NASA Astrophysics Data System (ADS)
Tsuruoka, Takaaki; Miyanaga, Ayumi; Ohhashi, Takashi; Hata, Manami; Takashima, Yohei; Akamatsu, Kensuke
2017-09-01
A simple composition control route to mixed-lanthanide metal-organic frameworks (MOFs) was developed based on an interfacial reaction with mixed-lanthanide metal ion-doped polymer substrates. By controlling the composition of lanthanide ion (Eu3+ and Tb3+) dopants in polymer substrates to be used as metal ion precursors and scaffolding for the formation of MOFs, [EuxTb2-x(bdc)3(H2O)4]n crystals with a tunable metal composition could be routinely prepared on polymer substrates. Inductively coupled plasma (ICP) measurements revealed that the composition of the obtained frameworks was almost the same as that of the initial polymer substrates. In addition, the resulting [EuxTb2-x(bdc)3(H2O)4]n crystals showed strong phosphorescence because of Eu3+ transitions, indicating that the energy transfer from Tb3+ to Eu3+ ions in the frameworks could be achieved with high efficiency.
Venus ionosphere: photochemical and thermal diffusion control of ion composition.
Bauer, S J; Donahue, T M; Hartle, R E; Taylor, H A
1979-07-06
The major photochemical sources and sinks for ten of the ions measured by the ion mass spectrometer on the Pioneer Venus bus and orbiter spacecraft that are consistent with the neutral gas composition measured on the same spacecraft have been identified. The neutral gas temperature (Tn) as a function of solar zenith angle (chi) derived from measured ion distributions in photochemical equilibrium is given by Tn (K) = 323 cos(1/5)chi. Above 200 kilometers, the altitude behavior of ions is generally controlled by plasma diffusion, with important modifications for minor ions due to thermal diffusion resulting from the observed gradients of plasma temperatures. The dayside equilibrium distributions of ions are sometimes perturbed by plasma convection, while lateral transport of ions from the dayside seems to be a major source of the nightside ionosphere.
Ion-exchange and iontophoresis-controlled delivery of apomorphine.
Malinovskaja, Kristina; Laaksonen, Timo; Kontturi, Kyösti; Hirvonen, Jouni
2013-04-01
The objective of this study was to test a drug delivery system that combines iontophoresis and cation-exchange fibers as drug matrices for the controlled transdermal delivery of antiparkinsonian drug apomorphine. Positively charged apomorphine was bound to the ion-exchange groups of the cation-exchange fibers until it was released by mobile counter-ions in the external solution. The release of the drug was controlled by modifying either the fiber type or the ionic composition of the external solution. Due to high affinity of apomorphine toward the ion-exchanger, a clear reduction in the in vitro transdermal fluxes from the fibers was observed compared to the respective fluxes from apomorphine solutions. Changes in the ionic composition of the donor formulations affected both the release and iontophoretic flux of the drug. Upon the application of higher co-ion concentrations or co-ions of higher valence in the donor formulation, the release from the fibers was enhanced, but the iontophoretic steady-state flux was decreased. Overall, the present study has demonstrated a promising approach using ion-exchange fibers for controlling the release and iontophoretic transdermal delivery of apomorphine. Copyright © 2012 Elsevier B.V. All rights reserved.
Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model
Melo, Mary Anne S.; Weir, Michael D.; Rodrigues, Lidiany K.A.; Xu, Hockin H.K.
2013-01-01
Objectives Secondary caries at the restoration margins remains the main reason for failure. Although calcium phosphate (CaP) composites are promising for caries inhibition, there has been no report of CaP composite to inhibit caries in situ. The objectives of this study were to investigate the caries-inhibition effect of nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) in a human in situ model for the first time, and to determine colony-forming units (CFU) and Ca and P ion concentrations of biofilms on the composite restorations. Methods NACP with a mean particle size of 116 nm were synthesized via a spray-drying technique. Two composites were fabricated: NACP nanocomposite, and control composite filled with glass particles. Twenty-five volunteers wore palatal devices containing bovine enamel slabs with cavities restored with NACP or control composite. After 14 days, the adherent biofilms were collected for analyses. Transverse microradiography determined the enamel mineral profiles at the margins, and the enamel mineral loss ! Z was measured. Results NACP nanocomposite released Ca and P ions and the release significantly increased at cariogenic low pH (p < 0.05). Biofilms on NACP nanocomposite contained higher Ca (p = 0.007) and P ions (p = 0.005) than those of control (n = 25). There was no significant difference in biofilm CFU between the two composites (p > 0.1). Microradiographs showed typical subsurface lesions in enamel next to control composite, but much less lesion around NACP nanocomposite. Enamel mineral loss ! Z (mean ± sd; n = 25) around NACP nanocomposite was 13.8 ± 9.3 μm, much less than 33.5 ± 19.0 μm of the control (p = 0.001). Significance Novel NACP nanocomposite substantially reduced caries formation in a human in situ model for the first time. Enamel mineral loss at the margins around NACP nanocomposite was less than half of the mineral loss around control composite. Therefore, the Ca and P ion-releasing NACP nanocomposite is promising for caries-inhibiting restorations. PMID:23140916
NASA Astrophysics Data System (ADS)
Abdelhamid, A.; Stark, H.; Worsnop, D. R.; Nowak, J. B.; Kuang, C.; Bullard, R.; Browne, E. C.
