Science.gov

Sample records for ion beam-fabricated tools

  1. Focused Ion Beam Fabrication of Graded Channel FET’s (Field Effect Transistors) in GaAs and Si.

    DTIC Science & Technology

    1986-10-27

    LAB OF ELECTRON.. J MELNGRILIS UNLSSIFIED 27 OCT B6 RORASI3-8-C-215FG9/ IIII’.EOMNE’." 11N JZ3=V..0r 𔃾 MICROCOPY RESOLUTION TEST CHART NATIONAL...BUREAU OF SIAN(OARDS IQ63 A .’C .4 li ii - J . - . N N ".~- . ~ AD-A 173 782 October 27, 1986 Focused Ion Beam Fabrication of Graded Channel FET’s 9 in...a and identify by blocit number i ’ 19. ABSTRACT (Continue on nruerso if nectisew and identify by biock numborp Work by J . J . Meingailis and his

  2. Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process.

    PubMed

    Urbánek, M; Uhlír, V; Bábor, P; Kolíbalová, E; Hrncír, T; Spousta, J; Sikola, T

    2010-04-09

    Focused ion beam (FIB) milling has been used to fabricate magnetic nanostructures (wires, squares, discs) from single magnetic layers (Co, permalloy) and spin-valve (permalloy/Cu/Co) multilayers (thicknesses 5-50 nm) prepared by ion beam sputtering deposition. Milled surfaces of metallic thin films typically exhibit residual roughness, which is also transferred onto the edges of the milled patterns. This can lead to domain wall pinning and influence the magnetization behaviour of the nanostructures. We have investigated the milling process and the influence of the FIB parameters (incidence angle, dwell time, overlap and ion beam current) on the roughness of the milled surface. It has been found that the main reasons for increased roughness are different sputter yields for various crystallographic orientations of the grains in polycrystalline magnetic thin films. We have found that the oblique ion beam angle, long dwell time and overlap < 1 are favourable parameters for suppression of this intrinsic roughness. Finally, we have shown how to determine the ion dose necessary to mill through the whole thin film up to the silicon substrate from scanning electron microscopy (SEM) images only.

  3. Focus Ion Beam Fabrication of Individual Carbon Nanotube Field Emission Tips

    NASA Astrophysics Data System (ADS)

    Chai, Guangyu; Byahut, Sitaram; Chow, Lee

    2003-11-01

    Individual CNTs are excellent candidates as electron sources for electron microscopes. Comparing to conventional electron sources, CNTs have the following advantages: (1) unique geometry, (2) highly coherent electron beams, and (3) stability. In our laboratory, carbon fibers with a nanotube core have been synthesized with a conventional chemical vapor deposition method. The whole assembly of nanotube/fiber is similar to a coaxial cable with CNT sticking out from one end of the carbon fiber. In order to pick up individual CNT field emitters, focus ion beam (FIB) technique is applied for cutting and adhering the samples. The carbon fiber with nanotube tip was first welded onto a micro-manipulator. Afterwards, by applying the FIB milling function, the fiber was cut from the base. This enables us to handle the individual CNT tips conveniently. By the same method, we can attach the nanotube tip on a sharpened clean tungsten wire for field emission experiment. FIB is proven to be appropriate and powerful for the nano-fabrication.

  4. Silica-gold bilayer-based transfer of focused ion beam-fabricated nanostructures.

    PubMed

    Wu, Xiaofei; Geisler, Peter; Krauss, Enno; Kullock, René; Hecht, Bert

    2015-10-21

    The demand for using nanostructures fabricated by focused ion beam (FIB) on delicate substrates or as building blocks for complex devices motivates the development of protocols that allow FIB-fabricated nanostructures to be transferred from the original substrate to the desired target. However, transfer of FIB-fabricated nanostructures is severely hindered by FIB-induced welding of structure and substrate. Here we present two (ex and in situ) transfer methods for FIB-fabricated nanostructures based on a silica-gold bilayer evaporated onto a bulk substrate. Utilizing the poor adhesion between silica and gold, the nanostructures can be mechanically separated from the bulk substrate. For the ex situ transfer, a spin-coated poly(methyl methacrylate) film is used to carry the nanostructures so that the bilayer can be etched away after being peeled off. For the in situ transfer, using a micro-manipulator inside the FIB machine, a cut-out piece of silica on which a nanostructure has been fabricated is peeled off from the bulk substrate and thus carries the nanostructure to a target substrate. We demonstrate the performance of both methods by transferring plasmonic nano-antennas fabricated from single-crystalline gold flakes by FIB milling to a silicon wafer and to a scanning probe tip.

  5. Silica-gold bilayer-based transfer of focused ion beam-fabricated nanostructures

    NASA Astrophysics Data System (ADS)

    Wu, Xiaofei; Geisler, Peter; Krauss, Enno; Kullock, René; Hecht, Bert

    2015-10-01

    The demand for using nanostructures fabricated by focused ion beam (FIB) on delicate substrates or as building blocks for complex devices motivates the development of protocols that allow FIB-fabricated nanostructures to be transferred from the original substrate to the desired target. However, transfer of FIB-fabricated nanostructures is severely hindered by FIB-induced welding of structure and substrate. Here we present two (ex and in situ) transfer methods for FIB-fabricated nanostructures based on a silica-gold bilayer evaporated onto a bulk substrate. Utilizing the poor adhesion between silica and gold, the nanostructures can be mechanically separated from the bulk substrate. For the ex situ transfer, a spin-coated poly(methyl methacrylate) film is used to carry the nanostructures so that the bilayer can be etched away after being peeled off. For the in situ transfer, using a micro-manipulator inside the FIB machine, a cut-out piece of silica on which a nanostructure has been fabricated is peeled off from the bulk substrate and thus carries the nanostructure to a target substrate. We demonstrate the performance of both methods by transferring plasmonic nano-antennas fabricated from single-crystalline gold flakes by FIB milling to a silicon wafer and to a scanning probe tip.The demand for using nanostructures fabricated by focused ion beam (FIB) on delicate substrates or as building blocks for complex devices motivates the development of protocols that allow FIB-fabricated nanostructures to be transferred from the original substrate to the desired target. However, transfer of FIB-fabricated nanostructures is severely hindered by FIB-induced welding of structure and substrate. Here we present two (ex and in situ) transfer methods for FIB-fabricated nanostructures based on a silica-gold bilayer evaporated onto a bulk substrate. Utilizing the poor adhesion between silica and gold, the nanostructures can be mechanically separated from the bulk substrate. For the ex

  6. Thickness-dependent blue shift in the excitonic peak of conformally grown ZnO:Al on ion-beam fabricated self-organized Si ripples

    SciTech Connect

    Basu, T.; Kumar, M.; Som, T.; Nandy, S.; Satpati, B.; Saini, C. P.; Kanjilal, A.

    2015-09-14

    Al-doped ZnO (AZO) thin films of thicknesses 5,10, 15, 20, and 30 nm were deposited on 500 eV argon ion-beam fabricated nanoscale self-organized rippled-Si substrates at room temperature and are compared with similar films deposited on pristine-Si substrates (without ripples). It is observed that morphology of self-organized AZO films is driven by the underlying substrate morphology. For instance, for pristine-Si substrates, a granular morphology evolves for all AZO films. On the other hand, for rippled-Si substrates, morphologies having chain-like arrangement (anisotropic in nature) are observed up to a thickness of 20 nm, while a granular morphology evolves (isotropic in nature) for 30 nm-thick film. Photoluminescence studies reveal that excitonic peaks corresponding to 5–15 nm-thick AZO films, grown on rippled-Si templates, show a blue shift of 8 nm and 3 nm, respectively, whereas the peak shift is negligible for 20-nm thick film (with respect to their pristine counter parts). The observed blue shifts are substantiated by diffuse reflectance study and attributed to quantum confinement effect, associated with the size of the AZO grains and their spatial arrangements driven by the anisotropic morphology of underlying rippled-Si templates. The present findings will be useful for making tunable AZO-based light-emitting devices.

  7. Thickness-dependent blue shift in the excitonic peak of conformally grown ZnO:Al on ion-beam fabricated self-organized Si ripples

    NASA Astrophysics Data System (ADS)

    Basu, T.; Kumar, M.; Nandy, S.; Satpati, B.; Saini, C. P.; Kanjilal, A.; Som, T.

    2015-09-01

    Al-doped ZnO (AZO) thin films of thicknesses 5,10, 15, 20, and 30 nm were deposited on 500 eV argon ion-beam fabricated nanoscale self-organized rippled-Si substrates at room temperature and are compared with similar films deposited on pristine-Si substrates (without ripples). It is observed that morphology of self-organized AZO films is driven by the underlying substrate morphology. For instance, for pristine-Si substrates, a granular morphology evolves for all AZO films. On the other hand, for rippled-Si substrates, morphologies having chain-like arrangement (anisotropic in nature) are observed up to a thickness of 20 nm, while a granular morphology evolves (isotropic in nature) for 30 nm-thick film. Photoluminescence studies reveal that excitonic peaks corresponding to 5-15 nm-thick AZO films, grown on rippled-Si templates, show a blue shift of 8 nm and 3 nm, respectively, whereas the peak shift is negligible for 20-nm thick film (with respect to their pristine counter parts). The observed blue shifts are substantiated by diffuse reflectance study and attributed to quantum confinement effect, associated with the size of the AZO grains and their spatial arrangements driven by the anisotropic morphology of underlying rippled-Si templates. The present findings will be useful for making tunable AZO-based light-emitting devices.

  8. Focused-ion-beam-fabricated homogeneous acute-angled Au nanorods for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Sivashanmugan, Kundan; Liao, Jiunn-Der; Haochih Liu, Bernard

    2015-05-01

    Well-ordered acute-angled Au nanorod (NR) arrays were fabricated using a focused ion beam (FIB) (fibAu_NR). The angle between the NRs and the substrate was tilted at 30-90°. A fibAu_NR with an angle of less than 90° significantly increased the effect of surface-enhanced Raman scattering, which was evaluated using low-concentration rose bengal (<10-5 M) as the molecular test probe. The results show that an angled NR surface produces a strong local electromagnetic effect owing to a large number of Raman active sites. In addition, an optimized fibAu_NR was found to distinguish cyanuric acid in milk solution with good reproducibility.

  9. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution.

    PubMed

    Sivashanmugan, Kundan; Liao, Jiunn-Der; Liu, Bernard Haochih; Yao, Chih-Kai

    2013-10-24

    A well-ordered Au-nanorod array with a controlled tip ring diameter (Au_NRsd) was fabricated using the focused ion beam method. Au_NRsd was then coupled with Ag nanoparticles (Ag NPs) to bridge the gaps among Au nanorods. The effect of surface-enhanced Raman scattering (SERS) on Au_NRsd and Ag NPs/Au_NRsd was particularly verified using crystal violet (CV) as the molecular probe. Raman intensity obtained from a characteristic peak of CV on Au_NRsd was estimated by an enhancement factor of ≈10(7) in magnitude, which increased ≈10(12) in magnitude for that on Ag NPs/Au_NRsd. A highly SERS-active Ag NPs/Au_NRsd was furthermore applied for the detection of melamine (MEL) at very low concentrations. Raman-active peaks of MEL (10(-3) to 10(-12)M) in water or milk solution upon Au_NRsd or Ag NPs/Au_NRsd were well distinguished. The peaks at 680 and 702 cm(-1) for MEL molecules were found suitable to be used as the index for sensing low-concentration MEL in a varied solution, while that at 1051 cm(-1) was practical to interpret MEL molecules in water or milk solution bonded with Au (i.e., Au_NRsd) or Ag (i.e., Ag NPs/Au_NRsd) surface. At the interface of Ag NPs/Au_NRsd and MEL molecules in milk solution, a laser-induced electromagnetic field or hotspot effect was produced and competent to sense low-concentration MEL molecules interacting with Ag and Au surfaces. Accordingly, Ag NPs/Au_NRsd is very promising to be used as a fast and sensitive tool for screening MEL in complex matrices such as adulteration in e.g., food and pharmaceutical products.

  10. Influence of 700 °C vacuum annealing on fracture behavior of micro/nanoscale focused ion beam fabricated silicon structures

    NASA Astrophysics Data System (ADS)

    Goshima, Yoshiharu; Fujii, Tatsuya; Inoue, Shozo; Namazu, Takahiro

    2016-06-01

    In this paper, we describe the influence of 700 °C vacuum annealing on strength and fracture behavior of micro- and nano-scale Si structures fabricated by focused ion beam (FIB). Si nanowires (NWs) made from silicon-on-nothing (SON) membrane are fabricated using FIB. Microscale Si specimens are fabricated by conventional micromachining technologies and FIB. These specimens are tensioned to failure using specially developed microelectromechanical systems (MEMS) device and thin-film tensile tester, respectively. The mean fracture strengths of the nano- and microscale specimens are 5.6 and 1.6 GPa, respectively, which decrease to 2.9 and 0.9 GPa after vacuum annealing at 700 °C for only 10 s. These strength values do not vary with increasing annealing time. Fracture origin and its behavior are discussed in the light of fracture surface and FIB damage layer observations.

  11. Ion trap simulation tools.

    SciTech Connect

    Hamlet, Benjamin Roger

    2009-02-01

    Ion traps present a potential architecture for future quantum computers. These computers are of interest due to their increased power over classical computers stemming from the superposition of states and the resulting capability to simultaneously perform many computations. This paper describes a software application used to prepare and visualize simulations of trapping and maneuvering ions in ion traps.

  12. Next-Generation Ion Thruster Design Tool

    NASA Technical Reports Server (NTRS)

    Stolz, Peter

    2015-01-01

    Computational tools that accurately predict the performance of electric propulsion devices are highly desirable and beneficial to NASA and the broader electric propulsion community. The current state of the art in electric propulsion modeling relies heavily on empirical data and numerous computational "knobs." In Phase I of this project, Tech-X Corporation developed the most detailed ion engine discharge chamber model that currently exists. This kinetic model simulates all particles in the discharge chamber along with a physically correct simulation of the electric fields. In addition, kinetic erosion models are included for modeling the ion-impingement effects on thruster component erosion. In Phase II, Tech-X developed a user-friendly computer program for NASA and other governmental and industry customers. Tech-X has implemented a number of advanced numerical routines to bring the computational time down to a commercially acceptable level. NASA now has a highly sophisticated, user-friendly ion engine discharge chamber modeling tool.

  13. Application of ion implantation in tooling industry

    NASA Astrophysics Data System (ADS)

    Straede, Christen A.

    1996-06-01

    In papers published during the last half of the 1980s it is often stated that the application of ion beams to non-semiconductor purposes seems ready for full-scale industrial exploitation. However, progress with respect to commercialisation of ion implantation has been slower than predicted, although the process is quite clearly building up niche markets, especially in the tooling industry. It is the main purpose of this paper to discuss the implementation of the process in the tooling market, and to describe strategies used to ensure its success. The basic idea has been to find niches where ion implantation out-performs other processes both technically and in prices. For instance, it has been clearly realised that one should avoid competing with physical vapour deposition or other coating techniques in market areas where they perform excellently, and instead find niches where the advantages of the ion implantation technique can be fully utilised. The paper will present typical case stories in order to illustrate market niches where the technique has its greatest successes and potential.

  14. Chemical tools for detecting Fe ions

    PubMed Central

    Hirayama, Tasuku; Nagasawa, Hideko

    2017-01-01

    Owing to its distinctive electrochemical properties with interconvertible multiple oxidation states, iron plays a significant role in various physiologically important functions such as respiration, oxygen transport, energy production, and enzymatic reactions. This redox activity can also potentially produce cellular damage and death, and numerous diseases are related to iron overload resulting from the dysfunction of the iron regulatory system. In this case, “free iron” or “labile iron,” which refers to iron ion weakly bound or not bound to proteins, causes aberrant production of reactive oxygen species. With the aim of elucidating the variation of labile iron involved in pathological processes, some chemical tools that can qualitatively and/or quantitatively monitor iron have been utilized to investigate the distribution, accumulation, and flux of biological iron species. Since iron ions show unique reactivity depending on its redox state, i.e., Fe2+ or Fe3+ (or transiently higher oxidative states), methods for the separate detection of iron species with different redox states are preferred to understand its physiological and pathological roles more in detail. The scope of this review article covers from classical chromogenic to newly emerging chemical tools for the detection of Fe ions. In particular, chemical tools applicable to biological studies will be presented. PMID:28163381

  15. Engineered ion channels as emerging tools for chemical biology.

    PubMed

    Mayer, Michael; Yang, Jerry

    2013-12-17

    Over the last 25 years, researchers have developed exogenously expressed, genetically engineered, semi-synthetic, and entirely synthetic ion channels. These structures have sufficient fidelity to serve as unique tools that can reveal information about living organisms. One of the most exciting success stories is optogenetics: the use of light-gated channels to trigger action potentials in specific neurons combined with studies of the response from networks of cells or entire live animals. Despite this breakthrough, the use of molecularly engineered ion channels for studies of biological systems is still in its infancy. Historically, researchers studied ion channels in the context of their own function in single cells or in multicellular signaling and regulation. Only recently have researchers considered ion channels and pore-forming peptides as responsive tools to report on the chemical and physical changes produced by other biochemical processes and reactions. This emerging class of molecular probes has a number of useful characteristics. For instance, these structures can greatly amplify the signal of chemical changes: the binding of one molecule to a ligand-gated ion channel can result in flux of millions of ions across a cell membrane. In addition, gating occurs on sub-microsecond time scales, resulting in fast response times. Moreover, the signal is complementary to existing techniques because the output is ionic current rather than fluorescence or radioactivity. And finally, ion channels are also localized at the membrane of cells where essential processes such as signaling and regulation take place. This Account highlights examples, mostly from our own work, of uses of ion channels and pore-forming peptides such as gramicidin in chemical biology. We discuss various strategies for preparing synthetically tailored ion channels that range from de novo designed synthetic molecules to genetically engineered or simply exogenously expressed or reconstituted wild

  16. Improve optics fabrication efficiency by using a radio frequency ion beam figuring tool.

    PubMed

    Lu, Ying; Xie, Xuhui; Zhou, Lin; Dai, Zuocai; Chen, Guiyang

    2017-01-10

    An ion beam with high removal rate and small diameter is expected in ion beam figuring. For an ion beam figuring tool, reducing the extraction grid opening is a feasible method to decrease the ion beam diameter, but the ion beam removal rate decreases at the same time. The ion beam removal rate depends much on the ion density in the ion source discharge room. The plasma in a hollow cathode (HC) ion source and a radio frequency (RF) ion source was simulated. The simulations suggested that the ion density in the RF ion source is higher than that of the HC one. Then, a RF ion source with an integrative matching network was developed and tested in this paper, where the ion beam removal rate reached up to 193 nm/min for 10 mm opening extraction grids.

  17. Focused Ion Beam Fabrication of Graded Channel Fet’s in GaAs and Si.

    DTIC Science & Technology

    1988-02-03

    GRAS AMD SICU) MASSACHUSETTS INST OF TECH CAMBRIDGE RESEARCH LAS OF-ILECTRONICS J NELUG ILIS 03 FEB 88 UNCLASSIFIED NDA9B3-85-C-82.- F/G 7/2 ULEEE...Jacob, Graduate Student, Electrical Eng. and Computer Science Henri Lezec, Graduate Student, Electrical Eng. and Computer Science Christian Musil ...Laterally Graded Current Monitoring DC Bias(V) Q Gunn Diode ResistorI-I Frequency Smoothly Tunable w/ DC Bias *-40 dBn !! j ---- 6 Ghz at 35 V 12.2 Ghz

  18. IBiSA_Tools: A Computational Toolkit for Ion-Binding State Analysis in Molecular Dynamics Trajectories of Ion Channels

    PubMed Central

    Kasahara, Kota; Kinoshita, Kengo

    2016-01-01

    Ion conduction mechanisms of ion channels are a long-standing conundrum. Although the molecular dynamics (MD) method has been extensively used to simulate ion conduction dynamics at the atomic level, analysis and interpretation of MD results are not straightforward due to complexity of the dynamics. In our previous reports, we proposed an analytical method called ion-binding state analysis to scrutinize and summarize ion conduction mechanisms by taking advantage of a variety of analytical protocols, e.g., the complex network analysis, sequence alignment, and hierarchical clustering. This approach effectively revealed the ion conduction mechanisms and their dependence on the conditions, i.e., ion concentration and membrane voltage. Here, we present an easy-to-use computational toolkit for ion-binding state analysis, called IBiSA_tools. This toolkit consists of a C++ program and a series of Python and R scripts. From the trajectory file of MD simulations and a structure file, users can generate several images and statistics of ion conduction processes. A complex network named ion-binding state graph is generated in a standard graph format (graph modeling language; GML), which can be visualized by standard network analyzers such as Cytoscape. As a tutorial, a trajectory of a 50 ns MD simulation of the Kv1.2 channel is also distributed with the toolkit. Users can trace the entire process of ion-binding state analysis step by step. The novel method for analysis of ion conduction mechanisms of ion channels can be easily used by means of IBiSA_tools. This software is distributed under an open source license at the following URL: http://www.ritsumei.ac.jp/~ktkshr/ibisa_tools/ PMID:27907142

  19. Exploring Cryogenic Focused Ion Beam Milling as a Group III-V Device Fabrication Tool

    DTIC Science & Technology

    2013-09-01

    focused ion beam (cryo-FIB) milling as a Group III-V device fabrication tool. Cryogenic cooling of III-V semiconductor material during Ga + FIB irradiation...potential applications of cryogenic focused ion beam (cryo-FIB) milling as a Group III-V device fabrication tool. Cryogenic cooling of III-V semiconductor...sensitivity to the Ga ion beam . This sensitivity is manifested as changes in the structure and chemical composition of the starting material upon exposure to

  20. A Monte Carlo-based treatment-planning tool for ion beam therapy

    PubMed Central

    Böhlen, T.T.; Bauer, J.; Dosanjh, M.; Ferrari, A.; Haberer, T.; Parodi, K.; Patera, V.; Mairani, A.

    2013-01-01

    Ion beam therapy, as an emerging radiation therapy modality, requires continuous efforts to develop and improve tools for patient treatment planning (TP) and research applications. Dose and fluence computation algorithms using the Monte Carlo (MC) technique have served for decades as reference tools for accurate dose computations for radiotherapy. In this work, a novel MC-based treatment-planning (MCTP) tool for ion beam therapy using the pencil beam scanning technique is presented. It allows single-field and simultaneous multiple-fields optimization for realistic patient treatment conditions and for dosimetric quality assurance for irradiation conditions at state-of-the-art ion beam therapy facilities. It employs iterative procedures that allow for the optimization of absorbed dose and relative biological effectiveness (RBE)-weighted dose using radiobiological input tables generated by external RBE models. Using a re-implementation of the local effect model (LEM), the MCTP tool is able to perform TP studies using ions with atomic numbers Z ≤ 8. Example treatment plans created with the MCTP tool are presented for carbon ions in comparison with a certified analytical treatment-planning system. Furthermore, the usage of the tool to compute and optimize mixed-ion treatment plans, i.e. plans including pencil beams of ions with different atomic numbers, is demonstrated. The tool is aimed for future use in research applications and to support treatment planning at ion beam facilities. PMID:23824131

  1. Fabrication of micro DOE using micro tools shaped with focused ion beam.

    PubMed

    Xu, Z W; Fang, F Z; Zhang, S J; Zhang, X D; Hu, X T; Fu, Y Q; Li, L

    2010-04-12

    A novel method is proposed to fabricate micro Diffractive Optical Elements (DOE) using micro cutting tools shaped with focused ion beam (FIB) milling. Micro tools with nanometric cutting edges and complicated shapes are fabricated by controlling the tool facet's orientation relative to the FIB. The tool edge radius of less than 30 nm is achieved for the nano removal of the work materials. Semi-circular micro tools and DOE-shaped micro tools are developed to fabricate micro-DOE and sinusoidal modulation templates. Experiments show that the proposed method can be a high efficient way in fabricating micro-DOE with nanoscale surface finishes.

  2. Electron beam fabrication of a microfluidic device for studying submicron-scale bacteria

    PubMed Central

    2013-01-01

    Background Controlled restriction of cellular movement using microfluidics allows one to study individual cells to gain insight into aspects of their physiology and behaviour. For example, the use of micron-sized growth channels that confine individual Escherichia coli has yielded novel insights into cell growth and death. To extend this approach to other species of bacteria, many of whom have dimensions in the sub-micron range, or to a larger range of growth conditions, a readily-fabricated device containing sub-micron features is required. Results Here we detail the fabrication of a versatile device with growth channels whose widths range from 0.3 μm to 0.8 μm. The device is fabricated using electron beam lithography, which provides excellent control over the shape and size of different growth channels and facilitates the rapid-prototyping of new designs. Features are successfully transferred first into silicon, and subsequently into the polydimethylsiloxane that forms the basis of the working microfluidic device. We demonstrate that the growth of sub-micron scale bacteria such as Lactococcus lactis or Escherichia coli cultured in minimal medium can be followed in such a device over several generations. Conclusions We have presented a detailed protocol based on electron beam fabrication together with specific dry etching procedures for the fabrication of a microfluidic device suited to study submicron-sized bacteria. We have demonstrated that both Gram-positive and Gram-negative bacteria can be successfully loaded and imaged over a number of generations in this device. Similar devices could potentially be used to study other submicron-sized organisms under conditions in which the height and shape of the growth channels are crucial to the experimental design. PMID:23575419

  3. Diagnostic Tools For Low Intensity Ion Micro-Beams

    SciTech Connect

    Finocchiaro, P.; Cosentino, L.; Pappalardo, A.; Vervaeke, M.; Volckaerts, B.; Vynck, P.; Hermanne, A.; Thienpont, H.

    2003-08-26

    We have developed two techniques for microscopic ion beam imaging and profiling, both based on scintillators, particularly suitable for applications in Deep Lithography with Protons (DLP) or with heavier ions. The first one employs a scintillating fiberoptic plate and a CCD camera with suitable lenses, the second makes use of a small scintillator optically coupled to a compact photomultiplier. We have proved the possibility of spanning from single beam particles counting up to several nA currents. Both devices are successfully being exploited for on-line control of low and very low intensity proton beams, down to a beam size of less than 50{mu}m.

  4. Computational Tools for Interpreting Ion Channel pH-Dependence

    PubMed Central

    Sazanavets, Ivan; Warwicker, Jim

    2015-01-01

    Activity in many biological systems is mediated by pH, involving proton titratable groups with pKas in the relevant pH range. Experimental analysis of pH-dependence in proteins focusses on particular sidechains, often with mutagenesis of histidine, due to its pKa near to neutral pH. The key question for algorithms that predict pKas is whether they are sufficiently accurate to effectively narrow the search for molecular determinants of pH-dependence. Through analysis of inwardly rectifying potassium (Kir) channels and acid-sensing ion channels (ASICs), mutational effects on pH-dependence are probed, distinguishing between groups described as pH-coupled or pH-sensor. Whereas mutation can lead to a shift in transition pH between open and closed forms for either type of group, only for pH-sensor groups does mutation modulate the amplitude of the transition. It is shown that a hybrid Finite Difference Poisson-Boltzmann (FDPB) – Debye-Hückel continuum electrostatic model can filter mutation candidates, providing enrichment for key pH-coupled and pH-sensor residues in both ASICs and Kir channels, in comparison with application of FDPB alone. PMID:25915903

  5. Computational Tools for Interpreting Ion Channel pH-Dependence.

    PubMed

    Sazanavets, Ivan; Warwicker, Jim

    2015-01-01

    Activity in many biological systems is mediated by pH, involving proton titratable groups with pKas in the relevant pH range. Experimental analysis of pH-dependence in proteins focusses on particular sidechains, often with mutagenesis of histidine, due to its pKa near to neutral pH. The key question for algorithms that predict pKas is whether they are sufficiently accurate to effectively narrow the search for molecular determinants of pH-dependence. Through analysis of inwardly rectifying potassium (Kir) channels and acid-sensing ion channels (ASICs), mutational effects on pH-dependence are probed, distinguishing between groups described as pH-coupled or pH-sensor. Whereas mutation can lead to a shift in transition pH between open and closed forms for either type of group, only for pH-sensor groups does mutation modulate the amplitude of the transition. It is shown that a hybrid Finite Difference Poisson-Boltzmann (FDPB) - Debye-Hückel continuum electrostatic model can filter mutation candidates, providing enrichment for key pH-coupled and pH-sensor residues in both ASICs and Kir channels, in comparison with application of FDPB alone.

  6. Ion Beam Sputter Fabrication of Micro-Grooving and Micro-Threading Tools

    SciTech Connect

    ADAMS,DAVID P.; VASILE,M.J.; KRISHNAN,A.S.M.

    1999-11-05

    This paper presents techniques for fabricating microscopic, nonplanar features in a variety of materials. Micro-grooving and micro-threading tools having cutting dimensions of 10-30{micro}m are made by focused ion beam sputtering and used in ultra-precision machining. Tool fabrication involves directing a 20 keV gallium beam at polished cylindrical punches made of cobalt M42 high-speed steel or C2 tungsten carbide. This creates cutting edges having radii of curvature less than 0.4 {micro}m, and rake features similar to conventional lathe tools. Clearance for minimizing frictional drag of a tool results from the sputter yield dependence on ion herd target incidence angle. Numerically controlled, ultra-precision machining with micro-grooving tools results in a close matching between tool width and feature size. Microtools controllably machine 13 {micro}m wide, 4 {micro}m deep, helical grooves in polymethyl methacrylate and 6061-T6 Al cylindrical substrates. Micro-grooving tools also fabricate sinusoidal waveform features in polished metal substrates.

  7. Focused Ion Beam Fabrication of Graded Channel Field Effect Transistors (FETs) in GaAs and Si

    DTIC Science & Technology

    1988-11-21

    fi + , h ’ - ,: ,. , -.: 7 + g - - .. . . . . .. . -.. Abrupt Transition -10 dBm f=T780 MHz f 1 916 MIz /2= 33.2 V i 35.1 V Fig. 10 A Gunn diode...vs Time (V = 11.0) F 40- h A r 20-! 1 f= 7.5 GHz 50 100 150 200 250 300 350 Time (ps) Fig. Ii a) Carrier distribution as a function of distance, high...inte sis d a h n t olimited solid angle (or be larger but well-collimated, like a nate system is centered at the point of impact with radial laser

  8. The ion microscope as a tool for quantitative measurements in the extreme ultraviolet

    PubMed Central

    Tsatrafyllis, N.; Bergues, B.; Schröder, H.; Veisz, L.; Skantzakis, E.; Gray, D.; Bodi, B.; Kuhn, S.; Tsakiris, G. D.; Charalambidis, D.; Tzallas, P.

    2016-01-01

    We demonstrate a tool for quantitative measurements in the extreme ultraviolet (EUV) spectral region measuring spatially resolved atomic ionization products at the focus of an EUV beam. The ionizing radiation is a comb of the 11th–15th harmonics of a Ti:Sapphire femtosecond laser beam produced in a Xenon gas jet. The spatial ion distribution at the focus of the harmonics is recorded using an ion microscope. Spatially resolved single- and two-photon ionization products of Argon and Helium are observed. From such ion distributions single- and two-photon generalized cross sections can be extracted by a self-calibrating method. The observation of spatially resolved two-EUV-photon ionization constitutes an initial step towards future single-shot temporal characterization of attosecond pulses. PMID:26868370

  9. NREL Multiphysics Modeling Tools and ISC Device for Designing Safer Li-Ion Batteries

    SciTech Connect

    Pesaran, Ahmad A.; Yang, Chuanbo

    2016-03-24

    The National Renewable Energy Laboratory has developed a portfolio of multiphysics modeling tools to aid battery designers better understand the response of lithium ion batteries to abusive conditions. We will discuss this portfolio, which includes coupled electrical, thermal, chemical, electrochemical, and mechanical modeling. These models can simulate the response of a cell to overheating, overcharge, mechanical deformation, nail penetration, and internal short circuit. Cell-to-cell thermal propagation modeling will be discussed.

  10. Computer Aided Design of Computer Generated Holograms for electron beam fabrication

    NASA Technical Reports Server (NTRS)

    Urquhart, Kristopher S.; Lee, Sing H.; Guest, Clark C.; Feldman, Michael R.; Farhoosh, Hamid

    1989-01-01

    Computer Aided Design (CAD) systems that have been developed for electrical and mechanical design tasks are also effective tools for the process of designing Computer Generated Holograms (CGHs), particularly when these holograms are to be fabricated using electron beam lithography. CAD workstations provide efficient and convenient means of computing, storing, displaying, and preparing for fabrication many of the features that are common to CGH designs. Experience gained in the process of designing CGHs with various types of encoding methods is presented. Suggestions are made so that future workstations may further accommodate the CGH design process.

  11. Nano-Scale Secondary Ion Mass Spectrometry - A new analytical tool in biogeochemistry and soil ecology

    SciTech Connect

    Herrmann, A M; Ritz, K; Nunan, N; Clode, P L; Pett-Ridge, J; Kilburn, M R; Murphy, D V; O'Donnell, A G; Stockdale, E A

    2006-10-18

    Soils are structurally heterogeneous across a wide range of spatio-temporal scales. Consequently, external environmental conditions do not have a uniform effect throughout the soil, resulting in a large diversity of micro-habitats. It has been suggested that soil function can be studied without explicit consideration of such fine detail, but recent research has indicated that the micro-scale distribution of organisms may be of importance for a mechanistic understanding of many soil functions. Due to a lack of techniques with adequate sensitivity for data collection at appropriate scales, the question 'How important are various soil processes acting at different scales for ecological function?' is challenging to answer. The nano-scale secondary ion mass spectrometer (NanoSIMS) represents the latest generation of ion microprobes which link high-resolution microscopy with isotopic analysis. The main advantage of NanoSIMS over other secondary ion mass spectrometers is the ability to operate at high mass resolution, whilst maintaining both excellent signal transmission and spatial resolution ({approx}50 nm). NanoSIMS has been used previously in studies focusing on presolar materials from meteorites, in material science, biology, geology and mineralogy. Recently, the potential of NanoSIMS as a new tool in the study of biophysical interfaces in soils has been demonstrated. This paper describes the principles of NanoSIMS and discusses the potential of this tool to contribute to the field of biogeochemistry and soil ecology. Practical considerations (sample size and preparation, simultaneous collection of isotopes, mass resolution, isobaric interference and quantification of the isotopes of interest) are discussed. Adequate sample preparation avoiding biases in the interpretation of NanoSIMS data due to artifacts and identification of regions-of interest are of most concerns in using NanoSIMS as a new tool in biogeochemistry and soil ecology. Finally, we review the areas of

  12. NMR relaxometry as a versatile tool to study Li ion dynamics in potential battery materials.

    PubMed

    Kuhn, A; Kunze, M; Sreeraj, P; Wiemhöfer, H D; Thangadurai, V; Wilkening, M; Heitjans, P

    2012-04-01

    NMR spin relaxometry is known to be a powerful tool for the investigation of Li(+) dynamics in (non-paramagnetic) crystalline and amorphous solids. As long as significant structural changes are absent in a relatively wide temperature range, with NMR spin-lattice (as well as spin-spin) relaxation measurements information on Li self-diffusion parameters such as jump rates and activation energies are accessible. Diffusion-induced NMR relaxation rates are governed by a motional correlation function describing the ion dynamics present. Besides the mean correlation rate of the dynamic process, the motional correlation function (i) reflects deviations from random motion (so-called correlation effects) and (ii) gives insights into the dimensionality of the hopping process. In favorable cases, i.e., when temperature- and frequency-dependent NMR relaxation rates are available over a large dynamic range, NMR spin relaxometry is able to provide a comprehensive picture of the relevant Li dynamic processes. In the present contribution, we exemplarily present two recent variable-temperature (7)Li NMR spin-lattice relaxation studies focussing on Li(+) dynamics in crystalline ion conductors which are of relevance for battery applications, viz. Li(7) La(3)Zr(2)O(12) and Li(12)Si(7).

  13. Laboratory robotics -- An automated tool for preparing ion chromatography calibration standards

    SciTech Connect

    Chadwick, J.L.

    1995-04-01

    This paper describes the use of a laboratory robot as an automated tool for preparing multi-level calibration standards for On-Line Ion Chromatography (IC) Systems. The robot is designed for preparation of up to six levels of standards, with each level containing up to eleven ionic species in aqueous solution. The robot is required to add the standards` constituents as both a liquid and solid additions and to keep a record of exactly what goes into making up every standard. Utilizing a laboratory robot to prepare calibration standards provides significant benefits to the testing environment. These benefits include: accurate and precise calibration standards in individually capped containers with preparation traceability; automated and unattended multi-specie preparation for both anion and cation analytical channels; the ability to free up a test operator from a repetitive routine and re-apply those efforts to test operations; The robot uses a single channel IC to analyze each prepared standard for specie content and concentration. Those results are later used as a measure of quality control. System requirements and configurations, robotic operations, manpower requirements, analytical verification, accuracy and precision of prepared solutions, and robotic downtime are discussed in detail.

  14. SPEX (Plasma Code Spectral Fitting Tool). Collisional ionization for atoms and ions of H to Zn.

    NASA Astrophysics Data System (ADS)

    Urdampilleta, I.; Kaastra, J. S.

    2017-03-01

    Every observation of astrophysical objects involving a spectrum requires atomic data for the interpretation of line fluxes, ratios and ionization state of the emitting plasma. One of processes which determines it is collisional ionization. In this study an update of the direct ionization (DI) and excitation-autoionization (EA) processes is discussed for the H to Zn-like isoelectronic sequences. The previous assessments were performed by Dere (2007, A&A 466, 771) for H to Zn isoelectronc sequences, Arnaud & Raymond (1992, ApJ. 398, 394) for Fe and Arnaud & Rothenflug (1985, A&AS, 60, 425). However, in the last years new laboratory measurements and theoretical calculations of ionization cross sections have become accessible. We provide a review, extension and update of this previous work and fit the cross sections of all individuals shells of all ions from H to Zn. These data are described using an extension of Younger's formula, suitable for integration over a Maxwellian velocity distribution to derive the subshell ionization rate coefficients. These ionization rate coefficients are included together with the radiative recombination rates data (Mao et al. 2016, A&AS, 27568) and a change-exchange model (Gu et al. 2016, A&A 588, A52, 11) into the high-resolution plasma code and spectral fit tool SPEX V3.0 (Kaastra et al. 1996, UV and X-ray Spectroscopy of Astrophysical and Laboratory Plasmas).

  15. ARS-Media: A spreadsheet tool for calculating media recipes based on ion-specific constraints

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ARS-Media is an ion solution calculator that uses Microsoft Excel to generate recipes of salts for complex ion mixtures specified by the user. Generating salt combinations (recipes) that result in pre-specified target ion values is a linear programming problem. Thus, the recipes are generated using ...

  16. Analysis and Visualization Tool for Targeted Amplicon Bisulfite Sequencing on Ion Torrent Sequencers

    PubMed Central

    Pabinger, Stephan; Ernst, Karina; Pulverer, Walter; Kallmeyer, Rainer; Valdes, Ana M.; Metrustry, Sarah; Katic, Denis; Nuzzo, Angelo; Kriegner, Albert; Vierlinger, Klemens; Weinhaeusel, Andreas

    2016-01-01

    Targeted sequencing of PCR amplicons generated from bisulfite deaminated DNA is a flexible, cost-effective way to study methylation of a sample at single CpG resolution and perform subsequent multi-target, multi-sample comparisons. Currently, no platform specific protocol, support, or analysis solution is provided to perform targeted bisulfite sequencing on a Personal Genome Machine (PGM). Here, we present a novel tool, called TABSAT, for analyzing targeted bisulfite sequencing data generated on Ion Torrent sequencers. The workflow starts with raw sequencing data, performs quality assessment, and uses a tailored version of Bismark to map the reads to a reference genome. The pipeline visualizes results as lollipop plots and is able to deduce specific methylation-patterns present in a sample. The obtained profiles are then summarized and compared between samples. In order to assess the performance of the targeted bisulfite sequencing workflow, 48 samples were used to generate 53 different Bisulfite-Sequencing PCR amplicons from each sample, resulting in 2,544 amplicon targets. We obtained a mean coverage of 282X using 1,196,822 aligned reads. Next, we compared the sequencing results of these targets to the methylation level of the corresponding sites on an Illumina 450k methylation chip. The calculated average Pearson correlation coefficient of 0.91 confirms the sequencing results with one of the industry-leading CpG methylation platforms and shows that targeted amplicon bisulfite sequencing provides an accurate and cost-efficient method for DNA methylation studies, e.g., to provide platform-independent confirmation of Illumina Infinium 450k methylation data. TABSAT offers a novel way to analyze data generated by Ion Torrent instruments and can also be used with data from the Illumina MiSeq platform. It can be easily accessed via the Platomics platform, which offers a web-based graphical user interface along with sample and parameter storage. TABSAT is freely

  17. Heavy ion microprobes: a unique tool for bystander research and other radiobiological applications

    NASA Astrophysics Data System (ADS)

    Voss, K. O.; Fournier, C.; Taucher-Scholz, G.

    2008-07-01

    The risk assessment for low doses of high linear energy transfer (LET) radiation has been challenged by a growing body of experimental evidence showing that non-irradiated bystander cells can receive signals from irradiated cells to elicit a variety of cellular responses. These may be significant for radiation protection but also for radiation therapy using heavy ions. Charged particle microbeams for radiobiological application provide a unique means to address these issues by allowing the precise irradiation of single cells with a counted numbers of ions. Here, we focus specifically on heavy ion microbeam facilities currently in use for biological purposes, describing their technical features and biological results. Typically, ion species up to argon are used for targeted biological irradiation at the vertically collimated microbeam at JAEA (Takasaki, Japan). At the SNAKE microprobe in Munich, mostly oxygen ions have been used in a horizontal focused beam line for cell targeting. At GSI (Darmstadt), a horizontal microprobe with a focused beam for defined targeting using ion species up to uranium is operational. The visualization of DNA damage response proteins relocalizing to defined sites of ion traversal has been accomplished at the three heavy ion microbeam facilities described above and is used to study mechanistic aspects of heavy ion effects. However, bystander studies have constituted the main focus of biological applications. While for cell inactivation and effects on cell cycle progression a response of non-targeted cells has been described at JAEA and GSI, respectively, in part controversial results have been obtained for the induction of DNA damage measured by double-strand formation or at the cytogenetic level. The results emphasize the influence of the cellular environment, and standardization of experimental conditions for cellular studies at different facilities as well as the investigation of bystander effects in tissue will be the aims of future

  18. Polyacrylamide hydrogel encapsulated E. coli expressing metal-sensing green fluorescent protein as a potential tool for copper ion determination

    PubMed Central

    Tantimongcolwat, Tanawut; Isarankura-Na-Ayudhya, Chartchalerm; Srisarin, Apapan; Galla, Hans-Joachim; Prachayasittikul, Virapong

    2014-01-01

    A simple, inexpensive and field applicable metal determination system would be a powerful tool for the efficient control of metal ion contamination in various sources e.g. drinking-water, water reservoir and waste discharges. In this study, we developed a cell-based metal sensor for specific and real-time detection of copper ions. E. coli expressing metal-sensing green fluorescent protein (designated as TG1/(CG)6GFP and TG1/H6CdBP4GFP) were constructed and served as a metal analytical system. Copper ions were found to exert a fluorescence quenching effect, while zinc and cadmium ions caused minor fluorescence enhancement in the engineered bacterial suspension. To construct a user-friendly and reagentless metal detection system, TG1/H6CdBP4GFP and TG1/(CG)6GFP were encapsulated in polyacrylamide hydrogels that were subsequently immobilized on an optical fiber equipped with a fluorescence detection module. The sensor could be applied to measure metal ions by simply dipping the encapsulated bacteria into a metal solution and monitoring fluorescence changes in real time as a function of the metal concentration in solution. The sensor system demonstrated high specificity toward copper ions. The fluorescence intensities of the encapsulated TG1/(CG)6GFP and TG1/H6CdBP4GFP were quenched by approximately 70 % and 80 % by a high-dose of copper ions (50 mM), respectively. The level of fluorescence quenching exhibited a direct correlation with the copper concentration, with a linear correlation coefficient (r) of 0.99. The cell-based metal sensor was able to efficiently monitor copper concentrations ranging between 5 M and 50 mM, encompassing the maximum allowed copper contamination in drinking water (31.15 M) established by the WHO. Furthermore, the cell-based metal sensor could undergo prolonged storage for at least 2 weeks without significantly influencing the copper sensitivity. PMID:26417267

  19. Inverse suspension polymerization as a new tool for the synthesis of ion-imprinted polymers.

    PubMed

    Meouche, Walid; Branger, Catherine; Beurroies, Isabelle; Denoyel, Renaud; Margaillan, André

    2012-05-29

    Ion-imprinted polymer beads are prepared for the first time by inverse suspension polymerization in mineral oil using nickel(II) as the template ion. As water is not used as the continuous phase, this new route of synthesis avoids the risk that the ion template leaves the suspension for the aqueous phase. The leaching of nickel from the resin beads is very good due to the large porosity of the polymer beads. The ratio between the ligand and the crosslinker has been increased leading to higher adsorption capacities. Comparing these values with those of the non-imprinted polymers and studying the effect of some interfering ions proves that an optimum can be found for the ratio ligand/crosslinker.

  20. Protein-Modified-Paramagnetic-Particles as a Tool for Detection of Silver(I) Ions

    NASA Astrophysics Data System (ADS)

    Kizek, R.; Krizkova, S.; Adam, V.; Huska, D.; Hubalek, J.; Trnkova, L.

