and carbon ions. The modification of the low energy beam transport line and the integration of a third ion source into the therapy facility will be shown. In the last year we implemented a new extraction system at all three sources to enhance the lifetime of extraction parts and reduce preventive and corrective maintenance. The new four-electrode-design provides electron suppression as well as lower beam emittance. Unwanted beam sputtering effects which typically lead to contamination of the insulator ceramics and subsequent high-voltage break-downs are minimized by the beam guidance of the new extraction system. By this measure the service interval can be increased significantly. As a side effect, the beam emittance can be reduced allowing a less challenging working point for the ion sources without reducing the effective beam performance. This paper gives also an outlook to further enhancements at the HIT ion source testbench.

  15. Use of a Linear Paul Trap to Study Random Noise-Induced Beam Degradation in High-Intensity Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Moses; Gilson, Erik P.; Davidson, Ronald C.

    2009-04-10

    A random noise-induced beam degradation that can affect intense beam transport over long propagation distances has been experimentally studied by making use of the transverse beam dynamics equivalence between an alternating-gradient (AG) focusing system and a linear Paul trap system. For the present studies, machine imperfections in the quadrupole focusing lattice are considered, which are emulated by adding small random noise on the voltage waveform of the quadrupole electrodes in the Paul trap. It is observed that externally driven noise continuously produces a nonthermal tail of trapped ions, and increases the transverse emittance almost linearly with the duration of themore » noise.« less

  16. Selective Improvement of NO2 Gas Sensing Behavior in SnO2 Nanowires by Ion-Beam Irradiation.

    PubMed

    Kwon, Yong Jung; Kang, Sung Yong; Wu, Ping; Peng, Yuan; Kim, Sang Sub; Kim, Hyoun Woo

    2016-06-01

    We irradiated SnO2 nanowires with He ions (45 MeV) with different ion fluences. Structure and morphology of the SnO2 nanowires did not undergo noticeable changes upon ion-beam irradiation. Chemical equilibrium in SnO2/gas systems was calculated from thermodynamic principles, which were used to study the sensing selectivity of the tested gases, demonstrating the selective sensitivity of the SnO2 surface to NO2 gas. Being different from other gases, including H2, ethanol, acetone, SO2, and NH3, the sensor response to NO2 gas significantly increases as the ion fluence increases, showing a maximum under an ion fluence of 1 × 10(16) ions/cm(2). Photoluminescence analysis shows that the relative intensity of the peak at 2.1 eV to the peak at 2.5 eV increases upon ion-beam irradiation, suggesting that structural defects and/or tin interstitials have been generated. X-ray photoelectron spectroscopy indicated that the ionic ratio of Sn(2+/)Sn(4+) increases by the ion-beam irradiation, supporting the formation of surface Sn interstitials. Using thermodynamic calculations, we explained the observed selective sensing behavior. A molecular level model was also established for the adsorption of NO2 on ion-irradiated SnO2 (110) surfaces. We propose that the adsorption of NO2-related species is considerably enhanced by the generation of surface defects that are comprised of Sn interstitials.

  17. Laser effect on the 248 nm KrF transition using heavy ion beam pumping

    NASA Astrophysics Data System (ADS)

    Adonin, A.; Jacoby, J.; Turtikov, V.; Fertman, A.; Golubev, A.; Hoffmann, D. H. H.; Ulrich, A.; Varentsov, D.; Wieser, J.

    2007-07-01

    In December 2005 the first successful operation of a UV excimer laser pumped with a heavy ion beam was demonstrated at GSI. It was the first experiment in which the specific power deposition was sufficient to overcome laser threshold for a UV excimer scheme. The well known KrF* excimer laser line at λ=248 nm has been chosen for this experiment, because the wavelength is short, but still in the range of usual optical diagnostic tools and the emitted light can propagate in air without attenuation. A bunch compressed U+73238 beam with a particle energy of 250 MeV/u and about 110 ns pulse duration (FWHM) was used for this experiment. Single pulses of a beam intensity up to 2.5×109 particles per bunch were focused into the laser cell along the cavity axis. Compact spectrometers, high speed UV-photodiodes and gated CCD-cameras were used for diagnostics of the spontaneous and stimulated emission. As a main result of the experiment laser effect on the 248 nm KrF* excimer laser line has been obtained and verified by temporal and spectral narrowing of the laser line as well as the threshold behaviour and exponential growth of intensity with increasing pumping power. In summary it could be shown that the pumping power of the heavy ion beam at GSI is now sufficient to pump short wavelength lasers. It is planned to extend laser experiments in near future to the VUV range of the spectrum (λ<200 nm).

  18. Electron beam ion sources for use in second generation synchrotrons for medical particle therapy

    NASA Astrophysics Data System (ADS)

    Zschornack, G.; Ritter, E.; Schmidt, M.; Schwan, A.

    2014-02-01

    Cyclotrons and first generation synchrotrons are the commonly applied accelerators in medical particle therapy nowadays. Next generation accelerators such as Rapid Cycling Medical Synchrotrons (RCMS), direct drive accelerators, or dielectric wall accelerators have the potential to improve the existing accelerator techniques in this field. Innovative accelerator concepts for medical particle therapy can benefit from ion sources which meet their special requirements. In the present paper we report on measurements with a superconducting Electron Beam Ion Source, the Dresden EBIS-SC, under the aspect of application in combination with RCMS as a well proven technology. The measurements indicate that this ion source can offer significant advantages for medical particle therapy. We show that a superconducting EBIS can deliver ion pulses of medically relevant ions such as protons, C4 + and C6 + ions with intensities and frequencies required for RCMS [S. Peggs and T. Satogata, "A survey of Hadron therapy accelerator technology," in Proceedings of PAC07, BNL-79826- 2008-CP, Albuquerque, New Mexico, USA, 2007; A. Garonna, U. Amaldi et al., "Cyclinac medical accelerators using pulsed C6 +/H+_2 ion sources," in Proceedings of EBIST 2010, Stockholm, Sweden, July 2010]. Ion extraction spectra as well as individual ion pulses have been measured. For example, we report on the generation of proton pulses with up to 3 × 109 protons per pulse and with frequencies of up to 1000 Hz at electron beam currents of 600 mA.

  19. NSUF Ion Beam Investment Options Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidrich, Brenden John

    2016-03-01

    The workshop that generated this data was convened to develop a set of recommendations (a priority list) for possible funding in the area of US domestic ion beam irradiation capabilities for nuclear energy-focused RD&D. The results of this workshop were intended for use by the Department of Energy - Office of Nuclear Energy (DOE-NE) for consideration of support for these facilities. The workshop considered, as part of the initial potential future support discussions, input submitted through the Office of Nuclear Energy Request for Information (RFI) (DE-SOL-0008318, April 13, 2015), but welcomed discussion (and presentation) of other options, whether specific ormore » general in scope. Input from users, including DOE-NE program interests and needs for ion irradiation RD&D were also included. Participants were selected from various sources: RFI respondents, NEUP/NEET infrastructure applicants, universities with known expertise in nuclear engineering and materials science and other developed sources. During the three days from March 22-24, 2016, the workshop was held at the Idaho National Laboratory Meeting Center in the Energy Innovation Laboratory at 775 University Drive, Idaho Falls, ID 83401. Thirty-one members of the ion beam community attended the workshop, including 15 ion beam facilities, six representatives of Office of Nuclear Energy R&D programs, an industry representative from EPRI and the chairs of the NSUF User’s Organization and the NSUF Scientific Review Board. Another four ion beam users were in attendance acting as advisors to the process, but did not participate in the options assessment. Three members of the sponsoring agency, the Office of Science and Technology Innovation (NE-4) also attended the workshop.« less

  20. Development of Bipolar Pulse Accelerator for Pulsed Ion Beam Implantation to Semiconductor

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Kawahara, Yoshihiro; Mitsui, Chihiro; Kitamura, Iwao; Takahashi, Takakazu; Tanaka, Yasunori; Tanoue, Hisao; Arai, Kazuo

    2002-12-01

    To improve the purity of the ion beams new type of pulsed power ion accelerator named "bipolar pulse accelerator" was proposed. The accelerator consists of two acceleration gaps (an ion source gap and a post acceleration gap) and a drift tube, and a bipolar pulse is applied to the drift tube to accelerate the beam. In the accelerator intended ions are selectively accelerated and the purity of the ion beam is enhanced. As the first step of the development of the accelerator, a Br-type magnetically insulated acceleration gap is developed. The gap has an ion source of coaxial gas puff plasma gun on the grounded anode and a negative pulse is applied to the cathode to accelerate the ion beam. By using the plasma gun, ion source plasma (nitrogen) of current density around 100 A/cm2 is obtained. In the paper, the experimental results of the evaluation of the ion beam and the characteristics of the gap are shown with the principle and the design concept of the proposed accelerator.

  1. Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Davidson, R. C.

    2013-10-01

    Space-charge forces limit the possible transverse compression of high perveance ion beams that are used in ion-beam-driven high energy density physics applications; the minimum radius to which a beam can be focused is an increasing function of perveance. The limit can be overcome if a plasma is introduced in the beam path between the focusing element and the target in order to neutralize the space charge of the beam. This concept has been implemented on the Neutralized Drift Compression eXperiment (NDCX) at LBNL using Ferroelectric Plasma Sources (FEPS). In our experiment at PPPL, we propagate a perveance-dominated ion beam through a FEPS to study the effect of the neutralizing plasma on the beam envelope and its evolution in time. A 30-60 keV space-charge-dominated Argon beam is focused with an Einzel lens into a FEPS located at the beam waist. The beam is intercepted downstream from the FEPS by a movable Faraday cup that provides time-resolved 2D current density profiles of the beam spot on target. We report results on: (a) dependence of charge neutralization on FEPS plasma density; (b) effects on beam emittance, and (c) time evolution of the beam envelope after the FEPS pulse. Research supported by the U.S. Department of Energy.

  2. STRUCTURAL, OPTICAL AND ELECTRICAL PROPERTIES OF PET POLYMER FILMS MODIFIED BY LOW ENERGY Ar+ ION BEAMS

    NASA Astrophysics Data System (ADS)

    Fawzy, Y. H. A.; Abdel-Hamid, H. M.; El-Okr, M. M.; Atta, A.

    Polyethylene terephthalate (PET) films with thickness 40μm are irradiated with 3keV argon ion beams with different fluence ranging from 0.5×1018ions.cm-2 to 2×1018ions.cm-2 using locally designed broad ion source. The changes in the PET structure are characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) and scanning electron microscope (SEM) techniques. The XRD patterns show that the peak intensity decreases with irradiation and the particle size decreases from 65.75 Å for the un-irradiated to 52.80 Å after irradiation. The FTIR indicates partial decrease and reduction in the intensity of the bands due to the degradation of the polymer after ion irradiation. The optical energy band gap decreases from 3.14eV to 3.05eV and the number of carbon cluster increases from 119 to 126 after ion irradiation. The results show a slight increase in the electrical conductivities and the dielectric constant (ɛ). The results indicate the effectiveness of using PET films as capacitors and resistors in industrial applications.

  3. On- and off-line monitoring of ion beam treatment

    NASA Astrophysics Data System (ADS)

    Parodi, Katia

    2016-02-01

    Ion beam therapy is an emerging modality for high precision radiation treatment of cancer. In comparison to conventional radiation sources (photons, electrons), ion beams feature major dosimetric advantages due to their finite range with a localized dose deposition maximum, the Bragg peak, which can be selectively adjusted in depth. However, due to several sources of treatment uncertainties, full exploitation of these dosimetric advantages in clinical practice would require the possibility to visualize the stopping position of the ions in vivo, ideally in real-time. To this aim, different imaging methods have been proposed and investigated, either pre-clinically or even clinically, based on the detection of prompt or delayed radiation following nuclear interaction of the beam with the irradiated tissue. However, the chosen or ad-hoc developed instrumentation has often relied on technologies originally conceived for different applications, thus compromising on the achievable performances for the sake of cost-effectiveness. This contribution will review major examples of used instrumentation and related performances, identifying the most promising detector developments for next generation devices especially dedicated to on-line monitoring of ion beam treatment. Moreover, it will propose an original combination of different techniques in a hybrid detection scheme, aiming to make the most of complementary imaging methods and open new perspectives of image guidance for improved precision of ion beam therapy.

  4. Ion beam synthesis of Au nanoparticles embedded nano-composite glass

    NASA Astrophysics Data System (ADS)

    Varma, Ranjana S.; Kothari, D. C.; Kumar, Ravi; Kumar, P.; Santra, S. S.; Thomas, R. G.

    2013-02-01

    Ion beam mixing using low energy (LE) ion beams (100 keV Ar+) has been used to form Au nanoparticles in the near-surface region of fused silica glasses. Effect of swift heavy ion (SHI) irradiation (with 120 MeV Ag9+), on the nanoparticles has been studied. Diffusion length of Au after the beam mixing and the irradiation has been found to be 14nm. SHI irradiation causes the increase in the size of the nanoparticles, reduction in size-distribution and increase in number density.

  5. Environmental sensing with optical fiber sensors processed with focused ion beam and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Flores, Raquel; Janeiro, Ricardo; Dahlem, Marcus; Viegas, Jaime

    2015-03-01

    We report an optical fiber chemical sensor based on a focused ion beam processed optical fiber. The demonstrated sensor is based on a cavity formed onto a standard 1550 nm single-mode fiber by either chemical etching, focused ion beam milling (FIB) or femtosecond laser ablation, on which side channels are drilled by either ion beam milling or femtosecond laser irradiation. The encapsulation of the cavity is achieved by optimized fusion splicing onto a standard single or multimode fiber. The empty cavity can be used as semi-curved Fabry-Pérot resonator for gas or liquid sensing. Increased reflectivity of the formed cavity mirrors can be achieved with atomic layer deposition (ALD) of alternating metal oxides. For chemical selective optical sensors, we demonstrate the same FIB-formed cavity concept, but filled with different materials, such as polydimethylsiloxane (PDMS), poly(methyl methacrylate) (PMMA) which show selective swelling when immersed in different solvents. Finally, a reducing agent sensor based on a FIB formed cavity partially sealed by fusion splicing and coated with a thin ZnO layer by ALD is presented and the results discussed. Sensor interrogation is achieved with spectral or multi-channel intensity measurements.

  6. Selective Isobar Suppression for Accelerator Mass Spectrometry and Radioactive Ion Beam Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galindo-Uribarri, Alfredo; Havener, Charles C; Lewis, Thomas L.

    2010-01-01

    Several applications of AMS will benefit from pushing further the detection limits of AMS isotopes. A new method of selective isobar suppression by photodetachment in a radio-frequency quadrupole ion cooler is being developed at HRIBF with a two-fold purpose: (1) increasing the AMS sensitivity for certain isotopes of interest and (2) purifying radioactive ion beams for nuclear science. The potential of suppressing the 36S contaminants in a 36Cl beam using this method has been explored with stable S- and Cl- ions and a Nd:YLF laser. In the study, the laser beam was directed along the experiment's beam line and throughmore » a RF quadrupole ion cooler. Negative 32S and 35Cl ions produced by a Cs sputter ion source were focused into the ion cooler where they were slowed by collisions with He buffer gas; this increased the interaction time between the negative ion beam and the laser beam. As a result, suppression of S- by a factor of 3000 was obtained with about 2.5 W average laser power in the cooler while no reduction in Cl- current was observed.« less

  7. Ion beam applications research. A summary of Lewis Research Center Programs

    NASA Technical Reports Server (NTRS)

    Banks, B. A.