2017-12-01
Atmospheric ions control the electrical properties of the atmosphere, influence chemical composition via ion-molecule and/or ion-catalyzed reactions, and affect new particle formation. Understanding the role of ions in these processes requires knowledge of ionic chemical composition. Due to the low concentration of ions, chemical composition measurements have historically been challenging. Recent advances in mass spectrometry, such as the atmospheric pressure interface time-of-flight mass spectrometer (APi-TOF), are now making these measurements more feasible. Here, we present measurements of ambient cations during the HISCALE II field campaign (August- September 2016) in Lamont, OK. We discuss how the chemical composition of cations varies over the course of the campaign including before, during, and after new particle formation events. We specifically focus on the composition of organic nitrogen ions due to the potential importance of these compounds in atmospheric nucleation. We compare our results to measurements of neutral organic nitrogen compounds in order to gain insight into how organic nitrogen is chemically transformed in the atmosphere and how this influences new particle formation.
Liang, Kunneng; Zhou, Han; Weir, Michael D; Bao, Chongyun; Reynolds, Mark A; Zhou, Xuedong; Li, Jiyao; Xu, Hockin H K
2017-07-01
Patients with dry mouth often have an acidic oral environment lacking saliva that provides calcium (Ca) and phosphate (P) ions. However, there has been no study on dentin remineralization by placing samples in an acidic solution without Ca and P ions. Previous studies used saliva-like solutions with neutral pH and Ca and P ions. Therefore, the objective of this study was to investigate a novel method of combining poly(amido amine) (PAMAM) with a composite of nanoparticles of amorphous calcium phosphate (NACP) on dentin remineralization in an acidic solution without Ca and P ions for the first time. Demineralized dentin specimens were tested into four groups: (1) dentin control, (2) dentin coated with PAMAM, (3) dentin with NACP nanocomposite, (4) dentin with PAMAM plus NACP composite. Specimens were treated with lactic acid at pH 4 without initial Ca and P ions for 21 days. Acid neutralization and Ca and P ion concentrations were measured. Dentin specimens were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and hardness testing vs. remineralization efficacy. NACP composite had mechanical properties similar to commercial control composites (p>0.1). NACP composite neutralized acid and released Ca and P ions. PAMAM alone failed to induce dentin remineralization. NACP alone achieved mild remineralization and slightly increased dentin hardness at 21days (p>0.1). In contrast, the PAMAM+NACP nanocomposite method in acid solution without initial Ca and P ions greatly remineralized the pre-demineralized dentin, restoring its hardness to approach that of healthy dentin (p>0.1). Dentin remineralization via PAMAM+NACP in pH 4 acid without initial Ca and P ions was demonstrated for the first time, when conventional methods such as PAMAM did not work. The novel PAMAM+NACP nanocomposite method is promising to protect tooth structures, especially for patients with reduced saliva to inhibit caries. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
2012-01-01
Summary The combination of electrodeposition and polymeric templates created by heavy-ion irradiation followed by chemical track etching provides a large variety of poly- and single-crystalline nanowires of controlled size, geometry, composition, and surface morphology. Recent results obtained by our group on the fabrication, characterization and size-dependent properties of nanowires synthesized by this technique are reviewed, including investigations on electrical resistivity, surface plasmon resonances, and thermal instability. PMID:23365800
NASA Technical Reports Server (NTRS)
Taylor, H. A., Jr.; Mayr, H.; Brinton, H.; Niemann, H.; Hartle, R.; Daniell, R. E., Jr.
1982-01-01
A comparison of ion and neutral composition measurements at Venus for periods of greatly different solar activity provides qualitative evidence of solar control of the day-to-night transport of light ion and neutral species. Concentrations of H(+) and He in the predawn bulge near solar maximum in November, 1979, exhibit a depletion signature correlated with a pronounced modulation in the solar F10.7 and EUV fluxes. This perturbation, not observed in the predawn region during an earlier period of relative quiet solar conditions, is interpreted as resulting from pronounced changes in solar heating and photoionization on the dayside, which in turn modulate the transport of ions and neutrals into the bulge region.
Ferraz, Natalia; Carlsson, Daniel O.; Hong, Jaan; Larsson, Rolf; Fellström, Bengt; Nyholm, Leif; Strømme, Maria; Mihranyan, Albert
2012-01-01
Composites of nanocellulose and the conductive polymer polypyrrole (PPy) are presented as candidates for a new generation of haemodialysis membranes. The composites may combine active ion exchange with passive ultrafiltration, and the large surface area (about 80 m2 g−1) could potentially provide compact dialysers. Herein, the haemocompatibility of the novel membranes and the feasibility of effectively removing small uraemic toxins by potential-controlled ion exchange were studied. The thrombogenic properties of the composites were improved by applying a stable heparin coating. In terms of platelet adhesion and thrombin generation, the composites were comparable with haemocompatible polymer polysulphone, and regarding complement activation, the composites were more biocompatible than commercially available membranes. It was possible to extract phosphate and oxalate ions from solutions with physiological pH and the same tonicity as that of the blood. The exchange capacity of the materials was found to be 600 ± 26 and 706 ± 31 μmol g−1 in a 0.1 M solution (pH 7.4) and in an isotonic solution of phosphate, respectively. The corresponding values with oxalate were 523 ± 5 in a 0.1 M solution (pH 7.4) and 610 ± 1 μmol g−1 in an isotonic solution. The heparinized PPy–cellulose composite is consequently a promising haemodialysis material, with respect to both potential-controlled extraction of small uraemic toxins and haemocompatibility. PMID:22298813
Shen, Xiang; Yan, Bing
2016-04-15
A multicolored photoluminescent hybrid system based on lanthanide ions-doped metal organic frameworks/silica composite host has potential in display and barcode applications. By controlling the stoichiometry of the lanthanides via cation exchange, proportional various lanthanide ions are successfully introduced into metal organic frameworks, whose emission intensity is correspondingly proportional to its amount. The resulting luminescent barcodes depend on the lanthanide ions ratios and compositions. Subsequently, the lanthanide ions located in the channels of metal organic frameworks are protected from any interaction with the environment after the modification of silica on the surface. The optical and thermal stability of the hybrid materials are improved for technological application. Copyright © 2016 Elsevier Inc. All rights reserved.
