Science.gov

Sample records for ion channel density

  1. Step density model of laser sustained ion channel and Coulomb explosion

    SciTech Connect

    Rajouria, Satish Kumar; Malik, H. K.; Tripathi, V. K.; Kumar, Pawan

    2015-02-15

    An analytical model of laser sustained ion channel in plasma is developed, assuming electron density to be zero in the inner region and constant outside. The radius of the channel is such that the ponderomotive force on electrons at the channel boundary is balanced by the channel space charge force. The laser is TM eigen mode of the system with Bessel function profile in the interior and modified Bessel function outside. The channel radius increases with laser intensity and the ratio of laser frequency to plasma frequency. Ion Coulomb explosion of the channel, on longer time scale, produces ion energy distribution, an increasing function of energy with a sharp cutoff equal to electron ponderomotive energy at the channel boundary. At peak laser intensity ≈2×10{sup 19}W/cm{sup 2} at 1 μm wavelength and spot size of 8 μm, the cutoff ion energy in a plasma of density ∼10{sup 19}cm{sup −3} is ∼0.73 MeV.

  2. Density-functional theory study of gramicidin A ion channel geometry and electronic properties.

    PubMed

    Todorović, Milica; Bowler, David R; Gillan, Michael J; Miyazaki, Tsuyoshi

    2013-12-06

    Understanding the mechanisms underlying ion channel function from the atomic-scale requires accurate ab initio modelling as well as careful experiments. Here, we present a density functional theory (DFT) study of the ion channel gramicidin A (gA), whose inner pore conducts only monovalent cations and whose conductance has been shown to depend on the side chains of the amino acids in the channel. We investigate the ground state geometry and electronic properties of the channel in vacuum, focusing on their dependence on the side chains of the amino acids. We find that the side chains affect the ground state geometry, while the electrostatic potential of the pore is independent of the side chains. This study is also in preparation for a full, linear scaling DFT study of gA in a lipid bilayer with surrounding water. We demonstrate that linear scaling DFT methods can accurately model the system with reasonable computational cost. Linear scaling DFT allows ab initio calculations with 10,000-100,000 atoms and beyond, and will be an important new tool for biomolecular simulations.

  3. Accounting for Finite Size of Ions in Nanofluidic Channels Using Density Functional Theory

    NASA Astrophysics Data System (ADS)

    McCallum, Christopher; Gillespie, Dirk; Pennathur, Sumita

    2016-11-01

    The physics of nanofluidic devices are dominated by ion-wall interactions within the electric double layer (EDL). A full understanding of the EDL allows for better exploitation of micro and nanofluidic devices for applications such as biologic separations, desalination, and energy conversion, Although continuum theory is generally used to study the fluidics within these channels, in very confined geometries, high surface charge channels, or significant solute concentration systems, continuum theories such as Poisson-Boltzmann cease to be valid because the finite size of ions is not considered. Density functional theory (DFT) provides an accurate and efficient method for predicting the concentration of ions and the electrostatic potential near a charged wall because it accounts for more complex electrostatic and hard-sphere correlations. This subsequently allows for a better model for ion flux, fluid flow, and current in electrokinetic systems at high surface charge, confined geometries, and concentrated systems. In this work, we present a theoretical approach utilizing DFT to predict unique flow phenomena in nanofluidic, electrokinetic systems. CBET-1402736 from the National Science Foundation.

  4. Cooperative gating between ion channels.

    PubMed

    Choi, Kee-Hyun

    2014-01-01

    Cooperative gating between ion channels, i.e. the gating of one channel directly coupled to the gating of neighboring channels, has been observed in diverse channel types at the single-channel level. Positively coupled gating could enhance channel-mediated signaling while negative coupling may effectively reduce channel gating noise. Indeed, the physiological significance of cooperative channel gating in signal transduction has been recognized in several in vivo studies. Moreover, coupled gating of ion channels was reported to be associated with some human disease states. In this review, physiological roles for channel cooperativity and channel clustering observed in vitro and in vivo are introduced, and stimulation-induced channel clustering and direct channel cross linking are suggested as the physical mechanisms of channel assembly. Along with physical clustering, several molecular mechanisms proposed as the molecular basis for functional coupling of neighboring channels are covered: permeant ions as a channel coupling mediator, concerted channel activation through the membrane, and allosteric mechanisms. Also, single-channel analysis methods for cooperative gating such as the binomial analysis, the variance analysis, the conditional dwell time density analysis, and the maximum likelihood fitting analysis are reviewed and discussed.

  5. Cardiac ion channels

    PubMed Central

    Priest, Birgit T; McDermott, Jeff S

    2015-01-01

    Ion channels are critical for all aspects of cardiac function, including rhythmicity and contractility. Consequently, ion channels are key targets for therapeutics aimed at cardiac pathophysiologies such as atrial fibrillation or angina. At the same time, off-target interactions of drugs with cardiac ion channels can be the cause of unwanted side effects. This manuscript aims to review the physiology and pharmacology of key cardiac ion channels. The intent is to highlight recent developments for therapeutic development, as well as elucidate potential mechanisms for drug-induced cardiac side effects, rather than present an in-depth review of each channel subtype. PMID:26556552

  6. Ion channels in asthma.

    PubMed

    Valverde, Miguel A; Cantero-Recasens, Gerard; Garcia-Elias, Anna; Jung, Carole; Carreras-Sureda, Amado; Vicente, Rubén

    2011-09-23

    Ion channels are specialized transmembrane proteins that permit the passive flow of ions following their electrochemical gradients. In the airways, ion channels participate in the production of epithelium-based hydroelectrolytic secretions and in the control of intracellular Ca(2+) levels that will ultimately activate almost all lung cells, either resident or circulating. Thus, ion channels have been the center of many studies aiming to understand asthma pathophysiological mechanisms or to identify therapeutic targets for better control of the disease. In this minireview, we focus on molecular, genetic, and animal model studies associating ion channels with asthma.

  7. Mechanically Activated Ion Channels

    PubMed Central

    Ranade, Sanjeev S.; Syeda, Ruhma; Patapoutian, Ardem

    2015-01-01

    Mechanotransduction, the conversion of physical forces into biochemical signals, is an essential component of numerous physiological processes including not only conscious senses of touch and hearing, but also unconscious senses such as blood pressure regulation. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  8. Mechanically Activated Ion Channels.

    PubMed

    Ranade, Sanjeev S; Syeda, Ruhma; Patapoutian, Ardem

    2015-09-23

    Mechanotransduction, the conversion of physical forces into biochemical signals, is essential for various physiological processes such as the conscious sensations of touch and hearing, and the unconscious sensation of blood flow. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels.

  9. Ion channels in toxicology.

    PubMed

    Restrepo-Angulo, Iván; De Vizcaya-Ruiz, Andrea; Camacho, Javier

    2010-08-01

    Ion channels play essential roles in human physiology and toxicology. Cardiac contraction, neural transmission, temperature sensing, insulin release, regulation of apoptosis, cellular pH and oxidative stress, as well as detection of active compounds from chilli, are some of the processes in which ion channels have an important role. Regulation of ion channels by several chemicals including those found in air, water and soil represents an interesting potential link between environmental pollution and human diseases; for instance, de novo expression of ion channels in response to exposure to carcinogens is being considered as a potential tool for cancer diagnosis and therapy. Non-specific binding of several drugs to ion channels is responsible for a huge number of undesirable side-effects, and testing guidelines for several drugs now require ion channel screening for pharmaceutical safety. Animal toxins targeting human ion channels have serious effects on the population and have also provided a remarkable tool to study the molecular structure and function of ion channels. In this review, we will summarize the participation of ion channels in biological processes extensively used in toxicological studies, including cardiac function, apoptosis and cell proliferation. Major findings on the adverse effects of drugs on ion channels as well as the regulation of these proteins by different chemicals, including some pesticides, are also reviewed. Association of ion channels and toxicology in several biological processes strongly suggests these proteins to be excellent candidates to follow the toxic effects of xenobiotics, and as potential early indicators of life-threatening situations including chronic degenerative diseases.

  10. Cholesterol and Ion Channels

    PubMed Central

    Levitan, Irena; Fang, Yun; Rosenhouse-Dantsker, Avia; Romanenko, Victor

    2010-01-01

    A variety of ion channels, including members of all major ion channel families, have been shown to be regulated by changes in the level of membrane cholesterol and partition into cholesterol-rich membrane domains. In general, several types of cholesterol effects have been described. The most common effect is suppression of channel activity by an increase in membrane cholesterol, an effect that was described for several types of inwardly-rectifying K+ channels, voltage-gated K+ channels, Ca+2 sensitive K+ channels, voltage-gated Na+ channels, N-type voltage-gated Ca+2 channels and volume-regulated anion channels. In contrast, several types of ion channels, such as epithelial amiloride-sensitive Na+ channels and Transient Receptor Potential channels, as well as some of the types of inwardly-rectifying and voltage-gated K+ channels were shown to be inhibited by cholesterol depletion. Cholesterol was also shown to alter the kinetic properties and current-voltage dependence of several voltage-gated channels. Finally, maintaining membrane cholesterol level is required for coupling ion channels to signalling cascades. In terms of the mechanisms, three general mechanisms have been proposed: (i) specific interactions between cholesterol and the channel protein, (ii) changes in the physical properties of the membrane bilayer and (iii) maintaining the scaffolds for protein-protein interactions. The goal of this review is to describe systematically the role of cholesterol in regulation of the major types of ion channels and to discuss these effects in the context of the models proposed. PMID:20213557

  11. Ion channels in microbes

    PubMed Central

    Martinac, Boris; Saimi, Yoshiro; Kung, Ching

    2008-01-01

    Summary Studies of ion channels have for long been dominated by the animalcentric, if not anthropocentric view of physiology. The structures and activities of ion channels had, however, evolved long before the appearance of complex multicellular organisms on Earth. The diversity of ion channels existing in cellular membranes of prokaryotes is a good example. Though at first it may appear as a paradox that most of what we know about the structure of eukaryotic ion channels is based on the structure of bacterial channels, this should not be surprising given the evolutionary relatedness of all living organisms and suitability of microbial cells for structural studies of biological macromolecules in a laboratory environment. Genome sequences of the human as well as various microbial, plant and animal organisms unambiguously established the evolutionary links, whereas crystallographic studies of the structures of major types of ion channels published over the last decade clearly demonstrated the advantage of using microbes as experimental organisms. The purpose of this review is not only to provide an account of acquired knowledge on microbial ion channels but also to show that the study of microbes and their ion channels may also hold a key to solving unresolved molecular mysteries in the future. PMID:18923187

  12. Ion channels in plants

    PubMed Central

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In his recent opus magnum review paper published in the October issue of Physiology Reviews, Rainer Hedrich summarized the field of plant ion channels.1 He started from the earliest electric recordings initiated by Charles Darwin of carnivorous Dionaea muscipula,1,2 known as Venus flytrap, and covered the topic extensively up to the most recent discoveries on Shaker-type potassium channels, anion channels of SLAC/SLAH families, and ligand-activated channels of glutamate receptor-like type (GLR) and cyclic nucleotide-gated channels (CNGC).1 PMID:23221742

  13. Negative Ion Density Fronts

    SciTech Connect

    Igor Kaganovich

    2000-12-18

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas.

  14. Ion channels in inflammation.

    PubMed

    Eisenhut, Michael; Wallace, Helen

    2011-04-01

    Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.

  15. Mitochondrial Ion Channels

    PubMed Central

    O’Rourke, Brian

    2009-01-01

    In work spanning more than a century, mitochondria have been recognized for their multifunctional roles in metabolism, energy transduction, ion transport, inheritance, signaling, and cell death. Foremost among these tasks is the continuous production of ATP through oxidative phosphorylation, which requires a large electrochemical driving force for protons across the mitochondrial inner membrane. This process requires a membrane with relatively low permeability to ions to minimize energy dissipation. However, a wealth of evidence now indicates that both selective and nonselective ion channels are present in the mitochondrial inner membrane, along with several known channels on the outer membrane. Some of these channels are active under physiological conditions, and others may be activated under pathophysiological conditions to act as the major determinants of cell life and death. This review summarizes research on mitochondrial ion channels and efforts to identify their molecular correlates. Except in a few cases, our understanding of the structure of mitochondrial ion channels is limited, indicating the need for focused discovery in this area. PMID:17059356

  16. Ion channeling revisited

    SciTech Connect

    Doyle, Barney Lee; Corona, Aldo; Nguyen, Anh

    2014-09-01

    A MS Excel program has been written that calculates accidental, or unintentional, ion channeling in cubic bcc, fcc and diamond lattice crystals or polycrystalline materials. This becomes an important issue when simulating the creation by energetic neutrons of point displacement damage and extended defects using beams of ions. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different powers of the argument. The program then offers an extremely convenient way to calculate axial and planar half-angles and minimum yield or dechanneling probabilities, effects on half-angles of amorphous overlayers, accidental channeling probabilities for randomly oriented crystals or crystallites, and finally a way to automatically generate stereographic projections of axial and planar channeling half-angles. The program can generate these projections and calculate these probabilities for axes and [hkl] planes up to (555).

  17. Ion channels in the RPE.

    PubMed

    Wimmers, Sönke; Karl, Mike O; Strauss, Olaf

    2007-05-01

    In close interaction with photoreceptors, the retinal pigment epithelium (RPE) plays an essential role for visual function. The analysis of RPE functions, specifically ion channel functions, provides a basis to understand many degenerative diseases of the retina. The invention of the patch-clamp technique significantly improved the knowledge of ion channel structure and function, which enabled a new understanding of cell physiology and patho-physiology of many diseases. In this review, ion channels identified in the RPE will be described in terms of their specific functional role in RPE physiology. The RPE expresses voltage- and ligand-gated K(+), Cl(-), and Ca(2+)-conducting channels. K(+) and Cl(-) channels are involved in transepithelial ion transport and volume regulation. Voltage-dependent Ca(2+) channels act as regulators of secretory activity, and ligand-gated cation channels contribute to RPE function by providing driving forces for ion transport or by influencing intracellular Ca(2+) homoeostasis. Collectively, activity of these ion channels determines the physiology of the RPE and its interaction with photoreceptors. Furthermore, changes in ion channel function, such as mutations in ion channel genes or a changed regulation of ion channel activity, have been shown to lead to degenerative diseases of the retina. Increasing knowledge about the properties of RPE ion channels has not only provided a new understanding of RPE function but has also provided greater understanding of RPE function in health and disease.

  18. Ion Channels in Neurological Disorders.

    PubMed

    Kumar, Pravir; Kumar, Dhiraj; Jha, Saurabh Kumar; Jha, Niraj Kumar; Ambasta, Rashmi K

    2016-01-01

    The convergent endeavors of the neuroscientist to establish a link between clinical neurology, genetics, loss of function of an important protein, and channelopathies behind neurological disorders are quite intriguing. Growing evidence reveals the impact of ion channels dysfunctioning in neurodegenerative disorders (NDDs). Many neurological/neuromuscular disorders, viz, Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, and age-related disorders are caused due to altered function or mutation in ion channels. To maintain cell homeostasis, ion channels are playing a crucial role which is a large transmembrane protein. Further, these channels are important as it determines the membrane potential and playing critically in the secretion of neurotransmitter. Behind NDDs, losses of pathological proteins and defective ion channels have been reported and are found to aggravate the disease symptoms. Moreover, ion channel dysfunctions are eliciting a range of symptoms, including memory loss, movement disabilities, neuromuscular sprains, and strokes. Since the possible mechanistic role played by aberrant ion channels, their receptor and associated factors in neurodegeneration remained elusive; therefore, it is a challenging task for the neuroscientist to implement the therapeutics for targeting NDDs. This chapter reviews the potential role of the ion channels in membrane physiology and brain homeostasis, where ion channels and their associated factors have been characterized with their functional consequences in neurological diseases. Moreover, mechanistic role of perturbed ion channels has been identified in various NDDs, and finally, ion channel modulators have been investigated for their therapeutic intervention in treating common NDDs.

  19. Ion Channels in Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Palmer, Lawrence G.

    Ion channels in epithelial cells serve to move ions, and in some cases fluid, between compartments of the body. This function of the transfer of material is fundamentally different from that of the transfer of information, which is the main job of most channels in excitable cells. Nevertheless the basic construction of the channels is similar in many respects in the two tissue types. This chapter reviews the nature of channels in epithelia and discusses how their functions have evolved to accomplish the basic tasks for which they are responsible. I will focus on three channel types: epithelial Na+ channels, inward-rectifier K+ channels, and CFTR Cl- channels.

  20. Ion channel therapeutics for pain

    PubMed Central

    Skerratt, Sarah E; West, Christopher W

    2015-01-01

    Pain is a complex disease which can progress into a debilitating condition. The effective treatment of pain remains a challenge as current therapies often lack the desired level of efficacy or tolerability. One therapeutic avenue, the modulation of ion channel signaling by small molecules, has shown the ability to treat pain. However, of the 215 ion channels that exist in the human genome, with 85 ion channels having a strong literature link to pain, only a small number of these channels have been successfully drugged for pain. The focus of future research will be to fully explore the possibilities surrounding these unexplored ion channels. Toward this end, a greater understanding of ion channel modulation will be the greatest tool we have in developing the next generation of drugs for the treatment of pain. PMID:26218246

  1. Agonist-activated ion channels

    PubMed Central

    Colquhoun, David

    2006-01-01

    This paper looks at ion channels as an example of the pharmacologist's stock in trade, the action of an agonist on a receptor to produce a response. Looked at in this way, ion channels have been helpful because they are still the only system which is simple enough for quantitative investigation of transduction mechanisms. A short history is given of attempts to elucidate what happens between the time when agonist first binds, and the time when the channel opens. PMID:16402101

  2. Ultrasound modulates ion channel currents

    PubMed Central

    Kubanek, Jan; Shi, Jingyi; Marsh, Jon; Chen, Di; Deng, Cheri; Cui, Jianmin

    2016-01-01

    Transcranial focused ultrasound (US) has been demonstrated to stimulate neurons in animals and humans, but the mechanism of this effect is unknown. It has been hypothesized that US, a mechanical stimulus, may mediate cellular discharge by activating mechanosensitive ion channels embedded within cellular membranes. To test this hypothesis, we expressed potassium and sodium mechanosensitive ion channels (channels of the two-pore-domain potassium family (K2P) including TREK-1, TREK-2, TRAAK; NaV1.5) in the Xenopus oocyte system. Focused US (10 MHz, 0.3–4.9 W/cm2) modulated the currents flowing through the ion channels on average by up to 23%, depending on channel and stimulus intensity. The effects were reversible upon repeated stimulation and were abolished when a channel blocker (ranolazine to block NaV1.5, BaCl2 to block K2P channels) was applied to the solution. These data reveal at the single cell level that focused US modulates the activity of specific ion channels to mediate transmembrane currents. These findings open doors to investigations of the effects of  US on ion channels expressed in neurons, retinal cells, or cardiac cells, which may lead to important medical applications. The findings may also pave the way to the development of sonogenetics: a non-invasive, US-based analogue of optogenetics. PMID:27112990

  3. Simulating complex ion channel kinetics with IonChannelLab

    PubMed Central

    Covarrubias, Manuel; Sánchez-Rodríguez, Jorge E; Perez-Cornejo, Patricia; Arreola, Jorge

    2010-01-01

    In-silico simulation based on Markov chains is a powerful way to describe and predict the activity of many transport proteins including ion channels. However, modeling and simulation using realistic models of voltage- or ligand-gated ion channels exposed to a wide range of experimental conditions require building complex kinetic schemes and solving complicated differential equations. To circumvent these problems, we developed IonChannelLab a software tool that includes a user-friendly Graphical User Interface and a simulation library. This program supports channels with Ohmic or Goldman-Hodgkin-Katz behavior and can simulate the time-course of ionic and gating currents, single channel behavior and steady-state conditions. The program allows the simulation of experiments where voltage, ligand and ionic concentration are varied independently or simultaneously. PMID:20935453

  4. Marine Toxins Targeting Ion Channels

    PubMed Central

    Arias, Hugo R.

    2006-01-01

    This introductory minireview points out the importance of ion channels for cell communication. The basic concepts on the structure and function of ion channels triggered by membrane voltage changes, the so-called voltage-gated ion channels (VGICs), as well as those activated by neurotransmitters, the so-called ligand-gated ion channel (LGICs), are introduced. Among the most important VGIC superfamiles, we can name the voltage-gated Na+ (NaV), Ca2+ (CaV), and K+ (KV) channels. Among the most important LGIC super families, we can include the Cys-loop or nicotinicoid, the glutamate-activated (GluR), and the ATP-activated (P2XnR) receptor superfamilies. Ion channels are transmembrane proteins that allow the passage of different ions in a specific or unspecific manner. For instance, the activation of NaV, CaV, or KV channels opens a pore that is specific for Na+, Ca2+, or K+, respectively. On the other hand, the activation of certain LGICs such as nicotinic acetylcholine receptors, GluRs, and P2XnRs allows the passage of cations (e.g., Na+, K+, and/or Ca2+), whereas the activation of other LGICs such as type A γ-butyric acid and glycine receptors allows the passage of anions (e.g., Cl− and/or HCO3−). In this regard, the activation of NaV and CaV as well as ligand-gated cation channels produce membrane depolarization, which finally leads to stimulatory effects in the cell, whereas the activation of KV as well as ligand-gated anion channels induce membrane hyperpolarization that finally leads to inhibitory effects in the cell. The importance of these ion channel superfamilies is emphasized by considering their physiological functions throughout the body as well as their pathophysiological implicance in several neuronal diseases. In this regard, natural molecules, and especially marine toxins, can be potentially used as modulators (e.g., inhibitors or prolongers) of ion channel functions to treat or to alleviate a specific ion channel-linked disease (e

  5. The ion-channel laser

    SciTech Connect

    Whittum, D.H.; Sessler, A.M. ); Dawson, J.M. . Dept. of Physics)

    1990-01-01

    A relativistic electron beam propagating through a plasma in the ion-focused regime exhibits an electromagnetic instability at a resonant frequency {omega} {approximately} 2{gamma}{sup 2} {omega}{sub {beta}}. Growth is enhanced by optical guiding in the ion channel, which acts as dielectric waveguide, with fiber parameter V {approximately} 2 (I/I{sub A}){sup 1/2}. A 1-D theory for such an ion-channel laser'' is formulated, scaling laws are derived and numerical examples are given. Possible experimental evidence is noted. 23 refs., 1 fig., 1 tab.

  6. Ion Channels in Brain Metastasis

    PubMed Central

    Klumpp, Lukas; Sezgin, Efe C.; Eckert, Franziska; Huber, Stephan M.

    2016-01-01

    Breast cancer, lung cancer and melanoma exhibit a high metastatic tropism to the brain. Development of brain metastases severely worsens the prognosis of cancer patients and constrains curative treatment options. Metastasizing to the brain by cancer cells can be dissected in consecutive processes including epithelial–mesenchymal transition, evasion from the primary tumor, intravasation and circulation in the blood, extravasation across the blood–brain barrier, formation of metastatic niches, and colonization in the brain. Ion channels have been demonstrated to be aberrantly expressed in tumor cells where they regulate neoplastic transformation, malignant progression or therapy resistance. Moreover, many ion channel modulators are FDA-approved drugs and in clinical use proposing ion channels as druggable targets for future anti-cancer therapy. The present review article aims to summarize the current knowledge on the function of ion channels in the different processes of brain metastasis. The data suggest that certain channel types involving voltage-gated sodium channels, ATP-release channels, ionotropic neurotransmitter receptors and gap junction-generating connexins interfere with distinct processes of brain metastazation. PMID:27618016

  7. Demystifying Mechanosensitive Piezo Ion Channels.

    PubMed

    Xu, X Z Shawn

    2016-06-01

    Mechanosensitive channels mediate touch, hearing, proprioception, and blood pressure regulation. Piezo proteins, including Piezo1 and Piezo2, represent a new class of mechanosensitive channels that have been reported to play key roles in most, if not all, of these modalities. The structural architecture and molecular mechanisms by which Piezos act as mechanosensitive channels, however, remain mysterious. Two new studies have now provided critical insights into the atomic structure and molecular basis of the ion permeation and mechano-gating properties of the Piezo1 channel.

  8. Hydrophobic gating in ion channels.

    PubMed

    Aryal, Prafulla; Sansom, Mark S P; Tucker, Stephen J

    2015-01-16

    Biological ion channels are nanoscale transmembrane pores. When water and ions are enclosed within the narrow confines of a sub-nanometer hydrophobic pore, they exhibit behavior not evident from macroscopic descriptions. At this nanoscopic level, the unfavorable interaction between the lining of a hydrophobic pore and water may lead to stochastic liquid-vapor transitions. These transient vapor states are "dewetted", i.e. effectively devoid of water molecules within all or part of the pore, thus leading to an energetic barrier to ion conduction. This process, termed "hydrophobic gating", was first observed in molecular dynamics simulations of model nanopores, where the principles underlying hydrophobic gating (i.e., changes in diameter, polarity, or transmembrane voltage) have now been extensively validated. Computational, structural, and functional studies now indicate that biological ion channels may also exploit hydrophobic gating to regulate ion flow within their pores. Here we review the evidence for this process and propose that this unusual behavior of water represents an increasingly important element in understanding the relationship between ion channel structure and function.

  9. Ion channels in development and cancer.

    PubMed

    Bates, Emily

    2015-01-01

    Ion channels have emerged as regulators of developmental processes. In model organisms and in people with mutations in ion channels, disruption of ion channel function can affect cell proliferation, cell migration, and craniofacial and limb patterning. Alterations of ion channel function affect morphogenesis in fish, frogs, mammals, and flies, demonstrating that ion channels have conserved roles in developmental processes. One model suggests that ion channels affect proliferation and migration through changes in cell volume. However, ion channels have not explicitly been placed in canonical developmental signaling cascades until recently. This review gives examples of ion channels that influence developmental processes, offers a potential underlying molecular mechanism involving bone morphogenetic protein (BMP) signaling, and finally explores exciting possibilities for manipulating ion channels to influence cell fate for regenerative medicine and to impact disease.

  10. Microbial Senses and Ion Channels

    NASA Astrophysics Data System (ADS)

    Kung, Ching; Zhou, Xin-Liang; Su, Zhen-Wei; Haynes, W. John; Loukin, Sephan H.; Saimi, Yoshiro

    The complexity of animals and plants is due largely to cellular arrangement. The structures and activities of macromolecules had, however, evolved in early microbes long before the appearance of this complexity. Among such molecules are those that sense light, heat, force, water, and ligands. Though historically and didactically associated with the nervous system, ion channels also have deep evolutionary roots. For example, force sensing with channels, which likely began as water sensing through membrane stretch generated by osmotic pressure, must be ancient and is universal in extant species. Extant microbial species, such as the model bacterium Escherichia coli and yeast Saccharomyces cerevisiae, are equipped with stretch-activated channels. The ion channel proteins MscL and MscS show clearly that these bacterial channels receive stretch forces from the lipid bilayer. TRPY1, the mechanosensitive channel in yeast, is being developed towards a similar basic understanding of channels of the TRP (transientreceptor- potential) superfamily. TRPY1 resides in the vacuolar membrane and releases Ca2+ from the vacuole to the cytoplasm upon hyperosmotic shock. Unlike in most TRP preparations from animals, the mechanosensitivity of TRPY1 can be examined directly under patch clamp in either whole-vacuole mode or excised patch mode. The combination of direct biophysical examination in vitro with powerful microbial genetics in vivo should complement the study of mechanosensations of complex animals and plants.

  11. Ferritin Protein Nanocage Ion Channels

    PubMed Central

    Tosha, Takehiko; Behera, Rabindra K.; Ng, Ho-Leung; Bhattasali, Onita; Alber, Tom; Theil, Elizabeth C.

    2012-01-01

    Ferritin protein nanocages, self-assembled from four-α-helix bundle subunits, use Fe2+ and oxygen to synthesize encapsulated, ferric oxide minerals. Ferritin minerals are iron concentrates stored for cell growth. Ferritins are also antioxidants, scavenging Fenton chemistry reactants. Channels for iron entry and exit consist of helical hairpin segments surrounding the 3-fold symmetry axes of the ferritin nanocages. We now report structural differences caused by amino acid substitutions in the Fe2+ ion entry and exit channels and at the cytoplasmic pores, from high resolution (1.3–1.8 Å) protein crystal structures of the eukaryotic model ferritin, frog M. Mutations that eliminate conserved ionic or hydrophobic interactions between Arg-72 and Asp-122 and between Leu-110 and Leu-134 increase flexibility in the ion channels, cytoplasmic pores, and/or the N-terminal extensions of the helix bundles. Decreased ion binding in the channels and changes in ordered water are also observed. Protein structural changes coincide with increased Fe2+ exit from dissolved, ferric minerals inside ferritin protein cages; Fe2+ exit from ferritin cages depends on a complex, surface-limited process to reduce and dissolve the ferric mineral. High concentrations of bovine serum albumin or lysozyme (protein crowders) to mimic the cytoplasm restored Fe2+ exit in the variants to wild type. The data suggest that fluctuations in pore structure control gating. The newly identified role of the ferritin subunit N-terminal extensions in gating Fe2+ exit from the cytoplasmic pores strengthens the structural and functional analogies between ferritin ion channels in the water-soluble protein assembly and membrane protein ion channels gated by cytoplasmic N-terminal peptides. PMID:22362775

  12. Improvement in fusion reactor performance due to ion channeling

    SciTech Connect

    Emmert, G.A.; El-Guebaly, L.A.; Kulcinski, G.L.; Santarius, J.F.; Sviatoslavsky, I.N.; Meade, D.M.

    1994-11-01

    Ion channeling is a recent idea for improving the performance of fusion reactors by increasing the fraction of the fusion power deposited in the ions. In this paper the authors assess the effect of ion channeling on D-T and D-{sup 3}He reactors. The figures of merit used are the fusion power density and the cost of electricity. It is seen that significant ion channeling can lead to about a 50-65% increase in the fusion power density. For the Apollo D-{sup 3}He reactor concept the reduction in the cost of electricity can be as large as 30%.

  13. Improved Ion-Channel Biosensors

    NASA Technical Reports Server (NTRS)

    Nadeau, Jay; White, Victor; Dougherty, Dennis; Maurer, Joshua

    2004-01-01

    An effort is underway to develop improved biosensors of a type based on ion channels in biomimetic membranes. These sensors are microfabricated from silicon and other materials compatible with silicon. As described, these sensors offer a number of advantages over prior sensors of this type.

  14. A Latin American Perspective on Ion Channels.

    PubMed

    Elgoyhen, Ana Belén; Barajas-López, Carlos

    2016-09-01

    Ion channels, both ligand- and voltage-gated, play fundamental roles in many physiologic processes. Alteration in ion channel function underlies numerous pathologies, including hypertension, diabetes, chronic pain, epilepsy, certain cancers, and neuromuscular diseases. In addition, an increasing number of inherited and de novo ion channel mutations have been shown to contribute to disease states. Ion channels are thus a major class of pharmacotherapeutic targets.

  15. Ion channels in analgesia research.

    PubMed

    Rosenbaum, Tamara; Simon, Sidney A; Islas, Leon D

    2010-01-01

    Several recent techniques have allowed us to pinpoint the receptors responsible for the detection of nociceptive stimuli. Among these receptors, ion channels play a fundamental role in the recognition and transduction of stimuli that can cause pain. During the last decade, compelling evidence has been gathered on the role of the TRPV1 channel in inflammatory and neuropathic states. Activation of TRPV1 in nociceptive neurons results in the release of neuropeptides and transmitters, leading to the generation of action potentials that will be sent to higher CNS areas, where they will often be perceived as pain. Its activation will also evoke the peripheral release of pro-inflammatory compounds that may sensitize other neurons to physical, thermal, or chemical stimuli. For these reasons, and because its continuous activation causes analgesia, TRPV1 is now considered a viable drug target for clinical use in the management of pain. Using the TRPV1 channel as an example, here we describe some basic biophysical approaches used to study the properties of ion channels involved in pain and in analgesia.

  16. Functional ion channels in stem cells

    PubMed Central

    Li, Gui-Rong; Deng, Xiu-Ling

    2011-01-01

    Bioelectrical signals generated by ion channels play crucial roles in excitation genesis and impulse conduction in excitable cells as well as in cell proliferation, migration and apoptosis in proliferative cells. Recent studies have demonstrated that multiple ion channels are heterogeneously present in different stem cells; however, patterns and phenotypes of ion channels are species- and/or origin-dependent. This editorial review focuses on the recent findings related to the expression of functional ion channels and the roles of these channels in regulation of cell proliferation in stem cells. Additional effort is required in the future to clarify the ion channel expression in different types of stem cells; special attention should be paid to the relationship between ion channels and stem cell proliferation, migration and differentiation. PMID:21607133

  17. High throughput screening technologies for ion channels

    PubMed Central

    Yu, Hai-bo; Li, Min; Wang, Wei-ping; Wang, Xiao-liang

    2016-01-01

    Ion channels are involved in a variety of fundamental physiological processes, and their malfunction causes numerous human diseases. Therefore, ion channels represent a class of attractive drug targets and a class of important off-targets for in vitro pharmacological profiling. In the past decades, the rapid progress in developing functional assays and instrumentation has enabled high throughput screening (HTS) campaigns on an expanding list of channel types. Chronologically, HTS methods for ion channels include the ligand binding assay, flux-based assay, fluorescence-based assay, and automated electrophysiological assay. In this review we summarize the current HTS technologies for different ion channel classes and their applications. PMID:26657056

  18. Computing rates of Markov models of voltage-gated ion channels by inverting partial differential equations governing the probability density functions of the conducting and non-conducting states.

    PubMed

    Tveito, Aslak; Lines, Glenn T; Edwards, Andrew G; McCulloch, Andrew

    2016-07-01

    Markov models are ubiquitously used to represent the function of single ion channels. However, solving the inverse problem to construct a Markov model of single channel dynamics from bilayer or patch-clamp recordings remains challenging, particularly for channels involving complex gating processes. Methods for solving the inverse problem are generally based on data from voltage clamp measurements. Here, we describe an alternative approach to this problem based on measurements of voltage traces. The voltage traces define probability density functions of the functional states of an ion channel. These probability density functions can also be computed by solving a deterministic system of partial differential equations. The inversion is based on tuning the rates of the Markov models used in the deterministic system of partial differential equations such that the solution mimics the properties of the probability density function gathered from (pseudo) experimental data as well as possible. The optimization is done by defining a cost function to measure the difference between the deterministic solution and the solution based on experimental data. By evoking the properties of this function, it is possible to infer whether the rates of the Markov model are identifiable by our method. We present applications to Markov model well-known from the literature.

  19. Atomic absorption spectroscopy in ion channel screening.

    PubMed

    Stankovich, Larisa; Wicks, David; Despotovski, Sasko; Liang, Dong

    2004-10-01

    This article examines the utility of atomic absorption spectroscopy, in conjunction with cold flux assays, to ion channel screening. The multiplicity of ion channels that can be interrogated using cold flux assays and atomic absorption spectroscopy is summarized. The importance of atomic absorption spectroscopy as a screening tool is further elaborated upon by providing examples of the relevance of ion channels to various physiological processes and targeted diseases.

  20. Ion Channels in Innate and Adaptive Immunity

    PubMed Central

    Feske, Stefan; Wulff, Heike; Skolnik, Edward Y.

    2016-01-01

    Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy. PMID:25861976

  1. Ion channels in innate and adaptive immunity.

    PubMed

    Feske, Stefan; Wulff, Heike; Skolnik, Edward Y

    2015-01-01

    Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy.

  2. Ion channels as targets for cancer therapy

    PubMed Central

    Li, Minghua; Xiong, Zhi-Gang

    2011-01-01

    Cancer is a leading cause of death in the world. Conventional treatments have severe side effects and low survival rate. It is important to discover new targets and therapeutic strategies to improve the clinical outcomes of cancer patients. Ion channels are specialized membrane proteins that play important roles in various physiological processes. Recent studies have shown that abnormal expression and/or activity of a number of ion channels e.g. voltage-gated K+, Na+, Ca2+ channels, TRP channels, and epithelial Na+/degenerin family of ion channels, are involved in the growth/proliferation, migration and/or invasion of cancer cells. In this review, we summarize the present knowledge about the roles of different ion channels in the development of cancer. PMID:21760973

  3. Modeling ion channels: Past, present, and future

    PubMed Central

    2014-01-01

    Ion channels are membrane-bound enzymes whose catalytic sites are ion-conducting pores that open and close (gate) in response to specific environmental stimuli. Ion channels are important contributors to cell signaling and homeostasis. Our current understanding of gating is the product of 60 plus years of voltage-clamp recording augmented by intervention in the form of environmental, chemical, and mutational perturbations. The need for good phenomenological models of gating has evolved in parallel with the sophistication of experimental technique. The goal of modeling is to develop realistic schemes that not only describe data, but also accurately reflect mechanisms of action. This review covers three areas that have contributed to the understanding of ion channels: traditional Eyring kinetic theory, molecular dynamics analysis, and statistical thermodynamics. Although the primary emphasis is on voltage-dependent channels, the methods discussed here are easily generalized to other stimuli and could be applied to any ion channel and indeed any macromolecule. PMID:24935742

  4. Arachidonic acid and ion channels: an update

    PubMed Central

    Meves, H

    2008-01-01

    Arachidonic acid (AA), a polyunsaturated fatty acid with four double bonds, has multiple actions on living cells. Many of these effects are mediated by an action of AA or its metabolites on ion channels. During the last 10 years, new types of ion channels, transient receptor potential (TRP) channels, store-operated calcium entry (SOCE) channels and non-SOCE channels have been studied. This review summarizes our current knowledge about the effects of AA on TRP and non-SOCE channels as well as classical ion channels. It aims to distinguish between effects of AA itself and effects of AA metabolites. Lipid mediators are of clinical interest because some of them (for example, leukotrienes) play a role in various diseases, others (such as prostaglandins) are targets for pharmacological therapeutic intervention. PMID:18552881

  5. Cardiac ion channels in health and disease.

    PubMed

    Amin, Ahmad S; Tan, Hanno L; Wilde, Arthur A M

    2010-01-01

    Cardiac electrical activity depends on the coordinated propagation of excitatory stimuli through the heart and, as a consequence, the generation of action potentials in individual cardiomyocytes. Action potential formation results from the opening and closing (gating) of ion channels that are expressed within the sarcolemma of cardiomyocytes. Ion channels possess distinct genetic, molecular, pharmacologic, and gating properties and exhibit dissimilar expression levels within different cardiac regions. By gating, ion channels permit ion currents across the sarcolemma, thereby creating the different phases of the action potential (e.g., resting phase, depolarization, repolarization). The importance of ion channels in maintaining normal heart rhythm is reflected by the increased incidence of arrhythmias in inherited diseases that are linked to mutations in genes encoding ion channels or their accessory proteins and in acquired diseases that are associated with changes in ion channel expression levels or gating properties. This review discusses ion channels that contribute to action potential formation in healthy hearts and their role in inherited and acquired diseases.

  6. Discovery of functional antibodies targeting ion channels.

    PubMed

    Wilkinson, Trevor C I; Gardener, Matthew J; Williams, Wendy A

    2015-04-01

    Ion channels play critical roles in physiology and disease by modulation of cellular functions such as electrical excitability, secretion, cell migration, and gene transcription. Ion channels represent an important target class for drug discovery that has been largely addressed, to date, using small-molecule approaches. A significant opportunity exists to target these channels with antibodies and alternative formats of biologics. Antibodies display high specificity and affinity for their target antigen, and they have the potential to target ion channels very selectively. Nevertheless, isolating antibodies to this target class is challenging due to the difficulties in expression and purification of ion channels in a format suitable for antibody drug discovery in addition to the complexity of screening for function. In this article, we will review the current state of ion channel biologics discovery and the progress that has been made. We will also highlight the challenges in isolating functional antibodies to these targets and how these challenges may be addressed. Finally, we also illustrate successful approaches to isolating functional monoclonal antibodies targeting ion channels by way of a number of case studies drawn from recent publications.

  7. Pair creation in heavy ion channeling

    NASA Astrophysics Data System (ADS)

    Belov, N. A.; Harman, Z.

    2016-04-01

    Heavy ions channeled through crystals with multi-GeV kinetic energies can create electron-positron pairs. In the framework of the ion, the energy of virtual photons arising from the periodic crystal potential may exceed the threshold 2mec2. The repeated periodic collisions with the crystal ions yield high pair production rates. When the virtual photon frequency matches a nuclear transition in the ion, the production rate can be resonantly increased. In this two-step excitation-pair conversion scheme, the excitation rates are coherently enhanced, and scale approximately quadratically with the number of crystal sites along the channel.

  8. Pressure effects on stopping power of solids for channeled ions

    NASA Astrophysics Data System (ADS)

    Pathak, A. P.; Cruz, S. A.; Soullard, J.

    2005-01-01

    Pressure effects on the energy loss of swift channeled ions through silicon are considered. This is accomplished by estimating the changes in orbital charge densities and the corresponding mean ionization potentials, induced by increasing pressure. The bulk density for the compressed material is obtained from available experimental information on the corresponding equation of state for pressures up to 11.3 GPa, beyond which a structural phase transformation occurs. The high pressure is simulated by first caging the individual Si atom in a small spherical volume V and estimated as P=-partial derivative E/partial derivative V, where E is the total electronic energy for a particular confinement volume. The energy is selfconsistently calculated through a recently developed shell-wise version of the Thomas-Fermi-Dirac-Weizsacker density functional, which compares favorably with ab initio calculations on the basis of a cluster model where the Si atom is surrounded by neon (helium) atoms (in a molecular scheme). The resulting individual electronic shell charge densities are then averaged along planar channels to find the effective charge densities needed in the channeling energy loss calculations for channeled ions. The position dependence of the energy loss in the channels for the free and high-pressure case is calculated for 5 Me V protons and alpha particles along the (110) planar channels.

  9. Ion channels and the hallmarks of cancer.

    PubMed

    Prevarskaya, Natalia; Skryma, Roman; Shuba, Yaroslav

    2010-03-01

    Plasma membrane (PM) ion channels contribute to virtually all basic cellular processes and are also involved in the malignant phenotype of cancer cells. Here, we review the role of ion channels in cancer in the context of their involvement in the defined hallmarks of cancer: 1) self-sufficiency in growth signals, 2) insensitivity to antigrowth signals, 3) evasion of programmed cell death (apoptosis), 4) limitless replicative potential, 5) sustained angiogenesis and 6) tissue invasion and metastasis. Recent studies have indicated that the contribution of specific ion channels to these hallmarks varies for different types of cancer. Therefore, to determine the importance of ion channels as targets for cancer diagnosis and treatment their expression, function and regulation must be assessed for each cancer.

  10. Misfolded amyloid ion channels present mobile beta-sheet subunits in contrast to conventional ion channels.

    PubMed

    Jang, Hyunbum; Arce, Fernando Teran; Capone, Ricardo; Ramachandran, Srinivasan; Lal, Ratnesh; Nussinov, Ruth

    2009-12-02

    In Alzheimer's disease, calcium permeability through cellular membranes appears to underlie neuronal cell death. It is increasingly accepted that calcium permeability involves toxic ion channels. We modeled Alzheimer's disease ion channels of different sizes (12-mer to 36-mer) in the lipid bilayer using molecular dynamics simulations. Our Abeta channels consist of the solid-state NMR-based U-shaped beta-strand-turn-beta-strand motif. In the simulations we obtain ion-permeable channels whose subunit morphologies and shapes are consistent with electron microscopy/atomic force microscopy. In agreement with imaged channels, the simulations indicate that beta-sheet channels break into loosely associated mobile beta-sheet subunits. The preferred channel sizes (16- to 24-mer) are compatible with electron microscopy/atomic force microscopy-derived dimensions. Mobile subunits were also observed for beta-sheet channels formed by cytolytic PG-1 beta-hairpins. The emerging picture from our large-scale simulations is that toxic ion channels formed by beta-sheets spontaneously break into loosely interacting dynamic units that associate and dissociate leading to toxic ionic flux. This sharply contrasts intact conventional gated ion channels that consist of tightly interacting alpha-helices that robustly prevent ion leakage, rather than hydrogen-bonded beta-strands. The simulations suggest why conventional gated channels evolved to consist of interacting alpha-helices rather than hydrogen-bonded beta-strands that tend to break in fluidic bilayers. Nature designs folded channels but not misfolded toxic channels.

  11. Alcohol intoxication: Ion channels and genetics

    SciTech Connect

    Harris, A.R.; Allan, A.M. )

    1989-04-01

    Acute in vitro exposure to ethanol and other intoxicant-anesthetics activates {gamma}-aminobutyric acid (GABA)-stimulated chloride channels and inhibits voltage-dependent calcium and sodium channels of isolated brain membranes. The question of whether these neurochemical actions are responsible for intoxication in vivo has been addressed using animal populations displaying genetic differences in sensitivity to alcohol and benzodiazepine intoxication. These genetic approaches include inbred strains, selected lines, recombinant inbred strains, and heterogeneous stocks. Genetic differences in ion channel function provide strong evidence for a role of the GABA-stimulated chloride channel in ethanol and benzodiazepine intoxication; the role of calcium and sodium channels is less clear.

  12. Reconstruction of Cell Surface Densities of Ion Pumps, Exchangers, and Channels from mRNA Expression, Conductance Kinetics, Whole-Cell Calcium, and Current-Clamp Voltage Recordings, with an Application to Human Uterine Smooth Muscle Cells.

    PubMed

    Atia, Jolene; McCloskey, Conor; Shmygol, Anatoly S; Rand, David A; van den Berg, Hugo A; Blanks, Andrew M

    2016-04-01

    Uterine smooth muscle cells remain quiescent throughout most of gestation, only generating spontaneous action potentials immediately prior to, and during, labor. This study presents a method that combines transcriptomics with biophysical recordings to characterise the conductance repertoire of these cells, the 'conductance repertoire' being the total complement of ion channels and transporters expressed by an electrically active cell. Transcriptomic analysis provides a set of potential electrogenic entities, of which the conductance repertoire is a subset. Each entity within the conductance repertoire was modeled independently and its gating parameter values were fixed using the available biophysical data. The only remaining free parameters were the surface densities for each entity. We characterise the space of combinations of surface densities (density vectors) consistent with experimentally observed membrane potential and calcium waveforms. This yields insights on the functional redundancy of the system as well as its behavioral versatility. Our approach couples high-throughput transcriptomic data with physiological behaviors in health and disease, and provides a formal method to link genotype to phenotype in excitable systems. We accurately predict current densities and chart functional redundancy. For example, we find that to evoke the observed voltage waveform, the BK channel is functionally redundant whereas hERG is essential. Furthermore, our analysis suggests that activation of calcium-activated chloride conductances by intracellular calcium release is the key factor underlying spontaneous depolarisations.

  13. Reconstruction of Cell Surface Densities of Ion Pumps, Exchangers, and Channels from mRNA Expression, Conductance Kinetics, Whole-Cell Calcium, and Current-Clamp Voltage Recordings, with an Application to Human Uterine Smooth Muscle Cells

    PubMed Central

    Atia, Jolene; McCloskey, Conor; Shmygol, Anatoly S.; Rand, David A.; van den Berg, Hugo A.; Blanks, Andrew M.

    2016-01-01

    Uterine smooth muscle cells remain quiescent throughout most of gestation, only generating spontaneous action potentials immediately prior to, and during, labor. This study presents a method that combines transcriptomics with biophysical recordings to characterise the conductance repertoire of these cells, the ‘conductance repertoire’ being the total complement of ion channels and transporters expressed by an electrically active cell. Transcriptomic analysis provides a set of potential electrogenic entities, of which the conductance repertoire is a subset. Each entity within the conductance repertoire was modeled independently and its gating parameter values were fixed using the available biophysical data. The only remaining free parameters were the surface densities for each entity. We characterise the space of combinations of surface densities (density vectors) consistent with experimentally observed membrane potential and calcium waveforms. This yields insights on the functional redundancy of the system as well as its behavioral versatility. Our approach couples high-throughput transcriptomic data with physiological behaviors in health and disease, and provides a formal method to link genotype to phenotype in excitable systems. We accurately predict current densities and chart functional redundancy. For example, we find that to evoke the observed voltage waveform, the BK channel is functionally redundant whereas hERG is essential. Furthermore, our analysis suggests that activation of calcium-activated chloride conductances by intracellular calcium release is the key factor underlying spontaneous depolarisations. PMID:27105427

  14. Interaction of hydrogen sulfide with ion channels.

    PubMed

    Tang, Guanghua; Wu, Lingyun; Wang, Rui

    2010-07-01

    1. Hydrogen sulfide (H(2)S) is a signalling gasotransmitter. It targets different ion channels and receptors, and fulfils its various roles in modulating the functions of different systems. However, the interaction of H(2)S with different types of ion channels and underlying molecular mechanisms has not been reviewed systematically. 2. H(2)S is the first identified endogenous gaseous opener of ATP-sensitive K(+) channels in vascular smooth muscle cells. Through the activation of ATP-sensitive K(+) channels, H(2)S lowers blood pressure, protects the heart from ischemia and reperfusion injury, inhibits insulin secretion in pancreatic beta cells, and exerts anti-inflammatory, anti-nociceptive and anti-apoptotic effects. 3. H(2)S inhibited L-type Ca(2+) channels in cardiomyocytes but stimulated the same channels in neurons, thus regulating intracellular Ca(2+) levels. H(2)S activated small and medium conductance K(Ca) channels but its effect on BK(Ca) channels has not been consistent. 4. H(2)S-induced hyperalgesia and pro-nociception seems to be related to the sensitization of both T-type Ca(2+) channels and TRPV(1) channels. The activation of TRPV(1) and TRPA(1) by H(2)S is believed to result in contraction of nonvascular smooth muscles and increased colonic mucosal Cl(-) secretion. 5. The activation of Cl(-) channel by H(2)S has been shown as a protective mechanism for neurons from oxytosis. H(2)S also potentiates N-methyl-d-aspartic acid receptor-mediated currents that are involved in regulating synaptic plasticity for learning and memory. 6. Given the important modulatory effects of H(2)S on different ion channels, many cellular functions and disease conditions related to homeostatic control of ion fluxes across cell membrane should be re-evaluated.

  15. Flufenamic acid as an ion channel modulator

    PubMed Central

    Guinamard, Romain; Simard, Christophe; Negro, Christopher Del

    2014-01-01

    Flufenamic acid has been known since the 1960s to have anti-inflammatory properties attributable to the reduction of prostaglandin synthesis. Thirty years later, flufenamic acid appeared to be an ion channel modulator. Thus, while its use in medicine diminished, its use in ionic channel research expanded. Flufenamic acid commonly affects non-selective cation channels and chloride channels, but also modulates potassium, calcium and sodium channels with effective concentrations ranging from 10-6 M in TRPM4 channel inhibition to 10-3 M in two-pore outwardly rectifying potassium channel activation. Because flufenamic acid effects develop and reverse rapidly, it is a convenient and widely used tool. However, given the broad spectrum of its targets, experimental results have to be interpreted cautiously. Here we provide an overview of ion channels targeted by flufenamic acid to aid in interpreting its effects at the molecular, cellular, and systems levels. If it is used with good practices, flufenamic acid remains a useful tool for ion channel research. Understanding the targets of FFA may help reevaluate its physiological impacts and revive interest in its therapeutic potential. PMID:23356979

  16. Introduction: Applying Chemical Biology to Ion Channels.

    PubMed

    Pless, Stephan A; Ahern, Christopher A

    2015-01-01

    Ion channels are membrane-spanning proteins that control the flow of ions across biological membranes through an aqueous pathway. The opening or closing of this pore can be controlled by a myriad of physiological inputs (voltage, ligands, temperature, metabolites, pH), which in turn allow for the controlled flux of ions across membranes, resulting in the generation of minute electrical signals. The functional implications of ion channel function on physiological processes are vast. Electrical impulses, in the form of action potentials or diverse chemo-electrical signals, coordinate the syncytium of the heart beat, support a myriad of neuronal communication pathways, insulin secretion, and are central to the immune response, with more roles being discovered virtually everyday. Thus, ion channel function is a biophysical process that is central to biological life at many levels. And with over 500 channel-forming subunits known today in humans, this large class of proteins is also increasingly recognised as important drug targets, as inherited or acquired ion channel dysfunction are known causes of disease.

  17. Probability density functions in turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Dinavahi, Surya P. G.

    1992-01-01

    The probability density functions (pdf's) of the fluctuating velocity components, as well as their first and second derivatives, are calculated using data from the direct numerical simulations (DNS) of fully developed turbulent channel flow. It is observed that, beyond the buffer region, the pdf of each of these quantities is independent of the distance from the channel wall. It is further observed that, beyond the buffer region, the pdf's for all the first derivatives collapse onto a single universal curve and those of the second derivatives also collapse onto another universal curve, irrespective of the distance from the wall. The kinetic-energy dissipation rate exhibits log normal behavior.

  18. Superposition properties of interacting ion channels.

    PubMed Central

    Keleshian, A M; Yeo, G F; Edeson, R O; Madsen, B W

    1994-01-01

    Quantitative analysis of patch clamp data is widely based on stochastic models of single-channel kinetics. Membrane patches often contain more than one active channel of a given type, and it is usually assumed that these behave independently in order to interpret the record and infer individual channel properties. However, recent studies suggest there are significant channel interactions in some systems. We examine a model of dependence in a system of two identical channels, each modeled by a continuous-time Markov chain in which specified transition rates are dependent on the conductance state of the other channel, changing instantaneously when the other channel opens or closes. Each channel then has, e.g., a closed time density that is conditional on the other channel being open or closed, these being identical under independence. We relate the two densities by a convolution function that embodies information about, and serves to quantify, dependence in the closed class. Distributions of observable (superposition) sojourn times are given in terms of these conditional densities. The behavior of two channel systems based on two- and three-state Markov models is examined by simulation. Optimized fitting of simulated data using reasonable parameters values and sample size indicates that both positive and negative cooperativity can be distinguished from independence. PMID:7524711

  19. Ion channels regulating mast cell biology.

    PubMed

    Ashmole, I; Bradding, P

    2013-05-01

    Mast cells play a central role in the pathophysiology of asthma and related allergic conditions. Mast cell activation leads to the degranulation of preformed mediators such as histamine and the secretion of newly synthesised proinflammatory mediators such as leukotrienes and cytokines. Excess release of these mediators contributes to allergic disease states. An influx of extracellular Ca2+ is essential for mast cell mediator release. From the Ca2+ channels that mediate this influx, to the K+ , Cl- and transient receptor potential channels that set the cell membrane potential and regulate Ca2+ influx, ion channels play a critical role in mast cell biology. In this review we provide an overview of our current knowledge of ion channel expression and function in mast cells with an emphasis on how channels interact to regulate Ca2+ signalling.

  20. The Origins of Transmembrane Ion Channels

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Even though membrane proteins that mediate transport of ions and small molecules across cell walls are among the largest and least understood biopolymers in contemporary cells, it is still possible to shed light on their origins and early evolution. The central observation is that transmembrane portions of most ion channels are simply bundles of -helices. By combining results of experimental and computer simulation studies on synthetic models and natural channels, mostly of non-genomic origin, we show that the emergence of -helical channels was protobiologically plausible, and did not require highly specific amino acid sequences. Despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. Specifically, we explain how the antiamoebin channels, which are made of identical helices, 16 amino acids in length, achieve efficiency comparable to that of highly evolved channels. We further show that antiamoebin channels are extremely flexible, compared to modern, genetically coded channels. On the basis of our results, we propose that channels evolved further towards high structural complexity because they needed to acquire stable rigid structures and mechanisms for precise regulation rather than improve efficiency. In general, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during evolution.

  1. Ion channels and transporters in metastasis.

    PubMed

    Stock, Christian; Schwab, Albrecht

    2015-10-01

    An elaborate interplay between ion channels and transporters, components of the cytoskeleton, adhesion molecules, and signaling cascades provides the basis for each major step of the metastatic cascade. Ion channels and transporters contribute to cell motility by letting through or transporting ions essential for local Ca2+, pH and--in cooperation with water permeable aquaporins--volume homeostasis. Moreover, in addition to the actual ion transport they, or their auxiliary subunits, can display non-conducting activities. They can exert kinase activity in order to phosphorylate cytoskeletal constituents or their associates. They can become part of signaling processes by permeating Ca2+, by generating local pH-nanodomains or by being final downstream effectors. A number of channels and transporters are found at focal adhesions, interacting directly or indirectly with proteins of the extracellular matrix, with integrins or with components of the cytoskeleton. We also include the role of aquaporins in cell motility. They drive the outgrowth of lamellipodia/invadopodia or control the number of β1 integrins in the plasma membrane. The multitude of interacting ion channels and transporters (called transportome) including the associated signaling events holds great potential as therapeutic target(s) for anticancer agents that are aimed at preventing metastasis. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  2. Studying mechanosensitive ion channels using liposomes.

    PubMed

    Martinac, Boris; Rohde, Paul R; Battle, Andrew R; Petrov, Evgeny; Pal, Prithwish; Foo, Alexander Fook; Vásquez, Valeria; Huynh, Thuan; Kloda, Anna

    2010-01-01

    Mechanosensitive (MS) ion channels are the primary molecular transducers of mechanical force into electrical and/or chemical intracellular signals in living cells. They have been implicated in innumerable mechanosensory physiological processes including touch and pain sensation, hearing, blood pressure control, micturition, cell volume regulation, tissue growth, or cellular turgor control. Much of what we know about the basic physical principles underlying the conversion of mechanical force acting upon membranes of living cells into conformational changes of MS channels comes from studies of MS channels reconstituted into artificial liposomes. Using bacterial MS channels as a model, we have shown by reconstituting these channels into liposomes that there is a close relationship between the physico-chemical properties of the lipid bilayer and structural dynamics bringing about the function of these channels.

  3. Mechanosensitive Ion Channels in Cardiovascular Physiology.

    PubMed

    Teng, Jinfeng; Loukin, Steve; Kung, Ching

    EC coupling is subjected to a mechanical feedback, which originates from physical force-sensing ion channels in the pericardium and elsewhere. Reviewed here are the most recent developments that greatly advanced our understanding of these mechanosensitive (MS) channels, including TRPs and K2p's. Patch clamp has continued to demonstrate the direct channel activation by membrane stretch. Crystallography and cryo-electron microscopy have revealed the structures of several MS channels at atomic resolution. Some have been purified to homogeneity, reconstituted into lipid bilayer, and still retain their ability to respond to stretch force. A force-from-lipid (FFL) theory has been advanced that emphasizes the strong binding between channel proteins and lipids. Through these bonds, the sharp lateral tension (akin to surface tension) of the bilayer can transmit added force to the channel protein. Like temperature sensitivity, sensitivity to mechanical force is far more pervasive than we previously realize, and is especially important to the beating heart.

  4. Amending the uniformity of ion beam current density profile

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaowei; Xu, Dequan; Liu, Ying; Xu, Xiangdong; Fu, Shaojun

    2008-03-01

    The uniformity of ion beam current density profile has been amended by changing the flow of the gas and making a new beam channel. The platform scanned in the horizontal orientation in this experiment, so the horizontal ion beam current distribution had hardly any effect on the etching uniformity and amending the ion beam current density profile in the vertical orientation was sufficient for the purpose of plat etching profile. The ratio of the ion source's working gas inputs has some effect for the uniformity and a ratio of 6.50sccm: 8.00sccm: 9.60sccm of the three gas inputs flow1: flow2: flow3 will lead to a more uniform profile. According to the horizontal distribution and the original vertical ion beam current density distribution measured by Faraday Cup, a new beam channel was made. The uniformity of ion beam current density profile is enhanced from +/-4.31%to +/-1.96% in this experiment.

  5. Tuning Photochromic Ion Channel Blockers

    PubMed Central

    2011-01-01

    Photochromic channel blockers provide a conceptually simple and convenient way to modulate neuronal activity with light. We have recently described a family of azobenzenes that function as tonic blockers of Kv channels but require UV-A light to unblock and need to be actively switched by toggling between two different wavelengths. We now introduce red-shifted compounds that fully operate in the visible region of the spectrum and quickly turn themselves off in the dark. Furthermore, we have developed a version that does not block effectively in the dark-adapted state, can be switched to a blocking state with blue light, and reverts to the inactive state automatically. Photochromic blockers of this type could be useful for the photopharmacological control of neuronal activity under mild conditions. PMID:22860175

  6. Acid-Sensing Ion Channels and Pain.

    PubMed

    Gu, Qihai; Lee, Lu-Yuan

    2010-05-11

    Pathophysiological conditions such as inflammation, ischemia, infection and tissue injury can all evoke pain, and each is accompanied by local acidosis. Acid sensing ion channels (ASICs) are proton-gated cation channels expressed in both central and peripheral nervous systems. Increasing evidence suggests that ASICs represent essential sensors for tissue acidosis-related pain. This review provides an update on the role of ASICs in pain sensation and discusses their therapeutic potential for pain management.

  7. The earliest ion channels in protocellular membranes

    NASA Astrophysics Data System (ADS)

    Mijajlovic, Milan; Pohorille, Andrew; Wilson, Michael; Wei, Chenyu

    Cellular membranes with their hydrophobic interior are virtually impermeable to ions. Bulk of ion transport through them is enabled through ion channels. Ion channels of contemporary cells are complex protein molecules which span the membrane creating a cylindrical pore filled with water. Protocells, which are widely regarded as precursors to modern cells, had similarly impermeable membranes, but the set of proteins in their disposal was much simpler and more limited. We have been, therefore, exploring an idea that the first ion channels in protocellular membranes were formed by much smaller peptide molecules that could spontaneously self-assemble into short-lived cylindrical bundles in a membrane. Earlier studies have shown that a group of peptides known as peptaibols is capable of forming ion channels in lipid bilayers when they are exposed to an electric field. Peptaibols are small, non-genetically encoded peptides produced by some fungi as a part of their system of defense against bacteria. They are usually only 14-20 residues long, which is just enough to span the membrane. Their sequence is characterized by the presence of non-standard amino acids which, interestingly, are also expected to have existed on the early earth. In particular, the presence of 2-aminoisobutyric acid (AIB) gives peptaibols strong helix forming propensities. Association of the helices inside membranes leads to the formation of cylindrical bundles, typically containing 4 to 10 monomers. Although peptaibols are excellent candidates for models of the earliest ion channels their struc-tures, which are stabilized only by van der Waals forces and occasional hydrogen bonds between neighboring helices, are not very stable. Although it might properly reflect protobiological real-ity, it is also a major obstacle in studying channel behavior. For this reason we focused on two members of the peptaibol family, trichotoxin and antiamoebin, which are characterized by a single conductance level. This

  8. The Earliest Ion Channels in Protocellular Membranes

    NASA Technical Reports Server (NTRS)

    Mijajlovic, Milan; Pohorille, Andrew; Wilson, Michael; Wei, Chenyu

    2010-01-01

    Cellular membranes with their hydrophobic interior are virtually impermeable to ions. Bulk of ion transport through them is enabled through ion channels. Ion channels of contemporary cells are complex protein molecules which span the membrane creating a cylindrical pore filled with water. Protocells, which are widely regarded as precursors to modern cells, had similarly impermeable membranes, but the set of proteins in their disposal was much simpler and more limited. We have been, therefore, exploring an idea that the first ion channels in protocellular membranes were formed by much smaller peptide molecules that could spontaneously selfassemble into short-lived cylindrical bundles in a membrane. Earlier studies have shown that a group of peptides known as peptaibols is capable of forming ion channels in lipid bilayers when they are exposed to an electric field. Peptaibols are small, non-genetically encoded peptides produced by some fungi as a part of their system of defense against bacteria. They are usually only 14-20 residues long, which is just enough to span the membrane. Their sequence is characterized by the presence of non-standard amino acids which, interestingly, are also expected to have existed on the early earth. In particular, the presence of 2-aminoisobutyric acid (AIB) gives peptaibols strong helix forming propensities. Association of the helices inside membranes leads to the formation of cylindrical bundles, typically containing 4 to 10 monomers. Although peptaibols are excellent candidates for models of the earliest ion channels their structures, which are stabilized only by van der Waals forces and occasional hydrogen bonds between neighboring helices, are not very stable. Although it might properly reflect protobiological reality, it is also a major obstacle in studying channel behavior. For this reason we focused on two members of the peptaibol family, trichotoxin and antiamoebin, which are characterized by a single conductance level. This

  9. Channeling technique to make nanoscale ion beams

    NASA Astrophysics Data System (ADS)

    Biryukov, V. M.; Bellucci, S.; Guidi, V.