    2009-04-01

    In a number of published articles the toxic effect of silver(I) ions on aquatic organisms is described. Silver(I) ions in aquatic environment are stable in a wide range of pH. Under alkali pH AgOH and Ag(OH)2- can be formed. However, in water environment there are many compounds to interact with silver(I) ions. The most important ones are chloride anions, which forms insoluble precipitate with silver(I) ions (AgCl). The insoluble silver containing compounds do not pose any threat to aquatic organisms. Toxicity of silver ions is probably caused by their very good affinity to nucleic acids and also proteins. The binding into active enzyme site leads to the expressive enzyme reaction inhibition. Silver(I) ions are into living environment introduced thanks to anthropogenic activities. They easily contaminate atmosphere as well as aquatic environment or soils. Several authors described using of carbon electrode as working electrode for determination of silver. Recently, we have suggested heavy metal biosensor based on interaction of metal ions with low molecular mass protein called metallothionein (MT), which was adsorbed on the surface of hanging mercury drop electrode (HMDE). The biosensor was successfully used for detection of cadmium(II) and zinc(II) ions, cisplatin, cisplatin-DNA adducts and palladium(II) ions. Due to the convincing results with MT as biological component we report on suggesting of heavy metal biosensor based on immobilization of metallothionein (MT) on the surface of carbon paste electrode (CPE) via MT-antibodies. Primarily we studied of basic electrochemical behaviour of MT at surface of carbon paste electrode by using of square wave voltammetry (SWV). Detection limit (3 S/N) for MT was evaluated as 0.1 μg/ml. After that we have evaluated the electroactivity of MT at surface of SWV, we aimed our attention on the way of capturing of MT on the surface of CPE. We choose antibody against MT obtained from chicken eggs for these purposes. Antibodies

  1. Simultaneous Screening of Glutathione and Cyanide Adducts Using Precursor Ion and Neutral Loss Scans-Dependent Product Ion Spectral Acquisition and Data Mining Tools

    NASA Astrophysics Data System (ADS)

    Jian, Wenying; Liu, Hua-Fen; Zhao, Weiping; Jones, Elliott; Zhu, Mingshe

    2012-05-01

    Drugs can be metabolically activated to soft and hard electrophiles, which are readily trapped by glutathione (GSH) and cyanide (CN), respectively. These adducts are often detected and structurally characterized using separate tandem mass spectrometry methods. We describe a new method for simultaneous screening of GSH and CN adducts using precursor ion (PI) and neutral loss (NL) scans-dependent product ion spectral acquisition and data mining tools on an triple quadrupole linear ion trap mass spectrometry. GSH, potassium cyanide, and their stable isotope labeled analogues were incubated with liver microsomes and a test compound. Negative PI scan of m/z 272 for detection of GSH adducts and positive NL scans of 27 and 29 Da for detection of CN adducts were conducted as survey scans to trigger acquisition of enhanced resolution (ER) spectrum and subsequent enhanced product ion (EPI) spectrum. Post-acquisition data mining of EPI data set using NL filters of 129 and 27 Da was then performed to reveal the GSH adducts and CN adducts, respectively. Isotope patterns and EPI spectra of the detected adducts were utilized for identification of their molecular weights and structures. The effectiveness of this method was evaluated by analyzing reactive metabolites of nefazodone formed from rat liver microsomes. In addition to known GSH- and CN-trapped reactive metabolites, several new CN adducts of nefazodone were identified. The results suggested that current approach is highly effective in the analysis of both soft and hard reactive metabolites and can be used as a high-throughput method in drug discovery.

  2. Simultaneous screening of glutathione and cyanide adducts using precursor ion and neutral loss scans-dependent product ion spectral acquisition and data mining tools.

    PubMed

    Jian, Wenying; Liu, Hua-Fen; Zhao, Weiping; Jones, Elliott; Zhu, Mingshe

    2012-05-01

    Drugs can be metabolically activated to soft and hard electrophiles, which are readily trapped by glutathione (GSH) and cyanide (CN), respectively. These adducts are often detected and structurally characterized using separate tandem mass spectrometry methods. We describe a new method for simultaneous screening of GSH and CN adducts using precursor ion (PI) and neutral loss (NL) scans-dependent product ion spectral acquisition and data mining tools on an triple quadrupole linear ion trap mass spectrometry. GSH, potassium cyanide, and their stable isotope labeled analogues were incubated with liver microsomes and a test compound. Negative PI scan of m/z 272 for detection of GSH adducts and positive NL scans of 27 and 29 Da for detection of CN adducts were conducted as survey scans to trigger acquisition of enhanced resolution (ER) spectrum and subsequent enhanced product ion (EPI) spectrum. Post-acquisition data mining of EPI data set using NL filters of 129 and 27 Da was then performed to reveal the GSH adducts and CN adducts, respectively. Isotope patterns and EPI spectra of the detected adducts were utilized for identification of their molecular weights and structures. The effectiveness of this method was evaluated by analyzing reactive metabolites of nefazodone formed from rat liver microsomes. In addition to known GSH- and CN-trapped reactive metabolites, several new CN adducts of nefazodone were identified. The results suggested that current approach is highly effective in the analysis of both soft and hard reactive metabolites and can be used as a high-throughput method in drug discovery.

  3. ION COMPOSITION ELUCIDATION (ICE): AN INVESTIGATIVE TOOL FOR CHARACTERIZATION AND IDENTIFICATION OF COMPOUNDS OF REGULATORY IMPORTANCE

    EPA Science Inventory

    Ion Composition Elucidation (ICE) often leads to identification of compounds and provides high quality evidence for tracking compounds to their sources. Mass spectra for most organic compounds are not found in mass spectral libraries used to tentatively identify analytes. In addi...

  4. Electromagnetic effects on meson production: a new tool for studying the space-time evolution of heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Rybicki, Andrzej; Szczurek, Antoni; Kłusek-Gawenda, Mariola; Davis, Nikolaos; Ozvenchuk, Vitalii; Kiełbowicz, Mirosław

    2016-11-01

    We review our studies of spectator-induced electromagnetic (EM) effects on the emission of charged mesons in the final state of ultrarelativistic heavy ion collisions. We argue that these effects offer sensitivity to the distance dE between the charged meson formation zone at freeze-out and the spectator system. As such, they can serve as an independent, new tool to probe the space-time and longitudinal evolution of the system created in the collision. As a phenomenological application for this tool in the context of resonance production and decay, we obtain a first estimate of the time of pion emission from EM effects. This we compare to existing HBT data.

  5. MultiSIMNRA: A computational tool for self-consistent ion beam analysis using SIMNRA

    NASA Astrophysics Data System (ADS)

    Silva, T. F.; Rodrigues, C. L.; Mayer, M.; Moro, M. V.; Trindade, G. F.; Aguirre, F. R.; Added, N.; Rizzutto, M. A.; Tabacniks, M. H.

    2016-03-01

    SIMNRA is widely adopted by the scientific community of ion beam analysis for the simulation and interpretation of nuclear scattering techniques for material characterization. Taking advantage of its recognized reliability and quality of the simulations, we developed a computer program that uses multiple parallel sessions of SIMNRA to perform self-consistent analysis of data obtained by different ion beam techniques or in different experimental conditions of a given sample. In this paper, we present a result using MultiSIMNRA for a self-consistent multi-elemental analysis of a thin film produced by magnetron sputtering. The results demonstrate the potentialities of the self-consistent analysis and its feasibility using MultiSIMNRA.

  6. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    NASA Astrophysics Data System (ADS)

    Manjunatha, H.; Damle, R.; Kumaraswamy, G. N.

    2016-05-01

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10-1 - 10-3 Scm-1, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEOxNaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O+1 ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  7. 4D ML reconstruction as a tool for volumetric PET-based treatment verification in ion beam radiotherapy

    SciTech Connect

    De Bernardi, E.; Ricotti, R.; Riboldi, M.; Baroni, G.; Parodi, K.; Gianoli, C.

    2016-02-15

    Purpose: An innovative strategy to improve the sensitivity of positron emission tomography (PET)-based treatment verification in ion beam radiotherapy is proposed. Methods: Low counting statistics PET images acquired during or shortly after the treatment (Measured PET) and a Monte Carlo estimate of the same PET images derived from the treatment plan (Expected PET) are considered as two frames of a 4D dataset. A 4D maximum likelihood reconstruction strategy was adapted to iteratively estimate the annihilation events distribution in a reference frame and the deformation motion fields that map it in the Expected PET and Measured PET frames. The outputs generated by the proposed strategy are as follows: (1) an estimate of the Measured PET with an image quality comparable to the Expected PET and (2) an estimate of the motion field mapping Expected PET to Measured PET. The details of the algorithm are presented and the strategy is preliminarily tested on analytically simulated datasets. Results: The algorithm demonstrates (1) robustness against noise, even in the worst conditions where 1.5 × 10{sup 4} true coincidences and a random fraction of 73% are simulated; (2) a proper sensitivity to different kind and grade of mismatches ranging between 1 and 10 mm; (3) robustness against bias due to incorrect washout modeling in the Monte Carlo simulation up to 1/3 of the original signal amplitude; and (4) an ability to describe the mismatch even in presence of complex annihilation distributions such as those induced by two perpendicular superimposed ion fields. Conclusions: The promising results obtained in this work suggest the applicability of the method as a quantification tool for PET-based treatment verification in ion beam radiotherapy. An extensive assessment of the proposed strategy on real treatment verification data is planned.

  8. Ion mobility spectrometry as a fast analytical tool in benzalkonium chloride homologs determination.

    PubMed

    Gallart-Mateu, D; Armenta, S; Esteve-Turrillas, F A; de la Guardia, M

    2017-03-01

    A novel procedure is proposed for the determination by ion mobility spectrometry (IMS) of C12, C14 and C16 benzalkonium chloride (BAC) homologs. The proposed method requires minimum sample treatment and the measurement was made in less than one minute. A high sensitivity was obtained for BAC determination by IMS with limit of detection values from 37 to 69µgL(-1). Accuracy of the proposed methodology was evaluated through the analysis of aqueous and alcoholic samples spiked with BAC at concentration levels from 0.002% to 20% (w/v), providing recovery values from 91% to 104%. BAC was determined in sanitary alcohols, nasal sprays, postharvest products, algaecides, and treated swimming pool water. Results obtained by the proposed IMS methodology were statistically comparable to those provided by a liquid chromatography-ultraviolet (LC-UV) reference methodology. The Green Certificate evaluation of the proposed IMS methodology provided 91 score points in the Eco-Scale as compared with 77 for LC-UV method.

  9. Unique ion filter: a data reduction tool for GC/MS data preprocessing prior to chemometric analysis.

    PubMed

    Adutwum, L A; Harynuk, J J

    2014-08-05

    Using raw GC/MS data as the X-block for chemometric modeling has the potential to provide better classification models for complex samples when compared to using the total ion current (TIC), extracted ion chromatograms/profiles (EIC/EIP), or integrated peak tables. However, the abundance of raw GC/MS data necessitates some form of data reduction/feature selection to remove the variables containing primarily noise from the data set. Several algorithms for feature selection exist; however, due to the extreme number of variables (10(6)-10(8) variables per chromatogram), the feature selection time can be prolonged and computationally expensive. Herein, we present a new prefilter for automated data reduction of GC/MS data prior to feature selection. This tool, termed unique ion filter (UIF), is a module that can be added after chromatographic alignment and prior to any subsequent feature selection algorithm. The UIF objectively reduces the number of irrelevant or redundant variables in raw GC/MS data, while preserving potentially relevant analytical information. In the m/z dimension, data are reduced from a full spectrum to a handful of unique ions for each chromatographic peak. In the time dimension, data are reduced to only a handful of scans around each peak apex. UIF was applied to a data set of GC/MS data for a variety of gasoline samples to be classified using partial least-squares discriminant analysis (PLS-DA) according to octane rating. It was also applied to a series of chromatograms from casework fire debris analysis to be classified on the basis of whether or not signatures of gasoline were detected. By reducing the overall population of candidate variables subjected to subsequent variable selection, the UIF reduced the total feature selection time for which a perfect classification of all validation data was achieved from 373 to 9 min (98% reduction in computing time). Additionally, the significant reduction in included variables resulted in a concomitant

  10. SU-E-J-137: Image Registration Tool for Patient Setup in Korea Heavy Ion Medical Accelerator Center

    SciTech Connect

    Kim, M; Suh, T; Cho, W; Jung, W

    2015-06-15

    Purpose: A potential validation tool for compensating patient positioning error was developed using 2D/3D and 3D/3D image registration. Methods: For 2D/3D registration, digitally reconstructed radiography (DRR) and three-dimensional computed tomography (3D-CT) images were applied. The ray-casting algorithm is the most straightforward method for generating DRR. We adopted the traditional ray-casting method, which finds the intersections of a ray with all objects, voxels of the 3D-CT volume in the scene. The similarity between the extracted DRR and orthogonal image was measured by using a normalized mutual information method. Two orthogonal images were acquired from a Cyber-Knife system from the anterior-posterior (AP) and right lateral (RL) views. The 3D-CT and two orthogonal images of an anthropomorphic phantom and head and neck cancer patient were used in this study. For 3D/3D registration, planning CT and in-room CT image were applied. After registration, the translation and rotation factors were calculated to position a couch to be movable in six dimensions. Results: Registration accuracies and average errors of 2.12 mm ± 0.50 mm for transformations and 1.23° ± 0.40° for rotations were acquired by 2D/3D registration using an anthropomorphic Alderson-Rando phantom. In addition, registration accuracies and average errors of 0.90 mm ± 0.30 mm for transformations and 1.00° ± 0.2° for rotations were acquired using CT image sets. Conclusion: We demonstrated that this validation tool could compensate for patient positioning error. In addition, this research could be the fundamental step for compensating patient positioning error at the first Korea heavy-ion medical accelerator treatment center.

  11. DtaRefinery: a software tool for elimination of systematic errors from parent ion mass measurements in tandem mass spectra datasets

    SciTech Connect

    Petyuk, Vladislav A.; Mayampurath, Anoop M.; Monroe, Matthew E.; Polpitiya, Ashoka D.; Purvine, Samuel O.; Anderson, Gordon A.; Camp, David G.; Smith, Richard D.

    2009-12-16

    Hybrid two-stage mass spectrometers capable of both highly accurate mass measurement and MS/MS fragmentation have become widely available in recent years and have allowed for sig-nificantly better discrimination between true and false MS/MS pep-tide identifications by applying relatively narrow windows for maxi-mum allowable deviations for parent ion mass measurements. To fully gain the advantage of highly accurate parent ion mass meas-urements, it is important to limit systematic mass measurement errors. The DtaRefinery software tool can correct systematic errors in parent ion masses by reading a set of fragmentation spectra, searching for MS/MS peptide identifications, then fitting a model that can estimate systematic errors, and removing them. This results in a new fragmentation spectrum file with updated parent ion masses.

  12. Fission track-secondary ion mass spectrometry as a tool for detecting the isotopic signature of individual uranium containing particles.

    PubMed

    Esaka, Fumitaka; Lee, Chi-Gyu; Magara, Masaaki; Kimura, Takaumi

    2012-04-06

    A fission track technique was used as a sample preparation method for subsequent isotope abundance ratio analysis of individual uranium containing particles with secondary ion mass spectrometry (SIMS) to measure the particles with higher enriched uranium efficiently. A polycarbonate film containing particles was irradiated with thermal neutrons and etched with 6M NaOH solution. Each uranium containing particle was then identified by observing fission tracks created and a portion of the film having a uranium containing particle was cut out and put onto a glassy carbon planchet. The polycarbonate film, which gave the increases of background signals on the uranium mass region in SIMS analysis, was removed by plasma ashing with 200 W for 20 min. In the analysis of swipe samples having particles containing natural (NBL CRM 950a) or low enriched uranium (NBL CRM U100) with the fission track-SIMS method, uranium isotope abundance ratios were successfully determined. This method was then applied to the analysis of a real inspection swipe sample taken at a nuclear facility. As a consequence, the range of (235)U/(238)U isotope abundance ratio between 0.0276 and 0.0438 was obtained, which was higher than that measured by SIMS without using a fission track technique (0.0225 and 0.0341). This indicates that the fission track-SIMS method is a powerful tool to identify the particle with higher enriched uranium in environmental samples efficiently.

  13. Ion-nitriding of the AISI M2 high speed tool steel and comparison of its mechanical properties with nitrided steels

    SciTech Connect

    Cimen, O.; Alnipak, B.

    1995-12-31

    In the past it was shown that plasma diffusion treatment of steels has several advantages over conventional processes such as gas or salt bath nitriding and nitrocarburizing. Plasma diffusion treatment allows close control of the process so that surface layers with defined microstructures and properties can be obtained. The amount of {gamma}{prime} and {epsilon} phase present can be easily controlled. In this paper, variation of surfaces hardness properties of AISI M2 high speed tool speed after ion nitriding treatments were investigated. The mechanical and electro-chemical advantages of the ion nitrided structures were compared with the other methods.

  14. Molecular dynamics - potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels.

    PubMed

    Allen, Toby W; Andersen, Olaf S; Roux, Benoit

    2006-12-01

    Ion channels catalyze the permeation of charged molecules across cell membranes and are essential for many vital physiological functions, including nerve and muscle activity. To understand better the mechanisms underlying ion conduction and valence selectivity of narrow ion channels, we have employed free energy techniques to calculate the potential of mean force (PMF) for ion movement through the prototypical gramicidin A channel. Employing modern all-atom molecular dynamics (MD) force fields with umbrella sampling methods that incorporate one hundred 1-2 ns trajectories, we find that it is possible to achieve semi-quantitative agreement with experimental binding and conductance measurements. We also examine the sensitivity of the MD-PMF results to the choice of MD force field and compare PMFs for potassium, calcium and chloride ions to explore the basis for the valence selectivity of this narrow and uncharged ion channel. A large central barrier is observed for both anions and divalent ions, consistent with lack of experimental conductance. Neither anion or divalent cation is seen to be stabilized inside the channel relative to the bulk electrolyte and each leads to large disruptions to the protein and membrane structure when held deep inside the channel. Weak binding of calcium ions outside the channel corresponds to a free energy well that is too shallow to demonstrate channel blocking. Our findings emphasize the success of the MD-PMF approach and the sensitivity of ion energetics to the choice of biomolecular force field.

  15. DIRAC: A new version of computer algebra tools for studying the properties and behavior of hydrogen-like ions

    NASA Astrophysics Data System (ADS)

    McConnell, Sean; Fritzsche, Stephan; Surzhykov, Andrey

    2010-03-01

    During recent years, the DIRAC package has proved to be an efficient tool for studying the structural properties and dynamic behavior of hydrogen-like ions. Originally designed as a set of MAPLE procedures, this package provides interactive access to the wave and Green's functions in the non-relativistic and relativistic frameworks and supports analytical evaluation of a large number of radial integrals that are required for the construction of transition amplitudes and interaction cross sections. We provide here a new version of the DIRAC program which is developed within the framework of MATHEMATICA (version 6.0). This new version aims to cater to a wider community of researchers that use the MATHEMATICA platform and to take advantage of the generally faster processing times therein. Moreover, the addition of new procedures, a more convenient and detailed help system, as well as source code revisions to overcome identified shortcomings should ensure expanded use of the new DIRAC program over its predecessor. New version program summaryProgram title: DIRAC Catalogue identifier: ADUQ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUQ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 45 073 No. of bytes in distributed program, including test data, etc.: 285 828 Distribution format: tar.gz Programming language: Mathematica 6.0 or higher Computer: All computers with a license for the computer algebra package Mathematica (version 6.0 or higher) Operating system: Mathematica is O/S independent Classification: 2.1 Catalogue identifier of previous version: ADUQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 165 (2005) 139 Does the new version supersede the previous version?: Yes Nature of problem: Since the early days of quantum mechanics, the

  16. ARS-Media for Excel: A Spreadsheet Tool for Calculating Media Recipes Based on Ion-Specific Constraints

    PubMed Central

    Niedz, Randall P.

    2016-01-01

    ARS-Media for Excel is an ion solution calculator that uses “Microsoft Excel” to generate recipes of salts for complex ion mixtures specified by the user. Generating salt combinations (recipes) that result in pre-specified target ion values is a linear programming problem. Excel’s Solver add-on solves the linear programming equation to generate a recipe. Calculating a mixture of salts to generate exact solutions of complex ionic mixtures is required for at least 2 types of problems– 1) formulating relevant ecological/biological ionic solutions such as those from a specific lake, soil, cell, tissue, or organ and, 2) designing ion confounding-free experiments to determine ion-specific effects where ions are treated as statistical factors. Using ARS-Media for Excel to solve these two problems is illustrated by 1) exactly reconstructing a soil solution representative of a loamy agricultural soil and, 2) constructing an ion-based experiment to determine the effects of substituting Na+ for K+ on the growth of a Valencia sweet orange nonembryogenic cell line. PMID:27812202

  17. ARS-Media for Excel: A Spreadsheet Tool for Calculating Media Recipes Based on Ion-Specific Constraints.

    PubMed

    Niedz, Randall P

    2016-01-01

    ARS-Media for Excel is an ion solution calculator that uses "Microsoft Excel" to generate recipes of salts for complex ion mixtures specified by the user. Generating salt combinations (recipes) that result in pre-specified target ion values is a linear programming problem. Excel's Solver add-on solves the linear programming equation to generate a recipe. Calculating a mixture of salts to generate exact solutions of complex ionic mixtures is required for at least 2 types of problems- 1) formulating relevant ecological/biological ionic solutions such as those from a specific lake, soil, cell, tissue, or organ and, 2) designing ion confounding-free experiments to determine ion-specific effects where ions are treated as statistical factors. Using ARS-Media for Excel to solve these two problems is illustrated by 1) exactly reconstructing a soil solution representative of a loamy agricultural soil and, 2) constructing an ion-based experiment to determine the effects of substituting Na+ for K+ on the growth of a Valencia sweet orange nonembryogenic cell line.

  18. Universal main magnetic focus ion source: A new tool for laboratory research of astrophysics and Tokamak microplasma

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, V. P.; Nefiodov, A. V.; Levin, A. A.

    2017-01-01

    A novel room-temperature ion source for the production of atomic ions in electron beam within wide ranges of electron energy and current density is developed. The device can operate both as conventional Electron Beam Ion Source/Trap (EBIS/T) and novel Main Magnetic Focus Ion Source. The ion source is suitable for generation of the low-, medium- and high-density microplasma in steady state, which can be employed for investigation of a wide range of physical problems in ordinary university laboratory, in particular, for microplasma simulations relevant to astrophysics and ITER reactor. For the electron beam characterized by the incident energy Ee = 10 keV, the current density je ∼ 20 kA/cm2 and the number density ne ∼ 2 × 1013 cm‑3 were achieved experimentally. For Ee ∼ 60 keV, the value of electron number density ne ∼ 1014 cm‑3 is feasible. The efficiency of the novel ion source for laboratory astrophysics significantly exceeds that of other existing warm and superconducting EBITs.

  19. PULSION registered: A Versatile 200 to 300 mm Bridge Tool Plasma Immersion Ion Implanter for Ultra-Shallow Doping and Nanotechology Applications

    SciTech Connect

    Torregrosa, Frank; Etienne, Hasnaa; Sempere, Guillaume; Mathieu, Gilles; Roux, Laurent; Milesi, Frederic; Gonzatti, Frederic

    2008-11-03

    Thanks to the European Projects SEA-NET and PULLNANO, an industrial version of the IBS Plasma Ion Implantation tool has been installed in LETI for the fabrication of Ultra-Shallow Junctions for 45 and 32 nm CMOS on 200 and 300 mm wafers. In this paper, we present the main machine characteristics (layout, contamination, homogeneity, reproducibility, uptime) and we show that implanted wafers are compatible with the 32 nm nodes requirements. Then doping results (sheet resistance vs junction depth and leakage current) using several annealing technics are presented (laser, flash and spike anneals). In the second part of the paper, versatility of the tool is demonstrated with its use for other applications (3D doping, hydrogenation, solar cells...)

  20. Platform Li-Ion Battery Risk Assessment Tool: Cooperative Research and Development Final Report, CRADA Number CRD-01-406

    SciTech Connect

    Santhanagopalan, S.

    2012-07-01

    The pressure within a lithium-ion cell changes due to various chemical reactions. When a battery undergoes an unintended short circuit, the pressure changes are drastic - and often lead to uncontrolled failure of the cells. As part of work for others with Oceanit Laboratories Inc. for the NAVY STTR, NREL built Computational Fluid Dynamic (CFD) simulations that can identify potential weak spots in the battery during such events, as well as propose designs to control violent failure of batteries.

  1. Kinetic simulation of complex decomposition as a tool for the ion chromatographic determination of elemental speciation of less inert metal ions.

    PubMed

    Winter, Christian; Seubert, Andreas

    2016-01-15

    Species decomposition is an often occurring artefact during the chromatographic determination of elemental speciation. The decomposition follows a simple path to lower coordinated compounds. Therefore a simulation is developed for those decomposition reactions. The simulation separates the isochronal processes of the separation itself and the ongoing reaction and delivers thermodynamic and kinetic information about the species present in the original sample. This shifts the boundaries of separation based elemental speciation to less inert metal ions which are typically not analyzable by this approach. The less inert gallium monooxalato complex [GaOx](+) is used as example for testing the simulation software as this complex decomposes only to Ga(3+) and both species are retained on cation exchange columns. We extracted thermodynamic and kinetic information from flow rate experiments by the analysis of the peak areas in the chromatogram. The results show that some of our assumptions such as the irreversibility under the applied chromatographic conditions are not ultimately true, but good accordance of simulation and measured data was achieved.

  2. Quaternary Benzyltriethylammonium Ion Binding to the Na,K-ATPase: a Tool to Investigate Extracellular K+ Binding Reactions†

    PubMed Central

    Peluffo, R. Daniel; González-Lebrero, Rodolfo M.; Kaufman, Sergio B.; Kortagere, Sandhya; Orban, Branly; Rossi, Rolando C.; Berlin, Joshua R.

    2009-01-01

    This study examined how the quaternary organic ammonium ion, benzyltriethylamine (BTEA), binds to the Na,K-ATPase to produce membrane potential (VM)-dependent inhibition and tested the prediction that such a VM-dependent inhibitor would display electrogenic binding kinetics. BTEA competitively inhibited K+ activation of Na,K-ATPase activity and steady-state 86Rb+ occlusion. The initial rate of 86Rb+ occlusion was decreased by BTEA to a similar degree whether it was added to the enzyme prior to or simultaneously with Rb+, a demonstration that BTEA inhibits the Na,K-ATPase without being occluded. Several BTEA structural analogues reversibly inhibited Na,K-pump current, but none blocked current in a VM-dependent manner except BTEA and its para-nitro derivative, pNBTEA. Under conditions that promoted electroneutral K+-K+ exchange by the Na,K-ATPase, step changes in VM elicited pNBTEA-activated ouabain-sensitive transient currents that had similarities to those produced with the K+ congener, Tl+. pNBTEA- and Tl+-dependent transient currents both displayed saturation of charge moved at extreme negative and positive VM, equivalence of charge moved during and after step changes in VM, and similar apparent valence. The rate constant (ktot) for Tl+-dependent transient current asymptotically approached a minimum value at positive VM. In contrast, ktot for pNBTEA-dependent transient current was a “U”-shaped function of VM with a minimum value near 0 mV. Homology models of the Na,K-ATPase alpha subunit suggested that quaternary amines can bind to two extracellularly-accessible sites, one of them located at K+ binding sites positioned between transmembrane helices 4, 5, and 6. Altogether, these data revealed important information about electrogenic ion binding reactions of the Na,K-ATPase that are not directly measurable during ion transport by this enzyme. PMID:19621894

  3. Neutron-induced reactions and secondary-ion mass spectrometry: complementary tools for depth profiling. Final report

    SciTech Connect

    Downing, G.; Fleming, R.; Simons, D.; Newbury, D.

    1982-01-01

    The technique of neutron depth profiling is based upon inducing nuclear reactions by bombardment with low-energy neutrons. The nuclear reactions result in the emission of high-energy alpha particles or protons. The energy spectrum of the emitted particles is used to derive a depth distribution by transforming the energy loss into an equivalent depth by stopping-power calculations. Depth profiles of bismuth distributions in silicon and tin have been measured by both neutron depth profiling and secondary ion mass spectrometry. Information from both techniques can be used synergistically to aid in a full characterization of the depth distribution.

  4. Pion shadowing as a tool to study the topology of heavy-ion collisions at intermediate energies

    SciTech Connect

    Badala, A.; Barbera, R.; Palmeri, A.; Pappalardo, G.S.; Riggi, F.; Russo, A.C.; Turrisi, R.; Barbera, R.; Riggi, F.; Russo, G.; Turrisi, R.; Russo, G.

    1997-05-01

    The pion reabsorption effect has been exploited, through a new analysis technique, to study the topological distribution of nuclear matter in the course of a heavy-ion collision at intermediate energies. The azimuthal angular distribution of pions with respect to the reaction plane and the angular correlations between pions and projectilelike fragments have been investigated. Quantitative estimations of the pion production time scale and of the impact parameter range involved are provided. The experimental results are successfully compared with the predictions of a microscopic theoretical model based on the solution of the Boltzmann-Nordheim-Vlasov transport equation. {copyright} {ital 1997} {ital The American Physical Society}

  5. Flat ion milling: a powerful tool for preparation of cross-sections of lead-silver alloys.

    PubMed

    Brodusch, Nicolas; Boisvert, Sophie; Gauvin, Raynald

    2013-06-01

    While conventional mechanical and chemical polishing results in stress, deformation and polishing particles embedded on the surface, flat milling with Ar+ ions erodes the material with no mechanical artefacts. This flat milling process is presented as an alternative method to prepare a Pb-Ag alloy cross-section for scanning electron microscopy. The resulting surface is free of scratches with very little to no stress induced, so that electron diffraction and channelling contrast are possible. The results have shown that energy dispersive spectrometer (EDS) mapping, electron channelling contrast imaging and electron backscatter diffraction can be conducted with only one sample preparation step. Electron diffraction patterns acquired at 5 keV possessed very good pattern quality, highlighting an excellent surface condition. An orientation map was acquired at 20 keV with an indexing rate of 90.1%. An EDS map was performed at 5 keV, and Pb-Ag precipitates of sizes lower than 100 nm were observed. However, the drawback of the method is the generation of a noticeable surface topography resulting from the interaction of the ion beam with a polycrystalline and biphasic sample.

  6. Ring opening of donor-acceptor cyclopropanes with the azide ion: a tool for construction of N-heterocycles.

    PubMed

    Ivanov, Konstantin L; Villemson, Elena V; Budynina, Ekaterina M; Ivanova, Olga A; Trushkov, Igor V; Melnikov, Mikhail Ya

    2015-03-23

    A general method for ring opening of various donor-acceptor cyclopropanes with the azide ion through an SN 2-like reaction has been developed. This highly regioselective and stereospecific process proceeds through nucleophilic attack on the more-substituted C2 atom of a cyclopropane with complete inversion of configuration at this center. Results of DFT calculations support the SN 2 mechanism and demonstrate good qualitative correlation between the relative experimental reactivity of cyclopropanes and the calculated energy barriers. The reaction provides a straightforward approach to a variety of polyfunctional azides in up to 91 % yield. The high synthetic utility of these azides and the possibilities of their involvement in diversity-oriented synthesis were demonstrated by the developed multipath strategy of their transformations into five-, six-, and seven-membered N-heterocycles, as well as complex annulated compounds, including natural products and medicines such as (-)-nicotine and atorvastatin.

  7. Status of the SPES project, a new tool for fundamental and apply science studies with exotic ion beams at LNL

    NASA Astrophysics Data System (ADS)

    Napoli, D. R.; Andrighetto, A.; Antonini, P.; Bellan, L.; Bellato, M.; Benini, D.; Bermudez, J.; Bisoffi, G.; Boratto, E.; Bortolato, D.; Calabretta, L.; Calderolla, M.; Calore, A.; Campo, D.; Carturan, S.; Cinausero, M.; Comunian, M.; Corradetti, S.; De Angelis, G.; De Ruvo, P. L.; Esposito, J.; Ferrari, L.; Galatá, A.; Gelain, F.; Giacchini, M.; Giacomazzi, P.; Gobbi, C.; Gramegna, F.; Gulmini, M.; Lollo, M.; Lombardi, A.; Maggiore, M.; Manzolaro, M.; Michinelli, R.; Modanese, P.; Moisio, M. F.; Monetti, A.; Mozzi, A.; Palmieri, A.; Pasquato, F.; Pedretti, D.; Pegoraro, R.; Pisent, A.; Poggi, M.; Pranovi, L.; Prete, G.; Roncolato, C.; Rossignoli, M.; Russo, A. D.; Sarchiapone, L.; Scarpa, D.; Silingardi, R.; Dobon, J. J. Valiente; Visentin, E.; Vivian, G.; Zafiropoulos, D.; Prete, G. F.

    2016-07-01

    SPES, a new accelerator facility for both the production of exotic ion beams and radio-pharmaceuticals, is presently being installed at the Laboratori Nazionali di Legnaro in Italy (LNL). The new cyclotron, which will provide high intensity proton beams for the production of the rare isotopes, has been installed and is now in the commissioning phase. We present here the status of the part of the project devoted to the production and acceleration of fission fragments created in the interaction of an intense proton beam on a production target of UCx. The expected SPES radioactive beams intensities, their quality and their maximum energies (up to 11 MeV/A for A=130) will permit to perform forefront research in nuclear structure and nuclear dynamics far from the stability valley. Another low energy section of the facility is foreseen for new and challenging research, both in the nuclear physics and in the material science frameworks.

  8. NGS tools for traceability in candies as high processed food products: Ion Torrent PGM versus conventional PCR-cloning.

    PubMed

    Muñoz-Colmenero, Marta; Martínez, Jose Luis; Roca, Agustín; Garcia-Vazquez, Eva

    2017-01-01

    The Next Generation Sequencing methodologies are considered the next step within DNA-based methods and their applicability in different fields is being evaluated. Here, we tested the usefulness of the Ion Torrent Personal Genome Machine (PGM) in food traceability analyzing candies as a model of high processed foods, and compared the results with those obtained by PCR-cloning-sequencing (PCR-CS). The majority of samples exhibited consistency between methodologies, yielding more information and species per product from the PGM platform than PCR-CS. Significantly higher AT-content in sequences of the same species was also obtained from PGM. This together with some taxonomical discrepancies between methodologies suggest that the PGM platform is still pre-mature for its use in food traceability of complex highly processed products. It could be a good option for analysis of less complex food, saving time and cost per sample.

  9. Ion mobility spectrometry as a tool in evaluating the efficacy of cleaning protocol for clandestine methamphetamine laboratory remediation.

    PubMed

    McCall, Holly; Moran, Jordan; Yeager, Brittany; Bell, Suzanne

    2013-01-01

    Ion mobility spectrometry (IMS) is frequently used to gauge the success of remediation in clandestine methamphetamine laboratory sites due to portability of the instrument. In most cases, remediation involves some form of surface cleaning, followed by assaying using IMS to detect residual contaminants. However, the effectiveness of this cleaning approach has not been systematically evaluated nor has the effect of residual cleaner on IMS response. In this study, various building materials were exposed to a solution of methamphetamine followed by a series of cleaning cycles with a commercially available detergent, Simple Green. We found that cleaning using Simple Green requires exhaustive efforts; therefore, other cleaning agents should be explored that might be able to achieve a non-detectable IMS signal with less effort.

  10. Ion mobility mass spectrometry as a potential tool to assign disulfide bonds arrangements in peptides with multiple disulfide bridges.

    PubMed

    Echterbille, Julien; Quinton, Loïc; Gilles, Nicolas; De Pauw, Edwin

    2013-05-07

    Disulfide bridges play a major role in defining the structural properties of peptides and proteins. However, the determination of the cysteine pairing is still challenging. Peptide sequences are usually achieved using tandem mass spectrometry (MS/MS) spectra of the totally reduced unfolded species, but the cysteine pairing information is lost. On the other hand, MS/MS experiments performed on native folded species show complex spectra composed of nonclassical ions. MS/MS alone does not allow either the cysteine pairing or the full sequence of an unknown peptide to be determined. The major goal of this work is to set up a strategy for the full structural characterization of peptides including disulfide bridges annotation in the sequence. This strategy was developed by combining ion mobility spectrometry (IMS) and collision-induced dissociation (CID). It is assumed that the opening of one S-S bridge in a peptide leads to a structural evolution which results in a modification of IMS drift time. In the presence of multiple S-S bridges, the shift in arrival time will depend on which disulfide(s) has (have) been reduced and on the shape adopted by the generated species. Due to specific fragmentations observed for each species, CID experiments performed after the mobility separation could provide not only information on peptide sequence but also on the localization of the disulfide bridges. To achieve this goal, synthetic peptides containing two disulfides were studied. The openings of the bridges were carried out following different experimental conditions such as reduction, reduction/alkylation, or oxidation. Due to disulfide scrambling highlighted with the reduction approaches, oxidation of S-S bonds into cysteic acids appeared to be the best strategy. Cysteine connectivity was then unambiguously determined for the two peptides, without any disulfide scrambling interference.

  11. Algebraic tools for dealing with the atomic shell model. I. Wavefunctions and integrals for hydrogen-like ions

    NASA Astrophysics Data System (ADS)

    Surzhykov, Andrey; Koval, Peter; Fritzsche, Stephan

    2005-01-01

    Today, the 'hydrogen atom model' is known to play its role not only in teaching the basic elements of quantum mechanics but also for building up effective theories in atomic and molecular physics, quantum optics, plasma physics, or even in the design of semiconductor devices. Therefore, the analytical as well as numerical solutions of the hydrogen-like ions are frequently required both, for analyzing experimental data and for carrying out quite advanced theoretical studies. In order to support a fast and consistent access to these (Coulomb-field) solutions, here we present the DIRAC program which has been developed originally for studying the properties and dynamical behavior of the (hydrogen-like) ions. In the present version, a set of MAPLE procedures is provided for the Coulomb wave and Green's functions by applying the (wave) equations from both, the nonrelativistic and relativistic theory. Apart from the interactive access to these functions, moreover, a number of radial integrals are also implemented in the DIRAC program which may help the user to construct transition amplitudes and cross sections as they occur frequently in the theory of ion-atom and ion-photon collisions. Program summaryTitle of program:DIRAC Catalogue number: ADUQ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUQ Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Computer for which the program is designed and has been tested: All computers with a license of the computer algebra package MAPLE [1] Program language used: Maple 8 and 9 No. of lines in distributed program, including test data, etc.:2186 No. of bytes in distributed program, including test data, etc.: 162 591 Distribution format: tar gzip file CPC Program Library subprograms required: None Nature of the physical problem: Analytical solutions of the hydrogen atom are widely used in very different fields of physics [2,3]. Despite of the rather simple structure

  12. Ion Mobility-Mass Spectrometry as a Tool for the Structural Characterization of Peptides Bearing Intramolecular Disulfide Bond(s)

    NASA Astrophysics Data System (ADS)

    Massonnet, Philippe; Haler, Jean R. N.; Upert, Gregory; Degueldre, Michel; Morsa, Denis; Smargiasso, Nicolas; Mourier, Gilles; Gilles, Nicolas; Quinton, Loïc; De Pauw, Edwin

    2016-10-01

    Disulfide bonds are post-translationnal modifications that can be crucial for the stability and the biological activities of natural peptides. Considering the importance of these disulfide bond-containing peptides, the development of new techniques in order to characterize these modifications is of great interest. For this purpose, collision cross cections (CCS) of a large data set of 118 peptides (displaying various sequences) bearing zero, one, two, or three disulfide bond(s) have been measured in this study at different charge states using ion mobility-mass spectrometry. From an experimental point of view, CCS differences (ΔCCS) between peptides bearing various numbers of disulfide bonds and peptides having no disulfide bonds have been calculated. The ΔCCS calculations have also been applied to peptides bearing two disulfide bonds but different cysteine connectivities (Cys1-Cys2/Cys3-Cys4; Cys1-Cys3/Cys2-Cys4; Cys1-Cys4/Cys2-Cys3). The effect of the replacement of a proton by a potassium adduct on a peptidic structure has also been investigated.

  13. Gas chromatography/mass spectrometry as a suitable tool for the Li-ion battery electrolyte degradation mechanisms study.

    PubMed

    Gachot, Grégory; Ribière, Perrine; Mathiron, David; Grugeon, Sylvie; Armand, Michel; Leriche, Jean-Bernard; Pilard, Serge; Laruelle, Stéphane

    2011-01-15

    To allow electric vehicles to be powered by Li-ion batteries, scientists must understand further their aging processes in view to extend their cycle life and safety. For this purpose, we focused on the development of analytical techniques aiming at identifying organic species resulting from the degradation of carbonate-based electrolytes (EC-DMC/LiPF(6)) at low potential. As ESI-HRMS provided insightful information to the mechanism and chronological formation of ethylene oxide oligomers, we implemented "gas" GC/MS experiments to explore the lower mass range corresponding to highly volatile compounds. With the help of chemical simulation tests, we were able to discriminate their formation pathways (thermal and/or electrochemical) and found that most of the degradation compounds originate from the electrochemically driven linear alkyl carbonate reduction upon cycling and to a lesser extent from a two-step EC reduction. Deduced from these results, we propose an overall electrolyte degradation scheme spanning the entire mass range and the chemical or electrochemical type of processes.

  14. Quality control tool of electrode coating for lithium-ion batteries based on X-ray radiography

    NASA Astrophysics Data System (ADS)

    Etiemble, A.; Besnard, N.; Adrien, J.; Tran-Van, P.; Gautier, L.; Lestriez, B.; Maire, E.

    2015-12-01

    A simple and efficient method, based on X-ray radiography, is developed to check the quality (homogeneity of the thickness, presence of defects) of NMC-, LFP- and NMC/LFP-based electrode coating for Li-ion batteries at the scale of several cm2 with a resolution of 20 μm. As a first step, the attenuation coefficient of NMC- and LFP-based coating is experimentally determined according to the Beer-Lambert law. Then, the attenuation coefficient of each active material is estimated from these experimental results and X-ray attenuation databases, which allows establishing an attenuation law for any coating composition. Finally, thanks to this relationship, the thickness can be evaluated in each spot of the film and the defects, such as pinholes or broad edges with gradual decrease of the thickness coating, can be detected. The analysis of NMC-, LFP- and NMC/LFP-based electrodes shows that the coating quality decreases as coating thickness increases and as the nanometric vs. micrometric material content increases in the coating composition. This reveals detrimental aspects of nanomaterials with respect to their use in composite electrode manufactured through conventional slot-die or casting process.

  15. Ion colliders

    SciTech Connect

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  16. Measurements of electron-induced neutrons as a tool for determination of electron temperature of fast electrons in the task of optimization laser-produced plasma ions acceleration.

    PubMed

    Sakaki, H; Nishiuchi, M; Maeda, S; Sagisaka, A; Pirozhkov, A S; Pikuz, T; Faenov, A; Ogura, K; Fukami, T; Matsukawa, K; Kanasaki, M; Fukuda, Y; Yogo, A; Esirkepov, T; Kiriyama, H; Shimomura, T; Nakai, Y; Tanoue, M; Torimoto, K; Okamoto, M; Sato, T; Niita, K; Tamura, J; Nishio, K; Sako, H; Yamauchi, T; Watanabe, Y; Bulanov, S; Kondo, K

    2014-02-01

    High intensity laser-plasma interaction has attracted considerable interest for a number of years. The laser-plasma interaction is accompanied by generation of various charged particle beams, such as high-energy proton and ions with high charge to mass ratio (Q/M; same as multi-charged ions). Results of simultaneous novel measurements of electron-induced photonuclear neutrons (photoneutron), which are a diagnostic of the laser-plasma interaction, are proposed to use for optimization of the laser-plasma ion generation. The proposed method is demonstrated by the laser irradiation with the intensity of 1 × 10(21) W/cm(2) on the metal foil target. The photoneutrons are measured by using NE213 liquid scintillation detectors. Heavy-ion signal is registered with the CR-39 track detector simultaneously. The measured signals of the electron-induced photoneutrons are well reproduced by using the Particle and Heavy Ion Transport code System. The results obtained provide useful approach for analyzing the various laser based ion beams.

  17. The Stanford-U.S. Geological Survey SHRIMP ion microprobe--a tool for micro-scale chemical and isotopic analysis

    USGS Publications Warehouse

    Bacon, Charles R.; Grove, Marty; Vazquez, Jorge A.; Coble, Matthew A.

    2012-01-01

    Answers to many questions in Earth science require chemical analysis of minute volumes of minerals, volcanic glass, or biological materials. Secondary Ion Mass Spectrometry (SIMS) is an extremely sensitive analytical method in which a 5–30 micrometer diameter "primary" beam of charged particles (ions) is focused on a region of a solid specimen to sputter secondary ions from 1–5 nanograms of the sample under high vacuum. The elemental abundances and isotopic ratios of these secondary ions are determined with a mass spectrometer. These results can be used for geochronology to determine the age of a region within a crystal thousands to billions of years old or to precisely measure trace abundances of chemical elements at concentrations as low as parts per billion. A partnership of the U.S. Geological Survey and the Stanford University School of Earth Sciences operates a large SIMS instrument, the Sensitive High-Resolution Ion Microprobe with Reverse Geometry (SHRIMP–RG) on the Stanford campus.

  18. A novel tool for detecting Li diffusion in solids containing magnetic ions; μ+SR study on LixCoO2

    NASA Astrophysics Data System (ADS)

    Sugiyama, Jun; Mukai, Kazuhiko; Ikedo, Yutaka; Nozaki, Hiroshi; Månsson, Martin; Watanabe, Isao

    2010-04-01

    The diffusion coefficient of Li+ ions (DLi) in the battery material LixCoO2 has been investigated by means of muon-spin relaxation (μ+SR), because DLi for positive electrode materials has not been determined correctly so far. Based on performing the experiments in zero-field and weak longitudinal-fields at temperatures up to 400 K, we determined the fluctuation rate (v) of the fields on the muons due to their interaction with the nuclear moments. Combined with susceptibility data and electrostatic potential calculations, clear Li+ ion diffusion was detected above ~ 150 K. The DLi estimated from v was in very good agreement with predictions from first-principles calculations, and we present the μ+SR technique as a novel and optimal probe to detect DLi of unique usefulness for materials containing magnetic ions.

  19. Miniature all-solid-state heterostructure nanowire Li-ion batteries as a tool for engineering and structural diagnostics of nanoscale electrochemical processes.