Media Ion Composition Controls Regulatory and Virulence Response of Salmonella in Spaceflight
Wilson, James W.; Ott, C. Mark; Quick, Laura; Davis, Richard; zu Bentrup, Kerstin Höner; Crabbé, Aurélie; Richter, Emily; Sarker, Shameema; Barrila, Jennifer; Porwollik, Steffen; Cheng, Pui; McClelland, Michael; Tsaprailis, George; Radabaugh, Timothy; Hunt, Andrea; Shah, Miti; Nelman-Gonzalez, Mayra; Hing, Steve; Parra, Macarena; Dumars, Paula; Norwood, Kelly; Bober, Ramona; Devich, Jennifer; Ruggles, Ashleigh; CdeBaca, Autumn; Narayan, Satro; Benjamin, Joseph; Goulart, Carla; Rupert, Mark; Catella, Luke; Schurr, Michael J.; Buchanan, Kent; Morici, Lisa; McCracken, James; Porter, Marc D.; Pierson, Duane L.; Smith, Scott M.; Mergeay, Max; Leys, Natalie; Stefanyshyn-Piper, Heidemarie M.; Gorie, Dominic; Nickerson, Cheryl A.
2008-01-01
The spaceflight environment is relevant to conditions encountered by pathogens during the course of infection and induces novel changes in microbial pathogenesis not observed using conventional methods. It is unclear how microbial cells sense spaceflight-associated changes to their growth environment and orchestrate corresponding changes in molecular and physiological phenotypes relevant to the infection process. Here we report that spaceflight-induced increases in Salmonella virulence are regulated by media ion composition, and that phosphate ion is sufficient to alter related pathogenesis responses in a spaceflight analogue model. Using whole genome microarray and proteomic analyses from two independent Space Shuttle missions, we identified evolutionarily conserved molecular pathways in Salmonella that respond to spaceflight under all media compositions tested. Identification of conserved regulatory paradigms opens new avenues to control microbial responses during the infection process and holds promise to provide an improved understanding of human health and disease on Earth. PMID:19079590
NASA Technical Reports Server (NTRS)
Moore, T. E.
1980-01-01
Motivated by recent observations of highly variable hot plasma composition in the magnetosphere, control of the ionospheric escape flux composition by low-altitude particle dynamics and ion chemistry has been investigated for an e(-), H(+), O(+) ionosphere. It is found that the fraction of the steady state escape flux which is O(+) can be controlled very sensitively by the occurrence of parallel or transverse ion acceleration at altitudes below the altitude where the neutral oxygen density falls rapidly below the neutral hydrogen density and the ionospheric source of O(+) tends to be rapidly converted by charge exchange to H(+). The acceleration is required both to overcome the gravitational confinement of O(+) and to violate charge exchange equilibrium so that the neutral hydrogen atmosphere appears 'optically' thin to escaping O(+). Constraints are placed on the acceleration processes, and it is shown that O(+) escape is facilitated by observed ionospheric responses to magnetic activity.
The influence of erythrocyte maturity on ion transport and membrane lipid composition in the rat.
Vokurková, M; Rauchová, H; Dobešová, Z; Loukotová, J; Nováková, O; Kuneš, J; Zicha, J
2016-01-01
Significant relationships between ion transport and membrane lipid composition (cholesterol, total phospholipids and sphingomyelins) were found in erythrocytes of salt hypertensive Dahl rats. In these animals mean cellular hemoglobin content correlated negatively with Na(+)-K(+) pump activity and Na(+) leak but positively with Na(+)-K(+) cotransport activity. Immature erythrocytes exhibit lower mean cellular hemoglobin content (MCHC) than mature ones. The aim of the present study was to find a relationship between erythrocyte maturity, membrane lipid composition and ion transport activity in Wistar rats aged three months which were subjected to repeated hemorrhage (blood loss 2 ml/day for 6 days) to enrich circulating erythrocytes with immature forms. Immature and mature erythrocyte fractions in control and hemorrhaged rats were separated by repeated centrifugation. Hemorrhaged rats had increased number of reticulocytes but reduced hematocrit and MCHC compared to control rats. Immature erythrocytes of hemorrhaged rats differed from mature ones of control animals by elevated Na(+)-K(+) pump activity, reduced Na(+)-K(+) cotransport activity and increased Rb(+) leak. These ion transport changes in immature erythrocytes were accompanied by higher concentration of total phospholipids in their cell membranes. Membrane phospholipid content correlated positively with Na(+)-K(+) pump activity and cation leaks but negatively with Na(+)-K(+) cotransport activity. Moreover, they were also negatively related with MCHC which correlated negatively with Na(+)-K(+) pump activity and Rb(+) leak but positively with Na(+)-K(+) cotransport activity. Thus certain abnormalities of erythrocyte ion transport and membrane lipid composition detected in hypertensive animals might be caused by higher incidence of immature cells.