    2005-04-01

    Particle channeling in a bent crystal lattice has led to an efficient instrument for beam steering at accelerators [Biryukov et al., Crystal Channeling and its Application at High Energy Accelerators, Springer, Berlin, 1997], demonstrated from MeV to TeV energies. In particular, crystal focusing of high-energy protons to micron size has been demonstrated at IHEP with the results well in match with Lindhard (critical angle) prediction. Channeling in crystal microstructures has been proposed as a unique source of a microbeam of high-energy particles [Bellucci et al., Phys. Rev. ST Accel. Beams 6 (2003) 033502]. Channeling in nanostructures (single-wall and multi-wall nanotubes) offers the opportunities to produce ion beams on nanoscale. Particles channeled in a nanotube (with typical diameter of about 1 nm) are trapped in two dimensions and can be steered (deflected, focused) with the efficiency similar to that of crystal channeling or better. This technique has been a subject of computer simulations, with experimental efforts under way in several high-energy labs, including IHEP. We present the theoretical outlook for making channeling-based nanoscale ion beams and report the experience with crystal-focused microscale proton beams.

  10. Inherited ion channel diseases: a brief review.

    PubMed

    Lieve, Krystien V V; Wilde, Arthur A M

    2015-10-01

    Ion channelopathies are diseases caused by dysfunctional ion channels that may lead to sudden death. These diseases can be either acquired or inherited. The main phenotypes observed in patients carrying these heritable arrhythmia syndromes are congenital long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and short QT syndrome. In the recent years, tremendous progress has been made in the recognition, mechanisms, and treatment of these diseases. The goal of this review is to provide an overview of the main phenotypes, genetic underpinnings, risk stratification, and treatment options for these so-called cardiac ion channelopathies.

  11. Ion Trapping with Fast-Response Ion-Selective Microelectrodes Enhances Detection of Extracellular Ion Channel Gradients

    PubMed Central

    Messerli, Mark A.; Collis, Leon P.; Smith, Peter J.S.

    2009-01-01

    Previously, functional mapping of channels has been achieved by measuring the passage of net charge and of specific ions with electrophysiological and intracellular fluorescence imaging techniques. However, functional mapping of ion channels using extracellular ion-selective microelectrodes has distinct advantages over the former methods. We have developed this method through measurement of extracellular K+ gradients caused by efflux through Ca2+-activated K+ channels expressed in Chinese hamster ovary cells. We report that electrodes constructed with short columns of a mechanically stable K+-selective liquid membrane respond quickly and measure changes in local [K+] consistent with a diffusion model. When used in close proximity to the plasma membrane (<4 μm), the ISMs pose a barrier to simple diffusion, creating an ion trap. The ion trap amplifies the local change in [K+] without dramatically changing the rise or fall time of the [K+] profile. Measurement of extracellular K+ gradients from activated rSlo channels shows that rapid events, 10–55 ms, can be characterized. This method provides a noninvasive means for functional mapping of channel location and density as well as for characterizing the properties of ion channels in the plasma membrane. PMID:19217875

  12. Conductance of Ion Channels - Theory vs. Experiment

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael; Mijajlovic, Milan

    2013-01-01

    Transmembrane ion channels mediate a number of essential physiological processes in a cell ranging from regulating osmotic pressure to transmission of neural signals. Kinetics and selectivity of ion transport is of critical importance to a cell and, not surprisingly, it is a subject of numerous experimental and theoretical studies. In this presentation we will analyze in detail computer simulations of two simple channels from fungi - antiamoebin and trichotoxin. Each of these channels is made of an alpha-helical bundle of small, nongenomically synthesized peptides containing a number of rare amino acids and exhibits strong antimicrobial activity. We will focus on calculating ionic conductance defined as the ratio of ionic current through the channel to applied voltage. From molecular dynamics simulations, conductance can be calculated in at least two ways, each involving different approximations. Specifically, the current, given as the number of charges transferred through the channel per unit of time, can be obtained from the number of events in which ions cross the channel during the simulation. This method works well for large currents (high conductance values and/or applied voltages). If the number of crossing events is small, reliable estimates of current are difficult to achieve. Alternatively, conductance can be estimated assuming that ion transport can be well approximated as diffusion in the external potential given by the free energy profile. Then, the current can be calculated by solving the one-dimensional diffusion equation in this external potential and applied voltage (the generalized Nernst-Planck equation). To do so three ingredients are needed: the free energy profile, the position-dependent diffusion coefficient and the diffusive flux of ions into the channel. All these quantities can be obtained from molecular dynamics simulations. An important advantage of this method is that it can be used equally well to estimating large and small currents

  13. Calcium homeostasis modulator (CALHM) ion channels.

    PubMed

    Ma, Zhongming; Tanis, Jessica E; Taruno, Akiyuki; Foskett, J Kevin

    2016-03-01

    Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca(2+) concentration ([Ca(2+)]o). In the presence of physiological [Ca(2+)]o (∼1.5 mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong depolarizations. Reducing [Ca(2+)]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca(2+) o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four transmembrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of ∼14 Å. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca(2+) and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca(2+)]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neurotransmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca(2+) o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology.

  14. Calcium homeostasis modulator (CALHM) ion channels

    PubMed Central

    Tanis, Jessica E.; Taruno, Akiyuki

    2017-01-01

    Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca2+ concentration ([Ca2+]o). In the presence of physiological [Ca2+]o (~1.5 mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong de-polarizations. Reducing [Ca2+]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca2+o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four trans-membrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of ~14 Å. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca2+ and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca2+]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neuro-transmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca2+o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology. PMID:26603282

  15. Targeting ion channels in cystic fibrosis.

    PubMed

    Mall, Marcus A; Galietta, Luis J V

    2015-09-01

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause a characteristic defect in epithelial ion transport that plays a central role in the pathogenesis of cystic fibrosis (CF). Hence, pharmacological correction of this ion transport defect by targeting of mutant CFTR, or alternative ion channels that may compensate for CFTR dysfunction, has long been considered as an attractive approach to a causal therapy of this life-limiting disease. The recent introduction of the CFTR potentiator ivacaftor into the therapy of a subgroup of patients with specific CFTR mutations was a major milestone and enormous stimulus for seeking effective ion transport modulators for all patients with CF. In this review, we discuss recent breakthroughs and setbacks with CFTR modulators designed to rescue mutant CFTR including the common mutation F508del. Further, we examine the alternative chloride channels TMEM16A and SLC26A9, as well as the epithelial sodium channel ENaC as alternative targets in CF lung disease, which remains the major cause of morbidity and mortality in patients with CF. Finally, we will focus on the hurdles that still need to be overcome to make effective ion transport modulation therapies available for all patients with CF irrespective of their CFTR genotype.

  16. Ion channels and anti-cancer immunity.

    PubMed

    Panyi, Gyorgy; Beeton, Christine; Felipe, Antonio

    2014-03-19

    The outcome of a malignant disease depends on the efficacy of the immune system to destroy cancer cells. Key steps in this process, for example the generation of a proper Ca(2+) signal induced by recognition of a specific antigen, are regulated by various ion channel including voltage-gated Kv1.3 and Ca(2+)-activated KCa3.1 K(+) channels, and the interplay between Orai and STIM to produce the Ca(2+)-release-activated Ca(2+) (CRAC) current required for T-cell proliferation and function. Understanding the immune cell subset-specific expression of ion channels along with their particular function in a given cell type, and the role of cancer tissue-dependent factors in the regulation of operation of these ion channels are emerging questions to be addressed in the fight against cancer disease. Answering these questions might lead to a better understanding of the immunosuppression phenomenon in cancer tissue and the development of drugs aimed at skewing the distribution of immune cell types towards killing of the tumour cells.

  17. Nuclear pore complex ion channels (review).

    PubMed

    Bustamante, J O; Liepins, A; Hanover, J A

    1994-01-01

    It is currently thought that nuclear pore complexes (NPCs) primarily govern nucleocytoplasmic interactions via selective recognition and active transport of macromolecules. However, in various nuclear preparations, patch-clamp and fluorescence, luminiscence and ion microscopy support classical microelectrode measurements indicating that monoatomic ion flow across the nuclear envelope (NE) is strictly regulated. Gating of large conductance nuclear envelope ion channels (NICs) somewhat resembles that of gap junctional channels. In other respects, NICs are distinct in that they require cytosolic factors, are blocked by wheat germ agglutinin and are blocked and/or modified by antibodies to epitopes of NPC glycoproteins. Therefore, NIC activity, recorded as electrical current/conductance is likely to be intrinsic to NPCs. This observation suggests a potential use for the patch-clamp technique in establishing the mechanisms underlying nuclear pore gating in response to cytosolic and nucleosolic factors such as transcription and growth factors, oncogene and proto-oncogene products and receptors for retinoids, steroids and thyroid hormone. NIC activity may also be useful in evaluating the mechanisms of nuclear import of foreign nucleic acid material such as that contained in virons and viroids. Finally, in consideration to the electrophysiological data accumulated so far, the study of nuclear pore ion channel activity may help our understanding of other important issues such as cell suicide, programmed cell death or apoptosis.

  18. Quantum Interference and Selectivity through Biological Ion Channels

    PubMed Central

    Salari, Vahid; Naeij, Hamidreza; Shafiee, Afshin

    2017-01-01

    The mechanism of selectivity in ion channels is still an open question in biology for more than half a century. Here, we suggest that quantum interference can be a solution to explain the selectivity mechanism in ion channels since interference happens between similar ions through the same size of ion channels. In this paper, we simulate two neighboring ion channels on a cell membrane with the famous double-slit experiment in physics to investigate whether there is any possibility of matter-wave interference of ions via movement through ion channels. Our obtained decoherence timescales indicate that the quantum states of ions can only survive for short times, i.e. ≈100 picoseconds in each channel and ≈17–53 picoseconds outside the channels, giving the result that the quantum interference of ions seems unlikely due to environmental decoherence. However, we discuss our results and raise few points, which increase the possibility of interference. PMID:28134331

  19. Quantum Interference and Selectivity through Biological Ion Channels

    NASA Astrophysics Data System (ADS)

    Salari, Vahid; Naeij, Hamidreza; Shafiee, Afshin

    2017-01-01

    The mechanism of selectivity in ion channels is still an open question in biology for more than half a century. Here, we suggest that quantum interference can be a solution to explain the selectivity mechanism in ion channels since interference happens between similar ions through the same size of ion channels. In this paper, we simulate two neighboring ion channels on a cell membrane with the famous double-slit experiment in physics to investigate whether there is any possibility of matter-wave interference of ions via movement through ion channels. Our obtained decoherence timescales indicate that the quantum states of ions can only survive for short times, i.e. ≈100 picoseconds in each channel and ≈17–53 picoseconds outside the channels, giving the result that the quantum interference of ions seems unlikely due to environmental decoherence. However, we discuss our results and raise few points, which increase the possibility of interference.

  20. Radiative electron capture by channeled ions

    SciTech Connect

    Pitarke, J.M. . Zientzi Fakultatea); Ritchie, R.H. Tennessee Univ., Knoxville, TN . Dept. of Physics)

    1989-01-01

    Considerable experimental data have been accumulated relative to the emission of photons accompanying electron capture by swift, highly stripped atoms penetrating crystalline matter under channeling conditions. Recent data suggest that the photon energies may be less than that expected from simple considerations of transitions from the valence band of the solid to hydrogenic states on the moving ion. We have studied theoretically the impact parameter dependence of the radiative electron capture (REC) process, the effect of the ion's wake and the effect of capture from inner shells of the solid on the photon emission probability, using a statistical approach. Numerical comparisons of our results with experiment are made. 13 refs., 6 figs.

  1. Contribution of mechanosensitive ion channels to somatosensation.

    PubMed

    Sharif-Naeini, Reza

    2015-01-01

    Mechanotransduction, the conversion of a mechanical stimulus into an electrical signal, is a central mechanism to several physiological functions in mammals. It relies on the function of mechanosensitive ion channels (MSCs). Although the first single-channel recording from MSCs dates back to 30 years ago, the identity of the genes encoding MSCs has remained largely elusive. Because these channels have an important role in the development of mechanical hypersensitivity, a better understanding of their function may lead to the identification of selective inhibitors and generate novel therapeutic pathways in the treatment of chronic pain. Here, I will describe our current understanding of the role MSCs may play in somatosensation and the potential candidate genes proposed to encode them.

  2. Theoretical Study of Ion Transport in the Gramicidin a Channel

    NASA Astrophysics Data System (ADS)

    Roux, Benoi T.

    they fail to satisfy the compressibility theorm; a new closure consistent with the compressibility theorm is suggested. The properties of the charge density at the membrane interface between two ionic solutions are examined using the Poisson-Boltzmann theory. Statistical mechanical theory is used to examine the microscopic aspects of the Nernst-Planck diffusion equation for ion channels. Molecular dynamics simulations are used to determine the time-dependent friction for pair diffusion in an isotropic Lennard-Jones fluid as a function of the separation between two diffusing particles.

  3. Metal interactions with voltage- and receptor-activated ion channels.

    PubMed Central

    Vijverberg, H P; Oortgiesen, M; Leinders, T; van Kleef, R G

    1994-01-01

    Effects of Pb and several other metal ions on various distinct types of voltage-, receptor- and Ca-activated ion channels have been investigated in cultured N1E-115 mouse neuroblastoma cells. Experiments were performed using the whole-cell voltage clamp and single-channel patch clamp techniques. External superfusion of nanomolar to submillimolar concentrations of Pb causes multiple effects on ion channels. Barium current through voltage-activated Ca channels is blocked by micromolar concentrations of Pb, whereas voltage-activated Na current appears insensitive. Neuronal type nicotinic acetylcholine receptor-activated ion current is blocked by nanomolar concentrations of Pb and this block is reversed at micromolar concentrations. Serotonin 5-HT3 receptor-activated ion current is much less sensitive to Pb. In addition, external superfusion with micromolar concentrations of Pb as well as of Cd and aluminum induces inward current, associated with the direct activation of nonselective cation channels by these metal ions. In excised inside-out membrane patches of neuroblastoma cells, micromolar concentrations of Ca activate small (SK) and big (BK) Ca-activated K channels. Internally applied Pb activates SK and BK channels more potently than Ca, whereas Cd is approximately equipotent to Pb with respect to SK channel activation, but fails to activate BK channels. The results show that metal ions cause distinct, selective effects on the various types of ion channels and that metal ion interaction sites of ion channels may be highly selective for particular metal ions. PMID:7531139

  4. Dynamics of ponderomotive ion acceleration in a laser-plasma channel

    NASA Astrophysics Data System (ADS)

    Kovalev, V. F.; Bychenkov, V. Yu.

    2015-04-01

    Analytical solution to the Cauchy problem for the kinetic equation describing the radial acceleration of ions under the action of the ponderomotive force of a laser beam undergoing guided propagation in transparent plasma is constructed. Spatial and temporal dependences of the ion distribution function and the integral ion characteristics, such as the density, average velocity, and energy spectrum, are obtained for an axisymmetric laser-plasma channel. The formation of a density peak near the channel boundary and the effect of ion flow breaking for a quasi-stationary laser beam are described analytically.

  5. Simulations of ion current in realistic models of ion channels: the KcsA potassium channel.

    PubMed

    Burykin, A; Schutz, C N; Villá, J; Warshel, A

    2002-05-15

    Realistic studies of ion current in biologic channels present a major challenge for computer simulation approaches. All-atom molecular dynamics simulations involve serious time limitations that prevent their use in direct evaluation of ion current in channels with significant barriers. The alternative use of Brownian dynamics (BD) simulations can provide the current for simplified macroscopic models. However, the time needed for accurate calculations of electrostatic energies can make BD simulations of ion current expensive. The present work develops an approach that overcomes some of the above challenges and allows one to simulate ion currents in models of biologic channels. Our method provides a fast and reliable estimate of the energetics of the system by combining semimacroscopic calculations of the self-energy of each ion and an implicit treatment of the interactions between the ions, as well as the interactions between the ions and the protein-ionizable groups. This treatment involves the use of the semimacroscopic version of the protein dipole Langevin dipole (PDLD/S) model in its linear response approximation (LRA) implementation, which reduces the uncertainties about the value of the protein "dielectric constant." The resulting free energy surface is used to generate the forces for on-the-fly BD simulations of the corresponding ion currents. Our model is examined in a preliminary simulation of the ion current in the KcsA potassium channel. The complete free energy profile for a single ion transport reflects reasonable energetics and captures the effect of the protein-ionized groups. This calculated profile indicates that we are dealing with the channel in its closed state. Reducing the barrier at the gate region allows us to simulate the ion current in a reasonable computational time. Several limiting cases are examined, including those that reproduce the observed current, and the nature of the productive trajectories is considered. The ability to simulate

  6. [Preeclampsia, cellular migration and ion channels].

    PubMed

    Del Mónaco, Silvana M; Marino, Gabriela; Assef, Yanina; Kotsias, Basilio A

    2008-01-01

    The syncytiotrophoblast acts in human placenta as a transporting barrier regulating the transference of nutrients, solutes and water between maternal and fetal blood. This transepithelial transport involves movement of Na+ and its contribution to the osmotic pressure is an important determinant of the extracellular fluid volume. ENaC is a channel that mediates entry of Na+ from the luminal fluid into the cells in many reabsorbing epithelia; it is aldosterone, vasopressin, insulin and catecholamine-inducible, modulated by estrogens and progesterone and blocked by amiloride and its analogs. Multiple proteases are involved in the proteolytic processing and activation of ENaC subunits and aldosterone alters the protease-protease inhibitors balance. ENaC is also expressed in human placenta; although its function is not well known, the Na+ conductive properties may participate in electrolyte and extracellular volume homeostasis. The activity of ENaC channels and other ion channels and transporters is regulated by the state of actin filaments; on the other hand, changes in volume influence the actin cytoskeleton. Thus, there is an interaction between ENaC and components of the apical membrane cytoskeleton. In addition to their role in cellular homeostasis and electrical properties, Na+ currents through ENaC and other sodium channels are involved in cell migration, well documented in normal and cancer cells. In this work we presented evidences supporting the hypothesis that ENaC channels are required for the migration of BeWo cells, a human hormone-synthesizing trophoblastic cell line that express the three subunits of the ENaC channels. BeWo cell line has also been used as a model to investigate the placental transport mechanisms.

  7. Acid-sensing ion channels under hypoxia

    PubMed Central

    Yingjun, Guo; Xun, Qu

    2013-01-01

    Hypoxia represents the lack of oxygen below the basic level, and the range of known channels related to hypoxia is continually increasing. Since abnormal hypoxia initiates pathological processes in numerous diseases via, to a great degree, producing acidic microenvironment, the significance of these channels in this environment has, until now, remained completely unknown. However, recent discovery of acid-sensing ion channels (ASICs) have enhanced our understanding of the hypoxic channelome. They belong to the degenerin/epithelial Na+ channel family and function once extracellular pH decreases to a certain level. So does the ratiocination emerge that ASICs participate in many hypoxia-induced pathological processes, including pain, apoptosis, malignancy, which all appear to involve them. Since evidence suggests that activity of ASICs is altered under pathological hypoxia, future studies are needed to deeply explore the relationship between ASICs and hypoxia, which may provide a progressive understanding of hypoxic effects in cancer, arthritis, intervertebral disc degeneration, ischemic brain injury and so on. PMID:23764948

  8. Acid-sensing ion channels under hypoxia.

    PubMed

    Yingjun, Guo; Xun, Qu

    2013-01-01

    Hypoxia represents the lack of oxygen below the basic level, and the range of known channels related to hypoxia is continually increasing. Since abnormal hypoxia initiates pathological processes in numerous diseases via, to a great degree, producing acidic microenvironment, the significance of these channels in this environment has, until now, remained completely unknown. However, recent discovery of acid-sensing ion channels (ASICs) have enhanced our understanding of the hypoxic channelome. They belong to the degenerin/epithelial Na (+) channel family and function once extracellular pH decreases to a certain level. So does the ratiocination emerge that ASICs participate in many hypoxia-induced pathological processes, including pain, apoptosis, malignancy, which all appear to involve them. Since evidence suggests that activity of ASICs is altered under pathological hypoxia, future studies are needed to deeply explore the relationship between ASICs and hypoxia, which may provide a progressive understanding of hypoxic effects in cancer, arthritis, intervertebral disc degeneration, ischemic brain injury and so on.

  9. Structure and selectivity in bestrophin ion channels

    SciTech Connect

    Yang, Tingting; Liu, Qun; Kloss, Brian; Bruni, Renato; Kalathur, Ravi C.; Guo, Youzhong; Kloppmann, Edda; Rost, Burkhard; Colecraft, Henry M.; Hendrickson, Wayne A.

    2014-09-25

    Human bestrophin 1 (hBest1) is a calcium-activated chloride channel from the retinal pigment epithelium, where it can suffer mutations associated with vitelliform macular degeneration, or Best disease. We describe the structure of a bacterial homolog (KpBest) of hBest1 and functional characterizations of both channels. KpBest is a pentamer that forms a five-helix transmembrane pore, closed by three rings of conserved hydrophobic residues, and has a cytoplasmic cavern with a restricted exit. From electrophysiological analysis of structure-inspired mutations in KpBest and hBest1, we find a subtle control of ion selectivity in the bestrophins, including reversal of anion/cation selectivity, and dramatic activation by mutations at the exit restriction. Lastly, a homology model of hBest1 shows the locations of disease-causing mutations and suggests possible roles in regulation.

  10. Structure and selectivity in bestrophin ion channels

    DOE PAGES

    Yang, Tingting; Liu, Qun; Kloss, Brian; ...

    2014-09-25

    Human bestrophin 1 (hBest1) is a calcium-activated chloride channel from the retinal pigment epithelium, where it can suffer mutations associated with vitelliform macular degeneration, or Best disease. We describe the structure of a bacterial homolog (KpBest) of hBest1 and functional characterizations of both channels. KpBest is a pentamer that forms a five-helix transmembrane pore, closed by three rings of conserved hydrophobic residues, and has a cytoplasmic cavern with a restricted exit. From electrophysiological analysis of structure-inspired mutations in KpBest and hBest1, we find a subtle control of ion selectivity in the bestrophins, including reversal of anion/cation selectivity, and dramatic activationmore » by mutations at the exit restriction. Lastly, a homology model of hBest1 shows the locations of disease-causing mutations and suggests possible roles in regulation.« less

  11. Ion channels: molecular targets of neuroactive insecticides.

    PubMed

    Raymond-Delpech, Valérie; Matsuda, Kazuhiko; Sattelle, Benedict M; Rauh, James J; Sattelle, David B

    2005-11-01

    Many of the insecticides in current use act on molecular targets in the insect nervous system. Recently, our understanding of these targets has improved as a result of the complete sequencing of an insect genome, i.e., Drosophila melanogaster. Here we examine the recent work, drawing on genetics, genomics and physiology, which has provided evidence that specific receptors and ion channels are targeted by distinct chemical classes of insect control agents. The examples discussed include, sodium channels (pyrethroids, p,p'-dichlorodiphenyl-trichloroethane (DDT), dihydropyrazoles and oxadiazines); nicotinic acetylcholine receptors (cartap, spinosad, imidacloprid and related nitromethylenes/nitroguanidines); gamma-aminobutyric acid (GABA) receptors (cyclodienes, gamma-BHC and fipronil) and L-glutamate receptors (avermectins). Finally, we have examined the molecular basis of resistance to these molecules, which in some cases involves mutations in the molecular target, and we also consider the future impact of molecular genetic technologies in our understanding of the actions of neuroactive insecticides.

  12. High temperature ion channels and pores

    NASA Technical Reports Server (NTRS)

    Kang, Xiaofeng (Inventor); Gu, Li Qun (Inventor); Cheley, Stephen (Inventor); Bayley, Hagan (Inventor)

    2011-01-01

    The present invention includes an apparatus, system and method for stochastic sensing of an analyte to a protein pore. The protein pore may be an engineer protein pore, such as an ion channel at temperatures above 55.degree. C. and even as high as near 100.degree. C. The analyte may be any reactive analyte, including chemical weapons, environmental toxins and pharmaceuticals. The analyte covalently bonds to the sensor element to produce a detectable electrical current signal. Possible signals include change in electrical current. Detection of the signal allows identification of the analyte and determination of its concentration in a sample solution. Multiple analytes present in the same solution may also be detected.

  13. Single-Molecule Ion Channel Conformational Dynamics in Living Cells

    NASA Astrophysics Data System (ADS)

    Lu, H. Peter

    2014-03-01

    Stochastic and inhomogeneous conformational changes regulate the function and dynamics of ion channels that are crucial for cell functions, neuronal signaling, and brain functions. Such complexity makes it difficult, if not impossible, to characterize ion channel dynamics using conventional electrical recording alone since that the measurement does not specifically interrogate the associated conformational changes but rather the consequences of the conformational changes. Recently, new technology developments on single-molecule spectroscopy, and especially, the combined approaches of using single ion channel patch-clamp electrical recording and single-molecule fluorescence imaging have provided us the capability of probing ion channel conformational changes simultaneously with the electrical single channel recording. By combining real-time single-molecule fluorescence imaging measurements with real-time single-channel electric current measurements in artificial lipid bilayers and in living cell membranes, we were able to probe single ion-channel-protein conformational changes simultaneously, and thus providing an understanding the dynamics and mechanism of ion-channel proteins at the molecular level. The function-regulating and site-specific conformational changes of ion channels are now measurable under physiological conditions in real-time, one molecule at a time. We will focus our discussion on the new development and results of real-time imaging of the dynamics of gramicidin, colicin, and NMDA receptor ion channels in lipid bilayers and living cells. Our results shed light on new perspectives of the intrinsic interplay of lipid membrane dynamics, solvation dynamics, and the ion channel functions.

  14. Theory of the ion-channel laser

    SciTech Connect

    Whittum, D.H.

    1990-09-01

    A relativistic electron beam propagating through a plasma in the ion-focussed regime exhibits an electromagnetic instability with peak growth rate near a resonant frequency {omega}{approximately}2 {gamma}{sup 2} {omega}{beta}, where {gamma} is the Lorentz factor and {omega}{beta} is the betatron frequency. The physical basis for this instability is that an ensemble of relativistic simple harmonic oscillators, weakly driven by an electromagnetic wave, will lose energy to the wave through axial bunching. This bunching'' corresponds to the development of an rf component in the beam current, and a coherent centroid oscillation. The subject of this thesis is the theory of a laser capitalizing on this electromagnetic instability. A historical perspective is offered. The basic features of relativistic electron beam propagation in the ion-focussed regime are reviewed. The ion-channel laser (ICL) instability is explored theoretically through an eikonal formalism, analgous to the KMR'' formalism for the free-electron laser (FEL). The dispersion relation is derived, and the dependence of growth rate on three key parameters is explored. Finite temperature effects are assessed. From this work it is found that the typical gain length for amplification is longer than the Rayleigh length and we go on to consider three mechanisms which will tend to guide waveguide. First, we consider the effect of the ion channel as a dielectric waveguide. We consider next the use of a conducting waveguide, appropriate for a microwave amplifier. Finally, we examine a form of optical guiding'' analgous to that found in the FEL. The eikonal formalism is used to model numerically the instability through and beyond saturation. Results are compared with the numerical simulation of the full equations of motion, and with the analytic scalings. The analytical requirement on detuning spread is confirmed.

  15. Ion channels, phosphorylation and mammalian sperm capacitation

    PubMed Central

    Visconti, Pablo E; Krapf, Dario; de la Vega-Beltrán, José Luis; Acevedo, Juan José; Darszon, Alberto

    2011-01-01

    Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies. PMID:21540868

  16. Principles Governing Metal Ion Selectivity in Ion Channel Proteins

    NASA Astrophysics Data System (ADS)

    Lim, Carmay

    2014-03-01

    Our research interests are to (i) unravel the principles governing biological processes and use them to identify novel drug targets and guide drug design, and (ii) develop new methods for studying macromolecular interactions. This talk will provide an overview of our work in these two areas and an example of how our studies have helped to unravel the principles underlying the conversion of Ca2+-selective to Na+-selective channels. Ion selectivity of four-domain voltage-gated Ca2+(Cav) and sodium (Nav) channels, which is controlled by the selectivity filter (SF, the narrowest region of an open pore), is crucial for electrical signaling. Over billions of years of evolution, mutation of the Glu from domain II/III in the EEEE/DEEA SF of Ca2+-selective Cav channels to Lys made these channels Na+-selective. This talk will delineate the physical principles why Lys is sufficient for Na+/Ca2+selectivity and why the DEKA SF is more Na+-selective than the DKEA one.

  17. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds.

    PubMed

    Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F

    2016-09-01

    Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds.

  18. Stochastic theory of ion movement in channels with single-ion occupancy. Application to sodium permeation of gramicidin channels.

    PubMed Central

    Jakobsson, E; Chiu, S W

    1987-01-01

    The electrodiffusion equations were solved for the one-ion channel both by the analytical method due to Levitt and also by Brownian dynamic simulations. For both types of calculations equilibration of ion distribution between the bath and the ends of the channel was assumed. Potential profiles were found that give good fits to published data on Na+ permeation of gramicidin channels. The data were best fit by profiles that have no relative energy maximum at the mouth of the channel. This finding suggests that alignment of waters or channel charged groups inside the channel in response to an ion's approach may provide an energetically favorable situation for entry sufficient to overcome the energy required for removing bulk waters of hydration. An alternative possibility is that the barrier to ion entry is situated outside the region restricted to single-ion occupancy. Replacement of valine with more polar amino acids at the No. 1 location was found to correspond to a deepening of the potential minima near the channel mouths, an increase in height of the central barrier to ion translocation across the channel, and possibly a reduction in the mobility of the ion-water complex in the channel. The Levitt theory was extended to calculate passage times for ions to cross the channel and the blocking effects of ions that entered the channel but didn't cross. These quantities were also calculated by the Brownian dynamics method. PMID:2440492

  19. Density trends of negative ions at Titan

    NASA Astrophysics Data System (ADS)

    Wellbrock, A.; Coates, A. J.; Jones, G. H.; Arridge, C. S.; Lewis, G.; Sittler, E. C.; Young, D. T.

    2012-12-01

    The Electron Spectrometer part of the Cassini Plasma Spectrometer (CAPS-ELS) has revealed the existence of negative ions in Titan's ionosphere (Coates et al, 2007, Waite et al, 2007). These are observed during every encounter when the instrument points in the ram direction at altitudes between 950 and 1400 km. The heaviest ions observed so far have masses up to 13 800 amu/q. This suggests that complex hydrocarbon and nitrile chemical processes take place in Titan's upper atmosphere, probably playing a role in haze formation. Even heavier particles such as tholins can form which fall to lower altitudes and build up on Titan's surface (Coates et al., 2009). Coates et al. (2009) discussed trends in the highest masses observed with solar zenith angle (SZA), altitude and latitude. We are extending this study to density trends of different masses. With data from over 34 encounters and taking advantage of an increase in the duty cycle of measurements during recent flybys we have accumulated a large negative ion database. Groups of masses can be identified because recurrent peaks are observed in the mass-per-charge spectra of different encounters. We have updated these mass groups according to the spectra including the most recent flybys. This includes a heavy group of 625 amu/q and above. We investigate the effects of different controlling parameters such as altitude, solar zenith angle, latitude and possible seasonal effects. The aim of this study is to help constrain the chemical formation and destruction processes of negative ions in Titan's ionosphere. By studying SZA trends we can for example learn about whether nightside reactions or photochemical reactions yield higher densities for the different groups. We present the results and discuss their implications. For instance, the heaviest mass group (>625 amu/q) negative ions are only present at altitudes below 1100 km. Densities of this mass group are highest on the nightside however there are some moderate densities

  20. The effect of cell size and channel density on neuronal information encoding and energy efficiency.

    PubMed

    Sengupta, Biswa; Faisal, A Aldo; Laughlin, Simon B; Niven, Jeremy E

    2013-09-01

    Identifying the determinants of neuronal energy consumption and their relationship to information coding is critical to understanding neuronal function and evolution. Three of the main determinants are cell size, ion channel density, and stimulus statistics. Here we investigate their impact on neuronal energy consumption and information coding by comparing single-compartment spiking neuron models of different sizes with different densities of stochastic voltage-gated Na(+) and K(+) channels and different statistics of synaptic inputs. The largest compartments have the highest information rates but the lowest energy efficiency for a given voltage-gated ion channel density, and the highest signaling efficiency (bits spike(-1)) for a given firing rate. For a given cell size, our models revealed that the ion channel density that maximizes energy efficiency is lower than that maximizing information rate. Low rates of small synaptic inputs improve energy efficiency but the highest information rates occur with higher rates and larger inputs. These relationships produce a Law of Diminishing Returns that penalizes costly excess information coding capacity, promoting the reduction of cell size, channel density, and input stimuli to the minimum possible, suggesting that the trade-off between energy and information has influenced all aspects of neuronal anatomy and physiology.

  1. Dynamic State Transitions in the Nervous System: From Ion Channels to Neurons to Networks

    NASA Astrophysics Data System (ADS)

    Århem, Peter; Braun, Hans A.; Huber, Martin T.; Liljenström, Hans

    The following sections are included: * Introduction * Ion channels: The microscopic scale * The variety of ion channels * Channel kinetics * Neurons: The mesoscopic scale * The feedback loops between membrane potential and ion currents * Neuron models: Concepts and examples * Impulse pattern modulation by ion channel densities * Oscillatory patterns * Irregular patterns * Impulse pattern modulation by subthreshold oscillations * The cold receptor model * Deterministic patterns and noise induced state-transitions on temperature scaling * Neuronal networks: The oscopic scale * Random channel events cause network state transitions * A hippocampal neural network model * Simulating noise-induced state transitions * Functional significance of oscopic neurodynamics * Conclusions * Appendix A: Computation of the neuron models * Hippocampal neuron model * The cold receptor model * Appendix B: Neural network model * References

  2. Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses

    PubMed Central

    Ward, John M.; Mäser, Pascal; Schroeder, Julian I.

    2016-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization-and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide–gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport. PMID:18842100

  3. Recent genetic discoveries implicating ion channels in human cardiovascular diseases.

    PubMed

    George, Alfred L

    2014-04-01

    The term 'channelopathy' refers to human genetic disorders caused by mutations in genes encoding ion channels or their interacting proteins. Recent advances in this field have been enabled by next-generation DNA sequencing strategies such as whole exome sequencing with several intriguing and unexpected discoveries. This review highlights important discoveries implicating ion channels or ion channel modulators in cardiovascular disorders including cardiac arrhythmia susceptibility, cardiac conduction phenotypes, pulmonary and systemic hypertension. These recent discoveries further emphasize the importance of ion channels in the pathophysiology of human disease and as important druggable targets.

  4. Ion channels, ion channel receptors, and visceral hypersensitivity in irritable bowel syndrome.

    PubMed

    Fuentes, I M; Christianson, J A

    2016-11-01

    Ion channels are expressed throughout the gastrointestinal system and regulate nearly every aspect of digestion, including fluid secretion and absorption, motility, and visceral sensitivity. It is therefore not surprising that in the setting of functional bowel disorders, such as irritable bowel syndrome (IBS), ion channels are often altered in terms of expression level and function and are a target of pharmacological intervention. This is particularly true of their role in driving abdominal pain through visceral hypersensitivity (VH), which is the main reason IBS patients seek medical care. In the study by Scanzi et al., in the current issue of this journal, they provide evidence that the T-type voltage-gated calcium channel (Cav ) Cav 3.2 is upregulated in human IBS patients, and is necessary for the induction of an IBS-like disease state in mice. In this mini-review, we will discuss the contribution of specific ion channels to VH in IBS, both in human patients and rodent models. We will also discuss how Cav 3.2 may play a role as an integrator of multiple environmental stimuli contributing toward VH.

  5. Hierarchical approach to predicting permeation in ion channels.

    PubMed Central

    Mashl, R J; Tang, Y; Schnitzer, J; Jakobsson, E

    2001-01-01

    A hierarchical computational strategy combining molecular modeling, electrostatics calculations, molecular dynamics, and Brownian dynamics simulations is developed and implemented to compute electrophysiologically measurable properties of the KcsA potassium channel. Models for a series of channels with different pore sizes are developed from the known x-ray structure, using insights into the gating conformational changes as suggested by a variety of published experiments. Information on the pH dependence of the channel gating is incorporated into the calculation of potential profiles for K(+) ions inside the channel, which are then combined with K(+) ion mobilities inside the channel, as computed by molecular dynamics simulations, to provide inputs into Brownian dynamics simulations for computing ion fluxes. The open model structure has a conductance of approximately 110 pS under symmetric 250 mM K(+) conditions, in reasonable agreement with experiments for the largest conducting substate. The dimensions of this channel are consistent with electrophysiologically determined size dependence of quaternary ammonium ion blocking from the intracellular end of this channel as well as with direct structural evidence that tetrabutylammonium ions can enter into the interior cavity of the channel. Realistic values of Ussing flux ratio exponents, distribution of ions within the channel, and shapes of the current-voltage and current-concentration curves are obtained. The Brownian dynamics calculations suggest passage of ions through the selectivity filter proceeds by a "knock-off" mechanism involving three ions, as has been previously inferred from functional and structural studies of barium ion blocking. These results suggest that the present calculations capture the essential nature of K(+) ion permeation in the KcsA channel and provide a proof-of-concept for the integrated microscopic/mesoscopic multitiered approach for predicting ion channel function from structure, which

  6. On the Evolution of Voltage Gated Ion Channels

    NASA Astrophysics Data System (ADS)

    Brenner, Michael

    2006-03-01

    This talk summarizes some ideas, calculations and data analysis/collection surrounding the structure and evolution of ion channels, in particular voltage gated sodium channels. The great advantage of ion channels is that they are individual proteins whose function has long been known and is readily inferred through voltage measurements. Their evolution can be tracked through the growing data base of sequences. Kinetic data is readily available, showing important differences between nearly identical channels. I will discuss our efforts to collate available functional data on voltage gated sodium channels into an 'ion channel property space' . We then use this dataset to infer underlying kinetic models, and to create evolutionary trees based on the function of the channels. Finally, I will discuss our endeavors to how ion channels evolved to be the way they are: Examples of questions we would like to answer include: to what extent do design principles dictate the details of the kinetic schemes of ion channels, such as (a) the symmetry of the sodium and potassium channels (or lack thereof), as reflected in their kinetic schemes ; (b) the coupling of sodium channel kinetics to potassium channel kinetics; or (c) activation/inactivation of the channels themselves.

  7. Modeling the Influence of Ion Channels on Neuron Dynamics in Drosophila

    PubMed Central

    Berger, Sandra D.; Crook, Sharon M.

    2015-01-01

    Voltage gated ion channels play a major role in determining a neuron's firing behavior, resulting in the specific processing of synaptic input patterns. Drosophila and other invertebrates provide valuable model systems for investigating ion channel kinetics and their impact on firing properties. Despite the increasing importance of Drosophila as a model system, few computational models of its ion channel kinetics have been developed. In this study, experimentally observed biophysical properties of voltage gated ion channels from the fruitfly Drosophila melanogaster are used to develop a minimal, conductance based neuron model. We investigate the impact of the densities of these channels on the excitability of the model neuron. Changing the channel densities reproduces different in situ observed firing patterns and induces a switch from integrator to resonator properties. Further, we analyze the preference to input frequency and how it depends on the channel densities and the resulting bifurcation type the system undergoes. An extension to a three dimensional model demonstrates that the inactivation kinetics of the sodium channels play an important role, allowing for firing patterns with a delayed first spike and subsequent high frequency firing as often observed in invertebrates, without altering the kinetics of the delayed rectifier current. PMID:26635592

  8. Modeling the Influence of Ion Channels on Neuron Dynamics in Drosophila.

    PubMed

    Berger, Sandra D; Crook, Sharon M

    2015-01-01

    Voltage gated ion channels play a major role in determining a neuron's firing behavior, resulting in the specific processing of synaptic input patterns. Drosophila and other invertebrates provide valuable model systems for investigating ion channel kinetics and their impact on firing properties. Despite the increasing importance of Drosophila as a model system, few computational models of its ion channel kinetics have been developed. In this study, experimentally observed biophysical properties of voltage gated ion channels from the fruitfly Drosophila melanogaster are used to develop a minimal, conductance based neuron model. We investigate the impact of the densities of these channels on the excitability of the model neuron. Changing the channel densities reproduces different in situ observed firing patterns and induces a switch from integrator to resonator properties. Further, we analyze the preference to input frequency and how it depends on the channel densities and the resulting bifurcation type the system undergoes. An extension to a three dimensional model demonstrates that the inactivation kinetics of the sodium channels play an important role, allowing for firing patterns with a delayed first spike and subsequent high frequency firing as often observed in invertebrates, without altering the kinetics of the delayed rectifier current.

  9. High gluon densities in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Blaizot, Jean-Paul

    2017-03-01

    The early stages of heavy ion collisions are dominated by high density systems of gluons that carry each a small fraction x of the momenta of the colliding nucleons. A distinguishing feature of such systems is the phenomenon of ‘saturation’ which tames the expected growth of the gluon density as the energy of the collision increases. The onset of saturation occurs at a particular transverse momentum scale, the ‘saturation momentum’, that emerges dynamically and that marks the onset of non-linear gluon interactions. At high energy, and for large nuclei, the saturation momentum is large compared to the typical hadronic scale, making high density gluons amenable to a description with weak coupling techniques. This paper reviews some of the challenges faced in the study of such dense systems of small x gluons, and of the progress made in addressing them. The focus is on conceptual issues, and the presentation is both pedagogical, and critical. Examples where high gluon density could play a visible role in heavy ion collisions are briefly discussed at the end, for illustration purpose.

  10. United in diversity: mechanosensitive ion channels in plants.

    PubMed

    Hamilton, Eric S; Schlegel, Angela M; Haswell, Elizabeth S

    2015-01-01

    Mechanosensitive (MS) ion channels are a common mechanism for perceiving and responding to mechanical force. This class of mechanoreceptors is capable of transducing membrane tension directly into ion flux. In plant systems, MS ion channels have been proposed to play a wide array of roles, from the perception of touch and gravity to the osmotic homeostasis of intracellular organelles. Three families of plant MS ion channels have been identified: the MscS-like (MSL), Mid1-complementing activity (MCA), and two-pore potassium (TPK) families. Channels from these families vary widely in structure and function, localize to multiple cellular compartments, and conduct chloride, calcium, and/or potassium ions. However, they are still likely to represent only a fraction of the MS ion channel diversity in plant systems.

  11. Pre-formed plasma channels for ion beam fusion

    NASA Astrophysics Data System (ADS)

    Peterson, R. R.; Olson, C. L.

    1997-04-01

    The transport of driver ions to the target in an IFE power plant is an important consideration in IFE target chamber design. Pre-formed laser-guided plasma discharge channels have been considered for light ions because they reduce the beam microdivergence constraints, allow long transport lengths, and require a target chamber fill gas that can help protect the target chamber from the target explosion. Here, pre-formed plasma discharge channels are considered for heavy ion transport. The channel formation parameters are similar to those for light ions. The allowable ion power per channel is limited by the onset of plasma instabilities and energy loss due to a reverse emf from the rapid channel expansion driven by the ion beam.

  12. United in Diversity: Mechanosensitive Ion Channels in Plants

    PubMed Central

    Hamilton, Eric S.; Schlegel, Angela M.; Haswell, Elizabeth S.

    2015-01-01

    Mechanosensitive (MS) ion channels are a common mechanism for perceiving and responding to mechanical force. This class of mechanoreceptors is capable of transducing membrane tension directly into ion flux. In plant systems, MS ion channels have been proposed to play a wide array of roles, from the perception of touch and gravity to the osmotic homeostasis of intracellular organelles. Three families of plant MS ion channels have been identified: the MscS-like (MSL), Mid1-complementing activity (MCA), and two-pore potassium (TPK) families. Channels from these families vary widely in structure and function, localize to multiple cellular compartments, and conduct chloride, calcium, and/or potassium ions. However, they are still likely to represent only a fraction of the MS ion channel diversity in plant systems. PMID:25494462

  13. Circadian regulation of ion channels and their functions

    PubMed Central

    Ko, Gladys Y.-P.; Shi, Liheng; Ko, Michael L.

    2010-01-01

    Ion channels are the gatekeepers to neuronal excitability. Retinal neurons of vertebrates and invertebrates, neurons of the suprachiasmatic nucleus (SCN) of vertebrates, and pinealocytes of non-mammalian vertebrates display daily rhythms in their activities. The interlocking transcription–translation feedback loops with specific post-translational modulations within individual cells form the molecular clock, the basic mechanism that maintains the autonomic ~24-h rhythm. The molecular clock regulates downstream output signaling pathways that further modulate activities of various ion channels. Ultimately, it is the circadian regulation of ion channel properties that govern excitability and behavior output of these neurons. In this review, we focus on the recent development of research in circadian neurobiology mainly from 1980 forward. We will emphasize the circadian regulation of various ion channels, including cGMP-gated cation channels, various voltage-gated calcium and potassium channels, Na+/K+-ATPase, and a long-opening cation channel. The cellular mechanisms underlying the circadian regulation of these ion channels and their functions in various tissues and organisms will also be discussed. Despite the magnitude of chronobiological studies in recent years, the circadian regulation of ion channels still remains largely unexplored. Through more investigation and understanding of the circadian regulation of ion channels, the future development of therapeutic strategies for the treatment of sleep disorders, cardiovascular diseases, and other illnesses linked to circadian misalignment will benefit. PMID:19549279

  14. VOCCs and TREK-1 ion channel expression in human tenocytes.

    PubMed

    Magra, Merzesh; Hughes, Steven; El Haj, Alicia J; Maffulli, Nicola

    2007-03-01

    Mechanosensitive and voltage-gated ion channels are known to perform important roles in mechanotransduction in a number of connective tissues, including bone and muscle. It is hypothesized that voltage-gated and mechanosensitive ion channels also may play a key role in some or all initial responses of human tenocytes to mechanical stimulation. However, to date there has been no direct investigation of ion channel expression by human tenocytes. Human tenocytes were cultured from patellar tendon samples harvested from five patients undergoing routine total knee replacement surgery (mean age: 66 yr; range: 63-73 yr). RT-PCR, Western blotting, and whole cell electrophysiological studies were performed to investigate the expression of different classes of ion channels within tenocytes. Human tenocytes expressed mRNA and protein encoding voltage-operated calcium channel (VOCC) subunits (Ca alpha(1A), Ca alpha(1C), Ca alpha(1D), Ca alpha(2)delta(1)) and the mechanosensitive tandem pore domain potassium channel (2PK(+)) TREK-1. They exhibit whole cell currents consistent with the functional expression of these channels. In addition, other ionic currents were detected within tenocytes consistent with the expression of a diverse array of other ion channels. VOCCs and TREK channels have been implicated in mechanotransduction signaling pathways in numerous connective tissue cell types. These mechanisms may be present in human tenocytes. In addition, human tenocytes may express other channel currents. Ion channels may represent potential targets for the pharmacological management of chronic tendinopathies.

  15. Engineered ion channels as emerging tools for chemical biology.

    PubMed

    Mayer, Michael; Yang, Jerry

    2013-12-17

    Over the last 25 years, researchers have developed exogenously expressed, genetically engineered, semi-synthetic, and entirely synthetic ion channels. These structures have sufficient fidelity to serve as unique tools that can reveal information about living organisms. One of the most exciting success stories is optogenetics: the use of light-gated channels to trigger action potentials in specific neurons combined with studies of the response from networks of cells or entire live animals. Despite this breakthrough, the use of molecularly engineered ion channels for studies of biological systems is still in its infancy. Historically, researchers studied ion channels in the context of their own function in single cells or in multicellular signaling and regulation. Only recently have researchers considered ion channels and pore-forming peptides as responsive tools to report on the chemical and physical changes produced by other biochemical processes and reactions. This emerging class of molecular probes has a number of useful characteristics. For instance, these structures can greatly amplify the signal of chemical changes: the binding of one molecule to a ligand-gated ion channel can result in flux of millions of ions across a cell membrane. In addition, gating occurs on sub-microsecond time scales, resulting in fast response times. Moreover, the signal is complementary to existing techniques because the output is ionic current rather than fluorescence or radioactivity. And finally, ion channels are also localized at the membrane of cells where essential processes such as signaling and regulation take place. This Account highlights examples, mostly from our own work, of uses of ion channels and pore-forming peptides such as gramicidin in chemical biology. We discuss various strategies for preparing synthetically tailored ion channels that range from de novo designed synthetic molecules to genetically engineered or simply exogenously expressed or reconstituted wild

  16. Trails of kilovolt ions created by subsurface channeling.

    PubMed

    Redinger, Alex; Standop, Sebastian; Michely, Thomas; Rosandi, Yudi; Urbassek, Herbert M

    2010-02-19

    Using scanning tunneling microscopy, we observe the damage trails produced by keV noble-gas ions incident at glancing angles onto Pt(111). Surface vacancies and adatoms aligned along the ion trajectory constitute the ion trails. Atomistic simulations reveal that these straight trails are produced by nuclear (elastic) collisions with surface layer atoms during subsurface channeling of the projectiles. In a small energy window around 5 keV, Xe+ ions create vacancy grooves that mark the ion trajectory with atomic precision. The asymmetry of the adatom production on the two sides of the projectile path is traced back to the asymmetry of the ion's subsurface channel.

  17. Trails of Kilovolt Ions Created by Subsurface Channeling

    SciTech Connect

    Redinger, Alex; Standop, Sebastian; Michely, Thomas; Rosandi, Yudi; Urbassek, Herbert M.

    2010-02-19

    Using scanning tunneling microscopy, we observe the damage trails produced by keV noble-gas ions incident at glancing angles onto Pt(111). Surface vacancies and adatoms aligned along the ion trajectory constitute the ion trails. Atomistic simulations reveal that these straight trails are produced by nuclear (elastic) collisions with surface layer atoms during subsurface channeling of the projectiles. In a small energy window around 5 keV, Xe{sup +} ions create vacancy grooves that mark the ion trajectory with atomic precision. The asymmetry of the adatom production on the two sides of the projectile path is traced back to the asymmetry of the ion's subsurface channel.

  18. Energetics of ion conduction through the K+ channel

    NASA Astrophysics Data System (ADS)

    Bernèche, Simon; Roux, Benoît

    2001-11-01

    K+ channels are transmembrane proteins that are essential for the transmission of nerve impulses. The ability of these proteins to conduct K+ ions at levels near the limit of diffusion is traditionally described in terms of concerted mechanisms in which ion-channel attraction and ion-ion repulsion have compensating effects, as several ions are moving simultaneously in single file through the narrow pore. The efficiency of such a mechanism, however, relies on a delicate energy balance-the strong ion-channel attraction must be perfectly counterbalanced by the electrostatic ion-ion repulsion. To elucidate the mechanism of ion conduction at the atomic level, we performed molecular dynamics free energy simulations on the basis of the X-ray structure of the KcsA K+ channel. Here we find that ion conduction involves transitions between two main states, with two and three K+ ions occupying the selectivity filter, respectively; this process is reminiscent of the `knock-on' mechanism proposed by Hodgkin and Keynes in 1955. The largest free energy barrier is on the order of 2-3kcalmol-1, implying that the process of ion conduction is limited by diffusion. Ion-ion repulsion, although essential for rapid conduction, is shown to act only at very short distances. The calculations show also that the rapidly conducting pore is selective.

  19. Physiological and pathological functions of mechanosensitive ion channels.

    PubMed

    Gu, Yuanzheng; Gu, Chen

    2014-10-01

    Rapid sensation of mechanical stimuli is often mediated by mechanosensitve ion channels. Their opening results from conformational changes induced by mechanical forces. It leads to membrane permeation of selected ions and thereby to electrical signaling. Newly identified mechanosensitive ion channels are emerging at an astonishing rate, including some that are traditionally assigned for completely different functions. In this review, we first provide a brief overview of ion channels that are known to play a role in mechanosensation. Next, we focus on three representative ones, including the transient receptor potential channel V4 (TRPV4), Kv1.1 voltage-gated potassium (Kv) channel, and Piezo channels. Their structures, biophysical properties, expression and targeting patterns, and physiological functions are highlighted. The potential role of their mechanosensation in related diseases is further discussed. In sum, mechanosensation appears to be achieved in a variety of ways by different proteins and plays a fundamental role in the function of various organs under normal and abnormal conditions.

  20. Studying mechanosensitive ion channels with an automated patch clamp.

    PubMed

    Barthmes, Maria; Jose, Mac Donald F; Birkner, Jan Peter; Brüggemann, Andrea; Wahl-Schott, Christian; Koçer, Armağan

    2014-03-01

    Patch clamp electrophysiology is the main technique to study mechanosensitive ion channels (MSCs), however, conventional patch clamping is laborious and success and output depends on the skills of the operator. Even though automated patch systems solve these problems for other ion channels, they could not be applied to MSCs. Here, we report on activation and single channel analysis of a bacterial mechanosensitive ion channel using an automated patch clamp system. With the automated system, we could patch not only giant unilamellar liposomes but also giant Escherichia coli (E. coli) spheroplasts. The tension sensitivity and channel kinetics data obtained in the automated system were in good agreement with that obtained from the conventional patch clamp. The findings will pave the way to high throughput fundamental and drug screening studies on mechanosensitive ion channels.

  1. Flow-activated ion channels in vascular endothelium.

    PubMed

    Gautam, Mamta; Gojova, Andrea; Barakat, Abdul I

    2006-01-01

    The ability of vascular endothelial cells (ECs) to respond to fluid mechanical forces associated with blood flow is essential for flow-mediated vasoregulation and arterial wall remodeling. Abnormalities in endothelial responses to flow also play a role in the development of atherosclerosis. Although our understanding of the endothelial signaling pathways stimulated by flow has greatly increased over the past two decades, the mechanisms by which ECs sense flow remain largely unknown. Activation of flow-sensitive ion channels is among the fastest known endothelial responses to flow; therefore, these ion channels have been proposed as candidate flow sensors. This review focuses on: 1) describing the various types of flow-sensitive ion channels that have been reported in ECs, 2) discussing the implications of activation of these ion channels for endothelial function, and 3) proposing candidate mechanisms for activation of flow-sensitive ion channels.

  2. Mutational consequences of aberrant ion channels in neurological disorders.

    PubMed

    Kumar, Dhiraj; Ambasta, Rashmi K; Kumar, Pravir

    2014-11-01

    Neurological channelopathies are attributed to aberrant ion channels affecting CNS, PNS, cardiac, and skeletal muscles. To maintain the homeostasis of excitable tissues, functional ion channels are necessary to rely electrical signals, whereas any malfunctioning serves as an intrinsic factor to develop neurological channelopathies. Molecular basis of these disease is studied based on genetic and biophysical approaches, e.g., loci positional cloning, whereas pathogenesis and bio-behavioral analysis revealed the dependency on genetic mutations and inter-current triggering factors. Although electrophysiological studies revealed the possible mechanisms of diseases, analytical study of ion channels remained unsettled and therefore underlying mechanism in channelopathies is necessary for better clinical application. Herein, we demonstrated (i) structural and functional role of various ion channels (Na(+), K(+), Ca(2+),Cl(-)), (ii) pathophysiology involved in the onset of their associated channelopathies, and (iii) comparative sequence and phylogenetic analysis of diversified sodium, potassium, calcium, and chloride ion channel subtypes.

  3. Large fraction of crystal directions leads to ion channeling

    NASA Astrophysics Data System (ADS)

    Nordlund, K.; Djurabekova, F.; Hobler, G.

    2016-12-01

    It is well established that when energetic ions are moving in crystals, they may penetrate much deeper if they happen to be directed in some specific crystal directions. This `channeling' effect is utilized for instance in certain ion beam analysis methods and has been described by analytical theories and atomistic computer simulations. However, there have been very few systematic studies of channeling in directions other than the principal low-index ones. We present here a molecular dynamics-based approach to calculate ion channeling systematically over all crystal directions, providing ion `channeling maps' that easily show in which directions channeling is expected. The results show that channeling effects can be quite significant even at energies below 1 keV, and that in many cases, significant planar channeling occurs also in a wide range of crystal directions between the low-index principal ones. In all of the cases studied, a large fraction (˜20 -60 % ) of all crystal directions show channeling. A practical implication of this is that modern experiments on randomly oriented nanostructures will have a large probability of channeling. It also means that when ion irradiations are carried out on polycrystalline samples, channeling effects on the results cannot a priori be assumed to be negligible. The maps allow for easy selection of good `nonchanneling' directions in experiments or alternatively finding wide channels for beneficial uses of channeling. We implement channeling theory to also give the fraction of channeling directions in a manner directly comparable to the simulations. The comparison shows good qualitative agreement. In particular, channeling theory is very good at predicting which channels are active at a given energy. This is true down to sub-keV energies, provided the penetration depth is not too small.

  4. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets

    PubMed Central

    Vasconcelos, Luiz H. C.; Souza, Iara L. L.; Pinheiro, Lílian S.; Silva, Bagnólia A.

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation. PMID:27065858

  5. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets.

    PubMed

    Vasconcelos, Luiz H C; Souza, Iara L L; Pinheiro, Lílian S; Silva, Bagnólia A

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation.

  6. Novel screening techniques for ion channel targeting drugs

    PubMed Central

    Obergrussberger, Alison; Stölzle-Feix, Sonja; Becker, Nadine; Brüggemann, Andrea; Fertig, Niels; Möller, Clemens

    2015-01-01

    Ion channels are integral membrane proteins that regulate the flux of ions across the cell membrane. They are involved in nearly all physiological processes, and malfunction of ion channels has been linked to many diseases. Until recently, high-throughput screening of ion channels was limited to indirect, e.g. fluorescence-based, readout technologies. In the past years, direct label-free biophysical readout technologies by means of electrophysiology have been developed. Planar patch-clamp electrophysiology provides a direct functional label-free readout of ion channel function in medium to high throughput. Further electrophysiology features, including temperature control and higher-throughput instruments, are continually being developed. Electrophysiological screening in a 384-well format has recently become possible. Advances in chip and microfluidic design, as well as in cell preparation and handling, have allowed challenging cell types to be studied by automated patch clamp. Assays measuring action potentials in stem cell-derived cardiomyocytes, relevant for cardiac safety screening, and neuronal cells, as well as a large number of different ion channels, including fast ligand-gated ion channels, have successfully been established by automated patch clamp. Impedance and multi-electrode array measurements are particularly suitable for studying cardiomyocytes and neuronal cells within their physiological network, and to address more complex physiological questions. This article discusses recent advances in electrophysiological technologies available for screening ion channel function and regulation. PMID:26556400

  7. Transportation behavior of alkali ions through a cell membrane ion channel. A quantum chemical description of a simplified isolated model.

    PubMed

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans

    2012-08-01

    Quantum chemical model calculations were carried out for modeling the ion transport through an isolated ion channel of a cell membrane. An isolated part of a natural ion channel was modeled. The model channel was a calixarene derivative, hydrated sodium and potassium ions were the models of the transported ion. The electrostatic potential of the channel and the energy of the channel-ion system were calculated as a function of the alkali ion position. Both attractive and repulsive ion-channel interactions were found. The calculations - namely the dependence of the system energy and the atomic charges of the water molecules with respect to the position of the alkali ion in the channel - revealed the molecular-structural background of the potassium selectivity of this artificial ion channel. It was concluded that the studied ion channel mimics real biological ion channel quite well.

  8. Rescue of mutated cardiac ion channels in inherited arrhythmia syndromes.

    PubMed

    Balijepalli, Sadguna Y; Anderson, Corey L; Lin, Eric C; January, Craig T

    2010-08-01

    Inherited arrhythmia syndromes comprise an increasingly complex group of diseases involving mutations in multiple genes encoding ion channels, ion channel accessory subunits and channel interacting proteins, and various regulatory elements. These mutations serve to disrupt normal electrophysiology in the heart, leading to increased arrhythmogenic risk and death. These diseases have added impact as they often affect young people, sometimes without warning. Although originally thought to alter ion channel function, it is now increasingly recognized that mutations may alter ion channel protein and messenger RNA processing, to reduce the number of channels reaching the surface membrane. For many of these mutations, it is also known that several interventions may restore protein processing of mutant channels to increase their surface membrane expression toward normal. In this article, we reviewed inherited arrhythmia syndromes, focusing on long QT syndrome type 2, and discuss the complex biology of ion channel trafficking and pharmacological rescue of disease-causing mutant channels. Pharmacological rescue of misprocessed mutant channel proteins, or their transcripts providing appropriate small molecule drugs can be developed, has the potential for novel clinical therapies in some patients with inherited arrhythmia syndromes.

  9. Ion transport in graphene nanofluidic channels.

    PubMed

    Xie, Quan; Xin, Fang; Park, Hyung Gyu; Duan, Chuanhua

    2016-12-01

    Carbon nanofluidic structures made of carbon nanotubes or graphene/graphene oxide have shown great promise in energy and environment applications due to the newly discovered fast and selective mass transport. However, they have yet to be utilized in nanofluidic devices for lab-on-a-chip applications because of great challenges in their fabrication and integration. Herein we report the fabrication of two-dimensional planar graphene nanochannel devices and the study of ion transport inside a graphene nanochannel array. A MEMS fabrication process that includes controlled nanochannel etching, graphene wet transfer, and vacuum anodic bonding is developed to fabricate graphene nanochannels where graphene conformally coats the channel surfaces. We observe higher ionic conductance inside the graphene nanochannels compared with silica nanochannels with the same geometries at low electrolyte concentrations (10(-6) M-10(-2) M). Enhanced electroosmotic flow due to the boundary slip at graphene surfaces is attributed to the measured higher conductance in the graphene nanochannels. Our results also suggest that the surface charge on the graphene surface, originating from the dissociation of oxygen-containing functional groups, is crucial to the enhanced electroosmotic flow inside the nanochannels.