    1981-01-01

    A summary of the ion beam applications research (IBAR) program organized to enable the development of materials, products, and processes through the nonpropulsive application of ion thruster technology is given. Specific application efforts utilizing ion beam sputter etching, deposition, and texturing are discussed as well as ion source and component technology applications.

  8. Irradiation of materials with short, intense ion pulses at NDCX-II

    DOE PAGES

    Seidl, P. A.; Barnard, J. J.; Feinberg, E.; ...

    2017-05-31

    Abstract We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6eV)] He +ion beam is neutralized in a driftmore » compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance.« less

  9. Irradiation of materials with short, intense ion pulses at NDCX-II

    DOE PAGES

    Seidl, P. A.; Barnard, J. J.; Feinberg, E.; ...

    2017-05-31

    Here, we present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11 ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6 eV)] He + ion beam is neutralizedmore » in a drift compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. In conclusion, quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance« less

  10. Irradiation of materials with short, intense ion pulses at NDCX-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidl, P. A.; Barnard, J. J.; Feinberg, E.

    Abstract We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6eV)] He +ion beam is neutralized in a driftmore » compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance.« less

  11. Steady-State Ion Beam Modeling with MICHELLE

    NASA Astrophysics Data System (ADS)

    Petillo, John

    2003-10-01

    There is a need to efficiently model ion beam physics for ion implantation, chemical vapor deposition, and ion thrusters. Common to all is the need for three-dimensional (3D) simulation of volumetric ion sources, ion acceleration, and optics, with the ability to model charge exchange of the ion beam with a background neutral gas. The two pieces of physics stand out as significant are the modeling of the volumetric source and charge exchange. In the MICHELLE code, the method for modeling the plasma sheath in ion sources assumes that the electron distribution function is a Maxwellian function of electrostatic potential over electron temperature. Charge exchange is the process by which a neutral background gas with a "fast" charged particle streaming through exchanges its electron with the charged particle. An efficient method for capturing this is essential, and the model presented is based on semi-empirical collision cross section functions. This appears to be the first steady-state 3D algorithm of its type to contain multiple generations of charge exchange, work with multiple species and multiple charge state beam/source particles simultaneously, take into account the self-consistent space charge effects, and track the subsequent fast neutral particles. The solution used by MICHELLE is to combine finite element analysis with particle-in-cell (PIC) methods. The basic physics model is based on the equilibrium steady-state application of the electrostatic particle-in-cell (PIC) approximation employing a conformal computational mesh. The foundation stems from the same basic model introduced in codes such as EGUN. Here, Poisson's equation is used to self-consistently include the effects of space charge on the fields, and the relativistic Lorentz equation is used to integrate the particle trajectories through those fields. The presentation will consider the complexity of modeling ion thrusters.

  12. HiRadMat at CERN SPS - A test facility with high intensity beam pulses to material samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charitonidis, N.; Fabich, A.; Efthymiopoulos, I.

    2015-07-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in amore » dedicated environment, excluding long-time irradiation studies. The facility is designed for a 10{sup 16} maximum number of protons per year, in order to limit the activation to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and showing examples of upcoming experiments scheduled in the beam period 2014/2015. (authors)« less

  13. The Heidelberg compact electron beam ion traps

    NASA Astrophysics Data System (ADS)

    Micke, P.; Kühn, S.; Buchauer, L.; Harries, J. R.; Bücking, T. M.; Blaum, K.; Cieluch, A.; Egl, A.; Hollain, D.; Kraemer, S.; Pfeifer, T.; Schmidt, P. O.; Schüssler, R. X.; Schweiger, Ch.; Stöhlker, T.; Sturm, S.; Wolf, R. N.; Bernitt, S.; Crespo López-Urrutia, J. R.

    2018-06-01

    Electron beam ion traps (EBITs) are ideal tools for both production and study of highly charged ions (HCIs). In order to reduce their construction, maintenance, and operation costs, we have developed a novel, compact, room-temperature design, the Heidelberg Compact EBIT (HC-EBIT). Four already commissioned devices operate at the strongest fields (up to 0.86 T) reported for such EBITs using permanent magnets, run electron beam currents up to 80 mA, and energies up to 10 keV. They demonstrate HCI production, trapping, and extraction of pulsed Ar16+ bunches and continuous 100 pA ion beams of highly charged Xe up to charge state 29+, already with a 4 mA, 2 keV electron beam. Moreover, HC-EBITs offer large solid-angle ports and thus high photon count rates, e.g., in x-ray spectroscopy of dielectronic recombination in HCIs up to Fe24+, achieving an electron-energy resolving power of E/ΔE > 1500 at 5 keV. Besides traditional on-axis electron guns, we have also implemented a novel off-axis gun for laser, synchrotron, and free-electron laser applications, offering clear optical access along the trap axis. We report on its first operation at a synchrotron radiation facility demonstrating the resonant photoexcitation of highly charged oxygen.

  14. Optical levitation measurements with intensity-modulated light beams.

    PubMed

    Cai, W; Li, F; Sun, S; Wang, Y

    1997-10-20

    Illumination of an optically levitated particle with an intensity-modulated transverse beam induces a transverse vibration of a particle in an optical trap. Based on this, the trapping force of a trap can be measured. Using an intensity-modulated longitudinal levitating beam causes a particle to move vertically, allowing for the determination of some aerodynamic parameters of a particle in air. The principles and the experimental phenomena are described and the initial results are given.

  15. Aberration of a negative ion beam caused by space charge effect.

    PubMed

    Miyamoto, K; Wada, S; Hatayama, A

    2010-02-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  16. Ion beam figuring of CVD silicon carbide mirrors

    NASA Astrophysics Data System (ADS)

    Gailly, P.; Collette, J.-P.; Fleury Frenette, K.; Jamar, C.

    2017-11-01

    Optical and structural elements made of silicon carbide are increasingly found in space instruments. Chemical vapor deposited silicon carbide (CVD-SiC) is used as a reflective coating on SiC optics in reason of its good behavior under polishing. The advantage of applying ion beam figuring (IBF) to CVD-SiC over other surface figure-improving techniques is discussed herein. The results of an IBF sequence performed at the Centre Spatial de Liège on a 100 mm CVD-SiC mirror are reported. The process allowed to reduce the mirror surface errors from 243 nm to 13 nm rms . Beside the surface figure, roughness is another critical feature to consider in order to preserve the optical quality of CVD-SiC . Thus, experiments focusing on the evolution of roughness were performed in various ion beam etching conditions. The roughness of samples etched at different depths down to 3 ≠m was determined with an optical profilometer. These measurements emphasize the importance of selecting the right combination of gas and beam energy to keep roughness at a low level. Kaufman-type ion sources are generally used to perform IBF but the performance of an end-Hall ion source in figuring CVD-SiC mirrors was also evaluated in this study. In order to do so, ion beam etching profiles obtained with the end-Hall source on CVD-SiC were measured and used as a basis for IBF simulations.

  17. Generalized Kapchinskij-Vladimirskij Distribution and Beam Matrix for Phase-Space Manipulations of High-Intensity Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Moses; Qin, Hong; Davidson, Ronald C.

    In an uncoupled linear lattice system, the Kapchinskij-Vladimirskij (KV) distribution formulated on the basis of the single-particle Courant-Snyder invariants has served as a fundamental theoretical basis for the analyses of the equilibrium, stability, and transport properties of high-intensity beams for the past several decades. Recent applications of high-intensity beams, however, require beam phase-space manipulations by intentionally introducing strong coupling. Here in this Letter, we report the full generalization of the KV model by including all of the linear (both external and space-charge) coupling forces, beam energy variations, and arbitrary emittance partition, which all form essential elements for phase-space manipulations. Themore » new generalized KV model yields spatially uniform density profiles and corresponding linear self-field forces as desired. Finally, the corresponding matrix envelope equations and beam matrix for the generalized KV model provide important new theoretical tools for the detailed design and analysis of high-intensity beam manipulations, for which previous theoretical models are not easily applicable.« less

  18. Generalized Kapchinskij-Vladimirskij Distribution and Beam Matrix for Phase-Space Manipulations of High-Intensity Beams

    DOE PAGES

    Chung, Moses; Qin, Hong; Davidson, Ronald C.; ...

    2016-11-23

    In an uncoupled linear lattice system, the Kapchinskij-Vladimirskij (KV) distribution formulated on the basis of the single-particle Courant-Snyder invariants has served as a fundamental theoretical basis for the analyses of the equilibrium, stability, and transport properties of high-intensity beams for the past several decades. Recent applications of high-intensity beams, however, require beam phase-space manipulations by intentionally introducing strong coupling. Here in this Letter, we report the full generalization of the KV model by including all of the linear (both external and space-charge) coupling forces, beam energy variations, and arbitrary emittance partition, which all form essential elements for phase-space manipulations. Themore » new generalized KV model yields spatially uniform density profiles and corresponding linear self-field forces as desired. Finally, the corresponding matrix envelope equations and beam matrix for the generalized KV model provide important new theoretical tools for the detailed design and analysis of high-intensity beam manipulations, for which previous theoretical models are not easily applicable.« less

  19. Intense steady state electron beam generator

    DOEpatents

    Hershcovitch, A.; Kovarik, V.J.; Prelec, K.

    1990-07-17

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source. 2 figs.

  20. Intense steady state electron beam generator

    DOEpatents

    Hershcovitch, Ady; Kovarik, Vincent J.; Prelec, Krsto

    1990-01-01

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source.

  1. Increasing the Extracted Beam Current Density in Ion Thrusters

    NASA Astrophysics Data System (ADS)

    Arthur, Neil Anderson

    Ion thrusters have seen application on space science missions and numerous satellite missions. Ion engines offer higher electrical efficiency and specific impulse capability coupled with longer demonstrated lifetime as compared to other space propulsion technologies. However, ion engines are considered to have low thrust. This work aims to address the low thrust conception; whereby improving ion thruster performance and thrust density will lead to expanded mission capabilities for ion thruster technology. This goal poses a challenge because the mechanism for accelerating ions, the ion optics, is space charge limited according to the Child-Langmuir law-there is a finite number of ions that can be extracted through the grids for a given voltage. Currently, ion thrusters operate at only 40% of this limit, suggesting there is another limit artificially constraining beam current. Experimental evidence suggests the beam current can become source limited-the ion density within the plasma is not large enough to sustain high beam currents. Increasing the discharge current will increase ion density, but ring cusp ion engines become anode area limited at high discharge currents. The ring cusp magnetic field increases ionization efficiency but limits the anode area available for electron collection. Above a threshold current, the plasma becomes unstable. Increasing the engine size is one approach to increasing the operational discharge current, ion density, and thus the beam current, but this presents engineering challenges. The ion optics are a pair of closely spaced grids. As the engine diameter increases, it becomes difficult to maintain a constant grid gap. Span-to-gap considerations for high perveance optics limit ion engines to 50 cm in diameter. NASA designed the annular ion engine to address the anode area limit and scale-up problems by changing the discharge chamber geometry. The annular engine provides a central mounting structure for the optics, allowing the beam

  2. Efficient quasi-monoenergetic ion beams up to 18 MeV/nucleon via self-generated plasma fields in relativistic laser plasmas

    NASA Astrophysics Data System (ADS)

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald; Hamilton, Christopher; Santiago, Miguel; Kreuzer, Christian; Shah, Rahul; Fernandez, Juan; Los Alamos National Laboratory Team; Ludwig-Maximilian-University Team

    2015-11-01

    Table-top laser-plasma ion accelerators seldom achieve narrow energy spreads, and never without serious compromises in efficiency, particle yield, etc. Using massive computer simulations, we identify a self-organizing scheme that exploits persisting self-generated plasma electric (~ TV/m) and magnetic (~ 104 Tesla) fields to reduce the ion energy spread after the laser exits the plasma - separating the ion acceleration from the energy spread reduction. Consistent with the scheme, we experimentally demonstrate aluminum and carbon ion beams with narrow spectral peaks at energies up to 310 MeV (11.5 MeV/nucleon) and 220 MeV (18.3 MeV/nucleon), respectively, with high conversion efficiency (~ 5%, i.e., 4J out of 80J laser). This is achieved with 0.12 PW high-contrast Gaussian laser pulses irradiating planar foils with optimal thicknesses of up to 250 nm that scale with laser intensity. When increasing the focused laser intensity fourfold (by reducing the focusing optic f/number twofold), the spectral-peak energy increases twofold. These results pave the way for next generation compact accelerators suitable for applications. For example, 400 MeV (33.3 MeV/nucleon) carbon-ion beam with narrow energy spread required for ion fast ignition could be generated using PW-class lasers.

  3. Soviet research on the transport of intense relativistic electron beams through high-pressure air

    NASA Astrophysics Data System (ADS)

    Wells, Nikita

    1987-05-01

    Soviet development of intense relativistic electron beams (IREB) through background air at pressures from 1/100 Torr to atmospheric is analyzed as reflected by Soviet open literature of the last 15 years. Important Soviet findings include: (1) the formation of a plasma channel created by an IREB propagating through background air and the effect of beam parameters upon the plasma channel parameters (and vice versa); (2) determination of the background air pressure for the optimum transport of IREB in two ranges, an ion focused regime at 0.06 to 0.09 Torr and a low pressure window at 1 Torr; (3) observation of current enhancement, whereby the IREB-induced current in plasma is higher than the initial beam current; and (4) the effect of resistive hose instability on IREB propagation. This research is characterized by absence of high energy experimentation. A conclusion of the research is that, for optimum beam transport through air, it is imperative to ensure conditions that allow full neutralization of the IREB's self-fields along the entire path of the beam's transport.

  4. Computer simulations of electromagnetic cool ion beam instabilities. [in near earth space

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Madland, C. D.; Schriver, D.; Winske, D.

    1986-01-01

    Electromagnetic ion beam instabilities driven by cool ion beams at propagation parallel or antiparallel to a uniform magnetic field are studied using computer simulations. The elements of linear theory applicable to electromagnetic ion beam instabilities and the simulations derived from a one-dimensional hybrid computer code are described. The quasi-linear regime of the right-hand resonant ion beam instability, and the gyrophase bunching of the nonlinear regime of the right-hand resonant and nonresonant instabilities are examined. It is detected that in the quasi-linear regime the instability saturation is due to a reduction in the beam core relative drift speed and an increase in the perpendicular-to-parallel beam temperature; in the nonlinear regime the instabilities saturate when half the initial beam drift kinetic energy density is converted to fluctuating magnetic field energy density.