    PubMed

    Oleshko, Vladimir P; Lam, Thomas; Ruzmetov, Dmitry; Haney, Paul; Lezec, Henri J; Davydov, Albert V; Krylyuk, Sergiy; Cumings, John; Talin, A Alec

    2014-10-21

    Complex interfacial phenomena and phase transformations that govern the operation of Li-ion batteries require detailed nanoscale 3D structural and compositional characterization that can be directly related to their capacity and electrical transport properties. For this purpose, we have designed model miniature all solid-state radial heterostructure Li-ion batteries composed of LiCoO2 cathode, LiPON electrolyte and amorphous Si anode shells, which were deposited around metallized high-aspect-ratio Si nanowires as a scaffolding core. Such diagnostic batteries, the smallest, complete secondary Li-ion batteries realized to date, were specifically designed for in situ electrical testing in a field-emission scanning electron microscope and/or transmission electron microscope. The results of electrochemical testing were described in detail in a previous publication (Nano Lett., 2012, 12, 505-511). The model Li-ion batteries allow analysis of the correlations between electrochemical properties and their structural evolution during cycling in various imaging, diffraction and spectroscopic modes down to the atomic level. Employing multimode analytical scanning/transmission electron microscopy imaging coupled with correlative multivariate statistical analysis and tomography, we have analyzed and quantified the 3D morphological and structural arrangement of the batteries, including textured platelet-like LiCoO2 nanocrystallites, buried electrode-electrolyte interfaces and hidden internal defects to clarify effects of scaling on a battery's electrochemical performance. Characterization of the nanoscale interfacial processes using model heterostructure nanowire-based Li-ion batteries provides useful guidelines for engineering of prospective nano-sized building blocks in future electrochemical energy storage systems.

  20. Argon broad ion beam tomography in a cryogenic scanning electron microscope: a novel tool for the investigation of representative microstructures in sedimentary rocks containing pore fluid.

    PubMed

    Desbois, G; Urai, J L; Pérez-Willard, F; Radi, Z; Offern, S; Burkart, I; Kukla, P A; Wollenberg, U

    2013-03-01

    The contribution describes the implementation of a broad ion beam (BIB) polisher into a scanning electron microscope (SEM) functioning at cryogenic temperature (cryo). The whole system (BIB-cryo-SEM) provides a first generation of a novel multibeam electron microscope that combines broad ion beam with cryogenic facilities in a conventional SEM to produce large, high-quality cross-sections (up to 2 mm(2)) at cryogenic temperature to be imaged at the state-of-the-art SEM resolution. Cryogenic method allows detecting fluids in their natural environment and preserves samples against desiccation and dehydration, which may damage natural microstructures. The investigation of microstructures in the third dimension is enabled by serial cross-sectioning, providing broad ion beam tomography with slices down to 350 nm thick. The functionalities of the BIB-cryo-SEM are demonstrated by the investigation of rock salts (synthetic coarse-grained sodium chloride synthesized from halite-brine mush cold pressed at 150 MPa and 4.5 GPa, and natural rock salt mylonite from a salt glacier at Qom Kuh, central Iran). In addition, results from BIB-cryo-SEM on a gas shale and Boom Clay are also presented to show that the instrument is suitable for a large range of sedimentary rocks. For the first time, pore and grain fabrics of preserved host and reservoir rocks can be investigated at nm-scale range over a representative elementary area. In comparison with the complementary and overlapping performances of the BIB-SEM method with focused ion beam-SEM and X-ray tomography methods, the BIB cross-sectioning enables detailed insights about morphologies of pores at greater resolution than X-ray tomography and allows the production of large representative surfaces suitable for FIB-SEM investigations of a specific representative site within the BIB cross-section.

  1. MAGIC: an automated N-linked glycoprotein identification tool using a Y1-ion pattern matching algorithm and in silico MS² approach.

    PubMed

    Lynn, Ke-Shiuan; Chen, Chen-Chun; Lih, T Mamie; Cheng, Cheng-Wei; Su, Wan-Chih; Chang, Chun-Hao; Cheng, Chia-Ying; Hsu, Wen-Lian; Chen, Yu-Ju; Sung, Ting-Yi

    2015-02-17

    Glycosylation is a highly complex modification influencing the functions and activities of proteins. Interpretation of intact glycopeptide spectra is crucial but challenging. In this paper, we present a mass spectrometry-based automated glycopeptide identification platform (MAGIC) to identify peptide sequences and glycan compositions directly from intact N-linked glycopeptide collision-induced-dissociation spectra. The identification of the Y1 (peptideY0 + GlcNAc) ion is critical for the correct analysis of unknown glycoproteins, especially without prior knowledge of the proteins and glycans present in the sample. To ensure accurate Y1-ion assignment, we propose a novel algorithm called Trident that detects a triplet pattern corresponding to [Y0, Y1, Y2] or [Y0-NH3, Y0, Y1] from the fragmentation of the common trimannosyl core of N-linked glycopeptides. To facilitate the subsequent peptide sequence identification by common database search engines, MAGIC generates in silico spectra by overwriting the original precursor with the naked peptide m/z and removing all of the glycan-related ions. Finally, MAGIC computes the glycan compositions and ranks them. For the model glycoprotein horseradish peroxidase (HRP) and a 5-glycoprotein mixture, a 2- to 31-fold increase in the relative intensities of the peptide fragments was achieved, which led to the identification of 7 tryptic glycopeptides from HRP and 16 glycopeptides from the mixture via Mascot. In the HeLa cell proteome data set, MAGIC processed over a thousand MS(2) spectra in 3 min on a PC and reported 36 glycopeptides from 26 glycoproteins. Finally, a remarkable false discovery rate of 0 was achieved on the N-glycosylation-free Escherichia coli data set. MAGIC is available at http://ms.iis.sinica.edu.tw/COmics/Software_MAGIC.html .

  2. Ion beam analysis and PD-MS as new analytical tools for quality control of pharmaceuticals: comparative study from fluphenazine in solid dosage forms.

    PubMed

    Nsouli, Bilal; Bejjani, Alice; Negra, Serge Della; Gardon, Alain; Thomas, Jean-Paul

    2010-09-01

    In order to evaluate the potential of accelerator based analytical techniques ((particle induced X-ray emission (PIXE), particle induced gamma-ray emission (PIGE), and particle desorption mass spectrometry (PD-MS)) for the analysis of commercial pharmaceutical products in their solid dosage form, the fluphenazine drug has been taken as a representative example. It is demonstrated that PIXE and PIGE are by far the best choice for quantification of the active ingredient (AI) (certification with 7% precision) from the reactions induced on its specific heteroatoms fluorine and sulfur using pellets made from original tablets. Since heteroatoms cannot be present in all types of drugs, the PD-MS technique, which makes easily the distinction between AI(s) and excipients, has been evaluated for the same material. It is shown that the quantification of AI is obtained via the detection of its protonated molecule. However, calibration curves have to be made from the secondary ion yield variations since matrix effects of various nature are characteristics of such mixtures of heterogeneous materials (including deposits from soluble components). From the analysis of solid tablets, (either transformed into pellets and even as received), it is strongly suggested that the physical state of the grains in the mixture is a crucial parameter in the ion emission and accordingly for the calibration curves. As a result of our specific (but not optimized) conditions the resulting precision is <17% with an almost linear range extending from 0.04 to 7.87 mg of AI in a tablet made under the manufacturer conditions (the commercial drug product is labeled at 5 mg).

  3. A novel ion-pairing chromatographic method for the simultaneous determination of both nicarbazin components in feed additives: chemometric tools for improving the optimization and validation.

    PubMed

    De Zan, María M; Teglia, Carla M; Robles, Juan C; Goicoechea, Héctor C

    2011-07-15

    The development, optimization and validation of an ion-pairing high performance liquid chromatography method for the simultaneous determination of both nicarbazin (NIC) components: 4,4'-dinitrocarbanilide (DNC) and 2-hydroxy-4,6-dimethylpyrimidine (HDP) in bulk materials and feed additives are described. An experimental design was used for the optimization of the chromatographic system. Four variables, including mobile phase composition and oven temperature, were analyzed through a central composite design exploring their contribution to analyte separation. Five responses: peak resolutions, HDP capacity factor, HDP tailing and analysis time, were modelled by using the response surface methodology and were optimized simultaneously by implementing the desirability function. The optimum conditions resulted in a mobile phase consisting of 10.0 mmol L(-1) of 1-heptanesulfonate, 20.0 mmol L(-1) of sodium acetate, pH=3.30 buffer and acetonitrile in a gradient system at a flow rate of 1.00 mL min(-1). Column was an INERSTIL ODS-3 (4.6 mm×150 mm, 5 μm particle size) at 40.0°C. Detection was performed at 300 nm by a diode array detector. The validation results of the method indicated a high selectivity and good precision characteristics, with RSD less than 1.0% for both components, both in intra and inter-assay precision studies. Linearity was proved for a range of 32.0-50.0 μg mL(-1) of NIC in sample solution. The recovery, studied at three different fortification levels, varied from 98.0 to 101.4 for HDP and from 99.1 to 100.2 for DNC. The applicability of the method was demonstrated by determining DNC and HDP content in raw materials and commercial formulations used for coccidiosis prevention. Assays results on real samples showed that considerable differences in molecular ratio DNC:HDP exist among them.

  4. Ion Torrent PGM as Tool for Fungal Community Analysis: A Case Study of Endophytes in Eucalyptus grandis Reveals High Taxonomic Diversity

    PubMed Central

    Kemler, Martin; Garnas, Jeff; Wingfield, Michael J.; Gryzenhout, Marieka; Pillay, Kerry-Anne; Slippers, Bernard

    2013-01-01

    The Kingdom Fungi adds substantially to the diversity of life, but due to their cryptic morphology and lifestyle, tremendous diversity, paucity of formally described specimens, and the difficulty in isolating environmental strains into culture, fungal communities are difficult to characterize. This is especially true for endophytic communities of fungi living in healthy plant tissue. The developments in next generation sequencing technologies are, however, starting to reveal the true extent of fungal diversity. One of the promising new technologies, namely semiconductor sequencing, has thus far not been used in fungal diversity assessments. In this study we sequenced the internal transcribed spacer 1 (ITS1) nuclear encoded ribosomal RNA of the endophytic community of the economically important tree, Eucalyptus grandis, from South Africa using the Ion Torrent Personal Genome Machine (PGM). We determined the impact of various analysis parameters on the interpretation of the results, namely different sequence quality parameter settings, different sequence similarity cutoffs for clustering and filtering of databases for removal of sequences with incomplete taxonomy. Sequence similarity cutoff values only had a marginal effect on the identified family numbers, whereas different sequence quality filters had a large effect (89 vs. 48 families between least and most stringent filters). Database filtering had a small, but statistically significant, effect on the assignment of sequences to reference sequences. The community was dominated by Ascomycota, and particularly by families in the Dothidiomycetes that harbor well-known plant pathogens. The study demonstrates that semiconductor sequencing is an ideal strategy for environmental sequencing of fungal communities. It also highlights some potential pitfalls in subsequent data analyses when using a technology with relatively short read lengths. PMID:24358124

  5. Tools for magnetostructural correlations for the 3d8(3A2 state) ions at orthorhombic sites: Comparative study with applications to Ni2+ ions in Y2BaNiO5 and Nd2BaNiO5

    NASA Astrophysics Data System (ADS)

    Gnutek, P.; Açıkgöz, M.; Rudowicz, C.

    2015-01-01

    Three approaches are employed to study magnetostructural correlations for the 3d8(3A2 state) ions at orthorhombic sites in crystals: (i) the higher-order perturbation theory (PT) of the microscopic spin Hamiltonian (MSH) parameters, (ii) the crystal field (CF) analysis (CFA) within all 3d8 states combined with the superposition model (SPM) calculations of CF parameters, and (iii) the second-order PT of MSH parameters. A comparative study is carried out to assess the merit of each modeling approach. These approaches enable predictions of the orthorhombic zero-field splitting parameters (ZFSPs) for the 3d8 ions at orthorhombic sites. Hence, correlation of the magnetic and spectroscopic properties with the structural ones may be considered. The approach (i) and (iii) take into account only the spin-orbit coupling (SOC) and a limited set of low lying states. Analysis of the expressions used in the approach (i) reveals discrepancies concerning: the sign of the SOC parameter, the cubic crystal field parameter Dq, the energy levels sequence, and numerical errors, which diminish its reliability. The distinction between the first- and second-kind orthorhombic symmetry is also elucidated. The approaches (i)-(iii) are applied for Ni2+ (S=1) ions in the Haldane gap systems Y2BaNiO5 and Nd2BaNiO5. The contributions to the ZFSPs due to the spin-spin and spin-other-orbit interactions considered using the approach (ii) are found nearly insignificant as compared with the dominant SOC ones. The results indicate that the approach (i)-corrected and (iii) may be employed only as an approximation. The approach (ii) together with the SPM/CFP modeling appear to be preferable and more reliable tools to study magnetostructural correlations and thus spectroscopic and magnetic properties of the 3d8(3A2 state) ions at orthorhombic sites in crystals.

  6. Ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  7. Ion channels in toxicology.

    PubMed

    Restrepo-Angulo, Iván; De Vizcaya-Ruiz, Andrea; Camacho, Javier

    2010-08-01

    Ion channels play essential roles in human physiology and toxicology. Cardiac contraction, neural transmission, temperature sensing, insulin release, regulation of apoptosis, cellular pH and oxidative stress, as well as detection of active compounds from chilli, are some of the processes in which ion channels have an important role. Regulation of ion channels by several chemicals including those found in air, water and soil represents an interesting potential link between environmental pollution and human diseases; for instance, de novo expression of ion channels in response to exposure to carcinogens is being considered as a potential tool for cancer diagnosis and therapy. Non-specific binding of several drugs to ion channels is responsible for a huge number of undesirable side-effects, and testing guidelines for several drugs now require ion channel screening for pharmaceutical safety. Animal toxins targeting human ion channels have serious effects on the population and have also provided a remarkable tool to study the molecular structure and function of ion channels. In this review, we will summarize the participation of ion channels in biological processes extensively used in toxicological studies, including cardiac function, apoptosis and cell proliferation. Major findings on the adverse effects of drugs on ion channels as well as the regulation of these proteins by different chemicals, including some pesticides, are also reviewed. Association of ion channels and toxicology in several biological processes strongly suggests these proteins to be excellent candidates to follow the toxic effects of xenobiotics, and as potential early indicators of life-threatening situations including chronic degenerative diseases.

  8. Jetting tool

    SciTech Connect

    Szarka, D.D.; Schwegman, S.L.

    1991-07-09

    This patent describes an apparatus for hydraulically jetting a well tool disposed in a well, the well tool having a sliding member. It comprises positioner means for operably engaging the sliding member of the well tool; and a jetting means, connected at a rotatable connection to the positioner means so that the jetting means is rotatable relative to the positioner means and the well tool, for hydraulically jetting the well tool as the jetting means is rotated relative thereto.

  9. Chromatography process development in the quality by design paradigm I: Establishing a high-throughput process development platform as a tool for estimating "characterization space" for an ion exchange chromatography step.

    PubMed

    Bhambure, R; Rathore, A S

    2013-01-01

    This article describes the development of a high-throughput process development (HTPD) platform for developing chromatography steps. An assessment of the platform as a tool for establishing the "characterization space" for an ion exchange chromatography step has been performed by using design of experiments. Case studies involving use of a biotech therapeutic, granulocyte colony-stimulating factor have been used to demonstrate the performance of the platform. We discuss the various challenges that arise when working at such small volumes along with the solutions that we propose to alleviate these challenges to make the HTPD data suitable for empirical modeling. Further, we have also validated the scalability of this platform by comparing the results from the HTPD platform (2 and 6 μL resin volumes) against those obtained at the traditional laboratory scale (resin volume, 0.5 mL). We find that after integration of the proposed correction factors, the HTPD platform is capable of performing the process optimization studies at 170-fold higher productivity. The platform is capable of providing semi-quantitative assessment of the effects of the various input parameters under consideration. We think that platform such as the one presented is an excellent tool for examining the "characterization space" and reducing the extensive experimentation at the traditional lab scale that is otherwise required for establishing the "design space." Thus, this platform will specifically aid in successful implementation of quality by design in biotech process development. This is especially significant in view of the constraints with respect to time and resources that the biopharma industry faces today.

  10. Ion-Ion Neutralization.

    DTIC Science & Technology

    1980-12-31

    plasma were identified using a downstream quadrupole mass spectrometer. In these experimento it is a simple matter to establish H+(H 2 0):f as the...pressure as predicted by the Thomson t2rnary mechanism whicK hzr been suownr to be valid experimentally at hiTh rrsurs (,han and Peron, 1:EI4 hereafter t...of NO , NO2 ions in various gases and the ternary recombination coefficients of these ions in the higher pres:;ure ( Thomson ) re"ie. Equation (5) cr>n

  11. Tool Carrier

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Tool organizer accommodates a selection of hand tools on a waist or thigh belt or alternately on wall, work bench, or car trunk mountings. Tool caddy is widely used by industrial maintenance personnel, TV technicians, mechanics, artists, draftsmen, hobbyists and homeowners. Its innovative feature is rows of flexible vinyl "fingers" like the bristles of a hairbrush which mesh together to hold the tool securely in place yet allow easy insertion or withdrawal. Product is no longer commercially available.

  12. Percussion tool

    DOEpatents

    Reed, Teddy R.

    2006-11-28

    A percussion tool is described and which includes a housing mounting a tool bit; a reciprocally moveable hammer borne by the housing and which is operable to repeatedly strike the tool bit; and a reciprocally moveable piston enclosed within the hammer and which imparts reciprocal movement to the reciprocally moveable hammer.

  13. Mercury ion thruster technology

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Matossian, J. N.

    1989-01-01

    The Mercury Ion Thruster Technology program was an investigation for improving the understanding of state-of-the-art mercury ion thrusters. Emphasis was placed on optimizing the performance and simplifying the design of the 30 cm diameter ring-cusp discharge chamber. Thruster performance was improved considerably; the baseline beam-ion production cost of the optimized configuration was reduced to Epsilon (sub i) perspective to 130 eV/ion. At a discharge propellant-utilization efficiency of 95 percent, the beam-ion production cost was reduced to about 155 eV/ion, representing a reduction of about 40 eV/ion over the corresponding value for the 30 cm diameter J-series thruster. Comprehensive Langmuir-probe surveys were obtained and compared with similar measurements for a J-series thruster. A successful volume-averaging scheme was developed to correlate thruster performance with the dominant plasma processes that prevail in the two thruster designs. The average Maxwellian electron temperature in the optimized ring-cusp design is as much as 1 eV higher than it is in the J-series thruster. Advances in ion-extraction electrode fabrication technology were made by improving materials selection criteria, hydroforming and stress-relieving tooling, and fabrications procedures. An ion-extraction performance study was conducted to assess the effect of screen aperture size on ion-optics performance and to verify the effectiveness of a beam-vectoring model for three-grid ion optics. An assessment of the technology readiness of the J-series thruster was completed, and operation of an 8 cm IAPS thruster using a simplified power processor was demonstrated.

  14. Single cell electroporation using proton beam fabricated biochips

    NASA Astrophysics Data System (ADS)

    Homhuan, S.; Zhang, B.; Sheu, F.-S.; Bettiol, A. A.; Watt, F.

    2010-05-01

    We report the design and fabrication of a novel single cell electroporation biochip fabricated by the Proton Beam Writing technique (PBW), a new technique capable of direct-writing high-aspect-ratio nano and microstructures. The biochip features nickel micro-electrodes with straight-side walls between which individual cells are positioned. By applying electrical impulses across the electrodes, SYTOX® Green nucleic acid stain is incorporated into mouse neuroblastoma (N2a) cells. When the stain binds with DNA inside the cell nucleus, green fluorescence is observed upon excitation from a halogen lamp. Three parameters; electric field strength, pulse duration, and the number of pulses have been considered and optimized for the single cell electroporation. The results show that our biochip gives successfully electroporated cells . This single cell electroporation system represents a promising method for investigating the introduction of a wide variety of fluorophores, nanoparticles, quantum dots, DNAs and proteins into cells.

  15. GRIPPING TOOL

    DOEpatents

    Sandrock, R.J.

    1961-12-12

    A self-actuated gripping tool is described for transferring fuel elements and the like into reactors and other inaccessible locations. The tool will grasp or release the load only when properly positioned for this purpose. In addition, the load cannot be released except when unsupported by the tool, so that jarring or contact will not bring about accidental release of the load. The gripping members or jaws of the device are cam-actuated by an axially slidable shaft which has two lockable positions. A spring urges the shaft into one position and a solenoid is provided to overcome the spring and move it into the other position. The weight of the tool operates a sleeve to lock the shaft in its existing position. Only when the cable supporting the tool is slack is the device capable of being actuated either to grasp or release its load. (AEC)

  16. Omics Tools

    SciTech Connect

    Schaumberg, Andrew

    2012-12-21

    The Omics Tools package provides several small trivial tools for work in genomics. This single portable package, the “omics.jar” file, is a toolbox that works in any Java-based environment, including PCs, Macs, and supercomputers. The number of tools is expected to grow. One tool (called cmsearch.hadoop or cmsearch.local), calls the external cmsearch program to predict non-coding RNA in a genome. The cmsearch program is part of the third-party Infernal package. Omics Tools does not contain Infernal. Infernal may be installed separately. The cmsearch.hadoop subtool requires Apache Hadoop and runs on a supercomputer, though cmsearch.local does not and runs on a server. Omics Tools does not contain Hadoop. Hadoop mat be installed separartely The other tools (cmgbk, cmgff, fastats, pal, randgrp, randgrpr, randsub) do not interface with third-party tools. Omics Tools is written in Java and Scala programming languages. Invoking the “help” command shows currently available tools, as shown below: schaumbe@gpint06:~/proj/omics$ java -jar omics.jar help Known commands are: cmgbk : compare cmsearch and GenBank Infernal hits cmgff : compare hits among two GFF (version 3) files cmsearch.hadoop : find Infernal hits in a genome, on your supercomputer cmsearch.local : find Infernal hits in a genome, on your workstation fastats : FASTA stats, e.g. # bases, GC content pal : stem-loop motif detection by palindromic sequence search (code stub) randgrp : random subsample without replacement, of groups randgrpr : random subsample with replacement, of groups (fast) randsub : random subsample without replacement, of file lines For more help regarding a particular command, use: java -jar omics.jar command help Usage: java -jar omics.jar command args

  17. Solution dewatering with concomitant ion removal

    DOEpatents

    Peterson, Eric S.; Marshall, Douglas W.; Stone, Mark L.

    2003-08-05

    One of the biggest needs in the separations and waste handling and reduction area is a method for dewatering ion-containing solutions. Unexpectedly, it has been found that phosphazene polymers can discriminate between water and metal ions, allowing water to pass through the membrane while retaining the ions. This unexpected result, along with the inherent chemical and thermal stability of the phosphazene polymers, yields a powerful tool for separating and dewatering metal-ion-containing solutions.

  18. Ion beam lithography system

    DOEpatents

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  19. Robot Tools

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Mecanotron, now division of Robotics and Automation Corporation, developed a quick-change welding method called the Automatic Robotics Tool-change System (ARTS) under Marshall Space Flight Center and Rockwell International contracts. The ARTS system has six tool positions ranging from coarse sanding disks and abrasive wheels to cloth polishing wheels with motors of various horsepower. The system is used by fabricators of plastic body parts for the auto industry, by Texas Instruments for making radar domes, and for advanced composites at Aerospatiale in France.

  20. Management Tools

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Manugistics, Inc. (formerly AVYX, Inc.) has introduced a new programming language for IBM and IBM compatible computers called TREES-pls. It is a resource management tool originating from the space shuttle, that can be used in such applications as scheduling, resource allocation project control, information management, and artificial intelligence. Manugistics, Inc. was looking for a flexible tool that can be applied to many problems with minimal adaptation. Among the non-government markets are aerospace, other manufacturing, transportation, health care, food and beverage and professional services.

  1. Ion mixing

    NASA Technical Reports Server (NTRS)

    Matteson, S.; Nicolet, M.-A.

    1983-01-01

    Recent experimental studies of the ion-mixing phenomenon are summarized. Ion mixing is differentiated from ion implantation and shown to be a useful technique for overcoming the sputter-dependent limitations of implantation processes. The fundamental physical principles of ion/solid interactions are explored. The basic experimental configurations currently in use are characterized: bilayered samples, multilayered samples, and samples with a thin marker layer. A table listing the binary systems (metal-semiconductor or metal-metal) which have been investigated using each configuration is presented. Results are discussed, and some sample data are plotted. The prospects for future application of ion mixing to the alteration of solid surface properties are considered. Practical applications are seen as restricted by economic considerations to the production of small, expensive components or to fields (such as the semiconductor industry) which already have facilities for ion implantation.

  2. ION SOURCE

    DOEpatents

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  3. Ion/Neutral, Ion/Electron, Ion/Photon, and Ion/Ion Interactions in Tandem Mass Spectrometry: Do we need them all? Are they enough?

    PubMed Central

    McLuckey, Scott A.; Mentinova, Marija

    2011-01-01

    A range of strategies and tools has been developed to facilitate the determination of primary structures of analyte molecules of interest via tandem mass spectrometry (MS/MS). The two main factors that determine the primary structural information present in an MS/MS spectrum are the type of ion generated from the analyte molecule and the dissociation method. The ion-type subjected to dissociation is determined by the ionization method/conditions and ion transformation processes that might take place after initial gas-phase ion formation. Furthermore, the range of analyte-related ion types can be expanded via derivatization reactions prior to mass spectrometry. Dissociation methods include those that simply alter the population of internal states of the mass-selected ion (i.e., activation methods like collision-induced dissociation) as well as processes that rely on transformation of the ion-type prior to dissociation (e.g., electron capture dissociation). A variety of ionic interactions has been studied for the purpose of ion dissociation and ion transformation that include ion/neutral, ion/photon, ion/electron, and ion/ion interactions. A wide range of phenomena has been observed, many of which have been explored/developed as means for structural analysis. The techniques arising from these phenomena are discussed within the context of the elements of structure determination in tandem mass spectrometry, viz., ion-type definition and dissociation. Unique aspects of the various ion interactions are emphasized along with any barriers to widespread implementation. PMID:21472539

  4. Gas-phase chemistry of diphosphate anions as a tool to investigate the intrinsic requirements of phosphate ester enzymatic reactions: the [M1M2HP2O7]- ions.

    PubMed

    Pepi, Federico; Barone, Vincenzo; Cimino, Paola; Ricci, Andreina

    2007-01-01

    Experimental studies on gaseous inorganic phosphate ions are practically nonexistent, yet they can prove helpful for a better understanding of the mechanisms of phosphate ester enzymatic processes. The present contribution extends our previous investigations on the gas-phase ion chemistry of diphosphate species to the [M(1)M(2)HP(2)O(7)](-) ions where M(1) and M(2) are the same or different and correspond to the Li, Na, K, Cs, and Rb cations. The diphosphate ions are formed by electrospray ionization of 10(-4) M solutions of Na(5)P(3)O(10) in CH(3)CN/H(2)O (1/1) and MOH bases or M salts as a source of M(+) cations. The joint application of mass spectrometric techniques and quantum-mechanical calculations makes it possible to characterize the gaseous [M(1)M(2)HP(2)O(7)](-) ions as a mixed ionic population formed by two isomeric species: linear diphosphate anion coordinated to two M(+) cations (group I) and [PO(3)M(1)M(2)HPO(4)](-) clusters (group II). The relative gas-phase stabilities and activation barriers for the isomerization I-->II, which depend on the nature of the M(+) cations, highlight the electronic susceptibility of P-O-P bond breaking in the active site of enzymes. The previously unexplored gas-phase reactivity of [M(1)M(2)HP(2)O(7)](-) ions towards alcohols of different acidity was investigated by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). The reaction proceeds by addition of the alcohol molecule followed by elimination of a water molecule.

  5. Ion Chromatography.

    ERIC Educational Resources Information Center

    Mulik, James D.; Sawicki, Eugene

    1979-01-01

    Accurate for the analysis of ions in solution, this form of analysis enables the analyst to directly assay many compounds that previously were difficult or impossible to analyze. The method is a combination of the methodologies of ion exchange, liquid chromatography, and conductimetric determination with eluant suppression. (Author/RE)

  6. Downhole tool

    DOEpatents

    Hall, David R.; Muradov, Andrei; Pixton, David S.; Dahlgren, Scott Steven; Briscoe, Michael A.

    2007-03-20

    A double shouldered downhole tool connection comprises box and pin connections having mating threads intermediate mating primary and secondary shoulders. The connection further comprises a secondary shoulder component retained in the box connection intermediate a floating component and the primary shoulders. The secondary shoulder component and the pin connection cooperate to transfer a portion of makeup load to the box connection. The downhole tool may be selected from the group consisting of drill pipe, drill collars, production pipe, and reamers. The floating component may be selected from the group consisting of electronics modules, generators, gyroscopes, power sources, and stators. The secondary shoulder component may comprises an interface to the box connection selected from the group consisting of radial grooves, axial grooves, tapered grooves, radial protrusions, axial protrusions, tapered protrusions, shoulders, and threads.

  7. Computational Ion Optics Design Evaluations

    NASA Technical Reports Server (NTRS)

    Malone, Shane P.; Soulas, George C.

    2004-01-01

    Ion optics computational models are invaluable tools in the design of ion optics systems. In this study a new computational model developed by an outside vendor for use at the NASA Glenn Research Center (GRC) is presented. This computational model is a gun code that has been modified to model the plasma sheaths both upstream and downstream of the ion optics. The model handles multiple species (e.g. singly and doubly-charged ions) and includes a charge-exchange model to support erosion estimations. The model uses commercially developed solid design and meshing software to allow high flexibility in ion optics geometric configurations. The results from this computational model are applied to the NEXT project to investigate the effects of crossover impingement erosion seen during the 2000-hour wear test.

  8. Ion channel therapeutics for pain

    PubMed Central

    Skerratt, Sarah E; West, Christopher W

    2015-01-01

    Pain is a complex disease which can progress into a debilitating condition. The effective treatment of pain remains a challenge as current therapies often lack the desired level of efficacy or tolerability. One therapeutic avenue, the modulation of ion channel signaling by small molecules, has shown the ability to treat pain. However, of the 215 ion channels that exist in the human genome, with 85 ion channels having a strong literature link to pain, only a small number of these channels have been successfully drugged for pain. The focus of future research will be to fully explore the possibilities surrounding these unexplored ion channels. Toward this end, a greater understanding of ion channel modulation will be the greatest tool we have in developing the next generation of drugs for the treatment of pain. PMID:26218246

  9. USSR Report: Machine Tools and Metalworking Equipment

    DTIC Science & Technology

    1986-01-16

    quality tools and readjustable fixtures f 21 . In the last 10-year period, it was possible to raise essentially the quality, reliability and operating...involves large material expenditures. Another technical innovation is the special ion-nitriding unit with the lovely name " Bulat ". It was installed in...the plant’s tool shop last summer. The Bulat allows the production of wear-resistant, strong and reliable cutting tool components. The capability

  10. Plasma ion sources and ion beam technology inmicrofabrications

    SciTech Connect

    Ji, Lili

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 μm-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25

  11. ION SWITCH

    DOEpatents

    Cook, B.

    1959-02-10

    An ion switch capable of transferring large magnitudes of power is described. An ion switch constructed in accordance with the invention includes a pair of spaced control electrodes disposed in a highly evacuated region for connection in a conventional circuit to control the passing of power therethrough. A controllable ionic conduction path is provided directiy between the control electrodes by a source unit to close the ion switch. Conventional power supply means are provided to trigger the source unit and control the magnitude, durations and pulse repetition rate of the aforementioned ionic conduction path.

  12. Secondary ion mass spectrometry: Polyatomic and molecular ion emission

    NASA Astrophysics Data System (ADS)

    Colton, Richard J.; Ross, Mark M.; Kidwell, David A.

    1986-03-01

    Secondary ion mass spectrometry (SIMS) has become a diverse tool for the study of many substances such as metals, semiconductors, inorganic compounds and organic compounds, including polymers and biomolecules. This paper discusses the formation and emission of polyatomic and molecular ions from surfaces of these materials. The mass, energy, and abundance distribution of cluster ions emitted from various solids — Van der Waals, molecular, metallic, ionic and covalent — are compared. Trends in their emission patterns are discussed in terms of a recombination or a direct emission mechanism. For example, the ion abundance of cluster ions sputtered from metals decreases monotonically with increasing cluster size due to a decreasing formation probability for large clusters. The emission from metal oxides, however, shows a broad distribution of M mO ±n cluster ions whose formation can be described by both recombination and direct emission mechanisms. Covalently bonded molecules tend to eject as intact species. The emission of molecular ions is also discussed with respect to the method of ionization and the various sample preparation and matrix-assisted and derivatization procedures used. For example, the emission of molecular ions from metal surfaces is strongly influenced by the nature of the adsorption site; and matrix-assisted and derivatization procedures enhance the ionization efficiency of the analyte.

  13. ION SOURCE

    DOEpatents

    Blue, C.W.; Luce, J.S.

    1960-07-19

    An ion source is described and comprises an arc discharge parallel to the direction of and inside of a magnetic field. an accelerating electrode surrounding substantially all of the discharge except for ion exit apertures, and means for establishing an electric field between that electrode and the arc discharge. the electric field being oriented at an acute angle to the magnetic field. Ions are drawn through the exit apertures in the accelrating electrcde in a direction substantially divergent to the direction of the magnetic field and so will travel in a spiral orbit along the magnetic field such that the ions will not strike the source at any point in their orbit within the magnetic field.

  14. Ion focusing

    DOEpatents

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2017-01-17

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  15. ION SOURCE

    DOEpatents

    Leland, W.T.

    1960-01-01

    The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

  16. Ion focusing

    SciTech Connect

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  17. Tool Gear: Infrastructure for Parallel Tools

    SciTech Connect

    May, J; Gyllenhaal, J

    2003-04-17

    Tool Gear is a software infrastructure for developing performance analysis and other tools. Unlike existing integrated toolkits, which focus on providing a suite of capabilities, Tool Gear is designed to help tool developers create new tools quickly. It combines dynamic instrumentation capabilities with an efficient database and a sophisticated and extensible graphical user interface. This paper describes the design of Tool Gear and presents examples of tools that have been built with it.

  18. Molecular ions, Rydberg spectroscopy and dynamics

    SciTech Connect

    Jungen, Ch.

    2015-01-22

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering.

  19. Atomic absorption spectroscopy in ion channel screening.

    PubMed

    Stankovich, Larisa; Wicks, David; Despotovski, Sasko; Liang, Dong

    2004-10-01

    This article examines the utility of atomic absorption spectroscopy, in conjunction with cold flux assays, to ion channel screening. The multiplicity of ion channels that can be interrogated using cold flux assays and atomic absorption spectroscopy is summarized. The importance of atomic absorption spectroscopy as a screening tool is further elaborated upon by providing examples of the relevance of ion channels to various physiological processes and targeted diseases.

  20. Indispensable tool

    SciTech Connect

    Robinson, Arthur

    2001-08-10

    Synchrotron radiation has become an indispensable research tool for a growing number of scientists in a seemingly ever expanding number of disciplines. We can thank the European Synchrotron Research Facility (ESRF) in Grenoble for taking an innovative step toward achieving the educational goal of explaining the nature and benefits of synchrotron radiation to audiences ranging from the general public (including students) to government officials to scientists who may be unfamiliar with x-ray techniques and synchrotron radiation. ESRF is the driving force behind a new CD-ROM playable on both PCs and Macs titled Synchrotron light to explore matter. Published by Springer-Verlag, the CD contains both English and French versions of a comprehensive overview of the subject.

  1. Hydraulic tool

    SciTech Connect

    Gregory, J.T.

    1988-04-05

    A hydraulic force-delivering tool including a cylinder, a piston slidable in the cylinder and a hydraulic pump to deliver fluid under pressure to the cylinder the hydraulic pump is described, comprising: a pump body; means forming a cylindrical chamber in the pump body; at least one inlet port opening into one end of the chamber from outside the body; means forming an outlet port at the other end of the chamber; a check valve in the outlet port enabling outward flow only; a pump rod plunger reciprocable through a given stroke in the chamber; inner and outer concentric cylindrical surfaces in the chamber and on the plunger, respectively; an annular shoulder on the chamber inner cylindrical surface facing toward the other end of the chamber; an annular seal member slidable along the pump rod and conditioned to seal against the shoulder; and spring means biasing the seal member toward the shoulder.

  2. Optical Tools

    NASA Astrophysics Data System (ADS)

    Roncali, E.; Tavitian, B.; Texier, I. E.; Peltié, P.; Perraut, F.; Boutet, J.; Cognet, L.; Lounis, B.; Marguet, D.; Thoumine, O.; Tramier, M.

    Fluorescence is a physical phenomenon described for the first time in 1852 by the British scientist George G. Stokes, famous for his work in mathematics and hydrodynamics. He observed the light emitted by a mineral after excitation (absorption of light by the mineral) by UV light. He then formulated what has become known as Stokes’ law, which says that the wavelength of fluorescence emission is longer than the excitation wavelength used to generate it. Some phenomena departing from this rule were later discovered, but do not in fact invalidate it. The possibility of visible excitation was subsequently developed, with the discovery of many fluorescing aromaticmolecules, called fluorophores. The identification of these compounds and improved control over the physical phenomenon meant that by 1930 research tools had been developed in biology, e.g., labeling certain tissues and bacteria so as to observe them by fluorescence. The optical microscope as it had existed since the nineteenth century thus gave rise to the fluorescence microscope: a reflection system to supply the light required to excite the fluorophores was added to the standard microscope, together with a suitable filtering system. Fluorescence microscopy soon became an important tool for biological analysis both in vitro and ex vivo, and other applications of light emission were also devised (light-emission phenomena of which fluorescence is a special case, described further in Sect. 7.2). It became possible to study phenomena that could not be observed by standard optical microscopy. Among other things, the location of molecules inside cells, monitoring of intracellular processes, and detection of single molecules all become feasible by means of fluorescence microscopy.

  3. ION SOURCE

    DOEpatents

    Bell, W.A. Jr.; Love, L.O.; Prater, W.K.

    1958-01-28

    An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.

  4. Expansion Discharge Source for Ion Beam Laser Spectroscopy of Cold Molecular Ions

    NASA Astrophysics Data System (ADS)

    Porambo, Michael; Pearson, Jessica; Riccardo, Craig; McCall, Benjamin J.

    2013-06-01

    Molecular ions are important in several fields of research, and spectroscopy acts as a key tool in the study of these ions. However, problems such as low ion abundance, ion-neutral confusion, and spectral congestion due to high internal temperatures can hinder effective spectroscopic studies. To circumvent these problems, we are developing a technique called Sensitive, Cooled, Resolved, Ion BEam Spectroscopy (SCRIBES). This ion beam spectrometer will feature a continuous supersonic expansion discharge source to produce cold molecular ions, electrostatic ion optics to focus the ions into an ion beam and bend the beam away from co-produced neutral molecules, an overlap region for cavity enhanced spectroscopy, and a time-of-flight mass spectrometer. When completed, SCRIBES will be an effective tool for the study of large, fluxional, and complex molecular ions that are difficult to study with other means. The ion beam spectrometer has been successfully implemented with a hot ion source. This talk will focus on the work of integrating a supersonic expansion discharge source into the instrument. To better understand how the source would work in the whole ion beam instrument, characterization studies are being performed with spectroscopy of HN_2^+ in a section of the system to ascertain the rotational temperature of the ion expansion. Attempts are also underway to measure the ion current from a beam formed from the expansion. Once the source in this environment is properly understood, we will reintegrate it to the rest of the ion beam system, completing SCRIBES. A. A. Mills, B. M. Siller, M. W. Porambo, M. Perera, H. Kreckel and B. J. McCall J. Chem. Phys., 135, 224201, (2011). K. N. Crabtree, C. A. Kauffman and B. J. McCall Rev. Sci. Instrum. 81, 086103, (2010).

  5. Computational modeling of ion transport through nanopores.

    PubMed

    Modi, Niraj; Winterhalter, Mathias; Kleinekathöfer, Ulrich

    2012-10-21

    Nanoscale pores are ubiquitous in biological systems while artificial nanopores are being fabricated for an increasing number of applications. Biological pores are responsible for the transport of various ions and substrates between the different compartments of biological systems separated by membranes while artificial pores are aimed at emulating such transport properties. As an experimental method, electrophysiology has proven to be an important nano-analytical tool for the study of substrate transport through nanopores utilizing ion current measurements as a probe for the detection. Independent of the pore type, i.e., biological or synthetic, and objective of the study, i.e., to model cellular processes of ion transport or electrophysiological experiments, it has become increasingly important to understand the dynamics of ions in nanoscale confinements. To this end, numerical simulations have established themselves as an indispensable tool to decipher ion transport processes through biological as well as artificial nanopores. This article provides an overview of different theoretical and computational methods to study ion transport in general and to calculate ion conductance in particular. Potential new improvements in the existing methods and their applications are highlighted wherever applicable. Moreover, representative examples are given describing the ion transport through biological and synthetic nanopores as well as the high selectivity of ion channels. Special emphasis is placed on the usage of molecular dynamics simulations which already have demonstrated their potential to unravel ion transport properties at an atomic level.

  6. THE ROLE OF IONORGANIC ION IMBALANCE IN AQUATIC TOXICITY TESTING

    EPA Science Inventory

    This paper assessess the issue of ion imbalance, provides summary of applicable data, presents several successful technical tools to address toxicity resulting from salinity and ion imbalances, and discusses regulatory/compliance options to manage discharges with salinity/ion imb...

  7. Highly Stripped Ion Sources for MeV Ion Implantation

    SciTech Connect

    Hershcovitch, Ady

    2009-06-30

    charge state phosphorus and antimony could have resulted in a lower power consumption of 30 kW/implanter) for the following reasons (which were discovered after R&D completion): record output of high charge state phosphorous would have thermally damage wafers; record high charge state of antimony requires tool (ion implanting machine in ion implantation jargon) modification, which did not make economic sense due to the small number of users. Nevertheless, BNL has benefited from advances in high-charge state ion generation, due to high charge state ions need for RHIC preinjection. High fraction boron ion was delivered to PVI client Axcelis for retrofit and implantation testing; the source could have reduced beam preinjector power consumption by a factor of 3.5. But, since the source generated some lithium (though in miniscule amounts); last minute decision was made not to employ the source in implanters. R&D of novel transport and gasless plasmaless deceleration, as well as decaborane molecular ion source to mitigate space charge problems in low energy shallow ion implantation was also conducted though results were not yet ready for commercialization. Future work should be focused on gasless plasmaless transport and deceleration as well as on molecular ions due to their significance to low energy, shallow implantation; which is the last frontier of ion implantation. To summarize the significant accomplishments: 1. Record steady state output currents of high charge state phosphorous, P, ions in particle milli-Ampere: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA). 2. Record steady state output currents of high charge state antimony, Sb, ions in particle milli-Ampere: Sb{sup 3+} (16.2 pmA), Sb{sup 4+} (7.6 pmA), Sb{sup 5+} (3.3 pmA), and Sb{sup 6+} (2.2 pmA). 3. 70% output of boron ion current (compared to 25% in present state-of-the-art) from a Calutron-Bemas ion source. These accomplishments have the potential of benefiting the semiconductor

  8. ION PUMP

    DOEpatents

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  9. Predicting ion flux uniformity at the ion extraction plate in a 3D ICP reactor

    NASA Astrophysics Data System (ADS)

    Roy, Abhra; Bhoj, Ananth

    2016-09-01

    In order to achieve better control in processing the wafer surface, the ion fluxes in a remote plasma system are often focused through one or more ion extraction plates between the main plasma chamber and the downstream wafer plane. The ion extraction plates are typically of showerhead pattern with multiple holes. The focus of this particular study is to predict the ion flux uniformity over the ion extraction plate for a full 3D inductively coupled discharge reactor model using Argon chemistry. We will use the commercial modeling tool, CFD-ACE +, which can address such a process involving gas flow, heat transfer, plasma physics, reaction chemistry and electromagnetics in a coupled fashion. The plasma characteristics in the chamber and uniformity of the ion fluxes at ion extraction plate are discussed. Parametric studies varying the geometrical dimensions and process conditions to determine the effect on ion flux uniformity are presented. The showerhead-like ion extraction plate will be modeled as a porous media with a specified porosity. Further, a spatially varying porosity of the ion extraction plate is used to simulate ion recombination in order to reduce the ion flux non-uniformity. The goal is to optimize the system maximizing the ion flux while maintaining the uniformity.

  10. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    SciTech Connect

    Grisham, L. R.; Kwan, J. W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  11. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    SciTech Connect

    Grisham, L.R.; Kwan, J.W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions [1]could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  12. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    SciTech Connect

    L. Grisham and J.W. Kwan

    2008-08-12

    Some years ago it was suggested that halogen negative ions [1] could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  13. Highly charged ion secondary ion mass spectroscopy

    DOEpatents

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  14. Ion yield improvement for static secondary ion mass spectrometry by use of polyatomic primary ions.

    PubMed

    De Mondt, Roel; Van Vaeck, Luc; Heile, Andreas; Arlinghaus, Heinrich F; Nieuwjaer, Nicolas; Delcorte, Arnaud; Bertrand, Patrick; Lenaerts, Jens; Vangaever, Frank

    2008-05-01

    Static secondary ion mass spectrometry (S-SIMS) is one of the potentially most powerful and versatile tools for the analysis of surface components at the monolayer level. Current improvements in detection limit (LOD) and molecular specificity rely on the optimisation of the desorption-ionisation (DI) process. As an alternative to monoatomic projectiles, polyatomic primary ion (P.I.) bombardment increases ion yields non-linearly. Common P.I. sources are Ga+ (liquid metal ion gun (LMIG), SF5+ (electron ionisation) and the newer Au(n)+, Bi(n)q+ (both LMIG) and C60+ (electron ionisation) sources. In this study the ion yield improvement obtained by using the newly developed ion sources is assessed. Two dyes (zwitterionic and/or thermolabile polar functionalities on a largely conjugated backbone) were analysed as a thin layer using Ga+, SF5+, C60+, Bi+, Bi3(2+) and Bi5(2+) projectiles under static conditions. The study aims at evaluating the improvement in LOD, useful and characteristic yield and molecular specificity. The corrected total ion count values for the different P.I. sources are compared for different instruments to obtain a rough estimate of the improvements. Furthermore, tentative ionisation and fragmentation schemes are provided to describe the generation of radical and adduct ions. Characteristic ion yields are discussed for the different P.I. sources. An overview of the general appearances of the mass spectra obtained with the different P.I. sources is given to stress the major improvement provided by polyatomic P.I.s in yielding information at higher m/z values.