  10. Electrical Heart Defibrillation with Ion Channel Blockers

    NASA Astrophysics Data System (ADS)

    Feeney, Erin; Clark, Courtney; Puwal, Steffan

    Heart disease is the leading cause of mortality in the United States. Rotary electrical waves within heart muscle underlie electrical disorders of the heart termed fibrillation; their propagation and breakup leads to a complex distribution of electrical activation of the tissue (and of the ensuing mechanical contraction that comes from electrical activation). Successful heart defibrillation has, thus far, been limited to delivering large electrical shocks to activate the entire heart and reset its electrical activity. In theory, defibrillation of a system this nonlinear should be possible with small electrical perturbations (stimulations). A successful algorithm for such a low-energy defibrillator continues to elude researchers. We propose to examine in silica whether low-energy electrical stimulations can be combined with antiarrhythmic, ion channel-blocking drugs to achieve a higher rate of defibrillation and whether the antiarrhythmic drugs should be delivered before or after electrical stimulation has commenced. Progress toward a more successful, low-energy defibrillator will greatly minimize the adverse effects noted in defibrillation and will assist in the development of pediatric defibrillators.

  11. Guiding supersonic projectiles using optically generated air density channels

    NASA Astrophysics Data System (ADS)

    Johnson, Luke A.; Sprangle, Phillip

    2015-09-01

    We investigate the feasibility of using optically generated channels of reduced air density to provide trajectory correction (guiding) for a supersonic projectile. It is shown that the projectile experiences a force perpendicular to its direction of motion as one side of the projectile passes through a channel of reduced air density. A single channel of reduced air density can be generated by the energy deposited from filamentation of an intense laser pulse. We propose changing the laser pulse energy from shot-to-shot to build longer effective channels. Current femtosecond laser systems with multi-millijoule pulses could provide trajectory correction of several meters on 5 km trajectories for sub-kilogram projectiles traveling at Mach 3.

  12. Surface dynamics of voltage-gated ion channels

    PubMed Central

    Heine, Martin; Ciuraszkiewicz, Anna; Voigt, Andreas; Heck, Jennifer; Bikbaev, Arthur

    2016-01-01

    ABSTRACT Neurons encode information in fast changes of the membrane potential, and thus electrical membrane properties are critically important for the integration and processing of synaptic inputs by a neuron. These electrical properties are largely determined by ion channels embedded in the membrane. The distribution of most ion channels in the membrane is not spatially uniform: they undergo activity-driven changes in the range of minutes to days. Even in the range of milliseconds, the composition and topology of ion channels are not static but engage in highly dynamic processes including stochastic or activity-dependent transient association of the pore-forming and auxiliary subunits, lateral diffusion, as well as clustering of different channels. In this review we briefly discuss the potential impact of mobile sodium, calcium and potassium ion channels and the functional significance of this for individual neurons and neuronal networks. PMID:26891382

  13. Ion Permeation and Mechanotransduction Mechanisms of Mechanosensitive Piezo Channels.

    PubMed

    Zhao, Qiancheng; Wu, Kun; Geng, Jie; Chi, Shaopeng; Wang, Yanfeng; Zhi, Peng; Zhang, Mingmin; Xiao, Bailong

    2016-03-16

    Piezo proteins have been proposed as the long-sought-after mechanosensitive cation channels in mammals that play critical roles in various mechanotransduction processes. However, the molecular bases that underlie their ion permeation and mechanotransduction have remained functionally undefined. Here we report our finding of the miniature pore-forming module of Piezo1 that resembles the pore architecture of other trimeric channels and encodes the essential pore properties. We further identified specific residues within the pore module that determine unitary conductance, pore blockage and ion selectivity for divalent and monovalent cations and anions. The non-pore-containing region of Piezo1 confers mechanosensitivity to mechano-insensitive trimeric acid-sensing ion channels, demonstrating that Piezo1 channels possess intrinsic mechanotransduction modules separate from their pore modules. In conclusion, this is the first report on the bona fide pore module and mechanotransduction components of Piezo channels, which define their ion-conducting properties and gating by mechanical stimuli, respectively.

  14. Pathophysiological and protective roles of mitochondrial ion channels

    PubMed Central

    O’Rourke, Brian

    2000-01-01

    Mitochondria possess a highly permeable outer membrane and an inner membrane that was originally thought to be relatively impermeable to ions to prevent dissipation of the electrochemical gradient for protons. Although recent evidence has revealed a rich diversity of ion channels in both membranes, the purpose of these channels remains incompletely determined. Pores in the outer membrane are fundamental participants in apoptotic cell death, and this process may also involve permeability transition pores on the inner membrane. Novel functions are now being assigned to other ion channels of the inner membrane. Examples include protection against ischaemic injury by mitochondrial KATP channels and the contribution of inner membrane anion channels to spontaneous mitochondrial oscillations in cardiac myocytes. The central role of mitochondria in both the normal function of the cell and in its demise makes these channels prime targets for future research and drug development. PMID:11080248

  15. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  16. Ion Channels as Drug Targets in Central Nervous System Disorders

    PubMed Central

    Waszkielewicz, A.M; Gunia, A; Szkaradek, N; Słoczyńska, K; Krupińska, S; Marona, H

    2013-01-01

    Ion channel targeted drugs have always been related with either the central nervous system (CNS), the peripheral nervous system, or the cardiovascular system. Within the CNS, basic indications of drugs are: sleep disorders, anxiety, epilepsy, pain, etc. However, traditional channel blockers have multiple adverse events, mainly due to low specificity of mechanism of action. Lately, novel ion channel subtypes have been discovered, which gives premises to drug discovery process led towards specific channel subtypes. An example is Na+ channels, whose subtypes 1.3 and 1.7-1.9 are responsible for pain, and 1.1 and 1.2 – for epilepsy. Moreover, new drug candidates have been recognized. This review is focusing on ion channels subtypes, which play a significant role in current drug discovery and development process. The knowledge on channel subtypes has developed rapidly, giving new nomenclatures of ion channels. For example, Ca2+ channels are not any more divided to T, L, N, P/Q, and R, but they are described as Cav1.1-Cav3.3, with even newer nomenclature α1A-α1I and α1S. Moreover, new channels such as P2X1-P2X7, as well as TRPA1-TRPV1 have been discovered, giving premises for new types of analgesic drugs. PMID:23409712

  17. Markov modeling of ion channels: implications for understanding disease.

    PubMed

    Lampert, Angelika; Korngreen, Alon

    2014-01-01

    Ion channels are the bridge between the biochemical and electrical domains of our life. These membrane crossing proteins use the electric energy stored in transmembrane ion gradients, which are produced by biochemical activity to generate ionic currents. Each ion channel can be imagined as a small power plant similar to a hydroelectric power station, in which potential energy is converted into electric current. This current drives basically all physiological mechanisms of our body. It is clear that a functional blueprint of these amazing cellular power plants is essential for understanding the principle of all aspects of physiology, particularly neurophysiology. The golden path toward this blueprint starts with the biophysical investigation of ion channel activity and continues through detailed numerical modeling of these channels that will eventually lead to a full system-level description of cellular and organ physiology. Here, we discuss the first two stages of this process focusing on voltage-gated channels, particularly the voltage-gated sodium channel which is neurologically and pathologically important. We first detail the correlations between the known structure of the channel and its activity and describe some pathologies. We then provide a hands-on description of Markov modeling for voltage-gated channels. These two sections of the chapter highlight the dichotomy between the vast amounts of electrophysiological data available on voltage-gated channels and the relatively meager number of physiologically relevant models for these channels.

  18. Detection of single ion channel activity with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-03-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  19. Diversity of folds in animal toxins acting on ion channels.

    PubMed Central

    Mouhat, Stéphanie; Jouirou, Besma; Mosbah, Amor; De Waard, Michel; Sabatier, Jean-Marc

    2004-01-01

    Animal toxins acting on ion channels of excitable cells are principally highly potent short peptides that are present in limited amounts in the venoms of various unrelated species, such as scorpions, snakes, sea anemones, spiders, insects, marine cone snails and worms. These toxins have been used extensively as invaluable biochemical and pharmacological tools to characterize and discriminate between the various ion channel types that differ in ionic selectivity, structure and/or cell function. Alongside the huge molecular and functional diversity of ion channels, a no less impressive structural diversity of animal toxins has been indicated by the discovery of an increasing number of polypeptide folds that are able to target these ion channels. Indeed, it appears that these peptide toxins have evolved over time on the basis of clearly distinct architectural motifs, in order to adapt to different ion channel modulating strategies (pore blockers compared with gating modifiers). Herein, we provide an up-to-date overview of the various types of fold from animal toxins that act on ion channels selective for K+, Na+, Ca2+ or Cl- ions, with special emphasis on disulphide bridge frameworks and structural motifs associated with these peptide folds. PMID:14674883

  20. Ion channels in postnatal neurogenesis: potential targets for brain repair.

    PubMed

    Swayne, Leigh Anne; Wicki-Stordeur, Leigh

    2012-01-01

    Neural stem and progenitor cells (NSC/NPCs) are unspecialized cells found in the adult peri-ventricular and sub-granular zones that are capable of self-renewal, migration, and differentiation into new neurons through the remarkable process of postnatal neurogenesis. We are now beginning to understand that the concerted action of ion channels, multi-pass transmembrane proteins that allow passage of ions across otherwise impermeable cellular membranes tightly regulate this process. Specific ion channels control proliferation, differentiation and survival. Furthermore, they have the potential to be highly selective drug targets due to their complex structures. As such, these proteins represent intriguing prospects for control and optimization of postnatal neurogenesis for neural regeneration following brain injury or disease. Here, we concentrate on ion channels identified in adult ventricular zone NSC/NPCs that have been found to influence the stages of neurogenesis. Finally, we outline the potential of these channels to elicit repair, and highlight the outstanding challenges.

  1. Ion channels in control of pancreatic stellate cell migration

    PubMed Central

    Storck, Hannah; Hild, Benedikt; Schimmelpfennig, Sandra; Sargin, Sarah; Nielsen, Nikolaj; Zaccagnino, Angela; Budde, Thomas; Novak, Ivana; Kalthoff, Holger; Schwab, Albrecht

    2017-01-01

    Pancreatic stellate cells (PSCs) play a critical role in the progression of pancreatic ductal adenocarcinoma (PDAC). Once activated, PSCs support proliferation and metastasis of carcinoma cells. PSCs even co-metastasise with carcinoma cells. This requires the ability of PSCs to migrate. In recent years, it has been established that almost all “hallmarks of cancer” such as proliferation or migration/invasion also rely on the expression and function of ion channels. So far, there is only very limited information about the function of ion channels in PSCs. Yet, there is growing evidence that ion channels in stromal cells also contribute to tumor progression. Here we investigated the function of KCa3.1 channels in PSCs. KCa3.1 channels are also found in many tumor cells of different origin. We revealed the functional expression of KCa3.1 channels by means of Western blot, immunofluorescence and patch clamp analysis. The impact of KCa3.1 channel activity on PSC function was determined with live-cell imaging and by measuring the intracellular Ca2+ concentration ([Ca2+]i). KCa3.1 channel blockade or knockout prevents the stimulation of PSC migration and chemotaxis by reducing the [Ca2+]i and calpain activity. KCa3.1 channels functionally cooperate with TRPC3 channels that are upregulated in PDAC stroma. Knockdown of TRPC3 channels largely abolishes the impact of KCa3.1 channels on PSC migration. In summary, our results clearly show that ion channels are crucial players in PSC physiology and pathophysiology. PMID:27903970

  2. Antibody therapeutics targeting ion channels: are we there yet?

    PubMed

    Sun, Han; Li, Min

    2013-02-01

    The combination of technological advances, genomic sequences and market success is catalyzing rapid development of antibody-based therapeutics. Cell surface receptors and ion channel proteins are well known drug targets, but the latter has seen less success. The availability of crystal structures, better understanding of gating biophysics and validation of physiological roles now form an excellent foundation to pursue antibody-based therapeutics targeting ion channels to treat a variety of diseases.

  3. Ion channels, long QT syndrome and arrhythmogenesis in ageing.

    PubMed

    Jeevaratnam, Kamalan; Chadda, Karan R; Salvage, Samantha C; Valli, Haseeb; Ahmad, Shiraz; Grace, Andrew A; Huang, Christopher L-H

    2016-12-26

    Ageing is associated with increased prevalences of both atrial and ventricular arrhythmias, reflecting disruption of the normal sequence of ion channel activation and inactivation generating the propagated cardiac action potential. Experimental models with specific ion channel genetic modifications have helped clarify the interacting functional roles of ion channels and how their dysregulation contributes to arrhythmogenic processes at the cellular and systems level. They have also investigated interactions between these ion channel abnormalities and age-related processes in producing arrhythmic tendency. Previous reviews have explored the relationships between age and loss-of-function Nav 1.5 mutations in producing arrhythmogenicity. The present review now explores complementary relationships arising from gain-of-function Nav 1.5 mutations associated with long QT3 (LQTS3). LQTS3 patients show increased risks of life-threatening ventricular arrhythmias particularly after 40 years of age consistent with such interactions between the ion channel abnormailities and ageing. In turn clinical evidence suggests that ageing is accompanied by structural, particularly fibrotic, as well as electrophysiological change. These abnormalities may result from biochemical changes producing low-grade inflammation resulting from increased production of reactive oxygen species and superoxide. Experimental studies offer further insights into the underlying mechanisms underlying these phenotypes. Thus, studies in genetically modified murine models for LQTS implicated action potential recovery processes in arrhythmogenesis resulting from functional ion channel abnormalities. In addition, ageing WT murine models demonstrated both ion channel alterations and fibrotic changes with ageing. Murine models then suggested evidence for interactions between ageing and ion channel mutations and provided insights into potential arrhythmic mechanisms inviting future exploration. This article is

  4. Antibody therapeutics targeting ion channels: are we there yet?

    PubMed Central

    Sun, Han; Li, Min

    2013-01-01

    The combination of technological advances, genomic sequences and market success is catalyzing rapid development of antibody-based therapeutics. Cell surface receptors and ion channel proteins are well known drug targets, but the latter has seen less success. The availability of crystal structures, better understanding of gating biophysics and validation of physiological roles now form an excellent foundation to pursue antibody-based therapeutics targeting ion channels to treat a variety of diseases. PMID:23381110

  5. Permeation of ions across the potassium channel: Brownian dynamics studies.

    PubMed

    Chung, S H; Allen, T W; Hoyles, M; Kuyucak, S

    1999-11-01

    The physical mechanisms underlying the transport of ions across a model potassium channel are described. The shape of the model channel corresponds closely to that deduced from crystallography. From electrostatic calculations, we show that an ion permeating the channel, in the absence of any residual charges, encounters an insurmountable energy barrier arising from induced surface charges. Carbonyl groups along the selectivity filter, helix dipoles near the oval chamber, and mouth dipoles near the channel entrances together transform the energy barrier into a deep energy well. Two ions are attracted to this well, and their presence in the channel permits ions to diffuse across it under the influence of an electric field. Using Brownian dynamics simulations, we determine the magnitude of currents flowing across the channel under various conditions. The conductance increases with increasing dipole strength and reaches its maximum rapidly; a further increase in dipole strength causes a steady decrease in the channel conductance. The current also decreases systematically when the effective dielectric constant of the channel is lowered. The conductance with the optimal choice of dipoles reproduces the experimental value when the dielectric constant of the channel is assumed to be 60. The current-voltage relationship obtained with symmetrical solutions is linear when the applied potential is less than approximately 100 mV but deviates from Ohm's law at a higher applied potential. The reversal potentials obtained with asymmetrical solutions are in agreement with those predicted by the Nernst equation. The conductance exhibits the saturation property observed experimentally. We discuss the implications of these findings for the transport of ions across the potassium channels and membrane channels in general.

  6. Channelopathies: ion channel defects linked to heritable clinical disorders

    PubMed Central

    Felix, R.

    2000-01-01

    Electrical signals are critical for the function of neurones, muscle cells, and cardiac myocytes. Proteins that regulate electrical signalling in these cells, including voltage gated ion channels, are logical sites where abnormality might lead to disease. Genetic and biophysical approaches are being used to show that several disorders result from mutations in voltage gated ion channels. Understanding gained from early studies on the pathogenesis of a group of muscle diseases that are similar in their episodic nature (periodic paralysis) showed that these disorders result from mutations in a gene encoding a voltage gated Na+ channel. Their characterisation as channelopathies has served as a paradigm for other episodic disorders. For example, migraine headache and some forms of epilepsy have been shown to result from mutations in voltage gated Ca2+ channel genes, while long QT syndrome is known to result from mutations in either K+ or Na+ channel genes. This article reviews progress made in the complementary fields of molecular genetics and cellular electrophysiology which has led to a better understanding of voltage gated ion channelopathies in humans and mice.


Keywords: ion channel genetics; ion channel physiopathology; channelopathies; hereditary diseases PMID:11015449

  7. The transient receptor potential family of ion channels.

    PubMed

    Nilius, Bernd; Owsianik, Grzegorz

    2011-01-01

    The transient receptor potential (TRP) multigene superfamily encodes integral membrane proteins that function as ion channels. Members of this family are conserved in yeast, invertebrates and vertebrates. The TRP family is subdivided into seven subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), TRPA (ankyrin) and TRPN (NOMPC-like); the latter is found only in invertebrates and fish. TRP ion channels are widely expressed in many different tissues and cell types, where they are involved in diverse physiological processes, such as sensation of different stimuli or ion homeostasis. Most TRPs are non-selective cation channels, only few are highly Ca2+ selective, some are even permeable for highly hydrated Mg2+ ions. This channel family shows a variety of gating mechanisms, with modes of activation ranging from ligand binding, voltage and changes in temperature to covalent modifications of nucleophilic residues. Activated TRP channels cause depolarization of the cellular membrane, which in turn activates voltage-dependent ion channels, resulting in a change of intracellular Ca2+ concentration; they serve as gatekeeper for transcellular transport of several cations (such as Ca2+ and Mg2+), and are required for the function of intracellular organelles (such as endosomes and lysosomes). Because of their function as intracellular Ca2+ release channels, they have an important regulatory role in cellular organelles. Mutations in several TRP genes have been implicated in diverse pathological states, including neurodegenerative disorders, skeletal dysplasia, kidney disorders and pain, and ongoing research may help find new therapies for treatments of related diseases.

  8. Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites

    SciTech Connect

    Derebe, Mehabaw G.; Sauer, David B.; Zeng, Weizhong; Alam, Amer; Shi, Ning; Jiang, Youxing

    2015-11-30

    Selective ion conduction across ion channel pores is central to cellular physiology. To understand the underlying principles of ion selectivity in tetrameric cation channels, we engineered a set of cation channel pores based on the nonselective NaK channel and determined their structures to high resolution. These structures showcase an ensemble of selectivity filters with a various number of contiguous ion binding sites ranging from 2 to 4, with each individual site maintaining a geometry and ligand environment virtually identical to that of equivalent sites in K{sup +} channel selectivity filters. Combined with single channel electrophysiology, we show that only the channel with four ion binding sites is K{sup +} selective, whereas those with two or three are nonselective and permeate Na{sup +} and K{sup +} equally well. These observations strongly suggest that the number of contiguous ion binding sites in a single file is the key determinant of the channel's selectivity properties and the presence of four sites in K{sup +} channels is essential for highly selective and efficient permeation of K{sup +} ions.

  9. Pore architecture and ion sites in acid-sensing ion channels and P2X receptors.

    PubMed

    Gonzales, Eric B; Kawate, Toshimitsu; Gouaux, Eric

    2009-07-30

    Acid-sensing ion channels are proton-activated, sodium-selective channels composed of three subunits, and are members of the superfamily of epithelial sodium channels, mechanosensitive and FMRF-amide peptide-gated ion channels. These ubiquitous eukaryotic ion channels have essential roles in biological activities as diverse as sodium homeostasis, taste and pain. Despite their crucial roles in biology and their unusual trimeric subunit stoichiometry, there is little knowledge of the structural and chemical principles underlying their ion channel architecture and ion-binding sites. Here we present the structure of a functional acid-sensing ion channel in a desensitized state at 3 A resolution, the location and composition of the approximately 8 A 'thick' desensitization gate, and the trigonal antiprism coordination of caesium ions bound in the extracellular vestibule. Comparison of the acid-sensing ion channel structure with the ATP-gated P2X(4) receptor reveals similarity in pore architecture and aqueous vestibules, suggesting that there are unanticipated yet common structural and mechanistic principles.

  10. Dysfunctional HCN ion channels in neurological diseases.

    PubMed

    DiFrancesco, Jacopo C; DiFrancesco, Dario

    2015-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed as four different isoforms (HCN1-4) in the heart and in the central and peripheral nervous systems. HCN channels are activated by membrane hyperpolarization at voltages close to resting membrane potentials and carry the hyperpolarization-activated current, dubbed If (funny current) in heart and Ih in neurons. HCN channels contribute in several ways to neuronal activity and are responsible for many important cellular functions, including cellular excitability, generation, and modulation of rhythmic activity, dendritic integration, transmission of synaptic potentials, and plasticity phenomena. Because of their role, defective HCN channels are natural candidates in the search for potential causes of neurological disorders in humans. Several data, including growing evidence that some forms of epilepsy are associated with HCN mutations, support the notion of an involvement of dysfunctional HCN channels in different experimental models of the disease. Additionally, some anti-epileptic drugs are known to modify the activity of the Ih current. HCN channels are widely expressed in the peripheral nervous system and recent evidence has highlighted the importance of the HCN2 isoform in the transmission of pain. HCN channels are also present in the midbrain system, where they finely regulate the activity of dopaminergic neurons, and a potential role of these channels in the pathogenesis of Parkinson's disease has recently emerged. The function of HCN channels is regulated by specific accessory proteins, which control the correct expression and modulation of the neuronal Ih current. Alteration of these proteins can severely interfere with the physiological channel function, potentially predisposing to pathological conditions. In this review we address the present knowledge of the association between HCN dysfunctions and neurological diseases, including clinical, genetic, and physiopathological

  11. The 13th Annual Aurora Biomed Ion Channel Retreat: Three Days of Research, Technology, and Networking.

    PubMed

    Magee, Kaylee E A; Stanwood, Shawna R

    2016-03-01

    The 13th Annual Ion Channel Retreat was held by Aurora Biomed in Vancouver, Canada from July 7 to 9, 2015. The meeting showcased prominent current research including cardiac safety and pharmacology; ion channel structure, function and engineering; transporters and ion pumps; screening technologies; ion channels as disease targets; alcohol, tobacco, and ion channels; and ion channels as pain targets. This report summarizes the work presented at the retreat.

  12. Channeling, channel density and mass recovery in aquifer transport, with application to the MADE experiment

    NASA Astrophysics Data System (ADS)

    Fiori, A.

    2014-12-01

    Channeling effects in heterogeneous formations are studied through a new quantity denoted as channel density a(x,t). Focusing on advection only, a(x,t) is defined as the relative number of streamtubes (or channels) containing solute between x and x + dx at a given time t, regardless of the mass that they carry. The channel density generally differs from the widely employed longitudinal mass distribution m(x,t), and their difference increases with time and the degree of heterogeneity. The difference between a and m reflects the nonuniformity of mass distribution relative to the plume geometry. In particular, the "fast" channels typically carry a larger fraction of mass than their share in their relative volume, which in turn can be rather small. Detecting such channels by a network of monitoring wells may be a challenging task, which might explain the poor solute recovery of some field experiments at increasing times. After application of the proposed concepts to the simple case of stratified formations, we model the channel density and mass distribution pertaining to the MADE experiment, which exhibited poor mass recovery at large times. The results presented in this study emphasize the possible channeling effects at MADE and the general difficulty in sampling the leading edge of the plume, which in turn may contain a significant fraction of the plume mass.

  13. Alternative paradigms for ion channelopathies: disorders of ion channel membrane trafficking and posttranslational modification.

    PubMed

    Curran, Jerry; Mohler, Peter J

    2015-01-01

    Channelopathies are a diverse set of disorders associated with defects in ion channel (and transporter) function. Although the vast majority of channelopathies are linked with inherited mutations that alter ion channel biophysical properties, another group of similar disorders has emerged that alter ion channel synthesis, membrane trafficking, and/or posttranslational modifications. In fact, some electrical and episodic disorders have now been identified that are not defects in the ion channel but instead reflect dysfunction in an ion channel (or transporter) regulatory protein. This review focuses on alternative paradigms for physiological disorders associated with protein biosynthesis, folding, trafficking, and membrane retention. Furthermore, the review highlights the role of aberrant posttranslational modifications in acquired channelopathies.

  14. Mass-dependent channel electron multiplier operation. [for ion detection

    NASA Technical Reports Server (NTRS)

    Fields, S. A.; Burch, J. L.; Oran, W. A.

    1977-01-01

    The absolute counting efficiency and pulse height distributions of a continuous-channel electron multiplier used in the detection of hydrogen, argon and xenon ions are assessed. The assessment technique, which involves the post-acceleration of 8-eV ion beams to energies from 100 to 4000 eV, provides information on counting efficiency versus post-acceleration voltage characteristics over a wide range of ion mass. The charge pulse height distributions for H2 (+), A (+) and Xe (+) were measured by operating the experimental apparatus in a marginally gain-saturated mode. It was found that gain saturation occurs at lower channel multiplier operating voltages for light ions such as H2 (+) than for the heavier ions A (+) and Xe (+), suggesting that the technique may be used to discriminate between these two classes of ions in electrostatic analyzers.

  15. Effect of Cytoskeletal Reagents on Stretch Activated Ion Channels

    DTIC Science & Technology

    1992-11-12

    transduction. Biophys J59: 1143-1145, 1991. 23. SACHS, F., W. SIGURDSON, A. RUKNUDIN, AND C. BOWMAN. Single- channel mechanosensitive currents. Science 253: 800... mechanosensitive ion channels . In: Advances in Comparative and Environmental Physiology, v0C, edited by F. Ito. Berlin: Springer-Verlag, 1992, p. 55-77. Report of Inventions: None 4 ...EFFECT OF CYTOSKELETAL REAGENTS ON STRETCH ACTIVATED ION CHANNELS b lfli..3-f-I’- o0*’t 6. AUTHOR(S) Dr.-Frederick Sachs DI 7. PERFORMING ORGANIZATION NAME

  16. Turning a Poor Ion Channel into a Good Pump

    NASA Astrophysics Data System (ADS)

    Astumian, Dean

    2003-05-01

    We consider a membrane protein that can exist in two configurations, either one of which acts as a poor ion channel, allowing ions to slowly leak across the membrane from high to low elctrochemical potential. We show that random external fluctuations can provide the energy to turn this poor channel into a good pump that drives ion transport from low to high electrochemical potential. We discuss this result in terms of a gambling analogy, and point to possible implications for fields as far ranging as population biology, economics, and actuarial science.

  17. Carbon monoxide: an emerging regulator of ion channels.

    PubMed

    Wilkinson, William J; Kemp, Paul J

    2011-07-01

    Carbon monoxide is rapidly emerging as an important cellular messenger, regulating a wide range of physiological processes. Crucial to its role in both physiology and disease is its ability differentially to regulate several classes of ion channels, including examples from calcium-activated K(+) (BK(Ca)), voltage-activated K(+) (K(v)) and Ca(2+) channel (L-type) families, ligand-gated P2X receptors (P2X2 and P2X4), tandem P domain K(+) channels (TREK1) and the epithelial Na(+) channel (ENaC). The mechanisms by which CO regulates these ion channels are still unclear and remain somewhat controversial. However, available structure-function studies suggest that a limited range of amino acid residues confer CO sensitivity, either directly or indirectly, to particular ion channels and that cellular redox state appears to be important to the final integrated response. Whatever the molecular mechanism by which CO regulates ion channels, endogenous production of this gasotransmitter has physiologically important roles and is currently being explored as a potential therapeutic.

  18. Ion transport through a T-intersection of nanofluidic channels.

    PubMed

    Daiguji, Hirofumi; Adachi, Takuma; Tatsumi, Naoya

    2008-08-01

    Ion transport through a T-intersection of two silica nanochannels (a main channel, 5-mum long and 30-nm wide, and a subchannel, 5-microm long and 15-nm wide) with a surface charge distribution was investigated based on continuum dynamics calculations. The surface charge within 250 nm of the intersection in the main channel and the entire subchannel was positive and that in the main channel outside this intersection region was negative. This nanofluidic system is analogous to a p-n-p transistor. The calculation results revealed that, by adjusting the electric potentials at the ends of the nanochannels, the ionic current could be (1) cut off, (2) regulated in the main channel, (3) diverged into the main and subchannels, (4) turned from the main channel to the subchannel, and (5) merged into the subchannel. A series connection of this nanofluidic system can therefore be used in biotechnological applications for electrophoretic separation and for sorting of ions and biomolecules.

  19. [Acid-Sensing Ion Channels (ASICs) in pain].

    PubMed

    Lingueglia, Eric

    2014-01-01

    The discovery of new drug targets represents a real opportunity for developing fresh strategies against pain. Ion channels are interesting targets because they are directly involved in the detection and the transmission of noxious stimuli by sensory fibres of the peripheral nervous system and by neurons of the spinal cord. Acid-Sensing Ion Channels (ASICs) have emerged as important players in the pain pathway. They are neuronal, voltage-independent depolarizing sodium channels activated by extracellular protons. The ASIC family comprises several subunits that need to associate into homo- or hetero-trimers to form a functional channel. The ASIC1 and ASIC3 isoforms are particularly important in sensory neurons, whereas ASIC1a, alone or in association with ASIC2, is essential in the central nervous system. The potent analgesic effects associated with their inhibition in animals (which can be comparable to those of morphine) and data suggesting a role in human pain illustrate the therapeutic potential of these channels.

  20. Ion Concentration- and Voltage-Dependent Push and Pull Mechanisms of Potassium Channel Ion Conduction.

    PubMed

    Kasahara, Kota; Shirota, Matsuyuki; Kinoshita, Kengo

    2016-01-01

    The mechanism of ion conduction by potassium channels is one of the central issues in physiology. In particular, it is still unclear how the ion concentration and the membrane voltage drive ion conduction. We have investigated the dynamics of the ion conduction processes in the Kv1.2 pore domain, by molecular dynamics (MD) simulations with several different voltages and ion concentrations. By focusing on the detailed ion movements through the pore including selectivity filter (SF) and cavity, we found two major conduction mechanisms, called the III-IV-III and III-II-III mechanisms, and the balance between the ion concentration and the voltage determines the mechanism preference. In the III-IV-III mechanism, the outermost ion in the pore is pushed out by a new ion coming from the intracellular fluid, and four-ion states were transiently observed. In the III-II-III mechanism, the outermost ion is pulled out first, without pushing by incoming ions. Increases in the ion concentration and voltage accelerated ion conductions, but their mechanisms were different. The increase in the ion concentrations facilitated the III-IV-III conductions, while the higher voltages increased the III-II-III conductions, indicating that the pore domain of potassium channels permeates ions by using two different driving forces: a push by intracellular ions and a pull by voltage.

  1. A golden approach to ion channel inhibition☆

    PubMed Central

    Jarvis, Gavin E.; Thompson, Andrew J.

    2013-01-01

    Drugs are often used in combination and, for pharmacologists, the manner of their interactions can cast light on drug mechanisms and biological processes. Here we provide simplified descriptions of commonly used analytical methods for analysing drug combinations and describe a new and practical experimental solution to address the mechanistic question: ‘Do two channel-blocking drugs bind at the same site?’ We define two simple mathematical models that describe the effects of two channel blockers acting simultaneously at either the same (Syntopic Model) or different (Allotopic Model) binding sites within a channel pore. We find that the optimum concentrations of two drugs for distinguishing between the two models are related to the mathematical Golden Ratio. PMID:23972927

  2. Emergence of ion channel modal gating from independent subunit kinetics

    PubMed Central

    Bicknell, Brendan A.

    2016-01-01

    Many ion channels exhibit a slow stochastic switching between distinct modes of gating activity. This feature of channel behavior has pronounced implications for the dynamics of ionic currents and the signaling pathways that they regulate. A canonical example is the inositol 1,4,5-trisphosphate receptor (IP3R) channel, whose regulation of intracellular Ca2+ concentration is essential for numerous cellular processes. However, the underlying biophysical mechanisms that give rise to modal gating in this and most other channels remain unknown. Although ion channels are composed of protein subunits, previous mathematical models of modal gating are coarse grained at the level of whole-channel states, limiting further dialogue between theory and experiment. Here we propose an origin for modal gating, by modeling the kinetics of ligand binding and conformational change in the IP3R at the subunit level. We find good agreement with experimental data over a wide range of ligand concentrations, accounting for equilibrium channel properties, transient responses to changing ligand conditions, and modal gating statistics. We show how this can be understood within a simple analytical framework and confirm our results with stochastic simulations. The model assumes that channel subunits are independent, demonstrating that cooperative binding or concerted conformational changes are not required for modal gating. Moreover, the model embodies a generally applicable principle: If a timescale separation exists in the kinetics of individual subunits, then modal gating can arise as an emergent property of channel behavior. PMID:27551100

  3. General anesthesia mediated by effects on ion channels

    PubMed Central

    Zhou, Cheng; Liu, Jin; Chen, Xiang-Dong

    2012-01-01

    Although it has been more than 165 years since the first introduction of modern anesthesia to the clinic, there is surprisingly little understanding about the exact mechanisms by which general anesthetics induce unconsciousness. As a result, we do not know how general anesthetics produce anesthesia at different levels. The main handicap to understanding the mechanisms of general anesthesia is the diversity of chemically unrelated compounds including diethyl ether and halogenated hydrocarbons, gases nitrous oxide, ketamine, propofol, benzodiazepines and etomidate, as well as alcohols and barbiturates. Does this imply that general anesthesia is caused by many different mechanisms Until now, many receptors, molecular targets and neuronal transmission pathways have been shown to contribute to mechanisms of general anesthesia. Among these molecular targets, ion channels are the most likely candidates for general anesthesia, in particular γ-aminobutyric acid type A, potassium and sodium channels, as well as ion channels mediated by various neuronal transmitters like acetylcholine, amino acids amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid or N-methyl-D-aspartate. In addition, recent studies have demonstrated the involvement in general anesthesia of other ion channels with distinct gating properties such as hyperpolarization-activated, cyclic- nucleotide-gated channels. The main aim of the present review is to summarize some aspects of current knowledge of the effects of general anesthetics on various ion channels. PMID:24701405

  4. Physiological and Pathological Functions of Mechanosensitive Ion Channels

    PubMed Central

    Gu, Yuanzheng; Gu, Chen

    2014-01-01

    Rapid sensation of mechanical stimuli is often mediated by mechanosensitve ion channels. Their opening results from conformational changes induced by mechanical forces. It leads to membrane permeation of selected ions and thereby to electrical signaling. Newly identified mechanosensitive ion channels are emerging at an astonishing rate, including some that are traditionally assigned for completely different functions. In this review, we first provide a brief overview of ion channels that are known to play a role in mechanosensation. Next, we focus on three representative ones, including the transient receptor potential channel V4 (TRPV4), Kv1.1 voltage-gated potassium (Kv) channel, and Piezo channels. Their structures, biophysical properties, expression and targeting patterns, and physiological functions are highlighted. The potential role of their mechanosensation in related diseases is further discussed. In sum, mechanosensation appears to be achieved in a variety of ways by different proteins and plays a fundamental role in the function of various organs under normal and abnormal conditions. PMID:24532247

  5. Ion/water channels for embryo implantation barrier.

    PubMed

    Liu, Xin-Mei; Zhang, Dan; Wang, Ting-Ting; Sheng, Jian-Zhong; Huang, He-Feng

    2014-05-01

    Successful implantation involves three distinct processes, namely the embryo apposition, attachment, and penetration through the luminal epithelium of the endometrium to establish a vascular link to the mother. After penetration, stromal cells underlying the epithelium differentiate and surround the embryo to form the embryo implantation barrier, which blocks the passage of harmful substances to the embryo. Many ion/water channel proteins were found to be involved in the process of embryo implantation. First, ion/water channel proteins play their classical role in establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane. Second, most of ion/water channel proteins are regulated by steroid hormone (estrogen or progesterone), which may have important implications to the embryo implantation. Last but not least, these proteins do not limit themselves as pure channels but also function as an initiator of a series of consequences once activated by their ligand/stimulator. Herein, we discuss these new insights in recent years about the contribution of ion/water channels to the embryo implantation barrier construction during early pregnancy.

  6. Cocaine withdrawal and neuro-adaptations in ion channel function.

    PubMed

    Hu, Xiu-Ti

    2007-02-01

    Chronic exposure to psychostimulants induces neuro-adaptations in ion channel function of dopamine (DA)-innervated cells localized within the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc). Although neuroplasticity in ion channel function is initially found in drug-sensitized animals, it has recently been believed to underlie the withdrawal effects of cocaine, including craving that leads to relapse in human addicts. Recent studies have also revealed remarkable differences in altered ion channel activities between mPFC pyramidal neurons and medium spiny NAc neurons in cocaine-withdrawn animals. In response to psychostimulant or certain "excitatory" stimuli, increased intrinsic excitability is found in mPFC pyramidal neurons, whereas decreased excitability is observed in medium spiny NAc cells in drug-withdrawn animals compared to drug-free control animals. These changes in ion channel function are modulated by interrupted DA/Ca2+ signaling with decreased DA D2 receptor function but increased D1 receptor signaling. More importantly, they are correlated to behavioral changes in cocaine-withdrawn human addicts and sensitized animals. Based on growing evidence, researchers have proposed that cocaine-induced neuro-adaptations in ion channel activity and DA/Ca2+ signaling in mPFC pyramidal neurons and medium spiny NAc cells may be the fundamental cellular mechanism underlying the cocaine withdrawal effects observed in human addicts.

  7. Ion channel gates: comparative analysis of energy barriers.

    PubMed

    Tai, Kaihsu; Haider, Shozeb; Grottesi, Alessandro; Sansom, Mark S P

    2009-04-01

    The energetic profile of an ion translated along the axis of an ion channel should reveal whether the structure corresponds to a functionally open or closed state of the channel. In this study, we explore the combined use of Poisson-Boltzmann electrostatic calculations and evaluation of van der Waals interactions between ion and pore to provide an initial appraisal of the gating state of a channel. This approach is exemplified by its application to the bacterial inward rectifier potassium channel KirBac3.1, where it reveals the closed gate to be formed by a ring of leucine (L124) side chains. We have extended this analysis to a comparative survey of gating profiles, including model hydrophobic nanopores, the nicotinic acetylcholine receptor, and a number of potassium channel structures and models. This enables us to identify three gating regimes, and to show the limitation of this computationally inexpensive method. For a (closed) gate radius of 0.4 nm < R < 0.8 nm, a hydrophobic gate may be present. For a gate radius of 0.2 nm < R < 0.4 nm, both electrostatic and van der Waals interactions will contribute to the barrier height. Below R = 0.2 nm, repulsive van der Waals interactions are likely to dominate, resulting in a sterically occluded gate. In general, the method is more useful when the channel is wider; for narrower channels, the flexibility of the protein may allow otherwise-unsurmountable energetic barriers to be overcome.

  8. Multiple Scales in the Simulation of Ion Channels and Proteins

    PubMed Central

    Eisenberg, Bob

    2010-01-01

    Computation of living processes creates great promise for the everyday life of mankind and great challenges for physical scientists. Simulations molecular dynamics have great appeal to biologists as a natural extension of structural biology. Once a biologist sees a structure, she/he wants to see it move. Molecular biology has shown that a small number of atoms, sometimes even one messenger ion, like Ca2+, can control biological function on the scale of cells, organs, tissues, and organisms. Enormously concentrated ions—at number densities of ~20 M—in protein channels and enzymes are responsible for many of the characteristics of living systems, just as highly concentrated ions near electrodes are responsible for many of the characteristics of electrochemical systems. Here we confront the reality of the scale differences of ions. We show that the scale differences needed to simulate all the atoms of biological cells are 107 in linear dimension, 1021 in three dimensions, 109 in resolution, 1011 in time, and 1013 in particle number (to deal with concentrations of Ca2+). These scales must be dealt with simultaneously if the simulation is to deal with most biological functions. Biological function extends across all of them, all at once in most cases. We suggest a computational approach using explicit multiscale analysis instead of implicit simulation of all scales. The approach is based on an energy variational principle EnVarA introduced by Chun Liu to deal with complex fluids. Variational methods deal automatically with multiple interacting components and scales. When an additional component is added to the system, the resulting Euler Lagrange field equations change form automatically—by algebra alone—without additional unknown parameters. Multifaceted interactions are solutions of the resulting equations. We suggest that ionic solutions should be viewed as complex fluids with simple components. Highly concentrated solutions—dominated by interactions of

  9. Dependence of the beam-channel interaction force on the radial profiles of a relativistic electron beam and an ion channel in the ion-focusing regime

    NASA Astrophysics Data System (ADS)

    Kolesnikov, E. K.; Manuilov, A. S.

    2017-02-01

    We have derived the formulas for calculating the force of the interaction of a relativistic electron beam with an ion plasma channel in the case of the beam transportation during ion focusing. The dependence of the difference in radial profiles of the beam and the ion channel on this force for different amplitudes of beam deviations from the channel symmetry axis has been studied.

  10. Divalent ion trapping inside potassium channels of human T lymphocytes

    PubMed Central

    1989-01-01

    Using the patch-clamp whole-cell recording technique, we investigated the influence of external Ca2+, Ba2+, K+, Rb+, and internal Ca2+ on the rate of K+ channel inactivation in the human T lymphocyte-derived cell line, Jurkat E6-1. Raising external Ca2+ or Ba2+, or reducing external K+, accelerated the rate of the K+ current decay during a depolarizing voltage pulse. External Ba2+ also produced a use-dependent block of the K+ channels by entering the open channel and becoming trapped inside. Raising internal Ca2+ accelerated inactivation at lower concentrations than external Ca2+, but increasing the Ca2+ buffering with BAPTA did not affect inactivation. Raising [K+]o or adding Rb+ slowed inactivation by competing with divalent ions. External Rb+ also produced a use-dependent removal of block of K+ channels loaded with Ba2+ or Ca2+. From the removal of this block we found that under normal conditions approximately 25% of the channels were loaded with Ca2+, whereas under conditions with 10 microM internal Ca2+ the proportion of channels loaded with Ca2+ increased to approximately 50%. Removing all the divalent cations from the external and internal solution resulted in the induction of a non-selective, voltage-independent conductance. We conclude that Ca2+ ions from the outside or the inside can bind to a site at the K+ channel and thereby block the channel or accelerate inactivation. PMID:2786551

  11. Ion channels: Key elements in sea urchin sperm physiology

    NASA Astrophysics Data System (ADS)

    Darszon, Alberto; de De Latorre, Lucia; Vargas, Irma; Liévano, Arturo; Beltrán, Carmen; Santi, Celia; Labarca, Pedro; Zapata, Otilia

    1995-08-01

    Ion channels are deeply involved in sea urchin sperm activation, motility, chemotaxis and in the acrosome reaction. Unraveling ion channel function and regulation in sperm behavior has required a combination of complementary approaches since spermatozoa are very tiny cells. Planar bilayer and patch clamp techniques have allowed us to detect, for the first time, the activity of single channels in the plasma membrane of these cells. Unlike intact sperm, swollen sperm can be much more easily patch clamped and single channel activity recorded. These techniques, together with studies of membrane potential, intracellular Ca2+ and pH in whole sperm, have established the presence of K+, Ca2+, and Cl- channels in this cell. The strategies developed to study sea urchin sperm channels are applicable to mammalian spermatozoa. We recently detected a Ca2+ channel resembling one found in S. purpuratus sperm in planar bilayers containing mouse sperm plasma membranes. The presence of this Ca2+ channel in such diverse species suggests it is important in sperm function.

  12. Identification and characterization of a bacterial hydrosulphide ion channel

    SciTech Connect

    Czyzewski, Bryan K.; Wang, Da-Neng

    2012-10-26

    The hydrosulphide ion (HS{sup -}) and its undissociated form, hydrogen sulphide (H{sub 2}S), which are believed to have been critical to the origin of life on Earth, remain important in physiology and cellular signalling. As a major metabolite in anaerobic bacterial growth, hydrogen sulphide is a product of both assimilatory and dissimilatory sulphate reduction. These pathways can reduce various oxidized sulphur compounds including sulphate, sulphite and thiosulphate. The dissimilatory sulphate reduction pathway uses this molecule as the terminal electron acceptor for anaerobic respiration, in which process it produces excess amounts of H{sub 2}S. The reduction of sulphite is a key intermediate step in all sulphate reduction pathways. In Clostridium and Salmonella, an inducible sulphite reductase is directly linked to the regeneration of NAD{sup +}, which has been suggested to have a role in energy production and growth, as well as in the detoxification of sulphite. Above a certain concentration threshold, both H{sub 2}S and HS{sup -} inhibit cell growth by binding the metal centres of enzymes and cytochrome oxidase, necessitating a release mechanism for the export of this toxic metabolite from the cell. Here we report the identification of a hydrosulphide ion channel in the pathogen Clostridium difficile through a combination of genetic, biochemical and functional approaches. The HS{sup -} channel is a member of the formate/nitrite transport family, in which about 50 hydrosulphide ion channels form a third subfamily alongside those for formate (FocA) and for nitrite (NirC). The hydrosulphide ion channel is permeable to formate and nitrite as well as to HS{sup -} ions. Such polyspecificity can be explained by the conserved ion selectivity filter observed in the channel's crystal structure. The channel has a low open probability and is tightly regulated, to avoid decoupling of the membrane proton gradient.

  13. Ion channels and transporters [corrected] in cancer. 2. Ion channels and the control of cancer cell migration.

    PubMed

    Cuddapah, Vishnu Anand; Sontheimer, Harald

    2011-09-01

    A hallmark of high-grade cancers is the ability of malignant cells to invade unaffected tissue and spread disease. This is particularly apparent in gliomas, the most common and lethal type of primary brain cancer affecting adults. Migrating cells encounter restricted spaces and appear able to adjust their shape to accommodate to narrow extracellular spaces. A growing body of work suggests that cell migration/invasion is facilitated by ion channels and transporters. The emerging concept is that K(+) and Cl(-) function as osmotically active ions, which cross the plasma membrane in concert with obligated water thereby adjusting a cell's shape and volume. In glioma cells Na(+)-K(+)-Cl(-) cotransporters (NKCC1) actively accumulate K(+) and Cl(-), establishing a gradient for KCl efflux. Ca(2+)-activated K(+) channels and voltage-gated Cl(-) channels are largely responsible for effluxing KCl promoting hydrodynamic volume changes. In other cancers, different K(+) or even Na(+) channels may function in concert with a variety of Cl(-) channels to support similar volume changes. Channels involved in migration are frequently regulated by Ca(2+) signaling, most likely coupling extracellular stimuli to cell migration. Importantly, the inhibition of ion channels and transporters appears to be clinically relevant for the treatment of cancer. Recent preclinical data indicates that inhibition of NKCC1 with an FDA-approved drug decreases neoplastic migration. Additionally, ongoing clinical trials demonstrate that an inhibitor of chloride channels may be a therapy for the treatment of gliomas. Data reviewed here strongly indicate that ion channels are a promising target for the development of novel therapeutics to combat cancer.

  14. Calcium-permeable ion channels in the kidney.

    PubMed

    Zhou, Yiming; Greka, Anna

    2016-06-01

    Calcium ions (Ca(2+)) are crucial for a variety of cellular functions. The extracellular and intracellular Ca(2+) concentrations are thus tightly regulated to maintain Ca(2+) homeostasis. The kidney, one of the major organs of the excretory system, regulates Ca(2+) homeostasis by filtration and reabsorption. Approximately 60% of the Ca(2+) in plasma is filtered, and 99% of that is reabsorbed by the kidney tubules. Ca(2+) is also a critical signaling molecule in kidney development, in all kidney cellular functions, and in the emergence of kidney diseases. Recently, studies using genetic and molecular biological approaches have identified several Ca(2+)-permeable ion channel families as important regulators of Ca(2+) homeostasis in kidney. These ion channel families include transient receptor potential channels (TRP), voltage-gated calcium channels, and others. In this review, we provide a brief and systematic summary of the expression, function, and pathological contribution for each of these Ca(2+)-permeable ion channels. Moreover, we discuss their potential as future therapeutic targets.

  15. Ion channels and osteoarthritic pain: potential for novel analgesics.

    PubMed

    Staunton, C A; Lewis, R; Barrett-Jolley, R

    2013-12-01

    Osteoarthritis (OA) is a debilitating chronic condition widely prevalent in ageing populations. Because the pathology of the disease includes cartilage erosion and joint remodelling, OA patients experience a great deal of pain. Despite numerous studies, details of OA are frequently inseparable from other types of chronic pain, and its causes are unknown. In most circumstances in OA, the cartilage lacks afferent innervation, although other joint tissues contain nociceptive neurones. In addition to physical joint damage, there is a strong element of joint inflammation. Genetic studies have identified several associations between ion channels and OA pain, including NaV1.7, P2X7, and TRPV1, but several other channels have also been implicated. Many ion channels involved with OA pain are common to those seen in inflammatory pain. This review considers causes of OA pain and discusses three possible pain-reducing strategies involving ion channel modulation: chondroprotection, innate afferent nerve inhibition, and inhibition of inflammatory hyperalgesia. Future targets for OA pain analgesia could involve a number of ion channels.

  16. Modeling ion channel dynamics through reflected stochastic differential equations

    NASA Astrophysics Data System (ADS)

    Dangerfield, Ciara E.; Kay, David; Burrage, Kevin

    2012-05-01

    Ion channels are membrane proteins that open and close at random and play a vital role in the electrical dynamics of excitable cells. The stochastic nature of the conformational changes these proteins undergo can be significant, however current stochastic modeling methodologies limit the ability to study such systems. Discrete-state Markov chain models are seen as the “gold standard,” but are computationally intensive, restricting investigation of stochastic effects to the single-cell level. Continuous stochastic methods that use stochastic differential equations (SDEs) to model the system are more efficient but can lead to simulations that have no biological meaning. In this paper we show that modeling the behavior of ion channel dynamics by a reflected SDE ensures biologically realistic simulations, and we argue that this model follows from the continuous approximation of the discrete-state Markov chain model. Open channel and action potential statistics from simulations of ion channel dynamics using the reflected SDE are compared with those of a discrete-state Markov chain method. Results show that the reflected SDE simulations are in good agreement with the discrete-state approach. The reflected SDE model therefore provides a computationally efficient method to simulate ion channel dynamics while preserving the distributional properties of the discrete-state Markov chain model and also ensuring biologically realistic solutions. This framework could easily be extended to other biochemical reaction networks.

  17. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    SciTech Connect

    Holt, J K; Herberg, J L; Wu, Y; Schwegler, E; Mehta, A

    2009-06-15

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  18. Ion channels and the transduction of light signals

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Studies of biological light-sensing mechanisms are revealing important roles for ion channels. Photosensory transduction in plants is no exception. In this article, the evidence that ion channels perform such signal-transducing functions in the complex array of mechanisms that bring about plant photomorphogenesis will be reviewed and discussed. The examples selected for discussion range from light-gradient detection in unicellular algae to the photocontrol of stem growth in Arabidopsis. Also included is some discussion of the technical aspects of studies that combine electrophysiology and photobiology.

  19. Ferroelectric active models of ion channels in biomembranes.

    PubMed

    Bystrov, V S; Lakhno, V D; Molchanov, M

    1994-06-21

    Ferroactive models of ion channels in the theory of biological membranes are presented. The main equations are derived and their possible solutions are shown. The estimates of some experimentally measured parameters are given. Possible physical consequences of the suggested models are listed and the possibility of their experimental finding is discussed. The functioning of the biomembrane's ion channel is qualitatively described on the basis of the suggested ferroactive models. The main directions and prospects for development of the ferroactive approach to the theory of biological membranes and their structures are indicated.

  20. Mechanistic and therapeutic perspectives for cardiac arrhythmias: beyond ion channels.

    PubMed

    Wu, Yufei; Li, Jun; Xu, Liang; Lin, Li; Chen, Yi-Han

    2017-03-24

    Cardiac arrhythmias are among the most common causes of death in the world. Foundational studies established the critical role of ion channel disorders in arrhythmias, yet defects in ion channels themselves, such as mutations, may not account for all arrhythmias. Despite the progress made in recent decades, the antiarrhythmic drugs currently available have limited effectiveness, and the majority of these drugs can have proarrhythmic effects. This review describes novel knowledge on cellular mechanisms that cause cardiac arrhythmias, focuses on the dysfunction of subcellular organelles and intracellular logistics, and discusses potential strategies and challenges for developing novel, safe and effective treatments for arrhythmias.

  1. Mitochondrial Ion Channels: Gatekeepers of Life and Death

    PubMed Central

    O'Rourke, Brian; Cortassa, Sonia; Aon, Miguel A.

    2009-01-01

    Continuous generation of ATP by mitochondrial oxidative phosphorylation is essential to maintain function in mechanically active cells such as cardiomyocytes. Emerging evidence indicates that mitochondrial ion channels activated by reactive oxygen species can induce a mitochondrial "critical" state, which can scale to cause electrical and contractile dysfunction of the cardiac cell and, ultimately, the whole heart. Here we focus on how mitochondrial ion channels participate in life-and-death decisions of the cell and discuss the challenges ahead for translating recent findings into novel therapeutic applications. PMID:16174870

  2. Acid-sensing ion channels contribute to neurotoxicity.

    PubMed

    Chu, Xiang-Ping; Grasing, Kenneth A; Wang, John Q

    2014-02-01

    Acidosis that occurs under pathological conditions not only affects intracellular signaling molecules, but also directly activates a unique family of ligand-gated ion channels: acid-sensing ion channels (ASICs). ASICs are widely expressed throughout the central and peripheral nervous systems and play roles in pain sensation, learning and memory, and fear conditioning. Overactivation of ASICs contributes to neurodegenerative diseases such as ischemic brain/spinal cord injury, multiple sclerosis, Parkinson's disease, and Huntington's disease. Thus, targeting ASICs might be a potential therapeutic strategy for these conditions. This mini-review focuses on the electrophysiology and pharmacology of ASICs and roles of ASICs in neuronal toxicity.

  3. Ion channel activity in lobster skeletal muscle membrane.

    PubMed

    Worden, M K; Rahamimoff, R; Kravitz, E A

    1993-09-01

    Ion channel activity in the sarcolemmal membrane of muscle fibers is critical for regulating the excitability, and therefore the contractility, of muscle. To begin the characterization of the biophysical properties of the sarcolemmal membrane of lobster exoskeletal muscle fibers, recordings were made from excised patches of membrane from enzymatically induced muscle fiber blebs. Blebs formed as evaginations of the muscle sarcolemmal membrane and were sufficiently free of extracellular debris to allow the formation of gigaohm seals. Under simple experimental conditions using bi-ionic symmetrical recording solutions and maintained holding potentials, a variety of single channel types with conductances in the range 32-380 pS were detected. Two of these ion channel species are described in detail, both are cation channels selective for potassium. They can be distinguished from each other on the basis of their single-channel conductance and gating properties. The results suggest that current flows through a large number of ion channels that open spontaneously in bleb membranes in the absence of exogenous metabolites or hormones.

  4. Ion Selectivity Mechanism in a Bacterial Pentameric Ligand-Gated Ion Channel

    SciTech Connect

    Fritsch, Sebastian; Ivanov, Ivaylo; Wang, Hailong; Cheng, Xiaolin

    2010-01-01

    The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high-resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential-of-mean-force profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel is open for a sodium ion to transport, but presents a 11 kcal/mol free energy barrier for a chloride ion. Our collective findings identify three distinct contributions to the observed preference for the permeant ions. First, there is a substantial contribution due to a ring of negatively charged glutamate residues (E-2 ) at the narrow intracellular end of the channel. The negative electrostatics of this region and the ability of the glutamate side chains to directly bind cations would strongly favor the passage of sodium ions while hindering translocation of chloride ions. Second, our results imply a significant hydrophobic contribution to selectivity linked to differences in the desolvation penalty for the sodium versus chloride ions in the central hydrophobic region of the pore. This hydrophobic contribution is evidenced by the large free energy barriers experienced by Cl in the middle of the pore for both GLIC and the E-2 A mutant. Finally, there is a distinct contribution arising from the overall negative electrostatics of the channel.

  5. Ion channels at the nucleus: electrophysiology meets the genome.

    PubMed

    Matzke, Antonius J M; Weiger, Thomas M; Matzke, Marjori

    2010-07-01

    The nuclear envelope is increasingly viewed from an electrophysiological perspective by researchers interested in signal transduction pathways that influence gene transcription and other processes in the nucleus. Here, we describe evidence for ion channels and transporters in the nuclear membranes and for possible ion gating by the nuclear pores. We argue that a systems-level understanding of cellular regulation is likely to require the assimilation of nuclear electrophysiology into molecular and biochemical signaling pathways.

  6. Ion channel diversity, channel expression and function in the choroid plexuses

    PubMed Central

    Millar, Ian D; Bruce, Jason IE; Brown, Peter D

    2007-01-01

    Knowledge of the diversity of ion channel form and function has increased enormously over the last 25 years. The initial impetus in channel discovery came with the introduction of the patch clamp method in 1981. Functional data from patch clamp experiments have subsequently been augmented by molecular studies which have determined channel structures. Thus the introduction of patch clamp methods to study ion channel expression in the choroid plexus represents an important step forward in our knowledge understanding of the process of CSF secretion. Two K+ conductances have been identified in the choroid plexus: Kv1 channel subunits mediate outward currents at depolarising potentials; Kir 7.1 carries an inward-rectifying conductance at hyperpolarising potentials. Both K+ channels are localised at the apical membrane where they may contribute to maintenance of the membrane potential while allowing the recycling of K+ pumped in by Na+-K+ ATPase. Two anion conductances have been identified in choroid plexus. Both have significant HCO3- permeability, and may play a role in CSF secretion. One conductance exhibits inward-rectification and is regulated by cyclic AMP. The other is carried by an outward-rectifying channel, which is activated by increases in cell volume. The molecular identity of the anion channels is not known, nor is it clear whether they are expressed in the apical or basolateral membrane. Recent molecular evidence indicates that choroid plexus also expresses the non-selective cation channels such as transient receptor potential channels (TRPV4 and TRPM3) and purinoceptor type 2 (P2X) receptor operated channels. In conclusion, good progress has been made in identifying the channels expressed in the choroid plexus, but determining the precise roles of these channels in CSF secretion remains a challenge for the future. PMID:17883837

  7. Single-Walled Carbon Nanotubes: Mimics of Biological Ion Channels

    PubMed Central

    2017-01-01

    Here we report on the ion conductance through individual, small diameter single-walled carbon nanotubes. We find that they are mimics of ion channels found in natural systems. We explore the factors governing the ion selectivity and permeation through single-walled carbon nanotubes by considering an electrostatic mechanism built around a simplified version of the Gouy–Chapman theory. We find that the single-walled carbon nanotubes preferentially transported cations and that the cation permeability is size-dependent. The ionic conductance increases as the absolute hydration enthalpy decreases for monovalent cations with similar solid-state radii, hydrated radii, and bulk mobility. Charge screening experiments using either the addition of cationic or anionic polymers, divalent metal cations, or changes in pH reveal the enormous impact of the negatively charged carboxylates at the entrance of the single-walled carbon nanotubes. These observations were modeled in the low-to-medium concentration range (0.1–2.0 M) by an electrostatic mechanism that mimics the behavior observed in many biological ion channel-forming proteins. Moreover, multi-ion conduction in the high concentration range (>2.0 M) further reinforces the similarity between single-walled carbon nanotubes and protein ion channels. PMID:28103039

  8. Single-Walled Carbon Nanotubes: Mimics of Biological Ion Channels.

    PubMed

    Amiri, Hasti; Shepard, Kenneth L; Nuckolls, Colin; Hernández Sánchez, Raúl

    2017-02-08

    Here we report on the ion conductance through individual, small diameter single-walled carbon nanotubes. We find that they are mimics of ion channels found in natural systems. We explore the factors governing the ion selectivity and permeation through single-walled carbon nanotubes by considering an electrostatic mechanism built around a simplified version of the Gouy-Chapman theory. We find that the single-walled carbon nanotubes preferentially transported cations and that the cation permeability is size-dependent. The ionic conductance increases as the absolute hydration enthalpy decreases for monovalent cations with similar solid-state radii, hydrated radii, and bulk mobility. Charge screening experiments using either the addition of cationic or anionic polymers, divalent metal cations, or changes in pH reveal the enormous impact of the negatively charged carboxylates at the entrance of the single-walled carbon nanotubes. These observations were modeled in the low-to-medium concentration range (0.1-2.0 M) by an electrostatic mechanism that mimics the behavior observed in many biological ion channel-forming proteins. Moreover, multi-ion conduction in the high concentration range (>2.0 M) further reinforces the similarity between single-walled carbon nanotubes and protein ion channels.

  9. Finite element simulation of the gating mechanism of mechanosensitive ion channels

    NASA Astrophysics Data System (ADS)

    Bavi, Navid; Qin, Qinghua; Martinac, Boris

    2013-08-01

    In order to eliminate limitations of existing experimental or computational methods (such as patch-clamp technique or molecular dynamic analysis) a finite element (FE) model for multi length-scale and time-scale investigation on the gating mechanism of mechanosensitive (MS) ion channels has been established. Gating force value (from typical patch clamping values) needed to activate Prokaryotic MS ion channels was applied as tensional force to the FE model of the lipid bilayer. Making use of the FE results, we have discussed the effects of the geometrical and the material properties of the Escherichia coli MscL mechanosensitive ion channel opening in relation to the membrane's Young's modulus (which will vary depending on the cell type or cholesterol density in an artificial membrane surrounding the MscL ion channel). The FE model has shown that when the cell membrane stiffens the required channel activation force increases considerably. This is in agreement with experimental results taken from the literature. In addition, the present study quantifies the relationship between the membrane stress distribution around a `hole' for modeling purposes and the stress concentration in the place transmembrane proteins attached to the hole by applying an appropriate mesh refinement as well as well defining contact condition in these areas.

  10. Scorpion venom components that affect ion-channels function

    PubMed Central

    Quintero-Hernández, V.; Jiménez-Vargas, J.M.; Gurrola, G.B.; Valdivia, H.H.F.; Possani, L.D.