  5. Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE

    NASA Astrophysics Data System (ADS)

    Fedosseev, Valentin; Chrysalidis, Katerina; Day Goodacre, Thomas; Marsh, Bruce; Rothe, Sebastian; Seiffert, Christoph; Wendt, Klaus

    2017-08-01

    At ISOLDE the majority of radioactive ion beams are produced using the resonance ionization laser ion source (RILIS). This ion source is based on resonant excitation of atomic transitions by wavelength tunable laser radiation. Since its installation at the ISOLDE facility in 1994, the RILIS laser setup has been developed into a versatile remotely operated laser system comprising state-of-the-art solid state and dye lasers capable of generating multiple high quality laser beams at any wavelength in the range of 210-950 nm. A continuous programme of atomic ionization scheme development at CERN and at other laboratories has gradually increased the number of RILIS-ionized elements. At present, isotopes of 40 different elements have been selectively laser-ionized by the ISOLDE RILIS. Studies related to the optimization of the laser-atom interaction environment have yielded new laser ion source types: the laser ion source and trap and the versatile arc discharge and laser ion source. Depending on the specific experimental requirements for beam purity or versatility to switch between different ionization mechanisms, these may offer a favourable alternative to the standard hot metal cavity configuration. In addition to its main purpose of ion beam production, the RILIS is used for laser spectroscopy of radioisotopes. In an ongoing experimental campaign the isotope shifts and hyperfine structure of long isotopic chains have been measured by the extremely sensitive in-source laser spectroscopy method. The studies performed in the lead region were focused on nuclear deformation and shape coexistence effects around the closed proton shell Z = 82. The paper describes the functional principles of the RILIS, the current status of the laser system and demonstrated capabilities for the production of different ion beams including the high-resolution studies of short-lived isotopes and other applications of RILIS lasers for ISOLDE experiments. This article belongs to the Focus on

  6. Negative ion beam development at Cadarache (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonin, A.; Bucalossi, J.; Desgranges, C.

    1996-03-01

    Neutral beam injection (NBI) is one of the candidates for plasma heating and current drive in the new generation of large magnetic fusion devices (ITER). In order to produce the required deuterium atom beams with energies of 1 MeV and powers of tens of MW, negative D{sup {minus}} ion beams are required. For this purpose, multiampere D{sup {minus}} beam production and 1 MeV electrostatic acceleration is being studied at Cadarache. The SINGAP experiment, a 1 MeV 0.1 A D{sup {minus}} multisecond beam accelerator facility, has recently started operation. It is equipped with a Pagoda ion source, a multiaperture 60 keVmore » preaccelerator and a 1 MV 120 mA power supply. The particular feature of SINGAP is that the postaccelerator merges the 60 keV beamlets, aiming at accelerating the whole beam to 1 MeV in a single gap. The 1 MV level was obtained in less than 2 weeks, the accumulated voltage on-time of being {approximately}22 min. A second test bed MANTIS, is devoted to the development of multiampere D{sup {minus}} sources. It is capable of driving discharges with current up to 2500 A at arc voltages up to 150 V. A large multicusp source has been tested in pure volume and cesiated operation. With cesium seeding, an accelerated D{sup {minus}} beam current density of up to 5.2 mA/cm{sup 2} (2 A of D{sup {minus}}) was obtained. A modification of the extractor is underway in order to improve this performance. A 3D Monte Carlo code has been developed to simulate the negative ion transport in magnetized plasma sources and optimize magnetic field configuration of the large area D{sup {minus}} sources. {copyright} {ital 1996 American Institute of Physics.}« less

  7. Optical and electrical properties of ion beam textured Kapton and Teflon

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Sovey, J. S.

    1977-01-01

    Results are given for ion beam texturing of polyimide (Kapton) and fluorinated ethylene propylene (Teflon) by means of a 30-cm diam electron bombardment argon ion source. Ion beam-textured Kapton and Teflon surfaces are evaluated for various beam energies, current densities, and exposure times. The optical properties and sheet resistance are measured after each exposure. Provided in the paper are optical spectral data, resistivity measurements, calculated absorptance and emittance measurements, and surface structure SEM micrographs for various exposures to argon ions. It is found that Kapton becomes conducting and Teflon nonconducting when ion beam-textured. Textured Kapton exhibits large changes in the transmittance and solar absorptance, but only slight changes in reflectance. Surface texturing of Teflon may allow better adherence of subsequent sputtered metallic films for a high absorptance value. The results are valuable in spacecraft charging applications.

  8. Ion beam microtexturing of surfaces

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1981-01-01

    Some recent work in surface microtecturing by ion beam sputtering is described. The texturing is accomplished by deposition of an impurity onto a substrate while simultaneously bombarding it with an ion beam. A summary of the theory regarding surface diffusion of impurities and the initiation of cone formation is provided. A detailed experimental study of the time-development of individual sputter cones is described. A quasi-liquid coating was observed that apparently reduces the sputter rate of the body of a cone compared to the bulk material. Experimental measurements of surface diffusion activation energies are presented for a variety of substrate-seed combinations and range from about 0.3 eV to 1.2 eV. Observations of apparent crystal structure in sputter cones are discussed. Measurements of the critical temperature for cone formation are also given along with a correlation of critical temperature with substrate sputter rate.

  9. Nonlinear Electron and Ion Density Modulations Driven by Interfering High-Intensity Laser Pulses

    NASA Astrophysics Data System (ADS)

    Chen, S.; Zhang, P.; Saleh, N.; Sheng, Z. M.; Widjaja, C.; Umstadter, D.

    2002-11-01

    The optical spectrum from interaction of two crossed ultra short laser beams (400 fs) with underdense plasma is measured at various angles. Enhancement and broadening of the spectrum in the forward direction of one of the beams shows evidence of energy transfer between the two laser beams(G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn, Phys. Rev. E 60, 2218 (1999).), which is confirmed by a 2-D PIC simulation. The spectrum and scattered power indicate that a large amplitude electron density modulation is driven, which is attributed to the ponderomotive force of the interference, in agreement with simple analysis and simulation(δn/n_0>10). Stokes and anti-Stokes satellites reveals that the energy transfer is accompanied by a large amplitude nonlinear ion acoustic wave created by the laser interference in the strongly driven limit. The wavelength shift indicates that the ion acoustic wave's speed is 2.3×10^6m/s, corresponding to the electron temperature 119 keV, which is attributed to stochastic heating, also found in the simulation. Besides being of interest in basic plasma physics, this research is also relevant to fast igniter fusion or ion acceleration experiments, in which a laser pulse may potentially beat with a reflected weaker pulse, with intensities comparable to those used in the experiment(Y. Sentoku, et al., Appl. Phys. B 74, 207-215 (2002).).

  10. Novel high-energy physics studies using intense lasers and plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leemans, Wim P.; Bulanov, Stepan; Esarey, Eric

    2015-06-29

    In the framework of the project “Novel high-energy physics studies using intense lasers and plasmas” we conducted the study of ion acceleration and “flying mirrors” with high intensity lasers in order to develop sources of ion beams and high frequency radiation for different applications. Since some schemes of laser ion acceleration are also considered a good source of “flying mirrors”, we proposed to investigate the mechanisms of “mirror” formation. As a result we were able to study the laser ion acceleration from thin foils and near critical density targets. We identified several fundamental factors limiting the acceleration in the RPAmore » regime and proposed the target design to compensate these limitations. In the case of near critical density targets, we developed a concept for the laser driven ion source for the hadron therapy. Also we studied the mechanism of “flying mirror” generation during the intense laser interaction with thin solid density targets. As for the laser-based positron creation and capture we initially proposed to study different regimes of positron beam generation and positron beam cooling. Since the for some of these schemes a good quality electron beam is required, we studied the generation of ultra-low emittance electron beams. In order to understand the fundamental physics of high energy electron beam interaction with high intensity laser pulses, which may affect the efficient generation of positron beams, we studied the radiation reaction effects.« less

  11. Understanding space charge and controlling beam loss in high intensity synchrotrons

    NASA Astrophysics Data System (ADS)

    Cousineau, Sarah M.

    Future high intensity synchrotrons will require unprecedented control of beam loss in order to comply with radiation safety regulations and to allow for safe, hands-on maintenance of machine hardware. A major cause of beam loss in high intensity synchrotrons is the space charge force of the beam, which can lead to beam halo and emittance dilution. This dissertation presents a comprehensive study of space charge effects in high intensity synchrotron beams. Experimental measurements taken at the Proton Storage Ring (PSR) in Los Alamos National Laboratory and detailed simulations of the experiments are used to identify and characterize resonances that affect these beams. The collective motion of the beam is extensively studied and is shown to be more relevant than the single particle dynamics in describing the resonance response. The emittance evolution of the PSR beam and methods for reducing the space-charge-induced emittance growth are addressed. In a separate study, the emittance evolution of an intense space charge beam is experimentally measured at the Cooler Injector Synchrotron (CIS) at Indiana University. This dissertation also investigates the sophisticated two-stage collimation system of the future Spallation Neutron Source (SNS) high intensity accumulator ring. A realistic Monte-Carlo collimation simulation is developed and used to optimize the SNS ring collimation system parameters. The finalized parameters and predicted beam loss distribution around the ring are presented. The collimators will additionally be used in conjunction with a set of fast kickers to remove the beam from the gap region before the rise of the extraction magnets. The gap cleaning process is optimized and the cleaning efficiency versus momentum spread of the beam is examined.

  12. Monte Carlo simulations of secondary electron emission due to ion beam milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahady, Kyle; Tan, Shida; Greenzweig, Yuval

    We present a Monte Carlo simulation study of secondary electron emission resulting from focused ion beam milling of a copper target. The basis of this study is a simulation code which simulates ion induced excitation and emission of secondary electrons, in addition to simulating focused ion beam sputtering and milling. This combination of features permits the simulation of the interaction between secondary electron emission, and the evolving target geometry as the ion beam sputters material. Previous ion induced SE Monte Carlo simulation methods have been restricted to predefined target geometries, while the dynamic target in the presented simulations makes thismore » study relevant to image formation in ion microscopy, and chemically assisted ion beam etching, where the relationship between sputtering, and its effects on secondary electron emission, is important. We focus on a copper target, and validate our simulation against experimental data for a range of: noble gas ions, ion energies, ion/substrate angles and the energy distribution of the secondary electrons. We then provide a detailed account of the emission of secondary electrons resulting from ion beam milling; we quantify both the evolution of the yield as high aspect ratio valleys are milled, as well as the emission of electrons within these valleys that do not escape the target, but which are important to the secondary electron contribution to chemically assisted ion induced etching.« less

  13. Final project report for NEET pulsed ion beam project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucheyev, S. O.

    The major goal of this project was to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploited a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. This project had the following four major objectives: (i) the demonstration of the pulsed ion beam method for a prototypical nuclear ceramic material, SiC; (ii) the evaluation of the robustness of the pulsed beam method from studies of defect generation rate effects; (iii) the measurementmore » of the temperature dependence of defect dynamics and thermally activated defect-interaction processes by pulsed ion beam techniques; and (iv) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, all these objectives have been met.« less

  14. Production of an 15O beam using a stable oxygen ion beam for in-beam PET imaging

    NASA Astrophysics Data System (ADS)

    Mohammadi, Akram; Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Inaniwa, Taku; Kitagawa, Atsushi; Yamaya, Taiga

    2017-03-01

    In advanced ion therapy, the 15O ion beam is a promising candidate to treat hypoxic tumors and simultaneously monitor the delivered dose to a patient using PET imaging. This study aimed at production of an 15O beam by projectile fragmentation of a stable 16O beam in an optimal material, followed by in-beam PET imaging using a prototype OpenPET system, which was developed in the authors' group. The study was carried out in three steps: selection of the optimal target based on the highest production rate of 15O fragments; experimental production of the beam using the optimal target in the Heavy Ion Medical Accelerator Chiba (HIMAC) secondary beam course; and realization of in-beam PET imaging for the produced beam. The optimal target evaluations were done using the Monte Carlo simulation code PHITS. The fluence and mean energy of the secondary particles were simulated and the optimal target was selected based on the production rate of 15O fragments. The highest production rate of 15O was observed for a liquid hydrogen target, 3.27% for a 53 cm thick target from the 16O beam of 430 MeV/u. Since liquid hydrogen is not practically applicable in the HIMAC secondary beam course a hydrogen-rich polyethylene material, which was the second optimal target from the simulation results, was selected as the experimental target. Three polyethylene targets with thicknesses of 5, 11 or 14 cm were used to produce the 15O beam without any degrader in the beam course. The highest production rate was measured as around 0.87% for the 11 cm thick polyethylene target from the 16O beam of 430 MeV/u when the angular acceptance and momentum acceptance were set at ±13 mrad and ±2.5%, respectively. The purity of the produced beam for the three targets were around 75%, insufficient for clinical application, but it was increased to 97% by inserting a wedge shape aluminum degrader with a thickness of 1.76 cm into the beam course and that is sufficiently high. In-beam PET imaging was also

  15. Biomedical applications of ion-beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Gibbons, D. F.; Vankampen, C. L.; Babbush, C. A.

    1979-01-01

    Microscopically-rough surface texture of various biocompatible alloys and polymers produced by ion-beam sputtering may result in improvements in response of hard or soft tissue to various surgical implants.

  16. Diagnostic evaluations of a beam-shielded 8-cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Nakanishi, S.

    1978-01-01

    An engineering model thruster fitted with a remotely actuated graphite fiber polyimide composite beam shield was tested in a 3- by 6.5-meter vacuum facility for in-situ assessment of beam shield effects on thruster performance. Accelerator drain current neutralizer floating potential and ion beam floating potential increased slightly when the shield was moved into position. A target exposed to the low density regions of the ion beam was used to map the boundaries of energetic fringe ions capable of sputtering. The particle efflux was evaluated by measurement of film deposits on cold, heated, bare, and enclosed glass slides.

  17. Method for measuring and controlling beam current in ion beam processing

    DOEpatents

    Kearney, Patrick A.; Burkhart, Scott C.

    2003-04-29

    A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.

  18. Report on the workshop on Ion Implantation and Ion Beam Assisted Deposition

    NASA Astrophysics Data System (ADS)

    Dearnaley, G.

    1992-03-01

    This workshop was organized by the Corpus Christi Army Depot (CCAD), the major helicopter repair base within AVSCOM. Previous meetings had revealed a strong interest throughout DoD in ion beam technology as a means of extending the service life of military systems by reducing wear, corrosion, fatigue, etc. The workshop opened with an account by Dr. Bruce Sartwell of the successful application of ion implantation to bearings and gears at NRL, and the checkered history of the MANTECH Project at Spire Corporation. Dr. James Hirvonen (AMTL) continued with a summary of successful applications to reduce wear in biomedical components, and he also described the processes of ion beam-assisted deposition (IBAD) for a variety of protective coatings, including diamond-like carbon (DLC).

  19. Investigations on the structure of the extracted ion beam from an electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaedtke, P.; Lang, R.; Maeder, J.

    2012-02-15

    Using improved beam diagnostic tools, the structure of an ion beam extracted from an electron cyclotron resonance ion source (ECRIS) becomes visible. Especially viewing targets to display the beam profile and pepper pot devices for emittance measurements turned out to be very useful. On the contrary, diagnostic tools integrating over one space coordinate like wire harps for profile measurements or slit-slit devices, respectively slit-grid devices to measure the emittance might be applicable for beam transport investigations in a quadrupole channel, but are not very meaningful for investigations regarding the given ECRIS symmetry. Here we try to reproduce the experimentally foundmore » structure on the ion beam by simulation. For the simulation, a certain model has to be used to reproduce the experimental results. The model is also described in this paper.« less

  20. Ion-beam-assisted etching of diamond

    NASA Technical Reports Server (NTRS)

    Efremow, N. N.; Geis, M. W.; Flanders, D. C.; Lincoln, G. A.; Economou, N. P.