  15. Test bed ion engine development

    NASA Technical Reports Server (NTRS)

    Aston, G.; Deininger, W. D.

    1984-01-01

    A test bed ion (TBI) engine was developed to serve as a tool in exploring the limits of electrostatic ion thruster performance. A description of three key ion engine components, the decoupled extraction and amplified current (DE-AC) accelerator system, field enhanced refractory metal (FERM) hollow cathode and divergent line cusp (DLC) discharge chamber, whose designs and operating philosophies differ markedly from conventional thruster technology is given. Significant program achievements were: (1) high current density DE-AC accelerator system operation at low electric field stress with indicated feasibility of a 60 mA/sq cm argon ion beam; (2) reliable FERM cathode start up times of 1 to 2 secs. and demonstrated 35 ampere emission levels; (3) DLC discharge chamber plasma potentials negative of anode potential; and (4) identification of an efficient high plasma density engine operating mode. Using the performance projections of this program and reasonable estimates of other parameter values, a 1.0 Newton thrust ion engine is identified as a realizable technology goal. Calculations show that such an engine, comparable in beam area to a J series 30 cm thruster, could, operating on Xe or Hg, have thruster efficiencies as high as 0.76 and 0.78 respectively, with a 100 eV/ion discharge loss.

  16. Hydrated metal ions in the gas phase.

    PubMed

    Beyer, Martin K

    2007-01-01

    Studying metal ion solvation, especially hydration, in the gas phase has developed into a field that is dominated by a tight interaction between experiment and theory. Since the studied species carry charge, mass spectrometry is an indispensable tool in all experiments. Whereas gas-phase coordination chemistry and reactions of bare metal ions are reasonably well understood, systems containing a larger number of solvent molecules are still difficult to understand. This review focuses on the rich chemistry of hydrated metal ions in the gas phase, covering coordination chemistry, charge separation in multiply charged systems, as well as intracluster and ion-molecule reactions. Key ideas of metal ion solvation in the gas phase are illustrated with rare-gas solvated metal ions.

  17. Instrumentation: Ion Chromatography.

    ERIC Educational Resources Information Center

    Fritz, James S.

    1987-01-01

    Discusses the importance of ion chromatography in separating and measuring anions. The principles of ion exchange are presented, along with some applications of ion chromatography in industry. Ion chromatography systems are described, as well as ion pair and ion exclusion chromatography, column packings, detectors, and programming. (TW)

  18. Simulating complex ion channel kinetics with IonChannelLab

    PubMed Central

    Covarrubias, Manuel; Sánchez-Rodríguez, Jorge E; Perez-Cornejo, Patricia; Arreola, Jorge

    2010-01-01

    In-silico simulation based on Markov chains is a powerful way to describe and predict the activity of many transport proteins including ion channels. However, modeling and simulation using realistic models of voltage- or ligand-gated ion channels exposed to a wide range of experimental conditions require building complex kinetic schemes and solving complicated differential equations. To circumvent these problems, we developed IonChannelLab a software tool that includes a user-friendly Graphical User Interface and a simulation library. This program supports channels with Ohmic or Goldman-Hodgkin-Katz behavior and can simulate the time-course of ionic and gating currents, single channel behavior and steady-state conditions. The program allows the simulation of experiments where voltage, ligand and ionic concentration are varied independently or simultaneously. PMID:20935453

  19. Hydrated Ions: From Individual Ions to Ion Pairs to Ion Clusters.

    PubMed

    Chen, Houyang; Ruckenstein, Eli

    2015-10-01

    The structure of hydrated ions plays a central role in chemical and biological sciences. In the present paper, five ions, namely, Na(+), K(+), Mg(2+), Ca(2+) and Cl(-), are examined using molecular dynamics simulations. In addition to hydrated individual ions and ion pairs identified previously, hydrated ion clusters containing 3, 4, 5, or more ions are identified in the present paper. The dependence of hydration numbers and mole fractions of individual ions, ion pairs, and larger ion clusters on the electrolyte concentration is determined. As the electrolyte concentration increases, the mole fraction of hydrated individual ions decreases, and the mole fraction of hydrated larger ion clusters increases. The results also reveal that the hydrogen bonding numbers of the H2O molecules of the first hydration shells of individual ions, ion pairs, and larger ion clusters are insensitive to the electrolyte concentration, but sensitive to the nature and conformation of ions.

  20. Fast ion generation and bulk plasma heating with three-ion ICRF scenarios

    NASA Astrophysics Data System (ADS)

    Kazakov, Ye. O.; Van Eester, D.; Dumont, R.; Ongena, J.; Lerche, E.; Messiaen, A.

    2015-12-01

    Launching electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is an efficient method of plasma heating, actively employed in most of fusion machines. ICRF has a number of important supplementary applications, including the generation of high-energy ions. In this paper, we discuss a new set of three-ion ICRF scenarios and the prospect of their use as a dedicated tool for fast ion generation in tokamaks and stellarators. A distinct feature of these scenarios is a strong absorption efficiency possible at very low concentrations of resonant minority ions (˜ 1% or even below). Such concentration levels are typical for impurities contaminating fusion plasmas. An alternative ICRF scenario for maximizing the efficiency of bulk D-T ion heating is suggested for JET and ITER tokamaks, which is based on three-ion ICRF heating of intrinsic Beryllium impurities.

  1. Fast ion generation and bulk plasma heating with three-ion ICRF scenarios

    SciTech Connect

    Kazakov, Ye. O. Van Eester, D.; Ongena, J.; Lerche, E.; Messiaen, A.

    2015-12-10

    Launching electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is an efficient method of plasma heating, actively employed in most of fusion machines. ICRF has a number of important supplementary applications, including the generation of high-energy ions. In this paper, we discuss a new set of three-ion ICRF scenarios and the prospect of their use as a dedicated tool for fast ion generation in tokamaks and stellarators. A distinct feature of these scenarios is a strong absorption efficiency possible at very low concentrations of resonant minority ions (∼ 1% or even below). Such concentration levels are typical for impurities contaminating fusion plasmas. An alternative ICRF scenario for maximizing the efficiency of bulk D-T ion heating is suggested for JET and ITER tokamaks, which is based on three-ion ICRF heating of intrinsic Beryllium impurities.

  2. Improved ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1982-05-04

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

  3. ION GUN

    DOEpatents

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  4. Precise Countersinking Tool

    NASA Technical Reports Server (NTRS)

    Jenkins, Eric S.; Smith, William N.

    1992-01-01

    Tool countersinks holes precisely with only portable drill; does not require costly machine tool. Replaceable pilot stub aligns axis of tool with centerline of hole. Ensures precise cut even with imprecise drill. Designed for relatively low cutting speeds.

  5. Your Health Priorities Tool

    MedlinePlus

    ... Care Explore Your Treatment Options: Your Health Priorities Tool Home Why Explore Your Options Start the Conversation ... Home > Your Health Priorities Tool Your Health Priorities Tool If you don’t share details about your ...

  6. Preset pivotal tool holder

    DOEpatents

    Asmanes, Charles

    1979-01-01

    A tool fixture is provided for precise pre-alignment of a radiused edge cutting tool in a tool holder relative to a fixed reference pivot point established on said holder about which the tool holder may be selectively pivoted relative to the fixture base member to change the contact point of the tool cutting edge with a workpiece while maintaining the precise same tool cutting radius relative to the reference pivot point.

  7. Tool Changer For Robot

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.

    1992-01-01

    Mechanism enables robot to change tools on end of arm. Actuated by motion of robot: requires no additional electrical or pneumatic energy to make or break connection between tool and wrist at end of arm. Includes three basic subassemblies: wrist interface plate attached to robot arm at wrist, tool interface plate attached to tool, and holster. Separate tool interface plate and holster provided for each tool robot uses.

  8. Modification of SRIM-calculated dose and injected ion profiles due to sputtering, injected ion buildup and void swelling

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Toloczko, Mychailo B.; Bailey, Nathan; Garner, Frank A.; Gigax, Jonathan; Shao, Lin

    2016-11-01

    In radiation effects on materials utilizing self-ion irradiations, it is necessary to calculate the local displacement damage level and ion injection profile because of the short distance that self-ions travel in a material and because of the strong variation of displacement rate with depth in a specimen. The most frequently used tool for this is the software package called Stopping and Range of Ions in Matter (SRIM). A SRIM-calculated depth-dependent dose level is usually determined under the implicit assumption that the target does not undergo any significant changes in volume during the process, in particular SRIM ignores the effect of sputtering, injected ions, and void swelling on the redistribution of the dose and injected ion profiles. This approach become increasingly invalid as the ion fluence reaches ever higher levels, especially for low energy ion irradiations. The original surface is not maintained due to sputter-induced erosion, while within the irradiated region of the specimen, injected ions are adding material, and if void swelling is occurring, it is creating empty space. An iterative mathematical treatment of SRIM outputs to produce corrected dose and injected ion profiles based on these phenomenon and without regard to diffusion is presented along with examples of differences between SRIM-calculated values and corrected values over a range of typical ion energies. The intent is to provide the reader with a convenient tool for more accurately calculating dose and injected ion profiles for heavy-ion irradiations.

  9. Ion Monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2003-11-18

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  10. ION SOURCE

    DOEpatents

    Brobeck, W.M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from thc source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a varuum lock arrangement in conjunction with an arm for manipulating the bottle.

  11. Ion source

    DOEpatents

    Brobeck, W. M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from the source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a vacuum lock arrangement in conjunction with an arm for manipulating the bottle.

  12. Ion mobility sensor

    DOEpatents

    Koo, Jackson C.; Yu, Conrad M.

    2005-08-23

    An ion mobility sensor which can detect both ion and molecules simultaneously. Thus, one can measure the relative arrival times between various ions and molecules. Different ions have different mobility in air, and the ion sensor enables measurement of ion mobility, from which one can identify the various ions and molecules. The ion mobility sensor which utilizes a pair of glow discharge devices may be designed for coupling with an existing gas chromatograph, where various gas molecules are already separated, but numbers of each kind of molecules are relatively small, and in such cases a conventional ion mobility sensor cannot be utilized.

  13. Heavy ion cocktail beams at the 88 inch Cyclotron

    SciTech Connect

    Leitner, Daniela; McMahan, Margaret A.; Argento, David; Gimpel, Thomas; Guy, Aran; Morel, James; Siero, Christine; Thatcher, Ray; Lyneis, Claude M.

    2002-09-03

    Cyclotrons in combination with ECR ion sources provide the ability to accelerate ''cocktails'' of ions. A cocktail is a mixture of ions of near-identical mass-to-charge (m/q) ratio. The different ions cannot be separated by the injector mass-analyzing magnet and are tuned out of the ion source together. The cyclotron then is utilized as a mass analyzer by shifting the accelerating frequency. This concept was developed soon after the first ECR ion source became operational at the 88-Inch Cyclotron and has since become a powerful tool in the field of heavy ion radiation effects testing. Several different ''cocktails'' at various energies are available at the 88-Inch cyclotron for radiation effect testing, covering a broad range of linear energy transfer and penetration depth. Two standard heavy ion cocktails at 4.5 MeV/nucleon and 10 MeV/nucleon have been developed over the years containing ions from boron to bismuth. Recently, following requests for higher penetration depths, a 15MeV/nucleon heavy ion cocktail has been developed. Up to nine different metal and gaseous ion beams at low to very high charge states are tuned out of the ion source simultaneously and injected together into the cyclotron. It is therefore crucial to balance the ion source very carefully to provide sufficient intensities throughout the cocktail. The paper describes the set-up and tuning of the ion source for the various heavy ion cocktails.

  14. On the role of ion-based imaging methods in modern ion beam therapy

    NASA Astrophysics Data System (ADS)

    Magallanes, L.; Brons, S.; Marcelos, T.; Takechi, M.; Voss, B.; Jäkel, O.; Rinaldi, I.; Parodi, K.

    2014-11-01

    External beam radiotherapy techniques have the common aim to maximize the radiation dose to the target while sparing the surrounding healthy tissues. The inverted and finite depth-dose profile of ion beams (Bragg peak) allows for precise dose delivery and conformai dose distribution. Furthermore, increased radiobiological effectiveness of ions enhances the capability to battle radioresistant tumors. Ion beam therapy requires a precise determination of the ion range, which is particularly sensitive to range uncertainties. Therefore, novel imaging techniques are currently investigated as a tool to improve the quality of ion beam treatments. Approaches already clinically available or under development are based on the detection of secondary particles emitted as a result of nuclear reactions (e.g., positron-annihilation or prompt gammas, charged particles) or transmitted high energy primary ion beams. Transmission imaging techniques make use of the beams exiting the patient, which have higher initial energy and lower fluence than the therapeutic ones. At the Heidelberg Ion Beam Therapy Center, actively scanned energetic proton and carbon ion beams provide an ideal environment for the investigation of ion-based radiography and tomography. This contribution presents the rationale of ion beam therapy, focusing on the role of ion-based transmission imaging methods towards the reduction of range uncertainties and potential improvement of treatment planning.

  15. On the role of ion-based imaging methods in modern ion beam therapy

    SciTech Connect

    Magallanes, L. Rinaldi, I.; Brons, S.; Marcelos, T. Parodi, K.; Takechi, M.; Voss, B.; Jäkel, O.

    2014-11-07

    External beam radiotherapy techniques have the common aim to maximize the radiation dose to the target while sparing the surrounding healthy tissues. The inverted and finite depth-dose profile of ion beams (Bragg peak) allows for precise dose delivery and conformai dose distribution. Furthermore, increased radiobiological effectiveness of ions enhances the capability to battle radioresistant tumors. Ion beam therapy requires a precise determination of the ion range, which is particularly sensitive to range uncertainties. Therefore, novel imaging techniques are currently investigated as a tool to improve the quality of ion beam treatments. Approaches already clinically available or under development are based on the detection of secondary particles emitted as a result of nuclear reactions (e.g., positron-annihilation or prompt gammas, charged particles) or transmitted high energy primary ion beams. Transmission imaging techniques make use of the beams exiting the patient, which have higher initial energy and lower fluence than the therapeutic ones. At the Heidelberg Ion Beam Therapy Center, actively scanned energetic proton and carbon ion beams provide an ideal environment for the investigation of ion-based radiography and tomography. This contribution presents the rationale of ion beam therapy, focusing on the role of ion-based transmission imaging methods towards the reduction of range uncertainties and potential improvement of treatment planning.

  16. Single atom devices by ion implantation.

    PubMed

    van Donkelaar, Jessica; Yang, C; Alves, A D C; McCallum, J C; Hougaard, C; Johnson, B C; Hudson, F E; Dzurak, A S; Morello, A; Spemann, D; Jamieson, D N

    2015-04-22

    To expand the capabilities of semiconductor devices for new functions exploiting the quantum states of single donors or other impurity atoms requires a deterministic fabrication method. Ion implantation is a standard tool of the semiconductor industry and we have developed pathways to deterministic ion implantation to address this challenge. Although ion straggling limits the precision with which atoms can be positioned, for single atom devices it is possible to use post-implantation techniques to locate favourably placed atoms in devices for control and readout. However, large-scale devices will require improved precision. We examine here how the method of ion beam induced charge, already demonstrated for the deterministic ion implantation of 14 keV P donor atoms in silicon, can be used to implant a non-Poisson distribution of ions in silicon. Further, we demonstrate the method can be developed to higher precision by the incorporation of new deterministic ion implantation strategies that employ on-chip detectors with internal charge gain. In a silicon device we show a pulse height spectrum for 14 keV P ion impact that shows an internal gain of 3 that has the potential of allowing deterministic implantation of sub-14 keV P ions with reduced straggling.

  17. Ion funnel ion trap and process

    DOEpatents

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.

  18. Evolution of Instrumentation for the Study of Gas-Phase Ion/Ion Chemistry via Mass Spectrometry

    PubMed Central

    Xia, Yu; McLuckey, Scott A.

    2008-01-01

    The scope of gas phase ion/ion chemistry accessible to mass spectrometry is largely defined by the available tools. Due to the development of novel instrumentation, a wide range of reaction phenomenologies have been noted, many of which have been studied extensively and exploited for analytical applications. This perspective presents the development of mass spectrometry-based instrumentation for the study of the gas phase ion/ion chemistry in which at least one of the reactants is multiply-charged. The instrument evolution is presented within the context of three essential elements required for any ion/ion reaction study: the ionization source(s), the reaction vessel or environment, and the mass analyzer. Ionization source arrangements have included source combinations that allow for reactions between multiply charged ions of one polarity and singly charged ions of opposite polarity, arrangements that enable the study of reactions of multiply charged ions of opposite polarity, and most recently, arrangements that allow for ion formation from more than two ion sources. Gas phase ion/ion reaction studies have been performed at near atmospheric pressure in flow reactor designs and within electrodynamic ion traps operated in the mTorr range. With ion trap as a reaction vessel, ionization and reaction processes can be independently optimized and ion/ion reactions can be implemented within the context of MSn experiments. Spatial separation of the reaction vessel from the mass analyzer allows for the use of any form of mass analysis in conjunction with ion/ion reactions. Time-of-flight mass analysis, for example, has provided significant improvements in mass analysis figures of merit relative to mass filters and ion traps. PMID:18083527

  19. Diagnostics for studies of novel laser ion acceleration mechanisms

    NASA Astrophysics Data System (ADS)

    Senje, Lovisa; Yeung, Mark; Aurand, Bastian; Kuschel, Stephan; Rödel, Christian; Wagner, Florian; Li, Kun; Dromey, Brendan; Bagnoud, Vincent; Neumayer, Paul; Roth, Markus; Wahlström, Claes-Göran; Zepf, Matthew; Kuehl, Thomas; Jung, Daniel

    2014-11-01

    Diagnostic for investigating and distinguishing different laser ion acceleration mechanisms has been developed and successfully tested. An ion separation wide angle spectrometer can simultaneously investigate three important aspects of the laser plasma interaction: (1) acquire angularly resolved energy spectra for two ion species, (2) obtain ion energy spectra for multiple species, separated according to their charge to mass ratio, along selected axes, and (3) collect laser radiation reflected from and transmitted through the target and propagating in the same direction as the ion beam. Thus, the presented diagnostic constitutes a highly adaptable tool for accurately studying novel acceleration mechanisms in terms of their angular energy distribution, conversion efficiency, and plasma density evolution.

  20. Evaluation of the ion implantation process for production of solar cells from silicon sheet materials

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.

    1983-01-01

    For the ion implantation tooling was fabricated with which to hold dendritic web samples. This tooling permits the expeditious boron implantation of the back to form the back surface field (BSF). Baseline BSF web cells were fabricated.

  1. Ions and ion accelerators for cancer treatment.

    NASA Astrophysics Data System (ADS)

    Prelec, Krsto

    Energetic ions in the mass range up to neon may have important advantages in cancer treatment when compared to other, conventional types of radiation. This review will first consider radiobiological properties of several types of radiation (photons, electrons, protons and ions), pointing out to the relevant characteristics of ions compared to other types. Parameters of ion beams as required for cancer treatment will then be defined, followed by the review of the status of proton and ion therapy and clinical trials, and a description of operating and planned facilities. Finally, on the basis of existing experience and desired future performance, a possible design of such a facility will be suggested.

  2. Laser Ion Acceleration Control

    NASA Astrophysics Data System (ADS)

    Kawata, Shigeo; Nagashima, T.; Izumiyama, T.; Sato, D.; Takano, M.; Barada, D.; Ma, Y. Y.; Gu, Y. J.; Kong, Q.; Wang, P. X.; Wang, W. M.

    2013-10-01

    An intense femtosecond pulsed laser is employed to accelerate ions. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching, the ion particle energy control, etc. In the study particle computer simulations were performed to solve the issues, and each component was designed to control the ion beam quality. When an intense laser illuminates a target, electrons in the target are accelerated and leave from the target; temporarily a strong electric field is formed between the high-energy electrons and the target ions, and the target ions are accelerated. The energy efficiency from the laser to ions was improved by using a solid target with a fine sub-wavelength structure or by a near critical density gas plasma. The ion beam collimation was realized by holes behind the solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching were successfully realized by a multi-stage laser-target interaction. The present study proposed a novel concept for a future compact laser ion accelerator, based on each component study required to control the ion beam quality and parameters. Partly supported by JSPS, MEXT, CORE, Japan/US Cooperation program, ASHULA and ILE/Osaka University.

  3. Improved tool grinding machine

    DOEpatents

    Dial, C.E. Sr.

    The present invention relates to an improved tool grinding mechanism for grinding single point diamond cutting tools to precise roundness and radius specifications. The present invention utilizes a tool holder which is longitudinally displaced with respect to the remainder of the grinding system due to contact of the tool with the grinding surface with this displacement being monitored so that any variation in the grinding of the cutting surface such as caused by crystal orientation or tool thicknesses may be compensated for during the grinding operation to assure the attainment of the desired cutting tool face specifications.

  4. Tool grinding machine

    DOEpatents

    Dial, Sr., Charles E.

    1980-01-01

    The present invention relates to an improved tool grinding mechanism for grinding single point diamond cutting tools to precise roundness and radius specifications. The present invention utilizes a tool holder which is longitudinally displaced with respect to the remainder of the grinding system due to contact of the tool with the grinding surface with this displacement being monitored so that any variation in the grinding of the cutting surface such as caused by crystal orientation or tool thickness may be compensated for during the grinding operation to assure the attainment of the desired cutting tool face specifications.

  5. LensTools: Weak Lensing computing tools

    NASA Astrophysics Data System (ADS)

    Petri, A.

    2016-02-01

    LensTools implements a wide range of routines frequently used in Weak Gravitational Lensing, including tools for image analysis, statistical processing and numerical theory predictions. The package offers many useful features, including complete flexibility and easy customization of input/output formats; efficient measurements of power spectrum, PDF, Minkowski functionals and peak counts of convergence maps; survey masks; artificial noise generation engines; easy to compute parameter statistical inferences; ray tracing simulations; and many others. It requires standard numpy and scipy, and depending on tools used, may require Astropy (ascl:1304.002), emcee (ascl:1303.002), matplotlib, and mpi4py.

  6. Sputtering and ion plating

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The proceedings of a conference on sputtering and ion plating are presented. Subjects discussed are: (1) concepts and applications of ion plating, (2) sputtering for deposition of solid film lubricants, (3) commercial ion plating equipment, (4) industrial potential for ion plating and sputtering, and (5) fundamentals of RF and DC sputtering.

  7. Ion pair receptors†

    PubMed Central

    Kim, Sung Kuk

    2010-01-01

    Compared with simple ion receptors, which are able to bind either a cation or an anion, ion pair receptors bearing both a cation and an anion recognition site offer the promise of binding ion pairs or pairs of ions strongly as the result of direct or indirect cooperative interactions between co-bound ions. This critical review focuses on the recent progress in the design of ion pair receptors and summarizes the various binding modes that have been used to accommodate ion pairs (110 references). PMID:20737073

  8. Innovative Environmental Protection Tools

    EPA Pesticide Factsheets

    Local decision makers and citizens can make use of EPA tools for interacting with and learning about their local environments with tools that include green apps, My Environment, the National Stormwater Calculator, EPEAT, and EnvirFacts.

  9. Microfabricated ion frequency standard

    DOEpatents

    Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  10. Hand tools: A compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A selection of new hand tools, modifications of existing tools, and techniques developed in the course of NASA research and development projects are presented. The items are presented in two sections: tools for cable and connector applications, and tools for welding applications. Safety is emphasized, together with ease of operation and use in restricted areas or hazardous environments. The discussions are directed primarily toward the technician engaged in assembly or maintenance of mechanical or electrical equipment.

  11. OOTW COST TOOLS

    SciTech Connect

    HARTLEY, D.S.III; PACKARD, S.L.

    1998-09-01

    This document reports the results of a study of cost tools to support the analysis of Operations Other Than War (OOTW). It recommends the continued development of the Department of Defense (DoD) Contingency Operational Support Tool (COST) as the basic cost analysis tool for 00TWS. It also recommends modifications to be included in future versions of COST and the development of an 00TW mission planning tool to supply valid input for costing.

  12. Demand Response Dispatch Tool

    SciTech Connect

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for both reliability and economic conditions.

  13. Heavy-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Kanai, Tatsuaki

    2000-11-01

    Heavy-ion radiotherapy using high-energy carbon beams has been performed at the National Institute of Radiological Sciences, Japan. The physical frame works for heavy-ion radiotherapy are established using physical understandings of radiation physics. In order to increase the accuracy of heavy-ion radiotherapy, many physical problems should be solved. Unsolved problems, such as the depth dose distributions, range of heavy-ion in patients and heavy-ion dosimetry in the radiation therapy, are discussed. .

  14. Fluid sampling tool

    DOEpatents

    Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.

    2000-01-01

    A fluid-sampling tool for obtaining a fluid sample from a container. When used in combination with a rotatable drill, the tool bores a hole into a container wall, withdraws a fluid sample from the container, and seals the borehole. The tool collects fluid sample without exposing the operator or the environment to the fluid or to wall shavings from the container.

  15. IOOC Organizational Network (ION) Project

    NASA Astrophysics Data System (ADS)

    Dean, H.

    2013-12-01

    In order to meet the growing need for ocean information, research communities at the national and international levels have responded most recently by developing organizational frameworks that can help to integrate information across systems of existing networks and standardize methods of data gathering, management, and processing that facilitate integration. To address recommendations and identified challenges related to the need for a better understanding of ocean observing networks, members of the U.S. Interagency Ocean Observation Committee (IOOC) supported pursuing a project that came to be titled the IOOC Organizational Network (ION). The ION tool employs network mapping approaches which mirror approaches developed in academic literature aimed at understanding political networks. Researchers gathered data on the list of global ocean observing organizations included in the Framework for Ocean Observing (FOO), developed in 2012 by the international Task Team for an Integrated Framework for Sustained Ocean Observing. At the international scale, researchers reviewed organizational research plans and documents, websites, and formal international agreement documents. At the U.S. national scale, researchers analyzed legislation, formal inter-agency agreements, work plans, charters, and policy documents. Researchers based analysis of relationships among global organizations and national federal organizations on four broad relationship categories: Communications, Data, Infrastructure, and Human Resources. In addition to the four broad relationship categories, researchers also gathered data on relationship instrument types, strength of relationships, and (at the global level) ocean observing variables. Using network visualization software, researchers then developed a series of dynamic webpages. Researchers used the tool to address questions identified by the ocean observing community, including identifying gaps in global relationships and the types of tools used to

  16. Ion Beam Propulsion Study

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  17. MOD Tool (Microwave Optics Design Tool)

    NASA Technical Reports Server (NTRS)

    Katz, Daniel S.; Borgioli, Andrea; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.

    1999-01-01

    The Jet Propulsion Laboratory (JPL) is currently designing and building a number of instruments that operate in the microwave and millimeter-wave bands. These include MIRO (Microwave Instrument for the Rosetta Orbiter), MLS (Microwave Limb Sounder), and IMAS (Integrated Multispectral Atmospheric Sounder). These instruments must be designed and built to meet key design criteria (e.g., beamwidth, gain, pointing) obtained from the scientific goals for the instrument. These criteria are frequently functions of the operating environment (both thermal and mechanical). To design and build instruments which meet these criteria, it is essential to be able to model the instrument in its environments. Currently, a number of modeling tools exist. Commonly used tools at JPL include: FEMAP (meshing), NASTRAN (structural modeling), TRASYS and SINDA (thermal modeling), MACOS/IMOS (optical modeling), and POPO (physical optics modeling). Each of these tools is used by an analyst, who models the instrument in one discipline. The analyst then provides the results of this modeling to another analyst, who continues the overall modeling in another discipline. There is a large reengineering task in place at JPL to automate and speed-up the structural and thermal modeling disciplines, which does not include MOD Tool. The focus of MOD Tool (and of this paper) is in the fields unique to microwave and millimeter-wave instrument design. These include initial design and analysis of the instrument without thermal or structural loads, the automation of the transfer of this design to a high-end CAD tool, and the analysis of the structurally deformed instrument (due to structural and/or thermal loads). MOD Tool is a distributed tool, with a database of design information residing on a server, physical optics analysis being performed on a variety of supercomputer platforms, and a graphical user interface (GUI) residing on the user's desktop computer. The MOD Tool client is being developed using Tcl

  18. Ion sources for ion implantation technology (invited)

    NASA Astrophysics Data System (ADS)

    Sakai, Shigeki; Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki

    2014-02-01

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  19. Ion sources for ion implantation technology (invited)

    SciTech Connect

    Sakai, Shigeki Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  20. Ion implantation technology and ion sources

    NASA Astrophysics Data System (ADS)

    Sugitani, Michiro

    2014-02-01

    Ion implantation (I/I) technology has been developed with a great economic success of industries of VLSI (Very Large-Scale Integrated circuit) devices. Due to its large flexibility and good controllability, the I/I technology has been assuming various challenging requirements of VLSI evolutions, especially in advanced evolutional characteristics of CMOSFET. Here, reviewing the demands of VLSI manufacturing to the I/I technology, required characteristics of ion implanters, and their ion sources are discussed.

  1. Orbiter door closure tools

    NASA Technical Reports Server (NTRS)

    Acres, W. R.

    1980-01-01

    Safe reentry of the shuttle orbiter requires that the payload bay doors be closed and securely latched. Since a malfunction in the door drive or bulkhead latch systems could make safe reentry impossible, the requirement to provide tools to manually close and secure the doors was implemented. The tools would disconnect a disabled door or latch closure system and close and secure the doors if the normal system failed. The tools required to perform these tasks have evolved into a set that consists of a tubing cutter, a winch, a latching tool, and a bolt extractor. The design, fabrication, and performance tests of each tool are described.

  2. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    SciTech Connect

    Spädtke, Peter

    2014-02-15

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation.

  3. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source.

    PubMed

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm(2). The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  4. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm2. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  5. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    SciTech Connect

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Won, Mi-Sook; Lee, Seung Wook

    2016-02-15

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1–10 mm{sup 2}. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  6. Tool setting device

    DOEpatents

    Brown, Raymond J.

    1977-01-01

    The present invention relates to a tool setting device for use with numerically controlled machine tools, such as lathes and milling machines. A reference position of the machine tool relative to the workpiece along both the X and Y axes is utilized by the control circuit for driving the tool through its program. This reference position is determined for both axes by displacing a single linear variable displacement transducer (LVDT) with the machine tool through a T-shaped pivotal bar. The use of the T-shaped bar allows the cutting tool to be moved sequentially in the X or Y direction for indicating the actual position of the machine tool relative to the predetermined desired position in the numerical control circuit by using a single LVDT.

  7. Formal Methods Tool Qualification

    NASA Technical Reports Server (NTRS)

    Wagner, Lucas G.; Cofer, Darren; Slind, Konrad; Tinelli, Cesare; Mebsout, Alain

    2017-01-01

    Formal methods tools have been shown to be effective at finding defects in safety-critical digital systems including avionics systems. The publication of DO-178C and the accompanying formal methods supplement DO-333 allows applicants to obtain certification credit for the use of formal methods without providing justification for them as an alternative method. This project conducted an extensive study of existing formal methods tools, identifying obstacles to their qualification and proposing mitigations for those obstacles. Further, it interprets the qualification guidance for existing formal methods tools and provides case study examples for open source tools. This project also investigates the feasibility of verifying formal methods tools by generating proof certificates which capture proof of the formal methods tool's claim, which can be checked by an independent, proof certificate checking tool. Finally, the project investigates the feasibility of qualifying this proof certificate checker, in the DO-330 framework, in lieu of qualifying the model checker itself.

  8. Nonlinear particle simulation of ion cyclotron waves in toroidal geometry

    SciTech Connect

    Kuley, A. Lin, Z.; Bao, J.; Wei, X. S.; Xiao, Y.

    2015-12-10

    Global particle simulation model has been developed in this work to provide a first-principles tool for studying the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation with realistic electron-to-ion mass ratio. Boris push scheme for the ion motion has been developed in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron and ion Bernstein waves in global gyrokinetic toroidal code (GTC). The nonlinear simulation capability is applied to study the parametric decay instability of a pump wave into an ion Bernstein wave side band and a low frequency ion cyclotron quasi mode.

  9. Nonlinear particle simulation of ion cyclotron waves in toroidal geometry

    NASA Astrophysics Data System (ADS)

    Kuley, A.; Bao, J.; Lin, Z.; Wei, X. S.; Xiao, Y.

    2015-12-01

    Global particle simulation model has been developed in this work to provide a first-principles tool for studying the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation with realistic electron-to-ion mass ratio. Boris push scheme for the ion motion has been developed in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron and ion Bernstein waves in global gyrokinetic toroidal code (GTC). The nonlinear simulation capability is applied to study the parametric decay instability of a pump wave into an ion Bernstein wave side band and a low frequency ion cyclotron quasi mode.

  10. Ion specific effects: decoupling ion-ion and ion-water interactions

    PubMed Central

    Song, Jinsuk; Kang, Tae Hui; Kim, Mahn Won; Han, Songi

    2015-01-01

    Ion-specific effects in aqueous solution, known as the Hofmeister effect is prevalent in diverse systems ranging from pure ionic to complex protein solutions. The objective of this paper is to explicitly demonstrate how complex ion-ion and ion-water interactions manifest themselves in the Hofmeister effects, based on a series of recent experimental observation. These effects are not considered in the classical description of ion effects, such as the Deryaguin-Landau-Verwey-Overbeek (DLVO) theory that, likely for that reason, fail to describe the origin of the phenomenological Hofmeister effect. However, given that models considering the basic forces of electrostatic and van der Waals interactions can offer rationalization for the core experimental observations, a universal interaction model stands a chance to be developed. In this perspective, we separately derive the contribution from ion-ion electrostatic interaction and ion-water interaction from second harmonic generation (SHG) data at the air-ion solution interface, which yields an estimate of ion-water interactions in solution. Hofmeister ion effects observed on biological solutes in solution should be similarly influenced by contributions from ion-ion and ion-water interactions, where the same ion-water interaction parameters derived from SHG data at the air-ion solution interface could be applicable. A key experimental data set available from solution systems to probe ion-water interaction is the modulation of water diffusion dynamics near ions in bulk ion solution, as well as near biological liposome surfaces. It is obtained from Overhauser dynamic nuclear polarization (ODNP), a nuclear magnetic resonance (NMR) relaxometry technique. The surface water diffusivity is influenced by the contribution from ion-water interactions, both from localized surface charges and adsorbed ions, although the relative contribution of the former is larger on liposome surfaces. In this perspective, ion-water interaction

  11. PULSED ION SOURCE

    DOEpatents

    Anderson, C.E.; Ehlers, K.W.

    1958-06-17

    An ion source is described for producing very short high density pulses of ions without bcam scattering. The ions are created by an oscillating electron discharge within a magnetic field. After the ions are drawn from the ionization chamber by an accelerating electrode the ion beam is under the influence of the magnetic field for separation of the ions according to mass and, at the same time, passes between two neutralizing plntes maintained nt equal negative potentials. As the plates are formed of a material having a high ratio of secondary electrons to impinging ions, the ion bombardment of the plntes emits electrons which neutralize the frirge space-charge of the beam and tend to prevent widening of the beam cross section due to the mutual repulsion of the ions.

  12. Ambient ion soft landing.

    PubMed

    Badu-Tawiah, Abraham K; Wu, Chunping; Cooks, R Graham

    2011-04-01

    Ambient ion soft landing, a process in which polyatomic ions are deposited from air onto a surface at a specified location under atmospheric pressure, is described. Ions generated by electrospray ionization are passed pneumatically through a heated metal drying tube, their ion polarity is selected using ion deflectors, and the dry selected ions are soft-landed onto a selected surface. Unlike the corresponding vacuum soft-landing experiment, where ions are mass-selected and soft-landed within a mass spectrometer, here the ions to be deposited are selected through the choice of a compound that gives predominantly one ionic species upon ambient ionization; no mass analysis is performed during the soft landing experiment. The desired dry ions, after electrical separation from neutrals and counterions, are deposited on a surface. Characterization of the landed material was achieved by dissolution and analysis using mass spectrometry or spectrofluorimetry. The treated surface was also characterized using fluorescence microscopy, which allowed surfaces patterned with fluorescent compounds to be imaged. The pure dry ions were used as reagents in heterogeneous ion/surface reactions including the reaction of pyrylium cations with d-lysine to form the N-substituted pyridinium cation. The charged microdroplets associated with incompletely dried ions could be selected for soft landing or surface reaction by choice of the temperature of a drying tube inserted between the ion source and the electrical ion deflectors.

  13. Broad beam ion implanter

    DOEpatents

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  14. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  15. Method for producing hard-surfaced tools and machine components

    DOEpatents

    McHargue, C.J.

    1981-10-21

    In one aspect, the invention comprises a method for producing tools and machine components having superhard crystalline-ceramic work surfaces. Broadly, the method comprises two steps: a tool or machine component having a ceramic near-surface region is mounted in ion-implantation apparatus. The region then is implanted with metal ions to form, in the region, a metastable alloy of the ions and said ceramic. The region containing the alloy is characterized by a significant increase in hardness properties, such as microhardness, fracture-toughness, and/or scratch-resistance. The resulting improved article has good thermal stability at temperatures characteristic of typical tool and machine-component uses. The method is relatively simple and reproducible.

  16. Method for producing hard-surfaced tools and machine components

    DOEpatents

    McHargue, Carl J.

    1985-01-01

    In one aspect, the invention comprises a method for producing tools and machine components having superhard crystalline-ceramic work surfaces. Broadly, the method comprises two steps: A tool or machine component having a ceramic near-surface region is mounted in ion-implantation apparatus. The region then is implanted with metal ions to form, in the region, a metastable alloy of the ions and said ceramic. The region containing the alloy is characterized by a significant increase in hardness properties, such as microhardness, fracture-toughness, and/or scratch-resistance. The resulting improved article has good thermal stability at temperatures characteristic of typical tool and machine-component uses. The method is relatively simple and reproducible.

  17. Martian Atmospheric Pressure Static Charge Elimination Tool

    NASA Technical Reports Server (NTRS)

    Johansen, Michael R.

    2014-01-01

    A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.

  18. Biomedical research tools from the seabed.

    PubMed

    Folmer, Florence; Houssen, Wael E; Scott, Roderick H; Jaspars, Marcel

    2007-03-01

    This review covers the applications of small-molecule and peptidic compounds isolated from marine organisms for biomedical research. Enzymes and proteins from marine sources are already on the market for biomedical applications, but the use of small-molecule biomedical research tools of marine origin is less developed. For many studies involving these molecules the ultimate goal is the application of small-molecule therapeutics in the clinic, but those that do not succeed in the clinic still have clearly defined biological activities, which may be of use as biomedical research tools. In other cases, the investigation of marine-derived compounds has led directly to the discovery of therapeutics with clinical applications. Both as tools and therapeutics, these small-molecule compounds are effective for investigating biological processes, and in this review the authors have chosen to concentrate on the ability of marine natural products to affect membrane processes, ion channels and intracellular processes.

  19. Developing Battery Computer Aided Engineering Tools for Military Vehicles

    DTIC Science & Technology

    2013-12-01

    Solid Electrolyte Interphase (SEI) layer decomposition 80 2 Anode — electrolyte 100 3 Cathode — electrolyte 130 4 Electrolyte decomposition 180...performance, NREL and the University of Colorado at Boulder coded and linked a solid mechanics model to explore mechanical phenomena in lithium -ion...electrified military vehicles. Particularly, TARDEC’s objective was the development of tools to accelerate comparative analysis of alternative lithium -ion

  20. Lunar hand tools

    NASA Technical Reports Server (NTRS)

    Bentz, Karl F.; Coleman, Robert D.; Dubnik, Kathy; Marshall, William S.; Mcentee, Amy; Na, Sae H.; Patton, Scott G.; West, Michael C.

    1987-01-01

    Tools useful for operations and maintenance tasks on the lunar surface were determined and designed. Primary constraints are the lunar environment, the astronaut's space suit and the strength limits of the astronaut on the moon. A multipurpose rotary motion tool and a collapsible tool carrier were designed. For the rotary tool, a brushless motor and controls were specified, a material for the housing was chosen, bearings and lubrication were recommended and a planetary reduction gear attachment was designed. The tool carrier was designed primarily for ease of access to the tools and fasteners. A material was selected and structural analysis was performed on the carrier. Recommendations were made about the limitations of human performance and about possible attachments to the torque driver.

  1. Machine tool locator

    DOEpatents

    Hanlon, John A.; Gill, Timothy J.

    2001-01-01

    Machine tools can be accurately measured and positioned on manufacturing machines within very small tolerances by use of an autocollimator on a 3-axis mount on a manufacturing machine and positioned so as to focus on a reference tooling ball or a machine tool, a digital camera connected to the viewing end of the autocollimator, and a marker and measure generator for receiving digital images from the camera, then displaying or measuring distances between the projection reticle and the reference reticle on the monitoring screen, and relating the distances to the actual position of the autocollimator relative to the reference tooling ball. The images and measurements are used to set the position of the machine tool and to measure the size and shape of the machine tool tip, and examine cutting edge wear. patent

  2. OEXP Analysis Tools Workshop

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard; Wright, Robert L.; Badi, Deborah; Findlay, John T.

    1988-01-01

    This publication summarizes the software needs and available analysis tools presented at the OEXP Analysis Tools Workshop held at the NASA Langley Research Center, Hampton, Virginia on June 21 to 22, 1988. The objective of the workshop was to identify available spacecraft system (and subsystem) analysis and engineering design tools, and mission planning and analysis software that could be used for various NASA Office of Exploration (code Z) studies, specifically lunar and Mars missions.

  3. Authoring tool evaluation

    SciTech Connect

    Wilson, A.L.; Klenk, K.S.; Coday, A.C.; McGee, J.P.; Rivenburgh, R.R.; Gonzales, D.M.; Mniszewski, S.M.

    1994-09-15

    This paper discusses and evaluates a number of authoring tools currently on the market. The tools evaluated are Visix Galaxy, NeuronData Open Interface Elements, Sybase Gain Momentum, XVT Power++, Aimtech IconAuthor, Liant C++/Views, and Inmark Technology zApp. Also discussed is the LIST project and how this evaluation is being used to fit an authoring tool to the project.

  4. A GRB tool shed

    NASA Astrophysics Data System (ADS)

    Haglin, David J.; Roiger, Richard J.; Hakkila, Jon; Pendleton, Geoffrey; Mallozzi, Robert

    2000-09-01

    We describe the design of a suite of software tools to allow users to query Gamma Ray Burst (GRB) data and perform data mining expeditions. We call this suite of tools a shed (SHell for Expeditions using Datamining). Our schedule is to have a completed prototype (funded via the NASA AISRP) by February, 2002. Meanwhile, interested users will find a partially functioning tool shed at http:/grb.mankato.msus.edu. .

  5. Risk Assessment Tools

    DTIC Science & Technology

    1994-10-01

    2W0 ww) A number of computer-based risk assessment tools were enhanced or creaited to provide Increased access to risk assessment instruments and...produced an extensible authoring tool , SYNTAS, for test instruments that will simplify the data gathering phase of subsequent work. SYNTAS gives DNA...Ultimately it became a computer-assisted software engineerting (CASE) tool capable of producing a wide variety of assessment instruments . In addition, its

  6. Hand and Power Tools

    DTIC Science & Technology

    1998-01-01

    Hand and Power Tools U.S. Department of Labor Occupational Safety and Health Administration OSHA 3080 1998 (Revised) Report Documentation Page Report...Date 00001998 Report Type N/A Dates Covered (from... to) - Title and Subtitle Hand and Power Tools Contract Number Grant Number Program...basic safety procedures and safeguards associated with hand and portable power tools . Material in this booklet is based on the standards of the

  7. MISR ENVI Tool

    Atmospheric Science Data Center

    2013-03-20

    ...   The misr_envi tool imports MISR Level 1B2 Ellipsoid and Terrain stacked block data into ENVI. The data are ... tool reads and geolocates the Land BRF parameter from a MISR Level 2 Land Surface data file. The tool consists of a set of routines ... Sample ENVI menu file with added entry for MISR L1B2 to invoke this code: envi.men.4.0wMISR ...

  8. ION COMPOSITION ELUCIDATION (ICE)

    EPA Science Inventory



    Ion Composition Elucidation (ICE) utilizes selected ion recording with a double focusing mass spectrometer to simultaneously determine exact masses and relative isotopic abundances from mass peak profiles. These can be determined more accurately and at higher sensitivity ...

  9. Production and ion-ion cooling of highly charged ions in electron string ion source.

    PubMed

    Donets, D E; Donets, E D; Donets, E E; Salnikov, V V; Shutov, V B; Syresin, E M

    2009-06-01

    The scheme of an internal injection of Au atoms into the working space of the "Krion-2" electron string ion source (ESIS) was applied and tested. In this scheme Au atoms are evaporated from the thin tungsten wire surface in vicinity of the source electron string. Ion beams with charge states up to Au51+ were produced. Ion-ion cooling with use of C and O coolant ions was studied. It allowed increasing of the Au51+ ion yield by a factor of 2. Ions of Kr up to charge state 28+ were also produced in the source. Electron strings were first formed with injection electron energy up to 6 keV. Methods to increase the ESIS ion output are discussed.

  10. Double diameter boring tool

    DOEpatents

    Ashbaugh, Fred N.; Murry, Kenneth R.