    2014-01-01

    SUMMARY The number and types of venom components that affect ion-channel function are reviewed. These are the most important venom components responsible for human intoxication, deserving medical attention, often requiring the use of specific anti-venoms. Special emphasis is given to peptides that recognize Na+-, K+- and Ca++-channels of excitable cells. Knowledge generated by direct isolation of peptides from venom and components deduced from cloned genes, whose amino acid sequences are deposited into databanks are now adays in the order of 1.5 thousands, out of an estimate biodiversity closed to 300,000. Here the diversity of components is briefly reviewed with mention to specific references. Structural characteristic are discussed with examples taken from published work. The principal mechanisms of action of the three different types of peptides are also reviewed. Na+-channel specific venom components usually are modifier of the open and closing kinetic mechanisms of the ion-channels, whereas peptides affecting K+-channels are normally pore blocking agents. The Ryanodine Ca++-channel specific peptides are known for causing sub-conducting stages of the channels conductance and some were shown to be able to internalize penetrating inside the muscle cells. PMID:23891887

  11. Insight toward epithelial Na+ channel mechanism revealed by the acid-sensing ion channel 1 structure.

    PubMed

    Stockand, James D; Staruschenko, Alexander; Pochynyuk, Oleh; Booth, Rachell E; Silverthorn, Dee U

    2008-09-01

    The epithelial Na(+) channel/degenerin (ENaC/DEG) protein family includes a diverse group of ion channels, including nonvoltage-gated Na(+) channels of epithelia and neurons, and the acid-sensing ion channel 1 (ASIC1). In mammalian epithelia, ENaC helps regulate Na(+) and associated water transport, making it a critical determinant of systemic blood pressure and pulmonary mucosal fluidity. In the nervous system, ENaC/DEG proteins are related to sensory transduction. While the importance and physiological function of these ion channels are established, less is known about their structure. One hallmark of the ENaC/DEG channel family is that each channel subunit has only two transmembrane domains connected by an exceedingly large extracellular loop. This subunit structure was recently confirmed when Jasti and colleagues determined the crystal structure of chicken ASIC1, a neuronal acid-sensing ENaC/DEG channel. By mapping ENaC to the structural coordinates of cASIC1, as we do here, we hope to provide insight toward ENaC structure. ENaC, like ASIC1, appears to be a trimeric channel containing 1alpha, 1beta, and 1gamma subunit. Heterotrimeric ENaC and monomeric ENaC subunits within the trimer possibly contain many of the major secondary, tertiary, and quaternary features identified in cASIC1 with a few subtle but critical differences. These differences are expected to have profound effects on channel behavior. In particular, they may contribute to ENaC insensitivity to acid and to its constitutive activity in the absence of time- and ligand-dependent inactivation. Experiments resulting from this comparison of cASIC1 and ENaC may help clarify unresolved issues related to ENaC architecture, and may help identify secondary structures and residues critical to ENaC function.

  12. Role of Ca++ Influx via Epidermal TRP Ion Channels

    DTIC Science & Technology

    2014-10-01

    moisturization parameters in response to modulation of TRPV1 , 3 and 4 and TRPA1 in normal human skin as it is subjected to mechanical stress. (2) to assess...subjected it to reverse transcriptase, followed by quantitative PCR. We detected all TRP ion channels under study ( TRPV1 , TRPV3, TRPV4, TRPA1) as well as

  13. Ion channel networks in the control of cerebral blood flow

    PubMed Central

    Longden, Thomas A; Hill-Eubanks, David C

    2015-01-01

    One hundred and twenty five years ago, Roy and Sherrington made the seminal observation that neuronal stimulation evokes an increase in cerebral blood flow.1 Since this discovery, researchers have attempted to uncover how the cells of the neurovascular unit—neurons, astrocytes, vascular smooth muscle cells, vascular endothelial cells and pericytes—coordinate their activity to control this phenomenon. Recent work has revealed that ionic fluxes through a diverse array of ion channel species allow the cells of the neurovascular unit to engage in multicellular signaling processes that dictate local hemodynamics. In this review we center our discussion on two major themes: (1) the roles of ion channels in the dynamic modulation of parenchymal arteriole smooth muscle membrane potential, which is central to the control of arteriolar diameter and therefore must be harnessed to permit changes in downstream cerebral blood flow, and (2) the striking similarities in the ion channel complements employed in astrocytic endfeet and endothelial cells, enabling dual control of smooth muscle from either side of the blood–brain barrier. We conclude with a discussion of the emerging roles of pericyte and capillary endothelial cell ion channels in neurovascular coupling, which will provide fertile ground for future breakthroughs in the field. PMID:26661232

  14. A kinetic model of NMDA ion channel under varying noise

    NASA Astrophysics Data System (ADS)

    Wang, Rubin; Chen, Hao; Zhang, Zhikang

    2004-05-01

    It is well known that when transmitters are applied to the postsynaptic membrane, the resulting depolarization is noisy that is due to the random opening and closing of the ion channels activated by the transmitters[1]. In other words, the energy of noise is associated with changes in ion channels. On the base of these ideas, we explore a model of relationship between NMDA (n-methyl-D-aspartate) ion channels and LTP (long-term synaptic potentiation). We have proved that NMDA ion channel and calcium-dependent protein kinases, which are the triggers for the inducement of LTP, could be regarded as "molecular machines". In this system all of these molecules require energy and the energy of the system is supplied from the random motion of water molecules generated through heat energy of ATP hydrolysis[2]. So the appropriate framework to describe them comes from bioenergetics. Models of LTP previously reported are all on the macroscopic level [3-7]. Instead, we research a model at the molecular level by applying energy parameters [8].

  15. Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel

    NASA Astrophysics Data System (ADS)

    Queralt-Martín, María; García-Giménez, Elena; Aguilella, Vicente M.; Ramirez, Patricio; Mafe, Salvador; Alcaraz, Antonio

    2013-07-01

    We show experimentally and theoretically that significant currents can be obtained with a biological ion channel, the OmpF porin of Escherichia coli, using zero-average potentials as driving forces. The channel rectifying properties can be used to pump potassium ions against an external concentration gradient under asymmetric pH conditions. The results are discussed in terms of the ionic selectivity and rectification ratio of the channel. The physical concepts involved may be applied to separation processes with synthetic nanopores and to bioelectrical phenomena.

  16. The Tenth Annual Ion Channel Retreat, Vancouver, Canada, June 25–27, 2012

    PubMed Central

    Kimlicka, Lynn; Liang, Sophia; Brugger, Saranna; Liang, Dong

    2013-01-01

    Abstract Ten years after Aurora Biomed (Vancouver, British Columbia, Canada) hosted the inaugural Ion Channel Retreat, this event is recognized as a leading conference for ion channel researchers. Held annually in Vancouver, this meeting consistently provides an outlet for researchers to share their findings while learning about new concepts, methods, and technologies. Researchers use this forum to discuss and debate a spectrum of topics from ion channel research and technology to drug discovery and safety. The Retreat covered key subjects in the ion channel industry, including ion channels as disease targets, transient receptor protein channels as pain and disease targets, ion channels as pain targets, ion channel structure and function, ion channel screening technologies, cardiac safety and toxicology, and cardiac function and pharmacology. PMID:23679851

  17. The tenth annual Ion Channel Retreat, Vancouver, Canada, June 25-27, 2012.

    PubMed

    Kimlicka, Lynn; Jamieson, Ashley Lauren; Liang, Sophia; Brugger, Saranna; Liang, Dong

    2013-05-01

    Ten years after Aurora Biomed (Vancouver, British Columbia, Canada) hosted the inaugural Ion Channel Retreat, this event is recognized as a leading conference for ion channel researchers. Held annually in Vancouver, this meeting consistently provides an outlet for researchers to share their findings while learning about new concepts, methods, and technologies. Researchers use this forum to discuss and debate a spectrum of topics from ion channel research and technology to drug discovery and safety. The Retreat covered key subjects in the ion channel industry, including ion channels as disease targets, transient receptor protein channels as pain and disease targets, ion channels as pain targets, ion channel structure and function, ion channel screening technologies, cardiac safety and toxicology, and cardiac function and pharmacology.

  18. The ninth annual Ion Channel Retreat, Vancouver, Canada, June 27-29, 2011.

    PubMed

    Brugger, Saranna; Garate, Marco; Papaianni, Gina; Volnoukhin, Maria; Zhan, Chris; Gill, Sikander; Liang, Sophia; Liang, Dong

    2011-12-01

    Nine years ago Aurora Biomed Inc. (Vancouver, Canada) committed to gathering the brightest minds and the most innovative research companies at one conference. The Ion Channel Retreat provides a podium for scientific discourse spanning a wide range of ion channel disciplines. This conference has consistently provided a venue for people to share knowledge, exchange ideas, and establish partnerships. This conference continues to expand and grow each year, demonstrating the value of such a conference. Attendees at the 2011 Ion Channel retreat presented ion channel research from 12 different countries, representing research groups located on 5 of the 7 continents. Aurora Biomed's 2011 Retreat covered a variety of topics including Ion Channels as Disease Targets, Ion Channels as Pain Targets, TRP-channels, Ion Channel Screening Technologies, Cardiac Function and Pharmacology, Cardiac Safety and Toxicology, and Structure and Function of Ion Channels.

  19. Ligand-Gated Ion Channels: Permeation and Activation1

    NASA Astrophysics Data System (ADS)

    Lynch, Joseph W.; Barry, Peter H.

    Ligand-gated ion channels (LGICs) are fast-responding channels in which the receptor, which binds the activating molecule (the ligand), and the ion channel are part of the same nanomolecular protein complex. This chapter will describe the properties and functions of the nicotinic acetylcholine LGIC superfamily, which play a critical role in the fast chemical transmission of electrical signals between nerve cells at synapses and between nerve and muscle cells at endplates. All the processing functions of the brain and the resulting behavioral output depend on chemical transmission across such neuronal interconnections. To describe the properties of the channels of this LGIC superfamily,we will mainly use two examples of this family of channels: the excitatory nicotinic acetylcholine receptor (nAChR) and the inhibitory glycine receptor (GlyR) channels. In the chemical transmission of electrical signals, the arrival of an electrical signal at the synaptic terminal of a nerve causes the release of a chemical signal—a neurotransmitter molecule (the ligand, also referred to as the agonist). The neurotransmitter rapidly diffuses across the very narrow 20-40 nm synaptic gap between the cells and binds to the LGIC receptors in the membrane of the target (postsynaptic) cell and generates a new electrical signal in that cell (e.g., Kandel et al., 2000). How this chemical signal is converted into an electrical one depends on the fundamental properties of LGICs and the ionic composition of the postsynaptic cell and its external solution.

  20. Ion Selectivity Mechanism in a Bacterial Pentameric Ligand-Gated Ion Channel

    SciTech Connect

    Fritsch, Sebastian M; Ivanov, Ivaylo N; Wang, Hailong; Cheng, Xiaolin

    2011-01-01

    The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential of mean force (PMF) profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel is open for a sodium ion to transport, but presents a ~10 kcal/mol free energy barrier for a chloride ion, which arises primarily from the unfavorable interactions with a ring of negatively charged glutamate residues (E-2 ) at the intracellular end and a ring of hydrophobic residues (I9 ) in the middle of the transmembrane domain. Our collective findings further suggest that the charge selection mechanism can, to a large extent, be attributed to the narrow intracellular end and a ring of glutamate residues in this position their strong negative electrostatics and ability to bind cations. By contrast, E19 at the extracellular entrance only plays a minor role in ion selectivity of GLIC. In addition to electrostatics, both ion hydration and protein dynamics are found to be crucial for ion conduction as well, which explains why a chloride ion experiences a much greater barrier than a sodium ion in the hydrophobic region of the pore.

  1. Influence of planar oscillations on scattered ion energy distributions in transmission ion channeling

    NASA Astrophysics Data System (ADS)

    Bailes, A. A.; Seiberling, L. E.

    1999-06-01

    Utilizing the transmission ion channeling technique and a Monte Carlo simulation of the channeling of He ions in Si, we have been able to determine surface structure by comparing experimental to simulated scattered ion energy distributions. In analyzing data for {110} beam incidence, we have found that planar oscillations persist well past 2000 Å in our Monte Carlo simulations. These oscillations yield no benefit to this method of data analysis but can make analysis more difficult by the requirement for more accurate Si thickness determination.

  2. Stormtime Subauroral Density Troughs: Ion-Molecule Kinetics Effects

    DTIC Science & Technology

    2007-11-02

    trap to measure the total ion density (ni); and (4) a coincided with an increase in the energy and intensity of spherical Langmuir probe to measure...Experiments Figure 3. Rate coefficients for the reaction (RI). Circles in a high-temperature flowing afterglow device (HTFA) and squares show the HTFA and...poleward part coincided with strong wave structures, energetic (ring current) ion precipitations, and enhanced vertical ion flows . One or several narrow

  3. Ion-number-density-dependent effects on hyperfine transition of trapped 199Hg+ ions in quadrupole linear ion traps

    NASA Astrophysics Data System (ADS)

    Yang, Zhihui; Chen, Yihe; Yan, Bibo; Wang, Man; Wan, Yongquan; Liu, Hao; She, Lei; Li, Jiaomei

    2017-04-01

    The ion-number-density-dependent frequency offsets and broadening of the ground state hyperfine transition spectra of trapped 199Hg+ ions were measured as a function of the end-cap voltage of the quadrupole linear ion trap. The number density of trapped 199Hg+ ions in the quadrupole linear trap was controlled by the end-cap voltage. The fractional frequency stability of 199Hg+ hyperfine transition to the 1 mV end-cap voltage variation was preliminary estimated to be less than 1 ×10-16. The causes of the ion-number-density-dependent frequency shift and spectrum broadening were analyzed theoretically and explained.

  4. Ion channel noise can explain firing correlation in auditory nerves.

    PubMed

    Moezzi, Bahar; Iannella, Nicolangelo; McDonnell, Mark D

    2016-10-01

    Neural spike trains are commonly characterized as a Poisson point process. However, the Poisson assumption is a poor model for spiking in auditory nerve fibres because it is known that interspike intervals display positive correlation over long time scales and negative correlation over shorter time scales. We have therefore developed a biophysical model based on the well-known Meddis model of the peripheral auditory system, to produce simulated auditory nerve fibre spiking statistics that more closely match the firing correlations observed in empirical data. We achieve this by introducing biophysically realistic ion channel noise to an inner hair cell membrane potential model that includes fractal fast potassium channels and deterministic slow potassium channels. We succeed in producing simulated spike train statistics that match empirically observed firing correlations. Our model thus replicates macro-scale stochastic spiking statistics in the auditory nerve fibres due to modeling stochasticity at the micro-scale of potassium channels.

  5. Density of voltage-gated potassium channels is a bifurcation parameter in pyramidal neurons

    PubMed Central

    Robinson, Hugh P. C.; Århem, Peter

    2014-01-01

    Several types of intrinsic dynamics have been identified in brain neurons. Type 1 excitability is characterized by a continuous frequency-stimulus relationship and, thus, an arbitrarily low frequency at threshold current. Conversely, Type 2 excitability is characterized by a discontinuous frequency-stimulus relationship and a nonzero threshold frequency. In previous theoretical work we showed that the density of Kv channels is a bifurcation parameter, such that increasing the Kv channel density in a neuron model transforms Type 1 excitability into Type 2 excitability. Here we test this finding experimentally, using the dynamic clamp technique on Type 1 pyramidal cells in rat cortex. We found that increasing the density of slow Kv channels leads to a shift from Type 1 to Type 2 threshold dynamics, i.e., a distinct onset frequency, subthreshold oscillations, and reduced latency to first spike. In addition, the action potential was resculptured, with a narrower spike width and more pronounced afterhyperpolarization. All changes could be captured with a two-dimensional model. It may seem paradoxical that an increase in slow K channel density can lead to a higher threshold firing frequency; however, this can be explained in terms of bifurcation theory. In contrast to previous work, we argue that an increased outward current leads to a change in dynamics in these neurons without a rectification of the current-voltage curve. These results demonstrate that the behavior of neurons is determined by the global interactions of their dynamical elements and not necessarily simply by individual types of ion channels. PMID:25339708

  6. A microscopic view of ion conduction through the K+ channel

    NASA Astrophysics Data System (ADS)

    Bernèche, Simon; Roux, Benoît

    2003-07-01

    Recent results from x-ray crystallography and molecular dynamics free-energy simulations have revealed the existence of a number of specific cation-binding sites disposed along the narrow pore of the K+ channel from Streptomyces lividans (KcsA), suggesting that K+ ions might literally "hop" in single file from one binding site to the next as permeation proceeds. In support of this view, it was found that the ion configurations correspond to energy wells of similar depth and that ion translocation is opposed only by small energy barriers. Although such features of the multiion potential energy surface are certainly essential for achieving a high throughput rate, diffusional and dissipative dynamical factors must also be taken into consideration to understand how rapid conduction of K+ is possible. To elucidate the mechanism of ion conduction, we established a framework theory enabling the direct simulation of nonequilibrium fluxes by extending the results of molecular dynamics over macroscopically long times. In good accord with experimental measurements, the simulated maximum conductance of the channel at saturating concentration is on the order of 550 and 360 pS for outward and inward ions flux, respectively, with a unidirectional flux-ratio exponent of 3. Analysis of the ion-conduction process reveals a lack of equivalence between the cation-binding sites in the selectivity filter. molecular dynamics | Brownian dynamics | potential of mean force | membrane potential | Poisson-Boltzmann equation

  7. Equilibrium selectivity alone does not create K+-selective ion conduction in K+ channels

    NASA Astrophysics Data System (ADS)

    Liu, Shian; Lockless, Steve W.

    2013-11-01

    Potassium (K+) channels are selective for K+ over Na+ ions during their transport across membranes. We and others have previously shown that tetrameric K+ channels are primarily occupied by K+ ions in their selectivity filters under physiological conditions, demonstrating the channel’s intrinsic equilibrium preference for K+ ions. Based on this observation, we hypothesize that the preference for K+ ions over Na+ ions in the filter determines its selectivity during ion conduction. Here, we ask whether non-selective cation channels, which share an overall structure and similar individual ion-binding sites with K+ channels, have an ion preference at equilibrium. The variants of the non-selective Bacillus cereus NaK cation channel we examine are all selective for K+ over Na+ ions at equilibrium. Thus, the detailed architecture of the K+ channel selectivity filter, and not only its equilibrium ion preference, is fundamental to the generation of selectivity during ion conduction.

  8. Electron and ion densities in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.; Langer, W. D.

    1974-01-01

    A quantitative theory of ionization in diffuse clouds is developed which includes H(+) charge exchange with O. Dissociative charge exchange of He(+) with H2 plays an important role in the densities of H(+) and He(+). The abundance of HD is also discussed.

  9. Plasma channel and Z-pinch dynamics for heavy ion transport

    SciTech Connect

    Ponce-Marquez, David

    2002-01-01

    A self stabilized, free standing, z-pinch plasma channel has been proposed to deliver the high intensity heavy ion beam from the end of a driver to the fuel target in a heavy ion inertial fusion power plant. The z-pinch relaxes emittance and energy spread requirements requiring a lower cost driver. A z-pinch transport would reduce the number of beam entry port holes to the target chamber from over a hundred to four as compared to neutralized ballistic focusing thus reducing the driver hardware exposure to neutron flux. Experiments where a double pulse discharge technique is used, z-pinch plasma channels with enhanced stability are achieved. Typical parameters are 7 kV pre-pulse discharge and 30 kV main bank discharge with 50 kA of channel current in a 7 torr background gas atmosphere. This work is an experimental study of these plasma channels examining the relevant physics necessary to understand and model such plasmas. Laser diagnostics measured the dynamical properties of neutrals and plasma. Schlieren and phase contrast techniques probe the pre-pulse gas dynamics and infrared interferometry and faraday effect polarimetry are used on the z-pinch to study its electron density and current distribution. Stability and repeatability of the z-pinch depend on the initial conditions set by the pre-pulse. Results show that the z-pinch channel is wall stabilized by an on-axis gas density depression created by the pre-pulse through hydrodynamic expansion where the ratio of the initial gas density to the final gas density is > 10/1. The low on-axis density favors avalanching along the desired path for the main bank discharge. Pinch time is around 2 s from the main bank discharge initiation with a FWHM of ~ 2 cm. Results also show that typical main bank discharge plasma densities reach 1017 cm-3 peak on axis for a 30 kV, 7 torr gas nitrogen discharge. Current rise time is limited by the circuit-channel inductance with the highest contribution to the

  10. Crotalphine desensitizes TRPA1 ion channels to alleviate inflammatory hyperalgesia.

    PubMed

    Bressan, Elisangela; Touska, Filip; Vetter, Irina; Kistner, Katrin; Kichko, Tatjana I; Teixeira, Nathália B; Picolo, Gisele; Cury, Yara; Lewis, Richard J; Fischer, Michael J M; Zimmermann, Katharina; Reeh, Peter W

    2016-11-01

    Crotalphine is a structural analogue to a novel analgesic peptide that was first identified in the crude venom from the South American rattlesnake Crotalus durissus terrificus. Although crotalphine's analgesic effect is well established, its direct mechanism of action remains unresolved. The aim of the present study was to investigate the effect of crotalphine on ion channels in peripheral pain pathways. We found that picomolar concentrations of crotalphine selectively activate heterologously expressed and native TRPA1 ion channels. TRPA1 activation by crotalphine required intact N-terminal cysteine residues and was followed by strong and long-lasting desensitization of the channel. Homologous desensitization of recombinant TRPA1 and heterologous desensitization in cultured dorsal root ganglia neurons was observed. Likewise, crotalphine acted on peptidergic TRPA1-expressing nerve endings ex vivo as demonstrated by suppression of calcitonin gene-related peptide release from the trachea and in vivo by inhibition of chemically induced and inflammatory hypersensitivity in mice. The crotalphine-mediated desensitizing effect was abolished by the TRPA1 blocker HC030031 and absent in TRPA1-deficient mice. Taken together, these results suggest that crotalphine is the first peptide to mediate antinociception selectively and at subnanomolar concentrations by targeting TRPA1 ion channels.

  11. Epithelial Sodium and Acid-Sensing Ion Channels

    NASA Astrophysics Data System (ADS)

    Kellenberger, Stephan

    The epithelial Na+ channel (ENaC) and acid-sensing ion channels (ASICs) are non-voltage-gated Na+ channels that form their own subfamilies within the ENaC/degenerin ion channel family. ASICs are sensors of extracellular pH, and ENaC, whose main function is trans-epithelial Na+ transport, can sense extra- and intra-cellular Na+. In aldosterone-responsive epithelial cells of the kidney, ENaC plays a critical role in the control of sodium balance, blood volume and blood pressure. In airway epithelia, ENaC has a distinct role in controlling fluid reabsorption at the air-liquid interface, thereby determining the rate of mucociliary transport. In taste receptor cells of the tongue, ENaC is involved in salt taste sensation. ASICs have emerged as key sensors for extracellular protons in central and peripheral neurons. Although not all of their physiological and pathological functions are firmly established yet, there is good evidence for a role of ASICs in the brain in learning, expression of fear, and in neurodegeneration after ischaemic stroke. In sensory neurons, ASICs are involved in nociception and mechanosensation. ENaC and ASIC subunits share substantial sequence homology and the conservation of several functional domains. This chapter summarises our current understanding of the physiological functions and of the mechanisms of ion permeation, gating and regulation of ENaC and ASICs.

  12. Mechanical transduction by ion channels: A cautionary tale

    PubMed Central

    Sachs, Frederick

    2016-01-01

    Mechanical transduction by ion channels occurs in all cells. The physiological functions of these channels have just begun to be elaborated, but if we focus on the upper animal kingdom, these channels serve the common sensory services such as hearing and touch, provide the central nervous system with information on the force and position of muscles and joints, and they provide the autonomic system with information about the filling of hollow organs such as blood vessels. However, all cells of the body have mechanosensitive channels (MSCs), including red cells. Most of these channels are cation selective and are activated by bilayer tension. There are also K+ selective MSCs found commonly in neurons where they may be responsible for both general anesthesia and knockout punches in the boxing ring by hyperpolarizing neurons to reduce excitability. The cationic MSCs are typically inactive under normal mechanical stress, but open under pathologic stress. The channels are normally inactive because they are shielded from stress by the cytoskeleton. The cationic MSCs are specifically blocked by the externally applied peptide GsMtx4 (aka, AT-300). This is the first drug of its class and provides a new approach to many pathologies since it is nontoxic, non-immunogenic, stable in a biological environment and has a long pharmacokinetic lifetime. Pathologies involving excessive stress are common. They produce cardiac arrhythmias, contraction in stretched dystrophic muscle, xerocytotic and sickled red cells, etc. The channels seem to function primarily as “fire alarms”, providing feedback to the cytoskeleton that a region of the bilayer is under excessive tension and needs reinforcing. The eukaryotic forms of MSCs have only been cloned in recent years and few people have experience working with them. “Newbies” need to become aware of the technology, potential artifacts, and the fundamentals of mechanics. The most difficult problem in studying MSCs is that the actual

  13. Redox Regulation of Ion Channels in the Pulmonary Circulation

    PubMed Central

    Weir, Edward Kenneth

    2015-01-01

    Abstract Significance: The pulmonary circulation is a low-pressure, low-resistance, highly compliant vasculature. In contrast to the systemic circulation, it is not primarily regulated by a central nervous control mechanism. The regulation of resting membrane potential due to ion channels is of integral importance in the physiology and pathophysiology of the pulmonary vasculature. Recent Advances: Redox-driven ion conductance changes initiated by direct oxidation, nitration, and S-nitrosylation of the cysteine thiols and indirect phosphorylation of the threonine and serine residues directly affect pulmonary vascular tone. Critical Issues: Molecular mechanisms of changes in ion channel conductance, especially the identification of the sites of action, are still not fully elucidated. Future Directions: Further investigation of the interaction between redox status and ion channel gating, especially the physiological significance of S-glutathionylation and S-nitrosylation, could result in a better understanding of the physiological and pathophysiological importance of these mediators in general and the implications of such modifications in cellular functions and related diseases and their importance for targeted treatment strategies. Antioxid. Redox Signal. 22, 465–485. PMID:24702125

  14. Artificial transmembrane ion channels from self-assembling peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Ghadiri, M. Reza; Granja, Juan R.; Buehler, Lukas K.

    1994-05-01

    NATURALLY occurring membrane channels and pores are formed from a large family of diverse proteins, peptides and organic secon-dary metabolites whose vital biological functions include control of ion flow, signal transduction, molecular transport and produc-tion of cellular toxins. But despite the availability of a large amount of biochemical information about these molecules1, the design and synthesis of artificial systems that can mimic the bio-logical function of natural compounds remains a formidable task2-12. Here we present a simple strategy for the design of artifi-cial membrane ion channels based on a self-assembled cylindrical β-sheet peptide architecture13. Our systems-essentially stacks of peptide rings-display good channel-mediated ion-transport activ-ity with rates exceeding 107 ions s-1, rivalling the performance of many naturally occurring counterparts. Such molecular assemblies should find use in the design of novel cytotoxic agents, membrane transport vehicles and drug-delivery systems.

  15. Ion density variation at upper ionosphere during thunderstorm

    NASA Astrophysics Data System (ADS)

    Mangla, Bindu; Sharma, D. K.; Rajput, Anupama

    2017-03-01

    Ionosphere is found to be affected by phenomenon taking place above and below it. Troposphere incidents of thunderstorm and lightning, influence ionospheric temperatures and ion density, from D region to a region of high altitude. Low latitude upper ionosphere in the altitude range of 425-625 km over Indian subcontinent is studied for ion density variation during the event of active thunderstorm. Study is done with the help of ionospheric data obtained from in situ measurements made by Indian satellite SROSS C2, and thunderstorm and other related data obtained from Indian Meteorological Department. Ion density in this region found to show a regular fall from 5 to 65% during the event of thunderstorm over normal day values but consistent heating of ions takes place. O+ being the main part of the composition of ionosphere at this altitude so total ion density variation show a similar trend as that of O+ ion, while other ions like O2+, He+ and H+ do not follow any regular trend with the activity of thunderstorm.

  16. Ion transport through a T-intersection of nanofluidic channels

    NASA Astrophysics Data System (ADS)

    Daiguji, Hirofumi; Adachi, Takuma; Tatsumi, Naoya

    2008-08-01

    Ion transport through a T-intersection of two silica nanochannels (a main channel, 5-μm long and 30-nm wide, and a subchannel, 5-μm long and 15-nm wide) with a surface charge distribution was investigated based on continuum dynamics calculations. The surface charge within 250nm of the intersection in the main channel and the entire subchannel was positive and that in the main channel outside this intersection region was negative. This nanofluidic system is analogous to a p-n-p transistor. The calculation results revealed that, by adjusting the electric potentials at the ends of the nanochannels, the ionic current could be (1) cut off, (2) regulated in the main channel, (3) diverged into the main and subchannels, (4) turned from the main channel to the subchannel, and (5) merged into the subchannel. A series connection of this nanofluidic system can therefore be used in biotechnological applications for electrophoretic separation and for sorting of ions and biomolecules.

  17. Impact of intracellular ion channels on cancer development and progression.

    PubMed

    Peruzzo, Roberta; Biasutto, Lucia; Szabò, Ildikò; Leanza, Luigi

    2016-10-01

    Cancer research is nowadays focused on the identification of possible new targets in order to try to develop new drugs for curing untreatable tumors. Ion channels have emerged as "oncogenic" proteins, since they have an aberrant expression in cancers compared to normal tissues and contribute to several hallmarks of cancer, such as metabolic re-programming, limitless proliferative potential, apoptosis-resistance, stimulation of neo-angiogenesis as well as cell migration and invasiveness. In recent years, not only the plasma membrane but also intracellular channels and transporters have arisen as oncological targets and were proposed to be associated with tumorigenesis. Therefore, the research is currently focusing on understanding the possible role of intracellular ion channels in cancer development and progression on one hand and, on the other, on developing new possible drugs able to modulate the expression and/or activity of these channels. In a few cases, the efficacy of channel-targeting drugs in reducing tumors has already been demonstrated in vivo in preclinical mouse models.

  18. From Toxins Targeting Ligand Gated Ion Channels to Therapeutic Molecules

    PubMed Central

    Nasiripourdori, Adak; Taly, Valérie; Grutter, Thomas; Taly, Antoine

    2011-01-01

    Ligand-gated ion channels (LGIC) play a central role in inter-cellular communication. This key function has two consequences: (i) these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii) they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to drug discovery projects. Therefore, toxins acting on LGIC are presented and their current/potential therapeutic uses highlighted. PMID:22069709

  19. Ion-channeling analysis of boron clusters in silicon

    NASA Astrophysics Data System (ADS)

    Selen, L. J. M.; Janssen, F. J. J.; van IJzendoorn, L. J.; de Voigt, M. J. A.; Theunissen, M. J. J.; Smulders, P. J. M.; Eijkemans, T. J.

    2001-11-01

    We have measured axially channeled Rutherford backscattering spectra of Si1-xGex nanofilms in silicon(001). A step in the yield of the host crystal was found for off-normal axes at the depth of the nanofilm. The step was measured as a function of the angle between the incoming beam and the [011] axis and shows two maxima. It is found that Monte Carlo simulations assuming tetragonal distortion reproduce the experimental results. A universal curve was derived which enables determination of the tetragonal distortion from ion-channeling experiments, for a given film thickness. The results are compared with XRD measurements.

  20. Acid-sensing ion channels in pain and disease.

    PubMed

    Wemmie, John A; Taugher, Rebecca J; Kreple, Collin J

    2013-07-01

    Why do neurons sense extracellular acid? In large part, this question has driven increasing investigation on acid-sensing ion channels (ASICs) in the CNS and the peripheral nervous system for the past two decades. Significant progress has been made in understanding the structure and function of ASICs at the molecular level. Studies aimed at clarifying their physiological importance have suggested roles for ASICs in pain, neurological and psychiatric disease. This Review highlights recent findings linking these channels to physiology and disease. In addition, it discusses some of the implications for therapy and points out questions that remain unanswered.

  1. Vacuolar ion channels: Roles in plant nutrition and signalling.

    PubMed

    Isayenkov, Stanislav; Isner, Jean Charles; Maathuis, Frans J M

    2010-05-17

    Vacuoles play various roles in many physiologically relevant processes in plants. Some of the more prominent are turgor provision, the storage of minerals and nutrients, and cellular signalling. To fulfil these functions a complement of membrane transporters is present at the tonoplast. Prolific patch clamp studies have shown that amongst these, both selective and non-selective ion channels participate in turgor regulation, nutrient storage and signalling. This article reviews the physiological roles, expression patterns and structure function properties of plant vacuolar anion and cation channels that are gated by voltage and ligands.

  2. Abeta ion channels. Prospects for treating Alzheimer's disease with Abeta channel blockers.

    PubMed

    Arispe, Nelson; Diaz, Juan C; Simakova, Olga

    2007-08-01

    The main pathological features in the Alzheimer's brain are progressive depositions of amyloid protein plaques among nerve cells, and neurofibrillary tangles within the nerve cells. The major components of plaques are Abeta peptides. Numerous reports have provided evidence that Abeta peptides are cytotoxic and may play a role in the pathogenesis of AD. An increasing number of research reports support the concept that the Abeta-membrane interaction event may be followed by the insertion of Abeta into the membrane in a structural configuration which forms an ion channel. This review summarizes experimental procedures which have been designed to test the hypothesis that the interaction of Abeta with a variety of membranes, both artificial and natural, results in the subsequent formation of Abeta ion channels We describe experiments, by ourselves and others, that support the view that Abeta is cytotoxic largely due to the action of Abeta channels in the cell membrane. The interaction of Abeta with the surface of the cell membrane may results in the activation of a chain of processes that, when large enough, become cytotoxic and induce cell death by apoptosis. Remarkably, the blockage of Abeta ion channels at the surface of the cell absolutely prevents the activation of these processes at different intracellular levels, thereby preserving the life of the cells. As a prospect for therapy for Alzheimer's disease, our findings at cellular level may be testable on AD animal models to elucidate the potential role and the magnitude of the contribution of the Abeta channels for induction of the disease.

  3. Hydrogen ions control synaptic vesicle ion channel activity in Torpedo electromotor neurones.

    PubMed

    Ahdut-Hacohen, Ronit; Duridanova, Dessislava; Meiri, Halina; Rahamimoff, Rami

    2004-04-15

    During exocytosis the synaptic vesicle fuses with the surface membrane and undergoes a pH jump. When the synaptic vesicle is inside the presynaptic nerve terminal its internal pH is about 5.5 and after fusion, the inside of the vesicle comes in contact with the extracellular medium with a pH of about 7.25. We examined the effect of such pH jump on the opening of the non-specific ion channel in the synaptic vesicle membrane, in the context of the post-fusion hypothesis of transmitter release control. The vesicles were isolated from Torpedo ocellata electromotor neurones. The pH dependence of the opening of the non-specific ion channel was examined using the fused vesicle-attached configuration of the patch clamp technique. The rate of opening depends on both pH and voltage. Increasing the pH from 5.5 to 7.25 activated dramatically the non-specific ion channel of the vesicle membrane. The single channel conductance did not change significantly with the alteration in the pH, and neither did the mean channel open time. These results support the hypothesis that during partial fusion of the vesicle with the surface membrane, ion channels in the vesicle membrane open, admit ions and thus help in the ion exchange process mechanism, leading to the release of the transmitter from the intravesicular ion exchange matrix. This process may have also a pathophysiological significance in conditions of altered pH.

  4. Two-pore channels (TPCs): Novel voltage-gated ion channels with pleiotropic functions.

    PubMed

    Feijóo-Bandín, Sandra; García-Vence, María; García-Rúa, Vanessa; Roselló-Lletí, Esther; Portolés, Manuel; Rivera, Miguel; González-Juanatey, José Ramón; Lago, Francisca

    2017-01-02

    Two-pore channels (TPC1-3) comprise a subfamily of the eukaryotic voltage-gated ion channels (VGICs) superfamily that are mainly expressed in acidic stores in plants and animals. TPCS are widespread across the animal kingdom, with primates, mice and rats lacking TPC3, and mainly act as Ca(+) and Na(+) channels, although it was also suggested that they could be permeable to other ions. Nowadays, TPCs have been related to the development of different diseases, including Parkinson´s disease, obesity or myocardial ischemia. Due to this, their study has raised the interest of the scientific community to try to understand their mechanism of action in order to be able to develop an efficient drug that could regulate TPCs activity. In this review, we will provide an updated view regarding TPCs structure, function and activation, as well as their role in different pathophysiological processes.

  5. Enhancement of laser-driven electron acceleration in an ion channel

    SciTech Connect

    Arefiev, Alexey V.; Khudik, Vladimir N.; Schollmeier, Marius

    2014-03-15

    A laser beam with duration longer than the period of plasma oscillations propagating through an underdense plasma produces a steady-state positively charged channel in the electron density. We consider a test electron in the two-dimensional plane channel under the combined action of the laser field and the transverse static electric field of the channel. At ultrarelativistic laser wave amplitude (a≫1), the electron is pushed primarily forward. As the electron gradually dephases from the wave, the field it samples and its relativistic γ-factor strongly oscillate. The natural frequency of electron oscillations across the channel (betatron frequency) depends on γ, which couples the betatron oscillations to the longitudinal motion induced by the wave. We show that the modulation of the natural frequency makes the oscillations unstable. The resulting amplification of the oscillations across the channel reduces the axial dephasing between the electron and the wave, leading to a considerable electron energy enhancement well above the ponderomotive energy. We find that there is a well-pronounced laser amplitude threshold a{sub *}, above which the enhancement takes place, that scales as a{sub *}∝1/√(n{sub 0}), where n{sub 0} is the ion density. The presented mechanism of energy enhancement is robust with respect to a longitudinal variation of the density, because it relies on a threshold phenomenon rather than on a narrow linear resonance.

  6. Biomimetic Nanotubes Based on Cyclodextrins for Ion-Channel Applications.

    PubMed

    Mamad-Hemouch, Hajar; Ramoul, Hassen; Abou Taha, Mohammad; Bacri, Laurent; Huin, Cécile; Przybylski, Cédric; Oukhaled, Abdelghani; Thiébot, Bénédicte; Patriarche, Gilles; Jarroux, Nathalie; Pelta, Juan

    2015-11-11

    Biomimetic membrane channels offer a great potential for fundamental studies and applications. Here, we report the fabrication and characterization of short cyclodextrin nanotubes, their insertion into membranes, and cytotoxicity assay. Mass spectrometry and high-resolution transmission electron microscopy were used to confirm the synthesis pathway leading to the formation of short nanotubes and to describe their structural parameters in terms of length, diameter, and number of cyclodextrins. Our results show the control of the number of cyclodextrins threaded on the polyrotaxane leading to nanotube synthesis. Structural parameters obtained by electron microscopy are consistent with the distribution of the number of cyclodextrins evaluated by mass spectrometry from the initial polymer distribution. An electrophysiological study at single molecule level demonstrates the ion channel formation into lipid bilayers, and the energy penalty for the entry of ions into the confined nanotube. In the presence of nanotubes, the cell physiology is not altered.

  7. The screw-helical voltage gating of ion channels.

    PubMed Central

    Keynes, R D; Elinder, F

    1999-01-01

    In the voltage-gated ion channels of every animal, whether they are selective for K+, Na+ or Ca2+, the voltage sensors are the S4 transmembrane segments carrying four to eight positive charges always separated by two uncharged residues. It is proposed that they move across the membrane in a screw-helical fashion in a series of three or more steps that each transfer a single electronic charge. The unit steps are stabilized by ion pairing between the mobile positive charges and fixed negative charges, of which there are invariably two located near the inner ends of segments S2 and S3 and a third near the outer end of either S2 or S3. Opening of the channel involves three such steps in each domain. PMID:10343407

  8. Ion channels and drug transporters as targets for anthelmintics

    PubMed Central

    Greenberg, Robert M.

    2014-01-01

    Infections with parasitic helminths such as schistosomes and soil-transmitted nematodes are hugely prevalent and responsible for a major portion of the global health and economic burdens associated with neglected tropical diseases. In addition, many of these parasites infect livestock and plants used in agriculture, resulting in further impoverishment. Treatment and control of these pathogens rely on anthelmintic drugs, which are few in number, and against which drug resistance can develop rapidly. The neuromuscular system of the parasite, and in particular, the ion channels and associated receptors underlying excitation and signaling, have proven to be outstanding targets for anthelmintics. This review will survey the different ion channels found in helminths, focusing on their unique characteristics and pharmacological sensitivities. It will also briefly review the literature on helminth multidrug efflux that may modulate parasite susceptibility to anthelmintics and may prove useful targets for new or repurposed agents that can enhance parasite drug susceptibility and perhaps overcome drug resistance. PMID:25554739

  9. Microstructured apertures in planar glass substrates for ion channel research.

    PubMed

    Fertig, Niels; George, Michael; Klau, Michèle; Meyer, Christine; Tilke, Armin; Sobotta, Constanze; Blick, Robert H; Behrends, Jan C

    2003-01-01

    We have developed planar glass chip devices for patch clamp recording. Glass has several key advantages as a substrate for planar patch clamp devices. It is a good dielectric, is well-known to interact strongly with cell membranes and is also a relatively in-expensive material. In addition, it is optically neutral. However, microstructuring processes for glass are less well established than those for silicon-based substrates. We have used ion-track etching techniques to produce micron-sized apertures into borosilicate and quartz-glass coverslips. These apertures, which can be easily produced in arrays, have been used for high resolution recording of single ion channels as well as for whole-cell current recordings from mammalian cell lines. An additional attractive application that is greatly facilitated by the combination of planar geometry with the optical neutrality of the substrate is single-molecule fluorescence recording with simultaneous single-channel measurements.

  10. The role of synaptic ion channels in synaptic plasticity

    PubMed Central

    Voglis, Giannis; Tavernarakis, Nektarios

    2006-01-01

    The nervous system receives a large amount of information about the environment through elaborate sensory routes. Processing and integration of these wide-ranging inputs often results in long-term behavioural alterations as a result of past experiences. These relatively permanent changes in behaviour are manifestations of the capacity of the nervous system for learning and memory. At the cellular level, synaptic plasticity is one of the mechanisms underlying this process. Repeated neural activity generates physiological changes in the nervous system that ultimately modulate neuronal communication through synaptic transmission. Recent studies implicate both presynaptic and postsynaptic ion channels in the process of synapse strength modulation. Here, we review the role of synaptic ion channels in learning and memory, and discuss the implications and significance of these findings towards deciphering the molecular biology of learning and memory. PMID:17077866

  11. [Role of voltage-dependent ion channels in epileptogenesis].

    PubMed

    Ricard-Mousnier, B; Couraud, F

    1993-10-01

    The aim of this review is to gather information in favour of the involvement of voltage-dependent ion channels in epileptogenesis. Although, up to now, no study has shown that epilepsy is accompanied by a modification in the activity to these channels, the recently acquired knowledge of their physiology allows to presume would favor their involvement in epileptogenesis. The results from electrophysiological studies are as follows: a persistent sodium current increases neuronal excitability whereas potassium currents have an inhibitory role. In particular, calcium-dependent potassium current are involved in the post-hyperpolarization phases which follows PDS. Calcium currents are also involved in the genesis of the "bursting pacemaker" activity displayed by the neurons presumed to be inducers of the epileptic activity. Biochemical data has shown that as a consequence of epileptic activity, sodium and calcium channels are down regulated. This down-regulation could be a way to reduces neuronal hyperexcitability. Pharmacological data demonstrate the drugs which activate calcium channels or which inhibit potassium channels have a convusilvant effect. On the contrary, agents which block calcium or sodium channels or which properties. Among the latter ones, some antiepileptic drugs can be found. In summary situations which lead to increase in calcium and sodium currents and/or to an inhibition in potassium currents are potentially epileptogenic.

  12. Determination of gas phase protein ion densities via ion mobility analysis with charge reduction.

    PubMed

    Maisser, Anne; Premnath, Vinay; Ghosh, Abhimanyu; Nguyen, Tuan Anh; Attoui, Michel; Hogan, Christopher J

    2011-12-28

    We use a charge reduction electrospray (ESI) source and subsequent ion mobility analysis with a differential mobility analyzer (DMA, with detection via both a Faraday cage electrometer and a condensation particle counter) to infer the densities of single and multiprotein ions of cytochrome C, lysozyme, myoglobin, ovalbumin, and bovine serum albumin produced from non-denaturing (20 mM aqueous ammonium acetate) and denaturing (1 : 49.5 : 49.5, formic acid : methanol : water) ESI. Charge reduction is achieved through use of a Po-210 radioactive source, which generates roughly equal concentrations of positive and negative ions. Ions produced by the source collide with and reduce the charge on ESI generated drops, preventing Coulombic fissions, and unlike typical protein ESI, leading to gas-phase protein ions with +1 to +3 excess charges. Therefore, charge reduction serves to effectively mitigate any role that Coulombic stretching may play on the structure of the gas phase ions. Density inference is made via determination of the mobility diameter, and correspondingly the spherical equivalent protein volume. Through this approach it is found that for both non-denaturing and denaturing ESI-generated ions, gas-phase protein ions are relatively compact, with average densities of 0.97 g cm(-3) and 0.86 g cm(-3), respectively. Ions from non-denaturing ESI are found to be slightly more compact than predicted from the protein crystal structures, suggesting that low charge state protein ions in the gas phase are slightly denser than their solution conformations. While a slight difference is detected between the ions produced with non-denaturing and denaturing ESI, the denatured ions are found to be much more dense than those examined previously by drift tube mobility analysis, in which charge reduction was not employed. This indicates that Coulombic stretching is typically what leads to non-compact ions in the gas-phase, and suggests that for gas phase

  13. Amino acid-sensing ion channels in plants

    SciTech Connect

    Spalding, Edgar P.

    2014-08-12

    The title of our project is “Amino acid-sensing ion channels in plants”. Its goals are two-fold: to determine the molecular functions of glutamate receptor-like (GLR) proteins, and to elucidate their biological roles (physiological or developmental) in plants. Here is our final technical report. We were highly successful in two of the three aims, modestly successful in the third.

  14. The structure and regulation of magnesium selective ion channels.

    PubMed

    Payandeh, Jian; Pfoh, Roland; Pai, Emil F

    2013-11-01

    The magnesium ion (Mg(2+)) is the most abundant divalent cation within cells. In man, Mg(2+)-deficiency is associated with diseases affecting the heart, muscle, bone, immune, and nervous systems. Despite its impact on human health, little is known about the molecular mechanisms that regulate magnesium transport and storage. Complete structural information on eukaryotic Mg(2+)-transport proteins is currently lacking due to associated technical challenges. The prokaryotic MgtE and CorA magnesium transport systems have recently succumbed to structure determination by X-ray crystallography, providing first views of these ubiquitous and essential Mg(2+)-channels. MgtE and CorA are unique among known membrane protein structures, each revealing a novel protein fold containing distinct arrangements of ten transmembrane-spanning α-helices. Structural and functional analyses have established that Mg(2+)-selectivity in MgtE and CorA occurs through distinct mechanisms. Conserved acidic side-chains appear to form the selectivity filter in MgtE, whereas conserved asparagines coordinate hydrated Mg(2+)-ions within the selectivity filter of CorA. Common structural themes have also emerged whereby MgtE and CorA sense and respond to physiologically relevant, intracellular Mg(2+)-levels through dedicated regulatory domains. Within these domains, multiple primary and secondary Mg(2+)-binding sites serve to staple these ion channels into their respective closed conformations, implying that Mg(2+)-transport is well guarded and very tightly regulated. The MgtE and CorA proteins represent valuable structural templates to better understand the related eukaryotic SLC41 and Mrs2-Alr1 magnesium channels. Herein, we review the structure, function and regulation of MgtE and CorA and consider these unique proteins within the expanding universe of ion channel and transporter structural biology.

  15. Membranes with the Same Ion Channel Populations but Different Excitabilities

    PubMed Central

    Herrera-Valdez, Marco Arieli

    2012-01-01

    Electrical signaling allows communication within and between different tissues and is necessary for the survival of multicellular organisms. The ionic transport that underlies transmembrane currents in cells is mediated by transporters and channels. Fast ionic transport through channels is typically modeled with a conductance-based formulation that describes current in terms of electrical drift without diffusion. In contrast, currents written in terms of drift and diffusion are not as widely used in the literature in spite of being more realistic and capable of displaying experimentally observable phenomena that conductance-based models cannot reproduce (e.g. rectification). The two formulations are mathematically related: conductance-based currents are linear approximations of drift-diffusion currents. However, conductance-based models of membrane potential are not first-order approximations of drift-diffusion models. Bifurcation analysis and numerical simulations show that the two approaches predict qualitatively and quantitatively different behaviors in the dynamics of membrane potential. For instance, two neuronal membrane models with identical populations of ion channels, one written with conductance-based currents, the other with drift-diffusion currents, undergo transitions into and out of repetitive oscillations through different mechanisms and for different levels of stimulation. These differences in excitability are observed in response to excitatory synaptic input, and across different levels of ion channel expression. In general, the electrophysiological profiles of membranes modeled with drift-diffusion and conductance-based models having identical ion channel populations are different, potentially causing the input-output and computational properties of networks constructed with these models to be different as well. The drift-diffusion formulation is thus proposed as a theoretical improvement over conductance-based models that may lead to more

  16. Forward trafficking of ion channels: what the clinician needs to know.

    PubMed

    Smyth, James W; Shaw, Robin M

    2010-08-01

    Each heartbeat requires precisely orchestrated action potential propagation through the myocardium, achieved by coordination of about a million ion channels on the surface of each cardiomyocyte. Specific ion channels must occur within discrete subdomains of the sarcolemma to exert their electrophysiological effects with highest efficiency (e.g., voltage-gated Ca(2+) channels at T-tubules and gap junctions at intercalated discs). Regulation of ion channel movement to their appropriate membrane subdomain is an exciting research frontier with opportunity for novel therapeutic manipulation of ion channels in the treatment of heart disease. Although much research has generally focused on internalization and subsequent degradation of ion channels, the field of forward trafficking of de novo ion channels from the cell interior to the sarcolemma has now emerged as a key regulatory step in cardiac electrophysiological function. In this brief review, we provide an overview of the current understanding of the cellular biology governing the forward trafficking of ion channels.

  17. Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels.

    PubMed

    Liu, Jinn-Liang; Eisenberg, Bob

    2014-12-14

    A Poisson-Nernst-Planck-Fermi (PNPF) theory is developed for studying ionic transport through biological ion channels. Our goal is to deal with the finite size of particle using a Fermi like distribution without calculating the forces between the particles, because they are both expensive and tricky to compute. We include the steric effect of ions and water molecules with nonuniform sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of water molecules in an inhomogeneous aqueous electrolyte. Including the finite volume of water and the voids between particles is an important new part of the theory presented here. Fermi like distributions of all particle species are derived from the volume exclusion of classical particles. Volume exclusion and the resulting saturation phenomena are especially important to describe the binding and permeation mechanisms of ions in a narrow channel pore. The Gibbs free energy of the Fermi distribution reduces to that of a Boltzmann distribution when these effects are not considered. The classical Gibbs entropy is extended to a new entropy form - called Gibbs-Fermi entropy - that describes mixing configurations of all finite size particles and voids in a thermodynamic system where microstates do not have equal probabilities. The PNPF model describes the dynamic flow of ions, water molecules, as well as voids with electric fields and protein charges. The model also provides a quantitative mean-field description of the charge/space competition mechanism of particles within the highly charged and crowded channel pore. The PNPF results are in good accord with experimental currents recorded in a 10(8)-fold range of Ca(2+) concentrations. The results illustrate the anomalous mole fraction effect, a signature of L-type calcium channels. Moreover, numerical results concerning water density, dielectric permittivity, void volume, and steric energy provide useful details to study

  18. Cavity Ring-Down System for Density Measurement of Negative Hydrogen Ion on Negative Ion Source

    SciTech Connect

    Nakano, Haruhisa; Tsumori, Katsuyoshi; Nagaoka, Kenichi; Shibuya, Masayuki; Kisaki, Masashi; Ikeda, Katsunori; Osakabe, Masaki; Kaneko, Osamu; Asano, Eiji; Kondo, Tomoki; Sato, Mamoru; Komada, Seiji; Sekiguchi, Haruo; Takeiri, Yasuhiko; Fantz, Ursel

    2011-09-26

    A Cavity Ring-Down (CRD) system was applied to measure the density of negative hydrogen ion (H{sup -}) in vicinity of extraction surface in the H{sup -} source for the development of neutral beam injector on Large Helical Device (LHD). The density measurement with sampling time of 50 ms was carried out. The measured density with the CRD system is relatively good agreement with the density evaluated from extracted beam-current with applying a similar relation of positive ion sources. In cesium seeded into ion-source plasma, the linearity between an arc power of the discharge and the measured density with the CRD system was observed. Additionally, the measured density was proportional to the extracted beam current. These characteristics indicate the CRD system worked well for H{sup -} density measurement in the region of H{sup -} and extraction.

  19. Ion channels on microglia: therapeutic targets for neuroprotection.

    PubMed

    Skaper, Stephen D

    2011-02-01

    Under pathological conditions microglia (resident CNS immune cells) become activated, and produce reactive oxygen and nitrogen species and pro-inflammatory cytokines: molecules that can contribute to axon demyelination and neuron death. Because some microglia functions can exacerbate CNS disorders, including stroke, traumatic brain injury, progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis, and several retinal diseases, controlling their activation might ameliorate immune-mediated CNS disorders. A growing body of evidence now points to ion channels on microglia as contributing to the above neuropathologies. For example, the ATP-gated P2X7 purinergic receptor cation channel is up-regulated around amyloid β-peptide plaques in transgenic mouse models of Alzheimer's disease and co-localizes to microglia and astrocytes. Upregulation of the P2X7 receptor subtype on microglia occurs also following spinal cord injury and after ischemia in the cerebral cortex of rats, while P2X7 receptor-like immunoreactivity is increased in activated microglial cells of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. Utilizing neuron/microglia co-cultures as an in vitro model for neuroinflammation, P2X7 receptor activation on microglia appears necessary for microglial cell-mediated injury of neurons. A second example can be found in the chloride intracellular channel 1 (CLIC1), whose expression is related to macrophage activation, undergoes translocation from the cytosol to the plasma membrane (activation) of microglia exposed to amyloid β-peptide, and participates in amyloid β-peptide-induced neurotoxicity through the generation of reactive oxygen species. A final example is the small-conductance Ca2+/calmodulin-activated K+ channel KCNN4/KCa3.1/SK4/IK1, which is highly expressed in rat microglia. Lipopolysaccharide-activated microglia are capable of killing adjacent neurons

  20. Regulation of lysosomal ion homeostasis by channels and transporters.

    PubMed

    Xiong, Jian; Zhu, Michael X

    2016-08-01

    Lysosomes are the major organelles that carry out degradation functions. They integrate and digest materials compartmentalized by endocytosis, phagocytosis or autophagy. In addition to more than 60 hydrolases residing in the lysosomes, there are also ion channels and transporters that mediate the flux or transport of H(+), Ca(2+), Na(+), K(+), and Cl(-) across the lysosomal membranes. Defects in ionic exchange can lead to abnormal lysosome morphology, defective vesicle trafficking, impaired autophagy, and diseases such as neurodegeneration and lysosomal storage disorders. The latter are characterized by incomplete lysosomal digestion and accumulation of toxic materials inside enlarged intracellular vacuoles. In addition to degradation, recent studies have revealed the roles of lysosomes in metabolic pathways through kinases such as mechanistic target of rapamycin (mTOR) and transcriptional regulation through calcium signaling molecules such as transcription factor EB (TFEB) and calcineurin. Owing to the development of new approaches including genetically encoded fluorescence probes and whole endolysosomal patch clamp recording techniques, studies on lysosomal ion channels have made remarkable progress in recent years. In this review, we will focus on the current knowledge of lysosome-resident ion channels and transporters, discuss their roles in maintaining lysosomal function, and evaluate how their dysfunction can result in disease.

  1. Regulation of lysosomal ion homeostasis by channels and transporters

    PubMed Central

    Xiong, Jian; Zhu, Michael X.

    2016-01-01

    Lysosomes are the major organelles that carry out degradation functions. They integrate and digest materials compartmentalized by endocytosis, phagocytosis or autophagy. In addition to more than 60 hydrolases residing in the lysosomes, there are also ion channels and transporters that mediate the flux or transport of H+, Ca2+, Na+, K+, and Cl− across the lysosomal membranes. Defects in ionic exchange can lead to abnormal lysosome morphology, defective vesicle trafficking, impaired autophagy, and diseases such as neurodegeneration and lysosomal storage disorders. The latter are characterized by incomplete lysosomal digestion and accumulation of toxic materials inside enlarged intracellular vacuoles. In addition to degradation, recent studies have revealed the roles of lysosomes in metabolic pathways through kinases such as mechanistic target of rapamycin (mTOR) and transcriptional regulation through calcium signaling molecules such as transcription factor EB (TFEB) and calcineurin. Owing to the development of new approaches including genetically encoded fluorescence probes and whole endolysosomal patch clamp recording techniques, studies on lysosomal ion channels have made remarkable progress in recent years. In this review, we will focus on the current knowledge of lysosome-resident ion channels and transporters, discuss their roles in maintaining lysosomal function, and evaluate how their dysfunction can result in disease. PMID:27430889

  2. The Concise Guide to Pharmacology 2013/14: Ion Channels

    PubMed Central

    Alexander, Stephen PH; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Catterall, William A; Spedding, Michael; Peters, John A; Harmar, Anthony J

    2013-01-01

    The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Ion channels are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates. PMID:24528239

  3. Acid-sensing ion channels in postoperative pain.

    PubMed

    Deval, Emmanuel; Noël, Jacques; Gasull, Xavier; Delaunay, Anne; Alloui, Abdelkrim; Friend, Valérie; Eschalier, Alain; Lazdunski, Michel; Lingueglia, Eric

    2011-04-20

    Iatrogenic pain consecutive to a large number of surgical procedures has become a growing health concern. The etiology and pathophysiology of postoperative pain are still poorly understood, but hydrogen ions appear to be important in this process. We have investigated the role of peripheral acid-sensing ion channels (ASICs), which form depolarizing channels activated by extracellular protons, in a rat model of postoperative pain (i.e., hindpaw skin/muscle incision). We report high levels of ASIC-type currents (∼ 77%) in sensory neurons innervating the hindpaw muscles, with a prevalence of ASIC3-like currents. The ASIC3 protein is largely expressed in lumbar DRG neurons innervating the plantar muscle, and its mRNA and protein levels are increased by plantar incision 24 h after surgery. Pharmacological inhibition of ASIC3 channels with the specific toxin APETx2 or in vivo knockdown of ASIC3 subunit by small interfering RNA led to a significant reduction of postoperative spontaneous, thermal, and postural pain behaviors (spontaneous flinching, heat hyperalgesia, and weight bearing). ASIC3 appears to have an important role in deep tissue but also affects prolonged pain evoked by skin incision alone. The specific homomeric ASIC1a blocker PcTx1 has no effect on spontaneous flinching, when applied peripherally. Together, these data demonstrate a significant role for peripheral ASIC3-containing channels in postoperative pain.

  4. Peptidomimetic Star Polymers for Targeting Biological Ion Channels

    PubMed Central

    Chen, Rong; Lu, Derong; Xie, Zili; Feng, Jing; Jia, Zhongfan; Ho, Junming; Coote, Michelle L.; Wu, Yingliang; Monteiro, Michael J.; Chung, Shin-Ho

    2016-01-01

    Four end-functionalized star polymers that could attenuate the flow of ionic currents across biological ion channels were first de novo designed computationally, then synthesized and tested experimentally on mammalian K+ channels. The 4-arm ethylene glycol conjugate star polymers with lysine or a tripeptide attached to the end of each arm were specifically designed to mimic the action of scorpion toxins on K+ channels. Molecular dynamics simulations showed that the lysine side chain of the polymers physically occludes the pore of Kv1.3, a target for immuno-suppression therapy. Two of the compounds tested were potent inhibitors of Kv1.3. The dissociation constants of these two compounds were computed to be 0.1 μM and 0.7 μM, respectively, within 3-fold to the values derived from subsequent experiments. These results demonstrate the power of computational methods in molecular design and the potential of star polymers as a new infinitely modifiable platform for ion channel drug discovery. PMID:27007701

  5. Characterization of the internal ion environment of biofilms based on charge density and shape of ion.

    PubMed

    Kurniawan, Andi; Tsuchiya, Yuki; Eda, Shima; Morisaki, Hisao

    2015-12-01

    Biofilm polymers contain both electrically positively and negatively charged sites. These charged sites enable the biofilm to trap and retain ions leading to an important role of biofilm such as nutrient recycling and pollutant purification. Much work has focused on the ion-exchange capacity of biofilms, and they are known to adsorb ions through an exchange mechanism between the ions in solution and the ions adsorbed to the charged sites on the biofilm polymer. However, recent studies suggest that the adsorption/desorption behavior of ions in a biofilm cannot be explained solely by this ion exchange mechanism. To examine the possibility that a substantial amount of ions are held in the interstitial region of the biofilm polymer by an electrostatic interaction, intact biofilms formed in a natural environment were immersed in distilled water and ion desorption was investigated. All of the detected ion species were released from the biofilms over a short period of time, and very few ions were subsequently released over more time, indicating that the interstitial region of biofilm polymers is another ion reserve. The extent of ion retention in the interstitial region of biofilms for each ion can be determined largely by charge density, |Z|/r, where |Z| is the ion valence as absolute value and r is the ion radius. The higher |Z|/r value an ion has, the stronger it is retained in the interstitial region of biofilms. Ion shape is also a key determinant of ion retention. Spherical and non-spherical ions have different correlations between the condensation ratio and |Z|/r. The generality of these findings were assured by various biofilm samples. Thus, the internal regions of biofilms exchange ions dynamically with the outside environment.

  6. Progress in Development of Improved Ion-Channel Biosensors

    NASA Technical Reports Server (NTRS)

    Nadeau, Jay L.; White, Victor E.; Maurer, Joshua A.; Dougherty, Dennis A.

    2008-01-01

    Further improvements have recently been made in the development of the devices described in Improved Ion-Channel Biosensors (NPO-30710), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 30. As discussed in more detail in that article, these sensors offer advantages of greater stability, greater lifetime, and individual electrical addressability, relative to prior ion-channel biosensors. In order to give meaning to a brief description of the recent improvements, it is necessary to recapitulate a substantial portion of the text of the cited previous article. The figure depicts one sensor that incorporates the recent improvements, and can be helpful in understanding the recapitulated text, which follows: These sensors are microfabricated from silicon and other materials compatible with silicon. Typically, the sensors are fabricated in arrays in silicon wafers on glass plates. Each sensor in the array can be individually electrically addressed, without interference with its neighbors. Each sensor includes a well covered by a thin layer of silicon nitride, in which is made a pinhole for the formation of a lipid bilayer membrane. In one stage of fabrication, the lower half of the well is filled with agarose, which is allowed to harden. Then the upper half of the well is filled with a liquid electrolyte (which thereafter remains liquid) and a lipid bilayer is painted over the pinhole. The liquid contains a protein that forms an ion channel on top of the hardened agarose. The combination of enclosure in the well and support by the hardened agarose provides the stability needed to keep the membrane functional for times as long as days or even weeks. An electrode above the well, another electrode below the well, and all the materials between the electrodes together constitute a capacitor. What is measured is the capacitive transient current in response to an applied voltage pulse. One notable feature of this sensor, in comparison with prior such sensors, is a

  7. Current Density Measurements of an Annular-Geometry Ion Engine

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential non-uniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to +/-10% of the average current density in the discharge and +/-5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 - 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  8. Current Density Measurements of an Annular-Geometry Ion Engine

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential nonuniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to 10% of the average current density in the discharge and 5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  9. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins.