    1985-01-01

    The high thermal conductivity, low RF loss, and inertness of diamond make it useful in traveling wave tubes operating in excess of 500 GHz. Such use requires the controlled etching of type IIA diamond to produce grating like structures tens of micrometers deep. Previous work on reactive ion etching with O2 gave etching rates on the order of 20 nm/min and poor etch selectivity between the masking material (Ni or Cr) and the diamond. An alternative approach which uses a Xe(+) beam and a reactive gas flux of NO2 in an ion-beam-assisted etching system is reported. An etching rate of 200 nm/min was obtained with an etching rate ratio of 20 between the diamond and an aluminum mask.

  1. Gas Filled RF Resonator Hadron Beam Monitor for Intense Neutrino Beam Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yonehara, Katsuya; Abrams, Robert; Dinkel, Holly

    MW-class beam facilities are being considered all over the world to produce an intense neutrino beam for fundamental particle physics experiments. A radiation-robust beam monitor system is required to diagnose the primary and secondary beam qualities in high-radiation environments. We have proposed a novel gas-filled RF-resonator hadron beam monitor in which charged particles passing through the resonator produce ionized plasma that changes the permittivity of the gas. The sensitivity of the monitor has been evaluated in numerical simulation. A signal manipulation algorithm has been designed. A prototype system will be constructed and tested by using a proton beam at themore » MuCool Test Area at Fermilab.« less

  2. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li{sup +} ion beam-driven hohlraums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fehl, D.L.; Chandler, G.A.; Biggs, F.

    X-ray-producing hohlraums are being studied as indirect drives for inertial confinement fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li{sup +} ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The unfold operator (UFO) code and its suite of auxiliary functions were used extensively in obtaining time-resolved x-ray spectra and radiation temperatures from this diagnostic. The UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfoldingmore » parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies ({le}100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time{endash}history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum. {copyright} {ital 1997 American Institute of Physics.}« less

  3. Laser-accelerated ion beam diagnostics with TOF detectors for the ELIMED beam line

    NASA Astrophysics Data System (ADS)

    Milluzzo, G.; Scuderi, V.; Amico, A. G.; Borghesi, M.; Cirrone, G. A. P.; Cuttone, G.; De Napoli, M.; Doria, D.; Dostal, J.; Larosa, G.; Leanza, R.; Margarone, D.; Petringa, G.; Pipek, J.; Romagnani, L.; Romano, F.; Schillaci, F.; Velyhan, A.

    2017-02-01

    Laser-accelerated ion beams could represent the future of particle acceleration in several multidisciplinary applications, as for instance medical physics, hadrontherapy and imaging field, being a concrete alternative to old paradigm of acceleration, characterized by huge and complex machines. In this framework, following on from the ELIMED collaboration, launched in 2012 between INFN-LNS and ELI-Beamlines, in 2014 a three-years contract has been signed between the two institutions for the design and the development of a complete transport beam-line for high-energy ion beams (up to 60 MeV) coupled with innovative diagnostics and in-air dosimetry devices. The beam-line will be installed at the ELI-Beamlines facility and will be available for users. The measurement of the beam characteristics, such as energy spectra, angular distributions and dose-rate is mandatory to optimize the transport as well as the beam delivery at the irradiation point. In order to achieve this purpose, the development of appropriate on-line diagnostics devices capable to detect high-pulsed beams with high accuracy, represents a crucial point in the ELIMED beamline development. The diagnostics solution, based on the use of silicon carbide (SiC) and diamond detectors using TOF technique, will be presented together with the preliminary results obtained with laser-accelerated proton beams.

  4. The beat in laser-accelerated ion beams

    NASA Astrophysics Data System (ADS)

    Schnürer, M.; Andreev, A. A.; Abicht, F.; Bränzel, J.; Koschitzki, Ch.; Platonov, K. Yu.; Priebe, G.; Sandner, W.

    2013-10-01

    Regular modulation in the ion velocity distribution becomes detectable if intense femtosecond laser pulses with very high temporal contrast are used for target normal sheath acceleration of ions. Analytical and numerical analysis of the experimental observation associates the modulation with the half-cycle of the driving laser field period. In processes like ion acceleration, the collective and laser-frequency determined electron dynamics creates strong fields in plasma to accelerate the ions. Even the oscillatory motion of electrons and its influence on the acceleration field can dominate over smoothing effects in plasma if a high temporal contrast of the driving laser pulse is given. Acceleration parameters can be directly concluded out of the experimentally observed modulation period in ion velocity spectra. The appearance of the phenomenon at a temporal contrast of ten orders between the intensity of the pulse peak and the spontaneous amplified emission background as well as remaining intensity wings at picosecond time-scale might trigger further parameter studies with even higher contrast.

  5. Raman conversion in intense femtosecond Bessel beams in air

    NASA Astrophysics Data System (ADS)

    Scheller, Maik; Chen, Xi; Ariunbold, Gombojav O.; Born, Norman; Moloney, Jerome; Kolesik, Miroslav; Polynkin, Pavel

    2014-05-01

    We demonstrate experimentally that bright and nearly collimated radiation can be efficiently generated in air pumped by an intense femtosecond Bessel beam. We show that this nonlinear conversion process is driven by the rotational Raman response of air molecules. Under optimum conditions, the conversion efficiency from the Bessel pump into the on-axis propagating beam exceeds 15% and is limited by the onset of intensity clamping and plasma refraction on the beam axis. Our experimental findings are in excellent agreement with numerical simulations based on the standard model for the ultrafast nonlinear response of air.

  6. Nanocrystalline SnO2 formation using energetic ion beam.

    PubMed

    Mohanty, T; Batra, Y; Tripathi, A; Kanjilal, D

    2007-06-01

    Nanocrystalline tin oxide (SnO2) thin films grown by RF magnetron sputtering technique were characterized by UV-Visible absorption spectroscopy and Photoluminescence spectroscopy. From atomic force microscopic (AFM) and Glancing angle X-ray diffraction (GAXRD) measurements, the radius of grains was found to be approximately 6+/-2 nm. The thin films were bombarded with 250 keV Xe2+ ion beam to observe the stability of nanophases against radiation. For ion bombarded films, optical absorption band edge is shifted towards red region. Atomic force microscopy studies show that the radius of the grains was increased to approximately 8 +/- 1 nm and the grains were nearly uniform in size. The size of the grains has been reduced after ion bombardment in the case of films grown on Si. During this process, defects such as vacancies, voids were generated in the films as well as in the substrates. Ion bombardment induces local temperature increase of thin films causing melting of films. Ion beam induced defects enhances the diffusion of atoms leading to uniformity in size of grains. The role of matrix on ion beam induced grain growth is discussed.

  7. Experimental verification of gain drop due to general ion recombination for a carbon-ion pencil beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tansho, Ryohei, E-mail: r-tansho@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke

    Purpose: Accurate dose measurement in radiotherapy is critically dependent on correction for gain drop, which is the difference of the measured current from the ideal saturation current due to general ion recombination. Although a correction method based on the Boag theory has been employed, the theory assumes that ionized charge density in an ionization chamber (IC) is spatially uniform throughout the irradiation volume. For particle pencil beam scanning, however, the charge density is not uniform, because the fluence distribution of a pencil beam is not uniform. The aim of this study was to verify the effect of the nonuniformity ofmore » ionized charge density on the gain drop due to general ion recombination. Methods: The authors measured the saturation curve, namely, the applied voltage versus measured current, using a large plane-parallel IC and 24-channel parallel-plate IC with concentric electrodes. To verify the effect of the nonuniform ionized charge density on the measured saturation curve, the authors calculated the saturation curve using a method which takes into account the nonuniform ionized charge density and compared it with the measured saturation curves. Results: Measurement values of the different saturation curves in the different channels of the concentric electrodes differed and were consistent with the calculated values. The saturation curves measured by the large plane-parallel IC were also consistent with the calculation results, including the estimation error of beam size and of setup misalignment. Although the impact of the nonuniform ionized charge density on the gain drop was clinically negligible with the conventional beam intensity, it was expected that the impact would increase with higher ionized charge density. Conclusions: For pencil beam scanning, the assumption of the conventional Boag theory is not valid. Furthermore, the nonuniform ionized charge density affects the prediction accuracy of gain drop when the ionized charge

  8. Status of the SPES project, a new tool for fundamental and apply science studies with exotic ion beams at LNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napoli, D. R., E-mail: napoli@lnl.infn.it; Andrighetto, A.; Antonini, P.

    SPES, a new accelerator facility for both the production of exotic ion beams and radio-pharmaceuticals, is presently being installed at the Laboratori Nazionali di Legnaro in Italy (LNL). The new cyclotron, which will provide high intensity proton beams for the production of the rare isotopes, has been installed and is now in the commissioning phase. We present here the status of the part of the project devoted to the production and acceleration of fission fragments created in the interaction of an intense proton beam on a production target of UCx. The expected SPES radioactive beams intensities, their quality and theirmore » maximum energies (up to 11 MeV/A for A=130) will permit to perform forefront research in nuclear structure and nuclear dynamics far from the stability valley. Another low energy section of the facility is foreseen for new and challenging research, both in the nuclear physics and in the material science frameworks.« less

  9. Channeling technique to make nanoscale ion beams

    NASA Astrophysics Data System (ADS)

    Biryukov, V. M.; Bellucci, S.; Guidi, V.

    2005-04-01

    Particle channeling in a bent crystal lattice has led to an efficient instrument for beam steering at accelerators [Biryukov et al., Crystal Channeling and its Application at High Energy Accelerators, Springer, Berlin, 1997], demonstrated from MeV to TeV energies. In particular, crystal focusing of high-energy protons to micron size has been demonstrated at IHEP with the results well in match with Lindhard (critical angle) prediction. Channeling in crystal microstructures has been proposed as a unique source of a microbeam of high-energy particles [Bellucci et al., Phys. Rev. ST Accel. Beams 6 (2003) 033502]. Channeling in nanostructures (single-wall and multi-wall nanotubes) offers the opportunities to produce ion beams on nanoscale. Particles channeled in a nanotube (with typical diameter of about 1 nm) are trapped in two dimensions and can be steered (deflected, focused) with the efficiency similar to that of crystal channeling or better. This technique has been a subject of computer simulations, with experimental efforts under way in several high-energy labs, including IHEP. We present the theoretical outlook for making channeling-based nanoscale ion beams and report the experience with crystal-focused microscale proton beams.

  10. Design of four-beam IH-RFQ linear accelerator

    NASA Astrophysics Data System (ADS)

    Ikeda, Shota; Murata, Aki; Hayashizaki, Noriyosu

    2017-09-01

    The multi-beam acceleration method is an acceleration technique for low-energy high-intensity heavy ion beams, which involves accelerating multiple beams to decrease space charge effects, and then integrating these beams by a beam funneling system. At the Tokyo Institute of Technology a two beam IH-RFQ linear accelerator was developed using a two beam laser ion source with direct plasma injection scheme. This system accelerated a carbon ion beam with a current of 108 mA (54 mA/channel × 2) from 5 up to 60 keV/u. In order to demonstrate that a four-beam IH-RFQ linear accelerator is suitable for high-intensity heavy ion beam acceleration, we have been developing a four-beam prototype. A four-beam IH-RFQ linear accelerator consists of sixteen RFQ electrodes (4 × 4 set) with stem electrodes installed alternately on the upper and lower ridge electrodes. As a part of this development, we have designed a four-beam IH-RFQ linear accelerator using three dimensional electromagnetic simulation software and beam tracking simulation software. From these simulation results, we have designed the stem electrodes, the center plate and the side shells by evaluating the RF properties such as the resonance frequency, the power loss and the electric strength distribution between the RFQ electrodes.

  11. Acceleration and stability of a high-current ion beam in induction fields

    NASA Astrophysics Data System (ADS)

    Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.

    2013-03-01

    A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.

  12. Shunting arc plasma source for pure carbon ion beam.

    PubMed

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  13. Shunting arc plasma source for pure carbon ion beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koguchi, H.; Sakakita, H.; Kiyama, S.

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  14. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry.

    PubMed

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure. Graphical Abstract ᅟ.

  15. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.

  16. Enhancement of CNT-based filters efficiency by ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Elsehly, Emad M.; Chechenin, N. G.; Makunin, A. V.; Shemukhin, A. A.; Motaweh, H. A.

    2018-05-01

    It is shown in the report that disorder produced by ion beam irradiation can enhance the functionality of the carbon nanotubes. The filters of pressed multiwalled carbon nanotubes (MWNTs) were irradiated by He+ ions of the energy E = 80 keV with the fluence 2 × 1016 ion/cm2. The removal of manganese from aqueous solutions by using pristine and ion beam irradiated MWNTs filters was studied as a function of pH, initial concentration of manganese in aqueous solution, MWNT mass and contact time. The filters before and after filtration were characterized by Raman (RS) and energy dispersive X-ray spectroscopy (EDS) techniques to investigate the deposition content in the filter and defect formation in the MWNTs. The irradiated samples showed an enhancement of removal efficiency of manganese up to 97.5% for 10 ppm Mn concentration, suggesting that irradiated MWNT filter is a better Mn adsorbent from aqueous solutions than the pristine one. Radiation-induced chemical functionalization of MWNTs due to ion beam irradiation, suggesting that complexation between the irradiated MWNTs and manganese ions is another mechanism. This conclusion is supported by EDS and RS and is correlated with a larger disorder in the irradiated samples as follows from RS. The study demonstrates that ion beam irradiation is a promising tool to enhance the filtration efficiency of MWNT filters.

  17. ECR Plasma Source for Heavy Ion Beam Charge Neutralization

    NASA Astrophysics Data System (ADS)

    Efthimion, P. C.; Gilson, E.; Grishman, L.; Kolchin, P.; Davidson, R. C.

    2002-01-01

    Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length of approximately 0.1-2 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1-10 gauss. The goal is to operate the source at pressures of approximately 10-6 torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1. Electron densities in the range of 108 - 1011 per cubic centimeter have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source.

  18. On the generation of cnoidal waves in ion beam-dusty plasma containing superthermal electrons and ions

    NASA Astrophysics Data System (ADS)

    El-Bedwehy, N. A.

    2016-07-01

    The reductive perturbation technique is used for investigating an ion beam-dusty plasma system consisting of two opposite polarity dusty grains, and superthermal electrons and ions in addition to ion beam. A two-dimensional Kadomtsev-Petviashvili equation is derived. The solution of this equation, employing Painlevé analysis, leads to cnoidal waves. The dependence of the structural features of these waves on the physical plasma parameters is investigated.

  19. On the generation of cnoidal waves in ion beam-dusty plasma containing superthermal electrons and ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Bedwehy, N. A., E-mail: nab-elbedwehy@yahoo.com

    2016-07-15

    The reductive perturbation technique is used for investigating an ion beam-dusty plasma system consisting of two opposite polarity dusty grains, and superthermal electrons and ions in addition to ion beam. A two-dimensional Kadomtsev–Petviashvili equation is derived. The solution of this equation, employing Painlevé analysis, leads to cnoidal waves. The dependence of the structural features of these waves on the physical plasma parameters is investigated.

  20. Nano-scale processes behind ion-beam cancer therapy

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Garcia, Gustavo; Mason, Nigel; Solov'yov, Andrey V.