    1988-12-27

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting edges formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first cutting edge tip to the axis of rotation plus the distance from the second cutting edge tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second cutting edge tip to the axis of rotation minus one-half the distance from the first cutting edge tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

  11. Tool use as adaptation.

    PubMed

    Biro, Dora; Haslam, Michael; Rutz, Christian

    2013-11-19

    Tool use is a vital component of the human behavioural repertoire. The benefits of tool use have often been assumed to be self-evident: by extending control over our environment, we have increased energetic returns and buffered ourselves from potentially harmful influences. In recent decades, however, the study of tool use in both humans and non-human animals has expanded the way we think about the role of tools in the natural world. This Theme Issue is aimed at bringing together this developing body of knowledge, gathered across multiple species and from multiple research perspectives, to chart the wider evolutionary context of this phylogenetically rare behaviour.

  12. Demand Response Analysis Tool

    SciTech Connect

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be used by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.

  13. Tool use as adaptation

    PubMed Central

    Biro, Dora; Haslam, Michael; Rutz, Christian

    2013-01-01

    Tool use is a vital component of the human behavioural repertoire. The benefits of tool use have often been assumed to be self-evident: by extending control over our environment, we have increased energetic returns and buffered ourselves from potentially harmful influences. In recent decades, however, the study of tool use in both humans and non-human animals has expanded the way we think about the role of tools in the natural world. This Theme Issue is aimed at bringing together this developing body of knowledge, gathered across multiple species and from multiple research perspectives, to chart the wider evolutionary context of this phylogenetically rare behaviour. PMID:24101619

  14. Double diameter boring tool

    DOEpatents

    Ashbaugh, F.A.; Murry, K.R.

    1986-02-10

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting flutes formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first flute tip to the axis of rotation plus the distance from the second flute tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second flute tip to the axis of rotation minus one-half the distance from the first flute tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

  15. Manifold tool guide

    DOEpatents

    Djordjevic, Aleksandar

    1983-12-27

    A tool guide that makes possible the insertion of cleaning and/or inspection tools into a manifold pipe that will dislocate and extract the accumulated sediment in such manifold pipes. The tool guide basically comprises a right angled tube (or other angled tube as required) which can be inserted in a large tube and locked into a radially extending cross pipe by adjustable spacer rods and a spring-loaded cone, whereby appropriate cleaning tools can be inserted into to cross pipe for cleaning, inspection, etc.

  16. Manifold tool guide

    DOEpatents

    Djordjevic, A.

    1982-07-08

    A tool guide that makes possible the insertion of cleaning and/or inspection tools into a manifold pipe that will dislocate and extract the accumulated sediment in such manifold pipes. The tool guide basically comprises a right angled tube (or other angled tube as required) which can be inserted in a large tube and locked into a radially extending cross pipe by adjustable spacer rods and a spring-loaded cone, whereby appropriate cleaning tools can be inserted into to cross pipe for cleaning, inspection, etc.

  17. Manifold tool guide

    DOEpatents

    Djordjevic, A.

    1983-12-27

    A tool guide is described that makes possible the insertion of cleaning and/or inspection tools into a manifold pipe that will dislocate and extract the accumulated sediment in such manifold pipes. The tool guide basically comprises a right angled tube (or other angled tube as required) which can be inserted in a large tube and locked into a radially extending cross pipe by adjustable spacer rods and a spring-loaded cone, whereby appropriate cleaning tools can be inserted into the cross pipe for cleaning, inspection, etc. 3 figs.

  18. Strain gauge installation tool

    DOEpatents

    Conard, Lisa Marie

    1998-01-01

    A tool and a method for attaching a strain gauge to a test specimen by maaining alignment of, and applying pressure to, the strain gauge during the bonding of the gauge to the specimen. The tool comprises rigid and compliant pads attached to a spring-loaded clamp. The pads are shaped to conform to the specimen surface to which the gauge is to be bonded. The shape of the pads permits the tool to align itself to the specimen and to maintain alignment of the gauge to the specimen during the bond curing process. A simplified method of attaching a strain gauge is provided by use of the tool.

  19. Chimera Grid Tools

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  20. Negative ion generator

    DOEpatents

    Stinnett, Regan W.

    1984-01-01

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions.

  1. SEPARATION OF PLUTONYL IONS

    DOEpatents

    Connick, R.E.; McVey, Wm.H.

    1958-07-15

    A process is described for separating plutonyl ions from the acetate ions with which they are associated in certaln carrier precipitation methods of concentrating plutonium. The method consists in adding alkaline earth metal ions and subsequently alkalizing the solution, causing formation of an alkaltne earth plutonate precipitate. Barium hydroxide is used in a preferred embodiment since it provides alkaline earth metal ion and alkalizes the solution in one step forming insoluble barium platonate.

  2. Intense ion beam generator

    DOEpatents

    Humphries, Jr., Stanley; Sudan, Ravindra N.

    1977-08-30

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation.

  3. Negative ion generator

    DOEpatents

    Stinnett, R.W.

    1984-05-08

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

  4. Negative Ion Density Fronts

    SciTech Connect

    Igor Kaganovich

    2000-12-18

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas.

  5. Ion-kill dosimetry

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  6. Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy

    PubMed Central

    Rzeznik, Lukasz; Wirtz, Tom

    2016-01-01

    The analysis of polymers by secondary ion mass spectrometry (SIMS) has been a topic of interest for many years. In recent years, the primary ion species evolved from heavy monatomic ions to cluster and massive cluster primary ions in order to preserve a maximum of organic information. The progress in less-damaging sputtering goes along with a loss in lateral resolution for 2D and 3D imaging. By contrast the development of a mass spectrometer as an add-on tool for the helium ion microscope (HIM), which uses finely focussed He+ or Ne+ beams, allows for the analysis of secondary ions and small secondary cluster ions with unprecedented lateral resolution. Irradiation induced damage and depth profiling capabilities obtained with these light rare gas species have been far less investigated than ion species used classically in SIMS. In this paper we simulated the sputtering of multi-layered polymer samples using the BCA (binary collision approximation) code SD_TRIM_SP to study preferential sputtering and atomic mixing in such samples up to a fluence of 1018 ions/cm2. Results show that helium primary ions are completely inappropriate for depth profiling applications with this kind of sample materials while results for neon are similar to argon. The latter is commonly used as primary ion species in SIMS. For the two heavier species, layers separated by 10 nm can be distinguished for impact energies of a few keV. These results are encouraging for 3D imaging applications where lateral and depth information are of importance. PMID:28144525

  7. Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy.

    PubMed

    Philipp, Patrick; Rzeznik, Lukasz; Wirtz, Tom

    2016-01-01

    The analysis of polymers by secondary ion mass spectrometry (SIMS) has been a topic of interest for many years. In recent years, the primary ion species evolved from heavy monatomic ions to cluster and massive cluster primary ions in order to preserve a maximum of organic information. The progress in less-damaging sputtering goes along with a loss in lateral resolution for 2D and 3D imaging. By contrast the development of a mass spectrometer as an add-on tool for the helium ion microscope (HIM), which uses finely focussed He(+) or Ne(+) beams, allows for the analysis of secondary ions and small secondary cluster ions with unprecedented lateral resolution. Irradiation induced damage and depth profiling capabilities obtained with these light rare gas species have been far less investigated than ion species used classically in SIMS. In this paper we simulated the sputtering of multi-layered polymer samples using the BCA (binary collision approximation) code SD_TRIM_SP to study preferential sputtering and atomic mixing in such samples up to a fluence of 10(18) ions/cm(2). Results show that helium primary ions are completely inappropriate for depth profiling applications with this kind of sample materials while results for neon are similar to argon. The latter is commonly used as primary ion species in SIMS. For the two heavier species, layers separated by 10 nm can be distinguished for impact energies of a few keV. These results are encouraging for 3D imaging applications where lateral and depth information are of importance.

  8. Investigations on the structure of the extracted ion beam from an electron cyclotron resonance ion source

    SciTech Connect

    Spaedtke, P.; Lang, R.; Maeder, J.; Rossbach, J.; Tinschert, K.; Maimone, F.

    2012-02-15

    Using improved beam diagnostic tools, the structure of an ion beam extracted from an electron cyclotron resonance ion source (ECRIS) becomes visible. Especially viewing targets to display the beam profile and pepper pot devices for emittance measurements turned out to be very useful. On the contrary, diagnostic tools integrating over one space coordinate like wire harps for profile measurements or slit-slit devices, respectively slit-grid devices to measure the emittance might be applicable for beam transport investigations in a quadrupole channel, but are not very meaningful for investigations regarding the given ECRIS symmetry. Here we try to reproduce the experimentally found structure on the ion beam by simulation. For the simulation, a certain model has to be used to reproduce the experimental results. The model is also described in this paper.

  9. Coring Sample Acquisition Tool

    NASA Technical Reports Server (NTRS)

    Haddad, Nicolas E.; Murray, Saben D.; Walkemeyer, Phillip E.; Badescu, Mircea; Sherrit, Stewart; Bao, Xiaoqi; Kriechbaum, Kristopher L.; Richardson, Megan; Klein, Kerry J.

    2012-01-01

    A sample acquisition tool (SAT) has been developed that can be used autonomously to sample drill and capture rock cores. The tool is designed to accommodate core transfer using a sample tube to the IMSAH (integrated Mars sample acquisition and handling) SHEC (sample handling, encapsulation, and containerization) without ever touching the pristine core sample in the transfer process.

  10. Portable Chamfering Tool

    NASA Technical Reports Server (NTRS)

    Berson, Leo A.

    1987-01-01

    Portable machine tool precisely cuts chamfer on valve seat. With tool, delicate machining operation done without removing part to machine shop. Taken to part and used wherever pressurized air and electric power available. Plug and bushing nest in bore chamfered. They guide steady cutter rod as it cuts 15 degrees chamfer on top edge of bore.

  11. Tool Storage Problem Solved!

    ERIC Educational Resources Information Center

    Klenke, Andrew M.; Dell, Tim W.

    2007-01-01

    Graduates of the automotive technology program at Pittsburg State University (PSU) generally enter the workforce in some type of automotive management role. As a result, the program does not require students to purchase their own tools, and it does not have room for all 280 majors to roll around a personal tool chest. Each instructor must maintain…

  12. Java Tool Retirement

    Atmospheric Science Data Center

    2014-05-15

    Date(s):  Wednesday, May 14, 2014 Time:  08:00 am EDT Event Impact:  The ASDC Java Order Tool was officially retired on Wednesday, May 14, 2014.  The HTML Order Tool and additional options are available...

  13. ION PRODUCING MECHANISM

    DOEpatents

    Backus, J.G.

    1958-08-19

    A novel ion source is described for use in a calutron which has the prime adwantage of reducing the nunnber of unwanted ions in the ion generating mechamism.An important feature of the invention resides In an arc chamber having a lining of the polyisotopic material to be treated In the calutron and bombardment of the linirg with positive ions of a light gas to induce sputtering and ionization of the lining. With the reduction of unwanted ions in the source beam provided by the described source, the calutron operation may be more accurately controlled.

  14. Segmented ion thruster

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1993-01-01

    Apparatus and methods for large-area, high-power ion engines comprise dividing a single engine into a combination of smaller discharge chambers (or segments) configured to operate as a single large-area engine. This segmented ion thruster (SIT) approach enables the development of 100-kW class argon ion engines for operation at a specific impulse of 10,000 s. A combination of six 30-cm diameter ion chambers operating as a single engine can process over 100 kW. Such a segmented ion engine can be operated from a single power processor unit.

  15. Ion channels in asthma.

    PubMed

    Valverde, Miguel A; Cantero-Recasens, Gerard; Garcia-Elias, Anna; Jung, Carole; Carreras-Sureda, Amado; Vicente, Rubén

    2011-09-23

    Ion channels are specialized transmembrane proteins that permit the passive flow of ions following their electrochemical gradients. In the airways, ion channels participate in the production of epithelium-based hydroelectrolytic secretions and in the control of intracellular Ca(2+) levels that will ultimately activate almost all lung cells, either resident or circulating. Thus, ion channels have been the center of many studies aiming to understand asthma pathophysiological mechanisms or to identify therapeutic targets for better control of the disease. In this minireview, we focus on molecular, genetic, and animal model studies associating ion channels with asthma.

  16. Software Tool Issues

    NASA Astrophysics Data System (ADS)

    Hennell, Michael

    This chapter relies on experience with tool development gained over the last thirty years. It shows that there are a large number of techniques that contribute to any successful project, and that formality is always the key: a modern software test tool is based on a firm mathematical foundation. After a brief introduction, Section 2 recalls and extends the terminology of Chapter 1. Section 3 discusses the the design of different sorts of static and dynamic analysis tools. Nine important issues to be taken into consideration when evaluating such tools are presented in Section 4. Section 5 investigates the interplay between testing and proof. In Section 6, we call for developers to take their own medicine and verify their tools. Finally, we conclude in Section 7 with a summary of our main messages, emphasising the important role of testing.

  17. Fluid sampling tool

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R. E.; Martinez, Ronald K.

    2001-09-25

    The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

  18. Fastener starter tool

    NASA Technical Reports Server (NTRS)

    Chandler, Faith T. (Inventor); Valentino, William D. (Inventor); Garton, Harry L. (Inventor); Arnett, Michael C. (Inventor)

    2003-01-01

    A fastener starter tool includes a number of spring retention fingers for retaining a small part, or combination of parts. The tool has an inner housing, which holds the spring retention fingers, a hand grip, and an outer housing configured to slide over the inner housing and the spring retention fingers toward and away from the hand grip, exposing and opening, or respectively, covering and closing, the spring retention fingers. By sliding the outer housing toward (away from) the hand grip, a part can be released from (retained by) the tool. The tool may include replaceable inserts, for retaining parts, such as screws, and configured to limit the torque applied to the part, to prevent cross threading. The inner housing has means to transfer torque from the hand grip to the insert. The tool may include replaceable bits, the inner housing having means for transferring torque to the replaceable bit.

  19. MRO Sequence Checking Tool

    NASA Technical Reports Server (NTRS)

    Fisher, Forest; Gladden, Roy; Khanampornpan, Teerapat

    2008-01-01

    The MRO Sequence Checking Tool program, mro_check, automates significant portions of the MRO (Mars Reconnaissance Orbiter) sequence checking procedure. Though MRO has similar checks to the ODY s (Mars Odyssey) Mega Check tool, the checks needed for MRO are unique to the MRO spacecraft. The MRO sequence checking tool automates the majority of the sequence validation procedure and check lists that are used to validate the sequences generated by MRO MPST (mission planning and sequencing team). The tool performs more than 50 different checks on the sequence. The automation varies from summarizing data about the sequence needed for visual verification of the sequence, to performing automated checks on the sequence and providing a report for each step. To allow for the addition of new checks as needed, this tool is built in a modular fashion.

  20. Diamond Smoothing Tools

    NASA Technical Reports Server (NTRS)

    Voronov, Oleg

    2007-01-01

    Diamond smoothing tools have been proposed for use in conjunction with diamond cutting tools that are used in many finish-machining operations. Diamond machining (including finishing) is often used, for example, in fabrication of precise metal mirrors. A diamond smoothing tool according to the proposal would have a smooth spherical surface. For a given finish machining operation, the smoothing tool would be mounted next to the cutting tool. The smoothing tool would slide on the machined surface left behind by the cutting tool, plastically deforming the surface material and thereby reducing the roughness of the surface, closing microcracks and otherwise generally reducing or eliminating microscopic surface and subsurface defects, and increasing the microhardness of the surface layer. It has been estimated that if smoothing tools of this type were used in conjunction with cutting tools on sufficiently precise lathes, it would be possible to reduce the roughness of machined surfaces to as little as 3 nm. A tool according to the proposal would consist of a smoothing insert in a metal holder. The smoothing insert would be made from a diamond/metal functionally graded composite rod preform, which, in turn, would be made by sintering together a bulk single-crystal or polycrystalline diamond, a diamond powder, and a metallic alloy at high pressure. To form the spherical smoothing tip, the diamond end of the preform would be subjected to flat grinding, conical grinding, spherical grinding using diamond wheels, and finally spherical polishing and/or buffing using diamond powders. If the diamond were a single crystal, then it would be crystallographically oriented, relative to the machining motion, to minimize its wear and maximize its hardness. Spherically polished diamonds could also be useful for purposes other than smoothing in finish machining: They would likely also be suitable for use as heat-resistant, wear-resistant, unlubricated sliding-fit bearing inserts.

  1. OOTW Force Design Tools

    SciTech Connect

    Bell, R.E.; Hartley, D.S.III; Packard, S.L.

    1999-05-01

    This report documents refined requirements for tools to aid the process of force design in Operations Other Than War (OOTWs). It recommends actions for the creation of one tool and work on other tools relating to mission planning. It also identifies the governmental agencies and commands with interests in each tool, from whom should come the user advisory groups overseeing the respective tool development activities. The understanding of OOTWs and their analytical support requirements has matured to the point where action can be taken in three areas: force design, collaborative analysis, and impact analysis. While the nature of the action and the length of time before complete results can be expected depends on the area, in each case the action should begin immediately. Force design for OOTWs is not a technically difficult process. Like force design for combat operations, it is a process of matching the capabilities of forces against the specified and implied tasks of the operation, considering the constraints of logistics, transport and force availabilities. However, there is a critical difference that restricts the usefulness of combat force design tools for OOTWs: the combat tools are built to infer non-combat capability requirements from combat capability requirements and cannot reverse the direction of the inference, as is required for OOTWs. Recently, OOTWs have played a larger role in force assessment, system effectiveness and tradeoff analysis, and concept and doctrine development and analysis. In the first Quadrennial Defense Review (QDR), each of the Services created its own OOTW force design tool. Unfortunately, the tools address different parts of the problem and do not coordinate the use of competing capabilities. These tools satisfied the immediate requirements of the QDR, but do not provide a long-term cost-effective solution.

  2. Ion cyclotron resonance cell

    DOEpatents

    Weller, Robert R.

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  3. Ion cyclotron resonance cell

    DOEpatents

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  4. Industrial ion source technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1976-01-01

    A 30 cm electron bombardment ion source was designed and fabricated for micromachining and sputtering applications. This source has a multipole magnetic field that employs permanent magnets between permeable pole pieces. An average ion current density of 1 ma/sq cm with 500 eV argon ions was selected as a design operating condition. The ion beam at this operating condition was uniform and well collimated, with an average variation of plus or minus 5 percent over the center 20 cm of the beam at distances up to 30 cm from the ion source. A variety of sputtering applications were undertaken with a small 10 cm ion source to better understand the ion source requirements in these applications. The results of these experimental studies are also included.

  5. Microfabricated ion trap array

    DOEpatents

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  6. Metal Ion Modeling Using Classical Mechanics.

    PubMed

    Li, Pengfei; Merz, Kenneth M

    2017-02-08

    Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems.

  7. Metal Ion Modeling Using Classical Mechanics

    PubMed Central

    2017-01-01

    Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems. PMID:28045509

  8. Intense non-relativistic cesium ion beam

    SciTech Connect

    Lampel, M.C.

    1984-02-01

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm.

  9. In-Trap Spectroscopy of Charge-Bred Radioactive Ions

    NASA Astrophysics Data System (ADS)

    Lennarz, A.; Grossheim, A.; Leach, K. G.; Alanssari, M.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Crespo López-Urrutia, J. R.; Gallant, A. T.; Holl, M.; Kwiatkowski, A. A.; Lassen, J.; Macdonald, T. D.; Schultz, B. E.; Seeraji, S.; Simon, M. C.; Andreoiu, C.; Dilling, J.; Frekers, D.

    2014-08-01

    In this Letter, we introduce the concept of in-trap nuclear decay spectroscopy of highly charged radioactive ions and describe its successful application as a novel spectroscopic tool. This is demonstrated by a measurement of the decay properties of radioactive mass A=124 ions (here, In124 and Cs124) in the electron-beam ion trap of the TITAN facility at TRIUMF. By subjecting the trapped ions to an intense electron beam, the ions are charge bred to high charge states (i.e., equivalent to the removal of N-shell electrons), and an increase of storage times to the level of minutes without significant ion losses is achieved. The present technique opens the venue for precision spectroscopy of low branching ratios and is being developed in the context of measuring electron-capture branching ratios needed for determining the nuclear ground-state properties of the intermediate odd-odd nuclei in double-beta (ββ) decay.

  10. Tool Gear: Infrastructure for Building Parallel Programming Tools

    SciTech Connect

    May, J M; Gyllenhaal, J

    2002-12-09

    Tool Gear is a software infrastructure for developing performance analysis and other tools. Unlike existing integrated toolkits, which focus on providing a suite of capabilities, Tool Gear is designed to help tool developers create new tools quickly. It combines dynamic instrumentation capabilities with an efficient database and a sophisticated and extensible graphical user interface. This paper describes the design of Tool Gear and presents examples of tools that have been built with it.

  11. AN Fitting Reconditioning Tool

    NASA Technical Reports Server (NTRS)

    Lopez, Jason

    2011-01-01

    A tool was developed to repair or replace AN fittings on the shuttle external tank (ET). (The AN thread is a type of fitting used to connect flexible hoses and rigid metal tubing that carry fluid. It is a U.S. military-derived specification agreed upon by the Army and Navy, hence AN.) The tool is used on a drill and is guided by a pilot shaft that follows the inside bore. The cutting edge of the tool is a standard-size replaceable insert. In the typical Post Launch Maintenance/Repair process for the AN fittings, the six fittings are removed from the ET's GUCP (ground umbilical carrier plate) for reconditioning. The fittings are inspected for damage to the sealing surface per standard operations maintenance instructions. When damage is found on the sealing surface, the condition is documented. A new AN reconditioning tool is set up to cut and remove the surface damage. It is then inspected to verify the fitting still meets drawing requirements. The tool features a cone-shaped interior at 36.5 , and may be adjusted at a precise angle with go-no-go gauges to insure that the cutting edge could be adjusted as it wore down. One tool, one setting block, and one go-no-go gauge were fabricated. At the time of this reporting, the tool has reconditioned/returned to spec 36 AN fittings with 100-percent success of no leakage. This tool provides a quick solution to repair a leaky AN fitting. The tool could easily be modified with different-sized pilot shafts to different-sized fittings.

  12. Benchmarking expert system tools

    NASA Technical Reports Server (NTRS)

    Riley, Gary

    1988-01-01

    As part of its evaluation of new technologies, the Artificial Intelligence Section of the Mission Planning and Analysis Div. at NASA-Johnson has made timing tests of several expert system building tools. Among the production systems tested were Automated Reasoning Tool, several versions of OPS5, and CLIPS (C Language Integrated Production System), an expert system builder developed by the AI section. Also included in the test were a Zetalisp version of the benchmark along with four versions of the benchmark written in Knowledge Engineering Environment, an object oriented, frame based expert system tool. The benchmarks used for testing are studied.

  13. hydropower biological evaluation tools

    SciTech Connect

    2016-10-06

    This software is a set of analytical tools to evaluate the physical and biological performance of existing, refurbished, or newly installed conventional hydro-turbines nationwide where fish passage is a regulatory concern. The current version is based on information collected by the Sensor Fish. Future version will include other technologies. The tool set includes data acquisition, data processing, and biological response tools with applications to various turbine designs and other passage alternatives. The associated database is centralized, and can be accessed remotely. We have demonstrated its use for various applications including both turbines and spillways

  14. Graphitic packing removal tool

    DOEpatents

    Meyers, Kurt Edward; Kolsun, George J.

    1997-01-01

    Graphitic packing removal tools for removal of the seal rings in one piece. he packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  15. Graphitic packing removal tool

    DOEpatents

    Meyers, K.E.; Kolsun, G.J.

    1997-11-11

    Graphitic packing removal tools for removal of the seal rings in one piece are disclosed. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal. 5 figs.

  16. Graphitic packing removal tool

    SciTech Connect

    Meyers, K.E.; Kolsun, G.J.

    1996-12-31

    Graphitic packing removal tools are described for removal of the seal rings in one piece from valves and pumps. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  17. Machine Tool Software

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A NASA-developed software package has played a part in technical education of students who major in Mechanical Engineering Technology at William Rainey Harper College. Professor Hack has been using (APT) Automatically Programmed Tool Software since 1969 in his CAD/CAM Computer Aided Design and Manufacturing curriculum. Professor Hack teaches the use of APT programming languages for control of metal cutting machines. Machine tool instructions are geometry definitions written in APT Language to constitute a "part program." The part program is processed by the machine tool. CAD/CAM students go from writing a program to cutting steel in the course of a semester.

  18. Rotary earth boring tool

    SciTech Connect

    Dismukes, N.B.

    1983-09-27

    The present invention provides a nonstalling system for advancing a boring tool in situations where the inclination of the bore hole with respect to the vertical is such that the force of gravity does not provide effective forward thrust. A hydraulically powered marine screw propeller adjacent the boring tool provides the necessary thrust for the drilling operation. Pressurized drilling fluid provides the required hydraulic energy. The characteristics of the marine screw propeller are such that it provides maximum thrust at maximum rotative speed but should the tool stall the forward thrust drops to zero preventing stalling.

  19. Interactive knowledge acquisition tools

    NASA Technical Reports Server (NTRS)

    Dudziak, Martin J.; Feinstein, Jerald L.

    1987-01-01

    The problems of designing practical tools to aid the knowledge engineer and general applications used in performing knowledge acquisition tasks are discussed. A particular approach was developed for the class of knowledge acquisition problem characterized by situations where acquisition and transformation of domain expertise are often bottlenecks in systems development. An explanation is given on how the tool and underlying software engineering principles can be extended to provide a flexible set of tools that allow the application specialist to build highly customized knowledge-based applications.

  20. Optical surfacing via linear ion source

    NASA Astrophysics Data System (ADS)

    Wu, Lixiang; Wei, Chaoyang; Shao, Jianda

    2017-04-01

    We present a concept of surface decomposition extended from double Fourier series to nonnegative sinusoidal wave surfaces, on the basis of which linear ion sources apply to the ultra-precision fabrication of complex surfaces and diffractive optics. The modified Fourier series, or sinusoidal wave surfaces, build a relationship between the fabrication process of optical surfaces and the surface characterization based on power spectral density (PSD) analysis. Also, we demonstrate that the one-dimensional scanning of linear ion source is applicable to the removal of mid-spatial frequency (MSF) errors caused by small-tool polishing in raster scan mode as well as the fabrication of beam sampling grating of high diffractive uniformity without a post-processing procedure. The simulation results show that optical fabrication with linear ion source is feasible and even of higher output efficiency compared with the conventional approach.

  1. Lithium ion beam impact on selenium nanowires

    NASA Astrophysics Data System (ADS)

    Panchal, Suresh; Chauhan, R. P.

    2017-03-01

    This study is structured on Li3+ ion irradiation effect on the different properties of selenium (Se) nanowires (NW's) (80 nm). Template technique was employed for the synthesis of Se nanowires. Exploration of the effect of 10 MeV Li3+ ions on Se NW's was done for structural and electrical analysis with the help of characterization tools. X-ray diffraction revealed the variation in peak intensity only, with no peak shifting. The grain size and texture coefficients of various planes were also found to vary. Current-Voltage characteristics (IVC) show an increment in the conductivity up to a fluence of 1×1012 ions/cm2 and a decrease at the next two fluences. The effects of irradiation are presented in this paper and possible reasons for the variation in properties are also discussed in this study.

  2. Smart tool holder

    DOEpatents

    Day, Robert Dean; Foreman, Larry R.; Hatch, Douglas J.; Meadows, Mark S.

    1998-01-01

    There is provided an apparatus for machining surfaces to accuracies within the nanometer range by use of electrical current flow through the contact of the cutting tool with the workpiece as a feedback signal to control depth of cut.

  3. Deconstruction Rapid Assessment Tool

    EPA Pesticide Factsheets

    Deconstruction Rapid Assessment Tool (EPA 905-F-15-001) instructions, form and spreadsheet for assessing and triaging structures being considered for deconstruction. Promote environmental stewardship and economic revitalization through deconstruction.

  4. Green Infrastructure Modeling Tools

    EPA Pesticide Factsheets

    Modeling tools support planning and design decisions on a range of scales from setting a green infrastructure target for an entire watershed to designing a green infrastructure practice for a particular site.

  5. Two Egyptian Construction Tools.

    ERIC Educational Resources Information Center

    Lamb, John F., Jr.

    1993-01-01

    Describes the geometric concepts involved in two construction tools used in ancient Egypt. A level is used to make a construction horizontal, and the plumb level is used to make a construction vertical. (MDH)

  6. Flyby Geometry Optimization Tool

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.

    2007-01-01

    The Flyby Geometry Optimization Tool is a computer program for computing trajectories and trajectory-altering impulsive maneuvers for spacecraft used in radio relay of scientific data to Earth from an exploratory airplane flying in the atmosphere of Mars.

  7. Smart Growth Tools

    EPA Pesticide Factsheets

    This page describes a variety of tools useful to federal, state, tribal, regional, and local government staff and elected officials; community leaders; developers; and others interested in smart growth development.

  8. Oracle Management Tool Suite

    SciTech Connect

    Rivenes, Any

    2007-06-01

    The Oracle Management Tool Suite is used to automatically manage Oracle based systems. This includes startup and shutdown of databases and application servers as well as backup, space management, workload management and log file management.

  9. Financing Alternatives Comparison Tool

    EPA Pesticide Factsheets

    FACT is a financial analysis tool that helps identify the most cost-effective method to fund a wastewater or drinking water management project. It produces a comprehensive analysis that compares various financing options.

  10. Glass tube splitting tool

    NASA Technical Reports Server (NTRS)

    Klein, J. A.; Murray, C. D.; Stein, J. A.

    1971-01-01

    Tool accurately splits glass tubing so cuts are aligned 180 deg apart and reassembled tube forms low pressure, gastight enclosure. Device should interest industries using cylindrical closed glass containers.

  11. Friction stir welding tool

    DOEpatents

    Tolle; Charles R. , Clark; Denis E. , Barnes; Timothy A.

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  12. ASDC Ordering Tool

    Atmospheric Science Data Center

    2017-02-08

    ... Ordering requires login , searching does not. Projects by science discipline: Aerosols | Clouds | Radiation Budget ... Tropospheric Composition | Field Campaigns All projects Details:  ASDC Ordering Tool ...

  13. PV Hourly Simulation Tool

    SciTech Connect

    Dean, Jesse; Metzger, Ian

    2010-12-31

    This software requires inputs of simple general building characteristics and usage information to calculate the energy and cost benefits of solar PV. This tool conducts and complex hourly simulation of solar PV based primarily on the area available on the rooftop. It uses a simplified efficiency calculation method and real panel characteristics. It includes a detailed rate structure to account for time-of-use rates, on-peak and off-peak pricing, and multiple rate seasons. This tool includes the option for advanced system design inputs if they are known. This tool calculates energy savings, demand reduction, cost savings, incentives and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  14. Sequence History Update Tool

    NASA Technical Reports Server (NTRS)

    Khanampompan, Teerapat; Gladden, Roy; Fisher, Forest; DelGuercio, Chris

    2008-01-01

    The Sequence History Update Tool performs Web-based sequence statistics archiving for Mars Reconnaissance Orbiter (MRO). Using a single UNIX command, the software takes advantage of sequencing conventions to automatically extract the needed statistics from multiple files. This information is then used to populate a PHP database, which is then seamlessly formatted into a dynamic Web page. This tool replaces a previous tedious and error-prone process of manually editing HTML code to construct a Web-based table. Because the tool manages all of the statistics gathering and file delivery to and from multiple data sources spread across multiple servers, there is also a considerable time and effort savings. With the use of The Sequence History Update Tool what previously took minutes is now done in less than 30 seconds, and now provides a more accurate archival record of the sequence commanding for MRO.

  15. Strain gauge installation tool

    DOEpatents

    Conard, L.M.

    1998-06-16

    A tool and a method are disclosed for attaching a strain gauge to a test specimen by maintaining alignment of, and applying pressure to, the strain gauge during the bonding of the gauge to the specimen. The tool comprises rigid and compliant pads attached to a spring-loaded clamp. The pads are shaped to conform to the specimen surface to which the gauge is to be bonded. The shape of the pads permits the tool to align itself to the specimen and to maintain alignment of the gauge to the specimen during the bond curing process. A simplified method of attaching a strain gauge is provided by use of the tool. 6 figs.

  16. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  17. Ion beam analysis of sialon ceramics

    NASA Astrophysics Data System (ADS)

    Vickridge, I. C.; Brown, I. W. M.; Ekström, T. C.; Trompetter, W. J.

    1996-09-01

    Sialons, or silicon-aluminium-oxy-nitrides, are a family of materials that have exceptional high temperature mechanical and tribological properties, but which are susceptible to oxidation. Ion beam analysis is an ideal tool to study the composition of the altered surface layer of sialons after oxidation. In particular simultaneous detection of gamma rays, charged particles, and X-rays induced by 1.4 MeV deuterons allows an almost complete picture of the composition to be obtained.

  18. Tools used for hand deburring

    SciTech Connect

    Gillespie, L.K.

    1981-03-01

    This guide is designed to help in quick identification of those tools most commonly used to deburr hand size or smaller parts. Photographs and textual descriptions are used to provide rapid yet detailed information. The data presented include the Bendix Kansas City Division coded tool number, tool description, tool crib in which the tool can be found, the maximum and minimum inventory requirements, the cost of each tool, and the number of the illustration that shows the tool.

  19. The acrylonitrile dimer ion

    NASA Astrophysics Data System (ADS)

    Ervasti, Henri K.; Jobst, Karl J.; Burgers, Peter C.; Ruttink, Paul J. Ae; Terlouw, Johan K.

    2007-04-01

    Large energy barriers prohibit the rearrangement of solitary acrylonitrile ions, CH2CHCN+, into their more stable hydrogen-shift isomers CH2CCNH+ or CHCH-CNH+. This prompted us to examine if these isomerizations occur by self-catalysis in acrylonitrile dimer ions. Such ions, generated by chemical ionization experiments of acrylonitrile with an excess of carbon dioxide, undergo five dissociations in the [mu]s time frame, as witnessed by peaks at m/z 53, 54, 79, 80 and 105 in their metastable ion mass spectrum. Collision experiments on these product ions, deuterium labeling, and a detailed computational analysis using the CBS-QB3 model chemistry lead to the following conclusions: (i) the m/z 54 ions are ions CH2CHCNH+ generated by self-protonation in ion-dipole stabilized hydrogen-bridged dimer ions [CH2CHCN...H-C(CN)CH2]+ and [CH2CHCN...H-C(H)C(H)CN]+; the proton shifts in these ions are associated with a small reverse barrier; (ii) dissociation of the H-bridged ions into CH2CCNH+ or CHCH-CNH+ by self-catalysis is energetically feasible but kinetically improbable: experiment shows that the m/z 53 ions are CH2CHCN+ ions, generated by back dissociation; (iii) the peaks at m/z 79, 80 and 105 correspond with the losses of HCN, C2H2 and H, respectively. The calculations indicate that these ions are generated from dimer ions that have adopted the (much more stable) covalently bound "head-to-tail" structure [CH2CHCN-C(H2)C(H)CN]+; experiments indicate that the m/z 79 (C5H5N) and m/z 105 (C6H6N2) ions have linear structures but the m/z 80 (C4H4N2) ions consist of ionized pyrimidine in admixture with its stable pyrimidine-2-ylidene isomer. Acrylonitrile is a confirmed species in interstellar space and our study provides experimental and computational evidence that its dimer radical cation yields the ionized prebiotic pyrimidine molecule.

  20. Smart surgical tool

    NASA Astrophysics Data System (ADS)

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2015-02-01

    A laser-induced breakdown spectroscopy (LIBS) guided smart surgical tool using a femtosecond fiber laser is developed. This system provides real-time material identification by processing and analyzing the peak intensity and ratio of atomic emissions of LIBS signals. Algorithms to identify emissions of different tissues and metals are developed and implemented into the real-time control system. This system provides a powerful smart surgical tool for precise robotic microsurgery applications with real-time feedback and control.

  1. Smart surgical tool.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2015-02-01

    A laser-induced breakdown spectroscopy (LIBS) guided smart surgical tool using a femtosecond fiber laser is developed. This system provides real-time material identification by processing and analyzing the peak intensity and ratio of atomic emissions of LIBS signals. Algorithms to identify emissions of different tissues and metals are developed and implemented into the real-time control system. This system provides a powerful smart surgical tool for precise robotic microsurgery applications with real-time feedback and control.

  2. Manual bamboo cutting tool.

    PubMed

    Bezerra, Mariana Pereira; Correia, Walter Franklin Marques; da Costa Campos, Fabio Ferreira

    2012-01-01

    The paper presents the development of a cutting tool guide, specifically for the harvest of bamboo. The development was made based on precepts of eco-design and ergonomics, for prioritizing the physical health of the operator and the maintenance of the environment, as well as meet specific requirements of bamboo. The main goal is to spread the use of bamboo as construction material, handicrafts, among others, from a handy, easy assembly and material available tool.

  3. Software Quality Tools

    DTIC Science & Technology

    1988-05-04

    data base name mate qa tool - tare and lcsc 1 * no. instruments * $ ftim * instrument name * sensor * system designator * 1 * no. nouns* ac signal...PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (if applicable) Fk ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS PROGRAM...PROJECT TASK WORK UNIT ELEMENT NO. NO. NO ACCESSION NO. 11. TITLE (Include Security Classification) Software Quality Tools 12. PERSONAL AUTHOR(S

  4. Atomic ion clock with two ion traps, and method to transfer ions

    NASA Technical Reports Server (NTRS)

    Prestage, John D. (Inventor); Chung, Sang K. (Inventor)

    2011-01-01

    An atomic ion clock with a first ion trap and a second ion trap, where the second ion trap is of higher order than the first ion trap. In one embodiment, ions may be shuttled back and forth from one ion trap to the other by application of voltage ramps to the electrodes in the ion traps, where microwave interrogation takes place when the ions are in the second ion trap, and fluorescence is induced and measured when the ions are in the first ion trap. In one embodiment, the RF voltages applied to the second ion trap to contain the ions are at a higher frequency than that applied to the first ion trap. Other embodiments are described and claimed.

  5. Modeling ion-induced electrons in the High Current Experimenta)

    NASA Astrophysics Data System (ADS)

    Stoltz, P. H.; Verboncoeur, J. P.; Cohen, R. H.; Molvik, A. W.; Vay, J.-L.; Veitzer, S. A.

    2006-05-01

    A primary concern for high current ion accelerators is contaminant electrons. These electrons can interfere with the beam ions, causing emittance growth and beam loss. Numerical simulation is a main tool for understanding the interaction of the ion beam with the contaminant electrons, but these simulations then require accurate models of electron generation. These models include ion-induced electron emission from ions hitting the beam pipe walls or diagnostics. However, major codes for modeling ion beam transport are written in different programming languages and used on different computing platforms. For electron generation models to be maximally useful, researchers should be able to use them easily from many languages and platforms. A model of ion-induced electrons including the electron energy distribution is presented here, including a discussion of how to use the Babel software tool to make these models available in multiple languages and how to use the GNU Autotools to make them available on multiple platforms. An application to simulation of the end region of the High Current Experiment is shown. These simulations show formation of a virtual cathode with a potential energy well of amplitude 12.0eV, approximately six times the most probable energy of the ion-induced electrons. Oscillations of the virtual cathode could lead to possible longitudinal and transverse modulation of the density of the electrons moving out of the virtual cathode.

  6. Modeling ion-induced electrons in the High Current Experiment

    SciTech Connect

    Stoltz, P.H.; Verboncoeur, J.P.; Cohen, R.H.; Molvik, A.W.; Vay, J.-L.; Veitzer, S.A.

    2006-05-15

    A primary concern for high current ion accelerators is contaminant electrons. These electrons can interfere with the beam ions, causing emittance growth and beam loss. Numerical simulation is a main tool for understanding the interaction of the ion beam with the contaminant electrons, but these simulations then require accurate models of electron generation. These models include ion-induced electron emission from ions hitting the beam pipe walls or diagnostics. However, major codes for modeling ion beam transport are written in different programming languages and used on different computing platforms. For electron generation models to be maximally useful, researchers should be able to use them easily from many languages and platforms. A model of ion-induced electrons including the electron energy distribution is presented here, including a discussion of how to use the Babel software tool to make these models available in multiple languages and how to use the GNU Autotools to make them available on multiple platforms. An application to simulation of the end region of the High Current Experiment is shown. These simulations show formation of a virtual cathode with a potential energy well of amplitude 12.0 eV, approximately six times the most probable energy of the ion-induced electrons. Oscillations of the virtual cathode could lead to possible longitudinal and transverse modulation of the density of the electrons moving out of the virtual cathode.

  7. Ion photon emission microscope

    DOEpatents

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  8. The light ion trough.

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.

    1972-01-01

    A distinct feature of the ion composition results from the OGO-2, 4 and 6 satellites is the light ion trough, wherein the mid-latitude concentrations of H+ and He+ decrease sharply with latitude. In contrast to the 'main trough' in electron density observed primarily as a nightside phenomenon, the light ion trough persists during both day and night. For daytime winter hemisphere conditions and for all seasons during night, the mid-latitude light ion concentration decrease is a pronounced feature. In the dayside summer and equinox hemispheres, the rate of light ion decrease with latitude is comparatively gradual, and the trough boundary is less well defined, particularly for quiet magnetic conditions. In response to magnetic storms, the light ion trough minimum moves equatorward, and deepens, consistent with earlier evidence of the contraction of the plasmasphere in response to storm time enhancements in magnetospheric plasma convection.

  9. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  10. Auroral ion acceleration

    NASA Astrophysics Data System (ADS)

    Shalimov, S. L.

    From the altitude of 500 km to 15 R sub E everywhere conic like distributions of H+, O+, He+ ions are moving upwards from the ionosphere along the geomagnetic field lines in the auroral zone. The distributed ions suggest the existence of ion transverse acceleration mechanisms (ITAM) acting below the observation point. The more plausible mechanisms are connected with the resonance of the type wave particle between ions and the observed EIC and LH waves and are also due to the existence of the local transverse electric fields in the ionoshere and the magnetosphere. The known ion transverse acceleration mechanisms were complemented by new results. The conical distributions of ionospheric ions at different altitudes in the auroral zone are pointed out.

  11. Photoelectron Imaging as a Quantum Chemistry Visualization Tool

    ERIC Educational Resources Information Center

    Grumbling, Emily R.; Pichugin, Kostyantyn; Mabbs, Richard; Sanov, Andrei

    2011-01-01

    An overview and simple example of photoelectron imaging is presented, highlighting its efficacy as a pedagogical tool for visualizing quantum phenomena. Specifically, photoelectron imaging of H[superscript -] (the simplest negative ion) is used to demonstrate several quantum mechanical principles. This example could be incorporated into an…

  12. Positive Ion Photodissociation.

    DTIC Science & Technology

    1980-09-08

    order perturbation theory was found to account well for the iT-it substituent effects , but within a perturbation-theory framework the 7T-7i* band...substituent effects on energy levels of this ionic chromophore. This study, publication #23, is reproduced as Appendix A. N -14- VI. ION STRUCTURES...splitting of the ion cyclo- tron resonances can occur by coupling to rotational degrees of freedom of the ion, although these effects are negligible except

  13. Collection of ions

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Koster, James E.

    2001-01-01

    The apparatus and method provide an improved technique for detecting ions as the area from which ions are attracted to a detector is increased, consequently increasing the number of ions detected. This is achieved by providing the outer electrodes of the detector connected to the electrical potential, together with alternate intermediate electrodes. The other intermediate electrodes and preferably the housing are grounded. The technique renders such detection techniques more sensitive and gives them a lower threshold at which they can function.

  14. Ion beam generating apparatus

    DOEpatents

    Brown, Ian G.; Galvin, James

    1987-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  15. ION ACCELERATION SYSTEM

    DOEpatents

    Luce, J.S.; Martin, J.A.

    1960-02-23

    Well focused, intense ion beams are obtained by providing a multi- apertured source grid in front of an ion source chamber and an accelerating multi- apertured grid closely spaced from and in alignment with the source grid. The longest dimensions of the elongated apertures in the grids are normal to the direction of the magnetic field used with the device. Large ion currents may be withdrawn from the source, since they do not pass through any small focal region between the grids.

  16. APPARATUS FOR HEATING IONS

    DOEpatents

    Chambers, E.S.; Garren, A.A.; Kippenhan, D.O.; Lamb, W.A.S.; Riddell, R.J. Jr.

    1960-01-01

    The heating of ions in a magnetically confined plasma is accomplished by the application of an azimuthal radiofrequency electric field to the plasma at ion cyclotron resonance. The principal novelty resides in the provision of an output tank coil of a radiofrequency driver to induce the radiofrequency field in the plasma and of electron current bridge means at the ends of the plasma for suppressing radial polarization whereby the radiofrequency energy is transferred to the ions with high efficiency.

  17. Heavy ion storage rings

    SciTech Connect

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented.

  18. Correlation ion mobility spectroscopy

    DOEpatents

    Pfeifer, Kent B.; Rohde, Steven B.

    2008-08-26

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  19. Cardiac ion channels

    PubMed Central

    Priest, Birgit T; McDermott, Jeff S

    2015-01-01

    Ion channels are critical for all aspects of cardiac function, including rhythmicity and contractility. Consequently, ion channels are key targets for therapeutics aimed at cardiac pathophysiologies such as atrial fibrillation or angina. At the same time, off-target interactions of drugs with cardiac ion channels can be the cause of unwanted side effects. This manuscript aims to review the physiology and pharmacology of key cardiac ion channels. The intent is to highlight recent developments for therapeutic development, as well as elucidate potential mechanisms for drug-induced cardiac side effects, rather than present an in-depth review of each channel subtype. PMID:26556552

  20. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  1. Doppler ion program description

    SciTech Connect

    Henline, P.

    1980-12-01

    The Doppler spectrometer is a conventional Czerny-Turner grating spectrometer with a 1024 channel multiple detector. Light is dispersed across the detector, and its output yields a spectrum covering approximately 200 A. The width of the spectral peak is directly proportional to the temperature of the emitting ions, and determination of the impurity ion temperature allows one to infer the plasma ion temperature. The Doppler ion software system developed at General Atomic uses a TRACOR Northern 1710-31 and an LSI-11/2. The exact configuration of Doublet III is different from TRACOR Northern systems at other facilities.