    PubMed

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-07-02

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel's ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators.

  10. Acid-sensing ion channels in pathological conditions

    PubMed Central

    Chu, Xiang-Ping; Xiong, Zhi-Gang

    2013-01-01

    Acid-sensing ion channels (ASICs), a novel family of proton-gated amiloride-sensitive cation channels, are expressed primarily in neurons of peripheral sensory and central nervous systems. Recent studies have shown that activation of ASICs, particularly the ASIC1a channels, plays a critical role in neuronal injury associated with neurological disorders such as brain ischemia, multiple sclerosis, and spinal cord injury, etc. In normal conditions in vitro, ASIC1a channels desensitize rapidly in the presence of a continuous acidosis or following a pre-exposure to minor pH drop, raising doubt for their contributions to the acidosis-mediated neuronal injury. It is now known that the properties of ASICs can be dramatically modulated by signaling molecules or biochemical changes associated with pathological conditions. Modulation of ASICs by these molecules can lead to dramatically enhanced and/or prolonged activities of these channels thus promoting their pathological functions. Understanding of how ASICs behave in pathological conditions may help define new strategies for the treatment and/or prevention of neuronal injury associated with various neurological disorders. PMID:23224900

  11. Neurosensory mechanotransduction through acid-sensing ion channels

    PubMed Central

    Chen, Chih-Cheng; Wong, Chia-Wen

    2013-01-01

    Acid-sensing ion channels (ASICs) are voltage-insensitive cation channels responding to extracellular acidification. ASIC proteins have two transmembrane domains and a large extracellular domain. The molecular topology of ASICs is similar to that of the mechanosensory abnormality 4- or 10-proteins expressed in touch receptor neurons and involved in neurosensory mechanotransduction in nematodes. The ASIC proteins are involved in neurosensory mechanotransduction in mammals. The ASIC isoforms are expressed in Merkel cell–neurite complexes, periodontal Ruffini endings and specialized nerve terminals of skin and muscle spindles, so they might participate in mechanosensation. In knockout mouse models, lacking an ASIC isoform produces defects in neurosensory mechanotransduction of tissue such as skin, stomach, colon, aortic arch, venoatrial junction and cochlea. The ASICs are thus implicated in touch, pain, digestive function, baroreception, blood volume control and hearing. However, the role of ASICs in mechanotransduction is still controversial, because we lack evidence that the channels are mechanically sensitive when expressed in heterologous cells. Thus, ASIC channels alone are not sufficient to reconstruct the path of transducing molecules of mechanically activated channels. The mechanotransducers associated with ASICs need further elucidation. In this review, we discuss the expression of ASICs in sensory afferents of mechanoreceptors, findings of knockout studies, technical issues concerning studies of neurosensory mechanotransduction and possible missing links. Also we propose a molecular model and a new approach to disclose the molecular mechanism underlying the neurosensory mechanotransduction. PMID:23490035

  12. Note: High density pulsed molecular beam for cold ion chemistry

    SciTech Connect

    Kokish, M. G.; Rajagopal, V.; Marler, J. P.; Odom, B. C.

    2014-08-15

    A recent expansion of cold and ultracold molecule applications has led to renewed focus on molecular species preparation under ultrahigh vacuum conditions. Meanwhile, molecular beams have been used to study gas phase chemical reactions for decades. In this paper, we describe an apparatus that uses pulsed molecular beam technology to achieve high local gas densities, leading to faster reaction rates with cold trapped ions. We characterize the beam's spatial profile using the trapped ions themselves. This apparatus could be used for preparation of molecular species by reactions requiring excitation of trapped ion precursors to states with short lifetimes or for obtaining a high reaction rate with minimal increase of background chamber pressure.

  13. Molecular dynamics simulations of water within models of ion channels.

    PubMed

    Breed, J; Sankararamakrishnan, R; Kerr, I D; Sansom, M S

    1996-04-01

    The transbilayer pores formed by ion channel proteins contain extended columns of water molecules. The dynamic properties of such waters have been suggested to differ from those of water in its bulk state. Molecular dynamics simulations of ion channel models solvated within and at the mouths of their pores are used to investigate the dynamics and structure of intra-pore water. Three classes of channel model are investigated: a) parallel bundles of hydrophobic (Ala20) alpha-helices; b) eight-stranded hydrophobic (Ala10) antiparallel beta-barrels; and c) parallel bundles of amphipathic alpha-helices (namely, delta-toxin, alamethicin, and nicotinic acetylcholine receptor M2 helix). The self-diffusion coefficients of water molecules within the pores are reduced significantly relative to bulk water in all of the models. Water rotational reorientation rates are also reduced within the pores, particularly in those pores formed by alpha-helix bundles. In the narrowest pore (that of the Ala20 pentameric helix bundle) self-diffusion coefficients and reorientation rates of intra-pore waters are reduced by approximately an order of magnitude relative to bulk solvent. In Ala20 helix bundles the water dipoles orient antiparallel to the helix dipoles. Such dipole/dipole interaction between water and pore may explain how water-filled ion channels may be formed by hydrophobic helices. In the bundles of amphipathic helices the orientation of water dipoles is modulated by the presence of charged side chains. No preferential orientation of water dipoles relative to the pore axis is observed in the hydrophobic beta-barrel models.

  14. Validation of an atomic absorption rubidium ion efflux assay for KCNQ/M-channels using the ion Channel Reader 8000.

    PubMed

    Wang, Kewei; McIlvain, Beal; Tseng, Eugene; Kowal, Dianne; Jow, Flora; Shen, Ru; Zhang, Howard; Shan, Qin Jennifer; He, Lan; Chen, Diana; Lu, Qiang; Dunlop, John

    2004-10-01

    M-channels (M-current), encoded by KCNQ2/3 K(+) channel genes, have emerged as novel drug targets for a number of neurological disorders. The lack of direct high throughput assays combined with the low throughput of conventional electrophysiology (EP) has impeded rapid screening and evaluation of K(+)-channel modulators. Development of a sensitive and efficient assay for the direct measurement of M-current activity is critical for identifying novel M-channel modulators and subsequent investigation of their therapeutic potential. Using a stable CHO cell line expressing rat KCNQ2/3 K(+) channels confirmed by EP, we have developed and validated a nonradioactive rubidium (Rb(+)) efflux assay in a 96-well plate format. The Rb(+) efflux assay directly measures the activity of functional channels by atomic absorption spectroscopy using the automated Ion Channel Reader (ICR) 8000. The stimulated Rb(+) efflux from KCNQ2/3-expressing cells was blocked by the channel blockers XE991 and linopirdine with IC(50) values of 0.15 microM and 1.3 microM, respectively. Twelve compounds identified as KCNQ2/3 openers were further assessed in this assay, and their EC(50) values were compared with those obtained with EP. A higher positive correlation coefficient between these two assays (r = 0.60) was observed than that between FlexStation membrane potential and EP assays (r = 0.23). To simplify the assay and increase the throughput, we demonstrate that EC(50) values obtained by measuring Rb(+) levels in the supernatant are as robust and consistent as those obtained from the ratio of Rb(+) in supernatant/lysate. By measuring the supernatant only, the throughput of ICR8000 in an eight-point titration is estimated to be 40 compounds per day, which is suitable for a secondary confirmation assay.

  15. Developmental Profile of Ion Channel Specializations in the Avian Nucleus Magnocellularis

    PubMed Central

    Hong, Hui; Rollman, Lisia; Feinstein, Brooke; Sanchez, Jason Tait

    2016-01-01

    Ultrafast and temporally precise action potentials (APs) are biophysical specializations of auditory brainstem neurons; properties necessary for encoding sound localization and communication cues. Fundamental to these specializations are voltage dependent potassium (KV) and sodium (NaV) ion channels. Here, we characterized the functional development of these ion channels and quantified how they shape AP properties in the avian cochlear nucleus magnocellularis (NM). We report that late developing NM neurons (embryonic [E] days 19–21) generate fast APs that reliably phase lock to sinusoidal inputs at 75 Hz. In contrast, early developing neurons (channels were blocked, APs for all ages became significantly slower. This was most evident for early developing neurons where the ratio of K+HVA current accounted for ~85% of the total KV response. This ratio dropped to ~50% for late developing neurons, suggesting a developmental upregulation of low-voltage activated potassium (K+LVA) channels. Indeed, blockade of K+LVA eliminated remaining current and increased neural excitability for late developing neurons. We also report developmental changes in the amplitude, kinetics and voltage dependence of NaV currents. For early developing neurons, increase in NaV current amplitude was due to channel density while channel conductance dominated for late developing neurons. From E10 to E21, NaV channel currents became faster but differed in their voltage dependence; early developing neurons (channel inactivation voltages while late developing NM neurons (>E19) contained NaV channels that inactivate at more

  16. Identification and characterization of a bacterial hydrosulfide ion channel

    PubMed Central

    Czyzewski, Bryan K.; Wang, Da-Neng

    2013-01-01

    Believed to have been critical to the origin of life on Earth 1, the hydrosulfide ion (HS−) and its undissociated form, hydrogen sulfide (H2S), continue to play a prominent role in physiology and cellular signaling 2. As a major metabolite in anaerobic bacterial growth, hydrogen sulfide is a product of both assimilatory and dissimilatory sulfate reduction 2–4. These pathways can reduce various oxidized sulfur compounds including sulfate, sulfite and thiosulfate. The dissimilatory sulfate reduction pathway uses this molecule as the terminal electron acceptor for anaerobic respiration, where it produces excess amounts of H2S4. The reduction of sulfite is a key intermediate step in all sulfate reduction pathways. In Clostridium and Salmonella, an inducible sulfite reductase is directly linked to the regeneration of NAD+, which has been suggested to play a role in energy production and growth, as well as in the detoxification of sulfite 3. Above a certain concentration threshold, both H2S and HS− nhibit cell growth by binding the metal centers of enzymes and cytochrome oxidase5, necessitating a release mechanism for the export of this toxic metabolite from the cell 5–9. Through a combination of genetic, biochemical and functional approaches, we have identified a hydrosulfide ion channel (HSC) in the pathogen Clostridium difficile. The HS− channel is a member of the formate-nitrite-transport (FNT) family, in which ~50 HSC genes form a third subfamily alongside those for formate (FocA) 10,11 and for nitrite (NirC) 12. In addition to HS− ions, HSC is also permeable to formate and nitrite. Such polyspecificity can be explained by the conserved ion selectivity filter observed in the HSC crystal structure. The channel has a low open probability and is tightly regulated, to avoid decoupling of the membrane proton gradient. PMID:22407320

  17. Computer Simulation Studies of Ion Channels at High Temperatures

    NASA Astrophysics Data System (ADS)

    Song, Hyun Deok

    The gramicidin channel is the smallest known biological ion channel, and it exhibits cation selectivity. Recently, Dr. John Cuppoletti's group at the University of Cincinnati showed that the gramicidin channel can function at high temperatures (360 ˜ 380K) with significant currents. This finding may have significant implications for fuel cell technology. In this thesis, we have examined the gramicidin channel at 300K, 330K, and 360K by computer simulation. We have investigated how the temperature affects the current and differences in magnitude of free energy between the two gramicidin forms, the helical dimer (HD) and the double helix (DH). A slight decrease of the free energy barrier inside the gramicidin channel and increased diffusion at high temperatures result in an increase of current. An applied external field of 0.2V/nm along the membrane normal results in directly observable ion transport across the channels at high temperatures for both HD and DH forms. We found that higher temperatures also affect the probability distribution of hydrogen bonds, the bending angle, the distance between dimers, and the size of the pore radius for the helical dimer structure. These findings may be related to the gating of the gramicidin channel. Methanococcus jannaschii (MJ) is a methane-producing thermophile, which was discovered at a depth of 2600m in a Pacific Ocean vent in 1983. It has the ability to thrive at high temperatures and high pressures, which are unfavorable for most life forms. There have been some experiments to study its stability under extreme conditions, but still the origin of the stability of MJ is not exactly known. MJ0305 is the chloride channel protein from the thermophile MJ. After generating a structure of MJ0305 by homology modeling based on the Ecoli ClC templates, we examined the thermal stability, and the network stability from the change of network entropy calculated from the adjacency matrices of the protein. High temperatures increase the

  18. Distinct ion channel classes are expressed on the outer nuclear envelope of T- and B-lymphocyte cell lines.

    PubMed Central

    Franco-Obregón, A; Wang, H W; Clapham, D E

    2000-01-01

    The outer nuclear membrane, endoplasmic reticulum, and mitochondrial membrane ion channels are poorly understood, although they are important in the control of compartmental calcium levels, cell division, and apoptosis. Few direct recordings of these ion channels have been made because of the difficulty of accessing these intracellular membranes. Using patch-clamp techniques on isolated nuclei, we measured distinct ion channel classes on the outer nuclear envelope of T-cell (human Jurkat) and BFL5 cell (murine promyelocyte) lines. We first imaged the nuclear envelopes of both Jurkat and FL5 cells with atomic force microscopy to determine the density of pore proteins. The nuclear pore complex was intact at roughly similar densities in both cell types. In patch-clamp recordings of Jurkat nuclear membranes, Cl channels (105 +/- 5 pS) predominated and inactivated with negative pipette potentials. Nucleotides transiently inhibited the anion channel. In contrast, FL5 nuclear channels were cation selective (52 +/- 2 pS), were inactivated with positive membrane potentials, and were insensitive to GTPgammaS applied to the bath. We hypothesize that T- and B-cell nuclear membrane channels are distinct, and that this is perhaps related to their unique roles in the immune system. PMID:10866948

  19. Nicotinic acid is a common regulator of heat-sensing TRPV1-4 ion channels.

    PubMed

    Ma, Linlin; Lee, Bo Hyun; Clifton, Heather; Schaefer, Saul; Zheng, Jie

    2015-03-10

    Nicotinic acid (NA, a.k.a. vitamin B3 or niacin) can reduce blood cholesterol and low-density lipoproteins whereas increase high-density lipoproteins. However, when NA is used to treat dyslipidemias, it causes a strong side effect of cutaneous vasodilation, commonly called flushing. A recent study showed that NA may cause flushing by lowering activation threshold temperature of the heat-sensitive capsaicin receptor TRPV1 ion channel, leading to its activation at body temperature. The finding calls into question whether NA might also interact with the homologous heat-sensitive TRPV2-4 channels, particularly given that TRPV3 and TRPV4 are abundantly expressed in keratinocytes of the skin where much of the flushing response occurs. We found that NA indeed potentiated TRPV3 while inhibited TRPV2 and TRPV4. Consistent with these gating effects, NA lowered the heat-activation threshold of TRPV3 but elevated that of TRPV4. We further found that activity of TRPV1 was substantially prolonged by extracellular NA, which may further enhance the direct activation effect. Consistent with the broad gating effect on TRPV1-4 channels, evidence from the present study hints that NA may share the same activation pathway as 2-aminoethoxydiphenyl borate (2-APB), a common agonist for these TRPV channels. These findings shed new light on the molecular mechanism underlying NA regulation of TRPV channels.

  20. Stoichiometry of the KCNQ1 - KCNE1 ion channel complex.

    PubMed

    Nakajo, Koichi; Ulbrich, Maximilian H; Kubo, Yoshihiro; Isacoff, Ehud Y

    2010-11-02

    The KCNQ1 voltage-gated potassium channel and its auxiliary subunit KCNE1 play a crucial role in the regulation of the heartbeat. The stoichiometry of KCNQ1 and KCNE1 complex has been debated, with some results suggesting that the four KCNQ1 subunits that form the channel associate with two KCNE1 subunits (a 42 stoichiometry), while others have suggested that the stoichiometry may not be fixed. We applied a single molecule fluorescence bleaching method to count subunits in many individual complexes and found that the stoichiometry of the KCNQ1 - KCNE1 complex is flexible, with up to four KCNE1 subunits associating with the four KCNQ1 subunits of the channel (a 44 stoichiometry). The proportion of the various stoichiometries was found to depend on the relative expression densities of KCNQ1 and KCNE1. Strikingly, both the voltage-dependence and kinetics of gating were found to depend on the relative densities of KCNQ1 and KCNE1, suggesting the heart rhythm may be regulated by the relative expression of the auxiliary subunit and the resulting stoichiometry of the channel complex.

  1. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.

    PubMed

    Tu, Bin; Chen, Minxin; Xie, Yan; Zhang, Linbo; Eisenberg, Bob; Lu, Benzhuo

    2013-09-15

    A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and I - V curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α-Hemolysin (α-HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size-modified PNP (SMPNP) model on VDAC and α-HL. It is shown that the size effects in SMPNP can

  2. Modelling modal gating of ion channels with hierarchical Markov models

    PubMed Central

    Fackrell, Mark; Crampin, Edmund J.; Taylor, Peter

    2016-01-01

    Many ion channels spontaneously switch between different levels of activity. Although this behaviour known as modal gating has been observed for a long time it is currently not well understood. Despite the fact that appropriately representing activity changes is essential for accurately capturing time course data from ion channels, systematic approaches for modelling modal gating are currently not available. In this paper, we develop a modular approach for building such a model in an iterative process. First, stochastic switching between modes and stochastic opening and closing within modes are represented in separate aggregated Markov models. Second, the continuous-time hierarchical Markov model, a new modelling framework proposed here, then enables us to combine these components so that in the integrated model both mode switching as well as the kinetics within modes are appropriately represented. A mathematical analysis reveals that the behaviour of the hierarchical Markov model naturally depends on the properties of its components. We also demonstrate how a hierarchical Markov model can be parametrized using experimental data and show that it provides a better representation than a previous model of the same dataset. Because evidence is increasing that modal gating reflects underlying molecular properties of the channel protein, it is likely that biophysical processes are better captured by our new approach than in earlier models. PMID:27616917

  3. Ion Channels in the Eye: Involvement in Ocular Pathologies.

    PubMed

    Giblin, Jonathan P; Comes, Nuria; Strauss, Olaf; Gasull, Xavier

    2016-01-01

    The eye is the sensory organ of vision. There, the retina transforms photons into electrical signals that are sent to higher brain areas to produce visual sensations. In the light path to the retina, different types of cells and tissues are involved in maintaining the transparency of avascular structures like the cornea or lens, while others, like the retinal pigment epithelium, have a critical role in the maintenance of photoreceptor function by regenerating the visual pigment. Here, we have reviewed the roles of different ion channels expressed in ocular tissues (cornea, conjunctiva and neurons innervating the ocular surface, lens, retina, retinal pigment epithelium, and the inflow and outflow systems of the aqueous humor) that are involved in ocular disease pathophysiologies and those whose deletion or pharmacological modulation leads to specific diseases of the eye. These include pathologies such as retinitis pigmentosa, macular degeneration, achromatopsia, glaucoma, cataracts, dry eye, or keratoconjunctivitis among others. Several disease-associated ion channels are potential targets for pharmacological intervention or other therapeutic approaches, thus highlighting the importance of these channels in ocular physiology and pathophysiology.

  4. Crystal structures of a double-barrelled fluoride ion channel

    PubMed Central

    Stockbridge, Randy B.; Kolmakova-Partensky, Ludmila; Shane, Tania; Koide, Akiko; Koide, Shohei; Miller, Christopher; Newstead, Simon

    2016-01-01

    To contend with hazards posed by environmental fluoride, microorganisms export this anion through F--specific ion channels of the Fluc family1–4. Since the recent discovery of Fluc channels, numerous idiosyncratic features of these proteins have been unearthed, including extreme selectivity for F- over Cl- and dual-topology dimeric assembly5–6. To understand the chemical basis for F- permeation and how the antiparallel subunits convene to form a F--selective pore, we solved crystal structures of two bacterial Fluc homologues in complex with three different monobody inhibitors, with and without F- present, to a maximum resolution of 2.1 Å. The structures reveal a surprising “double-barrelled” channel architecture in which two F- ion pathways span the membrane and the dual-topology arrangement includes a centrally coordinated cation, most likely Na+. F- selectivity is proposed to arise from the very narrow pores and an unusual anion coordination that exploits the quadrupolar edges of conserved phenylalanine rings. PMID:26344196

  5. Acid-sensing ion channels: trafficking and synaptic function

    PubMed Central

    2013-01-01

    Extracellular acidification occurs in the brain with elevated neural activity, increased metabolism, and neuronal injury. This reduction in pH can have profound effects on brain function because pH regulates essentially every single biochemical reaction. Therefore, it is not surprising to see that Nature evolves a family of proteins, the acid-sensing ion channels (ASICs), to sense extracellular pH reduction. ASICs are proton-gated cation channels that are mainly expressed in the nervous system. In recent years, a growing body of literature has shown that acidosis, through activating ASICs, contributes to multiple diseases, including ischemia, multiple sclerosis, and seizures. In addition, ASICs play a key role in fear and anxiety related psychiatric disorders. Several recent reviews have summarized the importance and therapeutic potential of ASICs in neurological diseases, as well as the structure-function relationship of ASICs. However, there is little focused coverage on either the basic biology of ASICs or their contribution to neural plasticity. This review will center on these topics, with an emphasis on the synaptic role of ASICs and molecular mechanisms regulating the spatial distribution and function of these ion channels. PMID:23281934

  6. Amiloride Docking to Acid-sensing Ion Channel-1*

    PubMed Central

    Qadri, Yawar J.; Song, Yuhua; Fuller, Catherine M.; Benos, Dale J.

    2010-01-01

    Amiloride is a small molecule diuretic, which has been used to dissect sodium transport pathways in many different systems. This drug is known to interact with the epithelial sodium channel and acid-sensing ion channel proteins, as well as sodium/hydrogen antiporters and sodium/calcium exchangers. The exact structural basis for these interactions has not been elucidated as crystal structures of these proteins have been challenging to obtain, though some involved residues and domains have been mapped. This work examines the interaction of amiloride with acid-sensing ion channel-1, a protein whose structure is available using computational and experimental techniques. Using molecular docking software, amiloride and related molecules were docked to model structures of homomeric human ASIC-1 to generate potential interaction sites and predict which analogs would be more or less potent than amiloride. The predictions made were experimentally tested using whole-cell patch clamp. Drugs previously classified as NCX or NHE inhibitors are shown to also inhibit hASIC-1. Potential docking sites were re-examined against experimental data to remove spurious interaction sites. The voltage sensitivity of inhibitors was also examined. Using the aggregated data from these computational and experimental experiments, putative interaction sites for amiloride and hASIC-1 have been defined. Future work will experimentally verify these interaction sites, but at present this should allow for virtual screening of drug libraries at these putative interaction sites. PMID:20048170

  7. Ion transport in a model gramicidin channel. Structure and thermodynamics.

    PubMed Central

    Roux, B; Karplus, M

    1991-01-01

    The potential of mean force for Na+ and K+ ions as a function of position in the interior of a periodic poly(L,D)-alanine model for the gramicidin beta-helix is calculated with a detailed atomic model and realistic interactions. The calculated free energy barriers are 4.5 kcal/mol for Na+ and 1.0 kcal/mol for K+. A decomposition of the free energy demonstrates that the water molecules make a significant contribution to the free energy of activation. There is an increase in entropy at the transition state associated with greater fluctuations. Analysis reveals that the free energy profile of ions in the periodic channel is controlled not by the large interaction energy involving the ion but rather by the weaker water-water, water-peptide and peptide-peptide hydrogen bond interactions. The interior of the channel retains much of the solvation properties of a liquid in its interactions with the cations. Of particular importance is the flexibility of the helix, which permits it to respond to the presence of an ion in a fluidlike manner. The distortion of the helix is local (limited to a few carbonyls) because the structure is too flexible to transmit a perturbation to large distances. The plasticity of the structure (i.e., the property to deform without generating a large energy stress) appears to be an essential factor in the transport of ions, suggesting that a rigid helix model would be inappropriate. Images FIGURE 1 FIGURE 10 PMID:1714305

  8. Asymmetrical distribution of ion channels in canine and human left-ventricular wall: epicardium versus midmyocardium.

    PubMed

    Szabó, Gergely; Szentandrássy, Norbert; Bíró, Tamás; Tóth, Balázs I; Czifra, Gabriella; Magyar, János; Bányász, Tamás; Varró, András; Kovács, László; Nánási, Péter P

    2005-08-01

    The aim of the present study was to compare the distribution of ion currents and the major underlying ion channel proteins in canine and human subepicardial (EPI) and midmyocardial (MID) left-ventricular muscle. Ion currents and action potentials were recorded from canine cardiomyocytes derived from the very superficial EPI and central MID regions of the left ventricle. Amplitude, duration and the maximum velocity of depolarization of the action potential were significantly greater in MID than EPI myocytes, whereas phase-1 repolarization was more pronounced in the EPI cells. Amplitudes of the transient outwards K+ current (29.5+/-1.5 vs. 19.0+/-2.3 pA/pF at +50 mV) and the slow component of the delayed rectifier K+ current (10.3+/-2.3 vs. 6.5+/-1.0 pA/pF at +50 mV) were significantly larger in EPI than in MID myocytes under whole-cell voltage-clamp conditions. The densities of the inwards rectifier K+ current, rapid delayed rectifier K+ current and L-type Ca2+ current were similar in both cell types. Expression of channel proteins in both canine and human ventricular myocardium was determined by Western blotting. In the canine heart, the expression of Kv4.3, Kv1.4, KChIP2 and KvLQT1 was significantly higher, and that of Nav1.5 and MinK much lower, in EPI than in MID. No significant EPI-MID differences were observed in the expression of the other channel proteins studied (Kir2.1, alpha1C, HERG and MiRP1). Similar results were obtained in human hearts, although the HERG was more abundant in the EPI than in the MID layer. In the canine heart, the EPI-MID differences in ion current densities were proportional to differences in channel protein expression. Except for the density of HERG, the pattern of EPI-MID distribution of ion-channel proteins was identical in canine and human ventricles.

  9. Identification of the Energetic Plume Ion Escape Channel at Mars

    NASA Astrophysics Data System (ADS)

    Johnson, B. C.; Liemohn, M. W.; Fraenz, M.; Barabash, S.

    2013-12-01

    Mars lacks a global dipole magnetic field. The resulting induced magnetosphere arising from Mars' atmosphere's direct interaction with the solar wind differs significantly from that of Venus. The weak gravitational field of Mars creates scale heights so large that the exosphere extends out beyond the Induced Magnetosphere Boundary (IMB), where newly ionized exospheric oxygen is exposed to high speed shocked solar wind flow and the associated strong convective electric field (E). The weaker Interplanetary Magnetic Field (IMF) at Mars, combined with this strong electric field, should be expected to result in heavy pickup ions with gyroradii much larger than the radius of Mars. Test particle models and hybrid models have predicted that these pickup ions create an energetic plume of escaping planetary ions that may have a flux on the same order of magnitude as the flow of planetary ions down the central tail loss channel. This study presents an analysis of data from the Ion Mass Analyzer aboard European Space Agency's Mars Express (MEX) to identify the presence of this energetic ion plume. We searched through the time period when Mars Global Surveyor (MGS) was operating simultaneously with MEX, and selected hundreds of time intervals when IMF proxies from MGS show the convective electric field to be aligned with the orbit of MEX. We then examined plots of the MEX orbit during these intervals and selected times when MEX was positioned on the +E side of Mars and outside the nominal IMB. Finally, from these intervals we identified the cases in which oxygen ions were detected with energies above 2 keV. The result is a set of several direct measurements of the energetic plume.

  10. Non-Equilibrium Dynamics Contribute to Ion Selectivity in the KcsA Channel

    PubMed Central

    Haas, Stephan; Farley, Robert A.

    2014-01-01

    The ability of biological ion channels to conduct selected ions across cell membranes is critical for the survival of both animal and bacterial cells. Numerous investigations of ion selectivity have been conducted over more than 50 years, yet the mechanisms whereby the channels select certain ions and reject others are not well understood. Here we report a new application of Jarzynski’s Equality to investigate the mechanism of ion selectivity using non-equilibrium molecular dynamics simulations of Na+ and K+ ions moving through the KcsA channel. The simulations show that the selectivity filter of KcsA adapts and responds to the presence of the ions with structural rearrangements that are different for Na+ and K+. These structural rearrangements facilitate entry of K+ ions into the selectivity filter and permeation through the channel, and rejection of Na+ ions. A mechanistic model of ion selectivity by this channel based on the results of the simulations relates the structural rearrangement of the selectivity filter to the differential dehydration of ions and multiple-ion occupancy and describes a mechanism to efficiently select and conduct K+. Estimates of the K+/Na+ selectivity ratio and steady state ion conductance for KcsA from the simulations are in good quantitative agreement with experimental measurements. This model also accurately describes experimental observations of channel block by cytoplasmic Na+ ions, the “punch through” relief of channel block by cytoplasmic positive voltages, and is consistent with the knock-on mechanism of ion permeation. PMID:24465882

  11. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    PubMed Central

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  12. Acid-sensing ion channels: trafficking and pathophysiology.

    PubMed

    Zeng, Wei-Zheng; Liu, Di-Shi; Xu, Tian-Le

    2014-01-01

    Acid-sensing ion channels (ASICs) are proton-gated cation channels that are widely expressed in both the peripheral and central nervous systems. ASICs contribute to a variety of pathophysiological conditions that involve tissue acidosis, such as ischemic stroke, epileptic seizures and multiple sclerosis. Although much progress has been made in researching the structure-function relationship and pharmacology of ASICs, little is known about the trafficking of ASICs and its contribution to ASIC function. The recent identification of the mechanism of membrane insertion and endocytosis of ASIC1a highlights the emerging role of ASIC trafficking in regulating its pathophysiological functions. In this review, we summarize the recent advances and discuss future directions on this topic.

  13. Strain tensors in layer systems by precision ion channeling measurements

    SciTech Connect

    Trinkaus, H.; Buca, D.; Hollaender, B.; Minamisawa, R. A.; Mantl, S.; Hartmann, J. M.

    2010-06-15

    A powerful method for analyzing general strain states in layer systems is the measurement of changes in the ion channeling directions. We present a systematic derivation and compilation of the required relations between the strain induced angle changes and the components of the strain tensor for general crystalline layer systems of reduced symmetry compared to the basic (cubic) crystal. It is shown that, for the evaluation of channeling measurements, virtually all layers of interest may be described as being 'pseudo-orthorhombic'. The commonly assumed boundary conditions and the effects of surface misorientations on them are discussed. Asymmetric strain relaxation in layers of reduced symmetry is attributed to a restriction in the slip system of the dislocations inducing it. The results are applied to {l_brace}110{r_brace}SiGe/Si layer systems.

  14. Acid-sensing ion channels in gastrointestinal function.

    PubMed

    Holzer, Peter

    2015-07-01

    Gastric acid is of paramount importance for digestion and protection from pathogens but, at the same time, is a threat to the integrity of the mucosa in the upper gastrointestinal tract and may give rise to pain if inflammation or ulceration ensues. Luminal acidity in the colon is determined by lactate production and microbial transformation of carbohydrates to short chain fatty acids as well as formation of ammonia. The pH in the oesophagus, stomach and intestine is surveyed by a network of acid sensors among which acid-sensing ion channels (ASICs) and acid-sensitive members of transient receptor potential ion channels take a special place. In the gut, ASICs (ASIC1, ASIC2, ASIC3) are primarily expressed by the peripheral axons of vagal and spinal afferent neurons and are responsible for distinct proton-gated currents in these neurons. ASICs survey moderate decreases in extracellular pH and through these properties contribute to a protective blood flow increase in the face of mucosal acid challenge. Importantly, experimental studies provide increasing evidence that ASICs contribute to gastric acid hypersensitivity and pain under conditions of gastritis and peptic ulceration but also participate in colonic hypersensitivity to mechanical stimuli (distension) under conditions of irritation that are not necessarily associated with overt inflammation. These functional implications and their upregulation by inflammatory and non-inflammatory pathologies make ASICs potential targets to manage visceral hypersensitivity and pain associated with functional gastrointestinal disorders. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.

  15. Target current density effects in al-cluster ion emission

    NASA Astrophysics Data System (ADS)

    Ray, N.; Rajasekar, P.; Chakraborty, P.; Dey, S. D.

    1994-04-01

    Target current density effects in secondary emission of positively-charged sputtered clusters from an ion-bombarded polycrystalline aluminium surface have been investigated for various primary Cd+ ion energies. For each cluster type, at medium target current densities (Jp : 0?350 ?A/cm2), apart from the presence of the expected linear term in the I+ s α Jp curves, there is a square law term, depicting that some fraction of the pre-emitted neutral clusters gets ionized in vacuum above the target surface. Thus, a sum of these two terms constitutes the total cluster ion current which shows a non-linear dependence on the target current density. At higher target current densities (350 ?A cm?2?1.05 mA cm?2), in addition to the parabolic effect, a higher order non-linearity comes into play and the net cluster ion current I + s , measured as a function of target current density within the Ip range concerned, can be expressed in terms of our previously proposed semi-empirical formula I+ s = C.Ip + D.I2 p + F.In p , which was earlier found to be applicable in case of single and double charged secondary monomers. A higher power (n > 2) dependence has been observed here for the first time in case of cluster ion emission, suggesting chemical enhancement of secondary clusters. Our present observations seem to support ?direct emission model? even for small metal clusters?a proposition which is in apparent contradiction to the current notion in this field, i.e. vacuum recombination of individual atoms in small cluster formation.

  16. FASEB Science Research Conference on Ion Channel Regulation

    DTIC Science & Technology

    2015-11-02

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Federation of American Societies for Experimental Biology (FASEB...of Directors of the Federation of American Societies for Experimental Biology (FASEB) and the Science Research Conferences Advisory Committee, it is...session 1: Structural biology of ion channels Daniel Minor (UCSF) 2:00 p.m. – 6:00 p.m. Free afternoon 6:00 p.m. – 7:00 p.m. Dinner 7:00 p.m

  17. Transition from heating to cooling of channeled ion beams

    SciTech Connect

    Toepffer, Christian

    2006-06-15

    Experiments showing a transverse heating or cooling of channeled ion beams are explained in terms of electron capture and loss processes between the projectile ions and the target. Such processes violate reversibility as the projectile captures electrons from occupied bound states and loses them to unoccupied weakly bound or continuum states. The transition probabilities for the transfer of electrons are calculated in the impact parameter Born approximation. Their dependence on the distance from the crystal strings is determined by scale factors which depend in turn on the relative velocity and the binding energies of the transferred electrons in the projectile and in the crystal, respectively. The appearance of transverse heating and cooling depends on the relative size of the scale factors for capture and loss. The transition from heating to cooling as function of velocity is described in good agreement with the experiments.

  18. Parameterization of ion channeling half-angles and minimum yields

    NASA Astrophysics Data System (ADS)

    Doyle, Barney L.

    2016-03-01

    A MS Excel program has been written that calculates ion channeling half-angles and minimum yields in cubic bcc, fcc and diamond lattice crystals. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different power functions of the arguments. The program then offers an extremely convenient way to calculate axial and planar half-angles, minimum yields, effects on half-angles and minimum yields of amorphous overlayers. The program can calculate these half-angles and minimum yields for axes and [h k l] planes up to (5 5 5). The program is open source and available at

  19. Noise analysis of an ion channel in the cardiac myocyte--study based on a Markov model.

    PubMed

    Sato, Shunsuke

    2007-06-01

    Mechanical contraction of a cardiac muscle cell is related to the electric activation of the plasma membrane. As in the neuron cell, inflow of the Na(+) ions across the cell membrane causes electric activation with amplitude of about 100 mV. However, differently from the nerve cell, the action potential lasts a few hundred milliseconds before repolarization. Moreover, several types of K(+) channel such as the classical inward rectifier K(+) channel, the voltage dependent channel and others are responsible for the formation of the action potential. The mechanism of opening and closing the K(+) channels is not thoroughly elucidated. In the present paper, a four state Markov model with one open and three closed states is studied to obtain open and close probabilities of the gates constituting a specific ionic channel. The probability density functions of durations of opening and closing of the channel are also discussed.

  20. Signal transduction and ion channels in guard cells.

    PubMed Central

    MacRobbie, E A

    1998-01-01

    Our understanding of the signalling mechanisms involved in the process of stomatal closure is reviewed. Work has concentrated on the mechanisms by which abscisic acid (ABA) induces changes in specific ion channels at both the plasmalemma and the tonoplast, leading to efflux of both K+ and anions at both membranes, requiring four essential changes. For each we need to identify the specific channels concerned, and the detailed signalling chains by which each is linked through signalling intermediates to ABA. There are two global changes that are identified following ABA treatment: an increase in cytoplasmic pH and an increase in cytoplasmic Ca2+, although stomata can close without any measurable global increase in cytoplasmic Ca2+. There is also evidence for the importance of several protein phosphatases and protein kinases in the regulation of channel activity. At the plasmalemma, loss of K+ requires depolarization of the membrane potential into the range at which the outward K+ channel is open. ABA-induced activation of a non-specific cation channel, permeable to Ca2+, may contribute to the necessary depolarization, together with ABA-induced activation of S-type anion channels in the plasmalemma, which are then responsible for the necessary anion efflux. The anion channels are activated by Ca2+ and by phosphorylation, but the precise mechanism of their activation by ABA is not yet clear. ABA also up-regulates the outward K+ current at any given membrane potential; this activation is Ca(2+)-independent and is attributed to the increase in cytoplasmic pH, perhaps through the marked pH-sensitivity of protein phosphatase type 2C. Our understanding of mechanisms at the tonoplast is much less complete. A total of two channels, both Ca(2+)-activated, have been identified which are capable of K+ efflux; these are the voltage-independent VK channel specific to K+, and the slow vacuolar (SV) channel which opens only at non-physiological tonoplast potentials (cytoplasm

  1. What Ion Flow along Ion Channels Can Tell us about Their Functional Activity

    PubMed Central

    Becucci, Lucia; Guidelli, Rolando

    2016-01-01

    The functional activity of channel-forming peptides and proteins is most directly verified by monitoring the flow of physiologically relevant inorganic ions, such as Na+, K+ and Cl−, along the ion channels. Electrical current measurements across bilayer lipid membranes (BLMs) interposed between two aqueous solutions have been widely employed to this end and are still extensively used. However, a major drawback of BLMs is their fragility, high sensitivity toward vibrations and mechanical shocks, and low resistance to electric fields. To overcome this problem, metal-supported tethered BLMs (tBLMs) have been devised, where the BLM is anchored to the metal via a hydrophilic spacer that replaces and mimics the water phase on the metal side. However, only mercury-supported tBLMs can measure and regulate the flow of the above inorganic ions, thanks to mercury liquid state and high hydrogen overpotential. This review summarizes the main results achieved by BLMs incorporating voltage-gated channel-forming peptides, interpreting them on the basis of a kinetic mechanism of nucleation and growth. Hg-supported tBLMs are then described, and their potential for the investigation of voltage-gated and ohmic channels is illustrated by the use of different electrochemical techniques. PMID:27983579

  2. Ion energy distributions and densities in the plume of Enceladus

    NASA Astrophysics Data System (ADS)

    Sakai, Shotaro; Cravens, Thomas E.; Omidi, Nojan; Perry, Mark E.; Waite, J. Hunter

    2016-10-01

    Enceladus has a dynamic plume that is emitting gas, including water vapor, and dust. The gas is ionized by solar EUV radiation, charge exchange, and electron impact and extends throughout the inner magnetosphere of Saturn. The charge exchange collisions alter the plasma composition. Ice grains (dust) escape from the vicinity of Enceladus and form the E ring, including a portion that is negatively charged by the local plasma. The inner magnetosphere within 10 RS (Saturn radii) contains a complex mixture of plasma, neutral gas, and dust that links back to Enceladus. In this paper we investigate the energy distributions, ion species and densities of water group ions in the plume of Enceladus using test particle and Monte Carlo methods that include collisional processes such as charge exchange and ion-neutral chemical reactions. Ion observations from the Cassini Ion and Neutral Mass Spectrometer (INMS) for E07 are presented for the first time. We use the modeling results to interpret observations made by the Cassini Plasma Spectrometer (CAPS) and the INMS. The low energy ions, as observed by CAPS, appear to be affected by a vertical electric field (EZ=-10 μV/m) in the plume. The EZ field may be associated with the charged dust and/or the pressure gradient of plasma. The model results, along with the results of earlier models, show that H3O+ ions created by chemistry are predominant in the plume, which agrees with INMS and CAPS data, but the INMS count rate in the plume for the model is several times greater than the data, which we do not fully understand. This composition and the total ion count found in the plume agree with INMS and CAPS data. On the other hand, the Cassini Langmuir Probe measured a maximum plume ion density more than 30,000 cm-3, which is far larger than the maximum ion density from our model, 900 cm-3. The model results also demonstrate that most of the ions in the plume are from the external magnetospheric flow and are not generated by local

  3. Light-controlled ion channels formed by amphiphilic small molecules regulate ion conduction via cis-trans photoisomerization.

    PubMed

    Liu, Tao; Bao, Chunyan; Wang, Haiyan; Lin, Yao; Jia, Huijuan; Zhu, Linyong

    2013-11-11

    Light-regulated ion channel-transport across lipid bilayers was realized using structurally simple azobenzene-based amphiphilic small molecules. UV or visible irradiation triggers molecular photoisomerization, which induces structural and membrane affinity changes in self-assembled channels, thus resulting in light-regulated ion transmembrane transport.

  4. Glutamate Receptor Ion Channels: Structure, Regulation, and Function

    PubMed Central

    Wollmuth, Lonnie P.; McBain, Chris J.; Menniti, Frank S.; Vance, Katie M.; Ogden, Kevin K.; Hansen, Kasper B.; Yuan, Hongjie; Myers, Scott J.; Dingledine, Ray

    2010-01-01

    The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors. PMID:20716669

  5. A role for ion channels in perivascular glioma invasion

    PubMed Central

    Thompson, Emily G.

    2017-01-01

    Malignant gliomas are devastating tumors, frequently killing those diagnosed in little over a year. The profuse infiltration of glioma cells into healthy tissue surrounding the main tumor mass is one of the major obstacles limiting the improvement of patient survival. Migration along the abluminal side of blood vessels is one of the salient features of glioma cell invasion. Invading glioma cells are attracted to the vascular network, in part by the neuro-peptide bradykinin, where glioma cells actively modify the gliovascular interface and undergo volumetric alterations to navigate the confined space. Critical to these volume modifications is a proposed hydrodynamic model that involves the flux of ions in and out of the cell, followed by osmotically obligated water. Ion and water channels expressed by the glioma cell are essential in this model of invasion and make opportune therapeutic targets. Lastly, there is growing evidence that vascular-associated glioma cells are able to control the vascular tone, presumably to free up space for invasion and growth. The unique mechanisms that enable perivascular glioma invasion may offer critical targets for therapeutic intervention in this devastating disease. Indeed, a chloride channel-blocking peptide has already been successfully tested in human clinical trials. PMID:27424110

  6. Computational studies of transport in ion channels using metadynamics.

    PubMed

    Furini, Simone; Domene, Carmen

    2016-07-01

    Molecular dynamics simulations have played a fundamental role in numerous fields of science by providing insights into the structure and dynamics of complex systems at the atomistic level. However, exhaustive sampling by standard molecular dynamics is in most cases computationally prohibitive, and the time scales accessible remain significantly shorter than many biological processes of interest. In particular, in the study of ion channels, realistic models to describe permeation and gating require accounting for large numbers of particles and accurate interaction potentials, which severely limits the length of the simulations. To overcome such limitations, several advanced methods have been proposed among which is metadynamics. In this algorithm, an external bias potential to accelerate sampling along selected collective variables is introduced. This bias potential discourages visiting regions of the configurational space already explored. In addition, the bias potential provides an estimate of the free energy as a function of the collective variables chosen once the simulation has converged. In this review, recent contributions of metadynamics to the field of ion channels are discussed, including how metadynamics has been used to search for transition states, predict permeation pathways, treat conformational flexibility that underlies the coupling between gating and permeation, or compute free energy of permeation profiles. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.

  7. Emerging models of glutamate receptor ion channel structure and function.

    PubMed

    Mayer, Mark L

    2011-10-12

    Excitatory synaptic transmission in the brain is mediated by ligand-gated ion channels (iGluRs) activated by glutamate. Distinct from other neurotransmitter receptors, the extracellular domains of iGluRs are loosely packed assemblies with two clearly distinct layers, each of which has both local and global 2-fold axes of symmetry. By contrast, the iGluR transmembrane segments have 4-fold symmetry and share a conserved pore loop architecture found in tetrameric voltage-gated ion channels. The striking layered architecture of iGluRs revealed by the 3.6 Å resolution structure of an AMPA receptor homotetramer likely arose from gene fusion events that occurred early in evolution. Although this modular design has greatly facilitated biophysical and structural studies on individual iGluR domains, and suggested conserved mechanisms for iGluR gating, recent work is beginning to reveal unanticipated diversity in the structure, allosteric regulation, and assembly of iGluR subtypes.

  8. Acid-Sensing Ion Channels in Gastrointestinal Function

    PubMed Central

    Holzer, Peter

    2015-01-01

    Gastric acid is of paramount importance for digestion and protection from pathogens but, at the same time, is a threat to the integrity of the mucosa in the upper gastrointestinal tract and may give rise to pain if inflammation or ulceration ensues. Luminal acidity in the colon is determined by lactate production and microbial transformation of carbohydrates to short chain fatty acids as well as formation of ammonia. The pH in the oesophagus, stomach and intestine is surveyed by a network of acid sensors among which acid-sensing ion channels (ASICs) and acid-sensitive members of transient receptor potential ion channels take a special place. In the gut, ASICs (ASIC1, ASIC2, ASIC3) are primarily expressed by the peripheral axons of vagal and spinal afferent neurons and are responsible for distinct proton-gated currents in these neurons. ASICs survey moderate decreases in extracellular pH and through these properties contribute to a protective blood flow increase in the face of mucosal acid challenge. Importantly, experimental studies provide increasing evidence that ASICs contribute to gastric acid hypersensitivity and pain under conditions of gastritis and peptic ulceration but also participate in colonic hypersensitivity to mechanical stimuli (distension) under conditions of irritation that are not necessarily associated with overt inflammation. These functional implications and their upregulation by inflammatory and non-inflammatory pathologies make ASICs potential targets to manage visceral hypersensitivity and pain associated with functional gastrointestinal disorders. PMID:25582294

  9. Interaction of a polar molecule with an ion channel

    SciTech Connect

    Levadny, V.; Aguilella, V.M.; Aguilella-Arzo, M.; Belaya, M.

    2004-10-01

    The binding of a polar macromolecule to a large ion channel is studied theoretically, paying special attention to the influence of external conditions (applied voltage and ion strength of solution). The molecule behavior in bound state is considered as random thermal fluctuations within a limited fraction of its phase space. The mean duration of molecule binding (residence time {tau}{sub r}) is represented as the mean first passage time to reach the boundary of that restricted domain. By invoking the adiabatic approximation we reduce the problem to one dimension with the angle between macromolecule dipole and channel axes being the key variable of the problem. The model accounts for experimental measurements of {tau}{sub r} for the antibiotic Ampicillin within the bacterial porin OmpF of Escherichia coli. By assuming that the electrical interaction between Ampicillin dipole and OmpF ionizable groups affects the fluctuations, we find that the biased residence time-voltage dependence observed in experiments is the result of the strong transversal electric field in OmpF constriction with a tilt {approx}30 deg. aside the cis side.

  10. Ion channels induced by the prion protein: mediators of neurotoxicity.

    PubMed

    Solomon, Isaac H; Biasini, Emiliano; Harris, David A

    2012-01-01

    Prion diseases comprise a group of rapidly progressive and invariably fatal neurodegenerative disorders for which there are no effective treatments. While conversion of the cellular prion protein (PrP(C)) to a β-sheet rich isoform (PrP(Sc) ) is known to be a critical event in propagation of infectious prions, the identity of the neurotoxic form of PrP and its mechanism of action remain unclear. Insights into this mechanism have been provided by studying PrP molecules harboring deletions and point mutations in the conserved central region, encompassing residues 105-125. When expressed in transgenic mice, PrP deleted for these residues (Δ105-125) causes a spontaneous neurodegenerative illness that is reversed by co-expression of wild-type PrP. In cultured cells, Δ105-125 PrP confers hypersensitivity to certain cationic antibiotics and induces spontaneous ion channel activity that can be recorded by electrophysiological techniques. We have utilized these drug-hypersensitization and current-inducing activities to identify which PrP domains and subcellular locations are required for toxicity. We present an ion channel model for the toxicity of Δ105-125 PrP and related mutants and speculate how a similar mechanism could mediate PrP(Sc)-associated toxicity. Therapeutic regimens designed to inhibit prion-induced toxicity, as well as formation of PrP(Sc) , may prove to be the most clinically beneficial.

  11. A role for ion channels in perivascular glioma invasion.

    PubMed

    Thompson, Emily G; Sontheimer, Harald

    2016-10-01

    Malignant gliomas are devastating tumors, frequently killing those diagnosed in little over a year. The profuse infiltration of glioma cells into healthy tissue surrounding the main tumor mass is one of the major obstacles limiting the improvement of patient survival. Migration along the abluminal side of blood vessels is one of the salient features of glioma cell invasion. Invading glioma cells are attracted to the vascular network, in part by the neuropeptide bradykinin, where glioma cells actively modify the gliovascular interface and undergo volumetric alterations to navigate the confined space. Critical to these volume modifications is a proposed hydrodynamic model that involves the flux of ions in and out of the cell, followed by osmotically obligated water. Ion and water channels expressed by the glioma cell are essential in this model of invasion and make opportune therapeutic targets. Lastly, there is growing evidence that vascular-associated glioma cells are able to control the vascular tone, presumably to free up space for invasion and growth. The unique mechanisms that enable perivascular glioma invasion may offer critical targets for therapeutic intervention in this devastating disease. Indeed, a chloride channel-blocking peptide has already been successfully tested in human clinical trials.

  12. Computational Tools for Interpreting Ion Channel pH-Dependence

    PubMed Central

    Sazanavets, Ivan; Warwicker, Jim

    2015-01-01

    Activity in many biological systems is mediated by pH, involving proton titratable groups with pKas in the relevant pH range. Experimental analysis of pH-dependence in proteins focusses on particular sidechains, often with mutagenesis of histidine, due to its pKa near to neutral pH. The key question for algorithms that predict pKas is whether they are sufficiently accurate to effectively narrow the search for molecular determinants of pH-dependence. Through analysis of inwardly rectifying potassium (Kir) channels and acid-sensing ion channels (ASICs), mutational effects on pH-dependence are probed, distinguishing between groups described as pH-coupled or pH-sensor. Whereas mutation can lead to a shift in transition pH between open and closed forms for either type of group, only for pH-sensor groups does mutation modulate the amplitude of the transition. It is shown that a hybrid Finite Difference Poisson-Boltzmann (FDPB) – Debye-Hückel continuum electrostatic model can filter mutation candidates, providing enrichment for key pH-coupled and pH-sensor residues in both ASICs and Kir channels, in comparison with application of FDPB alone. PMID:25915903

  13. Receptor for protons: First observations on Acid Sensing Ion Channels.

    PubMed

    Krishtal, Oleg

    2015-07-01

    The history of ASICs began in 1980 with unexpected observation. The concept of highly selective Na(+) current gated by specific receptors for protons was not easily accepted. It took 16 years to get these receptor/channels cloned and start a new stage in their investigation. "The receptor for protons" became ASIC comprising under this name a family of receptor/channels ubiquitous for mammalian nervous system, both peripheral and central. The role of ASICs as putative nociceptors was suggested almost immediately after their discovery. This role subsequently was proven in many forms of pain-related phenomena. Many other functions of ASICs have been also found or primed for speculations both in physiology and in disease. Despite the width of field and strength of efforts, numerous basic questions are to be answered before we understand how the local changes in pH in the nervous tissue transform into electric and messenger signaling via ASICs as transducers. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.

  14. Computational Tools for Interpreting Ion Channel pH-Dependence.

    PubMed

    Sazanavets, Ivan; Warwicker, Jim

    2015-01-01

    Activity in many biological systems is mediated by pH, involving proton titratable groups with pKas in the relevant pH range. Experimental analysis of pH-dependence in proteins focusses on particular sidechains, often with mutagenesis of histidine, due to its pKa near to neutral pH. The key question for algorithms that predict pKas is whether they are sufficiently accurate to effectively narrow the search for molecular determinants of pH-dependence. Through analysis of inwardly rectifying potassium (Kir) channels and acid-sensing ion channels (ASICs), mutational effects on pH-dependence are probed, distinguishing between groups described as pH-coupled or pH-sensor. Whereas mutation can lead to a shift in transition pH between open and closed forms for either type of group, only for pH-sensor groups does mutation modulate the amplitude of the transition. It is shown that a hybrid Finite Difference Poisson-Boltzmann (FDPB) - Debye-Hückel continuum electrostatic model can filter mutation candidates, providing enrichment for key pH-coupled and pH-sensor residues in both ASICs and Kir channels, in comparison with application of FDPB alone.

  15. Targeting Ion Channels: An Important Therapeutic Implication in Gastrointestinal Dysmotility in Patients With Spinal Cord Injury

    PubMed Central

    Radulovic, Miroslav; Anand, Preeti; Korsten, Mark A; Gong, Bing

    2015-01-01

    Gastrointestinal (GI) dysmotility is a severe, and common complication in patients with spinal cord injury (SCI). Current therapeutic methods using acetylcholine analogs or laxative agents have unwanted side effects, besides often fail to have desired effect. Various ion channels such as ATP-sensitive potassium (KATP) channel, calcium ions (Ca2+)-activated potassium ions (K+) channels, voltage-sensitive Ca2+ channels and chloride ion (Cl−) channels are abundantly expressed in GI tissues, and play an important role in regulating GI motility. The release of neurotransmitters from the enteric nerve terminal, innervating GI interstitial cells of Cajal (ICC), and smooth muscle cells (SMC), causes inactivation of K+ and Cl− channels, increasing Ca2+ influx into cytoplasm, resulting in membrane depolarization and smooth muscle contraction. Thus, agents directly regulating ion channels activity either in ICC or in SMC may affect GI peristalsis and would be potential therapeutic target for the treatment of GI dysmotility with SCI. PMID:26424038

  16. Viral dependence on cellular ion channels - an emerging anti-viral target?

    PubMed

    Hover, Samantha; Foster, Becky; Barr, John; Mankouri, Jamel

    2017-01-22

    The broad range of cellular functions governed by ion channels represents an attractive target for viral manipulation. Indeed, modulation of host cell ion channel activity by viral proteins is being increasingly identified as an important virus-host interaction. Recent examples have demonstrated that virion entry, virus-egress and the maintenance of a cellular environment conducive to virus persistence are in part, dependent on virus manipulation of ion channel activity. Most excitingly, evidence has emerged that targeting ion channels pharmacologically can impede virus lifecycles. Here we discuss current examples of virus-ion channel interactions and the potential of targeting ion channel function as a new, pharmacologically safe and broad ranging anti-viral therapeutic strategy.

  17. Mapping the function of neuronal ion channels in model and experiment

    PubMed Central

    Podlaski, William F; Seeholzer, Alexander; Groschner, Lukas N; Miesenböck, Gero; Ranjan, Rajnish; Vogels, Tim P

    2017-01-01

    Ion channel models are the building blocks of computational neuron models. Their biological fidelity is therefore crucial for the interpretation of simulations. However, the number of published models, and the lack of standardization, make the comparison of ion channel models with one another and with experimental data difficult. Here, we present a framework for the automated large-scale classification of ion channel models. Using annotated metadata and responses to a set of voltage-clamp protocols, we assigned 2378 models of voltage- and calcium-gated ion channels coded in NEURON to 211 clusters. The IonChannelGenealogy (ICGenealogy) web interface provides an interactive resource for the categorization of new and existing models and experimental recordings. It enables quantitative comparisons of simulated and/or measured ion channel kinetics, and facilitates field-wide standardization of experimentally-constrained modeling. DOI: http://dx.doi.org/10.7554/eLife.22152.001 PMID:28267430

  18. Mapping the function of neuronal ion channels in model and experiment.

    PubMed

    Podlaski, William F; Seeholzer, Alexander; Groschner, Lukas N; Miesenböck, Gero; Ranjan, Rajnish; Vogels, Tim P

    2017-03-06

    Ion channel models are the building blocks of computational neuron models. Their biological fidelity is therefore crucial for the interpretation of simulations. However, the number of published models, and the lack of standardization, make the comparison of ion channel models with one another and with experimental data difficult. Here, we present a framework for the automated large-scale classification of ion channel models. Using annotated metadata and responses to a set of voltage-clamp protocols, we assigned 2378 models of voltage- and calcium-gated ion channels coded in NEURON to 211 clusters. The IonChannelGenealogy (ICGenealogy) web interface provides an interactive resource for the categorization of new and existing models and experimental recordings. It enables quantitative comparisons of simulated and/or measured ion channel kinetics, and facilitates field-wide standardization of experimentally-constrained modeling.

  19. Electrostatic lens to focus an ion beam to uniform density

    DOEpatents

    Johnson, Cleland H.

    1977-01-11

    A focusing lens for an ion beam having a gaussian or similar density profile is provided. The lens is constructed to provide an inner zero electrostatic field, and an outer electrostatic field such that ions entering this outer field are deflected by an amount that is a function of their distance from the edge of the inner field. The result is a beam that focuses to a uniform density in a manner analogous to that of an optical ring lens. In one embodiment, a conically-shaped network of fine wires is enclosed within a cylindrical anode. The wire net together with the anode produces a voltage field that re-directs the outer particles of the beam while the axial particles pass undeflected through a zero field inside the wire net. The result is a focused beam having a uniform intensity over a given target area and at a given distance from the lens.

  20. Diagnostics for ion beam driven high energy density physics experiments.

    PubMed

    Bieniosek, F M; Henestroza, E; Lidia, S; Ni, P A

    2010-10-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30 mA K(+) beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multichannel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (Velocity Interferometer System for Any Reflector), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  1. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.

    PubMed

    Guo, Wei; Tian, Ye; Jiang, Lei

    2013-12-17

    Both scientists and engineers are interested in the design and fabrication of synthetic nanofluidic architectures that mimic the gating functions of biological ion channels. The effort to build such structures requires interdisciplinary efforts at the intersection of chemistry, materials science, and nanotechnology. Biological ion channels and synthetic nanofluidic devices have some structural and chemical similarities, and therefore, they share some common features in regulating the traverse ionic flow. In the past decade, researchers have identified two asymmetric ion transport phenomena in synthetic nanofluidic structures, the rectified ionic current and the net diffusion current. The rectified ionic current is a diode-like current-voltage response that occurs when switching the voltage bias. This phenomenon indicates a preferential direction of transport in the nanofluidic system. The net diffusion current occurs as a direct product of charge selectivity and is generated from the asymmetric diffusion through charged nanofluidic channels. These new ion transport phenomena and the elaborate structures that occur in biology have inspired us to build functional nanofluidic devices for both fundamental research and practical applications. In this Account, we review our recent progress in the design and fabrication of biomimetic solid-state nanofluidic devices with asymmetric ion transport behavior. We demonstrate the origin of the rectified ionic current and the net diffusion current. We also identify several influential factors and discuss how to build these asymmetric features into nanofluidic systems by controlling (1) nanopore geometry, (2) surface charge distribution, (3) chemical composition, (4) channel wall wettability, (5) environmental pH, (6) electrolyte concentration gradient, and (7) ion mobility. In the case of the first four features, we build these asymmetric features directly into the nanofluidic structures. With the final three, we construct

  2. The Monte-Carlo Simulation of the Permeability of K Ion Channels

    NASA Astrophysics Data System (ADS)

    An, Hai-Long; Zhan, Yong; Liu, Jin-Wei; Zhang, Su-Hua; Zhao, Tong-Jun

    In this paper, by introducing the collision model of the K ion channel, the maximum value of ions inward the channel per second, the average velocity of ions in the channels and the average time of every ion passing through the channel are obtained. Moreover they are reconciled with the experimental data. Base on the experimental data, the empiristic potential function is deduced. With the Monte-Carlo simulation, the curve of average velocity versus time and average displacement versus time are calculated by resolving the over-damping Langevin equation with Gaussian-white noise. They are according with the experimental dada well.

  3. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy

    PubMed Central

    Pollak, Julia; Rai, Karan G.; Funk, Cory C.; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D.; Paddison, Patrick J.; Ramirez, Jan-Marino; Rostomily, Robert C.

    2017-01-01

    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance. PMID:28264064

  4. ModFossa: A library for modeling ion channels using Python.

    PubMed

    Ferneyhough, Gareth B; Thibealut, Corey M; Dascalu, Sergiu M; Harris, Frederick C

    2016-06-01

    The creation and simulation of ion channel models using continuous-time Markov processes is a powerful and well-used tool in the field of electrophysiology and ion channel research. While several software packages exist for the purpose of ion channel modeling, most are GUI based, and none are available as a Python library. In an attempt to provide an easy-to-use, yet powerful Markov model-based ion channel simulator, we have developed ModFossa, a Python library supporting easy model creation and stimulus definition, complete with a fast numerical solver, and attractive vector graphics plotting.

  5. Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions.

    PubMed Central

    Denk, W

    1994-01-01

    The locations and densities of ionotropic membrane receptors, which are responsible for receiving synaptic transmission throughout the nervous system, are of prime importance in understanding the function of neural circuits. It is shown that the highly localized liberation of "caged" neurotransmitters by two-photon absorption-mediated photoactivation can be used in conjunction with recording the induced whole-cell current to determine the distribution of ligand-gated ion channels. The technique is potentially sensitive enough to detect individual channels with diffraction-limited spatial resolution. Images of the distribution of nicotinic acetylcholine receptors on cultured BC3H1 cells were obtained using a photoactivatable precursor of the nicotinic agonist carbamoylcholine. Images PMID:7517555

  6. A Floating Potential Method for Determining Ion Density

    NASA Astrophysics Data System (ADS)

    Evans, John D.; Chen, Francis F.

    2001-10-01

    The density n in partially ionized discharges is often found from the saturation ion current Ii of a cylindrical Langmuir probe. Collisionless probe theories, however, disagree with measured I - V curves probably because of collisions^1. We use a heuristic method that yields n from probe data agreeing with microwave interferometry. Probe current I is raised to the 4/3 power and fitted to a straight line on an I^4/3-V plot. The line is extrapolated to the floating potential V_f, thus approximating I_i(V_f). The sheath thickness d_sh for V = Vf is calculated from the Child-Langmuir (CL) law, and applying the Bohm sheath criterion to the surface at r_sh = Rp + d_sh yields n when Ii = I_i(V_f). This method works, but it cannot be justified by theory. Neglected are (a) cylindrical convergence of the ion charge, (b) finite ion energy at r = r_sh, (c) ions orbiting the probe, and (d) escape of ions axially. The Allen-Boyd-Reynolds theory, which treats (a) and (b) and neglects (c) and (d), gives too low n's. Apparently the errors self-cancel, and the simple Vf method gives the right result. ^1 F.F. Chen, Phys. Plasmas 8, 3029 (2001).

  7. Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.