Wang, Jian; Zhou, Pin; Obata, Akiko; Jones, Julian R.; Kasuga, Toshihiro
2015-01-01
In previous works, we reported the fabrication of cotton-wool-like composites consisting of siloxane-doped vaterite and poly(l-lactic acid) (SiVPCs). Various irregularly shaped bone voids can be filled with the composite, which effectively supplies calcium and silicate ions, enhancing the bone formation by stimulating the cells. The composites, however, were brittle and showed an initial burst release of ions. In the present work, to improve the mechanical flexibility and ion release, the composite fiber was coated with a soft, thin layer consisting of poly(d,l-lactic-co-glycolic acid) (PLGA). A coaxial electrospinning technique was used to prepare a cotton-wool-like material comprising “core-shell”-type fibers with a diameter of ~12 µm. The fibers, which consisted of SiVPC coated with a ~2-µm-thick PLGA layer, were mechanically flexible; even under a uniaxial compressive load of 1.5 kPa, the cotton-wool-like material did not exhibit fracture of the fibers and, after removing the load, showed a ~60% recovery. In Tris buffer solution, the initial burst release of calcium and silicate ions from the “core-shell”-type fibers was effectively controlled, and the ions were slowly released after one day. Thus, the mechanical flexibility and ion-release behavior of the composites were drastically improved by the thin PLGA coating. PMID:28793691
Sputter deposition for multi-component thin films
Krauss, A.R.; Auciello, O.
1990-05-08
Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.
Sputter deposition for multi-component thin films
Krauss, Alan R.; Auciello, Orlando
1990-01-01
Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.
Al-Dulaijan, Yousif A; Cheng, Lei; Weir, Michael D; Melo, Mary Anne S; Liu, Huaibing; Oates, Thomas W; Wang, Lin; Xu, Hockin H K
2018-05-01
Rechargeable calcium phosphate (CaP) composites were developed recently. However, none of the rechargeable CaP composites was antibacterial. The objectives of this study were to develop the first rechargeable CaP composite that was antibacterial, and to investigate the effects of adding dimethylaminohexadecyl methacrylate (DMAHDM) into rechargeable CaP composite on ion rechargeability and re-release as well as biofilm properties. DMAHDM was synthesized via a Menschutkin reaction. Nanoparticles of amorphous calcium phosphate (NACP) were synthesized using a spray-drying technique. The resin contained ethoxylated bisphenol A dimethacrylate (EBPADMA) and pyromellitic glycerol dimethacrylate (PMGDM). Two composites were fabricated: rechargeable NACP composite, and rechargeable NACP-DMAHDM composite. Mechanical properties and ion release and recharge were measured. A dental plaque microcosm biofilm model using saliva was tested. Flexural strength and elastic modulus of rechargeable NACP and NACP-DMAHDM composites matched commercial control composite (p > 0.1). NACP-DMAHDM inhibited biofilm metabolic activity and lactic acid, and reduced biofilm colony-forming units (CFU) by 3-4 log. NACP and NACP-DMAHDM showed similar Ca and P ion recharge and re-release (p > 0.1). Therefore, adding DMAHDM did not compromise the ion rechargeability. One recharge yielded continuous release for 42 d. The release was maintained at the same level with increasing number of recharge cycles, indicating long-term ion release and remineralization capability. The first CaP rechargeable and antibacterial composite was developed. Adding DMAHDM into the rechargeable NACP composite did not adversely affect the Ca and P ion release and recharge, and the composite had much less biofilm growth and lactic acid production, with CFU reduction by 3-4 log. This novel CaP rechargeable composite with long-term remineralization and antibacterial properties is promising for tooth restorations to inhibit caries. Copyright © 2018 Elsevier Ltd. All rights reserved.
Plasma membrane surface potential: dual effects upon ion uptake and toxicity
USDA-ARS?s Scientific Manuscript database
Electrical properties of plasma membranes (PMs), partially controlled by the ionic composition of the bathing medium, play significant roles in the distribution of ions at the exterior surface of PMs and in the transport of ions across PMs. The effects of coexistent cations (commonly Al3+, Ca2+, Mg...
Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Großgarten, Mandy; Möginger, Bernhard
2014-03-01
During the curing process of light curing dental composites the mobility of molecules and molecule segments is reduced leading to a significant increase of the viscosity as well as the ion viscosity. Thus, the kinetics of the curing behavior of 6 different composites was derived from dielectric analysis (DEA) using especially redesigned flat sensors with interdigit comb electrodes allowing for irradiation at the top side and measuring the ion viscosity at the bottom side. As the ion viscosities of dental composites change 1-3 orders of magnitude during the curing process, DEA provides a sensitive approach to evaluate their curing behavior, especially in the phase of undisturbed chain growth. In order to determine quantitative kinetic parameters a kinetic model is presented and examined for the evaluation of the ion viscosity curves. From the obtained results it is seen that DEA might be employed in the investigation of the primary curing process, the quality assurance of ingredients as well as the control of processing stability of the light curing dental composites. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
APPARATUS FOR CONTROLLING THE POSITION OF AN ION BEAM IN A CALUTRON
Lawrence, E.O.
1958-01-01
ABS>This patent relates to improvements in electric discharge devices of the calutron type for separation of the isotopes of an element from the freely occurring composition. The improvement constitutes means for the continuous control of the path of an ion beam to obtain maximum reception in a receiver compartment. Withdrawal of the ions from the source is accomplished by an accelerator electrode placed at a positive potential with respect to the receiver. The ions are projected through a magnetic field perpendicular to the direction of motion towards a receiver. In order to obtain a signal representative of the magnitude of ions received from a particular ion-beam in its compartment, an electrode is disposed in the compartment. The signal from the compartment electrode controls the voltage of the acccleratimg electrodc through appropriate circuitry to maintain the path of the particular ion beam optimum for maximum ion current in the compartment.