    2016-04-01

    This topical issue collates a series of papers based on new data reported at the third Nano-IBCT Conference of the COST Action MP1002: Nanoscale Insights into Ion Beam Cancer Therapy, held in Boppard, Germany, from October 27th to October 31st, 2014. The Nano-IBCT COST Action was launched in December 2010 and brought together more than 300 experts from different disciplines (physics, chemistry, biology) with specialists in radiation damage of biological matter from hadron-therapy centres, and medical institutions. This meeting followed the first and the second conferences of the Action held in October 2011 in Caen, France and in May 2013 in Sopot, Poland respectively. This conference series provided a focus for the European research community and has highlighted the pioneering research into the fundamental processes underpinning ion beam cancer therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.

  1. Multiple beam induction accelerators for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Seidl, Peter A.; Barnard, John J.; Faltens, Andris; Friedman, Alex; Waldron, William L.

    2014-01-01

    Induction accelerators are appealing for heavy-ion driven inertial fusion energy (HIF) because of their high efficiency and their demonstrated capability to accelerate high beam current (≥10 kA in some applications). For the HIF application, accomplishments and challenges are summarized. HIF research and development has demonstrated the production of single ion beams with the required emittance, current, and energy suitable for injection into an induction linear accelerator. Driver scale beams have been transported in quadrupole channels of the order of 10% of the number of quadrupoles of a driver. We review the design and operation of induction accelerators and the relevant aspects of their use as drivers for HIF. We describe intermediate research steps that would provide the basis for a heavy-ion research facility capable of heating matter to fusion relevant temperatures and densities, and also to test and demonstrate an accelerator architecture that scales well to a fusion power plant.

  2. High dose-rate irradiation of materials with pulsed ion beams at NDCX-II

    NASA Astrophysics Data System (ADS)

    Seidl, Peter; Treffert, F.; Ji, Q.; Ludewigt, B.; Persaud, A.; Kong, X.; de Leon, S. J.; Dowling, E.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Stepanov, A.; Gilson, E. P.; Kaganovich, I. D.

    2017-10-01

    Charged particle radiation effects in materials is important for the design of fusion plasma facing components. Also, radiation effects in semiconductor devices are of interest for many applications such as detectors and space electronics. We present results from radiation effects studies with intense pulses of helium ions that impinged on thin samples at the induction linac at Berkeley Lab (Neutralized Drift Compression Experiment-II). Intense bunches of 1.2 MeV He+ ions with peak currents of 2 A, 1-mm beam spot radius and 2-30 ns FWHM duration create controlled high instantaneous dose rates enabling the exploration of collective damage effects. We use in-situ diagnostics to monitor transient effects due to rapid heating and the ionization and damage cascade dynamics. For tin, single pulses deposit sufficient energy in the foil to drive phase transitions. A new Thomson parabola to measures ion energy loss and charge state distributions following transmission of a few micron thick samples. In silicon, ion pulses induce free electron densities of order 1021 cm-3. Supported by the Office of Science of the US DOE under contracts DE-AC0205CH11231, DE-AC52-07NA27344 and DE-AC02-09CH11466 and by the China Scholarship Council.

  3. Production of low-Z ions in the Dresden superconducting electron ion beam source for medical particle therapy.

    PubMed

    Zschornack, G; Schwan, A; Ullmann, F; Grossmann, F; Ovsyannikov, V P; Ritter, E

    2012-02-01

    We report on experiments with a new superconducting electron beam ion source (EBIS-SC), the Dresden EBIS-SC, with the objective to meet the main requirements for their application in particle-therapy facilities. Synchrotrons as well as innovative accelerator concepts, such as high-gradient linacs which are driven by a large-current cyclotron (CYCLINACS) and direct drive RF linear accelerators may benefit from the advantages of EBISs in regard to their functional principle. First experimental studies of the production of low-Z ions such as H(+), H(2)(+), H(3)(+), C(4+), and C(6+) are presented. Particular attention is paid to the ion output, i.e., the number of ions per pulse and per second, respectively. Important beam parameters in this context are, among others, ion pulse shaping, pulse repetition rates, beam emittance, and ion energy spread.

  4. Ion beams provided by small accelerators for material synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Mackova, Anna; Havranek, Vladimir

    2017-06-01

    The compact, multipurpose electrostatic tandem accelerators are extensively used for production of ion beams with energies in the range from 400 keV to 24 MeV of almost all elements of the periodic system for the trace element analysis by means of nuclear analytical methods. The ion beams produced by small accelerators have a broad application, mainly for material characterization (Rutherford Back-Scattering spectrometry, Particle Induced X ray Emission analysis, Nuclear Reaction Analysis and Ion-Microprobe with 1 μm lateral resolution among others) and for high-energy implantation. Material research belongs to traditionally progressive fields of technology. Due to the continuous miniaturization, the underlying structures are far beyond the analytical limits of the most conventional methods. Ion Beam Analysis (IBA) techniques provide this possibility as they use probes of similar or much smaller dimensions (particles, radiation). Ion beams can be used for the synthesis of new progressive functional nanomaterials for optics, electronics and other applications. Ion beams are extensively used in studies of the fundamental energetic ion interaction with matter as well as in the novel nanostructure synthesis using ion beam irradiation in various amorphous and crystalline materials in order to get structures with extraordinary functional properties. IBA methods serve for investigation of materials coming from material research, industry, micro- and nano-technology, electronics, optics and laser technology, chemical, biological and environmental investigation in general. Main research directions in laboratories employing small accelerators are also the preparation and characterization of micro- and nano-structured materials which are of interest for basic and oriented research in material science, and various studies of biological, geological, environmental and cultural heritage artefacts are provided too.

  5. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams

    NASA Astrophysics Data System (ADS)

    Chen, Feng

    2009-10-01

    A range of ion beam techniques have been used to fabricate a variety of photonic guiding structures in the well-known lithium niobate (LiNbO3 or LN) crystals that are of great importance in integrated photonics/optics. This paper reviews the up-to-date research progress of ion-beam-processed LiNbO3 photonic structures and reports on their fabrication, characterization, and applications. Ion beams are being used with this material in a wide range of techniques, as exemplified by the following examples. Ion beam milling/etching can remove the selected surface regions of LiNbO3 crystals via the sputtering effects. Ion implantation and swift ion irradiation can form optical waveguide structures by modifying the surface refractive indices of the LiNbO3 wafers. Crystal ion slicing has been used to obtain bulk-quality LiNbO3 single-crystalline thin films or membranes by exfoliating the implanted layer from the original substrate. Focused ion beams can either generate small structures of micron or submicron dimensions, to realize photonic bandgap crystals in LiNbO3, or directly write surface waveguides or other guiding devices in the crystal. Ion beam-enhanced etching has been extensively applied for micro- or nanostructuring of LiNbO3 surfaces. Methods developed to fabricate a range of photonic guiding structures in LiNbO3 are introduced. Modifications of LiNbO3 through the use of various energetic ion beams, including changes in refractive index and properties related to the photonic guiding structures as well as to the materials (i.e., electro-optic, nonlinear optic, luminescent, and photorefractive features), are overviewed in detail. The application of these LiNbO3 photonic guiding structures in both micro- and nanophotonics are briefly summarized.

  6. Swept Line Electron Beam Annealing of Ion Implanted Semiconductors.

    DTIC Science & Technology

    1982-07-01

    of my research to the mainstream of technology. The techniques used for beam processing are distinguished by their * ~.* beam source and method by...raster scanned CW lasers (CWL), pulsed ion beams (PI), area pulsed electron beams (PEE), raster scanned (RSEB) or multi - scanned electron beams (MSEB...where high quality or tailored profiles are required. Continuous wave lasers and multi -scanned or swept-line electron beams are the most likely candidates

  7. Ion beam figuring of small optical components

    NASA Astrophysics Data System (ADS)

    Drueding, Thomas W.; Fawcett, Steven C.; Wilson, Scott R.; Bifano, Thomas G.

    1995-12-01

    Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The process involves bombarding a component with a stable beam of accelerated particles that selectively removes material from the surface. Figure corrections are achieved by rastering the fixed-current beam across the workplace at appropriate, time-varying velocities. Unlike conventional methods, ion figuring is a noncontact technique and thus avoids such problems as edge rolloff effects, tool wear, and force loading of the workpiece. This work is directed toward the development of the precision ion machining system at NASA's Marshall Space Flight Center. This system is designed for processing small (approximately equals 10-cm diam) optical components. Initial experiments were successful in figuring 8-cm-diam fused silica and chemical-vapor-deposited SiC samples. The experiments, procedures, and results of figuring the sample workpieces to shallow spherical, parabolic (concave and convex), and non-axially-symmetric shapes are discussed. Several difficulties and limitations encountered with the current system are discussed. The use of a 1-cm aperture for making finer corrections on optical components is also reported.

  8. Studies of Ion Acceleration from Thin Solid-Density Targets on High-Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Willis, Christopher R.

    Over the past two decades, a number of experiments have been performed demonstrating the acceleration of ions from the interaction of an intense laser pulse with a thin, solid density target. These ions are accelerated by quasi-static electric fields generated by energetic electrons produced at the front of the target, resulting in ion energies up to tens of MeV. These ions have been widely studied for a variety of potential applications ranging from treatment of cancer to the production of neutrons for advanced radiography techniques. However, realization of these applications will require further optimization of the maximum energy, spectrum, or species of the accelerated ions, which has been a primary focus of research to date. This thesis presents two experiments designed to optimize several characteristics of the accelerated ion beam. The first of these experiments took place on the GHOST laser system at the University of Texas at Austin, and was designed to demonstrate reliable acceleration of deuterium ions, as needed for the most efficient methods of neutron generation from accelerated ions. This experiment leveraged cryogenically cooled targets coated in D2 O ice to suppress the protons which typically dominate the accelerated ions, producing as many as 2 x 1010 deuterium ions per 1 J laser shot, exceeding the proton yield by an average ratio of 5:1. The second major experiment in this work was performed on the Scarlet laser system at The Ohio State University, and studied the accelerated ion energy, yield, and spatial distribution as a function of the target thickness. In principle, the peak energy increases with decreasing target thickness, with the thinnest targets accessing additional acceleration mechanisms which provide favorable scaling with the laser intensity. However, laser prepulse characteristics provide a lower bound for the target thickness, yielding an optimum target thickness for ion acceleration which is dependent on the laser system. This

  9. Neurosurgical applications of ion beams

    NASA Astrophysics Data System (ADS)

    Fabrikant, Jacob I.; Levy, Richard P.; Phillips, Mark H.; Frankel, Kenneth A.; Lyman, John T.

    1989-04-01

    The program at Donner Pavilion has applied nuclear medicine research to the diagnosis and radiosurgical treatment of life-threatening intracranial vascular disorders that affect more than half a million Americans. Stereotactic heavy-charged-particle Bragg peak radiosurgery, using narrow beams of heavy ions, demonstrates superior biological and physical characteristics in brain over X-and γ-rays, viz., improved dose distribution in the Bragg peak and sharp lateral and distal borders and less scattering of the beam. Examination of CNS tissue response and alteration of cerebral blood-flow dynamics related to heavy-ion Bragg peak radiosurgery is carried out using three-dimensional treatment planning and quantitative imaging utilizing cerebral angiography, computerized tomography (CT), magnetic resonance imaging (MRI), cine-CT, xenon X-ray CT and positron emission tomography (PET). Also under examination are the physical properties of narrow heavy-ion beams for improving methods of dose delivery and dose distribution and for establishing clinical RBE/LET and dose-response relationships for human CNS tissues. Based on the evaluation and treatment with stereotactically directed narrow beams of heavy charged particles of over 300 patients, with cerebral angiography, CT scanning and MRI and PET scanning of selected patients, plus extensive clinical and neuroradiological followup, it appears that Stereotactic charged-particle Bragg peak radiosurgery obliterates intracranial arteriovenous malformations or protects against rebleeding with reduced morbidity and no mortality. Discussion will include the method of evaluation, the clinical research protocol, the Stereotactic neuroradiological preparation, treatment planning, the radiosurgery procedure and the protocol for followup. Emphasis will be placed on the neurological results, including the neuroradiological and clinical response and early and late delayed injury in brain leading to complications (including vasogenic edema

  10. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-02-01

    A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  11. Note: A well-confined pulsed low-energy ion beam: Test experiments of Ar+

    NASA Astrophysics Data System (ADS)

    Hu, Jie; Wu, Chun-Xiao; Tian, Shan Xi

    2018-06-01

    Here we report a pulsed low-energy ion beam source for ion-molecule reaction study, in which the ions produced by the pulsed electron impact are confined well in the spatial size of each bunch. In contrast to the ion focusing method to reduce the transverse section of the beam, the longitudinal section in the translational direction is compressed by introducing a second pulse in the ion time-of-flight system. The test experiments for the low-energy argon ions are performed. The present beam source is ready for applications in the ion-molecule reaction dynamics experiments, in particular, in combination with the ion velocity map imaging technique.

  12. Apparatus and method for monitoring the intensities of charged particle beams

    DOEpatents

    Varma, Matesh N.; Baum, John W.

    1982-11-02

    Charged particle beam monitoring means (40) are disposed in the path of a charged particle beam (44) in an experimental device (10). The monitoring means comprise a beam monitoring component (42) which is operable to prevent passage of a portion of beam (44), while concomitantly permitting passage of another portion thereof (46) for incidence in an experimental chamber (18), and providing a signal (I.sub.m) indicative of the intensity of the beam portion which is not passed. Calibration means (36) are disposed in the experimental chamber in the path of the said another beam portion and are operable to provide a signal (I.sub.f) indicative of the intensity thereof. Means (41 and 43) are provided to determine the ratio (R) between said signals whereby, after suitable calibration, the calibration means may be removed from the experimental chamber and the intensity of the said another beam portion determined by monitoring of the monitoring means signal, per se.

  13. Thrust vectoring of broad ion beams for spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Collett, C. R.; King, H. J.

    1973-01-01

    Thrust vectoring is shown to increase the attractiveness of ion thrusters for satellite control applications. Incorporating beam deflection into ion thrusters makes it possible to achieve attitude control without adding any thrusters. Two beam vectoring systems are described that can provide up to 10-deg beam deflection in any azimuth. Both systems have been subjected to extended life tests on a 5-cm thruster which resulted in projected life times of from 7500 to 20,000 hours.

  14. Ion beam figuring of Φ520mm convex hyperbolic secondary mirror

    NASA Astrophysics Data System (ADS)

    Meng, Xiaohui; Wang, Yonggang; Li, Ang; Li, Wenqing

    2016-10-01

    The convex hyperbolic secondary mirror is a Φ520-mm Zerodur lightweight hyperbolic convex mirror. Typically conventional methods like CCOS, stressed-lap polishing are used to manufacture this secondary mirror. Nevertheless, the required surface accuracy cannot be achieved through the use of conventional polishing methods because of the unpredictable behavior of the polishing tools, which leads to an unstable removal rate. Ion beam figuring is an optical fabrication method that provides highly controlled error of previously polished surfaces using a directed, inert and neutralized ion beam to physically sputter material from the optic surface. Several iterations with different ion beam size are selected and optimized to fit different stages of surface figure error and spatial frequency components. Before ion beam figuring, surface figure error of the secondary mirror is 2.5λ p-v, 0.23λ rms, and is improved to 0.12λ p-v, 0.014λ rms in several process iterations. The demonstration clearly shows that ion beam figuring can not only be used to the final correction of aspheric, but also be suitable for polishing the coarse surface of large, complex mirror.