  2. Ion beam thruster shield

    NASA Technical Reports Server (NTRS)

    Power, J. L. (Inventor)

    1976-01-01

    An ion thruster beam shield is provided that comprises a cylindrical housing that extends downstream from the ion thruster and a plurality of annular vanes which are spaced along the length of the housing, and extend inwardly from the interior wall of the housing. The shield intercepts and stops all charge exchange and beam ions, neutral propellant, and sputter products formed due to the interaction of beam and shield emanating from the ion thruster outside of a fixed conical angle from the thruster axis. Further, the shield prevents the sputter products formed during the operation of the engine from escaping the interior volume of the shield.

  3. Metal-ion rescue revisited: biochemical detection of site-bound metal ions important for RNA folding.

    PubMed

    Frederiksen, John K; Li, Nan-Sheng; Das, Rhiju; Herschlag, Daniel; Piccirilli, Joseph A

    2012-06-01

    Within the three-dimensional architectures of RNA molecules, divalent metal ions populate specific locations, shedding their water molecules to form chelates. These interactions help the RNA adopt and maintain specific conformations and frequently make essential contributions to function. Defining the locations of these site-bound metal ions remains challenging despite the growing database of RNA structures. Metal-ion rescue experiments have provided a powerful approach to identify and distinguish catalytic metal ions within RNA active sites, but the ability of such experiments to identify metal ions that contribute to tertiary structure acquisition and structural stability is less developed and has been challenged. Herein, we use the well-defined P4-P6 RNA domain of the Tetrahymena group I intron to reevaluate prior evidence against the discriminatory power of metal-ion rescue experiments and to advance thermodynamic descriptions necessary for interpreting these experiments. The approach successfully identifies ligands within the RNA that occupy the inner coordination sphere of divalent metal ions and distinguishes them from ligands that occupy the outer coordination sphere. Our results underscore the importance of obtaining complete folding isotherms and establishing and evaluating thermodynamic models in order to draw conclusions from metal-ion rescue experiments. These results establish metal-ion rescue as a rigorous tool for identifying and dissecting energetically important metal-ion interactions in RNAs that are noncatalytic but critical for RNA tertiary structure.

  4. Physics analysis tools

    SciTech Connect

    Kunz, P.F.

    1991-04-01

    There are many tools used in analysis in High Energy Physics (HEP). They range from low level tools such as a programming language to high level such as a detector simulation package. This paper will discuss some aspects of these tools that are directly associated with the process of analyzing HEP data. Physics analysis tools cover the whole range from the simulation of the interactions of particles to the display and fitting of statistical data. For purposes of this paper, the stages of analysis is broken down to five main stages. The categories are also classified as areas of generation, reconstruction, and analysis. Different detector groups use different terms for these stages thus it is useful to define what is meant by them in this paper. The particle generation stage is a simulation of the initial interaction, the production of particles, and the decay of the short lived particles. The detector simulation stage simulates the behavior of an event in a detector. The track reconstruction stage does pattern recognition on the measured or simulated space points, calorimeter information, etc., and reconstructs track segments of the original event. The event reconstruction stage takes the reconstructed tracks, along with particle identification information and assigns masses to produce 4-vectors. Finally the display and fit stage displays statistical data accumulated in the preceding stages in the form of histograms, scatter plots, etc. The remainder of this paper will consider what analysis tools are available today, and what one might expect in the future. In each stage, the integration of the tools with other stages and the portability of the tool will be analyzed.

  5. Ion-beam machining of millimeter scale optics.

    PubMed

    Shanbhag, P M; Feinberg, M R; Sandri, G; Horenstein, M N; Bifano, T G

    2000-02-01

    An ion-beam microcontouring process is developed and implemented for figuring millimeter scale optics. Ion figuring is a noncontact machining technique in which a beam of high-energy ions is directed toward a target substrate to remove material in a predetermined and controlled fashion. Owing to this noncontact mode of material removal, problems associated with tool wear and edge effects, which are common in conventional machining processes, are avoided. Ion-beam figuring is presented as an alternative for the final figuring of small (<1-mm) optical components. The depth of the material removed by an ion beam is a convolution between the ion-beam shape and an ion-beam dwell function, defined over a two-dimensional area of interest. Therefore determination of the beam dwell function from a desired material removal map and a known steady beam shape is a deconvolution process. A wavelet-based algorithm has been developed to model the deconvolution process in which the desired removal contours and ion-beam shapes are synthesized numerically as wavelet expansions. We then mathematically combined these expansions to compute the dwell function or the tool path for controlling the figuring process. Various models have been developed to test the stability of the algorithm and to understand the critical parameters of the figuring process. The figuring system primarily consists of a duo-plasmatron ion source that ionizes argon to generate a focused (approximately 200-microm FWHM) ion beam. This beam is rastered over the removal surface with a perpendicular set of electrostatic plates controlled by a computer guidance system. Experimental confirmation of ion figuring is demonstrated by machining a one-dimensional sinusoidal depth profile in a prepolished silicon substrate. This profile was figured to within a rms error of 25 nm in one iteration.

  6. Surface modification of SKD-61 steel by ion implantation technique

    SciTech Connect

    Wen, F. L.; Lo, Y.-L.; Yu, Y.-C.

    2007-07-15

    The purpose of this study is to investigate how ion implantation affects the surface characteristics and nitrogenizing depth of the thin film by the use of a NEC 9SDH-2 3 MV Pelletron accelerator that implants nitrogen ions into SKD-61 tool steels for surface modification. Nitrogen ions were implanted into the surface layer of materials so that the hardness of modified films could be improved. Also, the nitride film stripping problems of the traditional nitrogenizing treatment could be overcome by a new approach in surface process engineering. As nitrogen ions with high velocity impacted on the surface of the substrate, the ions were absorbed and accumulated on the surface of the substrate. The experiments were performed with two energies (i.e., 1 and 2 MeV) and different doses (i.e., 2.5x10{sup 15}, 7.5x10{sup 15}, and 1.5x10{sup 16} ions/cm{sup 2}). Nitrogen ions were incorporated into the interface and then diffused through the metal to form a nitride layer. Analysis tools included the calculation of stopping and range of ions in matter (SRIM), the detection of a secondary ion mass spectrometry (SIMS), and nanoindentation testing. Through the depth analysis of SIMS, the effects of the ion-implanted SKD-61 steels after heating at 550 deg. C in a vacuum furnace were examined. The nanoindenting results indicate the variation of hardness of SKD-61 steels with the various ion doses. It reaches two to three times the original hardness of SKD-61 steels.

  7. Cold Strontium Ion Source for Ion Interferometry

    NASA Astrophysics Data System (ADS)

    Jackson, Jarom; Durfee, Dallin

    2015-05-01

    We are working on a cold source of Sr Ions to be used in an ion interferometer. The beam will be generated from a magneto-optical trap (MOT) of Sr atoms by optically ionizing atoms leaking out a carefully prepared hole in the MOT. A single laser cooling on the resonant transition (461 nm) in Sr should be sufficient for trapping, as we've calculated that losses to the atom beam will outweigh losses to dark states. Another laser (405 nm), together with light from the trapping laser, will drive a two photon transition in the atom beam to an autoionizing state. Supported by NSF Award No. 1205736.

  8. Ion Phase Space Transport

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel Peter

    1987-09-01

    Experimental measurements are presented of ion phase space evolution in a collisionless magnetoplasma utilizing nonperturbing laser induced fluorescence (LIF) diagnostics. Ion configuration space and velocity space transport, and ion thermodynamic information were derived from the phase space diagrams for the following beam-plasma and obstacle-plasma systems:(UNFORMATTED TABLE OR EQUATION FOLLOWS) OBSTACLE & PLASMA SPECIES qquad disc & quad Ba ^+/e^ qquad disc & quad Ba^+/SF _6^-/e^ BEAM SPECIES & PLASMA SPECIES} qquad Ba^+ & quad Cs^+/e^ qquad Cs^+ & quad Ba^+/e^ qquad Ba^+ & quad Cs^+/SF_6 ^-/e^ qquad e^- & quad Ba^+ /e^ TABLE/EQUATION ENDS The ions were roughly mass symmetric. Plasma systems were reconstructed from multiple discrete Ba(II) ion velocity distributions with spatial, temporal, and velocity resolution of 1 mm^3, 2 musec, and 3 times 1010 cm ^3/sec^3 respectively. Phase space reconstructions indicated resonant ion response to the current-driven electrostatic ion cyclotron wave (EICW) in the case of an electron beam and to the ion cyclotron-cyclotron wave in the case of ion beams. Ion energization was observed in both systems. Local particle kinetic energy densities increase far above thermal levels in the presence of the EICW and ICCW. Time-resolved measurements of the EICW identified phase space particle bunching. The nonlinear evolution of f_{rm i}(x,v,t) was investigated for both beam systems. The near wake of conducting electrically floating disc obstacle was studied. Anomalous cross field diffusion (D_bot > 10 ^4 cm^2/sec) and ion energization were correlated with strong, low-frequency turbulence generated by the obstacle. Ion perpendicular kinetic energy densities doubled over thermal levels in the near wake. Upstream of the obstacle, l ~ 50 lambda_ {rm D}, a collisionless shock was indicated; far downstream, an ion flux peak was observed. Three negative ion plasma (NIP) sources were developed and characterized in the course of research: two

  9. Seal ring installation tool

    NASA Technical Reports Server (NTRS)

    Haselmaier, L. Haynes (Inventor)

    2004-01-01

    A seal ring tool that allows an installer to position a primary seal ring between hub ends of pipe flanges that are being assembled together. The tool includes a pivoting handle member and extension arms attached to the pivoting handle member. The ends of the arms have side indentation type longitudinal grooves angled toward one another for holding the primary seal ring in place between the hubs of respective pipes that are to be attached together. The arms of the tool can also have flat sides that can be used to abut against an optional second larger seal that is supported within a groove in one of the hub ends so that the second hub end can then be moved against the other side of the primary seal ring. Once the seal ring is positioned between the pipe hubs, the pipe hubs can be moved about the seal ring due to the flat sides of the arms of the tool. The tool eliminates the chances of damaging and contaminating seal rings being installed within pipe hubs that are being attached to one another.

  10. Astronomer's Proposal Tool

    NASA Technical Reports Server (NTRS)

    Krueger, Tony

    2005-01-01

    Astronomer's Proposal Tool (APT) is a computer program that assists astronomers in preparing their Phase 1 and Phase 2 Hubble Space Telescope science programs. APT is a successor to the Remote Proposal Submission System 2 (RPS2) program, which has been rendered obsolete by more recent advances in computer software and hardware. APT exploits advances associated with widespread use of the Internet, multiplatform visual development software tools, and overall increases in the power of desktop computer hardware, all in such a way as to make the preparation and submission of proposals more intuitive and make observatory operations less cumbersome. APT provides documentation and help that are friendly, up to date, and easily accessible to users of varying levels of expertise, while defining an extensible framework that is responsive to changes in both technology and observatory operations. APT consists of two major components: (1) a set of software tools that are intuitive, visual, and responsive and (2) an integrated software environment that unifies all the tools and makes them interoperable. The APT tools include the Visual Target Tuner, Proposal Editor, Exposure Planner, Bright Object Checker, and Visit Planner.

  11. Metal Ions in Unusual Valency States.

    ERIC Educational Resources Information Center

    Sellers, Robin M.

    1981-01-01

    Discusses reactivity of metal ions with the primary products of water radiolysis, hyper-reduced metal ions, zero-valent metal ions, unstable divalent ions from the reduction of bivalent ions, hyper-oxidized metal ions, and metal complexes. (CS)

  12. Climate Change and Water Tools

    EPA Pesticide Factsheets

    EPA tools and workbooks guide users to mitigate and adapt to climate change impacts. Various tools can help manage risks, others can visualize climate projections in maps. Included are comprehensive tool kits hosted by other federal agencies.

  13. Time resolved ion beam induced charge collection

    SciTech Connect

    SEXTON,FREDERICK W.; WALSH,DAVID S.; DOYLE,BARNEY L.; DODD,PAUL E.

    2000-04-01

    Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a {minus}.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients.

  14. Cataract Surgery Tool

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The NASA-McGannon cataract surgery tool is a tiny cutter-pump which liquefies and pumps the cataract lens material from the eye. Inserted through a small incision in the cornea, the tool can be used on the hardest cataract lens. The cutter is driven by a turbine which operates at about 200,000 revolutions per minute. Incorporated in the mechanism are two passages for saline solutions, one to maintain constant pressure within the eye, the other for removal of the fragmented lens material and fluids. Three years of effort have produced a design, now being clinically evaluated, with excellent potential for improved cataract surgery. The use of this tool is expected to reduce the patient's hospital stay and recovery period significantly.

  15. Core-Cutoff Tool

    NASA Technical Reports Server (NTRS)

    Gheen, Darrell

    2007-01-01

    A tool makes a cut perpendicular to the cylindrical axis of a core hole at a predetermined depth to free the core at that depth. The tool does not damage the surrounding material from which the core was cut, and it operates within the core-hole kerf. Coring usually begins with use of a hole saw or a hollow cylindrical abrasive cutting tool to make an annular hole that leaves the core (sometimes called the plug ) in place. In this approach to coring as practiced heretofore, the core is removed forcibly in a manner chosen to shear the core, preferably at or near the greatest depth of the core hole. Unfortunately, such forcible removal often damages both the core and the surrounding material (see Figure 1). In an alternative prior approach, especially applicable to toxic or fragile material, a core is formed and freed by means of milling operations that generate much material waste. In contrast, the present tool eliminates the damage associated with the hole-saw approach and reduces the extent of milling operations (and, hence, reduces the waste) associated with the milling approach. The present tool (see Figure 2) includes an inner sleeve and an outer sleeve and resembles the hollow cylindrical tool used to cut the core hole. The sleeves are thin enough that this tool fits within the kerf of the core hole. The inner sleeve is attached to a shaft that, in turn, can be attached to a drill motor or handle for turning the tool. This tool also includes a cutting wire attached to the distal ends of both sleeves. The cutting wire is long enough that with sufficient relative rotation of the inner and outer sleeves, the wire can cut all the way to the center of the core. The tool is inserted in the kerf until its distal end is seated at the full depth. The inner sleeve is then turned. During turning, frictional drag on the outer core pulls the cutting wire into contact with the core. The cutting force of the wire against the core increases with the tension in the wire and

  16. Dose optimization tool

    NASA Astrophysics Data System (ADS)

    Amir, Ornit; Braunstein, David; Altman, Ami

    2003-05-01

    A dose optimization tool for CT scanners is presented using patient raw data to calculate noise. The tool uses a single patient image which is modified for various lower doses. Dose optimization is carried out without extra measurements by interactively visualizing the dose-induced changes in this image. This tool can be used either off line, on existing image(s) or, as a pre - requisite for dose optimization for the specific patient, during the patient clinical study. The algorithm of low-dose simulation consists of reconstruction of two images from a single measurement and uses those images to create the various lower dose images. This algorithm enables fast simulation of various low dose (mAs) images on a real patient image.

  17. Selective ion source

    DOEpatents

    Leung, K.N.

    1996-05-14

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P{sup +} from PH{sub 3}. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P{sup +}, As{sup +}, and B{sup +} without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices. 6 figs.

  18. Ion-Selective Electrodes.

    ERIC Educational Resources Information Center

    Arnold, Mark A.; Meyerhoff, Mark E.

    1984-01-01

    Literature on ion-selective electrodes (ISEs) is reviewed in seven sections: books, conferences, reviews; potentiometric membrane electrodes; glass and solid-state membrane electrodes; liquid and polymer membrane ISEs; coated wire electrodes, ion-selective field effect transistors, and microelectrodes; gas sensors and selective bioelectrode…

  19. Quadrupole ion traps.

    PubMed

    March, Raymond E

    2009-01-01

    The extraordinary story of the three-dimensional radiofrequency quadrupole ion trap, accompanied by a seemingly unintelligible theoretical treatment, is told in some detail because of the quite considerable degree of commercial success that quadrupole technology has achieved. The quadrupole ion trap, often used in conjunction with a quadrupole mass filter, remained a laboratory curiosity until 1979 when, at the American Society for Mass Spectrometry Conference in Seattle, George Stafford, Jr., of Finnigan Corp., learned of the Masters' study of Allison Armitage of a combined quadrupole ion trap/quadrupole mass filter instrument for the observation of electron impact and chemical ionization mass spectra of simple compounds eluting from a gas chromatograph. Stafford developed subsequently the mass-selective axial instability method for obtaining mass spectra from the quadrupole ion trap alone and, in 1983, Finnigan Corp. announced the first commercial quadrupole ion trap instrument as a detector for a gas chromatograph. In 1987, confinement of ions generated externally to the ion trap was demonstrated and, soon after, the new technique of electrospray ionization was shown to be compatible with the ion trap.

  20. Selective ion source

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.

  1. Ion-beam technologies

    SciTech Connect

    Fenske, G.R.

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  2. Microfabricated cylindrical ion trap

    DOEpatents

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  3. RSP Tooling Technology

    SciTech Connect

    2001-11-20

    RSP Tooling{trademark} is a spray forming technology tailored for producing molds and dies. The approach combines rapid solidification processing and net-shape materials processing in a single step. The general concept involves converting a mold design described by a CAD file to a tooling master using a suitable rapid prototyping (RP) technology such as stereolithography. A pattern transfer is made to a castable ceramic, typically alumina or fused silica (Figure 1). This is followed by spray forming a thick deposit of a tooling alloy on the pattern to capture the desired shape, surface texture, and detail. The resultant metal block is cooled to room temperature and separated from the pattern. The deposit's exterior walls are machined square, allowing it to be used as an insert in a standard mold base. The overall turnaround time for tooling is about 3 to 5 days, starting with a master. Molds and dies produced in this way have been used in high volume production runs in plastic injection molding and die casting. A Cooperative Research and Development Agreement (CRADA) between the Idaho National Engineering and Environmental Laboratory (INEEL) and Grupo Vitro has been established to evaluate the feasibility of using RSP Tooling technology for producing molds and dies of interest to Vitro. This report summarizes results from Phase I of this agreement, and describes work scope and budget for Phase I1 activities. The main objective in Phase I was to demonstrate the feasibility of applying the Rapid Solidification Process (RSP) Tooling method to produce molds for the manufacture of glass and other components of interest to Vitro. This objective was successfully achieved.

  4. Alfven ion-cyclotron heating of ionospheric O(+) ions

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Sydora, R. D.; Ashour-Abdalla, M.

    1988-01-01

    Transversely heated ionospheric ions, in particular O(+) ions, are often observed flowing upward along auroral field lines. Currents observed in association with the transversely heated ions can drive shear Alfven waves and electrostatic ion-cyclotron waves unstable which can, in turn, be resonantly absorbed by the ions to produce the heating. Particle simulations are used to examine self-consistently the excitation of these waves and the associated heating. It is shown that the growth of the electrostatic ion-cyclotron waves quickly becomes suppressed as the ions become heated and the dominant wave fields are those of the shear Alfven wave. The resultant transverse ion heating is larger and faster than that produced by solely electrostatic ion-cyclotron wave heating. Due to trapping of ions by the shear Alfven wave, the temperature of the O(+) ions remains comparable to that of the H(+) ions.

  5. Rapid SAW Sensor Development Tools

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    The lack of integrated design tools for Surface Acoustic Wave (SAW) devices has led us to develop tools for the design, modeling, analysis, and automatic layout generation of SAW devices. These tools enable rapid development of wireless SAW sensors. The tools developed have been designed to integrate into existing Electronic Design Automation (EDA) tools to take advantage of existing 3D modeling, and Finite Element Analysis (FEA). This paper presents the SAW design, modeling, analysis, and automated layout generation tools.

  6. The GNEMRE Dendro Tool.

    SciTech Connect

    Merchant, Bion John

    2007-10-01

    The GNEMRE Dendro Tool provides a previously unrealized analysis capability in the field of nuclear explosion monitoring. Dendro Tool allows analysts to quickly and easily determine the similarity between seismic events using the waveform time-series for each of the events to compute cross-correlation values. Events can then be categorized into clusters of similar events. This analysis technique can be used to characterize historical archives of seismic events in order to determine many of the unique sources that are present. In addition, the source of any new events can be quickly identified simply by comparing the new event to the historical set.

  7. PCard Data Analysis Tool

    SciTech Connect

    Hilts, Jim

    2005-04-01

    The Procurement Card data analysis and monitoring tool enables due-diligence review using predefined user-created queries and reports. The system tracks individual compliance emails. More specifically, the tool: - Helps identify exceptions or questionable and non-compliant purchases, - Creates audit random sample on request, - Allows users to create and run new or ad-hoc queries and reports, - Monitors disputed charges, - Creates predefined Emails to Cardholders requesting documentation and/or clarification, - Tracks audit status, notes, Email status (date sent, response), audit resolution.

  8. CFD Multiphysics Tool

    NASA Technical Reports Server (NTRS)

    Perrell, Eric R.

    2005-01-01

    The recent bold initiatives to expand the human presence in space require innovative approaches to the design of propulsion systems whose underlying technology is not yet mature. The space propulsion community has identified a number of candidate concepts. A short list includes solar sails, high-energy-density chemical propellants, electric and electromagnetic accelerators, solar-thermal and nuclear-thermal expanders. For each of these, the underlying physics are relatively well understood. One could easily cite authoritative texts, addressing both the governing equations, and practical solution methods for, e.g. electromagnetic fields, heat transfer, radiation, thermophysics, structural dynamics, particulate kinematics, nuclear energy, power conversion, and fluid dynamics. One could also easily cite scholarly works in which complete equation sets for any one of these physical processes have been accurately solved relative to complex engineered systems. The Advanced Concepts and Analysis Office (ACAO), Space Transportation Directorate, NASA Marshall Space Flight Center, has recently released the first alpha version of a set of computer utilities for performing the applicable physical analyses relative to candidate deep-space propulsion systems such as those listed above. PARSEC, Preliminary Analysis of Revolutionary in-Space Engineering Concepts, enables rapid iterative calculations using several physics tools developed in-house. A complete cycle of the entire tool set takes about twenty minutes. PARSEC is a level-zero/level-one design tool. For PARSEC s proof-of-concept, and preliminary design decision-making, assumptions that significantly simplify the governing equation sets are necessary. To proceed to level-two, one wishes to retain modeling of the underlying physics as close as practical to known applicable first principles. This report describes results of collaboration between ACAO, and Embry-Riddle Aeronautical University (ERAU), to begin building a set of

  9. Drum lid removal tool

    DOEpatents

    Pella, Bernard M.; Smith, Philip D.

    2010-08-24

    A tool for removing the lid of a metal drum wherein the lid is clamped over the drum rim without protruding edges, the tool having an elongated handle with a blade carried by an angularly positioned holder affixed to the midsection of the handle, the blade being of selected width to slice between lid lip and the drum rim and, when the blade is so positioned, upward motion of the blade handle will cause the blade to pry the lip from the rim and allow the lid to be removed.

  10. CMS tracker visualization tools

    NASA Astrophysics Data System (ADS)

    Mennea, M. S.; Osborne, I.; Regano, A.; Zito, G.

    2005-08-01

    This document will review the design considerations, implementations and performance of the CMS Tracker Visualization tools. In view of the great complexity of this sub-detector (more than 50 millions channels organized in 16540 modules each one of these being a complete detector), the standard CMS visualization tools (IGUANA and IGUANACMS) that provide basic 3D capabilities and integration within CMS framework, respectively, have been complemented with additional 2D graphics objects. Based on the experience acquired using this software to debug and understand both hardware and software during the construction phase, we propose possible future improvements to cope with online monitoring and event analysis during data taking.

  11. Log-Tool

    SciTech Connect

    Goodall, John

    2012-05-21

    Log files are typically semi- or un-structured. To be useable for visualization and machine learning, they need to be parsed into a standard, structured format. Log-tool is a tool for facilitating the parsing, structuring, and routing of log files (e.g. intrusion detection long, web server logs, system logs). It consists of three main components: (1) Input – it will input data from files, standard input, and syslog, (2) Parser – it will parse the log file based on regular expressions into structured data (JSNO format), (3) Output – it will output structured data into commonly used formats, including Redis (a database), standard output, and syslog.

  12. ION PULSE GENERATION

    DOEpatents

    King, R.F.; Moak, C.D.; Parker, V.E.

    1960-10-11

    A device for generating ions in an ion source, forming the ions into a stream, deflecting the stream rapidly away from and back to its normal path along the axis of a cylindrical housing, and continually focusing the stream by suitable means into a sharp, intermittent beam along the axis is described. The beam exists through an axial aperture into a lens which focuses it into an accelerator tube. The ions in each burst are there accelerated to very high energies and are directed against a target placed in the high-energy end of the tube. Radiations from the target can then be analyzed in the interval between incidence of the bursts of ions on the target.

  13. Mechanically Activated Ion Channels

    PubMed Central

    Ranade, Sanjeev S.; Syeda, Ruhma; Patapoutian, Ardem

    2015-01-01

    Mechanotransduction, the conversion of physical forces into biochemical signals, is an essential component of numerous physiological processes including not only conscious senses of touch and hearing, but also unconscious senses such as blood pressure regulation. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  14. Mechanically Activated Ion Channels.

    PubMed

    Ranade, Sanjeev S; Syeda, Ruhma; Patapoutian, Ardem

    2015-09-23

    Mechanotransduction, the conversion of physical forces into biochemical signals, is essential for various physiological processes such as the conscious sensations of touch and hearing, and the unconscious sensation of blood flow. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels.

  15. Ion track doping

    NASA Astrophysics Data System (ADS)

    Fink, D.; Chadderton, L. T.; Cruz, S. A.; Fahrner, W. R.; Hnatowicz, V.; Te Kaat, E. H.; Melnikov, A. A.; Varichenko, V. S.; Zaitsev, A. M.

    1994-10-01

    Longitudinal dopant distribution along ion tracks in soft (polymers [1?5]) and hard (diamond [6,7]) condensed carbonaceous matter have been studied by neutron depth profiling and cathodoluminesence. Both in-diffusion from the aqueous phase and energetic ion implantation were used in primary track doping. In-situ self-decoration of tracks and post-implantation with a secondary ion species were used in the specific case of ion implantation. Radial dopant distributions were also studied by means of a modified tomographic procedure. Decorative doping of ion bombarded solids is useful in probing track structure, and especially in pointing the way to potential development of nanometric-sized electronic devices.

  16. Ion mobility sensor system

    DOEpatents

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  17. Ion chemistry in space.

    PubMed

    Larsson, M; Geppert, W D; Nyman, G

    2012-06-01

    We review the gas-phase chemistry in extraterrestrial space that is driven by reactions with atomic and molecular ions. Ions are ubiquitous in space and are potentially responsible for the formation of increasingly complex interstellar molecules. Until recently, positively charged atoms and molecules were the only ions known in space; however, this situation has changed with the discovery of various molecular anions. This review covers not only the observation, distribution and reactions of ions in space, but also laboratory-based experimental and theoretical methods for studying these ions. Recent results from space-based instruments, such as those on the Cassini-Huygens space mission and the Herschel Space Observatory, are highlighted.

  18. Secondary Ion Mass Spectrometry Imaging of Dictyostelium discoideum Aggregation Streams

    SciTech Connect

    Debord, J. Daniel; Smith, Donald F.; Anderton, Christopher R.; Heeren, Ronald M.; Pasa-Tolic, Ljiljana; Gomer, Richard H.; Fernandez-Lima, Francisco A.

    2014-06-09

    High resolution imaging mass spectrometry could become a valuable tool for cell and developmental biology, but both, high spatial and mass spectral resolution are needed to enable this. In this report, we employed Bi3 bombardment time-of-flight (Bi3 ToF-SIMS) and C60 bombardment Fourier transform ion cyclotron resonance secondary ion mass spectrometry (C60 FTICR-SIMS) to image Dictyostelium discoideum aggregation streams. Nearly 300 lipid species were identified from the aggregation streams. High resolution mass spectrometry imaging (FTICR-SIMS) enabled the generation of multiple molecular ion maps at the nominal mass level and provided good coverage for fatty acyls, prenol lipids, and sterol lipids. The comparison of Bi3 ToF-SIMS and C60 FTICR-SIMS suggested that while the first provides fast, high spatial resolution molecular ion images, the chemical complexity of biological samples warrants the use of high resolution analyzers for accurate ion identification.

  19. Laser ion source for high brightness heavy ion beam

    SciTech Connect

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  20. Laser ion source for high brightness heavy ion beam

    DOE PAGES

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion sourcemore » for regular operation.« less

  1. Laser ion source for high brightness heavy ion beam

    NASA Astrophysics Data System (ADS)

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. However we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. In 2014, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  2. Secondary ion coincidence in highly charged ion based secondary ion mass spectroscopy for process characterization

    SciTech Connect

    Hamza, A.V.; Schenkel, T.; Barnes, A.V.; Schneider, D.H.

    1999-01-01

    Coincidence counting in highly charged ion based secondary ion mass spectroscopy has been applied to the characterization of selective tungsten deposition via disilane reduction of tungsten hexafluoride on a patterned SiO{sub 2}/Si wafer. The high secondary ion yield and the secondary ion emission from a small area produced by highly charged ions make the coincidence technique very powerful.

  3. Metabolic profiling of Escherichia coli by ion mobility-mass spectrometry with MALDI ion source.

    PubMed

    Dwivedi, Prabha; Puzon, Geoffery; Tam, Maggie; Langlais, Denis; Jackson, Shelley; Kaplan, Kimberly; Siems, William F; Schultz, Albert J; Xun, Luying; Woods, Amina; Hill, Herbert H

    2010-12-01

    Comprehensive metabolome analysis using mass spectrometry (MS) often results in a complex mass spectrum and difficult data analysis resulting from the signals of numerous small molecules in the metabolome. In addition, MS alone has difficulty measuring isobars and chiral, conformational and structural isomers. When a matrix-assisted laser desorption ionization (MALDI) source is added, the difficulty and complexity are further increased. Signal interference between analyte signals and matrix ion signals produced by MALDI in the low mass region (<1500 Da) cause detection and/or identification of metabolites difficult by MS alone. However, ion mobility spectrometry (IMS) coupled with MS (IM-MS) provides a rapid analytical tool for measuring subtle structural differences in chemicals. IMS separates gas-phase ions based on their size-to-charge ratio. This study, for the first time, reports the application of MALDI to the measurement of small molecules in a biological matrix by ion mobility-time of flight mass spectrometry (IM-TOFMS) and demonstrates the advantage of ion-signal dispersion in the second dimension. Qualitative comparisons between metabolic profiling of the Escherichia coli metabolome by MALDI-TOFMS, MALDI-IM-TOFMS and electrospray ionization (ESI)-IM-TOFMS are reported. Results demonstrate that mobility separation prior to mass analysis increases peak-capacity through added dimensionality in measurement. Mobility separation also allows detection of metabolites in the matrix-ion dominated low-mass range (m/z < 1500 Da) by separating matrix signals from non-matrix signals in mobility space.

  4. Evaluating Digital Authoring Tools

    ERIC Educational Resources Information Center

    Wilde, Russ

    2004-01-01

    As the quality of authoring software increases, online course developers become less reliant on proprietary learning management systems, and develop skills in the design of original, in-house materials and the delivery platforms for them. This report examines the capabilities of digital authoring software tools for the development of learning…

  5. Poetry-Teaching Tools.

    ERIC Educational Resources Information Center

    Murray, John J.

    1965-01-01

    Three game approaches to the teaching of poetry, designed to make the student actively involved with poems are described as "teaching tools." The semantico-dictionary or word-cross game involves programing techniques, logic, and lexicography in poetic analysis. The punched-out poem game involves filling in the blanks of a poem in which all the…

  6. Smart tool holder

    DOEpatents

    Day, R.D.; Foreman, L.R.; Hatch, D.J.; Meadows, M.S.

    1998-09-08

    There is provided an apparatus for machining surfaces to accuracies within the nanometer range by use of electrical current flow through the contact of the cutting tool with the workpiece as a feedback signal to control depth of cut. 3 figs.

  7. Assessment Principles and Tools

    PubMed Central

    Golnik, Karl C.

    2014-01-01

    The goal of ophthalmology residency training is to produce competent ophthalmologists. Competence can only be determined by appropriately assessing resident performance. There are accepted guiding principles that should be applied to competence assessment methods. These principles are enumerated herein and ophthalmology-specific assessment tools that are available are described. PMID:24791100

  8. Sight Application Analysis Tool

    SciTech Connect

    Bronevetsky, G.

    2014-09-17

    The scale and complexity of scientific applications makes it very difficult to optimize, debug and extend them to support new capabilities. We have developed a tool that supports developers’ efforts to understand the logical flow of their applications and interactions between application components and hardware in a way that scales with application complexity and parallelism.

  9. Photutils: Photometry tools

    NASA Astrophysics Data System (ADS)

    Bradley, Larry; Sipocz, Brigitta; Robitaille, Thomas; Tollerud, Erik; Deil, Christoph; Vinícius, Zè; Barbary, Kyle; Günther, Hans Moritz; Bostroem, Azalee; Droettboom, Michael; Bray, Erik; Bratholm, Lars Andersen; Pickering, T. E.; Craig, Matt; Pascual, Sergio; Greco, Johnny; Donath, Axel; Kerzendorf, Wolfgang; Littlefair, Stuart; Barentsen, Geert; D'Eugenio, Francesco; Weaver, Benjamin Alan

    2016-09-01

    Photutils provides tools for detecting and performing photometry of astronomical sources. It can estimate the background and background rms in astronomical images, detect sources in astronomical images, estimate morphological parameters of those sources (e.g., centroid and shape parameters), and perform aperture and PSF photometry. Written in Python, it is an affiliated package of Astropy (ascl:1304.002).

  10. Tools of the Trade

    ERIC Educational Resources Information Center

    Arnold, Kathy

    2012-01-01

    This article outlines the author's efforts to build her knowledge of students' understandings of mathematics whilst catering for different abilities within a Year 1 classroom, using the freely available "Assessment for Common Misunderstandings tools." "The Assessment for Common Misunderstandings" materials have been…

  11. Chizu Task Mapping Tool

    SciTech Connect

    2014-07-01

    Chizu is a tool for Mapping MPI processes or tasks to physical processors or nodes for optimizing communication performance. It takes the communication graph of a High Performance Computing (HPC) application and the interconnection topology of a supercomputer as input. It outputs a new MPI rand to processor mapping, which can be used when launching the HPC application.

  12. New tools in cytometry.

    PubMed

    Depince-Berger, A-E; Aanei, C; Iobagiu, C; Jeraiby, M; Lambert, C

    2016-12-01

    Cytometry aims to analyze cells, of any type, using dedicated instruments. The quantitative aspect makes flow cytometry (FCM) a good complementary tool for morphology. Most of the identification tools are based on immunostaining of cell structure details and more and more tools are available in terms of specificities and labels. FCM is under exponential development thanks to technical, immunological and data analysis progresses. Actual generations are now routinely using 6 to 10 simultaneous immuno-labeling on 20 to 100,000 cells, at high speed and short sample preparation and can easily detect rare events at frequency below 10(-4) cells. Data interpretation is complex and requires expertise. Mathematical tools are available to support analysis and classification of cells based. Cells from tissues can also be analyzed by FCM after mechanical and or enzymatic separation, but in situ cells can also be analyzed with the help of cytometry. Very new instruments bring spectral analysis, image in flow and mass spectrometry. Medical applications are very broad, notably in hemopathies, immunology, solid tumors, but also microbiology, toxicology, drug discovery, food and environmental industry. But, the limit of FCM is its dependence on operator from sample preparation, instrument settings up to data analysis and a strong effort is now under progress for standardization and constitution of international data bank for references and education.

  13. Configuration Analysis Tool

    NASA Technical Reports Server (NTRS)

    Merwarth, P. D.

    1983-01-01

    Configuration Analysis Tool (CAT), is information storage and report generation system for aid of configuration management activities. Configuration management is discipline composed of many techniques selected to track and direct evolution of complex systems. CAT is interactive program that accepts, organizes and stores information pertinent to specific phases of project.

  14. Tools in HRD. Symposium.

    ERIC Educational Resources Information Center

    2002

    This document contains three papers from a symposium on tools in human resource development (HRD). "Game Theory Methodology in HRD" (Thomas J. Chermack, Richard A. Swanson) explores the utility of game theory in helping the HRD profession address the complexity of integrating multiple theories for disciplinary understanding and…

  15. New Tools for Design

    ERIC Educational Resources Information Center

    Halliburton, Cal; Roza, Victoria

    2006-01-01

    Technology educators are constantly in search of new tools and methods to enhance the education of their students. This article is an excerpt from a longer article published in "The Technology Teacher" that introduced the technology education community to a research- and knowledge-based methodology for design--invention and innovation. This…

  16. Beam lead forming tool

    NASA Technical Reports Server (NTRS)

    Clemons, P. W.

    1973-01-01

    Tool was designed for table-top manual operation that can bend leads to any desired angle up to 90 degrees. It can be readily adapted to electrical, hydraulic, or pneumatic operation. This innovation may be of interest to electronics, sheet metal, and appliance industries.

  17. Clean Cities Tools

    SciTech Connect

    2014-12-19

    The U.S. Department of Energy's Clean Cities offers a large collection of Web-based tools on the Alternative Fuels Data Center. These calculators, interactive maps, and data searches can assist fleets, fuels providers, and other transportation decision makers in their efforts to reduce petroleum use.

  18. State Analysis Database Tool

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert; Bennett, Matthew

    2006-01-01

    The State Analysis Database Tool software establishes a productive environment for collaboration among software and system engineers engaged in the development of complex interacting systems. The tool embodies State Analysis, a model-based system engineering methodology founded on a state-based control architecture (see figure). A state represents a momentary condition of an evolving system, and a model may describe how a state evolves and is affected by other states. The State Analysis methodology is a process for capturing system and software requirements in the form of explicit models and states, and defining goal-based operational plans consistent with the models. Requirements, models, and operational concerns have traditionally been documented in a variety of system engineering artifacts that address different aspects of a mission s lifecycle. In State Analysis, requirements, models, and operations information are State Analysis artifacts that are consistent and stored in a State Analysis Database. The tool includes a back-end database, a multi-platform front-end client, and Web-based administrative functions. The tool is structured to prompt an engineer to follow the State Analysis methodology, to encourage state discovery and model description, and to make software requirements and operations plans consistent with model descriptions.

  19. Measurement and Research Tools.

    ERIC Educational Resources Information Center

    1997

    This document contains four papers from a symposium on measurement and research tools for human resource development (HRD). "The 'Best Fit' Training: Measure Employee Learning Style Strengths" (Daniel L. Parry) discusses a study of the physiological aspect of sensory intake known as modality, more specifically, modality as measured by…

  20. Tools for Authentication

    SciTech Connect

    White, G

    2008-07-09

    Many recent Non-proliferation and Arms Control software projects include a software authentication component. In this context, 'authentication' is defined as determining that a software package performs only its intended purpose and performs that purpose correctly and reliably over many years. In addition to visual inspection by knowledgeable computer scientists, automated tools are needed to highlight suspicious code constructs both to aid the visual inspection and to guide program development. While many commercial tools are available for portions of the authentication task, they are proprietary, and have limited extensibility. An open-source, extensible tool can be customized to the unique needs of each project (projects can have both common and custom rules to detect flaws and security holes). Any such extensible tool must be based on a complete language compiler infrastructure, that is, one that can parse and digest the full language through its standard grammar. ROSE is precisely such a compiler infrastructure developed within DOE. ROSE is a robust source-to-source analysis and optimization infrastructure currently addressing large, million-line DOE applications in C, C++, and FORTRAN. This year, it has been extended to support the automated analysis of binaries. We continue to extend ROSE to address a number of security-specific requirements and apply it to software authentication for Non-proliferation and Arms Control projects. We will give an update on the status of our work.

  1. Resource Assessment and Tools

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various resource assessment strategies and tools are needed to ensure bioenergy feedstock materials are produced, harvested, and transported in a sustainable manner. This presentation highlights research accomplishments by the USDA-ARS Renewable Energy Assessment Project (REAP) team along with our u...

  2. MULTIPLE SHAFT TOOL HEAD

    DOEpatents

    Colbert, H.P.

    1962-10-23

    An improved tool head arrangement is designed for the automatic expanding of a plurality of ferruled tubes simultaneously. A plurality of output shafts of a multiple spindle drill head are driven in unison by a hydraulic motor. A plurality of tube expanders are respectively coupled to the shafts through individual power train arrangements. The axial or thrust force required for the rolling operation is provided by a double acting hydraulic cylinder having a hollow through shaft with the shaft cooperating with an internally rotatable splined shaft slidably coupled to a coupling rigidly attached to the respectlve output shaft of the drill head, thereby transmitting rotary motion and axial thrust simultaneously to the tube expander. A hydraulic power unit supplies power to each of the double acting cylinders through respective two-position, four-way valves, under control of respective solenoids for each of the cylinders. The solenoids are in turn selectively controlled by a tool selection control unit which in turn is controlled by signals received from a programmed, coded tape from a tape reader. The number of expanders that are extended in a rolling operation, which may be up to 42 expanders, is determined by a predetermined program of operations depending upon the arrangement of the ferruled tubes to be expanded in the tube bundle. The tape reader also supplies dimensional information to a machine tool servo control unit for imparting selected, horizontal and/or vertical movement to the tool head assembly. (AEC)

  3. Frequency Response Tool

    SciTech Connect

    Etingov, Pavel; Chassin, PNNL David; Zhang, PNNL Yu; PNNL,

    2014-03-13

    According to the North American Electric Reliability Corporation (NERC) definition: “Frequency response is a measure of an Interconnection’s ability to stabilize frequency immediately following the sudden loss of generation or load, and is a critical component of the reliable operation of the Bulk-Power System, particularly during disturbances and recoveries. Failure to maintain frequency can disrupt the operation of equipment and initiate disconnection of power plant equipment to prevent it from being damaged, which could lead to wide-spread blackouts.” Frequency Response Tool automates the power system frequency response analysis process. The tool performs initial estimation of the system frequency parameters (initial frequency, minimum frequency, settling point). User can visually inspect and adjust these parameters. The tool also calculates the frequency response performance metrics of the system, archives the historic events and baselines the system performance. Frequency response performance characteristics of the system are calculated using phasor measurement unit (PMU) information. Methodology of the frequency response performance assessment implemented in the tool complies with the NERC Frequency response standard.

  4. Electrically powered hand tool

    DOEpatents

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  5. Organisational skills and tools.

    PubMed

    Wicker, Paul

    2009-04-01

    While this article mainly applies to practitioners who have responsibilities for leading teams or supervising practitioners, many of the skills and tools described here may also apply to students or junior practitioners. The purpose of this article is to highlight some of the main points about organisation, some of the organisational skills and tools that are available, and some examples of how these skills and tools can be used to make practitioners more effective at organising their workload. It is important to realise that organising work and doing work are two completely different things and shouldn't be mixed up. For example, it would be very difficult to start organising work in the middle of a busy operating list: the organisation of the work must come before the work starts and therefore preparation is often an important first step in organising work. As such, some of the tools and skills described in this article may need to be used hours or even days prior to the actual work taking place.

  6. Workplace Counseling Tools.

    ERIC Educational Resources Information Center

    Kirk, James J.; Woody, Connie; Burns, Naomi; Howard, Sherrie; Rice, Misty

    This publication describes counseling approaches supervisors and human resource professionals can use to help marginal employees become better adjusted and more productive in the workplace. Three case studies are also provided for training purposes. The counseling tools are as follows: (1) Adlerian counseling, involving the belief that humans'…

  7. Healthy Homes Tools

    ERIC Educational Resources Information Center

    Peek, Gina; Lyon, Melinda; Russ, Randall

    2012-01-01

    Extension is focusing on healthy homes programming. Extension educators are not qualified to diagnose consumers' medical problems as they relate to housing. We cannot give medical advice. Instead, we can help educate consumers about home conditions that may affect their well-being. Extension educators need appropriate healthy homes tools to…

  8. Next Generation CTAS Tools

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2000-01-01

    The FAA's Free Flight Phase 1 Office is in the process of deploying the current generation of CTAS tools, which are the Traffic Management Advisor (TMA) and the passive Final Approach Spacing Tool (pFAST), at selected centers and airports. Research at NASA is now focussed on extending the CTAS software and computer human interfaces to provide more advanced capabilities. The Multi-center TMA (McTMA) is designed to operate at airports where arrival flows originate from two or more centers whose boundaries are in close proximity to the TRACON boundary. McTMA will also include techniques for routing arrival flows away from congested airspace and around airspace reserved for arrivals into other hub airports. NASA is working with FAA and MITRE to build a prototype McTMA for the Philadelphia airport. The active Final Approach Spacing Tool (aFAST) provides speed and heading advisories to help controllers achieve accurate spacing between aircraft on final approach. These advisories will be integrated with those in the existing pFAST to provide a set of comprehensive advisories for controlling arrival traffic from the TRACON boundary to touchdown at complex, high-capacity airports. A research prototype of aFAST, designed for the Dallas-Fort Worth is in an advanced stage of development. The Expedite Departure Path (EDP) and Direct-To tools are designed to help controllers guide departing aircraft out of the TRACON airspace and to climb to cruise altitude along the most efficient routes.

  9. Risk Management Implementation Tool

    NASA Technical Reports Server (NTRS)

    Wright, Shayla L.