NASA Astrophysics Data System (ADS)
Li, Shikuo; Shen, Yuhua; Xie, Anjian; Yu, Xuerong; Zhang, Xiuzhen; Yang, Liangbao; Li, Chuanhao
2007-10-01
We describe the formation of amorphous selenium (α-Se)/protein composites using Capsicum annuum L extract to reduce selenium ions (SeO32-) at room temperature. The reaction occurs rapidly and the process is simple and easy to handle. A protein with a molecular weight of 30 kDa extracted from Capsicum annuum L not only reduces the SeO32- ions to Se0, but also controls the nucleation and growth of Se0, and even participates in the formation of α-Se/protein composites. The size and shell thickness of the α-Se/protein composites increases with high Capsicum annuum L extract concentration, and decreases with low reaction solution pH. The results suggest that this eco-friendly, biogenic synthesis strategy could be widely used for preparing inorganic/organic biocomposites. In addition, we also discuss the possible mechanism of the reduction of SeO32- ions by Capsicum annuum L extract.
NASA Astrophysics Data System (ADS)
Dakroury, G.; Labib, Sh.; Abou El-Nour, F. H.
2012-09-01
Pure bone material obtained from cow meat, as apatite-rich material, and TiO2-bone composite materials are prepared and studied to be used for heavy metal ions separation from waste water solutions. Meat wastes are chemically and thermally treated to control their microstructure in order to prepare the composite materials that fulfill all the requirements to be used as selective membranes with high performance, stability and mechanical strength. The prepared materials are analyzed using Hg-porosimetry for surface characterization, energy dispersive X-ray spectroscopy (EDAX) for elemental analysis and Fourier transform infrared spectroscopy (FTIR) for chemical composition investigation. Structural studies are performed using X-ray diffraction (XRD). Microstructural properties are studied using scanning electron microscopy (SEM) and specific surface area studies are performed using Brunauer-Emmet-Teller (BET) method. XRD studies show that multiphase structures are obtained as a result of 1h sintering at 700-1200 °C for both pure bone and TiO2-bone composite materials. The factors affecting the transport of different heavy metal ions through the selected membranes are determined from permeation flux measurements. It is found that membrane pore size, membrane surface roughness and membrane surface charge are the key parameters that control the transport or rejection of heavy metal ions through the selected membranes.
Natale, Livia C; Rodrigues, Marcela C; Alania, Yvette; Chiari, Marina D S; Boaro, Leticia C C; Cotrim, Marycel; Vega, Oscar; Braga, Roberto R
2018-08-01
to verify the effect of the addition of dicalcium phosphate dihydrate (DCPD) particles functionalized with di- or triethylene glycol dimethacrylate (DEGDMA or TEGDMA) on the degree of conversion (DC), post-gel shrinkage (PS), mechanical properties, and ion release of experimental composites. Four composites were prepared containing a BisGMA/TEGDMA matrix and 60 vol% of fillers. The positive control contained only barium glass fillers, while in the other composites 15 vol% of the barium was replaced by DCPD. Besides the functionalized particles, non-functionalized DCPD was also tested. DC after 24 h (n = 3) was determined by FTIR spectroscopy. The strain gage method was used to obtain PS 5 min after photoactivation (n = 5). Flexural strength and modulus (n = 10) were calculated based on the biaxial flexural test results, after specimen storage for 24 h or 60 days in water. The same storage times were used for fracture toughness testing (FT, n = 10). Calcium and phosphate release up to 60 days was quantified by ICP-OES (n = 3). Data were analyzed by ANOVA/Tukey test (alpha: 5%). Composites containing functionalized DCPD presented higher DC than the control (p < 0.001). The material containing DEGDMA-functionalized particles showed higher PS than the other composites (p < 0.001). After 60 days, only the composite with DEGDMA-functionalized DCPD presented fracture strength similar to the control, while for flexural modulus only the composite with TEGDMA-functionalized particles was lower than the control (p < 0.001). FT of all composites containing DCPD was higher than the control after 60 days (p < 0.005). Calcium release was higher for the composite with non-functionalized DCPD at 15 days and no significant reductions were observed for composites with functionalized DCPD during the observation period (p < 0.001). For all the tested composites, phosphate release was higher at 15 days than in the subsequent periods, and no difference among them was recorded at 45 and 60 days (p < 0.001). DCPD functionalization affected all the studied variables. The composite with DEGDMA-functionalized particles was the only material with strength similar to the control after 60 days in water; however, it also presented the highest shrinkage. The presence of DCPD improved FT, regardless of functionalization. DCPD functionalization reduced ion release only during the first 15 days. Copyright © 2018 Elsevier Ltd. All rights reserved.
Polyarylether composition and membrane
Hung, Joyce; Brunelle, Daniel Joseph; Harmon, Marianne Elisabeth; Moore, David Roger; Stone, Joshua James; Zhou, Hongyi; Suriano, Joseph Anthony
2010-11-09
A composition including a polyarylether copolymer is provided. The copolymer includes a polyarylether backbone; and a sulfonated oligomeric group bonded to the polyarylether suitable for use as a cation conducting membrane. Method of bonding a sulfonated oligomeric group to the polyarylether backbone to form a polyarylether copolymer. The membrane may be formed from the polyarylether copolymer composition. The chain length of the sulfonated oligomeric group may be controlled to affect or control the ion conductivity of the membrane.
Composite anion-exchangers modified with nanoparticles of hydrated oxides of multivalent metals
NASA Astrophysics Data System (ADS)
Maltseva, T. V.; Kolomiets, E. O.; Dzyazko, Yu. S.; Scherbakov, S.
2018-02-01
Organic-inorganic composite ion-exchangers based on anion exchange resins have been obtained. Particles of one-component and two-component modifier were embedded using the approach, which allows us to realize purposeful control of a size of the embedded particles. The approach is based on Ostwald-Freundlich equation, which was adapted to deposition in ion exchange matrix. The equation was obtained experimentally. Hydrated oxides of zirconium and iron were applied to modification, concentration of the reagents were varied. The embedded particles accelerate sorption, the rate of which is fitted by the model equation of chemical reactions of pseudo-second order. When sorption of arsenate ions from very diluted solution (50 µg dm-3) occurs, the composites show higher distribution coefficients comparing with the pristine resin.