  15. Ion Beam Measurements of a Dense Plasma Focus Device Using CR 39 Nuclear Track Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngoi, S. K.; Yap, S. L.; Wong, C. S.

    The project is carried out using a small Mather type plasma focus device powered by a 15 kV, 30 {mu}F capacitor. The filling gas used is argon. The ion beam generated is investigated by both time resolved and time integrated methods. Investigation on the dynamic of the current sheath is also carried out in order to obtain an optimum condition for ion beam production. The angular distribution of the ion emission is measured at positions of 0 deg. (end-on), 45 deg. and 90 deg. (side-on) by using CR-39 nuclear track detectors. The divergence of the ion beam is also determinedmore » using these detectors. A biased ion collector is used for time resolved measurement of the ion beam. Time of flight technique is employed for the determination of the ion beam energy. Average ion beam energy obtained is about 180 keV. The ion beam produced can be used for applications such as material surface modification and ion implantation.« less

  16. Quantitative secondary ion mass spectrometric analysis of secondary ion polarity in GaN films implanted with oxygen

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Minako; Sakaguchi, Isao; Adachi, Yutaka; Ohashi, Naoki

    2016-10-01

    Quantitative analyses of N and O ions in GaN thin films implanted with oxygen ions (16O+) were conducted by secondary ion mass spectrometry (SIMS). Positive (CsM+) and negative secondary ions extracted by Cs+ primary ion bombardment were analyzed for oxygen quantitative analysis. The oxygen depth profiles were obtained using two types of primary ion beams: a Gaussian-type beam and a broad spot beam. The oxygen peak concentrations in GaN samples were from 3.2 × 1019 to 7.0 × 1021 atoms/cm3. The depth profiles show equivalent depth resolutions in the two analyses. The intensity of negative oxygen ions was approximately two orders of magnitude higher than that of positive ions. In contrast, the O/N intensity ratio measured using CsM+ molecular ions was close to the calculated atomic density ratio, indicating that the SIMS depth profiling using CsM+ ions is much more effective for the measurements of O and N ions in heavy O-implanted GaN than that using negative ions.

  17. Improving the particle beam characteristics resulting from laser ion acceleration at ultra high intensity through target manipulation - Numerical modeling

    NASA Astrophysics Data System (ADS)

    Tatomirescu, Dragos; d'Humieres, Emmanuel; Vizman, Daniel

    2017-12-01

    The necessity to produce superior quality ion and electron beams has been a hot research field due to the advances in laser science in the past decade. This work focuses on the parametric study of different target density profiles in order to determine their effect on the spatial distribution of the accelerated particle beam, the particle maximum energy, and the electromagnetic field characteristics. For the scope of this study, the laser pulse parameters were kept constant, while varying the target parameters. The study continues the work published in [1] and focuses on further studying the effects of target curvature coupled with a cone laser focusing structure. The results show increased particle beam focusing and a significant enhancement in particle maximum energy.

  18. Beam current controller for laser ion source

    DOEpatents

    Okamura, Masahiro

    2014-10-28

    The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.

  19. Stripline fast faraday cup for measuring GHz structure of ion beams

    DOEpatents

    Bogaty, John M.

    1992-01-01

    The Stripline Fast Faraday Cup is a device which is used to quantitatively and qualitatively measure gigahertz time structure characteristics of ion beams with energies up to at least 30 Mev per nucleon. A stripline geometry is employed in conjunction with an electrostatic screen and a Faraday cup to provide for analysis of the structural characteristics of an ion beam. The stripline geometry allows for a large reduction in the size of the instrument while the electrostatic screen permits measurements of the properties associated with low speed ion beams.

  20. Slit disk for modified faraday cup diagnostic for determining power density of electron and ion beams

    DOEpatents

    Teruya, Alan T [Livermore, CA; Elmer,; John, W [Danville, CA; Palmer, Todd A [State College, PA

    2011-03-08

    A diagnostic system for characterization of an electron beam or an ion beam includes an electrical conducting disk of refractory material having a circumference, a center, and a Faraday cup assembly positioned to receive the electron beam or ion beam. At least one slit in the disk provides diagnostic characterization of the electron beam or ion beam. The at least one slit is located between the circumference and the center of the disk and includes a radial portion that is in radial alignment with the center and a portion that deviates from radial alignment with the center. The electron beam or ion beam is directed onto the disk and translated to the at least one slit wherein the electron beam or ion beam enters the at least one slit for providing diagnostic characterization of the electron beam or ion beam.

  1. Nanopatterning of optical surfaces during low-energy ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Liao, Wenlin; Dai, Yifan; Xie, Xuhui

    2014-06-01

    Ion beam figuring (IBF) provides a highly deterministic method for high-precision optical surface fabrication, whereas ion-induced microscopic morphology evolution would occur on surfaces. Consequently, the fabrication specification for surface smoothness must be seriously considered during the IBF process. In this work, low-energy ion nanopatterning of our frequently used optical material surfaces is investigated to discuss the manufacturability of an ultrasmooth surface. The research results indicate that ion beam sputtering (IBS) can directly smooth some amorphous or amorphizable material surfaces, such as fused silica, Si, and ULE under appropriate processing conditions. However, for IBS of a Zerodur surface, preferential sputtering together with curvature-dependent sputtering overcome ion-induced smoothing mechanisms, leading to the granular nanopatterns' formation and the coarsening of the surface. Furthermore, the material property difference at microscopic scales and the continuous impurity incorporation would affect the ion beam smoothing of optical surfaces. Overall, IBS can be used as a promising technique for ultrasmooth surface fabrication, which strongly depends on processing conditions and material characters.

  2. Ion Beam And Plasma Jet Generated By A 3 kJ Plasma Focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, L. K.; Ngoi, S. K.; Yap, S. L.

    The plasma focus device is well known as a copious source of X-ray, neutrons, ion and electron beams. In this work, the characteristics of energetic ion beam emission in a 3 kJ Mather-type plasma focus is studied. The plasma focus system is operated at low pressure with argon as the working gas. The objective of the project is to obtain the argon ion beam and the plasma jet. The ion beam and plasma jet are used for material processing. In order to investigate the effect of the ion beam and plasma jet, crystalline silicon substrates are placed above the anode.more » Samples obtained after irradiation with the plasma focus discharge are analyzed by using the Scanning electron microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX).« less

  3. Negative ion beam injection apparatus with magnetic shield and electron removal means

    DOEpatents

    Anderson, Oscar A.; Chan, Chun F.; Leung, Ka-Ngo

    1994-01-01

    A negative ion source is constructed to produce H.sup.- ions without using Cesium. A high percentage of secondary electrons that typically accompany the extracted H.sup.- are trapped and eliminated from the beam by permanent magnets in the initial stage of acceleration. Penetration of the magnetic field from the permanent magnets into the ion source is minimized. This reduces the destructive effect the magnetic field could have on negative ion production and extraction from the source. A beam expansion section in the extractor results in a strongly converged final beam.

  4. Particle beam injection system

    DOEpatents

    Jassby, Daniel L.; Kulsrud, Russell M.

    1977-01-01

    This invention provides a poloidal divertor for stacking counterstreaming ion beams to provide high intensity colliding beams. To this end, method and apparatus are provided that inject high energy, high velocity, ordered, atomic deuterium and tritium beams into a lower energy, toroidal, thermal equilibrium, neutral, target plasma column that is magnetically confined along an endless magnetic axis in a strong restoring force magnetic field having helical field lines to produce counterstreaming deuteron and triton beams that are received bent, stacked and transported along the endless axis, while a poloidal divertor removes thermal ions and electrons all along the axis to increase the density of the counterstreaming ion beams and the reaction products resulting therefrom. By balancing the stacking and removal, colliding, strong focused particle beams, reaction products and reactions are produced that convert one form of energy into another form of energy.

  5. Adhesive bonding of ion beam textured metals and fluoropolymers

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Sovey, J. S.

    1978-01-01

    An electron bombardment argon ion source was used to ion etch various metals and fluoropolymers. The metal and fluoropolymers were exposed to (0.5 to 1.0) keV Ar ions at ion current densities of (0.2 to 1.5) mA/sq cm for various exposure times. The resulting surface texture is in the form of needles or spires whose vertical dimensions may range from tenths to hundreds of micrometers, depending on the selection of beam energy, ion current density, and etch time. The bonding of textured surfaces is accomplished by ion beam texturing mating pieces of either metals or fluoropolymers and applying a bonding agent which wets in and around the microscopic cone-like structures. After bonding, both tensile and shear strength measurements were made on the samples. Also tested, for comparison's sake, were untextured and chemically etched fluoropolymers. The results of these measurements are presented.

  6. Adhesive bonding of ion beam textured metals and fluoropolymers

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Sovey, J. S.

    1978-01-01

    An electron-bombardment argon ion source was used to ion-etch various metals and fluoropolymers. The metal and fluoropolymers were exposed to (0.5 to 1.0)-keV Ar ions at ion current densities of 0.2 to 1.5 mA/sq cm for various exposure times. The resulting surface texture is in the form of needles or spires whose vertical dimensions may range from tenths to hundreds of micrometers, depending on the selection of beam energy, ion current density, and etch time. The bonding of textured surfaces is accomplished by ion-beam texturing mating pieces of either metals or fluoropolymers and applying a bonding agent which wets in and around the microscopic conelike structures. After bonding, both tensile and shear strength measurements were made on the samples. Also tested, for comparison's sake, were untextured and chemically etched fluoropolymers. The results of these measurements are presented in this paper.

  7. Ion beam and plasma methods of producing diamondlike carbon films

    NASA Technical Reports Server (NTRS)

    Swec, Diane M.; Mirtich, Michael J.; Banks, Bruce A.

    1988-01-01

    A variety of plasma and ion beam techniques was employed to generate diamondlike carbon films. These methods included the use of RF sputtering, dc glow discharge, vacuum arc, plasma gun, ion beam sputtering, and both single and dual ion beam deposition. Since films were generated using a wide variety of techniques, the physico-chemical properties of these films varied considerably. In general, these films had characteristics that were desirable in a number of applications. For example, the films generated using both single and dual ion beam systems were evaluated for applications including power electronics as insulated gates and protective coatings on transmitting windows. These films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Nuclear reaction and combustion analysis indicated hydrogen to carbon ratios to be 1.00, which allowed the films to have good transmittance not only in the infrared, but also in the visible. Other evaluated properties of these films include band gap, resistivity, adherence, density, microhardness, and intrinsic stress. The results of these studies and those of the other techniques for depositing diamondlike carbon films are presented.

  8. MULTIPLE ELECTRON BEAM ION PUMP AND SOURCE

    DOEpatents

    Ellis, R.E.

    1962-02-27

    A vacuum pump is designed which operates by ionizing incoming air and by withdrawing the ions from the system by means of electrical fields. The apparatus comprises a cylindrical housing communicable with the vessel to be evacuated and having a thin wall section in one end. Suitable coils provide a longitudinal magnetic field within the cylinder. A broad cathode and an anode structure is provided to establish a plurality of adjacent electron beams which are parallel to the cylinder axis. Electron reflector means are provided so that each of the beams constitutes a PIG or reflex discharge. Such structure provides a large region in which incoming gas molecules may be ionized by electron bombardment. A charged electrode assembly accelerates the ions through the thin window, thereby removing the gas from the system. The invention may also be utilized as a highly efficient ion source. (AEC)

  9. Dosimetric verification in water of a Monte Carlo treatment planning tool for proton, helium, carbon and oxygen ion beams at the Heidelberg Ion Beam Therapy Center

    NASA Astrophysics Data System (ADS)

    Tessonnier, T.; Böhlen, T. T.; Ceruti, F.; Ferrari, A.; Sala, P.; Brons, S.; Haberer, T.; Debus, J.; Parodi, K.; Mairani, A.

    2017-08-01

    The introduction of ‘new’ ion species in particle therapy needs to be supported by a thorough assessment of their dosimetric properties and by treatment planning comparisons with clinically used proton and carbon ion beams. In addition to the latter two ions, helium and oxygen ion beams are foreseen at the Heidelberg Ion Beam Therapy Center (HIT) as potential assets for improving clinical outcomes in the near future. We present in this study a dosimetric validation of a FLUKA-based Monte Carlo treatment planning tool (MCTP) for protons, helium, carbon and oxygen ions for spread-out Bragg peaks in water. The comparisons between the ions show the dosimetric advantages of helium and heavier ion beams in terms of their distal and lateral fall-offs with respect to protons, reducing the lateral size of the region receiving 50% of the planned dose up to 12 mm. However, carbon and oxygen ions showed significant doses beyond the target due to the higher fragmentation tail compared to lighter ions (p and He), up to 25%. The Monte Carlo predictions were found to be in excellent geometrical agreement with the measurements, with deviations below 1 mm for all parameters investigated such as target and lateral size as well as distal fall-offs. Measured and simulated absolute dose values agreed within about 2.5% on the overall dose distributions. The MCTP tool, which supports the usage of multiple state-of-the-art relative biological effectiveness models, will provide a solid engine for treatment planning comparisons at HIT.

  10. Development of long-lived thick carbon stripper foils for high energy heavy ion accelerators by a heavy ion beam sputtering method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muto, Hideshi; Ohshiro, Yukimitsu; Kawasaki, Katsunori

    2013-04-19

    In the past decade, we have developed extremely long-lived carbon stripper foils of 1-50 {mu}g/cm{sup 2} thickness prepared by a heavy ion beam sputtering method. These foils were mainly used for low energy heavy ion beams. Recently, high energy negative Hydrogen and heavy ion accelerators have started to use carbon stripper foils of over 100 {mu}g/cm{sup 2} in thickness. However, the heavy ion beam sputtering method was unsuccessful in production of foils thicker than about 50 {mu}g/cm{sup 2} because of the collapse of carbon particle build-up from substrates during the sputtering process. The reproduction probability of the foils was lessmore » than 25%, and most of them had surface defects. However, these defects were successfully eliminated by introducing higher beam energies of sputtering ions and a substrate heater during the sputtering process. In this report we describe a highly reproducible method for making thick carbon stripper foils by a heavy ion beam sputtering with a Krypton ion beam.« less

  11. ION SOURCE

    DOEpatents

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  12. Negative ion source development for a photoneutralization based neutral beam system for future fusion reactors

    NASA Astrophysics Data System (ADS)

    Simonin, A.; Agnello, R.; Bechu, S.; Bernard, J. M.; Blondel, C.; Boeuf, J. P.; Bresteau, D.; Cartry, G.; Chaibi, W.; Drag, C.; Duval, B. P.; de Esch, H. P. L.; Fubiani, G.; Furno, I.; Grand, C.; Guittienne, Ph; Howling, A.; Jacquier, R.; Marini, C.; Morgal, I.