    PubMed

    Behera, Rabindra K; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M; Goulding, Celia W; Theil, Elizabeth C

    2015-09-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells.

  8. Investigation of Semiconductor Surface Structure by Transmission Ion Channeling.

    NASA Astrophysics Data System (ADS)

    Lyman, Paul Francis

    The primary thrust of this dissertation is the investigation of the composition and structure of two important surface systems on Si, and the study of how this structure evolves under the influence of ion bombardment or film growth. I have studied the initial stages of oxidation of Si immediately following removal of a surface oxide by an HF etch. I have also studied the structure of Ge deposited on clean Si(100) at low temperatures. These systems are of considerable technological interest, but were chosen because they naturally pose fundamental questions regarding physical and chemical processes at surfaces. In the study of the oxidation of Si, I have focused on the influence of the bombarding ion beam in altering the structure and composition of the surface layer. Thus, the system then provides a natural vehicle to study ion-induced chemistry. In the study of low-temperature growth of Ge, I have focused on the structure of the Ge layer and the evolution of that structure upon further deposition or upon heating. This simple system is a model one for observing strained semiconductor heteroepitaxial growth. The primary probe for these studies was transmission channeling of MeV ions. The sensitivity of this technique to correlations between the substrate and an overlayer allowed us to make the following observations. The O, Si and H bound in the thin oxide formed after an HF etch and H_2O rinse occupy preferred positions with respect to the Si matrix. Upon ion bombardment, the O further reacts with the Si (the reaction proceeds linearly with the ion fluence) and the portion of the H that is uncorrelated to the substrate is preferentially desorbed. For the case of Ge growth on Si(100)-(2 x 1) at room temperature, a substantial fraction of the Ge films is strained to occupy sites having the lattice constant of the Si substrate (pseudomorphic growth). A model for film growth is proposed in which pseudomorphic domains constitute roughly half of the Ge films up to a

  9. Computational Methods for Structural and Functional Studies of Alzheimer's Amyloid Ion Channels.

    PubMed

    Jang, Hyunbum; Arce, Fernando Teran; Lee, Joon; Gillman, Alan L; Ramachandran, Srinivasan; Kagan, Bruce L; Lal, Ratnesh; Nussinov, Ruth

    2016-01-01

    Aggregation can be studied by a range of methods, experimental and computational. Aggregates form in solution, across solid surfaces, and on and in the membrane, where they may assemble into unregulated leaking ion channels. Experimental probes of ion channel conformations and dynamics are challenging. Atomistic molecular dynamics (MD) simulations are capable of providing insight into structural details of amyloid ion channels in the membrane at a resolution not achievable experimentally. Since data suggest that late stage Alzheimer's disease involves formation of toxic ion channels, MD simulations have been used aiming to gain insight into the channel shapes, morphologies, pore dimensions, conformational heterogeneity, and activity. These can be exploited for drug discovery. Here we describe computational methods to model amyloid ion channels containing the β-sheet motif at atomic scale and to calculate toxic pore activity in the membrane.

  10. Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels

    SciTech Connect

    Liu, Jinn-Liang; Eisenberg, Bob

    2014-12-14

    A Poisson-Nernst-Planck-Fermi (PNPF) theory is developed for studying ionic transport through biological ion channels. Our goal is to deal with the finite size of particle using a Fermi like distribution without calculating the forces between the particles, because they are both expensive and tricky to compute. We include the steric effect of ions and water molecules with nonuniform sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of water molecules in an inhomogeneous aqueous electrolyte. Including the finite volume of water and the voids between particles is an important new part of the theory presented here. Fermi like distributions of all particle species are derived from the volume exclusion of classical particles. Volume exclusion and the resulting saturation phenomena are especially important to describe the binding and permeation mechanisms of ions in a narrow channel pore. The Gibbs free energy of the Fermi distribution reduces to that of a Boltzmann distribution when these effects are not considered. The classical Gibbs entropy is extended to a new entropy form — called Gibbs-Fermi entropy — that describes mixing configurations of all finite size particles and voids in a thermodynamic system where microstates do not have equal probabilities. The PNPF model describes the dynamic flow of ions, water molecules, as well as voids with electric fields and protein charges. The model also provides a quantitative mean-field description of the charge/space competition mechanism of particles within the highly charged and crowded channel pore. The PNPF results are in good accord with experimental currents recorded in a 10{sup 8}-fold range of Ca{sup 2+} concentrations. The results illustrate the anomalous mole fraction effect, a signature of L-type calcium channels. Moreover, numerical results concerning water density, dielectric permittivity, void volume, and steric energy provide useful

  11. Macroscopic kinetics of pentameric ligand gated ion channels: comparisons between two prokaryotic channels and one eukaryotic channel.

    PubMed

    Laha, Kurt T; Ghosh, Borna; Czajkowski, Cynthia

    2013-01-01

    Electrochemical signaling in the brain depends on pentameric ligand-gated ion channels (pLGICs). Recently, crystal structures of prokaryotic pLGIC homologues from Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus (GLIC) in presumed closed and open channel states have been solved, which provide insight into the structural mechanisms underlying channel activation. Although structural studies involving both ELIC and GLIC have become numerous, thorough functional characterizations of these channels are still needed to establish a reliable foundation for comparing kinetic properties. Here, we examined the kinetics of ELIC and GLIC current activation, desensitization, and deactivation and compared them to the GABAA receptor, a prototypic eukaryotic pLGIC. Outside-out patch-clamp recordings were performed with HEK-293T cells expressing ELIC, GLIC, or α1β2γ2L GABAA receptors, and ultra-fast ligand application was used. In response to saturating agonist concentrations, we found both ELIC and GLIC current activation were two to three orders of magnitude slower than GABAA receptor current activation. The prokaryotic channels also had slower current desensitization on a timescale of seconds. ELIC and GLIC current deactivation following 25 s pulses of agonist (cysteamine and pH 4.0 buffer, respectively) were relatively fast with time constants of 24.9 ± 5.1 ms and 1.2 ± 0.2 ms, respectively. Surprisingly, ELIC currents evoked by GABA activated very slowly with a time constant of 1.3 ± 0.3 s and deactivated even slower with a time constant of 4.6 ± 1.2 s. We conclude that the prokaryotic pLGICs undergo similar agonist-mediated gating transitions to open and desensitized states as eukaryotic pLGICs, supporting their use as experimental models. Their uncharacteristic slow activation, slow desensitization and rapid deactivation time courses are likely due to differences in specific structural elements, whose future identification may help uncover mechanisms underlying p

  12. Cytoskeletal Basis of Ion Channel Function in Cardiac Muscle

    PubMed Central

    Vatta, Matteo; Faulkner, Georgine

    2009-01-01

    Summary The heart is a force-generating organ that responds to self-generated electrical stimuli from specialized cardiomyocytes. This function is modulated by sympathetic and parasympathetic activity. In order to contract and accommodate the repetitive morphological changes induced by the cardiac cycle, cardiomyocytes depend on their highly evolved and specialized cytoskeletal apparatus. Defects in components of the cytoskeleton, in the long term, affect the ability of the cell to compensate at both functional and structural levels. In addition to the structural remodeling, the myocardium becomes increasingly susceptible to altered electrical activity leading to arrhythmogenesis. The development of arrhythmias secondary to structural remodeling defects has been noted, although the detailed molecular mechanisms are still elusive. Here I will review the current knowledge of the molecular and functional relationships between the cytoskeleton and ion channels and, I will discuss the future impact of new data on molecular cardiology research and clinical practice. PMID:19774097

  13. The Ion Channel TRPA1 Is Required for Chronic Itch

    PubMed Central

    Wilson, Sarah R.; Nelson, Aislyn M.; Batia, Lyn; Morita, Takeshi; Estandian, Daniel; Owens, David M.; Lumpkin, Ellen A.; Bautista, Diana M.

    2013-01-01

    Chronic itch is a debilitating condition that affects one in 10 people. Little is known about the molecules that mediate chronic itch in primary sensory neurons and skin. We demonstrate that the ion channel TRPA1 is required for chronic itch. Using a mouse model of chronic itch, we show that scratching evoked by impaired skin barrier is abolished in TRPA1-deficient animals. This model recapitulates many of the pathophysiological hallmarks of chronic itch that are observed in prevalent human diseases such as atopic dermatitis and psoriasis, including robust scratching, extensive epidermal hyperplasia, and dramatic changes in gene expression in sensory neurons and skin. Remarkably, TRPA1 is required for both transduction of chronic itch signals to the CNS and for the dramatic skin changes triggered by dry-skin-evoked itch and scratching. These data suggest that TRPA1 regulates both itch transduction and pathophysiological changes in the skin that promote chronic itch. PMID:23719797

  14. Bayesian restoration of ion channel records using hidden Markov models.

    PubMed

    Rosales, R; Stark, J A; Fitzgerald, W J; Hladky, S B

    2001-03-01

    Hidden Markov models have been used to restore recorded signals of single ion channels buried in background noise. Parameter estimation and signal restoration are usually carried out through likelihood maximization by using variants of the Baum-Welch forward-backward procedures. This paper presents an alternative approach for dealing with this inferential task. The inferences are made by using a combination of the framework provided by Bayesian statistics and numerical methods based on Markov chain Monte Carlo stochastic simulation. The reliability of this approach is tested by using synthetic signals of known characteristics. The expectations of the model parameters estimated here are close to those calculated using the Baum-Welch algorithm, but the present methods also yield estimates of their errors. Comparisons of the results of the Bayesian Markov Chain Monte Carlo approach with those obtained by filtering and thresholding demonstrate clearly the superiority of the new methods.

  15. Universal scalings for laser acceleration of electrons in ion channels

    NASA Astrophysics Data System (ADS)

    Khudik, Vladimir; Arefiev, Alexey; Zhang, Xi; Shvets, Gennady

    2016-10-01

    We analytically investigate the acceleration of electrons undergoing betatron oscillations in an ion channel, driven by a laser beam propagating with superluminal (or luminal) phase velocity. The universal scalings for the maximum attainable electron energy are found for arbitrary laser and plasma parameters by deriving a set of dimensionless equations for paraxial ultra-relativistic electron motion. One of our analytic predictions is the emergence of forbidden zones in the electrons' phase space. For an individual electron, these give rise to a threshold-type dependence of the final energy gain on the laser intensity. The universal scalings are also generalized to the resonant laser interaction with the third harmonic of betatron motion and to the case when the laser beam is circularly polarized.

  16. Lipid agonism: The PIP2 paradigm of ligand-gated ion channels.

    PubMed

    Hansen, Scott B

    2015-05-01

    The past decade, membrane signaling lipids emerged as major regulators of ion channel function. However, the molecular nature of lipid binding to ion channels remained poorly described due to a lack of structural information and assays to quantify and measure lipid binding in a membrane. How does a lipid-ligand bind to a membrane protein in the plasma membrane, and what does it mean for a lipid to activate or regulate an ion channel? How does lipid binding compare to activation by soluble neurotransmitter? And how does the cell control lipid agonism? This review focuses on lipids and their interactions with membrane proteins, in particular, ion channels. I discuss the intersection of membrane lipid biology and ion channel biophysics. A picture emerges of membrane lipids as bona fide agonists of ligand-gated ion channels. These freely diffusing signals reside in the plasma membrane, bind to the transmembrane domain of protein, and cause a conformational change that allosterically gates an ion channel. The system employs a catalog of diverse signaling lipids ultimately controlled by lipid enzymes and raft localization. I draw upon pharmacology, recent protein structure, and electrophysiological data to understand lipid regulation and define inward rectifying potassium channels (Kir) as a new class of PIP2 lipid-gated ion channels.

  17. Light-Activated Ion Channels for Remote Control of Neural Activity

    PubMed Central

    Chambers, James J.; Kramer, Richard H.

    2009-01-01

    Light-activated ion channels provide a new opportunity to precisely and remotely control neuronal activity for experimental applications in neurobiology. In the past few years, several strategies have arisen that allow light to control ion channels and therefore neuronal function. Light-based triggers for ion channel control include caged compounds, which release active neurotransmitters when photolyzed with light, and natural photoreceptive proteins, which can be expressed exogenously in neurons. More recently, a third type of light trigger has been introduced: a photoisomerizable tethered ligand that directly controls ion channel activity in a light-dependent manner. Beyond the experimental applications for light-gated ion channels, there may be clinical applications in which these light-sensitive ion channels could prove advantageous over traditional methods. Electrodes for neural stimulation to control disease symptoms are invasive and often difficult to reposition between cells in tissue. Stimulation by chemical agents is difficult to constrain to individual cells and has limited temporal accuracy in tissue due to diffusional limitations. In contrast, ion channels that can be directly activated with light allow control with unparalleled spatial and temporal precision. The goal of this chapter is to describe light-regulated ion channels and how they have been tailored to control different aspects of neural activity, and how to use these channels to manipulate and better understand development, function, and plasticity of neurons and neural circuits. PMID:19195553

  18. Molecular biology and biophysical properties of ion channel gating pores.

    PubMed

    Moreau, Adrien; Gosselin-Badaroudine, Pascal; Chahine, Mohamed

    2014-11-01

    The voltage sensitive domain (VSD) is a pivotal structure of voltage-gated ion channels (VGICs) and plays an essential role in the generation of electrochemical signals by neurons, striated muscle cells, and endocrine cells. The VSD is not unique to VGICs. Recent studies have shown that a VSD regulates a phosphatase. Similarly, Hv1, a voltage-sensitive protein that lacks an apparent pore domain, is a self-contained voltage sensor that operates as an H⁺ channel. VSDs are formed by four transmembrane helices (S1-S4). The S4 helix is positively charged due to the presence of arginine and lysine residues. It is surrounded by two water crevices that extend into the membrane from both the extracellular and intracellular milieus. A hydrophobic septum disrupts communication between these water crevices thus preventing the permeation of ions. The septum is maintained by interactions between the charged residues of the S4 segment and the gating charge transfer center. Mutating the charged residue of the S4 segment allows the water crevices to communicate and generate gating pore or omega pore. Gating pore currents have been reported to underlie several neuronal and striated muscle channelopathies. Depending on which charged residue on the S4 segment is mutated, gating pores are permeant either at depolarized or hyperpolarized voltages. Gating pores are cation selective and seem to converge toward Eisenmann's first or second selectivity sequences. Most gating pores are blocked by guanidine derivatives as well as trivalent and quadrivalent cations. Gating pores can be used to study the movement of the voltage sensor and could serve as targets for novel small therapeutic molecules.

  19. Comparative analysis of stable ultrahigh power-density 248 nm channels formed in Kr and Xe cluster targets

    NASA Astrophysics Data System (ADS)

    Borisov, Alex B.; McCorkindale, John C.; Poopalasingam, Sankar; Longworth, James W.; Rhodes, Charles K.

    2013-09-01

    Comparative single-pulse studies of self-trapped plasma channel formation in Xe and Kr cluster targets produced with 1-2 TW femtosecond 248 nm pulses reveal energy efficient channel formation (>90%) and highly robust stability for the channeled propagation in both materials. Images of the channel morphology produced by Thomson scattering from the electron density and direct visualization of the Xe(M) and Kr(L) x-ray emission from radiating ions illustrate the (1) channel formation, (2) the narrow region of confined trapped propagation, (3) the abrupt termination of the channel that occurs at the point the power falls below the critical power Pcr, and, in the case of Xe channels, (4) the presence of saturated absorption of Xe(M) radiation that generates an extended peripheral zone of ionization. The measured rates for energy deposition per unit length are ˜ 1.46 J cm-1 and ˜ 0.82 J cm-1 for Xe and Kr targets, respectively, and the single pulse Xe(M) energy yield is estimated to be > 50 mJ, a value indicating an efficiency >20% for ˜ 1 keV x-ray production from the incident 248 nm pulse.

  20. Cardiac ion channel gene mutations in sudden infant death syndrome.

    PubMed

    Otagiri, Tesshu; Kijima, Kazuki; Osawa, Motoki; Ishii, Kuniaki; Makita, Naomasa; Matoba, Ryoji; Umetsu, Kazuo; Hayasaka, Kiyoshi

    2008-11-01

    Sudden infant death syndrome (SIDS) is multifactorial and may result from the interaction of a number of environmental, genetic, and developmental factors. We studied three major genes causing long QT syndrome in 42 Japanese SIDS victims and found five mutations, KCNQ1-K598R, KCNH2-T895M, SCN5A-F532C, SCN5A-G1084S, and SCN5A-F1705S, in four cases; one case had both KCNH2-T895M and SCN5A-G1084S. All mutations were novel except for SCN5A-F532C, which was previously detected in an arrhythmic patient. Heterologous expression study revealed significant changes in channel properties of KCNH2-T895M, SCN5A-G1084S, and SCN5A-F1705S, but did not in KCNQ1-K598R and SCN5A-F532C. Our data suggests that nearly 10% of SIDS victims in Japan have mutations of the cardiac ion channel genes similar to in other countries.

  1. Biophysics, pathophysiology, and pharmacology of ion channel gating pores

    PubMed Central

    Moreau, Adrien; Gosselin-Badaroudine, Pascal; Chahine, Mohamed

    2014-01-01

    Voltage sensor domains (VSDs) are a feature of voltage gated ion channels (VGICs) and voltage sensitive proteins. They are composed of four transmembrane (TM) segments (S1–S4). Currents leaking through VSDs are called omega or gating pore currents. Gating pores are caused by mutations of the highly conserved positively charged amino acids in the S4 segment that disrupt interactions between the S4 segment and the gating charge transfer center (GCTC). The GCTC separates the intracellular and extracellular water crevices. The disruption of S4–GCTC interactions allows these crevices to communicate and create a fast activating and non-inactivating alternative cation-selective permeation pathway of low conductance, or a gating pore. Gating pore currents have recently been shown to cause periodic paralysis phenotypes. There is also increasing evidence that gating pores are linked to several other familial diseases. For example, gating pores in Nav1.5 and Kv7.2 channels may underlie mixed arrhythmias associated with dilated cardiomyopathy (DCM) phenotypes and peripheral nerve hyperexcitability (PNH), respectively. There is little evidence for the existence of gating pore blockers. Moreover, it is known that a number of toxins bind to the VSD of a specific domain of Na+ channels. These toxins may thus modulate gating pore currents. This focus on the VSD motif opens up a new area of research centered on developing molecules to treat a number of cell excitability disorders such as epilepsy, cardiac arrhythmias, and pain. The purpose of the present review is to summarize existing knowledge of the pathophysiology, biophysics, and pharmacology of gating pore currents and to serve as a guide for future studies aimed at improving our understanding of gating pores and their pathophysiological roles. PMID:24772081

  2. The nature of ion and water barrier crossings in a simulated ion channel.

    PubMed Central

    Chiu, S. W.; Novotny, J. A.; Jakobsson, E.

    1993-01-01

    state of matter" characteristic of the channel contents appears to have some properties typical of the solid and some typical of the liquid state. The magnitude of the local friction and nature of the ion solvation are similar to the liquid state, but the periodicities of structure, free energy, and dynamics are somewhat solid-like. The alignment of water dipoles in the channel bears some resemblance to the orientational ordering of a nematic liquid crystal, but unlike a nematic liquid crystal, the waters have a degree of translational order as well. Thus, the "channel state" is not adequately described by analogy to either the solid or liquid states or to liquid crystals but must be dealt with as its own characteristic type of condensed matter. PMID:7679301

  3. Effects of a dielectric material in an ion source on the ion beam current density and ion beam energy

    SciTech Connect

    Fujiwara, Y. Sakakita, H.; Nakamiya, A.; Hirano, Y.; Kiyama, S.

    2016-02-15

    To understand a strong focusing phenomenon that occurs in a low-energy hydrogen ion beam, the electron temperature, the electron density, and the space potential in an ion source with cusped magnetic fields are measured before and after the transition to the focusing state using an electrostatic probe. The experimental results show that no significant changes are observed before or after the transition. However, we found unique phenomena that are characterized by the position of the electrostatic probe in the ion source chamber. Specifically, the extracted ion beam current density and energy are obviously enhanced in the case where the electrostatic probe, which is covered by a dielectric material, is placed close to an acceleration electrode.

  4. Properties of cytotoxic peptide-formed ion channels.

    PubMed

    Kourie, J I; Shorthouse, A A

    2000-06-01

    Cytotoxic peptides are relatively small cationic molecules such as those found 1) in venoms, e.g., melittin in bee, scorpion toxins in scorpion, pilosulin 1 in jumper ant, and lycotoxin I and II in wolf spider; 2) in skin secretions (e.g., magainin I and II from Xenopus laevis, dermaseptin from frog, antimicrobials from carp) and cells of the immune system (e.g., insect, scorpion, and mammalian defensins and cryptdins); 3) as autocytotoxicity peptides, e.g., amylin cytotoxic to pancreatic beta-cells, prion peptide fragment 106-126 [PrP-(106-126)], and amyloid beta-protein (AbetaP) cytotoxic to neurons; and 4) as designed synthetic peptides based on the sequences and properties of naturally occurring cytotoxic peptides. The small cytotoxic peptides are composed of beta-sheets, e.g., mammalian defensins, AbetaP, amylin, and PrP-(106-126), whereas the larger cytotoxic peptides have several domains composed of both alpha-helices and beta-sheets stabilized by cysteine bonds, e.g., scorpion toxins, scorpion, and insect defensins. Electrophysiological and molecular biology techniques indicate that these structures modify cell membranes via 1) interaction with intrinsic ion transport proteins and/or 2) formation of ion channels. These two nonexclusive mechanisms of action lead to changes in second messenger systems that further augment the abnormal electrical activity and distortion of the signal transduction causing cell death.

  5. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, B.L.

    1998-10-27

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver > 4kW/cm{sup 2} of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources. 13 figs.

  6. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, Barry L.

    1998-01-01

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

  7. Ion flux dependent and independent functions of ion channels in the vertebrate heart: lessons learned from zebrafish.

    PubMed

    Keßler, Mirjam; Just, Steffen; Rottbauer, Wolfgang

    2012-01-01

    Ion channels orchestrate directed flux of ions through membranes and are essential for a wide range of physiological processes including depolarization and repolarization of biomechanical activity of cells. Besides their electrophysiological functions in the heart, recent findings have demonstrated that ion channels also feature ion flux independent functions during heart development and morphogenesis. The zebrafish is a well-established animal model to decipher the genetics of cardiovascular development and disease of vertebrates. In large scale forward genetics screens, hundreds of mutant lines have been isolated with defects in cardiovascular structure and function. Detailed phenotyping of these lines and identification of the causative genetic defects revealed new insights into ion flux dependent and independent functions of various cardiac ion channels.

  8. Stable formation of ultrahigh power-density 248 nm channels in Xe cluster targets

    SciTech Connect

    Borisov, Alex B.; Racz, Ervin; Khan, Shahab F.; Poopalasingam, Sankar; McCorkindale, John C.; Boguta, John; Longworth, James W.; Rhodes, Charles K.

    2012-07-11

    The optimization of relativistic and ponderomotive self-channeling of ultra-powerful 248 nm laser pulses launched in underdense plasmas with an appropriate longitudinal gradient in the electron density profile located at the initial stage of the self-channeling leads to (1) stable channel formation and (2) highly efficient power compression producing power densities in the 10{sup 19}-10{sup 20} W/cm{sup 3} range. The comparison of theoretical studies with experimental results involving the correlation of (a) Thomson images of the electron density with (b) x-ray images of the channel morphology demonstrates that more than 90% of the incident 248 nm power can be trapped in stable channels and that this stable propagation can be extended to power levels significantly exceeding the critical power of the self-channeling process.

  9. Temporal evolution of helix hydration in a light-gated ion channel correlates with ion conductance.

    PubMed

    Lórenz-Fonfría, Víctor A; Bamann, Christian; Resler, Tom; Schlesinger, Ramona; Bamberg, Ernst; Heberle, Joachim

    2015-10-27

    The discovery of channelrhodopsins introduced a new class of light-gated ion channels, which when genetically encoded in host cells resulted in the development of optogenetics. Channelrhodopsin-2 from Chlamydomonas reinhardtii, CrChR2, is the most widely used optogenetic tool in neuroscience. To explore the connection between the gating mechanism and the influx and efflux of water molecules in CrChR2, we have integrated light-induced time-resolved infrared spectroscopy and electrophysiology. Cross-correlation analysis revealed that ion conductance tallies with peptide backbone amide I vibrational changes at 1,665(-) and 1,648(+) cm(-1). These two bands report on the hydration of transmembrane α-helices as concluded from vibrational coupling experiments. Lifetime distribution analysis shows that water influx proceeded in two temporally separated steps with time constants of 10 μs (30%) and 200 μs (70%), the latter phase concurrent with the start of ion conductance. Water efflux and the cessation of the ion conductance are synchronized as well, with a time constant of 10 ms. The temporal correlation between ion conductance and hydration of helices holds for fast (E123T) and slow (D156E) variants of CrChR2, strengthening its functional significance.

  10. Evaluation of ion current density distribution on an extraction electrode of a radio frequency ion thruster

    NASA Astrophysics Data System (ADS)

    Masherov, P.; Riaby, V.; Abgaryan, V.

    2017-01-01

    The radial distributions of ion current density on an ion extracting electrode of a radio frequency (RF) ion thruster (RIT) with an inductive plasma source were obtained using probe diagnostics of the RF xenon plasma. Measurements were carried out using a plane wall probe simulator and the VGPS-12 Probe System of Plasma Sensors Co. At xenon flow rate q  =  2 sccm plasma pressure was 2 · 10-3 Torr, incident RF generator power varied in the range P g  =  50-250 W with RF power absorbed by plasma up to P p  =  220 W. Ion current densities were determined using semi- and double-logarithmic probe characteristics by linear extrapolations of their ion branches to probe floating potentials. The same parameters were also measured in undisturbed plasma by a classic cylindrical probe. They exceeded plane probe data by more than two times, showing the effectiveness of plasma sheath reproduction of the RIT ion extracting electrode by the plane wall probe simulator. Slight non-uniformity of the resulting plasma distributions and simplified RIT model design showed that the studied device with flat antenna coil and ferrite core could be considered as a promising prospect for RITs of new generation.

  11. Big Potassium (BK) ion channels in biology, disease and possible targets for cancer immunotherapy.

    PubMed

    Ge, Lisheng; Hoa, Neil T; Wilson, Zechariah; Arismendi-Morillo, Gabriel; Kong, Xiao-Tang; Tajhya, Rajeev B; Beeton, Christine; Jadus, Martin R

    2014-10-01

    The Big Potassium (BK) ion channel is commonly known by a variety of names (Maxi-K, KCNMA1, slo, stretch-activated potassium channel, KCa1.1). Each name reflects a different physical property displayed by this single ion channel. This transmembrane channel is found on nearly every cell type of the body and has its own distinctive roles for that tissue type. The BKα channel contains the pore that releases potassium ions from intracellular stores. This ion channel is found on the cell membrane, endoplasmic reticulum, Golgi and mitochondria. Complex splicing pathways produce different isoforms. The BKα channels can be phosphorylated, palmitoylated and myristylated. BK is composed of a homo-tetramer that interacts with β and γ chains. These accessory proteins provide a further modulating effect on the functions of BKα channels. BK channels play important roles in cell division and migration. In this review, we will focus on the biology of the BK channel, especially its role, and its immune response towards cancer. Recent proteomic studies have linked BK channels with various proteins. Some of these interactions offer further insight into the role that BK channels have with cancers, especially with brain tumors. This review shows that BK channels have a complex interplay with intracellular components of cancer cells and still have plenty of secrets to be discovered.

  12. Robust ion current oscillations under a steady electric field: An ion channel analog

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Wang, Yunshan; Senapati, Satyajyoti; Schiffbauer, Jarrod; Yossifon, Gilad; Chang, Hsueh-Chia

    2016-08-01

    We demonstrate a nonlinear, nonequilibrium field-driven ion flux phenomenon, which unlike Teorell's nonlinear multiple field theory, requires only the application of one field: robust autonomous current-mass flux oscillations across a porous monolith coupled to a capillary with a long air bubble, which mimics a hydrophobic protein in an ion channel. The oscillations are driven by the hysteretic wetting dynamics of the meniscus when electro-osmotic flow and pressure driven backflow, due to bubble expansion, compete to approach zero mass flux within the monolith. Delayed rupture of the film around the advancing bubble cuts off the electric field and switches the monolith mass flow from the former to the latter. The meniscus then recedes and repairs the rupture to sustain an oscillation for a range of applied fields. This generic mechanism shares many analogs with current oscillations in cell membrane ion channel. At sufficiently high voltage, the system undergoes a state transition characterized by appearance of the ubiquitous 1 /f power spectrum.

  13. Density bunching effects in a laser-driven, near-critical density plasma for ion acceleration

    NASA Astrophysics Data System (ADS)

    Ettlinger, Oliver; Sahai, Aakash; Hicks, George; Ditter, Emma-Jane; Dover, Nicholas; Chen, Yu-Hsin; Helle, Michael; Gordon, Daniel; Ting, Antonio; Polyanskiy, Mikhail; Pogorelsky, Igor; Babzien, Marcus; Najmudin, Zulfikar

    2016-10-01

    We present work investigating the interaction of relativistic laser pulses with near-critical density gas targets exhibiting pre-plasma scale lengths of several laser wavelengths. Analytical and computational modelling suggest that the interaction dynamics in a low-Z plasma is a direct result of induced density bunching up to the critical surface. In fact, these bunches can themselves become overcritical and experience significant radiation pressure, accelerating ions to higher energies compared to an ``idealised'' plasma slab target. This work will be used to help explain the observation of ion energies exceeding those predicted by radiation pressure driven hole-boring in recent experiments using the TW CO2 laser at the Accelerator Test Facility at Brookhaven National Laboratory.

  14. Ion densities and magnetic signatures of dust pickup at Enceladus

    NASA Astrophysics Data System (ADS)

    Kriegel, Hendrik; Simon, Sven; Meier, Patrick; Motschmann, Uwe; Saur, Joachim; Wennmacher, Alexandre; Strobel, Darrell F.; Dougherty, Michele K.

    2014-04-01

    Encedalus' plume of charged dust has been shown to strongly modify the plasma structures. Therefore, we analyze the magnetic signatures of dust to constrain the dust plume. For the first time, the mutual feedback between the nanograins and their plasma environment is investigated. Our model combines plasma simulations by means of the A.I.K.E.F. (Adaptive Ion-Kinetic Electron-Fluid) code with Monte Carlo simulations of the 3-D profiles of the gas and dust plumes. Data from several instruments of Cassini are considered: the neutral plume model is in good agreement with INMS data, whereas theoretical predictions of the peak ion density are compared against CAPS data, and properties of the dust are obtained by comparing our results with MAG data from the recent E14-E19 flybys. Our main results are (1) due to the ion-neutral chemistry, H3O+ is the predominant ion species within the plume; (2) the high nanograin densities observed by CAPS require an increased effective ionization frequency to fulfill quasi-neutrality; (3) the nanograin pickup current makes only a minor contribution to the current systems; i.e., the major contribution of the dust arises from electron absorption; (4) the pickup of nanograins is clearly visible in the magnetic field signatures, even including the distant encounter E15; (5) MAG data indicate a southward extension of the charged dust plume of at least 4 Enceladus radii; (6) the modification of the currents by the nanograins is responsible for the surprising fact that Cassini did not detect a region with a reduced magnetic field strength.

  15. Screen-based identification and validation of four new ion channels as regulators of renal ciliogenesis.

    PubMed

    Slaats, Gisela G; Wheway, Gabrielle; Foletto, Veronica; Szymanska, Katarzyna; van Balkom, Bas W M; Logister, Ive; Den Ouden, Krista; Keijzer-Veen, Mandy G; Lilien, Marc R; Knoers, Nine V; Johnson, Colin A; Giles, Rachel H

    2015-12-15

    To investigate the contribution of ion channels to ciliogenesis, we carried out a small interfering RNA (siRNA)-based reverse genetics screen of all ion channels in the mouse genome in murine inner medullary collecting duct kidney cells. This screen revealed four candidate ion channel genes: Kcnq1, Kcnj10, Kcnf1 and Clcn4. We show that these four ion channels localize to renal tubules, specifically to the base of primary cilia. We report that human KCNQ1 Long QT syndrome disease alleles regulate renal ciliogenesis; KCNQ1-p.R518X, -p.A178T and -p.K362R could not rescue ciliogenesis after Kcnq1-siRNA-mediated depletion in contrast to wild-type KCNQ1 and benign KCNQ1-p.R518Q, suggesting that the ion channel function of KCNQ1 regulates ciliogenesis. In contrast, we demonstrate that the ion channel function of KCNJ10 is independent of its effect on ciliogenesis. Our data suggest that these four ion channels regulate renal ciliogenesis through the periciliary diffusion barrier or the ciliary pocket, with potential implication as genetic contributors to ciliopathy pathophysiology. The new functional roles of a subset of ion channels provide new insights into the disease pathogenesis of channelopathies, which might suggest future therapeutic approaches.

  16. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    SciTech Connect

    Chacon-Golcher, Edwin

    2002-06-01

    This dissertation develops diverse research on small (diameter ~ few mm), high current density (J ~ several tens of mA/cm2) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K+ and Cs+ contact ionization sources and potassium aluminum silicate sources. Maximum values for a K+ beam of ~90 mA/cm2 were observed in 2.3 μs pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (~ 1 μs), high current densities (~ 100 mA/cm+) and low operating pressures (< 2 mtorr) were verified. For the latter, high but acceptable levels of beam emittance were measured (εn ≤ 0.006 π· mm · mrad) although measured currents differed from the desired ones (I ~ 5mA) by about a factor of 10.

  17. Target Promiscuity and Heterogeneous Effects of Tarantula Venom Peptides Affecting Na+ and K+ Ion Channels*

    PubMed Central

    Redaelli, Elisa; Cassulini, Rita Restano; Silva, Deyanira Fuentes; Clement, Herlinda; Schiavon, Emanuele; Zamudio, Fernando Z.; Odell, George; Arcangeli, Annarosa; Clare, Jeffrey J.; Alagón, Alejandro; de la Vega, Ricardo C. Rodríguez; Possani, Lourival D.; Wanke, Enzo

    2010-01-01

    Venom-derived peptide modulators of ion channel gating are regarded as essential tools for understanding the molecular motions that occur during the opening and closing of ion channels. In this study, we present the characterization of five spider toxins on 12 human voltage-gated ion channels, following observations about the target promiscuity of some spider toxins and the ongoing revision of their “canonical” gating-modifying mode of action. The peptides were purified de novo from the venom of Grammostola rosea tarantulas, and their sequences were confirmed by Edman degradation and mass spectrometry analysis. Their effects on seven tetrodotoxin-sensitive Na+ channels, the three human ether-à-go-go (hERG)-related K+ channels, and two human Shaker-related K+ channels were extensively characterized by electrophysiological techniques. All the peptides inhibited ion conduction through all the Na+ channels tested, although with distinctive patterns. The peptides also affected the three pharmaceutically relevant hERG isoforms differently. At higher concentrations, all peptides also modified the gating of the Na+ channels by shifting the activation to more positive potentials, whereas more complex effects were recorded on hERG channels. No effects were evident on the two Shaker-related K+ channels at concentrations well above the IC50 value for the affected channels. Given the sequence diversity of the tested peptides, we propose that tarantula toxins should be considered both as multimode and target-promiscuous ion channel modulators; both features should not be ignored when extracting mechanistic interpretations about ion channel gating. Our observations could also aid in future structure-function studies and might help the development of novel ion channel-specific drugs. PMID:19955179

  18. From foe to friend: using animal toxins to investigate ion channel function

    PubMed Central

    Salvatierra, Juan; Wagner, Jordan; Klint, Julie K; King, Glenn F; Olivera, Baldomero M; Bosmans, Frank

    2014-01-01

    Ion channels are vital contributors to cellular communication in a wide range of organisms, a distinct feature that renders this ubiquitous family of membrane-spanning proteins a prime target for toxins found in animal venom. For many years, the unique properties of these naturally-occurring molecules have enabled researchers to probe the structural and functional features of ion channels and to define their physiological roles in normal and diseased tissues. To illustrate their considerable impact on the ion channel field, this review will highlight fundamental insights into toxin-channel interactions as well as recently developed toxin screening methods and practical applications of engineered toxins. PMID:25088688

  19. Shielding analysis for a heavy ion beam chamber with plasma channels for ion transport

    SciTech Connect

    Sawan, M.E.; Peterson, R.R.; Yu, S.

    2000-06-28

    Neutronics analysis has been performed to assess the shielding requirements for the insulators and final focusing magnets in a modified HYLIFE-II target chamber that utilizes pre-formed plasma channels for heavy ion beam transport. Using 65 cm thick Flibe jet assemblies provides adequate shielding for the electrical insulator units. Additional shielding is needed in front of the final focusing superconducting quadrupole magnets. A shield with a thickness varying between 45 and 90 cm needs to be provided in front of the quadrupole unit. The final laser mirrors located along the channel axis are in the direct line-of-sight of source neutrons. Neutronics calculations were performed to determine the constraints on the placement of these mirrors to be lifetime components.

  20. Mechanistic Insights into the Modulation of Voltage-Gated Ion Channels by Inhalational Anesthetics.

    PubMed

    Covarrubias, Manuel; Barber, Annika F; Carnevale, Vincenzo; Treptow, Werner; Eckenhoff, Roderic G

    2015-11-17

    General anesthesia is a relatively safe medical procedure, which for nearly 170 years has allowed life saving surgical interventions in animals and people. However, the molecular mechanism of general anesthesia continues to be a matter of importance and debate. A favored hypothesis proposes that general anesthesia results from direct multisite interactions with multiple and diverse ion channels in the brain. Neurotransmitter-gated ion channels and two-pore K+ channels are key players in the mechanism of anesthesia; however, new studies have also implicated voltage-gated ion channels. Recent biophysical and structural studies of Na+ and K+ channels strongly suggest that halogenated inhalational general anesthetics interact with gates and pore regions of these ion channels to modulate function. Here, we review these studies and provide a perspective to stimulate further advances.

  1. Mechanistic Insights into the Modulation of Voltage-Gated Ion Channels by Inhalational Anesthetics

    PubMed Central

    Covarrubias, Manuel; Barber, Annika F.; Carnevale, Vincenzo; Treptow, Werner; Eckenhoff, Roderic G.

    2015-01-01

    General anesthesia is a relatively safe medical procedure, which for nearly 170 years has allowed life saving surgical interventions in animals and people. However, the molecular mechanism of general anesthesia continues to be a matter of importance and debate. A favored hypothesis proposes that general anesthesia results from direct multisite interactions with multiple and diverse ion channels in the brain. Neurotransmitter-gated ion channels and two-pore K+ channels are key players in the mechanism of anesthesia; however, new studies have also implicated voltage-gated ion channels. Recent biophysical and structural studies of Na+ and K+ channels strongly suggest that halogenated inhalational general anesthetics interact with gates and pore regions of these ion channels to modulate function. Here, we review these studies and provide a perspective to stimulate further advances. PMID:26588560

  2. Brownian dynamics study of ion transport in the vestibule of membrane channels.

    PubMed

    Li, S C; Hoyles, M; Kuyucak, S; Chung, S H

    1998-01-01

    Brownian dynamics simulations have been carried out to study the transport of ions in a vestibular geometry, which offers a more realistic shape for membrane channels than cylindrical tubes. Specifically, we consider a torus-shaped channel, for which the analytical solution of Poisson's equation is possible. The system is composed of the toroidal channel, with length and radius of the constricted region of 80 A and 4 A, respectively, and two reservoirs containing 50 sodium ions and 50 chloride ions. The positions of each of these ions executing Brownian motion under the influence of a stochastic force and a systematic electric force are determined at discrete time steps of 50 fs for up to 2.5 ns. All of the systematic forces acting on an ion due to the other ions, an external electric field, fixed charges in the channel protein, and the image charges induced at the water-protein boundary are explicitly included in the calculations. We find that the repulsive dielectric force arising from the induced surface charges plays a dominant role in channel dynamics. It expels an ion from the vestibule when it is deliberately put in it. Even in the presence of an applied electric potential of 100 mV, an ion cannot overcome this repulsive force and permeate the channel. Only when dipoles of a favorable orientation are placed along the sides of the transmembrane segment can an ion traverse the channel under the influence of a membrane potential. When the strength of the dipoles is further increased, an ion becomes detained in a potential well, and the driving force provided by the applied field is not sufficient to drive the ion out of the well. The trajectory of an ion navigating across the channel mostly remains close to the central axis of the pore lumen. Finally, we discuss the implications of these findings for the transport of ions across the membrane.

  3. A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels.

    PubMed Central

    Im, W; Seefeld, S; Roux, B

    2000-01-01

    A computational algorithm based on Grand Canonical Monte Carlo (GCMC) and Brownian Dynamics (BD) is described to simulate the movement of ions in membrane channels. The proposed algorithm, GCMC/BD, allows the simulation of ion channels with a realistic implementation of boundary conditions of concentration and transmembrane potential. The method is consistent with a statistical mechanical formulation of the equilibrium properties of ion channels (; Biophys. J. 77:139-153). The GCMC/BD algorithm is illustrated with simulations of simple test systems and of the OmpF porin of Escherichia coli. The approach provides a framework for simulating ion permeation in the context of detailed microscopic models. PMID:10920012

  4. The Use of Inhibitors of Mechanosensitive Ion Channels as Local Inhibitors of Peripheral Pain

    DTIC Science & Technology

    2013-03-01

    Mechanosensitive Ion Channels as Local Inhibitors of Peripheral Pain PRINCIPAL INVESTIGATOR: Frederick Sachs, Ph.D...NUMBER W81XWH-11-2-0125 Peripheral Pain 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Frederick Sachs, Thomas Suchyna, Phillip...mechanically sensitive excitatory ion channels (MSC) in the pathology of chronic pain , and the use of a small peptide inhibitor of these channels called GsMTx4

  5. Evolution of voltage-gated ion channels at the emergence of Metazoa.

    PubMed

    Moran, Yehu; Barzilai, Maya Gur; Liebeskind, Benjamin J; Zakon, Harold H

    2015-02-15

    Voltage-gated ion channels are large transmembrane proteins that enable the passage of ions through their pore across the cell membrane. These channels belong to one superfamily and carry pivotal roles such as the propagation of neuronal and muscular action potentials and the promotion of neurotransmitter secretion in synapses. In this review, we describe in detail the current state of knowledge regarding the evolution of these channels with a special emphasis on the metazoan lineage. We highlight the contribution of the genomic revolution to the understanding of ion channel evolution and for revealing that these channels appeared long before the appearance of the first animal. We also explain how the elucidation of channel selectivity properties and function in non-bilaterian animals such as cnidarians (sea anemones, corals, jellyfish and hydroids) can contribute to the study of channel evolution. Finally, we point to open questions and future directions in this field of research.

  6. Radial acceleration of ions by a laser pulse in a plasma channel

    NASA Astrophysics Data System (ADS)

    Kovalev, V. F.; Bychenkov, V. Yu.

    2015-07-01

    The approximate analytic solution of the Cauchy problem is constructed for a system of kinetic equations of an electron-ion plasma that describe the acceleration of ions and the collisionless heating of electrons caused by the radial ponderomotive force of a laser beam that propagates in the transparent plasma of a gas or other low-density target. Under conditions where the Debye radius, r De , of the electrons is considerably smaller than the characteristic localization scale, L, of the laser beam along the radius, ɛ = r De / L ≪ 1, this solution is found by a group transformation that is specified by the operator of approximate renormalization-group symmetries over small parameters, , of the initial distribution functions of particles. For an axially symmetric geometry of the laser beam, the temporal and spatial dependences of the distribution functions of particles are obtained and their integral characteristics, such as the density, mean velocity, temperature, and energy spectrum, are found. The formation of a cylindrical density cusp and the localized heating of electrons at the laser-channel boundary are analytically described.

  7. Ion flux, ion energy distribution and neutral density in an inductively coupled argon discharge

    NASA Astrophysics Data System (ADS)

    Chevolleau, T.; Fukarek, W.

    2000-11-01

    The dependence of ion flux, ion energy distribution and neutral density of a planar radiofrequency (RF) driven inductively coupled plasma source on pressure and power is analysed using a plasma monitor and a Faraday cup. The ion flux is about 7 mA cm-2 at 5 Pa and 300 W and increases as RF power and argon pressure increase. The ion energy distribution consists of a single peak with a full width at half maximum of 3 eV for a discharge power in the range from 50 to 300 W and for a pressure in the range from 0.5 to 5 Pa. This indicates that inductive coupling mainly drives the discharge while capacitive coupling between coil and plasma is weak. A significant decrease in Ar neutral density is observed when the plasma is ignited. The Ar depletion increases with increasing RF power and increasing Ar base pressure and reaches 30% at 5 Pa and 300 W. The contributions of the different mechanisms resulting in an Ar depletion are estimated and compared. The decrease in neutral density cannot be explained by the ionization of Ar atoms only but is significantly attributed to the heating of Ar atoms by collisions with energetic particles. The increase in neutral gas temperature is estimated and found to be in reasonable agreement with measurements of the gas temperature reported previously by other groups.

  8. Mitochondrial Ion Channels/Transporters as Sensors and Regulators of Cellular Redox Signaling

    PubMed Central

    Ryu, Shin-Young; Jhun, Bong Sook; Hurst, Stephen

    2014-01-01

    Abstract Significance: Mitochondrial ion channels/transporters and the electron transport chain (ETC) serve as key sensors and regulators for cellular redox signaling, the production of reactive oxygen species (ROS) and nitrogen species (RNS) in mitochondria, and balancing cell survival and death. Although the functional and pharmacological characteristics of mitochondrial ion transport mechanisms have been extensively studied for several decades, the majority of the molecular identities that are responsible for these channels/transporters have remained a mystery until very recently. Recent Advances: Recent breakthrough studies uncovered the molecular identities of the diverse array of major mitochondrial ion channels/transporters, including the mitochondrial Ca2+ uniporter pore, mitochondrial permeability transition pore, and mitochondrial ATP-sensitive K+ channel. This new information enables us to form detailed molecular and functional characterizations of mitochondrial ion channels/transporters and their roles in mitochondrial redox signaling. Critical Issues: Redox-mediated post-translational modifications of mitochondrial ion channels/transporters and ETC serve as key mechanisms for the spatiotemporal control of mitochondrial ROS/RNS generation. Future Directions: Identification of detailed molecular mechanisms for redox-mediated regulation of mitochondrial ion channels will enable us to find novel therapeutic targets for many diseases that are associated with cellular redox signaling and mitochondrial ion channels/transporters. Antioxid. Redox Signal. 21, 987–1006. PMID:24180309

  9. Ion channels or aquaporins as novel molecular targets in gastric cancer.

    PubMed

    Xia, Jianling; Wang, Hongqiang; Li, Shi; Wu, Qinghui; Sun, Li; Huang, Hongxiang; Zeng, Ming

    2017-03-06

    Gastric cancer (GC) is a common disease with few effective treatment choices and poor prognosis, and has the second-highest mortality rates among all cancers worldwide. Dysregulation and/or malfunction of ion channels or aquaporins (AQPs) are common in various human cancers. Furthermore, ion channels are involved in numerous important aspects of the tumor aggressive phonotype, such as proliferation, cell cycle, apoptosis, motility, migration, and invasion. Indeed, by localizing in the plasma membrane, ion channels or AQPs can sense and respond to extracellular environment changes; thus, they play a crucial role in cell signaling and cancer progression. These findings have expanded a new area of pharmaceutical exploration for various types of cancer, including GC. The involvement of multiple ion channels, such as voltage-gated potassium and sodium channels, intracellular chloride channels, 'transient receptor potential' channels, and AQPs, which have been shown to facilitate the pathogenesis of other tumors, also plays a role in GC. In this review, an overview of ion channel and aquaporin expression and function in carcinogenesis of GC is presented. Studies of ion channels or AQPs will advance our understanding of the molecular genesis of GC and may identify novel and effective targets for the clinical application of GC.

  10. Hypoxia-Dependent Reactive Oxygen Species Signaling in the Pulmonary Circulation: Focus on Ion Channels

    PubMed Central

    Veit, Florian; Pak, Oleg; Brandes, Ralf P.

    2015-01-01

    Abstract Significance: An acute lack of oxygen in the lung causes hypoxic pulmonary vasoconstriction, which optimizes gas exchange. In contrast, chronic hypoxia triggers a pathological vascular remodeling causing pulmonary hypertension, and ischemia can cause vascular damage culminating in lung edema. Recent Advances: Regulation of ion channel expression and gating by cellular redox state is a widely accepted mechanism; however, it remains a matter of debate whether an increase or a decrease in reactive oxygen species (ROS) occurs under hypoxic conditions. Ion channel redox regulation has been described in detail for some ion channels, such as Kv channels or TRPC6. However, in general, information on ion channel redox regulation remains scant. Critical Issues and Future Directions: In addition to the debate of increased versus decreased ROS production during hypoxia, we aim here at describing and deciphering why different oxidants, under different conditions, can cause both activation and inhibition of channel activity. While the upstream pathways affecting channel gating are often well described, we need a better understanding of redox protein modifications to be able to determine the complexity of ion channel redox regulation. Against this background, we summarize the current knowledge on hypoxia-induced ROS-mediated ion channel signaling in the pulmonary circulation. Antioxid. Redox Signal. 22, 537–552 PMID:25545236

  11. Acid stress mediated adaptive divergence in ion channel function during embryogenesis in Rana arvalis

    PubMed Central

    Shu, Longfei; Laurila, Anssi; Räsänen, Katja

    2015-01-01

    Ion channels and pumps are responsible for ion flux in cells, and are key mechanisms mediating cellular function. Many environmental stressors, such as salinity and acidification, are known to severely disrupt ionic balance of organisms thereby challenging fitness of natural populations. Although ion channels can have several vital functions during early life-stages (e.g. embryogenesis), it is currently not known i) how developing embryos maintain proper intracellular conditions when exposed to environmental stress and ii) to what extent environmental stress can drive intra-specific divergence in ion channels. Here we studied the moor frog, Rana arvalis, from three divergent populations to investigate the role of different ion channels and pumps for embryonic survival under acid stress (pH 4 vs 7.5) and whether populations adapted to contrasting acidities differ in the relative role of different ion channel/pumps. We found that ion channels that mediate Ca2+ influx are essential for embryonic survival under acidic pH, and, intriguingly, that populations differ in calcium channel function. Our results suggest that adaptive divergence in embryonic acid stress tolerance of amphibians may in part be mediated by Ca2+ balance. We suggest that ion flux may mediate adaptive divergence of natural populations at early life-stages in the face of environmental stress. PMID:26381453

  12. Simulation of charge transport in ion channels and nanopores with anisotropic permittivity

    PubMed Central

    Mashl, R. Jay; Lee, Kyu Il; Jakobsson, Eric; Ravaioli, Umberto

    2010-01-01

    Ion channels are part of nature's solution for regulating biological environments. Every ion channel consists of a chain of amino acids carrying a strong and sharply varying permanent charge, folded in such a way that it creates a nanoscopic aqueous pore spanning the otherwise mostly impermeable membranes of biological cells. These naturally occurring proteins are particularly interesting to device engineers seeking to understand how such nanoscale systems realize device-like functions. Availability of high-resolution structural information from X-ray crystallography, as well as large-scale computational resources, makes it possible to conduct realistic ion channel simulations. In general, a hierarchy of simulation methodologies is needed to study different aspects of a biological system like ion channels. Biology Monte Carlo (BioMOCA), a three-dimensional coarse-grained particle ion channel simulator, offers a powerful and general approach to study ion channel permeation. BioMOCA is based on the Boltzmann Transport Monte Carlo (BTMC) and Particle-Particle-Particle-Mesh (P3M) methodologies developed at the University of Illinois at Urbana-Champaign. In this paper we briefly discuss the various approaches to simulating ion flow in channel systems that are currently being pursued by the biophysics and engineering communities, and present the effect of having anisotropic dielectric constants on ion flow through a number of nanopores with different effective diameters. PMID:20445807

  13. Fabrication and demonstration of high energy density lithium ion microbatteries

    NASA Astrophysics Data System (ADS)

    Sun, Ke

    density on a limited footprint area. In chapter 4, Li-ion batteries based on the LiMn2O4-TiP 2O7 couple are manufactured on flexible paper substrates; where the use of light-weight paper substrates significantly increase the gravimetric energy density of this electrode couple as compared to traditional metal current collectors. In chapter 5, a novel nanowire growth mechanism will be explored to grow interdigitated metal oxide nanowire micro battery electrodes. The growth kinetics of this mechanism is systematically studied to understand how to optimize the growth process to produce electrodes with improved electrochemical properties.

  14. The unique contribution of ion channels to platelet and megakaryocyte function.

    PubMed

    Mahaut-Smith, M P

    2012-09-01

    Ion channels are transmembrane proteins that play ubiquitous roles in cellular homeostasis and activation. In addition to their recognized role in the regulation of ionic permeability and thus membrane potential, some channel proteins possess intrinsic kinase activity, directly interact with integrins or are permeable to molecules up to ≈1000 Da. The small size and anuclear nature of the platelet has often hindered progress in understanding the role of specific ion channels in hemostasis, thrombosis and other platelet-dependent events. However, with the aid of transgenic mice and 'surrogate' patch clamp recordings from primary megakaryocytes, important unique contributions to platelet function have been identified for several classes of ion channel. Examples include ATP-gated P2X1 channels, Orai1 store-operated Ca2+ channels, voltage-gated Kv1.3 channels, AMPA and kainate glutamate receptors and connexin gap junction channels. Furthermore, evidence exists that some ion channels, such as NMDA glutamate receptors, contribute to megakaryocyte development. This review examines the evidence for expression of a range of ion channels in the platelet and its progenitor cell, and highlights the distinct roles that these proteins may play in health and disease.

  15. Low density cell culture of locust neurons in closed-channel microfluidic devices.

    PubMed

    Göbbels, Katrin; Thiebes, Anja Lena; van Ooyen, André; Schnakenberg, Uwe; Bräunig, Peter

    2010-08-01

    Microfluidic channel systems were fabricated out of polydimethylsiloxane (PDMS) and used as culture vessels for primary culture of neurons from locust thoracic ganglia. In a biocompatibility study it was shown that cell adhesion and neuronal cell growth of locust neurons on uncoated PDMS was restricted. Coating with concanavalin A improved cell adhesion. In closed-channel microfluidic devices neurons were grown in static-bath culture conditions for more than 15 days. Cell densities of up to 20 cells/channel were not exceeded in low-density cultures but we also found optimal cell growth of single neurons inside individual channels. The first successful cultivation of insect neurons in closed-channel microfluidic devices provides a prerequisite for the development of low density neuronal networks on multi electrode arrays combined with microfluidic devices.

  16. Methacrylate Polymer Scaffolding Enhances the Stability of Suspended Lipid Bilayers for Ion Channel Recordings and Biosensor Development

    PubMed Central

    Bright, Leonard K.; Baker, Christopher A.; Bränström, Robert; Saavedra, S. Scott; Aspinwall, Craig A.

    2016-01-01

    Black lipid membranes (BLMs) provide a synthetic environment that facilitates measurement of ion channel activity in diverse analytical platforms. The limited electrical, mechanical and temporal stabilities of BLMs pose a significant challenge to development of highly stable measurement platforms. Here, ethylene glycol dimethacrylate (EGDMA) and butyl methacrylate (BMA) were partitioned into BLMs and photopolymerized to create a cross-linked polymer scaffold in the bilayer lamella that dramatically improved BLM stability. The commercially available methacrylate monomers provide a simple, low cost, and broadly accessible approach for preparing highly stabilized BLMs useful for ion channel analytical platforms. When prepared on silane-modified glass microapertures, the resulting polymer scaffold-stabilized (PSS)-BLMs exhibited significantly improved lifetimes of 23 ± 9 to 40 ± 14 h and > 10-fold increase in mechanical stability, with breakdown potentials > 2000 mV attainable, depending on surface modification and polymer cross-link density. Additionally, the polymer scaffold exerted minimal perturbations to membrane electrical integrity as indicated by mean conductance measurements. When gramicidin A and α-hemolysin were reconstituted into PSS-BLMs, the ion channels retained function comparable to conventional BLMs. This approach is a key advance in the formation of stabilized BLMs and should be amenable to a wide range of receptor and ion channel functionalized platforms. PMID:26925461

  17. Effect of metal ions on radical type and proton-coupled electron transfer channel: sigma-radical vs pi-radical and sigma-channel vs pi-channel in the imide units.

    PubMed

    Chen, Xiaohua; Xing, Dianxiang; Zhang, Liang; Cukier, Robert I; Bu, Yuxiang

    2009-12-01

    The mechanism of proton transfer (PT)/electron transfer (ET) in imide units, and its regulation by hydrated metal ions, was explored theoretically using density functional theory in a representative model (a nearly planar and cisoid complex between uracil and its N(3)-dehydrogenated radical, UU). In UU (sigma-radical), PT/ET normally occurs via a seven-center, cyclic proton-coupled sigma-electron sigma-channel transfer (PC(sigma)E(sigma)T) mechanism (3.8 kcal/mol barrier height) with a N(3)-->N(3') PT and an O(4)-->O(4') ET. Binding of hydrated metal ions to the dioxygen sites (O(2)/O(2') or/and O(4)/O(4')) of UU may significantly affect its PT/ET cooperative reactivity by changing the radical type (sigma-radical <--> pi-radical) and ET channel (sigma-channel <--> pi-channel), leading to different mechanisms, ranging from PC(sigma)E(sigma)T, to proton-coupled pi-electron sigma-channel transfer (PC(pi)E(sigma)T) to proton-coupled pi-electron pi-channel transfer (PC(pi)E(pi)T). This change originates from an alteration of the ordering of the UU moiety SOMO/HDMO (the singly occupied molecular orbital and the highest doubly occupied molecular orbital), induced by binding of the hydrated metal ions. It is a consequence of three associated factors: the asymmetric reactant structure, electron cloud redistribution, and fixing role of metal ions to structural backbone. The findings regarding the modulation of the PT/ET pathway via hydrated metal ions may provide valuable information for a greater understanding of PT/ET cooperative mechanisms, and an alternative way for designing imide-based molecular devices, such as molecular switches and molecular wires.

  18. Relevance of Viroporin Ion Channel Activity on Viral Replication and Pathogenesis.

    PubMed

    Nieto-Torres, Jose L; Verdiá-Báguena, Carmina; Castaño-Rodriguez, Carlos; Aguilella, Vicente M; Enjuanes, Luis

    2015-07-03

    Modification of host-cell ionic content is a significant issue for viruses, as several viral proteins displaying ion channel activity, named viroporins, have been identified. Viroporins interact with different cellular membranes and self-assemble forming ion conductive pores. In general, these channels display mild ion selectivity, and, eventually, membrane lipids play key structural and functional roles in the pore. Viroporins stimulate virus production through different mechanisms, and ion channel conductivity has been proved particularly relevant in several cases. Key stages of the viral cycle such as virus uncoating, transport and maturation are ion-influenced processes in many viral species. Besides boosting virus propagation, viroporins have also been associated with pathogenesis. Linking pathogenesis either to the ion conductivity or to other functions of viroporins has been elusive for a long time. This article summarizes novel pathways leading to disease stimulated by viroporin ion conduction, such as inflammasome driven immunopathology.

  19. Physiologic and pathophysiologic consequences of altered sialylation and glycosylation on ion channel function.

    PubMed

    Baycin-Hizal, Deniz; Gottschalk, Allan; Jacobson, Elena; Mai, Sunny; Wolozny, Daniel; Zhang, Hui; Krag, Sharon S; Betenbaugh, Michael J

    2014-10-17

    Voltage-gated ion channels are transmembrane proteins that regulate electrical excitability in cells and are essential components of the electrically active tissues of nerves, muscle and the heart. Potassium channels are one of the largest subfamilies of voltage sensitive channels and are among the most-studied of the voltage-gated ion channels. Voltage-gated channels can be glycosylated and changes in the glycosylation pattern can affect ion channel function, leading to neurological and neuromuscular disorders and congenital disorders of glycosylation (CDG). Alterations in glycosylation can also be acquired and appear to play a role in development and aging. Recent studies have focused on the impact of glycosylation and sialylation on ion channels, particularly for voltage-gated potassium and sodium channels. The terminal step of sialylation often affects channel activation and inactivation kinetics. The presence of sialic acids on O or N-glycans can alter the gating mechanism and cause conformational changes in the voltage-sensing domains due to sialic acid's negative charges. This manuscript will provide an overview of sialic acids, potassium and sodium channel function, and the impact of sialylation on channel activation and deactivation.

  20. How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2.

    PubMed

    Brohawn, Stephen G

    2015-09-01

    The ability to sense and respond to mechanical forces is essential for life and cells have evolved a variety of systems to convert physical forces into cellular signals. Within this repertoire are the mechanosensitive ion channels, proteins that play critical roles in mechanosensation by transducing forces into ionic currents across cellular membranes. Understanding how these channels work, particularly in animals, remains a major focus of study. Here, I review the current understanding of force gating for a family of metazoan mechanosensitive ion channels, the two-pore domain K(+) channels (K2Ps) TRAAK, TREK1, and TREK2. Structural and functional insights have led to a physical model for mechanical activation of these channels. This model of force sensation by K2Ps is compared to force sensation by bacterial mechanosensitive ion channels MscL and MscS to highlight principles shared among these evolutionarily unrelated channels, as well as differences of potential functional relevance. Recent advances address fundamental questions and stimulate new ideas about these unique mechanosensors.

  1. Heteromultimerization of prokaryotic bacterial cyclic nucleotide-gated (bCNG) ion channels, members of the mechanosensitive channel of small conductance (MscS) superfamily.

    PubMed

    Malcolm, Hannah R; Heo, Yoon-Young; Elmore, Donald E; Maurer, Joshua A

    2014-12-30

    Traditionally, prokaryotic channels are thought to exist as homomultimeric assemblies, while many eukaryotic ion channels form complex heteromultimers. Here we demonstrate that bacterial cyclic nucleotide-gated channels likely form heteromultimers in vivo. Heteromultimer formation is indicated through channel modeling, pull-down assays, and real-time polymerase chain reaction analysis. Our observations demonstrate that prokaryotic ion channels can display complex behavior and regulation akin to that of their eukaryotic counterparts.

  2. An acid-sensing ion channel that detects ischemic pain.

    PubMed

    Naves, L A; McCleskey, E W

    2005-11-01

    Ischemic pain occurs when there is insufficient blood flow for the metabolic needs of an organ. The pain of a heart attack is the prototypical example. Multiple compounds released from ischemic muscle likely contribute to this pain by acting on sensory neurons that innervate muscle. One such compound is lactic acid. Here, we show that ASIC3 (acid-sensing ion channel #3) has the appropriate expression pattern and physical properties to be the detector of this lactic acid. In rats, it is expressed only in sensory neurons and then only on a minority (approximately 40%) of these. Nevertheless, it is expressed at extremely high levels on virtually all dorsal root ganglion sensory neurons that innervate the heart. It is extraordinarily sensitive to protons (Hill slope 4, half-activating pH 6.7), allowing it to readily respond to the small changes in extracellular pH (from 7.4 to 7.0) that occur during muscle ischemia. Moreover, both extracellular lactate and extracellular ATP increase the sensitivity of ASIC3 to protons. This final property makes ASIC3 a "coincidence detector" of three molecules that appear during ischemia, thereby allowing it to better detect acidosis caused by ischemia than other forms of systemic acidosis such as hypercapnia.