Yamada, Shinya; Obata, Akiko; Maeda, Hirotaka; Ota, Yoshio; Kasuga, Toshihiro
2015-01-01
Development of novel biomaterials with Mg2+, Ca2+, and silicate ions releasability for bone regeneration is now in progress. Several inorganic ions have been reported to stimulate bone-forming cells. We featured Ca2+, silicate, and especially, Mg2+ ions as growth factors for osteoblasts. Various biomaterials, such as ceramic powders and organic–inorganic composites, that release the ions, have been developed and investigated for their cytocompatibilities in our previous work. Through the investigation, providing the three ions was found to be effective to activate osteogenic cells. Magnesium and siloxane-containing vaterite was prepared by a carbonation process as an inorganic particle that can has the ability to simultaneously release Ca2+, silicate, and Mg2+ ions to biodegradable polymers. Poly (l-lactic acid) (PLLA)- and bioactive PLLA-based composites containing vaterite coatings were discussed regarding their degradability and cytocompatibility using a metallic Mg substrate as Mg2+ ion source. PLLA/SiV composite film, which has a releasability of silicate ions besides Ca2+ ion, was coated on a pure Mg substrate to be compared with the PLLA/V coating. The degradability and releasability of inorganic ions were morphologically and quantitatively monitored in a cell culture medium. The bonding strength between the coatings and Mg substrates was one of the key factors to control Mg2+ ion release from the substrates. The cell culture tests were conducted using mouse osteoblast-like cells (MC3T3-E1 cells); cellular morphology, proliferation, and differentiation on the materials were evaluated. The PLLA/V and PLLA/SiV coatings on Mg substrates were found to enhance the proliferation, especially the PLLA/SiV coating possessed a higher ability to induce the osteogenic differentiation of the cells. PMID:26697421
Ramezani, Gholam H; Moghadam, Mona-Momeni; Saghiri, Mohammad-Ali; Garcia-Godoy, Franklin; Asatourian, Armen; Aminsobhani, Mohsen; Scarbecz, Mark; Sheibani, Nader
2017-01-01
To evaluate the effect of dental amalgam and composite restorations on total antioxidant capacity (TAC) and calcium (Ca) ion concentration of unstimulated saliva. Forty-eight children aged 6-10 years selected and divided into three groups of sixteen (8 males, 8 females). In group A and B, samples consisted of two class II dental composite or amalgam restorations, while in group C samples were caries-free (control group). Unstimulated saliva from all samples was collected and TAC was measured by spectrophotometry using an adaptation of 2, 2'-azino-di-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) assay. The Ca ion level was estimated by an auto- analyzer. Data were analyzed with one- and two-way ANOVA test, at a p <.05 level of significance. Composite samples showed significantly higher TAC and lower Ca ion levels compared to amalgam and caries-free samples ( p <.05). The TAC values showed only significant difference between groups ( p <.05), while the Ca ion results showed significant differences within and between groups ( p <.05). Dental composite restorations increased TAC and decreased Ca ion levels more than amalgam restorations in saliva. Gender is an effective factor in changes induced in oral cavity as females showed more emphatic reaction to dental filling materials than males. Patients who have dental restorations, especially dental composites, should pay more attention to their dental hygiene, because dental restorations can increase oxidative stress and decrease Ca ion level in saliva, which might jeopardize remineralization process of tooth structures after demineralization. Key words: Amalgam, caries, composite, saliva, total antioxidant capacity.
NASA Technical Reports Server (NTRS)
Lanzerotti, L. J.; Gold, R. E.; Anderson, K. A.; Armstrong, T. P.; Lin, R. P.; Krimigis, S. M.; Pick, M.; Roelof, E. C.; Sarris, E. T.; Simnett, G. M.
1983-01-01
The Heliosphere Instrument for Spectral, Composition, and Anisotropy at Low Energies (HI-SCALE) designed to measure interplanetary ions and electrons is described. Ions and electrons are detected by five separate solid-state detector telescopes oriented to give complete pitch angle coverage from the spinning spacecraft. Ion elemental abundances are determined by a telescope using a thin front detector element in a three-element telescope. Experiment operation is controlled by a microprocessor-based data system. Inflight calibration is provided by radioactive sources mounted on closable telescope covers. Ion and electron spectral information is determined using broad-energy-range rate channels, and a pulse-height analyzer for more detailed spectra. The instrument weighs 5.775 kg and uses 4.0 W power.
NASA Astrophysics Data System (ADS)
Jho, Jae Y.; Han, Man J.; Park, Jong H.; Lee, Jang Y.; Wang, Hyuck S.
2005-05-01
On purpose to overcome the limit of conventional ionic polymer-metal composites (IPMC) using the commercial ionic membranes, novel IPMCs with radiation-grafted ion-exchange membranes were prepared. Poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-co-HFP) and poly(ethylene-co-tetrafluoroethylene) (ETFE) were radiation-grafted with styrene, and then sulfonated. The properties of the membranes were modulated by controlling the amount of polystyrene sulfonic acid (PSSA) groups in the membranes. The amount of PSSA groups were tuned by controlling the total absorbed dose of γ-ray. The membranes were characterized by measuring the water-uptake, the ion-exchange capacity, and the ion conductivity. The performance of the IPMCs using these membranes were analyzed with laser displacement meter. They exhibited much larger bending displacement in comparison with Nafion-based IPMC. With increasing the amount of PSSA groups, the maximum displacement and the bending speed were remarkably increased. The results made sure that the property of ion-exchange membrane was the key element affecting the actuation performance of IPMC.