    2016-12-01

    In parallel to the developments dedicated to the ITER neutral beam (NB) system, CEA-IRFM with laboratories in France and Switzerland are studying the feasibility of a new generation of NB system able to provide heating and current drive for the future DEMOnstration fusion reactor. For the steady-state scenario, the NB system will have to provide a high NB power level with a high wall-plug efficiency (η ˜ 60%). Neutralization of the energetic negative ions by photodetachment (so called photoneutralization), if feasible, appears to be the ideal solution to meet these performances, in the sense that it could offer a high beam neutralization rate (>80%) and a wall-plug efficiency higher than 60%. The main challenge of this new injector concept is the achievement of a very high power photon flux which could be provided by 3 MW Fabry-Perot optical cavities implanted along the 1 MeV D- beam in the neutralizer stage. The beamline topology is tall and narrow to provide laminar ion beam sheets, which will be entirely illuminated by the intra-cavity photon beams propagating along the vertical axis. The paper describes the present R&D (experiments and modelling) addressing the development of a new ion source concept (Cybele source) which is based on a magnetized plasma column. Parametric studies of the source are performed using Langmuir probes in order to characterize and compare the plasma parameters in the source column with different plasma generators, such as filamented cathodes, radio-frequency driver and a helicon antenna specifically developed at SPC-EPFL satisfying the requirements for the Cybele (axial magnetic field of 10 mT, source operating pressure: 0.3 Pa in hydrogen or deuterium). The paper compares the performances of the three plasma generators. It is shown that the helicon plasma generator is a very promising candidate to provide an intense and uniform negative ion beam sheet.

  13. Delivering the world's most intense muon beam

    NASA Astrophysics Data System (ADS)

    Cook, S.; D'Arcy, R.; Edmonds, A.; Fukuda, M.; Hatanaka, K.; Hino, Y.; Kuno, Y.; Lancaster, M.; Mori, Y.; Ogitsu, T.; Sakamoto, H.; Sato, A.; Tran, N. H.; Truong, N. M.; Wing, M.; Yamamoto, A.; Yoshida, M.

    2017-03-01

    A new muon beam line, the muon science innovative channel, was set up at the Research Center for Nuclear Physics, Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently decay to muons, using a novel superconducting solenoid magnet system. After the pion-capture solenoid, the first 36° of the curved muon transport line was commissioned and the muon flux was measured. In order to detect muons, a target of either copper or magnesium was placed to stop muons at the end of the muon beam line. Two stations of plastic scintillators located upstream and downstream from the muon target were used to reconstruct the decay spectrum of muons. In a complementary method to detect negatively charged muons, the x-ray spectrum yielded by muonic atoms in the target was measured in a germanium detector. Measurements, at a proton beam current of 6 pA, yielded (10.4 ±2.7 )×1 05 muons per watt of proton beam power (μ+ and μ-), far in excess of other facilities. At full beam power (400 W), this implies a rate of muons of (4.2 ±1.1 )×1 08 muons s-1 , among the highest in the world. The number of μ- measured was about a factor of 10 lower, again by far the most efficient muon beam produced. The setup is a prototype for future experiments requiring a high-intensity muon beam, such as a muon collider or neutrino factory, or the search for rare muon decays which would be a signature for phenomena beyond the Standard Model of particle physics. Such a muon beam can also be used in other branches of physics, nuclear and condensed matter, as well as other areas of scientific research.

  14. Gaussian representation of high-intensity focused ultrasound beams.

    PubMed

    Soneson, Joshua E; Myers, Matthew R

    2007-11-01

    A method for fast numerical simulation of high-intensity focused ultrasound beams is derived. The method is based on the frequency-domain representation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and assumes for each harmonic a Gaussian transverse pressure distribution at all distances from the transducer face. The beamwidths of the harmonics are constrained to vary inversely with the square root of the harmonic number, and as such this method may be viewed as an extension of a quasilinear approximation. The technique is capable of determining pressure or intensity fields of moderately nonlinear high-intensity focused ultrasound beams in water or biological tissue, usually requiring less than a minute of computer time on a modern workstation. Moreover, this method is particularly well suited to high-gain simulations since, unlike traditional finite-difference methods, it is not subject to resolution limitations in the transverse direction. Results are shown to be in reasonable agreement with numerical solutions of the full KZK equation in both tissue and water for moderately nonlinear beams.

  15. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    PubMed

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  16. Polar cap ion beams during periods of northward IMF: Cluster statistical results

    NASA Astrophysics Data System (ADS)

    Maggiolo, R.; Echim, M.; de Keyser, J.; Fontaine, D.; Jacquey, C.; Dandouras, I.

    2011-05-01

    Above the polar caps and during prolonged periods of northward IMF, the Cluster satellites detect upward accelerated ion beams with energies up to a few keV. They are associated with converging electric field structures indicating that the acceleration is caused by a quasi-static field-aligned electric field that can extend to altitudes higher than 7 RE (Maggiolo et al., 2006; Teste et al., 2007). Using the AMDA science analysis service provided by the Centre de Données de la Physique des Plasmas, we have been able to extract about 200 events of accelerated upgoing ion beams above the polar caps from the Cluster database. Most of these observations are taken at altitudes lower than 7 RE and in the Northern Hemisphere. We investigate the statistical properties of these ion beams. We analyze their geometry, the properties of the plasma populations and of the electric field inside and around the beams, as well as their dependence on solar wind and IMF conditions. We show that ~40 % of the ion beams are collocated with a relatively hot and isotropic plasma population. The density and temperature of the isotropic population are highly variable but suggest that this plasma originates from the plasma sheet. The ion beam properties do not change significantly when the isotropic, hot background population is present. Furthermore, during one single polar cap crossing by Cluster it is possible to detect upgoing ion beams both with and without an accompanying isotropic component. The analysis of the variation of the IMF BZ component prior to the detection of the beams indicates that the delay between a northward/southward turning of IMF and the appearance/disappearance of the beams is respectively ~2 h and 20 min. The observed electrodynamic characteristics of high altitude polar cap ion beams suggest that they are closely connected to polar cap auroral arcs. We discuss the implications of these Cluster observations above the polar cap on the magnetospheric dynamics and

  17. Proton Beam Intensity Upgrades for the Neutrino Program at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, C. M.

    2016-12-15

    Fermilab is committed to upgrading its accelerator complex towards the intensity frontier to pursue HEP research in the neutrino sector and beyond. The upgrade has two steps: 1) the Proton Improvement Plan (PIP), which is underway, has its primary goal to start providing 700 kW beam power on NOvA target by the end of 2017 and 2) the foreseen PIP–II will replace the existing LINAC, a 400 MeV injector to the Booster, by an 800 MeV superconducting LINAC by the middle of next decade, with output beam intensity from the Booster increased significantly and the beam power on the NOvAmore » target increased to <1.2 MW. In any case, the Fermilab Booster is going to play a very significant role for the next two decades. In this context, we have recently developed and commissioned an innovative beam injection scheme for the Booster called "early injection scheme". This scheme is already in operation and has a potential to increase the Booster beam intensity from the PIP design goal by a considerable amount with a reduced beam emittance and beam loss. In this paper, we will present results from our experience from the new scheme in operation, current status and future plans.« less

  18. Polarized negative ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haeberli, W.

    1981-04-01

    This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited statemore » (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.« less

  19. Development of high intensity linear accelerator for heavy ion inertial fusion driver

    NASA Astrophysics Data System (ADS)

    Lu, Liang; Hattori, Toshiyuki; Hayashizaki, Noriyosu; Ishibashi, Takuya; Okamura, Masahiro; Kashiwagi, Hirotsugu; Takeuchi, Takeshi; Zhao, Hongwei; He, Yuan

    2013-11-01

    In order to verify the direct plasma injection scheme (DPIS), an acceleration test was carried out in 2001 using a radio frequency quadrupole (RFQ) heavy ion linear accelerator (linac) and a CO2-laser ion source (LIS) (Okamura et al., 2002) [1]. The accelerated carbon beam was observed successfully and the obtained current was 9.22 mA for C4+. To confirm the capability of the DPIS, we succeeded in accelerating 60 mA carbon ions with the DPIS in 2004 (Okamura et al., 2004; Kashiwagi and Hattori, 2004) [2,3]. We have studied a multi-beam type RFQ with an interdigital-H (IH) cavity that has a power-efficient structure in the low energy region. We designed and manufactured a two-beam type RFQ linac as a prototype for the multi-beam type linac; the beam acceleration test of carbon beams showed that it successfully accelerated from 5 keV/u up to 60 keV/u with an output current of 108 mA (2×54 mA/channel) (Ishibashi et al., 2011) [4]. We believe that the acceleration techniques of DPIS and the multi-beam type IH-RFQ linac are technical breakthroughs for heavy-ion inertial confinement fusion (HIF). The conceptual design of the RF linac with these techniques for HIF is studied. New accelerator-systems using these techniques for the HIF basic experiment are being designed to accelerate 400 mA carbon ions using four-beam type IH-RFQ linacs with DPIS. A model with a four-beam acceleration cavity was designed and manufactured to establish the proof of principle (PoP) of the accelerator.

  20. Improving Plating by Use of Intense Acoustic Beams

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Denofrio, Charles

    2003-01-01

    An improved method of selective plating of metals and possibly other materials involves the use of directed high-intensity acoustic beams. The beams, typically in the ultrasonic frequency range, can be generated by fixed-focus transducers (see figure) or by phased arrays of transducers excited, variously, by continuous waves, tone bursts, or single pulses. The nonlinear effects produced by these beams are used to alter plating processes in ways that are advantageous.

  1. Beam production of a laser ion source with a rotating hollow cylinder target for low energy positive and negative ions

    NASA Astrophysics Data System (ADS)

    Saquilayan, G. Q.; Wada, M.

    2017-08-01

    A laser ion source that utilizes a hollow cylinder target is being developed for the production of positive and negative ions. Continuous operation of the laser ion source is possible through the design of a rotating target. Ion extraction through a grounded circular aperture was tested for positive and negative ions up to 1 kV. Time-of-flight measurements for the mass separation of ions were made by placing a Faraday cup at locations 0 and 15 mm from the beam extraction axis. Signals corresponding to slow and massive ions were detected with mass at least 380 amu. Investigation on the beam profile suggests a geometrical optimization of the beam forming system is necessary.

  2. Applications of Ultra-Intense, Short Laser Pulses

    NASA Astrophysics Data System (ADS)

    Ledingham, Ken W. D.

    The high intensity laser production of electron, proton, ion and photon beams is reviewed particularly with respect to the laser-plasma interaction which drives the acceleration process. A number of applications for these intense short pulse beams is discussed e.g. ion therapy, PET isotope production and laser driven transmutation studies. The future for laser driven nuclear physics at the huge new, multi-petawatt proposed laser installation ELI in Bucharest is described. Many people believe this will take European nuclear research to the next level.

  3. Non-perturbative measurement of low-intensity charged particle beams

    NASA Astrophysics Data System (ADS)

    Fernandes, M.; Geithner, R.; Golm, J.; Neubert, R.; Schwickert, M.; Stöhlker, T.; Tan, J.; Welsch, C. P.

    2017-01-01

    Non-perturbative measurements of low-intensity charged particle beams are particularly challenging to beam diagnostics due to the low amplitude of the induced electromagnetic fields. In the low-energy antiproton decelerator (AD) and the future extra low energy antiproton rings at CERN, an absolute measurement of the beam intensity is essential to monitor the operation efficiency. Superconducting quantum interference device (SQUID) based cryogenic current comparators (CCC) have been used for measuring slow charged beams in the nA range, showing a very good current resolution. But these were unable to measure fast bunched beams, due to the slew-rate limitation of SQUID devices and presented a strong susceptibility to external perturbations. Here, we present a CCC system developed for the AD machine, which was optimised in terms of its current resolution, system stability, ability to cope with short bunched beams, and immunity to mechanical vibrations. This paper presents the monitor design and the first results from measurements with a low energy antiproton beam obtained in the AD in 2015. These are the first CCC beam current measurements ever performed in a synchrotron machine with both coasting and short bunched beams. It is shown that the system is able to stably measure the AD beam throughout the entire cycle, with a current resolution of 30 {nA}.

  4. Electromagnetic ion beam instabilities - Growth at cyclotron harmonic wave numbers

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Gary, S. Peter

    1987-01-01

    The linear theory of electromagnetic ion beam instabilities for arbitrary angles of propagation is studied, with an emphasis on the conditions necessary to generate unstable modes at low harmonics of the ion cyclotron resonance condition. The present results extend the analysis of Smith et al. (1985). That paper considered only the plasma parameters at a time during which harmonic wave modes were observed in the earth's foreshock. The parameters of that paper are used as the basis of parametric variations here to establish the range of beam properties which may give rise to observable harmonic spectra. It is shown that the growth rates of both left-hand and right-hand cyclotron harmonic instabilities are enhanced by an increase in the beam temperature anisotropy and/or the beam speed. Decreases in the beam density and/or the core-ion beta reduce the overall growth of the cyclotron harmonic instabilities but favor the growth of these modes over the growth of the nonresonant instability and thereby enhance the observability of the harmonics.

  5. Investigation of Damage with Cluster Ion Beam Irradiation Using HR-RBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Toshio; Aoki, Takaaki; Matsuo, Jiro

    2008-11-03

    Cluster ion beam can process targets with shallow damage because of the very low irradiation energy per atom. However, it is needed to investigate the damage with cluster ion beam irradiation, because recent applications demand process targets with ultra low damage. The shallow damage can be investigated from depth profiles of specific species before and after ion irradiation. They can be measured with secondary ion mass spectrometry (SIMS) and Rutherford backscattering spectroscopy (RBS). High resolution Rutherford backscattering spectroscopy (HR-RBS) is a non destructive measurement method and depth profiles can be measured with nano-resolution. The cluster ion beam mixing of thinmore » Ni layer in carbon targets can be investigated with HR-RBS. The mixing depth with cluster ion irradiation at 10 keV was about 10 nm. The mixing depth with cluster ion irradiation at 1 keV and 5 keV were less than 1 nm and 5 nm, respectively. The number of displaced Ni atoms with cluster ion irradiation was very larger than that with monomer ion irradiation of same energy. This result shows that violent mixing occurs with single cluster impact.« less

  6. The characteristics of a new negative metal ion beam source and its applications

    NASA Astrophysics Data System (ADS)

    Paik, Namwoong

    2001-10-01

    Numerous efforts at energetic thin film deposition processes using ion beams have been made to meet the demands of today's thin film industry. As one of these efforts, a new Magnetron Sputter Negative Ion Source (MSNIS) was developed. In this study, the development and the characterization of the MSNIS were investigated. Amorphous carbon films were used as a sample coating medium to evaluate the ion beam energy effect. A review of energetic Physical Vapor Deposition (PVD) techniques is presented in Chapter 1. The energetic PVD methods can be classified into two major categories: the indirect ion beam method Ion Beam Assisted Deposition (IBAD), and the direct ion beam method-Direct Ion Beam Deposition (DIBD). In this chapter, currently available DIBD processes such as Cathodic Arc, Laser Ablation, Ionized Physical Vapor Deposition (I-PVD) and Magnetron Sputter Negative Ion Source (MSNIS) are individually reviewed. The design and construction of the MSNIS is presented in chapter 2. The MSNIS is a hybrid of the conventional magnetron sputter configuration and the cesium surface ionizer. The negative sputtered ions are produced directly from the sputter target by surface ionization. In chapter 3, the ion beam and plasma characteristics of an 8″ diameter MSNIS are investigated using a retarding field analyzer and a cylindrical Langmuir Probe. The measured electron temperature is approximately 2-5 eV, while the plasma density and plasma potential were of the order of 10 11-1012 cm3 and 5-20 V, respectively, depending on the pressure and power. In chapter 4, in order to evaluate the effect of the ion beam on the resultant films, amorphous carbon films were deposited under various conditions. The structure of carbon films was investigated using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The result suggests the fraction of spa bonding is more than 70% in some samples prepared by MSNIS while magnetron sputtered samples showed less than 30%. (Abstract

  7. Mean intensity of the fundamental Bessel-Gaussian beam in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Lukin, Igor P.