  3. Nicotine effect on cardiovascular system and ion channels.

    PubMed

    Hanna, Salma Toma

    2006-03-01

    Smoking is a leading cause of cardiovascular disease, hypertension, myocardial infarction, and stroke. Nicotine is one of the components of cigarette smoke. Nicotine effects on the cardiovascular system reflect the activity of the nicotine receptors centrally and on peripheral autonomic ganglia. It has been found that cigarette smoke extract-induced contraction of porcine coronary arteries is related to superoxide anion-mediated degradation of nitric oxide. Treatment of rabbit aortas with an oxygen free radicals scavenger attenuated cigarette smoke impairment of arterial relaxation. Treatment of smokers with vitamin C, an antioxidant, improved impaired endothelium-dependent reactivity of large peripheral arteries. Thus it appears that chronic smoking and acute exposure to cigarette smoke extract may alter endothelium-dependent reactivity via the production of oxygen derived free radicals. This review discusses the effects of nicotine on resistance arterioles, compliance arteries, smooth muscle cells, and ion channels in the cardiovascular system. We discuss studies performed on humans, nicotine-exposed animals, and cell cultures yielding varying and inconsistent results that may be due to differences in experimental design, species, and the dose of exposure. Nicotine exposure appears to induce a combination of free radical production, vascular wall adhesion, and a reduction of fibrinolytic activity in the plasma.

  4. Unconventional secretory processing diversifies neuronal ion channel properties

    PubMed Central

    Hanus, Cyril; Geptin, Helene; Tushev, Georgi; Garg, Sakshi; Alvarez-Castelao, Beatriz; Sambandan, Sivakumar; Kochen, Lisa; Hafner, Anne-Sophie; Langer, Julian D; Schuman, Erin M

    2016-01-01

    N-glycosylation – the sequential addition of complex sugars to adhesion proteins, neurotransmitter receptors, ion channels and secreted trophic factors as they progress through the endoplasmic reticulum and the Golgi apparatus – is one of the most frequent protein modifications. In mammals, most organ-specific N-glycosylation events occur in the brain. Yet, little is known about the nature, function and regulation of N-glycosylation in neurons. Using imaging, quantitative immunoblotting and mass spectrometry, we show that hundreds of neuronal surface membrane proteins are core-glycosylated, resulting in the neuronal membrane displaying surprisingly high levels of glycosylation profiles that are classically associated with immature intracellular proteins. We report that while N-glycosylation is generally required for dendritic development and glutamate receptor surface expression, core-glycosylated proteins are sufficient to sustain these processes, and are thus functional. This atypical glycosylation of surface neuronal proteins can be attributed to a bypass or a hypo-function of the Golgi apparatus. Core-glycosylation is regulated by synaptic activity, modulates synaptic signaling and accelerates the turnover of GluA2-containing glutamate receptors, revealing a novel mechanism that controls the composition and sensing properties of the neuronal membrane. DOI: http://dx.doi.org/10.7554/eLife.20609.001 PMID:27677849

  5. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    SciTech Connect

    Sati, Priti; Tripathi, V. K.

    2012-12-15

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

  6. Ion-binding properties of a K+ channel selectivity filter in different conformations.

    PubMed

    Liu, Shian; Focke, Paul J; Matulef, Kimberly; Bian, Xuelin; Moënne-Loccoz, Pierre; Valiyaveetil, Francis I; Lockless, Steve W

    2015-12-08

    K(+) channels are membrane proteins that selectively conduct K(+) ions across lipid bilayers. Many voltage-gated K(+) (KV) channels contain two gates, one at the bundle crossing on the intracellular side of the membrane and another in the selectivity filter. The gate at the bundle crossing is responsible for channel opening in response to a voltage stimulus, whereas the gate at the selectivity filter is responsible for C-type inactivation. Together, these regions determine when the channel conducts ions. The K(+) channel from Streptomyces lividians (KcsA) undergoes an inactivation process that is functionally similar to KV channels, which has led to its use as a practical system to study inactivation. Crystal structures of KcsA channels with an open intracellular gate revealed a selectivity filter in a constricted conformation similar to the structure observed in closed KcsA containing only Na(+) or low [K(+)]. However, recent work using a semisynthetic channel that is unable to adopt a constricted filter but inactivates like WT channels challenges this idea. In this study, we measured the equilibrium ion-binding properties of channels with conductive, inactivated, and constricted filters using isothermal titration calorimetry (ITC). EPR spectroscopy was used to determine the state of the intracellular gate of the channel, which we found can depend on the presence or absence of a lipid bilayer. Overall, we discovered that K(+) ion binding to channels with an inactivated or conductive selectivity filter is different from K(+) ion binding to channels with a constricted filter, suggesting that the structures of these channels are different.

  7. Localization and Targeting of Voltage-Gated Ion Channels in Mammalian Central Neurons

    PubMed Central

    Vacher, Helene; Mohapatra, Durga P.; Trimmer, James S.

    2008-01-01

    The intrinsic electrical properties and the synaptic input-output relationships of neurons are governed by the action of voltage-dependent ion channels. The localization of specific population of ion channels with distinct functional properties at discrete sites in neurons dramatically impacts excitability and synaptic transmission. Molecular cloning studies have revealed a large family of genes encoding voltage-dependent ion channel principal and auxiliary subunits, most of which are expressed in mammalian central neurons. Much recent effort has focused on determining which of these subunits co-assemble into native neuronal channel complexes, and the cellular and subcellular distributions of these complexes, as a crucial step in understanding the contribution of these channels to specific aspects of neuronal function. Here we review progress made on recent studies aimed at determining the cellular and subcellular distribution of specific ion channel subunits in mammalian brain neurons using in situ hybridization, and immunohistochemistry. We also discuss the repertoire of ion channel subunits in specific neuronal compartments and implications for neuronal physiology. Finally, we discuss the emerging mechanisms for determining the discrete subcellular distributions observed for many neuronal ion channels. PMID:18923186

  8. Defective interactions of protein partner with ion channels and transporters as alternative mechanisms of membrane channelopathies.

    PubMed

    Kline, Crystal F; Mohler, Peter J

    2014-02-01

    The past twenty years have revealed the existence of numerous ion channel mutations resulting in human pathology. Ion channels provide the basis of diverse cellular functions, ranging from hormone secretion, excitation-contraction coupling, cell signaling, immune response, and trans-epithelial transport. Therefore, the regulation of biophysical properties of channels is vital in human physiology. Only within the last decade has the role of non-ion channel components come to light in regard to ion channel spatial, temporal, and biophysical regulation in physiology. A growing number of auxiliary components have been determined to play elemental roles in excitable cell physiology, with dysfunction resulting in disorders and related manifestations. This review focuses on the broad implications of such dysfunction, focusing on disease-causing mutations that alter interactions between ion channels and auxiliary ion channel components in a diverse set of human excitable cell disease. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé

  9. Ion transport in the gramicidin channel: molecular dynamics study of single and double occupancy.

    PubMed Central

    Roux, B; Prod'hom, B; Karplus, M

    1995-01-01

    The structural and thermodynamic factors responsible for the singly and doubly occupied saturation states of the gramicidin channel are investigated with molecular dynamics simulations and free energy perturbation methods. The relative free energy of binding of all of the five common cations Li+, Na+, K+, Rb+, and Cs+ is calculated in the singly and doubly occupied channel and in bulk water. The atomic system, which includes the gramicidin channel, a model membrane made of neutral Lennard-Jones particles and 190 explicit water molecules to form the bulk region, is similar to the one used in previous work to calculate the free energy profile of a Na+ ion along the axis of the channel. In all of the calculations, the ions are positioned in the main binding sites located near the entrances of the channel. The calculations reveal that the doubly occupied state is relatively more favorable for the larger ions. Thermodynamic decomposition is used to show that the origin of the trend observed in the calculations is due to the loss of favorable interactions between the ion and the single file water molecules inside the channel. Small ions are better solvated by the internal water molecules in the singly occupied state than in the doubly occupied state; bigger ions are solvated almost as well in both occupation states. Water-channel interactions play a role in the channel response. The observed trends are related to general thermodynamical properties of electrolyte solutions. Images FIGURE 2 PMID:7538804

  10. Making channeling visible: keV noble gas ion trails on Pt(111)

    NASA Astrophysics Data System (ADS)

    Redinger, A.; Standop, S.; Rosandi, Y.; Urbassek, H. M.; Michely, T.

    2011-01-01

    The impact of argon and xenon noble gas ions on Pt(111) in grazing incidence geometry are studied through direct comparison of scanning tunneling microscopy images and molecular dynamics simulations. The energy range investigated is 1-15 keV and the angles of incidence with respect to the surface normal are between 78.5° and 88°. The focus of the paper is on events where ions gently enter the crystal at steps and are guided in channels between the top most layers of the crystal. The trajectories of the subsurface channeled ions are visible as trails of surface damage. The mechanism of trail formation is analyzed using simulations and analytical theory. Significant differences between Xe+ and Ar+ projectiles in damage, in the onset energy of subsurface channeling as well as in ion energy dependence of trail length and appearance are traced back to the projectile and ion energy dependence of the stopping force. The asymmetry of damage production with respect to the ion trajectory direction is explained through the details of the channel shape and subchannel structure as calculated from the continuum approximation of the channel potential. Measured and simulated channel switching in directions normal and parallel to the surface as well as an increase of ions entering into channels from the perfect surface with increasing angles of incidence are discussed.

  11. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    SciTech Connect

    Hattori, Motoyuki; Gouaux, Eric

    2012-10-24

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

  12. Highly Sensitive and Patchable Pressure Sensors Mimicking Ion-Channel-Engaged Sensory Organs.

    PubMed

    Chun, Kyoung-Yong; Son, Young Jun; Han, Chang-Soo

    2016-04-26

    Biological ion channels have led to much inspiration because of their unique and exquisite operational functions in living cells. Specifically, their extreme and dynamic sensing abilities can be realized by the combination of receptors and nanopores coupled together to construct an ion channel system. In the current study, we demonstrated that artificial ion channel pressure sensors inspired by nature for detecting pressure are highly sensitive and patchable. Our ion channel pressure sensors basically consisted of receptors and nanopore membranes, enabling dynamic current responses to external forces for multiple applications. The ion channel pressure sensors had a sensitivity of ∼5.6 kPa(-1) and a response time of ∼12 ms at a frequency of 1 Hz. The power consumption was recorded as less than a few μW. Moreover, a reliability test showed stability over 10 000 loading-unloading cycles. Additionally, linear regression was performed in terms of temperature, which showed no significant variations, and there were no significant current variations with humidity. The patchable ion channel pressure sensors were then used to detect blood pressure/pulse in humans, and different signals were clearly observed for each person. Additionally, modified ion channel pressure sensors detected complex motions including pressing and folding in a high-pressure range (10-20 kPa).

  13. Ion Channels in Plant Bioenergetic Organelles, Chloroplasts and Mitochondria: From Molecular Identification to Function.

    PubMed

    Carraretto, Luca; Teardo, Enrico; Checchetto, Vanessa; Finazzi, Giovanni; Uozumi, Nobuyuki; Szabo, Ildiko

    2016-03-07

    Recent technical advances in electrophysiological measurements, organelle-targeted fluorescence imaging, and organelle proteomics have pushed the research of ion transport a step forward in the case of the plant bioenergetic organelles, chloroplasts and mitochondria, leading to the molecular identification and functional characterization of several ion transport systems in recent years. Here we focus on channels that mediate relatively high-rate ion and water flux and summarize the current knowledge in this field, focusing on targeting mechanisms, proteomics, electrophysiology, and physiological function. In addition, since chloroplasts evolved from a cyanobacterial ancestor, we give an overview of the information available about cyanobacterial ion channels and discuss the evolutionary origin of chloroplast channels. The recent molecular identification of some of these ion channels allowed their physiological functions to be studied using genetically modified Arabidopsis plants and cyanobacteria. The view is emerging that alteration of chloroplast and mitochondrial ion homeostasis leads to organelle dysfunction, which in turn significantly affects the energy metabolism of the whole organism. Clear-cut identification of genes encoding for channels in these organelles, however, remains a major challenge in this rapidly developing field. Multiple strategies including bioinformatics, cell biology, electrophysiology, use of organelle-targeted ion-sensitive probes, genetics, and identification of signals eliciting specific ion fluxes across organelle membranes should provide a better understanding of the physiological role of organellar channels and their contribution to signaling pathways in plants in the future.

  14. Transient receptor potential melastatin 1 (TRPM1) is an ion-conducting plasma membrane channel inhibited by zinc ions.

    PubMed

    Lambert, Sachar; Drews, Anna; Rizun, Oleksandr; Wagner, Thomas F J; Lis, Annette; Mannebach, Stefanie; Plant, Sandra; Portz, Melanie; Meissner, Marcel; Philipp, Stephan E; Oberwinkler, Johannes

    2011-04-08

    TRPM1 is the founding member of the melastatin subgroup of transient receptor potential (TRP) proteins, but it has not yet been firmly established that TRPM1 proteins form ion channels. Consequently, the biophysical and pharmacological properties of these proteins are largely unknown. Here we show that heterologous expression of TRPM1 proteins induces ionic conductances that can be activated by extracellular steroid application. However the current amplitudes observed were too small to enable a reliable biophysical characterization. We overcame this limitation by modifying TRPM1 channels in several independent ways that increased the similarity to the closely related TRPM3 channels. The resulting constructs produced considerably larger currents after overexpression. We also demonstrate that unmodified TRPM1 and TRPM3 proteins form functional heteromultimeric channels. With these approaches, we measured the divalent permeability profile and found that channels containing the pore of TRPM1 are inhibited by extracellular zinc ions at physiological concentrations, in contrast to channels containing only the pore of TRPM3. Applying these findings to pancreatic β cells, we found that TRPM1 proteins do not play a major role in steroid-activated currents of these cells. The inhibition of TRPM1 by zinc ions is primarily due to a short stretch of seven amino acids present only in the pore region of TRPM1 but not of TRPM3. Combined, our data demonstrate that TRPM1 proteins are bona fide ion-conducting plasma membrane channels. Their distinct biophysical properties allow a reliable identification of endogenous TRPM1-mediated currents.

  15. Viruses infecting marine picoplancton encode functional potassium ion channels.

    PubMed

    Siotto, Fenja; Martin, Corinna; Rauh, Oliver; Van Etten, James L; Schroeder, Indra; Moroni, Anna; Thiel, Gerhard

    2014-10-01

    Phycodnaviruses are dsDNA viruses, which infect algae. Their large genomes encode many gene products, like small K(+) channels, with homologs in prokaryotes and eukaryotes. Screening for K(+) channels revealed their abundance in viruses from fresh-water habitats. Recent sequencing of viruses from marine algae or from salt water in Antarctica revealed sequences with the predicted characteristics of K(+) channels but with some unexpected features. Two genes encode either 78 or 79 amino acid proteins, which are the smallest known K(+) channels. Also of interest is an unusual sequence in the canonical α-helixes in K(+) channels. Structural prediction algorithms indicate that the new channels have the conserved α-helix folds but the algorithms failed to identify the expected transmembrane domains flanking the K(+) channel pores. In spite of these unexpected properties electophysiological studies confirmed that the new proteins are functional K(+) channels.

  16. Cancer as a channelopathy: ion channels and pumps in tumor development and progression.

    PubMed

    Litan, Alisa; Langhans, Sigrid A

    2015-01-01

    Increasing evidence suggests that ion channels and pumps not only regulate membrane potential, ion homeostasis, and electric signaling in excitable cells but also play important roles in cell proliferation, migration, apoptosis and differentiation. Consistent with a role in cell signaling, channel proteins and ion pumps can form macromolecular complexes with growth factors, and cell adhesion and other signaling molecules. And while cancer is still not being cataloged as a channelopathy, as the non-traditional roles of ion pumps and channels are being recognized, it is increasingly being suggested that ion channels and ion pumps contribute to cancer progression. Cancer cell migration requires the regulation of adhesion complexes between migrating cells and surrounding extracellular matrix (ECM) proteins. Cell movement along solid surfaces requires a sequence of cell protrusions and retractions that mainly depend on regulation of the actin cytoskeleton along with contribution of microtubules and molecular motor proteins such as mysoin. This process is triggered and modulated by a combination of environmental signals, which are sensed and integrated by membrane receptors, including integrins and cadherins. Membrane receptors transduce these signals into downstream signaling pathways, often involving the Rho GTPase protein family. These pathways regulate the cytoskeletal rearrangements necessary for proper timing of adhesion, contraction and detachment of cells in order to find their way through extracellular spaces. Migration and adhesion involve continuous modulation of cell motility, shape and volume, in which ion channels and pumps play major roles. Research on cancer cells suggests that certain ion channels may be involved in aberrant tumor growth and channel inhibitors often lead to growth arrest. This review will describe recent research into the role of ion pumps and ion channels in cell migration and adhesion, and how they may contribute to tumor development.

  17. Increasing positive ion number densities below the peak of ion-electron pair production in Titan's ionosphere

    SciTech Connect

    Vigren, E.; Galand, M.; Shebanits, O.; Wahlund, J.-E.; Geppert, W. D.; Lavvas, P.; Vuitton, V.

    2014-05-01

    We combine derived ion-electron pair formation rates with Cassini Radio Plasma Wave Science Langmuir Probe measurements of electron and positive ion number densities in Titan's sunlit ionosphere. We show that positive ion number densities in Titan's sunlit ionosphere can increase toward significantly lower altitudes than the peak of ion-electron pair formation despite that the effective ion-electron recombination coefficient increases. This is explained by the increased mixing ratios of negative ions, which are formed by electron attachment to neutrals. While such a process acts as a sink for free electrons, the positive ions become longer-lived as the rate coefficients for ion-anion neutralization reactions are smaller than those for ion-electron dissociative recombination reactions.

  18. Relevance of quantum mechanics on some aspects of ion channel function.

    PubMed

    Roy, Sisir; Llinás, Rodolfo

    2009-06-01

    Mathematical modeling of ionic diffusion along K ion channels indicates that such diffusion is oscillatory, at the weak non-Markovian limit. This finding leads us to derive a Schrödinger-Langevin equation for this kind of system within the framework of stochastic quantization. The Planck's constant is shown to be relevant to the Lagrangian action at the level of a single ion channel. This sheds new light on the issue of applicability of quantum formalism to ion channel dynamics and to the physical constraints of the selectivity filter.

  19. Ion channels in gastrointestinal smooth muscle and interstitial cells of Cajal.

    PubMed

    Lyford, Gregory L; Farrugia, Gianrico

    2003-12-01

    A requirement for normal gastrointestinal motility is the tight regulation of ion channels expressed in interstitial cells of Cajal and smooth muscle. Interstitial cells of Cajal generate the slow wave and amplify neuronal signals; smooth muscle functions as the final effector organ. Recent advances in our understanding of the expression and mechano-regulation of these different subtypes of ion channels have allowed the development of hypotheses on how ion channels transduce a variety of inputs into electrical signals that directly or indirectly regulate gastrointestinal motor activity.

  20. Potassium ions in the cavity of a KcsA channel model.

    PubMed

    Yao, Zhenwei; Qiao, Baofu; Olvera de la Cruz, Monica

    2013-12-01

    The high rate of ion flux and selectivity of potassium channels has been attributed to the conformation and dynamics of the ions in the filter which connects the channel cavity and the extracellular environment. The cavity serves as the reservoir for potassium ions diffusing from the intracellular medium. The cavity is believed to decrease the dielectric barrier for the ions to enter the filter. We study here the equilibrium and dynamic properties of potassium ions entering the water-filled cavity of a KcsA channel model. Atomistic molecular dynamics simulations that are supplemented by electrostatic calculations reveal the important role of water molecules and the partially charged protein helices at the bottom of the cavity in overcoming the energy barrier and stabilizing the potassium ion in the cavity. We further show that the average time for a potassium ion to enter the cavity is much shorter than the conduction rate of a potassium passing through the filter, and this time duration is insensitive over a wide range of the membrane potential. The conclusions drawn from the study of the channel model are applicable in generalized contexts, including the entry of ions in artificial ion channels and other confined geometries.

  1. Potassium ions in the cavity of a KcsA channel model

    NASA Astrophysics Data System (ADS)

    Yao, Zhenwei; Qiao, Baofu; Olvera de la Cruz, Monica

    2013-12-01

    The high rate of ion flux and selectivity of potassium channels has been attributed to the conformation and dynamics of the ions in the filter which connects the channel cavity and the extracellular environment. The cavity serves as the reservoir for potassium ions diffusing from the intracellular medium. The cavity is believed to decrease the dielectric barrier for the ions to enter the filter. We study here the equilibrium and dynamic properties of potassium ions entering the water-filled cavity of a KcsA channel model. Atomistic molecular dynamics simulations that are supplemented by electrostatic calculations reveal the important role of water molecules and the partially charged protein helices at the bottom of the cavity in overcoming the energy barrier and stabilizing the potassium ion in the cavity. We further show that the average time for a potassium ion to enter the cavity is much shorter than the conduction rate of a potassium passing through the filter, and this time duration is insensitive over a wide range of the membrane potential. The conclusions drawn from the study of the channel model are applicable in generalized contexts, including the entry of ions in artificial ion channels and other confined geometries.

  2. Quantised transistor response to ion channels revealed by nonstationary noise analysis

    NASA Astrophysics Data System (ADS)

    Becker-Freyseng, C.; Fromherz, P.

    2011-11-01

    We report on the quantised response of a field-effect transistor to molecular ion channels in a biomembrane. HEK293-type cells overexpressing the Shaker B potassium channel were cultured on a silicon chip. An enhanced noise of the transistor is observed when the ion channels are activated. The analysis of the fluctuations in terms of binomial statistics identifies voltage quanta of about 1 μV on the gate. They are attributed to the channel currents that affect the gate voltage according to the Green's function of the cell-chip junction.

  3. Electrophysiology of lead intoxication: effects on voltage-sensitive ion channels.

    PubMed

    Audesirk, G

    1993-01-01

    Neuronal function depends on the activity of a variety of voltage-sensitive, ion-specific membrane channels, including channels permeable chiefly to sodium, potassium, and calcium. The plasma membranes of many neurons contain several types of each class of channel. In general, heavy metal ions exert little effect on voltage-sensitive sodium or potassium channels, but inhibit ion flow through voltage-sensitive calcium channels (VSCC). The literature abounds with descriptions of different types of calcium channels in vertebrate neurons. These descriptions suggest that there are many physiologically and pharmacologically distinct calcium channels, some of them possibly cell-type specific. Among the heavy metals, Pb2+ is one of the most potent inhibitors of VSCC in both vertebrate and invertebrate neurons. Some heavy metals, including Ni2+ and Cd2+, are fairly selective against certain types of calcium channels. Limited evidence suggests that Pb2+ inhibits all calcium channel types within a given cell, with only minor differences in potency. However, there appear to be substantial differences among cell types in the concentration dependence of calcium channel inhibition by Pb2+. Therefore, to appreciate the range of effects of Pb2+ on calcium channels throughout the nervous system, it will be important to examine a large number of cell types. Pb2+ is highly permeable through at least some types of VSCC. Entry of Pb2+ into the neuronal cytoplasm through VSCC, followed by disturbance of intracellular functions, may be a major mechanism of Pb2+ neurotoxicity.

  4. IBiSA_Tools: A Computational Toolkit for Ion-Binding State Analysis in Molecular Dynamics Trajectories of Ion Channels

    PubMed Central

    Kasahara, Kota; Kinoshita, Kengo

    2016-01-01

    Ion conduction mechanisms of ion channels are a long-standing conundrum. Although the molecular dynamics (MD) method has been extensively used to simulate ion conduction dynamics at the atomic level, analysis and interpretation of MD results are not straightforward due to complexity of the dynamics. In our previous reports, we proposed an analytical method called ion-binding state analysis to scrutinize and summarize ion conduction mechanisms by taking advantage of a variety of analytical protocols, e.g., the complex network analysis, sequence alignment, and hierarchical clustering. This approach effectively revealed the ion conduction mechanisms and their dependence on the conditions, i.e., ion concentration and membrane voltage. Here, we present an easy-to-use computational toolkit for ion-binding state analysis, called IBiSA_tools. This toolkit consists of a C++ program and a series of Python and R scripts. From the trajectory file of MD simulations and a structure file, users can generate several images and statistics of ion conduction processes. A complex network named ion-binding state graph is generated in a standard graph format (graph modeling language; GML), which can be visualized by standard network analyzers such as Cytoscape. As a tutorial, a trajectory of a 50 ns MD simulation of the Kv1.2 channel is also distributed with the toolkit. Users can trace the entire process of ion-binding state analysis step by step. The novel method for analysis of ion conduction mechanisms of ion channels can be easily used by means of IBiSA_tools. This software is distributed under an open source license at the following URL: http://www.ritsumei.ac.jp/~ktkshr/ibisa_tools/ PMID:27907142

  5. Mechanosensitive behavior of bacterial cyclic nucleotide gated (bCNG) ion channels: Insights into the mechanism of channel gating in the mechanosensitive channel of small conductance superfamily.

    PubMed

    Malcolm, Hannah R; Elmore, Donald E; Maurer, Joshua A

    2012-01-20

    We have recently identified and characterized the bacterial cyclic nucleotide gated (bCNG) subfamily of the larger mechanosensitive channel of small conductance (MscS) superfamily of ion channels. The channel domain of bCNG channels exhibits significant sequence homology to the mechanosensitive subfamily of MscS in the regions that have previously been used as a hallmark for channels that gate in response to mechanical stress. However, we have previously demonstrated that three of these channels are unable to rescue Escherichiacoli from osmotic downshock. Here, we examine an additional nine bCNG homologues and further demonstrate that the full-length bCNG channels are unable to rescue E. coli from hypoosmotic stress. However, limited mechanosensation is restored upon removal of the cyclic nucleotide binding domain. This indicates that the C-terminal domain of the MscS superfamily can drive channel gating and further highlight the ability of a superfamily of ion channels to be gated by multiple stimuli.

  6. X-ray structure of a prokaryotic pentameric ligand-gated ion channel.

    PubMed

    Hilf, Ricarda J C; Dutzler, Raimund

    2008-03-20

    Pentameric ligand-gated ion channels (pLGICs) are key players in the early events of electrical signal transduction at chemical synapses. The family codes for a structurally conserved scaffold of channel proteins that open in response to the binding of neurotransmitter molecules. All proteins share a pentameric organization of identical or related subunits that consist of an extracellular ligand-binding domain followed by a transmembrane channel domain. The nicotinic acetylcholine receptor (nAChR) is the most thoroughly studied member of the pLGIC family (for recent reviews see refs 1-3). Two sources of structural information provided an architectural framework for the family. The structure of the soluble acetylcholine-binding protein (AChBP) defined the organization of the extracellular domain and revealed the chemical basis of ligand interaction. Electron microscopy studies of the nAChR from Torpedo electric ray have yielded a picture of the full-length protein and have recently led to the interpretation of an electron density map at 4.0 A resolution. Despite the wealth of experimental information, high-resolution structures of any family member have so far not been available. Until recently, the pLGICs were believed to be only expressed in multicellular eukaryotic organisms. The abundance of prokaryotic genome sequences, however, allowed the identification of several homologous proteins in bacterial sources. Here we present the X-ray structure of a prokaryotic pLGIC from the bacterium Erwinia chrysanthemi (ELIC) at 3.3 A resolution. Our study reveals the first structure of a pLGIC at high resolution and provides an important model system for the investigation of the general mechanisms of ion permeation and gating within the family.

  7. Role of ion density in growth, transport, and morphology of nanoparticles generated in plasmas

    NASA Astrophysics Data System (ADS)

    Chai, Kil Byoung; Choe, Wonho

    2012-08-01

    Spatial distribution, growth, and morphology of the nanoparticle were investigated in the plasmas with relatively low and high ion densities. Our experimental results reveal that cauliflower-shaped amorphous nanoparticles are dominantly distributed throughout the entire plasma in the low ion density plasma while spherical crystalline particles are spread near the plasma edge in the high ion density plasma. Only agglomeration growth step of the nanoparticles was observed without molecular accretion growth step in the high density plasma. Based on the experimental and numerical results, the role of ion density in the growth mechanism and transport of the nanoparticles is discussed.

  8. Gramicidins A, B, and C form structurally equivalent ion channels.

    PubMed Central

    Sawyer, D B; Williams, L P; Whaley, W L; Koeppe, R E; Andersen, O S

    1990-01-01

    The membrane structure of the naturally occurring gramicidins A, B, and C was investigated using circular dichroism (CD) spectroscopy and single-channel recording techniques. All three gramicidins form channels with fairly similar properties (Bamberg, E., K. Noda, E. Gross, and P. Läuger. 1976. Biochim. Biophys. Acta. 419:223-228.). When incorporated into lysophosphatidylcholine micelles, however, the CD spectrum of gramicidin B is different from that of gramicidin A or C (cf. Prasad, K. U., T. L. Trapane, D. Busath, G. Szabo, and D. W. Urry. 1983. Int. J. Pept. Protein Res. 22:341-347.). The structural identity of the channels formed by gramicidin B has, therefore, been uncertain. We find that when gramicidins A and B are incorporated into dipalmitoylphosphatidylcholine vesicles, their CD spectra are fairly similar, suggesting that the two channel structures could be similar. In planar bilayers, gramicidins A, B, and C all form hybrid channels with each other. The properties of the hybrid channels are intermediate to those of the symmetric channels, and the appearance rates of the hybrid channels (relative to the symmetric channels) corresponds to what would be predicted if all three gramicidin molecules were to form structurally equivalent channels. These results allow us to interpret the different behavior of channels formed by the three gramicidins solely on the basis of the amino acid substitution at position 11. PMID:1705449

  9. Transient Receptor Potential Ion Channels Control Thermoregulatory Behaviour in Reptiles

    PubMed Central

    Seebacher, Frank; Murray, Shauna A.

    2007-01-01

    Biological functions are governed by thermodynamics, and animals regulate their body temperature to optimise cellular performance and to avoid harmful extremes. The capacity to sense environmental and internal temperatures is a prerequisite for the evolution of thermoregulation. However, the mechanisms that enable ectothermic vertebrates to sense heat remain unknown. The recently discovered thermal characteristics of transient receptor potential ion channels (TRP) render these proteins suitable to act as temperature sensors. Here we test the hypothesis that TRPs are present in reptiles and function to control thermoregulatory behaviour. We show that the hot-sensing TRPV1 is expressed in a crocodile (Crocodylus porosus), an agamid (Amphibolurus muricatus) and a scincid (Pseudemoia entrecasteauxii) lizard, as well as in the quail and zebrafinch (Coturnix chinensis and Poephila guttata). The TRPV1 genes from all reptiles form a unique clade that is delineated from the mammalian and the ancestral Xenopus sequences by an insertion of two amino acids. TRPV1 and the cool-sensing TRPM8 are expressed in liver, muscle (transversospinalis complex), and heart tissues of the crocodile, and have the potential to act as internal thermometer and as external temperatures sensors. Inhibition of TRPV1 and TRPM8 in C. porosus abolishes the typically reptilian shuttling behaviour between cooling and heating environments, and leads to significantly altered body temperature patterns. Our results provide the proximate mechanism of thermal selection in terrestrial ectotherms, which heralds a fundamental change in interpretation, because TRPs provide the mechanism for a tissue-specific input into the animals' thermoregulatory response. PMID:17356692

  10. Cardiac Mechano-Gated Ion Channels and Arrhythmias

    PubMed Central

    Peyronnet, Remi; Nerbonne, Jeanne M.; Kohl, Peter

    2015-01-01

    Mechanical forces will have been omnipresent since the origin of life, and living organisms have evolved mechanisms to sense, interpret and respond to mechanical stimuli. The cardiovascular system in general, and the heart in particular, are exposed to constantly changing mechanical signals, including stretch, compression, bending, and shear. The heart adjusts its performance to the mechanical environment, modifying electrical, mechanical, metabolic, and structural properties over a range of time scales. Many of the underlying regulatory processes are encoded intra-cardially, and are thus maintained even in heart transplant recipients. Although mechano-sensitivity of heart rhythm has been described in the medical literature for over a century, its molecular mechanisms are incompletely understood. Thanks to modern biophysical and molecular technologies, the roles of mechanical forces in cardiac biology are being explored in more detail, and detailed mechanisms of mechano-transduction have started to emerge. Mechano-gated ion channels are cardiac mechano-receptors. They give rise to mechano-electric feedback, thought to contribute to normal function, disease development, and, potentially, therapeutic interventions. In this review, we focus on acute mechanical effects on cardiac electrophysiology, explore molecular candidates underlying observed responses, and discuss their pharmaceutical regulation. From this, we identify open research questions and highlight emerging technologies that may help in addressing them. Cardiac electrophysiology is acutely affected by the heart’s mechanical environment. Mechano-electric feedback affects excitability, conduction, and electrical load, and remains an underestimated player in arrhythmogenesis. The utility of therapeutic interventions targeting acute mechano-electrical transduction is an open field worthy of further study. PMID:26838316

  11. Regulation of Kv2.1 K+ conductance by cell surface channel density

    PubMed Central

    Fox, Philip D.; Loftus, Rob J.; Tamkun, Michael M.

    2013-01-01

    The Kv2.1 voltage-gated K+ channel is found both freely diffusing over the plasma membrane and concentrated in micron-sized clusters localized to the soma, proximal dendrites and axon initial segment of hippocampal neurons. In transfected HEK cells, Kv2.1 channels within cluster microdomains are non-conducting. Using TIRF microscopy the number of GFP-tagged Kv2.1 channels on the HEK cell surface was compared to K+ channel conductance measured by whole-cell voltage-clamp of the same cell. This approach indicated that as channel density increases non-clustered channels cease conducting. At the highest density observed, only 4% of all channels were conducting. Mutant Kv2.1 channels that fail to cluster also possessed the non-conducting state with 17% conducting K+ at higher surface densities. The non-conducting state was specific to Kv2.1 as Kv1.4 was always conducting regardless of the cell-surface expression level. Anti-Kv2.1 immuno-fluorescence intensity, standardized to Kv2.1 surface density in transfected HEK cells, was used to determine the expression levels of endogenous Kv2.1 in cultured rat hippocampal neurons. Endogenous Kv2.1 levels were compared to the number of conducting channels determined by whole-cell voltage clamp. Only 13 and 27% of the endogenous Kv2.1 was conducting in neurons cultured for 14 and 20 days, respectively. Together these data indicate that the non-conducting state depends primarily on surface density as opposed to cluster location and that this non-conducting state also exists for native Kv2.1 found in cultured hippocampal neurons. This excess of Kv2.1 protein relative to K+ conductance further supports a non-conducting role for Kv2.1 in excitable tissues. PMID:23325261

  12. New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy.

    PubMed

    Yamamura, Hisao; Suzuki, Yoshiaki; Imaizumi, Yuji

    2015-05-01

    Ion channels play pivotal roles in a wide variety of cellular functions; therefore, their physiological characteristics, pharmacological responses, and molecular structures have been extensively investigated. However, the mobility of an ion channel itself in the cell membrane has not been examined in as much detail. A total internal reflection fluorescence (TIRF) microscope allows fluorophores to be imaged in a restricted region within an evanescent field of less than 200 nm from the interface of the coverslip and plasma membrane in living cells. Thus the TIRF microscope is useful for selectively visualizing the plasmalemmal surface and subplasmalemmal zone. In this review, we focused on a single-molecule analysis of the dynamic movement of ion channels in the plasma membrane using TIRF microscopy. We also described two single-molecule imaging techniques under TIRF microscopy: fluorescence resonance energy transfer (FRET) for the identification of molecules that interact with ion channels, and subunit counting for the determination of subunit stoichiometry in a functional channel. TIRF imaging can also be used to analyze spatiotemporal Ca(2+) events in the subplasmalemma. Single-molecule analyses of ion channels and localized Ca(2+) signals based on TIRF imaging provide beneficial pharmacological and physiological information concerning the functions of ion channels.

  13. Ion Channels in Native Chloroplast Membranes: Challenges and Potential for Direct Patch-Clamp Studies

    PubMed Central

    Pottosin, Igor; Dobrovinskaya, Oxana

    2015-01-01

    Photosynthesis without any doubt depends on the activity of the chloroplast ion channels. The thylakoid ion channels participate in the fine partitioning of the light-generated proton-motive force (p.m.f.). By regulating, therefore, luminal pH, they affect the linear electron flow and non-photochemical quenching. Stromal ion homeostasis and signaling, on the other hand, depend on the activity of both thylakoid and envelope ion channels. Experimentally, intact chloroplasts and swollen thylakoids were proven to be suitable for direct measurements of the ion channels activity via conventional patch-clamp technique; yet, such studies became infrequent, although their potential is far from being exhausted. In this paper we wish to summarize existing challenges for direct patch-clamping of native chloroplast membranes as well as present available results on the activity of thylakoid Cl− (ClC?) and divalent cation-permeable channels, along with their tentative roles in the p.m.f. partitioning, volume regulation, and stromal Ca2+ and Mg2+ dynamics. Patch-clamping of the intact envelope revealed both large-conductance porin-like channels, likely located in the outer envelope membrane and smaller conductance channels, more compatible with the inner envelope location. Possible equivalent model for the sandwich-like arrangement of the two envelope membranes within the patch electrode will be discussed, along with peculiar properties of the fast-activated cation channel in the context of the stromal pH control. PMID:26733887

  14. An asymmetric approach to modeling ion channels using finite element analysis.

    PubMed

    Siksik, M; Krishnamurthy, V

    2009-01-01

    Biological ion channels are water filled pores in the cell membrane. They regulate the flow of ions in and out of the cell. Modeling the dynamics of these channels and relating their structure to functionality is crucial in understanding the mechanisms by which they conduct. This paper proposes a novel Finite Element Method (FEM) based simulation framework for modeling of ion channels that does not assume channel symmetry. This is the first framework that allows the use of multiple dielectric constants inside such channels without assuming geometrical symmetry thus providing a more realistic model of the channel. Due to the run-time complexity of the problem, lookup tables must be constructed in memory to store pre-calculated electric potential information. The large number of elements involved in FEM and channel resolution requirements can potentially result in very large lookup tables leading to a performance "bottleneck". This paper answers the following question: Does the accuracy introduced by using an asymmetric model outweigh the inaccuracy caused by having to reduce the size and resolution of electric-field look-up tables? This paper compares the memory footprint of an ion channel simulator that assumes a symmetric channel model versus an asymmetric model. We show that currently available personal computers are sufficient for attaining reasonable levels of accuracy for both. Our results show diminishing returns in accuracy with tables sized greater than 8.5 GB for the asymmetric model.

  15. Molecular Dynamics Simulation of the Antiamoebin Ion Channel: Linking Structure and Conductance

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Wei, Chenyu; Bjelkmar, Paer; Wallace, B. A.; Pohorille, Andrew

    2011-01-01

    Molecular dynamics simulations were carried out in order to ascertain which of the potential multimeric forms of the transmembrane peptaibol channel, antiamoebin, is consistant with its measured conductance. Estimates of the conductance obtained through counting ions that cross the channel and by solving the Nernst-Planck equation yield consistent results, indicating that the motion of ions inside the channel can be satisfactorily described as diffusive.The calculated conductance of octameric channels is markedly higher than the conductance measured in single channel recordings, whereas the tetramer appears to be non-conducting. The conductance of the hexamer was estimated to be 115+/-34 pS and 74+/-20 pS, at 150 mV and 75 mV, respectively, in satisfactory agreement with the value of 90 pS measured at 75 mV. On this basis we propose that the antiamoebin channel consists of six monomers. Its pore is large enough to accommodate K(+) and Cl(-) with their first solvation shells intact. The free energy barrier encountered by K(+) is only 2.2 kcal/mol whereas Cl(-) encounters a substantially higher barrier of nearly 5 kcal/mol. This difference makes the channel selective for cations. Ion crossing events are shown to be uncorrelated and follow Poisson statistics. keywords: ion channels, peptaibols, channel conductance, molecular dynamics

  16. Unraveling the mechanism of selective ion transport in hydrophobic subnanometer channels.

    PubMed

    Li, Hui; Francisco, Joseph S; Zeng, Xiao Cheng

    2015-09-01

    Recently reported synthetic organic nanopore (SONP) can mimic a key feature of natural ion channels, i.e., selective ion transport. However, the physical mechanism underlying the K(+)/Na(+) selectivity for the SONPs is dramatically different from that of natural ion channels. To achieve a better understanding of the selective ion transport in hydrophobic subnanometer channels in general and SONPs in particular, we perform a series of ab initio molecular dynamics simulations to investigate the diffusivity of aqua Na(+) and K(+) ions in two prototype hydrophobic nanochannels: (i) an SONP with radius of 3.2 Å, and (ii) single-walled carbon nanotubes (CNTs) with radii of 3-5 Å (these radii are comparable to those of the biological potassium K(+) channels). We find that the hydration shell of aqua Na(+) ion is smaller than that of aqua K(+) ion but notably more structured and less yielding. The aqua ions do not lower the diffusivity of water molecules in CNTs, but in SONP the diffusivity of aqua ions (Na(+) in particular) is strongly suppressed due to the rugged inner surface. Moreover, the aqua Na(+) ion requires higher formation energy than aqua K(+) ion in the hydrophobic nanochannels. As such, we find that the ion (K(+) vs. Na(+)) selectivity of the (8, 8) CNT is ∼20× higher than that of SONP. Hence, the (8, 8) CNT is likely the most efficient artificial K(+) channel due in part to its special interior environment in which Na(+) can be fully solvated, whereas K(+) cannot. This work provides deeper insights into the physical chemistry behind selective ion transport in nanochannels.

  17. Promotion of Water Channels for Enhanced Ion Transport in 14 nm Diameter Carbon Nanotubes.

    PubMed

    Sheng, Jiadong; Zhu, Qi; Zeng, Xian; Yang, Zhaohui; Zhang, Xiaohua

    2017-03-29

    Ion transport plays an important role in solar-to-electricity conversion, drug delivery, and a variety of biological processes. Carbon nanotube (CNT) is a promising material as an ion transporter in the applications of the mimicking of natural ion channels, desalination, and energy harvesting. Here, we demonstrate a unique, enhanced ion transport through a vertically aligned multiwall CNT membrane after the application of an electric potential across CNT membranes. Interestingly, electrowetting arising from the application of an electric potential is critical for the enhancement of overall ion transport rate through CNT membranes. The wettability of a liquid with high surface tension on the interior channel walls of CNTs increases during an electric potential treatment and promotes the formation of water channels in CNTs. The formation of water channels in CNTs induces an increase in overall ion diffusion through CNT membranes. This phenomenon is also related to a decrease in the charge transfer resistance of CNTs (Rct) after an electric potential is applied. Correspondingly, the enhanced ion flow rate gives rise to an enhancement in the capacitive performance of CNT based membranes. Our observations might have profound impact on the development of CNT based energy storage devices as well as artificial ion channels.

  18. Ion-water and ion-polypeptide correlations in a gramicidin-like channel. A molecular dynamics study.

    PubMed Central

    Jordan, P C

    1990-01-01

    This work describes a molecular dynamics study of ion-water and ion-polypeptide correlation in a model gramicidin-like channel (the polyglycine analogue) based upon interaction between polarizable, multipolar groups. The model suggests that the vicinity of the dimer junction and of the ethanolamine tail are regions of unusual flexibility. Cs+ binds weakly in the mouth of the channel: there it coordinates five water molecules and the #11CO group with which it interacts strongly and is ideally aligned. In the channel interior it is generally pentacoordinate; at the dimer junction, because of increased channel flexibility, it again becomes essentially hexacoordinate. The ion is also strongly coupled to the #13 CO but not to either #9 or #15, consistent with 13C NMR data. Water in the channel interior is strikingly different from bulk water; it has a much lower mean dipole moment. This correlates with our observation (which differs from that of previous studies) that water-water angular correlations do not persist within the channel, a result independent of ion occupancy or ionic polarity. In agreement with streaming potential measurements, there are seven single file water molecules associated with Cs+ permeation; one of these is always in direct contact with bulk water. At the mouth of an ion-free channel, there is a pattern of dipole moment alteration among the polar groups. Due to differential interaction with water, exo-carbonyls have unusually large dipole moments whereas those of the endo-carbonyls are low. The computed potential of mean force for CS+ translocation is qualitatively reasonable. However, it only exhibits a weakly articulated binding site and it does not quantitatively account for channel energetics. Correction for membrane polarization reduces, but does not eliminate, these problems. PMID:1705448

  19. Flowing afterglow measurements of the density dependence of gas-phase ion-ion mutual neutralization reactions

    SciTech Connect

    Shuman, Nicholas S.; Viggiano, Albert A.; Johnsen, Rainer

    2013-05-28

    We have studied the dependence of several ion-ion mutual neutralization (MN) reactions on helium density in the range from 1.6 Multiplication-Sign 10{sup 16} to 1.5 Multiplication-Sign 10{sup 17} cm{sup -3} at 300 K, using the Variable Electron and Neutral Density Attachment Mass Spectrometry method. The rate coefficients of the reactions Ar{sup +}+ Br{sub 2}{sup -}, Ar{sup +}+ SF{sub 6}{sup -}, and Ar{sup +}+ C{sub 7}F{sub 14}{sup -} were found to be independent of gas density over the range studied, in disagreement with earlier observations that similar MN reactions are strongly enhanced at the same gas densities. The cause of the previous enhancement with density is traced to the use of 'orbital-motion-limit' theory to infer ion densities from the currents collected by ion-attracting Langmuir probes in a region where it is not applicable.

  20. Flowing afterglow measurements of the density dependence of gas-phase ion-ion mutual neutralization reactions

    NASA Astrophysics Data System (ADS)

    Shuman, Nicholas S.; Viggiano, Albert A.; Johnsen, Rainer

    2013-05-01

    We have studied the dependence of several ion-ion mutual neutralization (MN) reactions on helium density in the range from 1.6 × 1016 to 1.5 × 1017 cm-3 at 300 K, using the Variable Electron and Neutral Density Attachment Mass Spectrometry method. The rate coefficients of the reactions Ar+ + Br2-, Ar+ + SF6-, and Ar+ + C7F14- were found to be independent of gas density over the range studied, in disagreement with earlier observations that similar MN reactions are strongly enhanced at the same gas densities. The cause of the previous enhancement with density is traced to the use of "orbital-motion-limit" theory to infer ion densities from the currents collected by ion-attracting Langmuir probes in a region where it is not applicable.

  1. Ion channel regulation of intracellular calcium and airway smooth muscle function.

    PubMed

    Perez-Zoghbi, Jose F; Karner, Charlotta; Ito, Satoru; Shepherd, Malcolm; Alrashdan, Yazan; Sanderson, Michael J

    2009-10-01

    Airway hyper-responsiveness associated with asthma is mediated by airway smooth muscle cells (SMCs) and has a complicated etiology involving increases in cell contraction and proliferation and the secretion of inflammatory mediators. Although these pathological changes are diverse, a common feature associated with their regulation is a change in intracellular Ca(2+) concentration ([Ca(2+)](i)). Because the [Ca(2+)](i) itself is a function of the activity and expression of a variety of ion channels, in both the plasma membrane and sarcoplasmic reticulum of the SMC, the modification of this ion channel activity may predispose airway SMCs to hyper-responsiveness. Our objective is to review how ion channels determine the [Ca(2+)](i) and influence the function of airway SMCs and emphasize the potential of ion channels as sites for therapeutic approaches to asthma.

  2. Coupling mechanical forces to electrical signaling: molecular motors and the intracellular transport of ion channels.

    PubMed

    Barry, Joshua; Gu, Chen

    2013-04-01

    Proper localization of various ion channels is fundamental to neuronal functions, including postsynaptic potential plasticity, dendritic integration, action potential initiation and propagation, and neurotransmitter release. Microtubule-based forward transport mediated by kinesin motors plays a key role in placing ion channel proteins to correct subcellular compartments. PDZ- and coiled-coil-domain proteins function as adaptor proteins linking ionotropic glutamate and GABA receptors to various kinesin motors, respectively. Recent studies show that several voltage-gated ion channel/transporter proteins directly bind to kinesins during forward transport. Three major regulatory mechanisms underlying intracellular transport of ion channels are also revealed. These studies contribute to understanding how mechanical forces are coupled to electrical signaling and illuminating pathogenic mechanisms in neurodegenerative diseases.

  3. Electromagnetic dispersion characteristics of a high energy electron beam guided with an ion channel

    NASA Astrophysics Data System (ADS)

    Jixiong, Xiao; Zhong, Zeng; Zhijiang, Wang; Donghui, Xia; Changhai, Liu

    2017-02-01

    Taking self-fields into consideration, dispersion properties of two types of electromagnetic modes for a high energy electron beam guided with an ion channel are investigated by using the linear perturbation theory. The dependences of the dispersion frequencies of electromagnetic waves on the electron beam radius, betatron frequency and boundary current are revealed. It is found that the electron beam radius and betatron frequency have different influences on the electromagnetic waves dispersion behavior by compared with the previous works. As the boundary current is taken into account, the TM modes will have two branches and a low-frequency branch emerged as the new branch in strong ion channel case. This new branch has similar dispersion behavior to the betatron modes. For TE modes, there are two branches and they have different dispersion behaviors in strong ion channel case. However, in weak ion channel case, the dispersion behaviors for both of the low frequency and high frequency branches are similar.

  4. Protein-Protein Interactions as New Targets for Ion Channel Drug Discovery

    PubMed Central

    Stoilova-McPhie, Svetla; Ali, Syed; Laezza, Fernanda

    2014-01-01

    Protein-protein interactions (PPI) are key molecular elements that provide the basis of signaling in virtually all cellular processes. The precision and specificity of these molecular interactions have ignited a strong interest in pursuing PPI surfaces as new targets for drug discovery, especially against ion channels in the central nervous system (CNS) where selectivity and specificity are vital for developing drugs with limited side effects. Ion channels are large transmembrane domain proteins assembled with multiple regulatory proteins binding to the intracellular portion of channels. These macromolecular complexes are difficult to isolate, purify and reconstitute, posing a significant barrier in targeting these PPI for drug discovery purposes. Here, we will provide a short overview of salient features of PPI and discuss successful studies focusing on protein-channel interactions that could inspire new drug discovery campaigns targeting ion channel complexes. PMID:25485305

  5. [Molecular dynamics simulations of migration of ions and molecules through the acetylcholine receptor channel].

    PubMed

    Shaĭtan, K V; Li, A; Tershkina, K B; Kirpichnikov, M P

    2007-01-01

    A dynamic model of the channel of an acetylcholine receptor in a closed state has been proposed. The channel is formed by five a-helices of subunit M2 and stabilized by the cyclic hydrocarbon (CH2)105. The migration of charged and unchanged van der Waals particles with a diameter of 7.72 A equivalent to the diameter of a hydrated sodium ion has been studied. The migration occurred by the action of external force applied to the complex along the channel axis. In the closed state, the inhibition of ions is due to two components: electrostatic interaction and steric constraints. The van der Waals channel gate is formed by residues 13'-A-Val255, B-Val261, C-Val269, D-Val255, and E-Ile264, and the negatively changed residues occurring in the upper part of the channel have a great effect on ion selectivity.

  6. Ion channels generating complex spikes in cartwheel cells of the dorsal cochlear nucleus.

    PubMed

    Kim, Yuil; Trussell, Laurence O

    2007-02-01

    Cartwheel cells are glycinergic interneurons that modify somatosensory input to the dorsal cochlear nucleus. They are characterized by firing of mixtures of both simple and complex action potentials. To understand what ion channels determine the generation of these two types of spike waveforms, we recorded from cartwheel cells using the gramicidin perforated-patch technique in brain slices of mouse dorsal cochlear nucleus and applied channel-selective blockers. Complex spikes were distinguished by whether they arose directly from a negative membrane potential or later during a long depolarization. Ca(2+) channels and Ca(2+)-dependent K(+) channels were major determinants of complex spikes. Onset complex spikes required T-type and possibly R-type Ca(2+) channels and were shaped by BK and SK K(+) channels. Complex spikes arising later in a depolarization were dependent on P/Q- and L-type Ca(2+) channels as well as BK and SK channels. BK channels also contributed to fast repolarization of simple spikes. Simple spikes featured an afterdepolarization that is probably the trigger for complex spiking and is shaped by T/R-type Ca(2+) and SK channels. Fast spikes were dependent on Na(+) channels; a large persistent Na(+) current may provide a depolarizing drive for spontaneous activity in cartwheel cells. Thus the diverse electrical behavior of cartwheel cells is determined by the interaction of a wide variety of ion channels with a prominent role played by Ca(2+).

  7. Normal mode gating motions of a ligand-gated ion channel persist in a fully hydrated lipid bilayer model.

    PubMed

    Bertaccini, Edward J; Trudell, James R; Lindahl, Erik

    2010-08-18

    We have previously used molecular modeling and normal-mode analyses combined with experimental data to visualize a plausible model of a transmembrane ligand-gated ion channel. We also postulated how the gating motion of the channel may be affected by the presence of various ligands, especially anesthetics. As is typical for normal-mode analyses, those studies were performed in vacuo to reduce the computational complexity of the problem. While such calculations constitute an efficient way to model the large scale structural flexibility of transmembrane proteins, they can be criticized for neglecting the effects of an explicit phospholipid bilayer or hydrated environment. Here, we show the successful calculation of normal-mode motions for our model of a glycine α-1 receptor, now suspended in a fully hydrated lipid bilayer. Despite the almost uniform atomic density, the introduction of water and lipid does not grossly distort the overall gating motion. Normal-mode analysis revealed that even a fully immersed glycine α-1 receptor continues to demonstrate an iris-like channel gating motion as a low-frequency, high-amplitude natural harmonic vibration consistent with channel gating. Furthermore, the introduction of periodic boundary conditions allows the examination of simultaneous harmonic vibrations of lipid in synchrony with the protein gating motions that are compatible with reasonable lipid bilayer perturbations. While these perturbations tend to influence the overall protein motion, this work provides continued support for the iris-like motion model that characterizes gating within the family of ligand-gated ion channels.

  8. Drug-induced Inhibition and Trafficking Disruption of ion Channels: Pathogenesis of QT Abnormalities and Drug-induced Fatal Arrhythmias.

    PubMed

    Cubeddu, Luigi X

    2016-01-01

    Risk of severe and fatal ventricular arrhythmias, presenting as Torsade de Pointes (TdP), is increased in congenital and acquired forms of long QT syndromes (LQTS). Drug-induced inhibition of K+ currents, IKs, IKr, IK1, and/or Ito, delay repolarization, prolong QT, and increase the risk of TdP. Drug-induced interference with IKr is the most common cause of acquired LQTS/TdP. Multiple drugs bind to KNCH2-hERG-K+ channels affecting IKr, including antiarrythmics, antibiotics, antivirals, azole-antifungals, antimalarials, anticancer, antiemetics, prokinetics, antipsychotics, and antidepressants. Azithromycin has been recently added to this list. In addition to direct channel inhibition, some drugs interfere with the traffic of channels from the endoplasmic reticulum to the cell membrane, decreasing mature channel membrane density; e.g., pentamidine, geldalamicin, arsenic trioxide, digoxin, and probucol. Other drugs, such as ketoconazole, fluoxetine, norfluoxetine, citalopram, escitalopram, donepezil, tamoxifen, endoxifen, atazanavir, and roxitromycin, induce both direct channel inhibition and impaired channel trafficking. Although many drugs prolong the QT interval, TdP is a rare event. The following conditions increase the risk of drug-induced TdP: a) Disease states/electrolyte levels (heart failure, structural cardiac disease, bradycardia, hypokalemia); b) Pharmacogenomic variables (presence of congenital LQTS, subclinical ion-channel mutations, history of or having a relative with history of drug-induced long QT/TdP); c) Pharmacodynamic and kinetic factors (high doses, women, elderly, metabolism inhibitors, combining two or more QT prolonging drugs, drugs that prolong the QT and increase QT dispersion, and drugs with multiple actions on ion channels). Because most of these conditions are preventable, careful evaluation of risk factors and increased knowledge of drug use associated with repolarization abnormalities are strongly recommended.

  9. Ion channels in plants: from bioelectricity, via signaling, to behavioral actions.

    PubMed

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In his recent opus magnum review paper published in the October issue of Physiology Reviews, Rainer Hedrich summarized the field of plant ion channels. (1) He started from the earliest electric recordings initiated by Charles Darwin of carnivorous Dionaea muscipula, (1,2) known as Venus flytrap, and covered the topic extensively up to the most recent discoveries on Shaker-type potassium channels, anion channels of SLAC/SLAH families, and ligand-activated channels of glutamate receptor-like type (GLR) and cyclic nucleotide-gated channels (CNGC). (1.)

  10. A helical-dipole model describes the single-channel current rectification of an uncharged peptide ion channel.

    PubMed Central

    Kienker, P K; DeGrado, W F; Lear, J D

    1994-01-01

    We are designing simple peptide ion channels as model systems for the study of the physical principles controlling conduction through ion-channel proteins. Here we report on an uncharged peptide, Ac-(Leu-Ser-Ser-Leu-Leu-Ser-Leu)3-CONH2, designed to form an aggregate of parallel, amphiphilic, membrane-spanning alpha-helices around a central water-filled pore. This peptide in planar lipid bilayers forms ion channels that show single-channel current rectification in symmetric 1 M KCl. The current at a given holding membrane potential is larger than the current measured through the same channel when the potential is reversed. Based on our hypothesized gating mechanism, the larger currents flow from the peptide carboxyl terminus toward the amino terminus. We present an ionic electrodiffusion model based on the helical-dipole potential and the dielectric interfacial polarization energy, which with reasonable values for dipole magnitude and dielectric constants, accurately replicates the current-voltage data. PMID:7515180

  11. Gasotransmitter Regulation of Ion Channels: A Key Step in O2 Sensing By the Carotid Body

    PubMed Central

    Prabhakar, Nanduri R.

    2014-01-01

    Carotid bodies detect hypoxia in arterial blood, translating this stimulus into physiological responses via the CNS. It is long established that ion channels are critical to this process. More recent evidence indicates that gasotransmitters exert powerful influences on O2 sensing by the carotid body. Here, we review current understanding of hypoxia-dependent production of gasotransmitters, how they regulate ion channels in the carotid body, and how this impacts carotid body function. PMID:24382871

  12. Low Density Parity Check Codes: Bandwidth Efficient Channel Coding

    NASA Technical Reports Server (NTRS)

    Fong, Wai; Lin, Shu; Maki, Gary; Yeh, Pen-Shu

    2003-01-01

    Low Density Parity Check (LDPC) Codes provide near-Shannon Capacity performance for NASA Missions. These codes have high coding rates R=0.82 and 0.875 with moderate code lengths, n=4096 and 8176. Their decoders have inherently parallel structures which allows for high-speed implementation. Two codes based on Euclidean Geometry (EG) were selected for flight ASIC implementation. These codes are cyclic and quasi-cyclic in nature and therefore have a simple encoder structure. This results in power and size benefits. These codes also have a large minimum distance as much as d,,, = 65 giving them powerful error correcting capabilities and error floors less than lo- BER. This paper will present development of the LDPC flight encoder and decoder, its applications and status.

  13. Calcium ions open a selectivity filter gate during activation of the MthK potassium channel.

    PubMed

    Posson, David J; Rusinova, Radda; Andersen, Olaf S; Nimigean, Crina M

    2015-09-23

    Ion channel opening and closing are fundamental to cellular signalling and homeostasis. Gates that control K(+) channel activity were found both at an intracellular pore constriction and within the selectivity filter near the extracellular side but the specific location of the gate that opens Ca(2+)-activated K(+) channels has remained elusive. Using the Methanobacterium thermoautotrophicum homologue (MthK) and a stopped-flow fluorometric assay for fast channel activation, we show that intracellular quaternary ammonium blockers bind to closed MthK channels. Since the blockers are known to bind inside a central channel cavity, past the intracellular entryway, the gate must be within the selectivity filter. Furthermore, the blockers access the closed channel slower than the open channel, suggesting that the intracellular entryway narrows upon pore closure, without preventing access of either the blockers or the smaller K(+). Thus, Ca(2+)-dependent gating in MthK occurs at the selectivity filter with coupled movement of the intracellular helices.

  14. Calcium ions open a selectivity filter gate during activation of the MthK potassium channel

    NASA Astrophysics Data System (ADS)

    Posson, David J.; Rusinova, Radda; Andersen, Olaf S.; Nimigean, Crina M.

    2015-09-01

    Ion channel opening and closing are fundamental to cellular signalling and homeostasis. Gates that control K+ channel activity were found both at an intracellular pore constriction and within the selectivity filter near the extracellular side but the specific location of the gate that opens Ca2+-activated K+ channels has remained elusive. Using the Methanobacterium thermoautotrophicum homologue (MthK) and a stopped-flow fluorometric assay for fast channel activation, we show that intracellular quaternary ammonium blockers bind to closed MthK channels. Since the blockers are known to bind inside a central channel cavity, past the intracellular entryway, the gate must be within the selectivity filter. Furthermore, the blockers access the closed channel slower than the open channel, suggesting that the intracellular entryway narrows upon pore closure, without preventing access of either the blockers or the smaller K+. Thus, Ca2+-dependent gating in MthK occurs at the selectivity filter with coupled movement of the intracellular helices.

  15. Structural mechanism for the regulation of HCN ion channels by the accessory protein TRIP8b

    PubMed Central

    DeBerg, Hannah A.; Bankston, John R.; Rosenbaum, Joel C.; Brzovic, Peter S.; Zagotta, William N.; Stoll, Stefan

    2015-01-01

    Summary Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels underlie the cationic Ih current present in many neurons. The direct binding of cAMP to HCN channels increases the rate and extent of channel opening and results in a depolarizing shift in the voltage dependence of activation. TRIP8b is an accessory protein that regulates the cell surface expression and dendritic localization of HCN channels and reduces the cyclic nucleotide dependence of these channels. Here we use electron paramagnetic resonance (EPR) to show that TRIP8b binds to the apo state of the cyclic nucleotide-binding domain (CNBD) of HCN2 channels without changing the overall domain structure. With EPR and nuclear magnetic resonance (NMR), we locate TRIP8b relative to the HCN channel and identify the binding interface on the CNBD. These data provide a structural framework for understanding how TRIP8b regulates the cyclic nucleotide dependence of HCN channels. PMID:25800552

  16. Transient receptor potential melastatin 3 is a phosphoinositide-dependent ion channel.

    PubMed

    Badheka, Doreen; Borbiro, Istvan; Rohacs, Tibor

    2015-07-01

    Phosphoinositides are emerging as general regulators of the functionally diverse transient receptor potential (TRP) ion channel family. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) has been reported to positively regulate many TRP channels, but in several cases phosphoinositide regulation is controversial. TRP melastatin 3 (TRPM3) is a heat-activated ion channel that is also stimulated by chemical agonists, such as pregnenolone sulfate. Here, we used a wide array of approaches to determine the effects of phosphoinositides on TRPM3. We found that channel activity in excised inside-out patches decreased over time (rundown), an attribute of PI(4,5)P2-dependent ion channels. Channel activity could be restored by application of either synthetic dioctanoyl (diC8) or natural arachidonyl stearyl (AASt) PI(4,5)P2. The PI(4,5)P2 precursor phosphatidylinositol 4-phosphate (PI(4)P) was less effective at restoring channel activity. TRPM3 currents were also restored by MgATP, an effect which was inhibited by two different phosphatidylinositol 4-kinase inhibitors, or by pretreatment with a phosphatidylinositol-specific phospholipase C (PI-PLC) enzyme, indicating that MgATP acted by generating phosphoinositides. In intact cells, reduction of PI(4,5)P2 levels by chemically inducible phosphoinositide phosphatases or a voltage-sensitive 5'-phosphatase inhibited channel activity. Activation of PLC via muscarinic receptors also inhibited TRPM3 channel activity. Overall, our data indicate that TRPM3 is a phosphoinositide-dependent ion channel and that decreasing PI(4,5)P2 abundance limits its activity. As all other members of the TRPM family have also been shown to require PI(4,5)P2 for activity, our data establish PI(4,5)P2 as a general positive cofactor of this ion channel subfamily.