In Situ Measurements of Meteoric Ions
NASA Technical Reports Server (NTRS)
Grebowsky, Joseph M.; Aiken, Arthur C.; Einaudi, Franco (Technical Monitor)
2001-01-01
Extraterrestrial material is the source of metal ions in the Earth's atmosphere, Each year approx. 10(exp 8) kg of material is intercepted by the Earth. The origin of this material is predominantly solar orbiting interplanetary debris from comets or asteroids that crosses the Earth's orbit. It contains a very small amount of interstellar material. On occasion the Earth passes through enhanced amounts of debris associated with the orbit of a decaying comet. This leads to enhanced meteor shower displays for up to several days. The number flux of shower material is typically several times the average sporadic background influx of material. Meteoric material is some of the earliest material formed in the solar system. By studying the relative elemental abundances of atmospheric metal ions, information can be gained on the chemical composition of cometary debris and the chemical makeup of the early solar system. Using in situ sampling with rocket-borne ion mass spectrometers; there have been approximately 50 flights that made measurements of the metal ion abundances at attitudes between 80 and 130 km. It is this altitude range where incoming meteoric particles am ablated, the larger ones giving rise to visible meteor. displays. In several rocket measurements isotopic ratios of different atomic ion mass components and metal molecular ion concentrations have been determined and used to identify unambiguously the measured species and to investigate the processes controlling the metal ion distributions The composition of the Earth's ionosphere was first sampled by an ion mass spectrometer flown an a rocket in 1956. In 1958 a rocket-borne ion spectrometer identified, fbr the first time, a layer of metal ions near 95 km. These data were interpreted as evidence of an extraterrestrial rather than a terrestrial source. Istomin predicted: "It seems probable that with some improvement in the method that analysis of the ion composition in the E-region may be used for determining the chemical composition of those meteors which do not reach the ground. Particularly, we hope to get information about the composition difference between particles of different meteor showers and also sporadic and shower meteoroids". These visions categorized the aims of many subsequent rocket-borne ion mass spectrometer experiments in the lower ionosphere, Although the use such measurements to deduce the composition of different classes of meteoroids has not been successful, the past four decades of rocket observations have provided po%erful sets of data for advancing our understanding of meteor ablation, meteoric composition, metal neutral and ion chemistry as well as ionospheric dynamics.
Zheng, Jin; Hu, Yan-Yan
2018-01-31
Composite electrolytes are widely studied for their potential in realizing improved ionic conductivity and electrochemical stability. Understanding the complex mechanisms of ion transport within composites is critical for effectively designing high-performance solid electrolytes. This study examines the compositional dependence of the three determining factors for ionic conductivity, including ion mobility, ion transport pathways, and active ion concentration. The results show that with increase in the fraction of ceramic Li 7 La 3 Zr 2 O 12 (LLZO) phase in the LLZO-poly(ethylene oxide) composites, ion mobility decreases, ion transport pathways transit from polymer to ceramic routes, and the active ion concentration increases. These changes in ion mobility, transport pathways, and concentration collectively explain the observed trend of ionic conductivity in composite electrolytes. Liquid additives alter ion transport pathways and increase ion mobility, thus enhancing ionic conductivity significantly. It is also found that a higher content of LLZO leads to improved electrochemical stability of composite electrolytes. This study provides insight into the recurring observations of compositional dependence of ionic conductivity in current composite electrolytes and pinpoints the intrinsic limitations of composite electrolytes in achieving fast ion conduction.
Kröner, Frieder; Hubbuch, Jürgen
2013-04-12
pH gradient protein separations are widely used techniques in the field of protein analytics, of which isoelectric focusing is the most well known application. The chromatographic variant, based on the formation of pH gradients in ion exchange columns is only rarely applied due to the difficulties to form controllable, linear pH gradients over a broad pH range. This work describes a method for the systematic generation of buffer compositions with linear titration curves, resulting in well controllable pH gradients. To generate buffer compositions with linear titration curves an in silico method was successfully developed. With this tool, buffer compositions for pH gradient ion exchange chromatography with pH ranges spanning up to 7.5 pH units were established and successfully validated. Subsequently, the buffer systems were used to characterize the elution behavior of 22 different model proteins in cation and anion exchange pH gradient chromatography. The results of both chromatographic modes as well as isoelectric focusing were compared to describe differences in between the methods. Copyright © 2013 Elsevier B.V. All rights reserved.
Studying localized corrosion using liquid cell transmission electron microscopy
Chee, See Wee; Pratt, Sarah H.; Hattar, Khalid; ...
2014-11-07
Using liquid cell transmission electron microscopy (LCTEM), localized corrosion of Cu and Al thin films immersed in aqueous NaCl solutions was studied. We demonstrate that potentiostatic control can be used to initiate pitting and that local compositional changes, due to focused ion beam implantation of Au + ions, can modify the corrosion susceptibility of Al films. Likewise, a discussion on strategies to control the onset of pitting is also presented.
Composition-structure-properties relationship of strontium borate glasses for medical applications.