    2017-11-01

    In the given article mean intensity of a fundamental Bessel-Gaussian optical beam in turbulent atmosphere is studied. The problem analysis is based on the solution of the equation for the transverse second-order mutual coherence function of a fundamental Bessel-Gaussian beam of optical radiation. Distributions of mean intensity of a fundamental Bessel- Gaussian beam optical beam in longitudinal and transverse to a direction of propagation of optical radiation are investigated in detail. Influence of atmospheric turbulence on change of radius of the central part of a Bessel optical beam is estimated. Values of parameters at which it is possible to generate in turbulent atmosphere a nondiffracting pseudo-Bessel optical beam by means of a fundamental Bessel-Gaussian optical beam are established.

  8. Apparatus and process for active pulse intensity control of laser beam

    DOEpatents

    Wilcox, Russell B.

    1992-01-01

    An optically controlled laser pulse energy control apparatus and process is disclosed wherein variations in the energy of a portion of the laser beam are used to vary the resistance of a photodetector such as a photoresistor through which a control voltage is fed to a light intensity controlling device through which a second portion of the laser beam passes. Light attenuation means are provided to vary the intensity of the laser light used to control the resistance of the photodetector. An optical delay path is provided through which the second portion of the beam travels before reaching the light intensity controlling device. The control voltage is supplied by a variable power supply. The apparatus may be tuned to properly attenuate the laser beam passing through the intensity controlling device by adjusting the power supply, the optical delay path, or the light attenuating means.

  9. Ion beam neutralization using three-dimensional electron confinement by surface modification of magnetic poles

    NASA Astrophysics Data System (ADS)

    Nicolaescu, Dan; Sakai, Shigeki; Gotoh, Yasuhito; Ishikawa, Junzo

    2011-07-01

    Advanced implantation systems used for semiconductor processing require transportation of quasi-parallel ion beams, which have low energy (11B+, 31P+,75As+, Eion=200-1000 eV). Divergence of the ion beam due to space charge effects can be compensated through injection of electrons into different regions of the ion beam. The present study shows that electron confinement takes place in regions of strong magnetic field such as collimator magnet provided with surface mirror magnetic fields and that divergence of the ion beam passing through such regions is largely reduced. Modeling results have been obtained using Opera3D/Tosca/Scala. Electrons may be provided by collision between ions and residual gas molecules or may be injected by field emitter arrays. The size of surface magnets is chosen such as not to disturb ion beam collimation, making the approach compatible with ion beam systems. Surface magnets may form thin magnetic layers with thickness h=0.5 mm or less. Conditions for spacing of surface magnet arrays for optimal electron confinement are outlined.

  10. Nickel nanowires mesh fabricated by ion beam irradiation-induced nanoscale welding for transparent conducting electrodes

    NASA Astrophysics Data System (ADS)

    Honey, S.; Ahmad, I.; Madhuku, M.; Naseem, S.; Maaza, M.; Kennedy, J. V.

    2017-07-01

    In this report, random nickel nanowires (Ni-NWs) meshes are fabricated by ions beam irradiation-induced nanoscale welding of NWs on intersecting positions. Ni-NWs are exposed to beam of 50 KeV Argon (Ar+) ions at various fluencies in the range ~1015 ions cm-2 to 1016 ions cm-2 at room temperature. Ni-NWs are welded due to accumulation of Ar+ ions beam irradiation-induced sputtered atoms on crossing positions. Ar+ ions irradiated Ni-NWs meshes are optically transparent and optical transparency is enhanced with increase in beam fluence of Ar+ ions. Ar+ ions beam irradiation-induced welded and optically transparent mesh is then exposed to 2.75 MeV hydrogen (H+) ions at fluencies 1  ×  1015 ions cm-2, 3  ×  1015 ions cm-2 and 1  ×  1016 ions cm-2 at room temperature. MeV H+ ions irradiation-induced local heat cause melting and fusion of NWs on intersecting points and eventually lead to reduce contact resistance between Ni-NWs. Electrical conductivity is enhanced with increase in beam fluence of H+ ions. These welded highly transparent and electrically conductive Ni-NWs meshes can be employed as transparent conducting electrodes in optoelectronic devices.

  11. Production of Neutral Beams from Negative Ion Beam Systems in the USSR

    DTIC Science & Technology

    1982-12-01

    research is to produce long-pulse and CW high-energy neutral beams. The Oak Ridge National Laboratory ( ORNL ) has been concentrating on the direct extraction...next generation of mirror devices [1II. ORNL is using a cesium converter to produce negative ions from low-energy positive ions from a duopigatron ion...with Formation of Highly Excited Hydrogen Atoms," ZhTF, Vol. 36, No. 7, 1966, p. 1241 . 107. Kartashev, K. B., V. I. Pistunovich, V. V. Platonov, V. D

  12. Pressure dependence of an ion beam accelerating structure in an expanding helicon plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Aguirre, Evan; Thompson, Derek S.; McKee, John; Henriquez, Miguel; Scime, Earl E.

    2018-02-01

    We present measurements of the parallel ion velocity distribution function and electric field in an expanding helicon source plasma plume as a function of downstream gas pressure and radial and axial positions. The ion beam that appears spontaneously in the plume persists for all downstream pressures investigated, with the largest parallel ion beam velocities obtained for the lowest downstream pressures. However, the change in ion beam velocity exceeds what would be expected simply for a change in the collisionality of the system. Electric field measurements confirm that it is the magnitude of the potential structure responsible for accelerating the ion beam that changes with downstream pressure. Interestingly, the ion density radial profile is hollow close to the end of the plasma source for all pressures, but it is hollow at downstream distances far from the source only at the highest downstream neutral pressures.

  13. Ion beam sputtering of Ag - Angular and energetic distributions of sputtered and scattered particles

    NASA Astrophysics Data System (ADS)

    Feder, René; Bundesmann, Carsten; Neumann, Horst; Rauschenbach, Bernd

    2013-12-01

    Ion beam sputter deposition (IBD) provides intrinsic features which influence the properties of the growing film, because ion properties and geometrical process conditions generate different energy and spatial distribution of the sputtered and scattered particles. A vacuum deposition chamber is set up to measure the energy and spatial distribution of secondary particles produced by ion beam sputtering of different target materials under variation of geometrical parameters (incidence angle of primary ions and emission angle of secondary particles) and of primary ion beam parameters (ion species and energies).

  14. Studies on Beam Formation in an Atomic Beam Source

    NASA Astrophysics Data System (ADS)

    Nass, A.; Stancari, M.; Steffens, E.

    2009-08-01

    Atomic beam sources (ABS) are widely used workhorses producing polarized atomic beams for polarized gas targets and polarized ion sources. Although they have been used for decades the understanding of the beam formation processes is crude. Models were used more or less successfully to describe the measured intensity and beam parameters. ABS's are also foreseen for future experiments, such as PAX [1]. An increase of intensity at a high polarization would be beneficial. A direct simulation Monte-Carlo method (DSMC) [2] was used to describe the beam formation of a hydrogen or deuterium beam in an ABS. For the first time a simulation of a supersonic gas expansion on a molecular level for this application was performed. Beam profile and Time-of-Flight measurements confirmed the simulation results. Furthermore a new method of beam formation was tested, the Carrier Jet method [3], based on an expanded beam surrounded by an over-expanded carrier jet.

  15. Ion optical design of a collinear laser-negative ion beam apparatus.

    PubMed

    Diehl, C; Wendt, K; Lindahl, A O; Andersson, P; Hanstorp, D

    2011-05-01

    An apparatus for photodetachment studies on atomic and molecular negative ions of medium up to heavy mass (M ≃ 500) has been designed and constructed. Laser and ion beams are merged in the apparatus in a collinear geometry and atoms, neutral molecules and negative ions are detected in the forward direction. The ion optical design and the components used to optimize the mass resolution and the transmission through the extended field-free interaction region are described. A 90° sector field magnet with 50 cm bending radius in combination with two slits is used for mass dispersion providing a resolution of M∕ΔM≅800 for molecular ions and M∕ΔM≅400 for atomic ions. The difference in mass resolution for atomic and molecular ions is attributed to different energy distributions of the sputtered ions. With 1 mm slits, transmission from the source through the interaction region to the final ion detector was determined to be about 0.14%.

  16. Ion-beam treatment to prepare surfaces of p-CdTe films

    DOEpatents

    Gessert, Timothy A.

    2001-01-01

    A method of making a low-resistance electrical contact between a p-CdTe layer and outer contact layers by ion beam processing comprising: a) placing a CdS/CdTe device into a chamber and evacuating the chamber; b) orienting the p-CdTe side of the CdS/CdTe layer so that it faces apparatus capable of generating Ar atoms and ions of preferred energy and directionality; c) introducing Ar and igniting the area of apparatus capable of generating Ar atoms and ions of preferred energy and directionality in a manner so that during ion exposure, the source-to-substrate distance is maintained such that it is less than the mean-free path or diffusion length of the Ar atoms and ions at the vacuum pressure; d) allowing exposure of the p-CdTe side of the device to said ion beam for a period less than about 5 minutes; and e) imparting movement to the substrate to control the real uniformity of the ion-beam exposure on the p-CdTe side of the device.

  17. High Intensity e-beam Diode Development for Flash X-ray Radiography

    NASA Astrophysics Data System (ADS)

    Oliver, Bryan

    2007-11-01

    A variety of electron beam diodes are being used and developed for the purpose of creating high-brightness, flash x-ray radiography sources. In these diodes, high energy (multi MeV), high current (multi kA), small spot (multi mm) electron beams are generated and stopped in high atomic number anode-targets (typically Ta or W). Beam stopping in the target creates copious amounts of bremsstrahlung radiation. In addition, beam heating of the target liberates material, either in the form of low density (˜10^12-10^14 cm-3) ion emission or higher density (> 10^15 cm-3) plasma. In all cases, beam/target collective effects dominate the diode and beam characteristics, affecting the radiation properties (dose and spot-size). Recent experiments at Sandia National Laboratories have demonstrated diodes capable of producing > 350 rad@m with 1.7mm FWHM x-ray source distributions. A review of our present theoretical understanding of the diode (s) operation and our experimental and simulation methods to investigate them will be presented. Emphasis will be given to e- beam sources used on state-of-the-art Inductive Voltage Adder (IVA) pulsed-power accelerators. In particular, the physics of magnetically pinched diodes (e.g. the rod-pinch [1,2]), gas-cell focusing diodes [3] and the magnetically immersed [4] diode will be discussed. Various proposed methods to optimize the x-ray intensity and the direction of future diode research will be discussed. [1] G. Cooperstein, et al., Phys. Plasmas 8, 4618 (2001).[2] B.V. Oliver et al., Phys. Plasmas 11, 3976 (2004)[3] B.V. Oliver, et al., IEEE Trans. on Plasma Science 33, 704 (2005).[4] M.G. Mazarakis, et al., Appl. Phys. Lett. 70, 832 (1997)

  18. ECR Plasma Source for Heavy Ion Beam Charge Neutralization

    NASA Astrophysics Data System (ADS)

    Efthimion, P. C.; Gilson, E.; Grisham, L.; Davidson, R. C.; Yu, S.; Logan, B. G.

    2002-11-01

    Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length ˜ 0.1-0.5 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1-10 gauss. The goal is to operate the source at pressures ˜ 10-5 Torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1 Torr. Electron densities in the range of 10^8 - 10^11 cm-3 have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. At moderate pressures (> 1 mTorr) the wave damping is collisional, and at low pressures (< 1 mTorr) there is a distinct electron cyclotron resonance. The source has recently been configured to operate with 2.45 GHz microwaves with similar results. At the present operating range the source can simulate the plasma produced by photo-ionization in the target chamber.

  19. Algorithm for ion beam figuring of low-gradient mirrors.

    PubMed

    Jiao, Changjun; Li, Shengyi; Xie, Xuhui

    2009-07-20

    Ion beam figuring technology for low-gradient mirrors is discussed. Ion beam figuring is a noncontact machining technique in which a beam of high-energy ions is directed toward a target workpiece to remove material in a predetermined and controlled fashion. Owing to this noncontact mode of material removal, problems associated with tool wear and edge effects, which are common in conventional contact polishing processes, are avoided. Based on the Bayesian principle, an iterative dwell time algorithm for planar mirrors is deduced from the computer-controlled optical surfacing (CCOS) principle. With the properties of the removal function, the shaping process of low-gradient mirrors can be approximated by the linear model for planar mirrors. With these discussions, the error surface figuring technology for low-gradient mirrors with a linear path is set up. With the near-Gaussian property of the removal function, the figuring process with a spiral path can be described by the conventional linear CCOS principle, and a Bayesian-based iterative algorithm can be used to deconvolute the dwell time. Moreover, the selection criterion of the spiral parameter is given. Ion beam figuring technology with a spiral scan path based on these methods can be used to figure mirrors with non-axis-symmetrical errors. Experiments on SiC chemical vapor deposition planar and Zerodur paraboloid samples are made, and the final surface errors are all below 1/100 lambda.

  20. Evaluation of beam divergence of a negative hydrogen ion beam using Doppler shift spectroscopy diagnostics

    NASA Astrophysics Data System (ADS)

    Deka, A. J.; Bharathi, P.; Pandya, K.; Bandyopadhyay, M.; Bhuyan, M.; Yadav, R. K.; Tyagi, H.; Gahlaut, A.; Chakraborty, A.

    2018-01-01

    The Doppler Shift Spectroscopy (DSS) diagnostic is in the conceptual stage to estimate beam divergence, stripping losses, and beam uniformity of the 100 keV hydrogen Diagnostics Neutral Beam of International Thermonuclear Experimental Reactor. This DSS diagnostic is used to measure the above-mentioned parameters with an error of less than 10%. To aid the design calculations and to establish a methodology for estimation of the beam divergence, DSS measurements were carried out on the existing prototype ion source RF Operated Beam Source in India for Negative ion Research. Emissions of the fast-excited neutrals that are generated from the extracted negative ions were collected in the target tank, and the line broadening of these emissions were used for estimating beam divergence. The observed broadening is a convolution of broadenings due to beam divergence, collection optics, voltage ripple, beam focusing, and instrumental broadening. Hence, for estimating the beam divergence from the observed line broadening, a systematic line profile analysis was performed. To minimize the error in the divergence measurements, a study on error propagation in the beam divergence measurements was carried out and the error was estimated. The measurements of beam divergence were done at a constant RF power of 50 kW and a source pressure of 0.6 Pa by varying the extraction voltage from 4 kV to10 kV and the acceleration voltage from 10 kV to 15 kV. These measurements were then compared with the calorimetric divergence, and the results seemed to agree within 10%. A minimum beam divergence of ˜3° was obtained when the source was operated at an extraction voltage of ˜5 kV and at a ˜10 kV acceleration voltage, i.e., at a total applied voltage of 15 kV. This is in agreement with the values reported in experiments carried out on similar sources elsewhere.