    2004-01-01

    Continuous Risk Management (CM) is a software engineering practice with processes, methods, and tools for managing risk in a project. It provides a controlled environment for practical decision making, in order to assess continually what could go wrong, determine which risk are important to deal with, implement strategies to deal with those risk and assure the measure effectiveness of the implemented strategies. Continuous Risk Management provides many training workshops and courses to teach the staff how to implement risk management to their various experiments and projects. The steps of the CRM process are identification, analysis, planning, tracking, and control. These steps and the various methods and tools that go along with them, identification, and dealing with risk is clear-cut. The office that I worked in was the Risk Management Office (RMO). The RMO at NASA works hard to uphold NASA s mission of exploration and advancement of scientific knowledge and technology by defining and reducing program risk. The RMO is one of the divisions that fall under the Safety and Assurance Directorate (SAAD). I worked under Cynthia Calhoun, Flight Software Systems Engineer. My task was to develop a help screen for the Continuous Risk Management Implementation Tool (RMIT). The Risk Management Implementation Tool will be used by many NASA managers to identify, analyze, track, control, and communicate risks in their programs and projects. The RMIT will provide a means for NASA to continuously assess risks. The goals and purposes for this tool is to provide a simple means to manage risks, be used by program and project managers throughout NASA for managing risk, and to take an aggressive approach to advertise and advocate the use of RMIT at each NASA center.

  10. Modification of SRIM-calculated dose and injected ion profiles due to sputtering, injected ion buildup and void swelling

    SciTech Connect

    Wang, Jing; Toloczko, Mychailo B.; Bailey, Nathan; Garner, Frank A.; Gigax, Jonathan; Shao, Lin

    2016-11-01

    In radiation effects on materials utilizing self-ion irradiations, it is necessary to calculate the local displacement damage level and ion injection profile because of the short distance that self-ions travel in a material and because of the strong variation of displacement rate with depth in a specimen. The most frequently used tool for this is the software package called Stopping and Range of Ions in Matter (SRIM). A SRIM-calculated depth-dependent dose level is usually determined under the implicit assumption that the target does not undergo any significant changes in volume during the process, in particular SRIM ignores the effect of sputtering, injected ions, and void swelling on the redistribution of the dose and injected atom profiles. This approach become increasingly invalid as the ion fluence reaches ever higher levels, especially for low energy ion irradiations. The original surface is not maintained due to sputter-induced erosion, while within the irradiated region of the specimen, injected ions are adding material, and if void swelling is occurring, it is creating empty space. An iterative mathematical treatment of SRIM outputs to produce corrected dose and injected atom profiles is presented along with examples differences between SRIM-calculated values and corrected values over a range of typical ion energies.

  11. Ion thruster performance model

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.

    1984-01-01

    A model of ion thruster performance is developed for high flux density, cusped magnetic field thruster designs. This model is formulated in terms of the average energy required to produce an ion in the discharge chamber plasma and the fraction of these ions that are extracted to form the beam. The direct loss of high energy (primary) electrons from the plasma to the anode is shown to have a major effect on thruster performance. The model provides simple algebraic equations enabling one to calculate the beam ion energy cost, the average discharge chamber plasma ion energy cost, the primary electron density, the primary-to-Maxwellian electron density ratio and the Maxwellian electron temperature. Experiments indicate that the model correctly predicts the variation in plasma ion energy cost for changes in propellant gas (Ar, Kr and Xe), grid transparency to neutral atoms, beam extraction area, discharge voltage, and discharge chamber wall temperature. The model and experiments indicate that thruster performance may be described in terms of only four thruster configuration dependent parameters and two operating parameters. The model also suggests that improved performance should be exhibited by thruster designs which extract a large fraction of the ions produced in the discharge chamber, which have good primary electron and neutral atom containment and which operate at high propellant flow rates.

  12. Ion channels in microbes

    PubMed Central

    Martinac, Boris; Saimi, Yoshiro; Kung, Ching

    2008-01-01

    Summary Studies of ion channels have for long been dominated by the animalcentric, if not anthropocentric view of physiology. The structures and activities of ion channels had, however, evolved long before the appearance of complex multicellular organisms on Earth. The diversity of ion channels existing in cellular membranes of prokaryotes is a good example. Though at first it may appear as a paradox that most of what we know about the structure of eukaryotic ion channels is based on the structure of bacterial channels, this should not be surprising given the evolutionary relatedness of all living organisms and suitability of microbial cells for structural studies of biological macromolecules in a laboratory environment. Genome sequences of the human as well as various microbial, plant and animal organisms unambiguously established the evolutionary links, whereas crystallographic studies of the structures of major types of ion channels published over the last decade clearly demonstrated the advantage of using microbes as experimental organisms. The purpose of this review is not only to provide an account of acquired knowledge on microbial ion channels but also to show that the study of microbes and their ion channels may also hold a key to solving unresolved molecular mysteries in the future. PMID:18923187

  13. Polarized negative ions

    SciTech Connect

    Haeberli, W.

    1981-04-01

    This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited state (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.

  14. Ion photon emission microscopy

    NASA Astrophysics Data System (ADS)

    Rossi, P.; Doyle, B. L.; Banks, J. C.; Battistella, A.; Gennaro, G.; McDaniel, F. D.; Mellon, M.; Vittone, E.; Vizkelethy, G.; Wing, N. D.

    2003-09-01

    A new ion-induced emission microscopy has been invented and demonstrated, which is called ion photon emission microscopy (IPEM). It employs a low current, broad ion beam impinging on a sample, previously coated or simply covered with a few microns of a fast, highly efficient phosphor layer. The light produced at the single ion impact point is collected with an optical microscope and projected at high magnification onto a single photon position sensitive detector (PSD). This allows maps of the ion strike effects to be produced, effectively removing the need for a microbeam. Irradiation in air and even the use of alpha particle sources with no accelerator are possible. Potential applications include ion beam induced charge collection studies of semiconducting and insulating materials, single event upset studies on microchips and even biological cells in radiobiological effectiveness experiments. We describe the IPEM setup, including a 60× OM-40 microscope with a 1.5 mm hole for the beam transmission and a Quantar PSD with 60 μm pixel. Bicron plastic scintillator blades of 10 μm were chosen as a phosphor for their nanosecond time resolution, homogeneity, utility and commercial availability. The results given in this paper are for a prototype IPEM system. They indicate a resolution of ˜12 μm, the presence of a spatial halo and a He-ion efficiency of ˜20%. This marks the first time that nuclear microscopy has been performed with a radioactive source.

  15. Ion channels in inflammation.

    PubMed

    Eisenhut, Michael; Wallace, Helen

    2011-04-01

    Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.

  16. Measuring and Imaging Metal Ions With Fluorescence-Based Biosensors: Speciation, Selectivity, Kinetics, and Other Issues.

    PubMed

    Thompson, Richard B; Fierke, Carol A

    2017-01-01

    Fluorescence-based biosensors have shown themselves to be a powerful tool for the study of a variety of chemical species in biological systems, notably including metal ions. This chapter provides an overview of several important issues in using such sensors to study metallobiochemistry. These issues include selectivity for the analyte over potential interferents, including those that do not themselves induce a signal, the different forms in which metal ions are found (speciation), the utility of metal ion buffers, and the importance of kinetics in studying metal ion binding reactions. Finally, the chapter briefly discusses some of the issues in understanding whole-organism distribution of metal ions and its control.

  17. Tools for the Future of Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Geesaman, Donald

    2014-03-01

    The challenges of Nuclear Physics, especially in understanding strongly interacting matter in all its forms in the history of the universe, place ever higher demands on the tools of the field, including the workhorse, accelerators. These demands are not just higher energy and higher luminosity. To recreate the matter that fleetingly was formed in the origin of the heavy elements, we need higher power heavy-ion accelerators and creative techniques to harvest the isotopes. We also need high-current low-energy accelerators deep underground to detect the very slow rate reactions in stellar burning. To explore the three dimensional distributions of high-momentum quarks in hadrons and to search for gluonic excitations we need high-current CW electron accelerators. Understanding the gluonic structure of nuclei and the three dimensional distributions of partons at lower x, we need high-luminosity electron-ion colliders that also have the capabilities to prepare, preserve and manipulate the polarization of both beams. A search for the critical point in the QCD phase diagram demands high luminosity beams over a broad range of species and energy. With advances in cavity design and construction, beam manipulation and cooling, and ion sources and targets, the Nuclear Physics community, in the U.S. and internationally has a coordinated vision to deliver this exciting science. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  18. Ion dynamics during seizures

    PubMed Central

    Raimondo, Joseph V.; Burman, Richard J.; Katz, Arieh A.; Akerman, Colin J.

    2015-01-01

    Changes in membrane voltage brought about by ion fluxes through voltage and transmitter-gated channels represent the basis of neural activity. As such, electrochemical gradients across the membrane determine the direction and driving force for the flow of ions and are therefore crucial in setting the properties of synaptic transmission and signal propagation. Ion concentration gradients are established by a variety of mechanisms, including specialized transporter proteins. However, transmembrane gradients can be affected by ionic fluxes through channels during periods of elevated neural activity, which in turn are predicted to influence the properties of on-going synaptic transmission. Such activity-induced changes to ion concentration gradients are a feature of both physiological and pathological neural processes. An epileptic seizure is an example of severely perturbed neural activity, which is accompanied by pronounced changes in intracellular and extracellular ion concentrations. Appreciating the factors that contribute to these ion dynamics is critical if we are to understand how a seizure event evolves and is sustained and terminated by neural tissue. Indeed, this issue is of significant clinical importance as status epilepticus—a type of seizure that does not stop of its own accord—is a life-threatening medical emergency. In this review we explore how the transmembrane concentration gradient of the six major ions (K+, Na+, Cl−, Ca2+, H+and HCO3−) is altered during an epileptic seizure. We will first examine each ion individually, before describing how multiple interacting mechanisms between ions might contribute to concentration changes and whether these act to prolong or terminate epileptic activity. In doing so, we will consider how the availability of experimental techniques has both advanced and restricted our ability to study these phenomena. PMID:26539081

  19. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1996-01-01

    An improved magnetically-confined anode plasma pulsed ion beam source. Beam rotation effects and power efficiency are improved by a magnetic design which places the separatrix between the fast field flux structure and the slow field structure near the anode of the ion beam source, by a gas port design which localizes the gas delivery into the gap between the fast coil and the anode, by a pre-ionizer ringing circuit connected to the fast coil, and by a bias field means which optimally adjusts the plasma formation position in the ion beam source.

  20. ION ROCKET ENGINE

    DOEpatents

    Ehlers, K.W.; Voelker, F. III

    1961-12-19

    A thrust generating engine utilizing cesium vapor as the propellant fuel is designed. The cesium is vaporized by heat and is passed through a heated porous tungsten electrode whereby each cesium atom is fonized. Upon emergfng from the tungsten electrode, the ions are accelerated rearwardly from the rocket through an electric field between the tungsten electrode and an adjacent accelerating electrode grid structure. To avoid creating a large negative charge on the space craft as a result of the expulsion of the positive ions, a source of electrons is disposed adjacent the ion stream to neutralize the cesium atoms following acceleration thereof. (AEC)

  1. Heavy-ion dosimetry

    SciTech Connect

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained.

  2. ION PRODUCING MECHANISM

    DOEpatents

    Lawrence, E.O.

    1958-09-16

    Improvements are presented in calutron devices and, more specifically, dealswith an improved mounting arrangement fer the ion source of the calutron. An important feature of the invention resides in a pluraiity of insulators so mounted as to be accessible from the exterior of the calutron tank and supporting at their inner ends the ion source. These insutators are arranged in mutually parallel relation and also parallel to the flux of the nmgnetic field, whereby the strain of the supporting elements is reduced to a minimum. In addition the support assembly is secured to a removable wall portion of the task to facilitate withdrawal and examination of the ion producing mechanism.

  3. Relating to ion detection

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2001-01-01

    The apparatus and method provide a technique for improving detection of alpha and/or beta emitting sources on items or in locations using indirect means. The emission forms generate ions in a medium surrounding the item or location and the medium is then moved to a detecting location where the ions are discharged to give a measure of the emission levels. To increase the level of ions generated and render the system particularly applicable for narrow pipes and other forms of conduits, the medium pressure is increased above atmospheric pressure. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

  4. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  5. Simulations of ion current in realistic models of ion channels: the KcsA potassium channel.

    PubMed

    Burykin, A; Schutz, C N; Villá, J; Warshel, A

    2002-05-15

    the current in realistic models of ion channels should provide a powerful tool for studies of the biologic function of such systems, including the analysis of the effect of mutations, pH, and electric potentials.

  6. Tool use by aquatic animals

    PubMed Central

    Mann, Janet; Patterson, Eric M.

    2013-01-01

    Tool-use research has focused primarily on land-based animals, with less consideration given to aquatic animals and the environmental challenges and conditions they face. Here, we review aquatic tool use and examine the contributing ecological, physiological, cognitive and social factors. Tool use among aquatic animals is rare but taxonomically diverse, occurring in fish, cephalopods, mammals, crabs, urchins and possibly gastropods. While additional research is required, the scarcity of tool use can likely be attributable to the characteristics of aquatic habitats, which are generally not conducive to tool use. Nonetheless, studying tool use by aquatic animals provides insights into the conditions that promote and inhibit tool-use behaviour across biomes. Like land-based tool users, aquatic animals tend to find tools on the substrate and use tools during foraging. However, unlike on land, tool users in water often use other animals (and their products) and water itself as a tool. Among sea otters and dolphins, the two aquatic tool users studied in greatest detail, some individuals specialize in tool use, which is vertically socially transmitted possibly because of their long dependency periods. In all, the contrasts between aquatic- and land-based tool users enlighten our understanding of the adaptive value of tool-use behaviour. PMID:24101631

  7. Web Tools: The Second Generation

    ERIC Educational Resources Information Center

    Pascopella, Angela

    2008-01-01

    Web 2.0 tools and technologies, or second generation tools, help districts to save time and money, and eliminate the need to transfer or move files back and forth across computers. Many Web 2.0 tools help students think critically and solve problems, which falls under the 21st-century skills. The second-generation tools are growing in popularity…

  8. Studies of Electron-Ion Interactions Using the CRYRING Heavy-Ion Storage Ring Facility

    DTIC Science & Technology

    2005-06-01

    were measured at CRYRING but not ASTRID, and relative cross sections were measured over a broader energy range in ASTRID as compared with CRYRING. We...storage ring facility, has proved to be a powerful tool for measurements of branching ratios in recombination of polyatomic molecular ions. However...because well-resolved mass peaks facilitate the measurement of product branching ratios. Deuterated molecules and peak fitting procedures will be applied to

  9. Flufenamic acid as an ion channel modulator

    PubMed Central

    Guinamard, Romain; Simard, Christophe; Negro, Christopher Del

    2014-01-01

    Flufenamic acid has been known since the 1960s to have anti-inflammatory properties attributable to the reduction of prostaglandin synthesis. Thirty years later, flufenamic acid appeared to be an ion channel modulator. Thus, while its use in medicine diminished, its use in ionic channel research expanded. Flufenamic acid commonly affects non-selective cation channels and chloride channels, but also modulates potassium, calcium and sodium channels with effective concentrations ranging from 10-6 M in TRPM4 channel inhibition to 10-3 M in two-pore outwardly rectifying potassium channel activation. Because flufenamic acid effects develop and reverse rapidly, it is a convenient and widely used tool. However, given the broad spectrum of its targets, experimental results have to be interpreted cautiously. Here we provide an overview of ion channels targeted by flufenamic acid to aid in interpreting its effects at the molecular, cellular, and systems levels. If it is used with good practices, flufenamic acid remains a useful tool for ion channel research. Understanding the targets of FFA may help reevaluate its physiological impacts and revive interest in its therapeutic potential. PMID:23356979

  10. Microdosimetry in ion-beam therapy

    NASA Astrophysics Data System (ADS)

    Magrin, Giulio; Mayer, Ramona

    2015-05-01

    The information of the dose is not sufficiently describing the biological effects of ions on tissue since it does not express the radiation quality, i.e. the heterogeneity of the processes due to the slowing-down and the fragmentation of the particles when crossing a target. Depending on different circumstances, the radiation quality can be determined using measurements, calculations, or simulations. Microdosimeters are the primary tools used to provide the experimental information of the radiation quality and their role is becoming crucial for the recent clinical developments in particular with carbon ion therapy. Microdosimetry is strongly linked to the biological effectiveness of the radiation since it provides the physical parameters which explicitly distinguish the radiation for its capability of damaging cells. In the framework of ion-beam therapy microdosimetry can be used in the preparation of the treatment to complement radiobiological experiments and to analyze the modification of the radiation quality in phantoms. A more ambitious goal is to perform the measurements during the irradiation procedure to determine the non-targeted radiation and, more importantly, to monitor the modification of the radiation quality inside the patient. These procedures provide the feedback of the treatment directly beneficial for the single patient but also for the characterization of the biological effectiveness in general with advantages for all future treatment. Traditional and innovative tools are currently under study and an outlook of present experience and future development is presented here.

  11. Avionics System Architecture Tool

    NASA Technical Reports Server (NTRS)

    Chau, Savio; Hall, Ronald; Traylor, marcus; Whitfield, Adrian

    2005-01-01

    Avionics System Architecture Tool (ASAT) is a computer program intended for use during the avionics-system-architecture- design phase of the process of designing a spacecraft for a specific mission. ASAT enables simulation of the dynamics of the command-and-data-handling functions of the spacecraft avionics in the scenarios in which the spacecraft is expected to operate. ASAT is built upon I-Logix Statemate MAGNUM, providing a complement of dynamic system modeling tools, including a graphical user interface (GUI), modeling checking capabilities, and a simulation engine. ASAT augments this with a library of predefined avionics components and additional software to support building and analyzing avionics hardware architectures using these components.

  12. Building energy analysis tool

    DOEpatents

    Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars

    2016-04-12

    A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.

  13. Fluid blade disablement tool

    DOEpatents

    Jakaboski, Juan-Carlos [Albuquerque, NM; Hughs, Chance G [Albuquerque, NM; Todd, Steven N [Rio Rancho, NM

    2012-01-10

    A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.

  14. Motif enrichment tool.

    PubMed

    Blatti, Charles; Sinha, Saurabh

    2014-07-01

    The Motif Enrichment Tool (MET) provides an online interface that enables users to find major transcriptional regulators of their gene sets of interest. MET searches the appropriate regulatory region around each gene and identifies which transcription factor DNA-binding specificities (motifs) are statistically overrepresented. Motif enrichment analysis is currently available for many metazoan species including human, mouse, fruit fly, planaria and flowering plants. MET also leverages high-throughput experimental data such as ChIP-seq and DNase-seq from ENCODE and ModENCODE to identify the regulatory targets of a transcription factor with greater precision. The results from MET are produced in real time and are linked to a genome browser for easy follow-up analysis. Use of the web tool is free and open to all, and there is no login requirement. ADDRESS: http://veda.cs.uiuc.edu/MET/.

  15. Shock absorber servicing tool

    NASA Technical Reports Server (NTRS)

    Koepler, Jack L. (Inventor); Hill, Robert L. (Inventor)

    1981-01-01

    A tool to assist in the servicing of a shock absorber wherein the shock absorber is constructed of a pair of aligned gas and liquid filled chambers. Each of the chambers is separated by a movable separator member. Maximum efficiency of the shock absorber is achieved in the locating of a precise volume of gas within the gas chamber and a precise volume of liquid within the liquid chamber. The servicing tool of this invention employs a rod which is to connect with the separator and by observation of the position of the rod with respect to the gauge body, the location of the separator is ascertained even though it is not directly observable.

  16. EDCATS: An Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Heard, Pamala D.

    1998-01-01

    The purpose of this research is to explore the development of Marshall Space Flight Center Unique Programs. These academic tools provide the Education Program Office with important information from the Education Computer Aided Tracking System (EDCATS). This system is equipped to provide on-line data entry, evaluation, analysis, and report generation, with full archiving for all phases of the evaluation process. Another purpose is to develop reports and data that is tailored to Marshall Space Flight Center Unique Programs. It also attempts to acquire knowledge on how, why, and where information is derived. As a result, a user will be better prepared to decide which available tool is the most feasible for their reports.

  17. Pneumatic soil removal tool

    DOEpatents

    Neuhaus, John E.

    1992-01-01

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw.

  18. Load Model Data Tool

    SciTech Connect

    David Chassin, Pavel Etingov

    2013-04-30

    The LMDT software automates the process of the load composite model data preparation in the format supported by the major power system software vendors (GE and Siemens). Proper representation of the load composite model in power system dynamic analysis is very important. Software tools for power system simulation like GE PSLF and Siemens PSSE already include algorithms for the load composite modeling. However, these tools require that the input information on composite load to be provided in custom formats. Preparation of this data is time consuming and requires multiple manual operations. The LMDT software enables to automate this process. Software is designed to generate composite load model data. It uses the default load composition data, motor information, and bus information as an input. Software processes the input information and produces load composition model. Generated model can be stored in .dyd format supported by GE PSLF package or .dyr format supported by Siemens PSSE package.

  19. Stack Trace Analysis Tool

    SciTech Connect

    2013-02-19

    STAT is a light weight debugging tool that gathers and merges stack traces from all of the processes in a parallell application. STAT uses the MRNet tree based overlay network to broadcast commands from the tool front-end to the STAT daemons and for the front-end to gather the traces from the STAT daemons. As the traces propagate through the MRNet network tree, they are merged across all tasks to from a single call prefix tree. The call prefix tree can be examined to identify tasks with similar function call patterns and to delineate a small set of equivalence slasses. A representative task from each of these classes can then be fed into a full feature debugger like TotalView for root cause analysis.

  20. FASTBUS simulation tools

    SciTech Connect

    Dean, T.D. ); Haney, M.J. )

    1992-08-01

    In this paper a generalized model of a FASTBUS master is presented. The model is used with simulation tools to aid in the specification, design, and production of FASTBUS slave modules. The model provides a mechanism to interact with the electrical schematics and software models to predict performance. The model is written in the IEEE std 1076-1987 hardware description language VHDL. A model of the ATC logic is also presented. VHDL was chosen to provide portability to various platforms and simulation tools. The models, in conjunction with most commercially available simulators, will perform all of the transactions specified in IEEE std 960-1989. The models may be used to study the behavior of electrical schematics and other software models and detect violations of the FASTBUS protocol. For example, a hardware design of a slave module could be studied, protocol violations detected and corrected before committing money to prototype development.

  1. A System Analysis Tool

    SciTech Connect

    CAMPBELL,PHILIP L.; ESPINOZA,JUAN

    2000-06-01

    In this paper we describe a tool for analyzing systems. The analysis is based on program slicing. It answers the following question for the software: if the value of a particular variable changes, what other variable values also change, and what is the path in between? program slicing was developed based on intra-procedure control and data flow. It has been expanded commercially to inter-procedure flow. However, we extend slicing to collections of programs and non-program entities, which we term multi-domain systems. The value of our tool is that an analyst can model the entirety of a system, not just the software, and we believe that this makes for a significant increase in power. We are building a prototype system.

  2. Pneumatic soil removal tool

    DOEpatents

    Neuhaus, J.E.

    1992-10-13

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw. 3 figs.

  3. Tool for Movable Ceiling

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Bendix Corp., with the help of NASA's Kennedy Space Center, developed a tool to equalize tensions in the 150 cables of the ceiling. This inexpensive tool used in concert halls was developed first for elevator and crane cables used to lift heavy space vehicles. University of Akron's performing arts hall has been developed to shrink and expand to accommodate audiences as large as 3,000 and as small as 900. Once the hall has been sound tuned, various positions of this ingenious ceiling and related acoustic curtains may be called into play immediately by pushing buttons on a control console programmed previously. With the touch of a finger before an event, a technician may condition the hall for chamber music, symphony, or theater.

  4. Automated Standard Hazard Tool

    NASA Technical Reports Server (NTRS)

    Stebler, Shane

    2014-01-01

    The current system used to generate standard hazard reports is considered cumbersome and iterative. This study defines a structure for this system's process in a clear, algorithmic way so that standard hazard reports and basic hazard analysis may be completed using a centralized, web-based computer application. To accomplish this task, a test server is used to host a prototype of the tool during development. The prototype is configured to easily integrate into NASA's current server systems with minimal alteration. Additionally, the tool is easily updated and provides NASA with a system that may grow to accommodate future requirements and possibly, different applications. Results of this project's success are outlined in positive, subjective reviews complete by payload providers and NASA Safety and Mission Assurance personnel. Ideally, this prototype will increase interest in the concept of standard hazard automation and lead to the full-scale production of a user-ready application.

  5. Automatically-Programed Machine Tools

    NASA Technical Reports Server (NTRS)

    Purves, L.; Clerman, N.

    1985-01-01

    Software produces cutter location files for numerically-controlled machine tools. APT, acronym for Automatically Programed Tools, is among most widely used software systems for computerized machine tools. APT developed for explicit purpose of providing effective software system for programing NC machine tools. APT system includes specification of APT programing language and language processor, which executes APT statements and generates NC machine-tool motions specified by APT statements.

  6. COASTING ARC ION SOURCE

    DOEpatents

    Foster, J.S. Jr.

    1957-09-10

    An improved ion source is described and in particular a source in which the ions are efficiently removed. The plasma is generated in a tubular amode structure by the oscillation of electrons in an axial magnetic field, as in the Phillips Ion Gage. The novel aspect of the source is the expansion of the plasma as it leaves the anode structure, so as to reduce the ion density at the axis of the anode and present a uniform area of plasma to an extraction grid. The structure utilized in the present patent to expand the plasma comprises flange members of high permeability at the exitgrid end of the amode to diverge the magnetic field adjacent the exit.

  7. Ion sensing method

    DOEpatents

    Smith, Richard Harding; Martin, Glenn Brian

    2004-05-18

    The present invention allows the determination of trace levels of ionic substances in a sample solution (ions, metal ions, and other electrically charged molecules) by coupling a separation method, such as liquid chromatography, with ion selective electrodes (ISE) prepared so as to allow detection at activities below 10.sup.-6 M. The separation method distributes constituent molecules into fractions due to unique chemical and physical properties, such as charge, hydrophobicity, specific binding interactions, or movement in an electrical field. The separated fractions are detected by means of the ISE(s). These ISEs can be used singly or in an array. Accordingly, modifications in the ISEs are used to permit detection of low activities, specifically, below 10.sup.-6 M, by using low activities of the primary analyte (the molecular species which is specifically detected) in the inner filling solution of the ISE. Arrays constructed in various ways allow flow-through sensing for multiple ions.

  8. Ion beam texturing

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.

    1976-01-01

    A microscopic surface texture is created by sputter etching a surface while simultaneously sputter depositing a lower sputter yield material onto the surface. A xenon ion beam source has been used to perform this texturing process on samples as large as three centimeters in diameter. Ion beam textured surface structures have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, Stainless steel, Au, and Ag. Surfaces have been textured using a variety of low sputter yield materials - Ta, Mo, Nb, and Ti. The initial stages of the texture creation have been documented, and the technique of ion beam sputter removal of any remaining deposited material has been studied. A number of other texturing parameters have been studied such as the variation of the texture with ion beam power, surface temperature, and the rate of texture growth with sputter etching time.

  9. [Particle therapy: carbon ions].

    PubMed

    Pommier, Pascal; Hu, Yi; Baron, Marie-Hélène; Chapet, Olivier; Balosso, Jacques

    2010-07-01

    Carbon ion therapy is an innovative radiation therapy. It has been first proposed in the forties by Robert Wilson, however the first dedicated centres for human care have been build up only recently in Japan and Germany. The interest of carbon ion is twofold: 1) the very sharp targeting of the tumour with the so called spread out Bragg peak that delivers most of the beam energy in the tumour and nothing beyond it, sparing very efficiently the healthy tissues; 2) the higher relative biological efficiency compared to X rays or protons, able to kill radioresistant tumour cells. Both properties make carbon ions the elective therapy for non resectable radioresistant tumours loco-regionally threatening. The technical and clinical experience accumulated during the recent decades is summarized in this paper along with a detailed presentation of the elective indications. A short comparison between conventional radiotherapy and hadrontherapy is proposed for the indications which are considered as priority for carbon ions.

  10. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1997-01-01

    An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.

  11. Focused ion beam system

    SciTech Connect

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  12. Ion manipulation device

    SciTech Connect

    Anderson, Gordon A; Smith, Richard D; Ibrahim, Yehia M; Baker, Erin M

    2014-09-16

    An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area.

  13. Ion Milling of Sapphire

    NASA Technical Reports Server (NTRS)

    Gregory, Don A.; Herren, Kenneth A.

    2004-01-01

    The ion milling of sapphire is a complicated operation due to several characteristics of the material itself. It is a relatively hard transparent nonconductive crystalline material that does not transfer heat nearly as well as metals that have been successfully ion milled in the past. This investigation involved designing an experimental arrangement, using existing ion milling equipment, as the precursor to figuring the surface of sapphire and other insulating optical materials. The experimental arrangement employs a laser probe beam to constantly monitor the stresses being induced in the material, as it is being ion milled. The goal is to determine if the technique proposed would indeed indicate the stress being induced in the material so that these stresses can be managed to prevent failure of the optic.

  14. Ion exchange phenomena

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  15. Focused ion beam system

    DOEpatents

    Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  16. Channel nut tool

    DOEpatents

    Olson, Marvin

    2016-01-12

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  17. User Interface Software Tools

    DTIC Science & Technology

    1994-08-01

    97. 19. Mark A. Flecchia and R. Daniel Bergeron. Specifying Complex Dialogs in ALGAE. Human Factors in Computing Systems, CHI+GI󈨛, Toronto, Ont...Spreadsheet Model. Tech. Rept. GIT-GVU-93-20, Georgia Tech Graphics, Visualization and Usability Center, May, 1993. 35. Daniel H.H. Ingalls. "I’he Smalltalk...Interactive Graphical Applications". Comm. ACM 36,4 (April 1993), 41-55. User Interface Software Tools -39 38. Anthony Karrer and Walt Scacchi . Requirements

  18. Field Information Support Tool

    DTIC Science & Technology

    2010-09-01

    varying degrees of market share around the world. These operating systems include, but are not limited to: Microsoft Windows Mobile, Symbian OS...flexibility of the Android operating system , FIST can enable a much better level of collection at the forward edge of the operating environment...maximum 200 words) The Field Information Support Tool (FIST) is a field-based collection system using commercial-off-the-shelf (COTS) smartphones

  19. Analysis/Design Tool

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Excelerator II, developed by INTERSOLV, Inc., provides a complete environment for rules-based expert systems. The software incorporates NASA's C Language Integrated Production System (CLIPS), a shell for constructing expert systems. Excelerator II provides complex verification and transformation routines based on matching that is simple and inexpensive. *Excelerator II was sold to SELECT Software Tools in June 1997 and is now called SELECT Excelerator. SELECT has assumed full support and maintenance for the product line.

  20. Tools for the trade

    NASA Technical Reports Server (NTRS)

    Gillman, Wallace M.

    1990-01-01

    A brief review is given of daily operations in the airline business, with emphasis on the decisions made by pilots and the information used to make those decisions. Various wind shears are discussed as they affect daily operations. The discussion of tools focuses on airborne reactive and predictive systems. The escape maneuver used to fly out of a severe windshear is from a pilot's point of view.

  1. Graphical Contingency Analysis Tool

    SciTech Connect

    2010-03-02

    GCA is a visual analytic tool for power grid contingency analysis to provide more decision support for power grid operations. GCA allows power grid operators to quickly gain situational awareness of power grid by converting large amounts of operational data to graphic domain with a color contoured map; identify system trend and foresee and discern emergencies by performing trending analysis; identify the relationships between system configurations and affected assets by conducting clustering analysis; and identify the best action by interactively evaluate candidate actions.

  2. Friction Stir Weld Tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  3. Friction stir weld tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  4. Java Vertexing Tools

    SciTech Connect

    Strube, Jan; Graf, Norman; /SLAC

    2006-03-03

    This document describes the implementation of the topological vertex finding algorithm ZVTOP within the org.lcsim reconstruction and analysis framework. At the present date, Java vertexing tools allow users to perform topological vertexing on tracks that have been obtained from a Fast MC simulation. An implementation that will be able to handle fully reconstructed events is being designed from the ground up for longevity and maintainability.

  5. Program Management Tool

    NASA Technical Reports Server (NTRS)

    Gawadiak, Yuri; Wong, Alan; Maluf, David; Bell, David; Gurram, Mohana; Tran, Khai Peter; Hsu, Jennifer; Yagi, Kenji; Patel, Hemil

    2007-01-01

    The Program Management Tool (PMT) is a comprehensive, Web-enabled business intelligence software tool for assisting program and project managers within NASA enterprises in gathering, comprehending, and disseminating information on the progress of their programs and projects. The PMT provides planning and management support for implementing NASA programmatic and project management processes and requirements. It provides an online environment for program and line management to develop, communicate, and manage their programs, projects, and tasks in a comprehensive tool suite. The information managed by use of the PMT can include monthly reports as well as data on goals, deliverables, milestones, business processes, personnel, task plans, monthly reports, and budgetary allocations. The PMT provides an intuitive and enhanced Web interface to automate the tedious process of gathering and sharing monthly progress reports, task plans, financial data, and other information on project resources based on technical, schedule, budget, and management criteria and merits. The PMT is consistent with the latest Web standards and software practices, including the use of Extensible Markup Language (XML) for exchanging data and the WebDAV (Web Distributed Authoring and Versioning) protocol for collaborative management of documents. The PMT provides graphical displays of resource allocations in the form of bar and pie charts using Microsoft Excel Visual Basic for Application (VBA) libraries. The PMT has an extensible architecture that enables integration of PMT with other strategic-information software systems, including, for example, the Erasmus reporting system, now part of the NASA Integrated Enterprise Management Program (IEMP) tool suite, at NASA Marshall Space Flight Center (MSFC). The PMT data architecture provides automated and extensive software interfaces and reports to various strategic information systems to eliminate duplicative human entries and minimize data integrity

  6. REMOTE RETRIEVING TOOL

    DOEpatents

    Fromm, L.W. Jr.

    1958-08-19

    A retrieving tool is described to securely grasp an object for emplacement in, or withdrawal from, an elongated tube. The object is grasped by hooks actuated by a wedge and cann mechanism. The mechanism on the end of a long rodlike structure is controlled by levers or bars at the access end of the tube. This device is particularly useful for positioning fuel elements within a reactor core.

  7. Sasquatch Footprint Tool

    NASA Technical Reports Server (NTRS)

    Bledsoe, Kristin

    2013-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) is the parachute system for NASA s Orion spacecraft. The test program consists of numerous drop tests, wherein a test article rigged with parachutes is extracted or released from an aircraft. During such tests, range safety is paramount, as is the recoverability of the parachutes and test article. It is crucial to establish an aircraft release point that will ensure that the article and all items released from it will land in safe locations. A new footprint predictor tool, called Sasquatch, was created in MATLAB. This tool takes in a simulated trajectory for the test article, information about all released objects, and atmospheric wind data (simulated or actual) to calculate the trajectories of the released objects. Dispersions are applied to the landing locations of those objects, taking into account the variability of winds, aircraft release point, and object descent rate. Sasquatch establishes a payload release point (e.g., where the payload will be extracted from the carrier aircraft) that will ensure that the payload and all objects released from it will land in a specified cleared area. The landing locations (the final points in the trajectories) are plotted on a map of the test range. Sasquatch was originally designed for CPAS drop tests and includes extensive information about both the CPAS hardware and the primary test range used for CPAS testing. However, it can easily be adapted for more complex CPAS drop tests, other NASA projects, and commercial partners. CPAS has developed the Sasquatch footprint tool to ensure range safety during parachute drop tests. Sasquatch is well correlated to test data and continues to ensure the safety of test personnel as well as the safe recovery of all equipment. The tool will continue to be modified based on new test data, improving predictions and providing added capability to meet the requirements of more complex testing.

  8. Frequency Response Analysis Tool

    SciTech Connect

    Etingov, Pavel V.; Kosterev, Dmitry; Dai, T.

    2014-12-01

    Frequency response has received a lot of attention in recent years at the national level, which culminated in the development and approval of North American Electricity Reliability Corporation (NERC) BAL-003-1 Frequency Response and Frequency Bias Setting Reliability Standard. This report is prepared to describe the details of the work conducted by Pacific Northwest National Laboratory (PNNL) in collaboration with the Bonneville Power Administration and Western Electricity Coordinating Council (WECC) Joint Synchronized Information Subcommittee (JSIS) to develop a frequency response analysis tool (FRAT). The document provides the details on the methodology and main features of the FRAT. The tool manages the database of under-frequency events and calculates the frequency response baseline. Frequency response calculations are consistent with frequency response measure (FRM) in NERC BAL-003-1 for an interconnection and balancing authority. The FRAT can use both phasor measurement unit (PMU) data, where available, and supervisory control and data acquisition (SCADA) data. The tool is also capable of automatically generating NERC Frequency Response Survey (FRS) forms required by BAL-003-1 Standard.

  9. Guided earth boring tool

    SciTech Connect

    McDonald, W.J.; Pittard, G.T.; Maurer, W.C.; Wasson, M.R.; Herben, W.C.

    1989-08-22

    This patent describes a controllable tool for drilling holes in soft earth. The tool comprising an elongated rigid supporting drill rod or pipe, means supporting the drill rod or pipe for earth boring or piercing movement, including means for moving the drill rod or pipe longitudinally for penetrating the earth, means for rotating the drill rod or pipe while penetrating the earth, and means for controlling the direction of movement of the drill rod or pipe along a straight or curved path. The drill rod or pipe moving and rotating means being constructed to permit addition and removal of supporting drill rod or pipe during earth penetrating operation, an earth piercing member of substantially cylindrical shape. The tool being operable to penetrate the earth upon longitudinal movement of the drill rod or pipe by the longitudinal rod or pipe moving means, and the direction controlling means comprising means causing drill rod or pipe movement in a curved path through the earth when the rod or pipe is not rotated and causing drill rod or pipe straight line movement when the rod or pipe is rotated.

  10. Fluid sampling tool

    DOEpatents

    Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.

    1999-05-25

    A fluid sampling tool for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall.

  11. GIDEP Batching Tool

    NASA Technical Reports Server (NTRS)

    Fong, Danny; Odell,Dorice; Barry, Peter; Abrahamian, Tomik

    2008-01-01

    This software provides internal, automated search mechanics of GIDEP (Government- Industry Data Exchange Program) Alert data imported from the GIDEP government Web site. The batching tool allows the import of a single parts list in tab-delimited text format into the local JPL GIDEP database. Delimiters from every part number are removed. The original part numbers with delimiters are compared, as well as the newly generated list without the delimiters. The two lists run against the GIDEP imports, and output any matches. This feature only works with Netscape 2.0 or greater, or Internet Explorer 4.0 or greater. The user selects the browser button to choose a text file to import. When the submit button is pressed, this script will import alerts from the text file into the local JPL GIDEP database. This batch tool provides complete in-house control over exported material and data for automated batch match abilities. The batching tool has the ability to match capabilities of the parts list to tables, and yields results that aid further research and analysis. This provides more control over GIDEP information for metrics and reports information not provided by the government site. This software yields results quickly and gives more control over external data from the government site in order to generate other reports not available from the external source. There is enough space to store years of data. The program relates to risk identification and management with regard to projects and GIDEP alert information encompassing flight parts for space exploration.

  12. Dynamic Contingency Analysis Tool

    SciTech Connect

    2016-01-14

    The Dynamic Contingency Analysis Tool (DCAT) is an open-platform and publicly available methodology to help develop applications that aim to improve the capabilities of power system planning engineers to assess the impact and likelihood of extreme contingencies and potential cascading events across their systems and interconnections. Outputs from the DCAT will help find mitigation solutions to reduce the risk of cascading outages in technically sound and effective ways. The current prototype DCAT implementation has been developed as a Python code that accesses the simulation functions of the Siemens PSS�E planning tool (PSS/E). It has the following features: It uses a hybrid dynamic and steady-state approach to simulating the cascading outage sequences that includes fast dynamic and slower steady-state events. It integrates dynamic models with protection scheme models for generation, transmission, and load. It models special protection systems (SPSs)/remedial action schemes (RASs) and automatic and manual corrective actions. Overall, the DCAT attempts to bridge multiple gaps in cascading-outage analysis in a single, unique prototype tool capable of automatically simulating and analyzing cascading sequences in real systems using multiprocessor computers.While the DCAT has been implemented using PSS/E in Phase I of the study, other commercial software packages with similar capabilities can be used within the DCAT framework.

  13. Fluid sampling tool

    DOEpatents

    Garcia, A.R.; Johnston, R.G.; Martinez, R.K.

    1999-05-25

    A fluid sampling tool is described for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall. 6 figs.

  14. Surface Production of Ions

    DTIC Science & Technology

    1992-05-26

    restrictions present in most surface baffle . The base pressure was 3 .. 10 ’ Torr. The experimen- conversion sources operating at 1(X) eV bombarding...are described. These guns use a novel source of cesium ions that combine the advantages of porous metal ionizers with those of aluminosilicate...emitters. Ccx um ions are chemically stored in a solid electrolyte pellet and are thermionically emitted from a porous thin film of tungsten at the surface

  15. Ions and neutralization

    NASA Astrophysics Data System (ADS)

    Poncet, A.

    After a short presentation of intensity limitations examples due to trapped ions, the processes of ionization and neutralization build up in particle accelerators and storage rings are briefly reviewed. The tolerable limits in neutralization are then assessed at the light of current theories of incoherent and coherent effects driven by ions. Finally the usual antidotes such as clearing electrodes, missing bunch schemes and beam shaking are presented.

  16. Ion Beam Processing.

    DTIC Science & Technology

    1987-03-13

    ure are only those which had the greatest effect . Several features of this periodic chart are worth not- ing: i) some elements improve more than one...from nearly all the groups of the periodic table can have beneficial effects on a given property. iv) Ions which improve properties are highlighted...here, but ions which have deleterious effects may also be implanted which facilitates the study of mechanisms of wear and corrosion. v) Elements to

  17. Miniaturized Ion Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Kaye, William J. (Inventor); Stimac, Robert M. (Inventor)

    2015-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250.degree. C., and is uniquely sensitive, particularly to explosive chemicals.

  18. High current ion source

    DOEpatents

    Brown, Ian G.; MacGill, Robert A.; Galvin, James E.

    1990-01-01

    An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.

  19. Ion electric propulsion unit

    DOEpatents

    Light, Max E; Colestock, Patrick L

    2014-01-28

    An electron cyclotron resonance (ECR) thruster is disclosed having a plasma chamber which is electrically biased with a positive voltage. The chamber bias serves to efficiently accelerate and expel the positive ions from the chamber. Electrons follow the exiting ions, serving to provide an electrically neutral exhaust plume. In a further embodiment, a downstream shaping magnetic field serves to further accelerate and/or shape the exhaust plume.

  20. Advanced ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1985-01-01

    A series of experiments conducted on a ring cusp magnetic field ion thruster; in which the anode, cathode and discharge chamber backplate were moved relative to the magnetic cusp; are described. Optimum locations for the anode, cathode and backplate which yield the lowest energy cost per plasma ion and highest extracted ion fraction are identified. The results are discussed in terms of simple physical models. The results of preliminary experiments into the operation of hollow cathodes on nitrogen and xenon over a large pressure range (0.1 to 100 Torr) are presented. They show that the cathode discharge transfers from the cathode insert to the exterior edge of the orifice plate as the interelectrode pressure is increased. Experimental evidence showing that a new ion extractor grid concept can be used to stabilize the plasma sheath at the screen grid is presented. This concept, identified by the term constrained sheath optics, is shown to hold ion beamlet divergence and impingement characteristics to stable values as the beamlet current and the net and total accelerating voltages are changed. The current status of a study of beamlet vectoring induced by displacing the accelerator and/or decelerator grids of a three grid ion extraction system relative to the screen grid is discussed.

  1. HIGH VOLTAGE ION SOURCE

    DOEpatents

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  2. Single ion heat engine

    NASA Astrophysics Data System (ADS)

    Singer, Kilian

    2015-03-01

    An experimental realization of a heat engine with a single ion is presented, which will allow for work extraction even with non-classical thermal reservoirs. To this goal a custom designed linear Paul trap with a single ion performing an Otto cycle is presented. The radial state of the ion is used as the working gas analogous to the gas in a conventional heat engine. The conventional piston is realized by the axial degrees of freedom and the axial motional excitation stores the generated work, just like a conventional fly-wheel. The heat baths can be realized by tailored laser radiation. Alternatively electrical noise can be used to control the state of the ion. The presented system possesses advantageous properties, as the working parameters can be tuned over a broad range and the motional degrees of freedom of the ion can be accurately determined. Dark resonances allow for fast stroboscopic thermometry during the entire working cycle. Monte Carlo simulations are performed to predict the efficiency and the gained work of the working cycle. We have also shown how the equations for the Carnot limit have to be modified if a squeezed thermal reservoir is employed. Furthermore structural phase transitions with laser cooled linear ion crystals are induced verifying the Kibble-Zurek mechanism.

  3. Ion energy analyzer for measurement of ion turbulent transport

    NASA Astrophysics Data System (ADS)

    Sokolov, V.; Sen, A. K.

    2012-10-01

    For local measurement of radial ion thermal transport, we developed a novel time-resolved gridded ion energy analyzer. The turbulent thermal flux is obtained by correlating fluctuations of ion temperature, plasma density and plasma velocity. The simultaneous measurement of the ion current fluctuations from an ion energy analyzer tilde I_{IEA} (t) and the fluctuation of ion saturation current from a conventional Langmuir probe tilde I_{LP} (t) allow us to determine local fluctuations of ion temperature tilde T_i (t). To reduce the effect of plasma potential fluctuations in the energy analyzer measurements, we use special a compensative circuit loop.

  4. Algal functional annotation tool

    SciTech Connect

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations to interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG

  5. Secondary ion collection and transport system for ion microprobe

    DOEpatents

    Ward, James W.; Schlanger, Herbert; McNulty, Jr., Hugh; Parker, Norman W.

    1985-01-01

    A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.

  6. Developments in focused ion beam metrology

    NASA Astrophysics Data System (ADS)

    Salen, Jesse A.; Athas, Gregory J.; Barnes, Drew; Bassom, Neil J.; Yansen, Don E.