  17. Evaluating the impact of a wide range of vegetation densities on river channel pattern

    NASA Astrophysics Data System (ADS)

    Pattison, Ian; Roucou, Ron

    2016-04-01

    Braided rivers are very dynamic systems which have complex controls over their planform and flow dynamics. Vegetation is one variable which influences channel geometry and pattern, through its effect on local flow hydraulics and the process continuum of sediment erosion-transport-deposition. Furthermore, where in the braided floodplain stable vegetation develops depends on the temporal sequencing of the river discharge i.e. floods. Understanding the effect of vegetation in these highly dynamic systems has multiple consequences for human activity and floodplain management. This paper focusses on the specific role of vegetation density in controlling braided river form and processes. Previous research in this field has been contradictory; with Gran and Paola (2001) finding that increasing vegetation density decreased the number of active channels. In contrast, Coulthard (2005] observed that as vegetation become denser there was an increase in the number of channels. This was hypothesized to be caused by flow separation around vegetation and the development of bars immediately downstream of the plant. This paper reports the results from a set of experiments in a 4m by 1m flume, where discharge, slope and sediment size were kept constant. Artificial grass was used to represent vegetation with a density ranging from 50 plants/m2 to 400 plants/m2. Digital photographs, using a GoPro camera with a fish eye lens, were taken from ~1m above the flume at an interval of 30 seconds during the 3 hour experiment. The experiments showed that as the vegetation density increased from 50 to 150 plants/m2, the number of channel bars developing doubled from 12 to 24. At vegetation densities greater than 150 plants/m2 there was a decline in the number of bars created to a minimum of 8 bars for a density of 400 plants/m2. We attribute these patterns to the effect that the vegetation has on flow hydraulics, sediment transport processes and the spatial patterns of erosion and deposition. We

  18. A molecular framework for temperature-dependent gating of ion channels

    PubMed Central

    Chowdhury, Sandipan; Jarecki, Brian W.; Chanda, Baron

    2014-01-01

    Summary Perception of heat or cold in higher organisms is mediated by specialized ion channels whose gating is exquisitely sensitive to temperature. The physicochemical underpinnings of this temperature-sensitive gating have proven difficult to parse. Here, we took a bottom-up protein design approach, and rationally engineered ion channels to activate in response to thermal stimuli. By varying amino acid polarities at sites undergoing state-dependent changes in solvation, we were able to systematically confer temperature-sensitivity to a canonical voltage-gated ion channel. Our results imply that the specific heat capacity change during channel gating is a major determinant of thermo-sensitive gating. We also show that reduction of gating charges amplifies temperature-sensitivity of designer channels which accounts for low voltage-sensitivity in all known temperature-gated ion channels. These emerging principles suggest a plausible molecular mechanism for temperature-dependent gating that reconcile how ion channels with an overall conserved transmembrane architecture may exhibit a wide range of temperature-sensing phenotypes. PMID:25156949

  19. Altered ion channel conductance and ionic selectivity induced by large imposed membrane potential pulse.

    PubMed Central

    Chen, W; Lee, R C

    1994-01-01

    The effects of large magnitude transmembrane potential pulses on voltage-gated Na and K channel behavior in frog skeletal muscle membrane were studied using a modified double vaseline-gap voltage clamp. The effects of electroconformational damage to ionic channels were separated from damage to lipid bilayer (electroporation). A 4 ms transmembrane potential pulse of -600 mV resulted in a reduction of both Na and K channel conductivities. The supraphysiologic pulses also reduced ionic selectivity of the K channels against Na+ ions, resulting in a depolarization of the membrane resting potential. However, TTX and TEA binding effects were unaltered. The kinetics of spontaneous reversal of the electroconformational damage of channel proteins was found to be dependent on the magnitude of imposed membrane potential pulse. These results suggest that muscle and nerve dysfunction after electrical shock may be in part caused by electroconformational damage to voltage-gated ion channels. PMID:7948676

  20. Regulation of photosynthesis by ion channels in cyanobacteria and higher plants.

    PubMed

    Checchetto, Vanessa; Teardo, Enrico; Carraretto, Luca; Formentin, Elide; Bergantino, Elisabetta; Giacometti, Giorgio Mario; Szabo, Ildiko

    2013-12-01

    Photosynthesis converts light energy into chemical energy, and supplies ATP and NADPH for CO2 fixation into carbohydrates and for the synthesis of several compounds which are essential for autotrophic growth. Oxygenic photosynthesis takes place in thylakoid membranes of chloroplasts and photosynthetic prokaryote cyanobacteria. An ancestral photoautotrophic prokaryote related to cyanobacteria has been proposed to give rise to chloroplasts of plants and algae through an endosymbiotic event. Indeed, photosynthetic complexes involved in the electron transport coupled to H(+) translocation and ATP synthesis are similar in higher plants and cyanobacteria. Furthermore, some of the protein and solute/ion conducting machineries also share common structure and function. Electrophysiological and biochemical evidence support the existence of ion channels in the thylakoid membrane in both types of organisms. By allowing specific ion fluxes across thylakoid membranes, ion channels have been hypothesized to either directly or indirectly regulate photosynthesis, by modulating the proton motive force. Recent molecular identification of some of the thylakoid-located channels allowed to obtain genetic proof in favor of such hypothesis. Furthermore, some ion channels of the envelope membrane in chloroplasts have also been shown to impact on this light-driven process. Here we give an overview of thylakoid/chloroplast located ion channels of higher plants and of cyanobacterium Synechocystis sp. PCC 6803. We focus on channels shown to be implicated in the regulation of photosynthesis and discuss the possible mechanisms of action.

  1. Involvement of ion channels and transporters in carcinoma angiogenesis and metastasis.

    PubMed

    Martial, Sonia

    2016-05-01

    Angiogenesis is a finely tuned process, which is the result of the equilibrium between pro- and antiangiogenic factors. In solid tumor angiogenesis, the balance is highly in favor of the production of new, but poorly functional blood vessels, initially intended to provide growing tumors with nutrients and oxygen. Among the numerous proteins involved in tumor development, several types of ion channels are overexpressed in tumor cells, as well as in stromal and endothelial cells. Ion channels thus actively participate in the different hallmarks of cancer, especially in tumor angiogenesis and metastasis. Indeed, from their strategic localization in the plasma membrane, ion channels are key operators of cell signaling, as they sense and respond to environmental changes. This review aims to decipher how ion channels of different families are intricately involved in the fundamental angiogenesis and metastasis hallmarks, which lead from a nascent tumor to systemic dissemination. An overview of the possible use of ion channels as therapeutic targets will also be given, showing that ion channel inhibitors or specific antibodies may provide effective tools, in the near future, in the treatment of carcinomas.

  2. Methods for monitoring Ca(2+) and ion channels in the lysosome.

    PubMed

    Zhong, Xi Zoë; Yang, Yiming; Sun, Xue; Dong, Xian-Ping

    2016-12-09

    Lysosomes and lysosome-related organelles are emerging as intracellular Ca(2+) stores and play important roles in a variety of membrane trafficking processes, including endocytosis, exocytosis, phagocytosis and autophagy. Impairment of lysosomal Ca(2+) homeostasis and membrane trafficking has been implicated in many human diseases such as lysosomal storage diseases (LSDs), neurodegeneration, myopathy and cancer. Lysosomal membrane proteins, in particular ion channels, are crucial for lysosomal Ca(2+) signaling. Compared with ion channels in the plasma membrane, lysosomal ion channels and their roles in lysosomal Ca(2+) signaling are less understood, largely due to their intracellular localization and the lack of feasible functional assays directly applied to the native environment. Recent advances in biomedical methodology have made it possible to directly investigate ion channels in the lysosomal membrane. In this review, we provide a summary of the newly developed methods for monitoring lysosomal Ca(2+) and ion channels, as well as the recent discovery of lysosomal ion channels and their significances in intracellular Ca(2+) signaling. These new techniques will expand our research scope and our understanding of the nature of lysosomes and lysosome-related diseases.

  3. Physiology and pathophysiology of the epithelial barrier of the female reproductive tract: role of ion channels.

    PubMed

    Chan, Hsiao Chang; Chen, Hui; Ruan, Yechun; Sun, Tingting

    2012-01-01

    The epithelium lining the female reproductive tract forms a selectively permeable barrier that is responsible for creating an optimal luminal fluid microenvironment essential to the success of various reproductive events. The selective permeability of the epithelial barrier to various ions is provided by the gating of epithelial ion channels, which work together with an array of other ion transporters to drive fluid movement across the epithelium. Thus, the luminal fluid is fine-tuned by the selective barrier with tight regulation of the epithelial ion channels. This chapter discusses the role of epithelial ion channels in regulating the epithelial barrier function and thus the fluid volume and ionic composition of the female reproductive tract; physiological factors regulating the ion channels and the importance of the regulation in various reproductive events such as sperm transport and capacitation, embryo development and implantation. Disturbance of the fluid microenvironment due to defects or abnormal regulation of these ion channels and dysregulated epithelial barrier function in a number of pathological conditions, such as ovarian hyperstimulation syndrome, hydrosalpinx and infertility, are also discussed.

  4. Voltage-gated ion channels in dendrites of hippocampal pyramidal neurons.

    PubMed

    Chen, Xixi; Johnston, Daniel

    2006-12-01

    The properties and distribution of voltage-gated ion channels contribute to electrical signaling in neuronal dendrites. The apical dendrites of CA1 pyramidal neurons in hippocampus express a wide variety of sodium, calcium, potassium, and other voltage-gated channels. In this report, we provide some new evidence for the role of the delayed-rectifier K(+) channel in shaping the dendritic action potential at different membrane potentials.

  5. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    SciTech Connect

    Umeda, N. Kojima, A.; Kashiwagi, M.; Tobari, H.; Hiratsuka, J.; Watanabe, K.; Dairaku, M.; Yamanaka, H.; Hanada, M.

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mm to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.

  6. Activation of mechanosensitive ion channel TRPV4 normalizes tumor vasculature and improves cancer therapy

    PubMed Central

    Adapala, Ravi K.; Thoppil, Roslin J.; Ghosh, Kaustabh; Cappelli, Holly; Dudley, Andrew C.; Paruchuri, Sailaja; Keshamouni, Venkateshwar; Klagsbrun, Michael; Meszaros, J. Gary; Chilian, William M.; Ingber, Donald E.; Thodeti, Charles K.

    2016-01-01

    Tumor vessels are characterized by abnormal morphology and hyper-permeability that together cause inefficient delivery of chemotherapeutic agents. Although VEGF has been established as a critical regulator of tumor angiogenesis, the role of mechanical signaling in the regulation of tumor vasculature or tumor endothelial cell (TEC) function is not known. Here, we show that the mechanosensitive ion channel TRPV4 regulates tumor angiogenesis and tumor vessel maturation via modulation of TEC mechanosensitivity. We found that TEC exhibit reduced TRPV4 expression and function, which is correlated with aberrant mechanosensitivity towards ECM stiffness, increased migration and abnormal angiogenesis by TEC. Further, syngeneic tumor experiments revealed that the absence of TRPV4 induced increased vascular density, vessel diameter and reduced pericyte coverage resulting in enhanced tumor growth in TRPV4 KO mice. Importantly, overexpression or pharmacological activation of TRPV4 restored aberrant TEC mechanosensitivity, migration and normalized abnormal angiogenesis in vitro by modulating Rho activity. Finally, a small molecule activator of TRPV4, GSK1016790A, in combination with anti-cancer drug Cisplatin, significantly reduced tumor growth in WT mice by inducing vessel maturation. Our findings demonstrate TRPV4 channels to be critical regulators of tumor angiogenesis and represent a novel target for anti-angiogenic and vascular normalization therapies. PMID:25867067

  7. Polymerized planar suspended lipid bilayers for single ion channel recordings: comparison of several dienoyl lipids.

    PubMed

    Heitz, Benjamin A; Xu, Juhua; Jones, Ian W; Keogh, John P; Comi, Troy J; Hall, Henry K; Aspinwall, Craig A; Saavedra, S Scott

    2011-03-01

    The stabilization of suspended planar lipid membranes, or black lipid membranes (BLMs), through polymerization of mono- and bis-functionalized dienoyl lipids was investigated. Electrical properties, including capacitance, conductance, and dielectric breakdown voltage, were determined for BLMs composed of mono-DenPC, bis-DenPC, mono-SorbPC, and bis-SorbPC both prior to and following photopolymerization, with diphytanoyl phosphocholine (DPhPC) serving as a control. Poly(lipid) BLMs exhibited significantly longer lifetimes and increased the stability of air-water transfers. BLM stability followed the order bis-DenPC > mono-DenPC ≈ mono-SorbPC > bis-SorbPC. The conductance of bis-SorbPC BLMs was significantly higher than that of the other lipids, which is attributed to a high density of hydrophilic pores, resulting in relatively unstable membranes. The use of poly(lipid) BLMs as matrices for supporting the activity of an ion channel protein (IC) was explored using α-hemolysin (α-HL), a model IC. Characteristic i-V plots of α-HL were maintained following photopolymerization of bis-DenPC, mono-DenPC, and mono-SorbPC, demonstrating the utility of these materials for preparing more durable BLMs for single-channel recordings of reconstituted ICs.

  8. Polymerized Planar Suspended Lipid Bilayers for Single Ion Channel Recordings: Comparison of Several Dienoyl Lipids

    PubMed Central

    Heitz, Benjamin A.; Xu, Juhua; Jones, Ian W.; Keogh, John P.; Comi, Troy J.; Hall, Henry K.; Aspinwall, Craig A.; Saavedra, S. Scott

    2011-01-01

    The stabilization of suspended planar lipid membranes, or black lipid membranes (BLMs), through polymerization of mono- and bis-functionalized dienoyl lipids was investigated. Electrical properties, including capacitance, conductance, and dielectric breakdown voltage, were determined for BLMs composed of mono-DenPC, bis-DenPC, mono-SorbPC, and bis-SorbPC both prior to and following photopolymerization, with diphytanoyl phosphocholine (DPhPC) serving as a control. Poly(lipid) BLMs exhibited significantly longer lifetimes and increased the stability to air-water transfers. BLM stability followed the order: bis-DenPC > mono-DenPC ≈ mono-SorbPC > bis-SorbPC. The conductance of bis-SorbPC BLMs was significantly higher than that of the other lipids, which is attributed to a high density of hydrophilic pores, resulting in relatively unstable membranes. The use of poly(lipid) BLMs as matrices for supporting the activity of an ion channel protein (IC) was explored using α – hemolysin (α-HL), a model IC. Characteristic i-V plots of α-HL were maintained following photopolymerization of bis-DenPC, mono-DenPC, and mono-SorbPC, demonstrating the utility of these materials for preparing more durable BLMs for single channel recordings of reconstituted ICs. PMID:21226498

  9. Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons.

    PubMed

    Goldwyn, Joshua H; Imennov, Nikita S; Famulare, Michael; Shea-Brown, Eric

    2011-04-01

    The random transitions of ion channels between conducting and nonconducting states generate a source of internal fluctuations in a neuron, known as channel noise. The standard method for modeling the states of ion channels nonlinearly couples continuous-time Markov chains to a differential equation for voltage. Beginning with the work of R. F. Fox and Y.-N. Lu [Phys. Rev. E 49, 3421 (1994)], there have been attempts to generate simpler models that use stochastic differential equation (SDEs) to approximate the stochastic spiking activity produced by Markov chain models. Recent numerical investigations, however, have raised doubts that SDE models can capture the stochastic dynamics of Markov chain models.We analyze three SDE models that have been proposed as approximations to the Markov chain model: one that describes the states of the ion channels and two that describe the states of the ion channel subunits. We show that the former channel-based approach can capture the distribution of channel noise and its effects on spiking in a Hodgkin-Huxley neuron model to a degree not previously demonstrated, but the latter two subunit-based approaches cannot. Our analysis provides intuitive and mathematical explanations for why this is the case. The temporal correlation in the channel noise is determined by the combinatorics of bundling subunits into channels, but the subunit-based approaches do not correctly account for this structure. Our study confirms and elucidates the findings of previous numerical investigations of subunit-based SDE models. Moreover, it presents evidence that Markov chain models of the nonlinear, stochastic dynamics of neural membranes can be accurately approximated by SDEs. This finding opens a door to future modeling work using SDE techniques to further illuminate the effects of ion channel fluctuations on electrically active cells.

  10. Axonal voltage-gated ion channels as pharmacological targets for pain.

    PubMed

    Moldovan, Mihai; Alvarez, Susana; Romer Rosberg, Mette; Krarup, Christian

    2013-05-15

    Upon peripheral nerve injury (caused by trauma or disease process) axons of the dorsal root ganglion (DRG) somatosensory neurons have the ability to sprout and regrow/remyelinate to reinnervate distant target tissue or form a tangled scar mass called a neuroma. This regenerative response can become maladaptive leading to a persistent and debilitating pain state referred to as chronic pain corresponding to the clinical description of neuropathic/chronic inflammatory pain. There is little agreement to what causes peripheral chronic pain other than hyperactivity of the nociceptive DRG neurons which ultimately depends on the function of voltage-gated ion channels. This review focuses on the pharmacological modulators of voltage-gated ion channels known to be present on axonal membrane which represents by far the largest surface of DRG neurons. Blockers of voltage-gated Na(+) channels, openers of voltage-gated K(+) channels and blockers of hyperpolarization-activated cyclic nucleotide-gated channels that were found to reduce neuronal activity were also found to be effective in neuropathic and inflammatory pain states. The isoforms of these channels present on nociceptive axons have limited specificity. The rationale for considering axonal voltage-gated ion channels as targets for pain treatment comes from the accumulating evidence that chronic pain states are associated with a dysregulation of these channels that could alter their specificity and make them more susceptible to pharmacological modulation. This drives the need for further development of subtype-specific voltage-gated ion channels modulators, as well as clinically available neurophysiological techniques for monitoring axonal ion channel function in peripheral nerves.

  11. Hysteresis of ligand binding in CNGA2 ion channels

    PubMed Central

    Nache, Vasilica; Eick, Thomas; Schulz, Eckhard; Schmauder, Ralf; Benndorf, Klaus

    2013-01-01

    Tetrameric cyclic nucleotide-gated (CNG) channels mediate receptor potentials in olfaction and vision. The channels are activated by the binding of cyclic nucleotides to a binding domain embedded in the C terminus of each subunit. Here using a fluorescent cGMP derivative (fcGMP), we show for homotetrameric CNGA2 channels that ligand unbinding is ~50 times faster at saturating than at subsaturating fcGMP. Analysis with complex Markovian models reveals two pathways for ligand unbinding; the partially liganded open channel unbinds its ligands from closed states only, whereas the fully liganded channel reaches a different open state from which it unbinds all four ligands rapidly. Consequently, the transition pathways for ligand binding and activation of a fully liganded CNGA2 channel differ from that of ligand unbinding and deactivation, resulting in pronounced hysteresis of the gating mechanism. This concentration-dependent gating mechanism allows the channels to respond to changes in the cyclic nucleotide concentration with different kinetics. PMID:24287615

  12. Charge Fluctuations and Boundary Conditions of Biological Ion Channels: Effect on the Ionic Transition Rate

    SciTech Connect

    Tindjong, R.; McClintock, P. V. E.; Luchinsky, D. G.; Kaufman, I.; Eisenberg, R. S.

    2009-04-23

    A self-consistent solution is derived for the Poisson-Nernst-Planck (PNP) equation, valid both inside a biological ion channel and in the adjacent bulk fluid. An iterative procedure is used to match the two solutions together at the channel mouth. Charge fluctuations at the mouth are modeled as shot noise flipping the height of the potential barrier at the selectivity site. The resultant estimates of the conductivity of the ion channel are in good agreement with Gramicidin experimental measurements and they reproduce the observed current saturation with increasing concentration.

  13. Toxic β-Amyloid (Aβ) Alzheimer's Ion Channels: From Structure to Function and Design

    NASA Astrophysics Data System (ADS)

    Nussinov, Ruth

    2012-02-01

    Full-length amyloid beta peptides (Aβ1-40/42) form neuritic amyloid plaques in Alzheimer's disease (AD) patients and are implicated in AD pathology. Recent biophysical and cell biological studies suggest a direct mechanism of amyloid beta toxicity -- ion channel mediated loss of calcium homeostasis. Truncated amyloid beta fragments (Aβ11-42 and Aβ17-42), commonly termed as non-amyloidogenic are also found in amyloid plaques of Alzheimer's disease (AD) and in the preamyloid lesions of Down's syndrome (DS), a model system for early onset AD study. Very little is known about the structure and activity of these smaller peptides although they could be key AD and DS pathological agents. Using complementary techniques of explicit solvent molecular dynamics (MD) simulations, atomic force microscopy (AFM), channel conductance measurements, cell calcium uptake assays, neurite degeneration and cell death assays, we have shown that non-amyloidogenic Aβ9-42 and Aβ17-42 peptides form ion channels with loosely attached subunits and elicit single channel conductances. The subunits appear mobile suggesting insertion of small oligomers, followed by dynamic channel assembly and dissociation. These channels allow calcium uptake in APP-deficient cells and cause neurite degeneration in human cortical neurons. Channel conductance, calcium uptake and neurite degeneration are selectively inhibited by zinc, a blocker of amyloid ion channel activity. Thus truncated Aβ fragments could account for undefined roles played by full length Aβs and provide a novel mechanism of AD and DS pathology. The emerging picture from our large-scale simulations is that toxic ion channels formed by β-sheets are highly polymorphic, and spontaneously break into loosely interacting dynamic units (though still maintaining ion channel structures as imaged with AFM), that associate and dissociate leading to toxic ion flux. This sharply contrasts intact conventional gated ion channels that consist of tightly

  14. Model studies of the function of blockers on the small conductance potassium ion channel.

    PubMed

    Ciechanowicz-Rutkowska, M; Lewinski, K; Oleksyn, B; Stec, B

    2003-09-01

    A correlation between KI (equilibrium dissociation constants) and IC50 (concentration at 50% inhibition) inhibitors for the family of blockers of the small conductance potassium ion channels and their intrinsic characteristics like molecular mass and volume have been investigated. Most of the blockers in the family are not selective, in contrast to apamin - an 18 amino acid bee venom toxin - that is known to be a highly potent and selective blocker of these channels. Differences and similarities between the blockers have been analyzed, pointing toward the origin of their selectivity and relative potency. In conclusion, an ion channel blocking is a process controlled mainly by diffusion, in accordance with previous experimental results.

  15. TRP ion channels in thermosensation, thermoregulation and metabolism.

    PubMed

    Wang, Hong; Siemens, Jan

    2015-01-01

    In humans, the TRP superfamily of cation channels includes 27 related molecules that respond to a remarkable variety of chemical and physical stimuli. While physiological roles for many TRP channels remain unknown, over the past years several have been shown to function as molecular sensors in organisms ranging from yeast to humans. In particular, TRP channels are now known to constitute important components of sensory systems, where they participate in the detection or transduction of osmotic, mechanical, thermal, or chemosensory stimuli. We here summarize our current understanding of the role individual members of this versatile receptor family play in thermosensation and thermoregulation, and also touch upon their immerging role in metabolic control.

  16. Fragile X mental retardation protein controls ion channel expression and activity.

    PubMed

    Ferron, Laurent

    2016-10-15

    Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders is fragile X syndrome, the most common cause of inherited intellectual disability and autism. FMRP is an RNA-binding protein involved in the control of local translation, which has pleiotropic effects, in particular on synaptic function. Analysis of the brain FMRP transcriptome has revealed hundreds of potential mRNA targets encoding postsynaptic and presynaptic proteins, including a number of ion channels. FMRP has been confirmed to bind voltage-gated potassium channels (Kv 3.1 and Kv 4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. Recent studies have uncovered a number of additional roles for FMRP besides RNA regulation. FMRP was shown to directly interact with, and modulate, a number of ion channel complexes. The sodium-activated potassium (Slack) channel was the first ion channel shown to directly interact with FMRP; this interaction alters the single-channel properties of the Slack channel. FMRP was also shown to interact with the auxiliary β4 subunit of the calcium-activated potassium (BK) channel; this interaction increases calcium-dependent activation of the BK channel. More recently, FMRP was shown to directly interact with the voltage-gated calcium channel, Cav 2.2, and reduce its trafficking to the plasma membrane. Studies performed on animal models of fragile X syndrome have revealed links between modifications of ion channel activity and changes in neuronal excitability, suggesting that these modifications could contribute to the phenotypes observed in patients with fragile X-associated disorders.

  17. Stimulation of TRPC5 cationic channels by low micromolar concentrations of lead ions (Pb2+).

    PubMed

    Sukumar, Piruthivi; Beech, David J

    2010-02-26

    Lead toxicity is long-recognised but continues to be a major public health problem. Its effects are wide-ranging and include induction of hyper-anxiety states. In general it is thought to act by interfering with Ca(2+) signalling but specific targets are not clearly identified. Transient receptor potential canonical 5 (TRPC5) is a Ca(2+)-permeable ion channel that is linked positively to innate fear responses and unusual amongst ion channels in being stimulated by trivalent lanthanides, which include gadolinium. Here we show investigation of the effect of lead, which is a divalent ion (Pb(2+)). Intracellular Ca(2+) and whole-cell patch-clamp recordings were performed on HEK 293 cells conditionally over-expressing TRPC5 or other TRP channels. Extracellular application of Pb(2+) stimulated TRPC5 at concentrations greater than 1 microM. Control cells without TRPC5 showed little or no response to Pb(2+) and expression of other TRP channels (TRPM2 or TRPM3) revealed partial inhibition by 10 microM Pb(2+). The stimulatory effect on TRPC5 depended on an extracellular residue (E543) near the ion pore: similar to gadolinium action, E543Q TRPC5 was resistant to Pb(2+) but showed normal stimulation by the receptor agonist sphingosine-1-phosphate. The study shows that Pb(2+) is a relatively potent stimulator of the TRPC5 channel, generating the hypothesis that a function of the channel is to sense metal ion poisoning.

  18. Peculiarities of temperature dependent ion beam sputtering and channeling of crystalline bismuth.

    PubMed

    Langegger, Rupert; Hradil, Klaudia; Steiger-Thirsfeld, Andreas; Bertagnolli, Emmerich; Lugstein, Alois

    2014-08-01

    In this paper, we report on the surface evolution of focused ion beam treated single crystalline Bi(001) with respect to different beam incidence angles and channeling effects. 'Erosive' sputtering appears to be the dominant mechanism at room temperature (RT) and diffusion processes during sputtering seem to play only a minor role for the surface evolution of Bi. The sputtering yield of Bi(001) shows anomalous behavior when increasing the beam incidence angle along particular azimuthal angles of the specimen. The behavior of the sputtering yield could be related to channeling effects and the relevant channeling directions are identified. Dynamic annealing processes during ion irradiation retain the crystalline quality of the Bi specimen allowing ion channeling at RT. Lowering the specimen temperature to T = -188 °C reduces dynamic annealing processes and thereby disables channeling effects. Furthermore unexpected features are observed at normal beam incidence angle. Spike-like features appear during the ion beam induced erosion, whose growth directions are not determined by the ion beam but by the channeling directions of the Bi specimen.

  19. Ion conduction in the KcsA potassium channel analyzed with a minimal kinetic model.

    PubMed

    Mafé, Salvador; Pellicer, Julio

    2005-02-01

    We use a model by Nelson to study the current-voltage and conductance-concentration curves of bacterial potassium channel KcsA without assuming rapid ion translocation. Ion association to the channel filter is rate controlling at low concentrations, but dissociation and transport in the filter can limit conduction at high concentration for ions other than K+. The absolute values of the effective rate constants are tentative but the relative changes in these constants needed to qualitatively explain the experiments should be of significance.

  20. Mechanosensitive ion channels investigated simultaneously by scanning probe microscopy and patch clamp.

    PubMed

    Langer, Matthias G

    2007-01-01

    Mechanosensitive ion channels play an important role for the perception of mechanical signals such as touch, balance, or sound. Here, a new experimental strategy is presented providing well-defined access to single mechanosensitive ion channels in living cells. As a representative example, the investigation of mechanosensitive transduction channels in cochlear hair cells is discussed in detail including all essential technical aspects. Three different techniques were combined: atomic force microscopy (AFM) as a device for local mechanical stimulation, patch clamp for recording the current response of mechanosensitive ion channels, and differential interference contrast (DIC) microscopy equipped with an upright water-immersion objective lens. A major challenge was to adapt the mechanical design of the AFM setup to the small working distance of the light microscope and the electrical design of the AFM electronics. Various protocols for the preparation and investigation of the organ of Corti with AFM are presented.

  1. Structure of a CLC chloride ion channel by cryo-electron microscopy.

    PubMed

    Park, Eunyong; Campbell, Ernest B; MacKinnon, Roderick

    2017-01-26

    CLC proteins transport chloride (Cl(-)) ions across cellular membranes to regulate muscle excitability, electrolyte movement across epithelia, and acidification of intracellular organelles. Some CLC proteins are channels that conduct Cl(-) ions passively, whereas others are secondary active transporters that exchange two Cl(-) ions for one H(+). The structural basis underlying these distinctive transport mechanisms is puzzling because CLC channels and transporters are expected to share the same architecture on the basis of sequence homology. Here we determined the structure of a bovine CLC channel (CLC-K) using cryo-electron microscopy. A conserved loop in the Cl(-) transport pathway shows a structure markedly different from that of CLC transporters. Consequently, the cytosolic constriction for Cl(-) passage is widened in CLC-K such that the kinetic barrier previously postulated for Cl(-)/H(+) transporter function would be reduced. Thus, reduction of a kinetic barrier in CLC channels enables fast flow of Cl(-) down its electrochemical gradient.

  2. Active membrane having uniform physico-chemically functionalized ion channels

    DOEpatents

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  3. The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity.

    PubMed

    Martinac, Boris

    2014-02-01

    As biological force-sensing systems mechanosensitive (MS) ion channels present the best example of coupling molecular dynamics of membrane proteins to the mechanics of the surrounding cell membrane. In animal cells MS channels have over the past two decades been very much in focus of mechanotransduction research. In recent years this helped to raise awareness of basic and medical researchers about the role that abnormal MS channels may play in the pathophysiology of diseases, such as cardiac hypertrophy, atrial fibrillation, muscular dystrophy or polycystic kidney disease. To date a large number of MS channels from organisms of diverse phylogenetic origins have been identified at the molecular level; however, the structure of only few of them has been determined. Although their function has extensively been studied in a great variety of cells and tissues by different experimental approaches it is, with exception of bacterial MS channels, very little known about how these channels sense mechanical force and which cellular components may contribute to their function. By focusing on MS channels found in animal cells this article discusses the ways in which the connections between cytoskeleton and ion channels may contribute to mechanosensory transduction in these cells. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.

  4. Modelling and simulation of ion channels: applications to the nicotinic acetylcholine receptor.

    PubMed

    Sansom, M S; Adcock, C; Smith, G R

    1998-01-01

    Molecular dynamics simulations with experimentally derived restraints have been used to develop atomic models of M2 helix bundles forming the pore-lining domains of the nicotinic acetylcholine receptor and related ligand-gated ion channels. M2 helix bundles have been used in microscopic simulations of the dynamics and energetics of water and ions within an ion channel. Translational and rotational motion of water are restricted within the pore, and water dipoles are aligned relative to the pore axis by the surrounding helix dipoles. Potential energy profiles for translation of a Na+ ion along the pore suggest that the protein and water components of the interaction energy exert an opposing effect on the ion, resulting in a relatively flat profile which favors cation permeation. Empirical conductance calculations based on a pore radius profile suggest that the M2 helix model is consistent with a single channel conductance of ca. 50 pS. Continuum electrostatics calculations indicate that a ring of glutamate residues at the cytoplasmic mouth of the alpha 7 nicotinic receptor M2 helix bundle may not be fully ionized. A simplified model of the remainder of the channel protein when added to the M2 helix bundle plays a significant role in enhancing the ion selectivity of the channel.

  5. Peering into the birth canal during ion channel parturition.

    PubMed

    Trimmer, James S

    2004-10-14

    Recent studies have provided detailed structures of the N-terminal T1 domain of Kv channel alpha subunits that mediates contranslational subunit assembly. In this issue of Neuron, Kosolapov et al. probe T1 domain structure within the ribosomal tunnel. They find that the T1 domain forms secondary structure within the tunnel, in preparation for its immediate role in governing channel assembly upon exit.

  6. Human PIEZO1 Ion Channel Functions as a Split Protein

    PubMed Central

    Bae, Chilman; Suchyna, Thomas M.; Ziegler, Lynn; Sachs, Frederick; Gottlieb, Philip A.

    2016-01-01

    PIEZO1 is a mechanosensitive eukaryotic cation-selective channel that rapidly inactivates in a voltage-dependent manner. We previously showed that a fluorescent protein could be encoded within the hPIEZO1 sequence without loss of function. In this work, we split the channel into two at this site and asked if coexpression would produce a functional channel or whether gating and permeation might be contained in either segment. The split protein was expressed in two segments by a bicistronic plasmid where the first segment spanned residues 1 to 1591, and the second segment spanned 1592 to 2521. When the “split protein” is coexpressed, the parts associate to form a normal channel. We measured the whole-cell, cell-attached and outside-out patch currents in transfected HEK293 cells. Indentation produced whole-cell currents monotonic with the stimulus. Single channel recordings showed voltage-dependent inactivation. The Boltzmann activation curve for outside-out patches had a slope of 8.6/mmHg vs 8.1 for wild type, and a small leftward shift in the midpoint (32 mmHg vs 41 mmHg). The association of the two channel domains was confirmed by FRET measurements of mCherry on the N-terminus and EGFP on the C-terminus. Neither of the individual protein segments produced current when expressed alone. PMID:26963637

  7. Regulation of Intestinal Glucose Absorption by Ion Channels and Transporters

    PubMed Central

    Chen, Lihong; Tuo, Biguang; Dong, Hui

    2016-01-01

    The absorption of glucose is electrogenic in the small intestinal epithelium. The major route for the transport of dietary glucose from intestinal lumen into enterocytes is the Na+/glucose cotransporter (SGLT1), although glucose transporter type 2 (GLUT2) may also play a role. The membrane potential of small intestinal epithelial cells (IEC) is important to regulate the activity of SGLT1. The maintenance of membrane potential mainly depends on the activities of cation channels and transporters. While the importance of SGLT1 in glucose absorption has been systemically studied in detail, little is currently known about the regulation of SGLT1 activity by cation channels and transporters. A growing line of evidence suggests that cytosolic calcium ([Ca2+]cyt) can regulate the absorption of glucose by adjusting GLUT2 and SGLT1. Moreover, the absorption of glucose and homeostasis of Ca2+ in IEC are regulated by cation channels and transporters, such as Ca2+ channels, K+ channels, Na+/Ca2+ exchangers, and Na+/H+ exchangers. In this review, we consider the involvement of these cation channels and transporters in the regulation of glucose uptake in the small intestine. Modulation of them may be a potential strategy for the management of obesity and diabetes. PMID:26784222

  8. Regulation of Intestinal Glucose Absorption by Ion Channels and Transporters.

    PubMed

    Chen, Lihong; Tuo, Biguang; Dong, Hui

    2016-01-14

    The absorption of glucose is electrogenic in the small intestinal epithelium. The major route for the transport of dietary glucose from intestinal lumen into enterocytes is the Na⁺/glucose cotransporter (SGLT1), although glucose transporter type 2 (GLUT2) may also play a role. The membrane potential of small intestinal epithelial cells (IEC) is important to regulate the activity of SGLT1. The maintenance of membrane potential mainly depends on the activities of cation channels and transporters. While the importance of SGLT1 in glucose absorption has been systemically studied in detail, little is currently known about the regulation of SGLT1 activity by cation channels and transporters. A growing line of evidence suggests that cytosolic calcium ([Ca(2+)]cyt) can regulate the absorption of glucose by adjusting GLUT2 and SGLT1. Moreover, the absorption of glucose and homeostasis of Ca(2+) in IEC are regulated by cation channels and transporters, such as Ca(2+) channels, K⁺ channels, Na⁺/Ca(2+) exchangers, and Na⁺/H⁺ exchangers. In this review, we consider the involvement of these cation channels and transporters in the regulation of glucose uptake in the small intestine. Modulation of them may be a potential strategy for the management of obesity and diabetes.

  9. Mechanosensitive ion channels in interstitial cells of Cajal and smooth muscle of the gastrointestinal tract.

    PubMed

    Kraichely, R E; Farrugia, G

    2007-04-01

    Normal gastrointestinal (GI) motility is required to mix digestive enzymes and food and to move content along the GI tract. Underlying the complex motor patterns of the gut are electrical events that reflect ion flux across cell membranes. Smooth muscle electrical activity is directly influenced by GI interstitial cells of Cajal, whose rhythmic oscillations in membrane potential in part determine the excitability of GI smooth muscle and its response to neuronal input. Coordinated activity of the ion channels responsible for the conductances that underlie ion flux in both smooth muscle and interstitial cells is a requisite for normal motility. These conductances are regulated by many factors, including mechanical stress. Recent studies have revealed mechanosensitivity at the level of the ion channels, and the mechanosensor within the channel has been identified in many cases. This has led to better comprehension of the role of mechanosensitive conductances in normal physiology and will undoubtedly lead to understanding of the consequences of disturbances in these conductances.

  10. Guiding of 4 MeV C+ and C4+ ion beams using cylindrical glass channel

    NASA Astrophysics Data System (ADS)

    Motohashi, Kenji; Miyawaki, Nobumasa; Saitoh, Yuichi; Narumi, Kazumasa; Matoba, Shiro

    2017-04-01

    To investigate how the initial charge state affects the transmission of 4 MeV C+ and C4+ ion beams through a channel, we measured the transmission probability and kinetic energy of atoms and ions that pass through a cylindrical channel in glass, such as a narrow gap between a cylindrical convex glass surface and a cylindrical concave glass surface. Kinetic energy distributions were measured at three typical observation angles φ with the cylindrical glass channel tilted at angles θ = ‑3, ‑2, ‑1, 0, 1, 2, and 3° with respect to the incident ion beam. The ion beam is guided in both initial charge states; that is, the transmission maintains the initial kinetic energy at tilt angles greater than the geometric limit. However, no marked difference in transmission appears between the two initial charge states.

  11. Evidence TRPV4 contributes to mechanosensitive ion channels in mouse skeletal muscle fibers.

    PubMed

    Ho, Tiffany C; Horn, Natalie A; Huynh, Tuan; Kelava, Lucy; Lansman, Jeffry B

    2012-01-01

    We recorded the activity of single mechanosensitive (MS) ion channels from membrane patches on single muscle fibers isolated from mice. We investigated the actions of various TRP (transient receptor potential) channel blockers on MS channel activity. 2-aminoethoxydiphenyl borate (2-APB) neither inhibited nor facilitated single channel activity at submillimolar concentrations. The absence of an effect of 2-APB indicates MS channels are not composed purely of TRPC or TRPV1, 2 or 3 proteins. Exposing patches to 1-oleolyl-2-acetyl-sn-glycerol (OAG), a potent activator of TRPC channels, also had no effect on MS channel activity. In addition, flufenamic acid and spermidine had no effect on the activity of single MS channels. By contrast, SKF-96365 and ruthenium red blocked single-channel currents at micromolar concentrations. SKF-96365 produced a rapid block of the open channel current. The blocking rate depended linearly on blocker concentration, while the unblocking rate was independent of concentration, consistent with a simple model of open channel block. A fit to the concentration-dependence of block gave k(on) = 13 x 10 ( 6) M (-1) s (-1) and k(off) = 1609 sec (-1) with K(D) = ~124 µM. Block by ruthenium red was complex, involving both reduction of the amplitude of the single-channel current and increased occupancy of subconductance levels. The reduction in current amplitude with increasing concentration of ruthenium red gave a K(D) = ~49 µM. The high sensitivity of MS channels to block by ruthenium red suggests MS channels in skeletal muscle contain TRPV subunits. Recordings from skeletal muscle isolated from TRPV4 knockout mice failed to show MS channel activity, consistent with a contribution of TRPV4. In addition, exposure to hypo-osmotic solutions increases opening of MS channels in muscle. Our results provide evidence TRPV4 contributes to MS channels in skeletal muscle.

  12. Not only enthalpy: large entropy contribution to ion permeation barriers in single-file channels.

    PubMed

    Portella, Guillem; Hub, Jochen S; Vesper, Martin D; de Groot, Bert L

    2008-09-01

    The effect of channel length on the barrier for potassium ion permeation through single-file channels has been studied by means of all-atom molecular dynamics simulations. Using series of peptidic gramicidin-like and simplified ring-structured channels, both embedded in model membranes, we obtained two distinct types of behavior: saturation of the central free energy barriers for peptidic channels and a linear increase in simplified ring-structured channels with increasing channel length. The saturation of the central free energy barrier for the peptidic channels occurs at relatively short lengths, and it is correlated with the desolvation from the bulk water. Remarkably, decomposition of free energy barriers into enthalpic and entropic terms reveals an entropic cost for ion permeation. Furthermore, this entropic cost dominates the ion permeation free energy barrier, since the corresponding free energy contribution is higher than the enthalpic barrier. We conclude that the length dependence of the free energy is enthalpy-dominated, but the entropy is the major contribution to the permeation barrier. The decrease in rotational water motion and the reduction of channel mobility are putative origins for the overall entropic penalty.

  13. Cell-based potassium ion channel screening using the FluxOR assay.

    PubMed

    Beacham, Daniel W; Blackmer, Trillium; O' Grady, Michael; Hanson, George T

    2010-04-01

    FluxOR technology is a cell-based assay used for high-throughput screening measurements of potassium channel activity. Using thallium influx as a surrogate indicator of potassium ion channel activity, the FluxOR Potassium Ion Channel Assay is based on the activation of a novel fluorescent dye. This indicator reports channel activity with a large fluorogenic response and is proportional to the number of open potassium channels on the cell, making it extremely useful for studying K(+) channel targets. In contrast to BTC-AM ester, FluxOR dye is roughly 10-fold more thallium sensitive, requiring much lower thallium for a larger signal window. This also means that the assay is carried out in a physiological, normal-chloride saline. In this article, the authors describe how they used BacMam gene delivery to express Kv7.2 and 7.3 (KCNQ), Kir2.1, or Kv11.1 (hERG) potassium ion channels in U2-OS cells. Using these cells, they ran the FluxOR assay to identify and characterize channel-specific inhibitory compounds discovered within the library (Tocriscreen Mini 1200 and Sigma Sodium/Potassium Modulators Ligand set). The FluxOR assay was able to identify several known specific inhibitors of Kv7.2/7.3 or hERG, highlighting its potential to identify novel and more efficacious small-molecule modulators.

  14. Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli.

    PubMed Central

    Cruickshank, C C; Minchin, R F; Le Dain, A C; Martinac, B

    1997-01-01

    The open channel diameter of Escherichia coli recombinant large-conductance mechanosensitive ion channels (MscL) was estimated using the model of Hille (Hille, B. 1968. Pharmacological modifications of the sodium channels of frog nerve. J. Gen. Physiol. 51:199-219) that relates the pore size to conductance. Based on the MscL conductance of 3.8 nS, and assumed pore lengths, a channel diameter of 34 to 46 A was calculated. To estimate the pore size experimentally, the effect of large organic ions on the conductance of MscL was examined. Poly-L-lysines (PLLs) with a diameter of 37 A or larger significantly reduced channel conductance, whereas spermine (approximately 15 A), PLL19 (approximately 25 A) and 1,1'-bis-(3-(1'-methyl-(4,4'-bipyridinium)-1-yl)-propyl)-4,4'-b ipyridinium (approximately 30 A) had no effect. The smaller organic ions putrescine, cadaverine, spermine, and succinate all permeated the channel. We conclude that the open pore diameter of the MscL is approximately 40 A, indicating that the MscL has one of the largest channel pores yet described. This channel diameter is consistent with the proposed homohexameric model of the MscL. PMID:9336188

  15. Pharmacology of acid-sensing ion channels - Physiological and therapeutical perspectives.

    PubMed

    Baron, Anne; Lingueglia, Eric

    2015-07-01

    Development of the pharmacology of Acid-Sensing Ion Channels (ASICs) has become a key challenge to study their structure, their molecular and cellular functions and their physiopathological roles. This review provides a summary of the different compounds that directly interact with these channels, either with inhibitory or stimulatory effect, and with high selectivity or poor specificity. They include drugs and endogenous regulators, natural compounds of vegetal origin, and peptides isolated from animal venoms. The in vivo use of some of these pharmacological modulators in animal models and a few small clinical studies in humans have provided substantial data on the physiological and physiopathological roles of ASIC channels. Modulation of these channels will certainly provide new therapeutic opportunities in neurological and psychiatric diseases including pain, stroke, epilepsy, anxiety, depression or traumatic injury, as well as in some non-neurological pathologies. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.

  16. Bilayer lipid membranes supported on Teflon filters: a functional environment for ion channels.

    PubMed

    Phung, Thai; Zhang, Yanli; Dunlop, James; Dalziel, Julie

    2011-03-15

    Many ion channel proteins have binding sites for toxins and pharmaceutical drugs and therefore have much promise as the sensing entity in high throughput technologies and biosensor devices. Measurement of ionic conductance changes through ion channels requires a robust biological membrane with sufficient longevity for practical applications. The conventional planar BLM is 100-300 μm in diameter and typically contains fewer than a dozen channels whereas pharmaceutical screening methods in cells use current recordings for many ion channels. We present a new, simple method for the fabrication of a disposable porous-supported bilayer lipid membrane (BLM) ion channel biosensor using hydrated Teflon (polytetrafluoroethylene, PTFE) filter material (pore size 5 μm, filter diameter=1 mm). The lipid layer was monitored for its thickness and mechanical stability by electrical impedance spectroscopy. The results showed membrane capacitances of 1.8±0.2 nF and membrane resistances of 25.9±4.1 GΩ, indicating the formation of lipid bilayers. The current level increased upon addition of the pore-forming peptide gramicidin. Following addition of liposomes containing voltage-gated sodium channels, small macroscopic sodium currents (1-80 pA) could be recorded. By preloading the porous Teflon with sodium channel proteoliposomes, prior to BLM formation, currents of 1-10 nA could be recorded in the presence of the activator veratridine that increased with time, and were inhibited by tetrodotoxin. A lack of rectification suggests that the channels incorporated in both orientations. This work demonstrates that PTFE filters can support BLMs that provide an environment in which ion channels can maintain their functional activity relevant for applications in drug discovery, toxin detection, and odour sensing.

  17. Extracted ion current density in close-coupling multi-antenna type radio frequency driven ion source: CC-MATIS

    SciTech Connect

    Oka, Y. E-mail: oka@LHD.nifs.ac.jp; Shoji, T.

    2014-02-15

    Positive ions are extracted by using a small extractor from the Close-Coupling Multi-Antenna Type radio frequency driven Ion Source. Two types of RF antenna are used. The maximum extracted ion current density reaches 0.106 A/cm{sup 2}. The RF net power efficiency of the extracted ion current density under standard condition is 11.6 mA/cm{sup 2}/kW. The efficiency corresponds to the level of previous beam experiments on elementary designs of multi-antenna sources, and also to the efficiency level of a plasma driven by a filament in the same chamber. The multi-antenna type RF plasma source is promising for all metal high density ion sources in a large volume chamber.

  18. Extracted ion current density in close-coupling multi-antenna type radio frequency driven ion source: CC-MATIS.

    PubMed

    Oka, Y; Shoji, T

    2014-02-01

    Positive ions are extracted by using a small extractor from the Close-Coupling Multi-Antenna Type radio frequency driven Ion Source. Two types of RF antenna are used. The maximum extracted ion current density reaches 0.106 A/cm(2). The RF net power efficiency of the extracted ion current density under standard condition is 11.6 mA/cm(2)/kW. The efficiency corresponds to the level of previous beam experiments on elementary designs of multi-antenna sources, and also to the efficiency level of a plasma driven by a filament in the same chamber. The multi-antenna type RF plasma source is promising for all metal high density ion sources in a large volume chamber.

  19. Dislocation density of pure copper processed by accumulative roll bonding and equal-channel angular pressing

    SciTech Connect

    Miyajima, Yoji; Okubo, Satoshi; Abe, Hiroki; Okumura, Hiroki; Fujii, Toshiyuki; Onaka, Susumu; Kato, Masaharu

    2015-06-15

    The dislocation density of pure copper fabricated by two severe plastic deformation (SPD) processes, i.e., accumulative roll bonding and equal-channel angular pressing, was evaluated using scanning transmission electron microscopy/transmission electron microscopy observations. The dislocation density drastically increased from ~ 10{sup 13} m{sup −} {sup 2} to about 5 × 10{sup 14} m{sup −} {sup 2}, and then saturated, for both SPD processes.

  20. Atomic mutagenesis in ion channels with engineered stoichiometry

    PubMed Central

    Lueck, John D; Mackey, Adam L; Infield, Daniel T; Galpin, Jason D; Li, Jing; Roux, Benoît; Ahern, Christopher A

    2016-01-01

    C-type inactivation of potassium channels fine-tunes the electrical signaling in excitable cells through an internal timing mechanism that is mediated by a hydrogen bond network in the channels' selectively filter. Previously, we used nonsense suppression to highlight the role of the conserved Trp434-Asp447 indole hydrogen bond in Shaker potassium channels with a non-hydrogen bonding homologue of tryptophan, Ind (Pless et al., 2013). Here, molecular dynamics simulations indicate that the Trp434Ind hydrogen bonding partner, Asp447, unexpectedly 'flips out' towards the extracellular environment, allowing water to penetrate the space behind the selectivity filter while simultaneously reducing the local negative electrostatic charge. Additionally, a protein engineering approach is presented whereby split intein sequences are flanked by endoplasmic reticulum retention/retrieval motifs (ERret) are incorporated into the N- or C- termini of Shaker monomers or within sodium channels two-domain fragments. This system enabled stoichiometric control of Shaker monomers and the encoding of multiple amino acids within a channel tetramer. DOI: http://dx.doi.org/10.7554/eLife.18976.001 PMID:27710770

  1. RIM determines Ca2+ channel density and vesicle docking at the presynaptic active zone

    PubMed Central

    Han, Yunyun; Kaeser, Pascal S.; Südhof, Thomas C.; Schneggenburger, Ralf

    2012-01-01

    At presynaptic active zones, neurotransmitter release is initiated by the opening of voltage-gated Ca2+ channels close to docked vesicles. The mechanisms that enrich Ca2+ channels at active zones are, however, largely unknown, possibly because of the limited presynaptic accessibility of most synapses. Here, we have established a Cre-lox based conditional knock-out approach at a presynaptically accessible CNS synapse, the calyx of Held, to directly study the functions of RIM proteins. Removal of all RIM1/2 isoforms strongly reduced the presynaptic Ca2+ channel density, revealing a new role of RIM proteins in Ca2+ channel targeting. Removal of RIMs also reduced the readily-releasable pool, paralleled by a similar reduction of the number of docked vesicles, and the Ca2+ channel - vesicle coupling was decreased. Thus, RIM proteins co-ordinately regulate key functions for fast transmitter release: enabling a high presynaptic Ca2+ channel density, and vesicle docking at the active zone. PMID:21262468

  2. Setting up of a low temperature in-situ ion implantation and channeling facility at Kalpakkam

    SciTech Connect

    Sundaravel, B.; Saravanan, K.; Panigrahi, B. K.; Nair, K. G. M.

    2011-07-15

    A simple low temperature ion implantation and ion channeling facility has been set up. Low temperatures upto 70 K has been obtained on a goniometer sample holder by connecting to a continuous flow Helium cryostat with a copper braid. Charge integration is carried out with a transmission Faraday cup with 10 mm diameter aperture and four Faraday cups for performing ion implantation and an electron suppressed 1.5 mm aperture with a TEM grid of 60% beam transmission for ion beam analysis. Typical low temperature ion implantation and channeling experiments have been carried out. Stabilization at intermediate temperatures by controlling the heater at the sample holder and improvement of the achievable lowest temperature by having liquid nitrogen cooled heat shield are in progress.

  3. Efficiency enhancement in free-electron laser amplifier with one dimensional helical wiggler and ion-channel guiding

    SciTech Connect

    Jafari Bahman, F.; Maraghechi, B.

    2012-01-15

    A method for efficiency enhancement in free-electron laser is studied which uses both tapered wiggler magnetic field and ion-channel density. Derivation of a set of nonlinear and coupled differential equations leads to the self-consistent description of the evolution of both an ensemble of electrons and the electromagnetic radiation. Numerical solution of these equations reveals considerable enhancements of the interaction efficiency. In order to obtain a better insight into physical basis of the problem, a modified pendulum equation for the interaction is derived and a small signal theory of the efficiency enhancement is developed.

  4. Domain-based identification and analysis of glutamate receptor ion channels and their relatives in prokaryotes.

    PubMed

    Ger, Mao-Feng; Rendon, Gloria; Tilson, Jeffrey L; Jakobsson, Eric

    2010-10-06

    Voltage-gated and ligand-gated ion channels are used in eukaryotic organisms for the purpose of electrochemical signaling. There are prokaryotic homologues to major eukaryotic channels of these sorts, including voltage-gated sodium, potassium, and calcium channels, Ach-receptor and glutamate-receptor channels. The prokaryotic homologues have been less well characterized functionally than their eukaryotic counterparts. In this study we identify likely prokaryotic functional counterparts of eukaryotic glutamate receptor channels by comprehensive analysis of the prokaryotic sequences in the context of known functional domains present in the eukaryotic members of this family. In particular, we searched the nonredundant protein database for all proteins containing the following motif: the two sections of the extracellular glutamate binding domain flanking two transmembrane helices. We discovered 100 prokaryotic sequences containing this motif, with a wide variety of functional annotations. Two groups within this family have the same topology as eukaryotic glutamate receptor channels. Group 1 has a potassium-like selectivity filter. Group 2 is most closely related to eukaryotic glutamate receptor channels. We present analysis of the functional domain architecture for the group of 100, a putative phylogenetic tree, comparison of the protein phylogeny with the corresponding species phylogeny, consideration of the distribution of these proteins among classes of prokaryotes, and orthologous relationships between prokaryotic and human glutamate receptor channels. We introduce a construct called the Evolutionary Domain Network, which represents a putative pathway of domain rearrangements underlying the domain composition of present channels. We believe that scientists interested in ion channels in general, and ligand-gated ion channels in particular, will be interested in this work. The work should also be of interest to bioinformatics researchers who are interested in the use

  5. Stochastic pumping of ions based on colored noise in bacterial channels under acidic stress

    NASA Astrophysics Data System (ADS)

    López, M. Lidón; Queralt-Martín, María; Alcaraz, Antonio

    2016-07-01

    Fluctuation-driven ion transport can be obtained in bacterial channels with the aid of different types of colored noise including the biologically relevant Lorentzian one. Using the electrochemical rectification of the channel current as a ratchet mechanism we observe transport of ions up to their concentration gradient under conditions similar to that met in vivo, namely moderate pH gradients and asymmetrically charged lipid membranes. We find that depending on the direction of the concentration gradient the channel can pump either cations or anions from the diluted side to the concentrated one. We discuss the possible relevance of this phenomenon for the pH homeostasis of bacterial cells.Fluctuation-driven ion transport can be obtained in bacterial channels with the aid of different types of colored noise including the biologically relevant Lorentzian one. Using the electrochemical rectification of the channel current as a ratchet mechanism we observe transport of ions up to their concentration gradient under conditions similar to that met in vivo, namely moderate pH gradients and asymmetrically charged lipid membranes. We find that depending on the direction of the concentration gradient the channel can pump either cations or anions from the diluted side to the concentrated one. We discuss the possible relevance of this phenomenon for the pH homeostasis of bacterial cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02638a

  6. Identification of specific sensory neuron populations for study of expressed ion channels.

    PubMed

    Ramachandra, Renuka; McGrew, Stephanie; Elmslie, Keith

    2013-12-24

    Sensory neurons transmit signals from various parts of the body to the central nervous system. The soma for these neurons are located in the dorsal root ganglia that line the spinal column. Understanding the receptors and channels expressed by these sensory afferent neurons could lead to novel therapies for disease. The initial step is to identify the specific subset of sensory neurons of interest. Here we describe a method to identify afferent neurons innervating the muscles by retrograde labeling using a fluorescent dye DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate). Understanding the contribution of ion channels to excitation of muscle afferents could help to better control excessive excitability induced by certain disease states such as peripheral vascular disease or heart failure. We used two approaches to identify the voltage dependent ion channels expressed by these neurons, patch clamp electrophysiology and immunocytochemistry. While electrophysiology plus pharmacological blockers can identify functional ion channel types, we used immunocytochemistry to identify channels for which specific blockers were unavailable and to better understand the ion channel distribution pattern in the cell population. These techniques can be applied to other areas of the nervous system to study specific neuronal groups.

  7. Ion channels in human red blood cell membrane: actors or relics?

    PubMed

    Thomas, Serge L Y; Bouyer, Guillaume; Cueff, Anne; Egée, Stéphane; Glogowska, Edyta; Ollivaux, Céline

    2011-04-15

    During the past three decades, electrophysiological studies revealed that human red blood cell membrane is endowed with a large variety of ion channels. The physiological role of these channels, if any, remains unclear; they do not participate in red cell homeostasis which is rather based on the almost total absence of cationic permeability and minute anionic conductance. They seem to be inactive in the "resting cell." However, when activated experimentally, ion channels can lead to a very high single cell conductance and potentially induce disorders, with the major risks of fast dehydration and dissipation of gradients. Could there be physiological conditions under which the red cell needs to activate these high conductances, or are ion channels relics of a function lost in anucleated cells? It has been demonstrated that they play a key role in diseases such as sickle cell anemia or malaria. This short overview of ion channels identified to-date in the human red cell membrane is an attempt to propose a dynamic role for these channels in circulating cells in health and disease.

  8. Three-dimensional tracking and analysis of ion channel signals across dendritic arbors

    PubMed Central

    Ginger, Melanie; Broser, Philip; Frick, Andreas

    2013-01-01

    Most neuron types possess elaborate dendritic arbors that receive and integrate excitatory and inhibitory inputs from numerous other neurons to give rise to cell-type specific firing patterns. The computational properties of these dendrites are therefore crucial for neuronal information processing, and are strongly determined by the expression of many types of voltage-gated ion channels in their membrane. The dendritic distribution patterns of these ion channels are characteristic for each ion channel type, are dependent on the neuronal identity, and can be modified in a plastic or pathophysiological manner. We present a method that enables us to semi-automatically map and quantify in 3D the expression levels of specific ion channel types across the entire dendritic arbor. To achieve this, standard immunohistochemistry was combined with reconstruction and quantification procedures for the localization and relative distribution of ion channels with respect to dendritic morphology. This method can, in principle, be applied to any fluorescent signal, including fluorescently tagged membrane proteins, RNAs, or intracellular signaling molecules. PMID:23576958

  9. Dispersion characteristics of the electromagnetic waves in a relativistic electron beam guided by the ion channel

    SciTech Connect

    Mirzanejhad, Saeed; Sohbatzadeh, Farshad; Ghasemi, Maede; Sedaghat, Zeinab; Mahdian, Zeinab

    2010-05-15

    In this article, the dispersion characteristics of the paraxial (near axis) electromagnetic (EM) waves in a relativistic electron beam guided by the ion channel are investigated. Equilibrium fields such as ion-channel electrostatic field and self-fields of relativistic electron beam are included in this formalism. In accordance with the equilibrium field structure, radial and azimuthal waves are selected as base vectors for EM waves. It is shown that the dispersion of the radially polarized EM and space charge waves are influenced by the equilibrium fields, but azimuthally polarized wave remain unaffected. In some wave number domains, the radially polarized EM and fast space charge waves are coupled. In these regions, instability is analyzed as a function of equilibrium structure. It is shown that the total equilibrium radial force due to the ion channel and electron beam and also relativistic effect play a key role in the coupling of the radially polarized EM wave and space charge wave. Furthermore, some asymptotic behaviors such as weak and strong ion channel, nonrelativistic case and cutoff frequencies are discussed. This instability could be used as an amplification mechanism for radially polarized EM waves in a beam-plasma system where a relativistic electron beam is guided by the ion channel.

  10. Indispensable Role of Ion Channels and Transporters in the Auditory System.

    PubMed

    Mittal, Rahul; Aranke, Mayank; Debs, Luca H; Nguyen, Desiree; Patel, Amit P; Grati, M'hamed; Mittal, Jeenu; Yan, Denise; Chapagain, Prem; Eshraghi, Adrien A; Liu, Xue Zhong

    2017-04-01

    Ear is a complex system where appropriate ionic composition is essential for maintaining the tissue homeostasis and hearing function. Ion transporters and channels present in the auditory system plays a crucial role in maintaining proper ionic composition in the ear. The extracellular fluid, called endolymph, found in the cochlea of the mammalian inner ear is particularly unique due to its electrochemical properties. At an endocochlear potential of about +80 mV, signaling initiated by acoustic stimuli at the level of the hair cells is dependent on the unusually high potassium (K(+) ) concentration of endolymph. There are ion channels and transporters that exists in the ear to ensure that K(+) is continually being cycled into the stria media endolymph. This review is focused on the discussion of the molecular and genetic basis of previously and newly recognized ion channels and transporters that support sensory hair cell excitation based on recent knock-in and knock-out studies of these channels. This article also addresses the molecular and genetic defects and the pathophysiology behind Meniere's disease as well as how the dysregulation of these ion transporters can result in severe defects in hearing or even deafness. Understanding the role of ion channels and transporters in the auditory system will facilitate in designing effective treatment modalities against ear disorders including Meniere's disease and hearing loss. J. Cell. Physiol. 232: 743-758, 2017. © 2016 Wiley Periodicals, Inc.

  11. Dynamics of Braided Channels, Bars, and Associated Deposits Under Experimental Density Currents

    NASA Astrophysics Data System (ADS)