    1998-09-01

    We present the ability of a focused ion beam system (FIB) to perform as an effective metrology tool. This feature is a benefit in areas where FIB technology is or can be used, or where pre-measurement cross-sectioning is required, such as the case in thin film head trimming, integrated circuit inspection, and micro-electromechanical device (MEMS) development. The FIB is a proven tool for taking high- resolution images, performing mills and depositions, and cross-sectioning samples. We demonstrate the FIB's ability to perform these tasks in a repeatable manner and take accurate measurements independently of the operator. First, we find a quantitative method for analyzing the image quality in order to remove any operator discrepancy. We show that this task can be achieved by analyzing the FIB's Modulation Transfer Function (MTF). The MTF is a proven method for measuring the quality of light optics, but has never been used as a standard in FIB imaging because sub- 100m pitch resolution targets can not easily be fabricated; however, we demonstrate a new method for obtaining the MTF. By correlating changes in FIB parameters to changes in the MTF, we have a FIB image standard, as well as an image calibration tool that is transparent to the operator. Second, we describe how current FIB software can use an automated 'measure tool' to take accurate measurements independently of the operator. We show that when using both these methods, the FIB is a repeatable metrology tool for a variety of applications.

  7. Recent applications of the Boltzmann master equation to heavy ion precompound decay phenomena

    SciTech Connect

    Blann, M.; Remington, B.A.

    1988-06-01

    The Boltzmann master equation (BME) is described and used as a tool to interpret preequilibrium neutron emission from heavy ion collisions gated on evaporation residue or fission fragments. The same approach is used to interpret neutron spectra gated on deep inelastic and quasi-elastic heavy ion collisions. Less successful applications of BME to proton inclusive data with 40 MeV/u incident /sup 12/C ions are presented, and improvements required in the exciton injection term are discussed.

  8. Ion Temperature Control of the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Delamere, P. A.; Schneider, N. M.; Steffl, A. J.; Robbins, S. J.

    2005-01-01

    We report on observational and theoretical studies of ion temperature in the Io plasma torus. Ion temperature is a critical factor for two reasons. First, ions are a major supplier of energy to the torus electrons which power the intense EUV emissions. Second, ion temperature determines the vertical extent of plasma along field lines. Higher temperatures spread plasma out, lowers the density and slows reaction rates. The combined effects can play a controlling role in torus energetics and chemistry. An unexpected tool for the study of ion temperature is the longitudinal structure in the plasma torus which often manifests itself as periodic brightness variations. Opposite sides of the torus (especially magnetic longitudes 20 and 200 degrees) have been observed on numerous occasions to have dramatically different brightness, density, composition, ionization state, electron temperature and ion temperature. These asymmetries must ultimately be driven by different energy flows on the opposite sides, presenting an opportunity to observe key torus processes operating under different conditions. The most comprehensive dataset for the study of longitudinal variations was obtained by the Cassini UVIS instrument during its Jupiter flyby. Steffl (Ph.D. thesis, 2005) identified longitudinal variations in all the quantities listed above wit the exception of ion temperature. We extend his work by undertaking the first search for such variation in the UVIS dataset. We also report on a 'square centimeter' model of the torus which extend the traditional 'cubic centimeter' models by including the controlling effects of ion temperature more completely.

  9. A negative ion model in the lower stratosphere

    NASA Astrophysics Data System (ADS)

    Kawamoto, H.; Ogawa, T.

    1985-12-01

    There are a number of problems in the electricity of the stratosphere at middle latitudes; e.g., the positive relation between the seasonal variations of negative polar conductivity and that of ozone density, the observed dependence of the daytime variation of conductivity on the solar zenith angle, and the interaction between the ions and aerosols, particularly the processes of the conversion from negative ions to the sulfate aerosols; e.g., ion-nucleation and the growth through multi-ion complexes. As a basic tool for investigating these problems, a negative ion chemical model was constructed in the altitude region of 15 to 30 km. Recently, the success of in situ mass analysis of stratospheric ions has revealed the nature of the most abundant ions in the stratosphere. Further, the height variations of negative ion composition between 15 and 34 km were obtained with the balloon-borne mass spectrometer by another researcher. A comparison of the calculated result with the observed result is given.

  10. A negative ion model in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Kawamoto, H.; Ogawa, T.

    1985-01-01

    There are a number of problems in the electricity of the stratosphere at middle latitudes; e.g., the positive relation between the seasonal variations of negative polar conductivity and that of ozone density, the observed dependence of the daytime variation of conductivity on the solar zenith angle, and the interaction between the ions and aerosols, particularly the processes of the conversion from negative ions to the sulfate aerosols; e.g., ion-nucleation and the growth through multi-ion complexes. As a basic tool for investigating these problems, a negative ion chemical model was constructed in the altitude region of 15 to 30 km. Recently, the success of in situ mass analysis of stratospheric ions has revealed the nature of the most abundant ions in the stratosphere. Further, the height variations of negative ion composition between 15 and 34 km were obtained with the balloon-borne mass spectrometer by another researcher. A comparison of the calculated result with the observed result is given.

  11. Applications of ion implantation for high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.; Kirkpatrick, A. R.

    1977-01-01

    Ion implantation is utilized for the dopant introduction processes necessary to fabricate a silicon solar cell. Implantation provides a versatile powerful tool for development of high efficiency cells. Advantages and problems of implantation and the present status of developmental use of the technique for solar cells are discussed.

  12. Ion channels, phosphorylation and mammalian sperm capacitation

    PubMed Central

    Visconti, Pablo E; Krapf, Dario; de la Vega-Beltrán, José Luis; Acevedo, Juan José; Darszon, Alberto

    2011-01-01

    Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies. PMID:21540868

  13. Graphene engineering by neon ion beams

    NASA Astrophysics Data System (ADS)

    Iberi, Vighter; Ievlev, Anton V.; Vlassiouk, Ivan; Jesse, Stephen; Kalinin, Sergei V.; Joy, David C.; Rondinone, Adam J.; Belianinov, Alex; Ovchinnikova, Olga S.

    2016-03-01

    Achieving the ultimate limits of lithographic resolution and material performance necessitates engineering of matter with atomic, molecular, and mesoscale fidelity. With the advent of scanning helium ion microscopy, maskless He+ and Ne+ beam lithography of 2D materials, such as graphene-based nanoelectronics, is coming to the forefront as a tool for fabrication and surface manipulation. However, the effects of using a Ne focused-ion-beam on the fidelity of structures created out of 2D materials have yet to be explored. Here, we will discuss the use of energetic Ne ions in engineering graphene nanostructures and explore their mechanical, electromechanical and chemical properties using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we are able to ascertain changes in the mechanical, electrical and optical properties of Ne+ beam milled graphene nanostructures and surrounding regions. Additionally, we are able to link localized defects around the milled graphene to ion milling parameters such as dwell time and number of beam passes in order to characterize the induced changes in mechanical and electromechanical properties of the graphene surface.

  14. Ion beam emittance from an ECRIS

    SciTech Connect

    Spädtke, P. Lang, R.; Mäder, J.; Maimone, F.; Schlei, B. R.; Tinschert, K.; Biri, S.; Rácz, R.

    2016-02-15

    Simulation of ion beam extraction from an Electron Cyclotron Resonance Ion Source (ECRIS) is a fully 3 dimensional problem, even if the extraction geometry has cylindrical symmetry. Because of the strong magnetic flux density, not only the electrons are magnetized but also the Larmor radius of ions is much smaller than the geometrical dimension of the plasma chamber (Ø 64 × 179 mm). If we assume that the influence of collisions is small on the path of particles, we can do particle tracking through the plasma if the initial coordinates of particles are known. We generated starting coordinates of plasma ions by simulation of the plasma electrons, accelerated stochastically by the 14.5 GHz radio frequency power fed to the plasma. With that we were able to investigate the influence of different electron energies on the extracted beam. Using these assumptions, we can reproduce the experimental results obtained 10 years ago, where we monitored the beam profile with the help of viewing targets. Additionally, methods have been developed to investigate arbitrary 2D cuts of the 6D phase space. To this date, we are able to discuss full 4D information. Currently, we extend our analysis tool towards 5D and 6D, respectively.

  15. 13. Relationship of east tool shed, west tool shed, residence, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Relationship of east tool shed, west tool shed, residence, claim house, and privy to each other and immediate surroundings, looking north - George Spangerberger Farmstead, 2012 West Illinois Avenue, South Hutchinson, Reno County, KS

  16. 12. Relationship of est tool shed, west tool shed, residence, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Relationship of est tool shed, west tool shed, residence, claim house, and chicken house to each other and immediate surroundings, looking southeast - George Spangerberger Farmstead, 2012 West Illinois Avenue, South Hutchinson, Reno County, KS

  17. Scanning He+ Ion Beam Microscopy and Metrology

    SciTech Connect

    Joy, David C.

    2011-11-10

    The CD-SEM has been the tool of choice for the imaging and metrology of semiconductor devices for the past three decades but now, with critical dimensions at the nanometer scale, electron beam instruments can no longer deliver adequate performance. A scanning microscope using a He+ ion beam offers superior resolution and depth of field, and provides enhanced imaging contrast. Device metrology performed using ion beam imaging produces data which is comparable to or better than that from a conventional CD-SEM although there are significant differences in the experimental conditions required and in the details of image formation. The charging generated by a He+ beam, and the sample damage that it can cause, require care in operation but are not major problems.

  18. Development of an external beam ion milliprobe

    NASA Astrophysics Data System (ADS)

    MacLaren, Stephan A.

    1990-05-01

    The goals of this Trident Project were the design, construction, testing, and initial application of an external beam ion milliprobe. The ion milliprobe is a tool for elemental analysis that employs the 1.7 million volt tandem electrostatic accelerator in Michelson C-7 to provide a beam of charged particles. The mechanism used for the analysis of elemental concentration is particle induced x ray emission (PIXE). This technique involves detecting and counting the x rays produced when the focused beam of charged particles strikes the sample to be analyzed. The design and construction of several essential specialized devices is described including an electrostatic quadrupole triplet lens, a current measuring collimator, an exit tip, and a sample enclosure. The procedures necessary to align, focus, and determine the size of the beam are discussed. Finally, the results of the initial analysis are evaluated and presented.

  19. Ion optics of RHIC EBIS

    SciTech Connect

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2011-09-10

    RHIC EBIS has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  20. Vacuum Arc Ion Sources: Recent Developments and Applications

    SciTech Connect

    Brown, Ian; Oks, Efim

    2005-05-01

    The vacuum arc ion source has evolved over the past twenty years into a standard laboratory tool for the production of high current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. The primary application of this kind of source has evolved to be ion implantation for material surface modification. Another important use is for injection of high current beams of heavy metal ions into the front ends of particle accelerators, and much excellent work has been carried out in recent years in optimizing the source for reliable accelerator application. The source also provides a valuable tool for the investigation of the fundamental plasma physics of vacuum arc plasma discharges. As the use of the source has grown and diversified, at the same time the ion source performance and operational characteristics have been improved in a variety of different ways also. Here we review the growth and status of vacuum arc ion sources around the world, and summarize some of the applications for which the sources have been used.

  1. Atomic layer deposition ultrathin film origami using focused ion beams

    NASA Astrophysics Data System (ADS)

    Supekar, O. D.; Brown, J. J.; Eigenfeld, N. T.; Gertsch, J. C.; Bright, V. M.

    2016-12-01

    Focused ion beam (FIB) micromachining is a powerful tool for maskless lithography and in recent years FIB has been explored as a tool for strain engineering. Ion beam induced deformation can be utilized as a means for folding freestanding thin films into complex 3D structures. FIB of high energy gallium (Ga+) ions induces stress by generation of dislocations and ion implantation within material layers, which create creases or folds upon mechanical relaxation enabled by motion of the material layers. One limitation on such processing is the ability to fabricate flat freestanding thin film structures. This capability is limited by the residual stresses formed during processing and fabrication of the films, which can result in initial curvature and deformation of films upon release from a sacrificial fabrication layer. This paper demonstrates folding in freestanding ultrathin films (<40 nm thin) of heterogeneous composition (metal, insulator, semiconductor, etc) with large lateral dimension structures (aspect ratio >1:1000) by ion-induced stress relaxation. The ultrathin flat structures are fabricated using atomic layer deposition on sacrificial polyimide. We have demonstrated vertical folding with 30 keV Ga+ ions in structures with lateral dimensions varying from 10 to 50 μm.

  2. Atomic layer deposition ultrathin film origami using focused ion beams.

    PubMed

    Supekar, O D; Brown, J J; Eigenfeld, N T; Gertsch, J C; Bright, V M

    2016-12-09

    Focused ion beam (FIB) micromachining is a powerful tool for maskless lithography and in recent years FIB has been explored as a tool for strain engineering. Ion beam induced deformation can be utilized as a means for folding freestanding thin films into complex 3D structures. FIB of high energy gallium (Ga(+)) ions induces stress by generation of dislocations and ion implantation within material layers, which create creases or folds upon mechanical relaxation enabled by motion of the material layers. One limitation on such processing is the ability to fabricate flat freestanding thin film structures. This capability is limited by the residual stresses formed during processing and fabrication of the films, which can result in initial curvature and deformation of films upon release from a sacrificial fabrication layer. This paper demonstrates folding in freestanding ultrathin films (<40 nm thin) of heterogeneous composition (metal, insulator, semiconductor, etc) with large lateral dimension structures (aspect ratio >1:1000) by ion-induced stress relaxation. The ultrathin flat structures are fabricated using atomic layer deposition on sacrificial polyimide. We have demonstrated vertical folding with 30 keV Ga(+) ions in structures with lateral dimensions varying from 10 to 50 μm.

  3. Testing of reliability - Analysis tools

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.

    1989-01-01

    An outline is presented of issues raised in verifying the accuracy of reliability analysis tools. State-of-the-art reliability analysis tools implement various decomposition, aggregation, and estimation techniques to compute the reliability of a diversity of complex fault-tolerant computer systems. However, no formal methodology has been formulated for validating the reliability estimates produced by these tools. The author presents three states of testing that can be performed on most reliability analysis tools to effectively increase confidence in a tool. These testing stages were applied to the SURE (semi-Markov Unreliability Range Evaluator) reliability analysis tool, and the results of the testing are discussed.

  4. 17. NBS TOOL ROOM. MISCELLANEOUS TOOLS USED DURING EXTRA VEHICULAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. NBS TOOL ROOM. MISCELLANEOUS TOOLS USED DURING EXTRA VEHICULAR ACTIVITY (EVA) MISSIONS AND NBS TRAINING. FROM LEFT TO RIGHT THE TOOLS ARE: SHUTTLE TRANSPORTATION SYSTEM (STS) PORTABLE FOOT RESTRAINT (PFR), ESSEX WRENCH, SOCKET WRENCH, SAFETY TETHER REEL (LEFT REAR), MINI WORKSTATION (CENTER REAR), TETHERS (FRONT CENTER), HUBBLE SPACE TELESCOPE (HST) POWER TOOL (FRONT RIGHT), HUBBLE SPACE TELESCOPE & PORTABLE FOOT RESTRAINT (REAR RIGHT). - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  5. Water Powered Tools

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Space Spin-Offs, Inc. under a contract with Lewis Research Center and Marshall Space Flight Center produced a new water-powered saw that cuts through concrete and steel plate reducing danger of explosion or electric shock in rescue and other operations. In prototype unit efficient water-powered turbine drives an 8 inch diameter grinding disk at 6,600 rpm. Exhaust water cools disk and workpiece quenching any sparks produced by cutting head. At maximum power, tool easily cuts through quarter inch steel plate. Adapter heads for chain saws, impact wrenches, heavy duty drills, and power hack saws can be fitted.

  6. Cyber Security Evaluation Tool

    SciTech Connect

    2009-08-03

    CSET is a desktop software tool that guides users through a step-by-step process to assess their control system network security practices against recognized industry standards. The output from CSET is a prioritized list of recommendations for improving the cyber security posture of your organization’s ICS or enterprise network. CSET derives the recommendations from a database of cybersecurity standards, guidelines, and practices. Each recommendation is linked to a set of actions that can be applied to enhance cybersecurity controls.

  7. Tools in science.

    PubMed

    Zakrisson, Anna; Kronfoth, Christine

    2017-03-27

    When talking to non-scientists, it is rather amusing how much the Victorian view of a scientist still lingers. Many people, still view us [scientists] as crazy people working in basements (alright, that might contain some truth), who solve unholy puzzles using tools like beakers with colorful liquids and fuming test tubes. Sometimes, we burst out into euphoric cries of EUREKA when some incomprehensible problem is solved just prior to a minor explosion that causes our hair to stand up in disarray. This article is protected by copyright. All rights reserved.

  8. Contamination Analysis Tools

    NASA Technical Reports Server (NTRS)

    Brieda, Lubos

    2015-01-01

    This talk presents 3 different tools developed recently for contamination analysis:HTML QCM analyzer: runs in a web browser, and allows for data analysis of QCM log filesJava RGA extractor: can load in multiple SRS.ana files and extract pressure vs. time dataC++ Contamination Simulation code: 3D particle tracing code for modeling transport of dust particulates and molecules. Uses residence time to determine if molecules stick. Particulates can be sampled from IEST-STD-1246 and be accelerated by aerodynamic forces.

  9. Communications network analysis tool

    NASA Astrophysics Data System (ADS)

    Phillips, Wayne; Dunn, Gary

    1989-11-01

    The Communications Network Analysis Tool (CNAT) is a set of computer programs that aids in the performance evaluation of a communication system in a real-world scenario. Communication network protocols can be modeled and battle group connectivity can be analyzed in the presence of jamming and the benefit of relay platforms can be studied. The Joint Tactical Information Distribution System (JTIDS) Communication system architecture is currently being modeled; however, the computer software is modular enough to allow substitution of a new code representative of prospective communication protocols.

  10. Jupiter Environment Tool

    NASA Technical Reports Server (NTRS)

    Sturm, Erick J.; Monahue, Kenneth M.; Biehl, James P.; Kokorowski, Michael; Ngalande, Cedrick,; Boedeker, Jordan

    2012-01-01

    The Jupiter Environment Tool (JET) is a custom UI plug-in for STK that provides an interface to Jupiter environment models for visualization and analysis. Users can visualize the different magnetic field models of Jupiter through various rendering methods, which are fully integrated within STK s 3D Window. This allows users to take snapshots and make animations of their scenarios with magnetic field visualizations. Analytical data can be accessed in the form of custom vectors. Given these custom vectors, users have access to magnetic field data in custom reports, graphs, access constraints, coverage analysis, and anywhere else vectors are used within STK.

  11. Outyear Budgeting Tool

    SciTech Connect

    Carlos Castillo, Jerel Nelson

    2010-12-31

    OBTool performs the following: • Consistent method and tool to develop/estimate fiscal year (FY) 2010 and outyear budget/estimates • Maintain configuration control on resource rates and changes to outyear budget estimates, while allowing for accessibility, accountability, and tracking shared access between program managers, facility managers (FMs), project managers (PMs), cost account managers (CAMs), and project controls engineers (PCEs) • Consistency in budget estimating methodology, including scope, requirements, basis of estimates, resources, activities, escalation, and presentation of documentation in tasks and execution plans and reports • Ability to sync (i.e. export) and import data into Primavera and Cobra to the lifecycle baseline file

  12. Groove refinishing tool

    DOEpatents

    Kellogg, Harvey J.; Holm, Robert O.

    1983-01-01

    A groove refinishing tool which utilizes a finishing wheel which is controlled by an air grinder motor. The air grinder motor is mounted on a main body section which is pivotally attached to a shoe element. The shoe element contains guide pins which guide the shoe element on the groove to be refinished. Application of pressure on the main body element compresses a weight counterbalance spring to extend the finishing wheel through the shoe element to refinish the groove surface. A window is provided for viewing the refinishing operation. Milling operations can also be performed by replacing the finishing wheel with a milling wheel.

  13. Groove refinishing tool

    SciTech Connect

    Kellogg, H.J.

    1981-03-11

    A groove refinishing tool is disclosed which utilizes a finishing wheel which is controlled by an air grinder motor. The air grinder motor is mounted on a main body section which is pivotally attached to a shoe element. The shoe element contains guide pins which guide the shoe element on the groove to be refinished. Application of pressure on the main body element compresses a weight counterbalance spring to extend the finishing wheel through the shoe element to refinish the groove surface. A window is provided for viewing the refinishing operation. Milling operations can also be performed by replacing the finishing wheel with a milling wheel.

  14. Groove refinishing tool

    SciTech Connect

    Kellogg, H.J.; Holm, R.O.

    1983-11-08

    A groove refinishing tool is disclosed which utilizes a finishing wheel which is controlled by an air grinder motor. The air grinder motor is mounted on a main body section which is pivotally attached to a shoe element. The shoe element contains guide pins which guide the shoe element on the groove to be refinished. Application of pressure on the main body element compresses a weight counterbalance spring to extend the finishing wheel through the shoe element to refinish the groove surface. A window is provided for viewing the refinishing operation. Milling operations can also be performed by replacing the finishing wheel with a milling wheel. 3 figs.

  15. A Simulation Model for the Toroidal Ion Temperature Gradient Instability with Fully Kinetic Ions

    NASA Astrophysics Data System (ADS)

    Sturdevant, Benjamin; Parker, Scott; Chen, Yang

    2016-10-01

    A simulation model for the toroidal ITG mode in which the ions follow the primitive Lorentz force equations of motion is presented. Such a model can provide an important validation tool or replacement for gyrokinetic ion models in applications where higher order terms may be important. A number of multiple-scale simulation techniques are employed in this work, based on the previous success in slab geometry with an implicit orbit averaged and sub-cycled δf model. For the toroidal geometry model, we have derived a particle integration scheme based on variational principles, which is demonstrated to produce stable and accurate ion trajectories on long time scales. Orbit averaging and sub-cycling will be implemented with the variational integration scheme. The inclusion of equilibrium gradients in the fully kinetic δf formulation is achieved through the use of a guiding center coordinate transformation of the weight equation. Simulation results for the fully kinetic ion model will be presented for the cyclone base case and comparisons will be made with gyrokinetic ion models.

  16. Sensitive Ion Pump Current Monitoring Using an In-House Built Ion Pump Power Supply

    SciTech Connect

    Hansknecht, J.; Adderley, P.; Stutzman, M. L.; Poelker, M.

    2009-08-04

    Ion pumps are common vacuum pumps on DC high voltage photoguns and baked-accelerator beamlines. Commercial ion pump power supplies provide a measure of the electrical current drawn by the pump, but typically have resolution to only {approx}0.1 uA, which corresponds to pressure {approx}10{sup -9} Torr, a value considerably higher than the minimum pressure required by photoguns and nearby beamline. This submission describes a very sensitive in-house-built ion pump power supply with current monitoring capability good to less than 1 nA, and corresponding pressure in the low-minus;10{sup -11} Torr range. Besides providing 'free' pressure monitoring on a scale equivalent to the best available commercial pressure gauges, the ion pump power supply also serves as a sensitive diagnostic for detecting field emission from the photogun cathode electrode and bad electron beam orbits that could diminish photogun operating lifetime. Since its inception, this ion pump power supply has become an invaluable tool for operating the CEBAF polarized electron source. It is also a very useful low-cost diagnostic for ultrahigh vacuum studies in the laboratory.

  17. Temporal evolution of helix hydration in a light-gated ion channel correlates with ion conductance.

    PubMed

    Lórenz-Fonfría, Víctor A; Bamann, Christian; Resler, Tom; Schlesinger, Ramona; Bamberg, Ernst; Heberle, Joachim

    2015-10-27

    The discovery of channelrhodopsins introduced a new class of light-gated ion channels, which when genetically encoded in host cells resulted in the development of optogenetics. Channelrhodopsin-2 from Chlamydomonas reinhardtii, CrChR2, is the most widely used optogenetic tool in neuroscience. To explore the connection between the gating mechanism and the influx and efflux of water molecules in CrChR2, we have integrated light-induced time-resolved infrared spectroscopy and electrophysiology. Cross-correlation analysis revealed that ion conductance tallies with peptide backbone amide I vibrational changes at 1,665(-) and 1,648(+) cm(-1). These two bands report on the hydration of transmembrane α-helices as concluded from vibrational coupling experiments. Lifetime distribution analysis shows that water influx proceeded in two temporally separated steps with time constants of 10 μs (30%) and 200 μs (70%), the latter phase concurrent with the start of ion conductance. Water efflux and the cessation of the ion conductance are synchronized as well, with a time constant of 10 ms. The temporal correlation between ion conductance and hydration of helices holds for fast (E123T) and slow (D156E) variants of CrChR2, strengthening its functional significance.

  18. NEXT Ion Thruster Thermal Model

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.

    2010-01-01

    As the NEXT ion thruster progresses towards higher technology readiness, it is necessary to develop the tools that will support its implementation into flight programs. An ion thruster thermal model has been developed for the latest prototype model design to aid in predicting thruster temperatures for various missions. This model is comprised of two parts. The first part predicts the heating from the discharge plasma for various throttling points based on a discharge chamber plasma model. This model shows, as expected, that the internal heating is strongly correlated with the discharge power. Typically, the internal plasma heating increases with beam current and decreases slightly with beam voltage. The second is a model based on a finite difference thermal code used to predict the thruster temperatures. Both parts of the model will be described in this paper. This model has been correlated with a thermal development test on the NEXT Prototype Model 1 thruster with most predicted component temperatures within 5 to 10 C of test temperatures. The model indicates that heating, and hence current collection, is not based purely on the footprint of the magnet rings, but follows a 0.1:1:2:1 ratio for the cathode-to-conical-to-cylindrical-to-front magnet rings. This thermal model has also been used to predict the temperatures during the worst case mission profile that is anticipated for the thruster. The model predicts ample thermal margin for all of its components except the external cable harness under the hottest anticipated mission scenario. The external cable harness will be re-rated or replaced to meet the predicted environment.

  19. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.

    PubMed

    Tu, Bin; Chen, Minxin; Xie, Yan; Zhang, Linbo; Eisenberg, Bob; Lu, Benzhuo

    2013-09-15

    A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and I - V curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α-Hemolysin (α-HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size-modified PNP (SMPNP) model on VDAC and α-HL. It is shown that the size effects in SMPNP can

  20. Embodied Rules in Tool Use: A Tool-Switching Study

    ERIC Educational Resources Information Center

    Beisert, Miriam; Massen, Cristina; Prinz, Wolfgang

    2010-01-01

    In tool use, a transformation rule defines the relation between an operating movement and its distal effect. This rule is determined by the tool structure and requires no explicit definition. The present study investigates how humans represent and apply compatible and incompatible transformation rules in tool use. In Experiment 1, participants had…

  1. Clues From Pluto's Ions

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Nearly a year ago, in July 2015, the New Horizons spacecraft passed by the Pluto system. The wealth of data amassed from that flyby is still being analyzed including data from the Solar Wind Around Pluto (SWAP) instrument. Recent examination of this data has revealedinteresting new information about Plutos atmosphere and how the solar wind interacts with it.A Heavy Ion TailThe solar wind is a constant stream of charged particles released by the Sun at speeds of around 400 km/s (thats 1 million mph!). This wind travels out to the far reaches of the solar system, interacting with the bodies it encounters along the way.By modeling the SWAP detections, the authors determine the directions of the IMF that could produce the heavy ions detected. Red pixels represent IMF directions permitted. No possible IMF could reproduce the detections if the ions are nitrogen (bottom panels), and only retrograde IMF directions can produce the detections if the ions are methane. [Adapted from Zirnstein et al. 2016]New Horizons data has revealed that Plutos atmosphere leaks neutral nitrogen, methane, and carbon monoxide molecules that sometimes escape its weak gravitational pull. These molecules become ionized and are subsequently picked up by the passing solar wind, forming a tail of heavy ions behind Pluto. The details of the geometry and composition of this tail, however, had not yet been determined.Escaping MethaneIn a recent study led by Eric Zirnstein (Southwest Research Institute), the latest analysis of data from the SWAP instrument on board New Horizons is reported. The team used SWAPs ion detections from just after New Horizons closest approach to Pluto to better understand how the heavy ions around Pluto behave, and how the solar wind interacts with Plutos atmosphere.In the process of analyzing the SWAP data, Zirnstein and collaborators first establish what the majority of the heavy ions picked up by the solar wind are. Models of the SWAP detections indicate they are unlikely

  2. Geometric reasoning about assembly tools

    SciTech Connect

    Wilson, R.H.

    1997-01-01

    Planning for assembly requires reasoning about various tools used by humans, robots, or other automation to manipulate, attach, and test parts and subassemblies. This paper presents a general framework to represent and reason about geometric accessibility issues for a wide variety of such assembly tools. Central to the framework is a use volume encoding a minimum space that must be free in an assembly state to apply a given tool, and placement constraints on where that volume must be placed relative to the parts on which the tool acts. Determining whether a tool can be applied in a given assembly state is then reduced to an instance of the FINDPLACE problem. In addition, the author presents more efficient methods to integrate the framework into assembly planning. For tools that are applied either before or after their target parts are mated, one method pre-processes a single tool application for all possible states of assembly of a product in polynomial time, reducing all later state-tool queries to evaluations of a simple expression. For tools applied after their target parts are mated, a complementary method guarantees polynomial-time assembly planning. The author presents a wide variety of tools that can be described adequately using the approach, and surveys tool catalogs to determine coverage of standard tools. Finally, the author describes an implementation of the approach in an assembly planning system and experiments with a library of over one hundred manual and robotic tools and several complex assemblies.

  3. ION Configuration Editor

    NASA Technical Reports Server (NTRS)

    Borgen, Richard L.

    2013-01-01

    The configuration of ION (Inter - planetary Overlay Network) network nodes is a manual task that is complex, time-consuming, and error-prone. This program seeks to accelerate this job and produce reliable configurations. The ION Configuration Editor is a model-based smart editor based on Eclipse Modeling Framework technology. An ION network designer uses this Eclipse-based GUI to construct a data model of the complete target network and then generate configurations. The data model is captured in an XML file. Intrinsic editor features aid in achieving model correctness, such as field fill-in, type-checking, lists of valid values, and suitable default values. Additionally, an explicit "validation" feature executes custom rules to catch more subtle model errors. A "survey" feature provides a set of reports providing an overview of the entire network, enabling a quick assessment of the model s completeness and correctness. The "configuration" feature produces the main final result, a complete set of ION configuration files (eight distinct file types) for each ION node in the network.

  4. Ion transport in pigmentation

    PubMed Central

    Bellono, Nicholas W.; Oancea, Elena V.

    2014-01-01

    Skin melanocytes and ocular pigment cells contain specialized organelles called melanosomes, which are responsible for the synthesis of melanin, the major pigment in mammals. Defects in the complex mechanisms involved in melanin synthesis and regulation result in vision and pigmentation deficits, impaired development of the visual system,, and increased susceptibility to skin and eye cancers. Ion transport across cellular membranes is critical for many biological processes, including pigmentation, but the molecular mechanisms by which it regulates melanin synthesis, storage, and transfer are not understood. In this review we first discuss ion channels and transporters that function at the plasma membrane of melanocytes; in the second part we consider ion transport across the membrane of intracellular organelles, with emphasis on melanosomes. We discuss recently characterized lysosomal and endosomal ion channels and transporters associated with pigmentation phenotypes. We then review the evidence for melanosomal channels and transporters critical for pigmentation, discussing potential molecular mechanisms mediating their function. The studies investigating ion transport in pigmentation physiology open new avenues for future research and could reveal novel molecular mechanisms underlying melanogenesis. PMID:25034214

  5. Mitochondrial Ion Channels

    PubMed Central

    O’Rourke, Brian

    2009-01-01

    In work spanning more than a century, mitochondria have been recognized for their multifunctional roles in metabolism, energy transduction, ion transport, inheritance, signaling, and cell death. Foremost among these tasks is the continuous production of ATP through oxidative phosphorylation, which requires a large electrochemical driving force for protons across the mitochondrial inner membrane. This process requires a membrane with relatively low permeability to ions to minimize energy dissipation. However, a wealth of evidence now indicates that both selective and nonselective ion channels are present in the mitochondrial inner membrane, along with several known channels on the outer membrane. Some of these channels are active under physiological conditions, and others may be activated under pathophysiological conditions to act as the major determinants of cell life and death. This review summarizes research on mitochondrial ion channels and efforts to identify their molecular correlates. Except in a few cases, our understanding of the structure of mitochondrial ion channels is limited, indicating the need for focused discovery in this area. PMID:17059356

  6. Ion transport in pigmentation.

    PubMed

    Bellono, Nicholas W; Oancea, Elena V

    2014-12-01

    Skin melanocytes and ocular pigment cells contain specialized organelles called melanosomes, which are responsible for the synthesis of melanin, the major pigment in mammals. Defects in the complex mechanisms involved in melanin synthesis and regulation result in vision and pigmentation deficits, impaired development of the visual system, and increased susceptibility to skin and eye cancers. Ion transport across cellular membranes is critical for many biological processes, including pigmentation, but the molecular mechanisms by which it regulates melanin synthesis, storage, and transfer are not understood. In this review we first discuss ion channels and transporters that function at the plasma membrane of melanocytes; in the second part we consider ion transport across the membrane of intracellular organelles, with emphasis on melanosomes. We discuss recently characterized lysosomal and endosomal ion channels and transporters associated with pigmentation phenotypes. We then review the evidence for melanosomal channels and transporters critical for pigmentation, discussing potential molecular mechanisms mediating their function. The studies investigating ion transport in pigmentation physiology open new avenues for future research and could reveal novel molecular mechanisms underlying melanogenesis.

  7. Ion Milling of Sapphire

    NASA Technical Reports Server (NTRS)

    Gregory, Don A.

    2002-01-01

    The ion figuring system at the Marshall Space Flight Center has been successfully used for at least three previous investigations into the ion milling of metals. The research was directed toward improving the surface quality of X-ray directing optics. These studies were performed on surfaces that were already hand polished to an excellent surface quality and were intended to remove the residual unwanted figure left by those techniques. The ion milling was typically carried out on test surfaces or mandrels that were several centimeters in width and length. The good thermal conductivity of the metal samples allowed the ion beam to be directed onto the sample for an indefinite period of time. This is not true of sapphire or most electrical insulators and problems have arisen in recent attempts to ion mill thin samples of sapphire. The failure and fracture of the material was likely due to thermal stresses and the relatively low thermal conductivity of sapphire (compared to most metals), These assumed stresses actually provided the key as to how they might be monitored. A thermal gradient in the sapphire sample will induce an effective index of refraction change and because of the shape constraint and the crystal structure and simple thermal expansion, this index change will be nonuniform across the sample. In all but simple cubic crystal structures, this leads to a spatially nonuniform optical retardance induced on any polarized optical beam traversing the sample, and it is this retardance that can be monitored using standard polarimetric procedures.

  8. Molecular ion photofragment spectroscopy

    SciTech Connect

    Bustamente, S.W.

    1983-11-01

    A new molecular ion photofragment spectrometer is described which features a supersonic molecular beam ion source and a radio frequency octapole ion trap interaction region. This unique combination allows several techniques to be applied to the problem of detecting a photon absorption event of a molecular ion. In particular, it may be possible to obtain low resolution survey spectra of exotic molecular ions by using a direct vibrational predissociation process, or by using other more indirect detection methods. The use of the spectrometer is demonstrated by measuring the lifetime of the O/sub 2//sup +/(/sup 4/..pi../sub u/) metastable state which is found to consist of two main components: the /sup 4/..pi../sub 5/2/ and /sup 4/..pi../sub -1/2/ spin components having a long lifetime (approx. 129 ms) and the /sup 4/..pi../sub 3/2/ and /sup 4/..pi../sub 1/2/ spin components having a short lifetime (approx. 6 ms).

  9. Isotopic Effect on Ion Mobility and Separation of Isotopomers by High-Field Ion Mobility Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.; Clemmer, David E.; Smith, Richard D.

    2010-10-01

    Since early 1900-s, when vacuum techniques and ion detectors first enabled investigations of gas-phase ions, two approaches to their separation and characterization have emerged - mass spectrometry (MS) and ion mobility spectrometry (IMS).1,2 Though both exploit that distinct charged species move in electric fields differently, MS is performed in vacuum and is based only on the ion mass/charge (m/q) ratio while IMS involves sufficiently dense buffer gases and relies on ion transport properties. The first major discovery enabled by MS was the existence of isotopes by Thomson and Aston,3 and isotopic analyses have since been integral to MS. In particular, the preparative separation of U isotopes using Lawrence’s Calutron was the first industrial application of MS,4 and isotopic labeling is key to MS quantification methods. With IMS, the issue of isotopes was largely ignored as the resolving power (R) was generally too low for their separation. Here, we demonstrate that recently developed high-resolution differential IMS can separate isotopic molecular ions, including nominal isobars with different isotopic content and isotopomers. This capability may enable a new method for isotope separation in a small-scale format at ambient pressure and aid localization of labeled sites in various molecules. Perhaps most importantly, the isotopic shifts depend on the labeled atom position and thus may contain the kind of detailed structural information that is available in solution or solid state using tools such as NMR but has not generally been obtainable for gas-phase ions.

  10. Computational Model Tracking Primary Electrons, Secondary Electrons, and Ions in the Discharge Chamber of an Ion Engine

    NASA Technical Reports Server (NTRS)

    Mahalingam, Sudhakar; Menart, James A.

    2005-01-01

    Computational modeling of the plasma located in the discharge chamber of an ion engine is an important activity so that the development and design of the next generation of ion engines may be enhanced. In this work a computational tool called XOOPIC is used to model the primary electrons, secondary electrons, and ions inside the discharge chamber. The details of this computational tool are discussed in this paper. Preliminary results from XOOPIC are presented. The results presented include particle number density distributions for the primary electrons, the secondary electrons, and the ions. In addition the total number of a particular particle in the discharge chamber as a function of time, electric potential maps and magnetic field maps are presented. A primary electron number density plot from PRIMA is given in this paper so that the results of XOOPIC can be compared to it. PRIMA is a computer code that the present investigators have used in much of their previous work that provides results that compare well to experimental results. PRIMA only models the primary electrons in the discharge chamber. Modeling ions and secondary electrons, as well as the primary electrons, will greatly increase our ability to predict different characteristics of the plasma discharge used in an ion engine.

  11. [Ion specificity during ion exchange equilibrium in natural clinoptilolite].

    PubMed

    He, Yun-Hua; Li, Hang; Liu, Xin-Min; Xiong, Hai-Ling

    2015-03-01

    Zeolites have been widely applied in soil improvement and environment protection. The study on ion specificity during ion exchange equilibrium is of important significance for better use of zeolites. The maximum adsorption capacities of alkali ions during ion exchange equilibrium in the clinoptilolite showed obvious specificity. For alkali metal ions with equivalent valence, the differences in adsorption capacity increased with the decrease of ionic concentration. These results cannot be well explained by the classical theories including coulomb force, ionic size, hydration, dispersion force, classic induction force and surface complexation. We found that the coupling of polarization effects resulted from the quantum fluctuation of diverse alkali metal ions and electric field near the zeolite surface should be the primary reason for specific ion effect during ion exchange in zeolite. The result of this coupling effect was that the difference in the ion dipole moment increased with the increase of surface potential, which further expanded the difference in the adsorption ability between zeolite surface and ions, resulting in different ion exchange adsorption ability at the solid/liquid interface. Due to the high surface charge density of zeolite, ionic size also played an important role in the distribution of ions in the double diffuse layer, which led to an interesting result that distinct differences in exchange adsorption ability of various alkali metal ions were only detected at high surface potential (the absolute value was greater than 0.2 V), which was different from the ion exchange equilibrium result on the surface with low charge density.

  12. Phenological Parameters Estimation Tool

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney D.; Ross, Kenton W.; Spruce, Joseph P.; Smoot, James C.; Ryan, Robert E.; Gasser, Gerald E.; Prados, Donald L.; Vaughan, Ronald D.

    2010-01-01

    The Phenological Parameters Estimation Tool (PPET) is a set of algorithms implemented in MATLAB that estimates key vegetative phenological parameters. For a given year, the PPET software package takes in temporally processed vegetation index data (3D spatio-temporal arrays) generated by the time series product tool (TSPT) and outputs spatial grids (2D arrays) of vegetation phenological parameters. As a precursor to PPET, the TSPT uses quality information for each pixel of each date to remove bad or suspect data, and then interpolates and digitally fills data voids in the time series to produce a continuous, smoothed vegetation index product. During processing, the TSPT displays NDVI (Normalized Difference Vegetation Index) time series plots and images from the temporally processed pixels. Both the TSPT and PPET currently use moderate resolution imaging spectroradiometer (MODIS) satellite multispectral data as a default, but each software package is modifiable and could be used with any high-temporal-rate remote sensing data collection system that is capable of producing vegetation indices. Raw MODIS data from the Aqua and Terra satellites is processed using the TSPT to generate a filtered time series data product. The PPET then uses the TSPT output to generate phenological parameters for desired locations. PPET output data tiles are mosaicked into a Conterminous United States (CONUS) data layer using ERDAS IMAGINE, or equivalent software package. Mosaics of the vegetation phenology data products are then reprojected to the desired map projection using ERDAS IMAGINE

  13. Treatment Deployment Evaluation Tool

    SciTech Connect

    M. A. Rynearson; M. M. Plum

    1999-08-01

    The U.S. Department of Energy (DOE) is responsible for the final disposition of legacy spent nuclear fuel (SNF). As a response, DOE's National Spent Nuclear Fuel Program (NSNFP) has been given the responsibility for the disposition of DOE-owned SNF. Many treatment technologies have been identified to treat some forms of SNF so that the resulting treated product is acceptable by the disposition site. One of these promising treatment processes is the electrometallurgical treatment (EMT) currently in development; a second is an Acid Wash Decladding process. The NSNFP has been tasked with identifying possible strategies for the deployment of these treatment processes in the event that a treatment path is deemed necessary. To support the siting studies of these strategies, economic evaluations are being performed to identify the least-cost deployment path. This model (tool) was developed to consider the full scope of costs, technical feasibility, process material disposition, and schedule attributes over the life of each deployment alternative. Using standard personal computer (PC) software, the model was developed as a comprehensive technology economic assessment tool using a Life-Cycle Cost (LCC) analysis methodology. Model development was planned as a systematic, iterative process of identifying and bounding the required activities to dispose of SNF. To support the evaluation process, activities are decomposed into lower level, easier to estimate activities. Sensitivity studies can then be performed on these activities, defining cost issues and testing results against the originally stated problem.

  14. Treatment Deployment Evaluation Tool

    SciTech Connect

    Rynearson, Michael Ardel; Plum, Martin Michael

    1999-08-01

    The U.S. Department of Energy (DOE) is responsible for the final disposition of legacy spent nuclear fuel (SNF). As a response, DOE's National Spent Nuclear Fuel Program (NSNFP) has been given the responsibility for the disposition of DOE -owned SNF. Many treatment technologies have been identified to treat some forms of SNF so that the resulting treated product is acceptable by the disposition site. One of these promising treatment processes is the electrometallurgical treatment (EMT) currently in development; a second is an Acid Wash Decladding process. The NSNFP has been tasked with identifying possible strategies for the deployment of these treatment processes in the event that the treatment path is deemed necessary. To support the siting studies of these strategies, economic evaluations are being performed to identify the least-cost deployment path. This model (tool) was developed to consider the full scope of costs, technical feasibility, process material disposition, and schedule attributes over the life of each deployment alternative. Using standard personal computer (PC) software, the model was developed as a comprehensive technology economic assessment tool using a Life-Cycle Cost (LCC) analysis methodology. Model development was planned as a systematic, iterative process of identifying and bounding the required activities to dispose of SNF. To support the evaluation process, activities are decomposed into lower level, easier to estimate activities. Sensitivity studies can then be performed on these activities, defining cost issues and testing results against the originally stated problem.

  15. Advanced Welding Tool

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Accutron Tool & Instrument Co.'s welder was originally developed as a tool specifically for joining parts made of plastic or composite materials in any atmosphere to include the airless environment of space. Developers decided on induction or magnetic heating to avoid causing deformation and it also can be used with almost any type of thermoplastic material. Induction coil transfers magnetic flux through the plastic to a metal screen that is sandwiched between the sheets of plastic to be joined. When welder is energized, alternating current produces inductive heating on the screen causing the adjacent plastic surfaces to melt and flow into the mesh, creating a bond on the total surface area. Dave Brown, owner of Great Falls Canoe and Kayak Repair, Vienna, VA, uses a special repair technique based on operation of the Induction Toroid Welder to fix canoes. Whitewater canoeing poses the problem of frequent gashes that are difficult to repair. The main reason is that many canoes are made of plastics. The commercial Induction model is a self-contained, portable welding gun with a switch on the handle to regulate the temperature of the plastic melting screen. Welder has a broad range of applications in the automobile, appliance, aerospace and construction industries.

  16. Hydraulic release oil tool

    SciTech Connect

    Mims, M.G.; Mueller, M.D.; Ehlinger, J.C.

    1992-03-11

    This patent describes a hydraulic release tool. It comprises a setting assembly; a coupling member for coupling to drill string or petroleum production components, the coupling member being a plurality of sockets for receiving the dogs in the extended position and attaching the coupling member the setting assembly; whereby the setting assembly couples to the coupling member by engagement of the dogs in the sockets of releases from and disengages the coupling member in movement of the piston from its setting to its reposition in response to a pressure in the body in exceeding the predetermined pressure; and a relief port from outside the body into its bore and means to prevent communication between the relief port and the bore of the body axially of the piston when the piston is in the setting position and to establish such communication upon movement of the piston from the setting position to the release position and reduce the pressure in the body bore axially of the piston, whereby the reduction of the pressure signals that the tool has released the coupling member.

  17. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications

    SciTech Connect

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.

    2007-08-15

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Si{sub n}{sup -} and Cu{sub n}{sup -}. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  18. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications.

    PubMed

    Belykh, S F; Palitsin, V V; Veryovkin, I V; Kovarsky, A P; Chang, R J H; Adriaens, A; Dowsett, M G; Adams, F

    2007-08-01

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Si(n)(-) and Cu(n)(-). Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  19. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications

    NASA Astrophysics Data System (ADS)

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.

    2007-08-01

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Sin- and Cun-. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  20. New Tool to Predict Glaucoma

    MedlinePlus

    ... News About Us Donate In This Section A New Tool to Predict Glaucoma email Send this article ... determine if a patient has glaucoma. Recently, a new tool has become available to eye care specialists ...