Hasan, Muhammad S; Werner-Zwanziger, Ulrike; Boyd, Daniel
2015-07-01
We have synthesized TiO2 doped strontium borate glasses, 70B2O3-(30-x)SrO-xTiO2 and 70B2 O3 -20SrO(10-x)Na2 O-xTiO2 . The composition dependence of glass structure, density, thermal properties, durability, and cytotoxicity of degradation products was studied. Digesting the glass in mineral acid and detecting the concentrations of various ions using an ICP provided the actual compositions that were 5-8% deviated from the theoretical values. The structure was investigated by means of (11)B magic angle spinning (MAS) NMR spectroscopy. DSC analyses provided the thermal properties and the degradation rates were measured by measuring the weight loss of glass disc-samples in phosphate buffered saline at 37°C in vitro. Finally, the MTT assay was used to analyze the cytotoxicity of the degradation products. The structural analysis revealed that replacing TiO2 for SrO or Na2 O increased the BO3/BO4 ratio suggesting the network-forming role of TiO2 . Thermal properties, density, and degradation rates also followed the structural changes. Varying SrO content predominantly controlled the degradation rates, which in turn controlled the ion release kinetics. A reasonable control (2-25% mass loss in 21 days) over mass loss was achieved in current study. Even though, very high concentrations (up to 5500 ppm B, and 1200 ppm Sr) of ions were released from the ternary glass compositions that saturated the degradation media in 7 days, the degradation products from ternary glass system was found noncytotoxic. However, quaternary glasses demonstrated negative affect on cell viability due to very high (7000 ppm) Na ion concentration. All the glasses investigated in current study are deemed fast degrading with further control over degradation rates, release kinetics desirable. © 2014 Wiley Periodicals, Inc.
Rice husk-originating silicon-graphite composites for advanced lithium ion battery anodes.
Kim, Hye Jin; Choi, Jin Hyeok; Choi, Jang Wook
2017-01-01
Rice husk is produced in a massive amount worldwide as a byproduct of rice cultivation. Rice husk contains approximately 20 wt% of mesoporous SiO 2 . We produce mesoporous silicon (Si) by reducing the rice husk-originating SiO 2 using a magnesio-milling process. Taking advantage of meso-porosity and large available quantity, we apply rice husk-originating Si to lithium ion battery anodes in a composite form with commercial graphite. By varying the mass ratio between these two components, trade-off relation between specific capacity and cycle life was observed. A controllable pre-lithiation scheme was adopted to increase the initial Coulombic efficiency and energy density. The series of electrochemical results suggest that rice husk-originating Si-graphite composites are promising candidates for high capacity lithium ion battery anodes, with the prominent advantages in battery performance and scalability.
High conducting oxide--sulfide composite lithium superionic conductor
Liang, Chengdu; Rangasamy, Ezhiylmurugan; Dudney, Nancy J.; Keum, Jong Kahk; Rondinone, Adam Justin
2017-01-17
A solid electrolyte for a lithium-sulfur battery includes particles of a lithium ion conducting oxide composition embedded within a lithium ion conducting sulfide composition. The lithium ion conducting oxide composition can be Li.sub.7La.sub.3Zr.sub.2O.sub.12 (LLZO). The lithium ion conducting sulfide composition can be .beta.-Li.sub.3PS.sub.4 (LPS). A lithium ion battery and a method of making a solid electrolyte for a lithium ion battery are also disclosed.
Lai, Samuel Kin-Man; Cheng, Yu-Hong; Tang, Ho-Wai; Ng, Kwan-Ming
2017-08-09
Systematically controlling heat transfer in the surface-assisted laser desorption/ionization (SALDI) process and thus enhancing the analytical performance of SALDI-MS remains a challenging task. In the current study, by tuning the metal contents of Ag-Au alloy nanoparticle substrates (AgNPs, Ag55Au45NPs, Ag15Au85NPs and AuNPs, ∅: ∼2.0 nm), it was found that both SALDI ion-desorption efficiency and heat transfer can be controlled in a wide range of laser fluence (21.3 mJ cm -2 to 125.9 mJ cm -2 ). It was discovered that ion detection sensitivity can be enhanced at any laser fluence by tuning up the Ag content of the alloy nanoparticle, whereas the extent of ion fragmentation can be reduced by tuning up the Au content. The enhancement effect of Ag content on ion desorption was found to be attributable to the increase in laser absorption efficiency (at 355 nm) with Ag content. Tuning the laser absorption efficiency by changing the metal composition was also effective in controlling the heat transfer from the NPs to the analytes. The laser-induced heating of Ag-rich alloy NPs could be balanced or even overridden by increasing the Au content of NPs, resulting in the reduction of the fragmentation of analytes. In the correlation of experimental measurement with molecular dynamics simulation, the effect of metal composition on the dynamics of the ion desorption process was also elucidated. Upon increasing the Ag content, it was also found that phase transition temperatures, such as melting, vaporization and phase explosion temperature, of NPs could be reduced. This further enhanced the desorption of analyte ions via phase-transition-driven desorption processes. The significant cooling effect on the analyte ions observed at high laser fluence was also determined to be originated from the phase explosion of the NPs. This study revealed that the development of alloy nanoparticles as SALDI substrates can constitute an effective means for the systematic control of ion-desorption efficiency and the extent of heat transfer, which could potentially enhance the analytical performance of SALDI-MS.
Mihranyan, Albert; Nyholm, Leif; Bennett, Alfonso E Garcia; Strømme, Maria
2008-10-02
We present a novel conducting polypyrrole-based composite material, obtained by polymerization of pyrrole in the presence of iron(III) chloride on a cellulose substrate derived from the environmentally polluting Cladophora sp. algae. The material, which was doped with chloride ions, was molded into paper sheets and characterized using scanning and transmission electron microscopy, N 2 gas adsorption analysis, cyclic voltammetry, chronoamperometry and conductivity measurements at varying relative humidities. The specific surface area of the composite was found to be 57 m (2)/g and the fibrous structure of the Cladophora cellulose remained intact even after a 50 nm thick layer of polypyrrole had been coated on the cellulose fibers. The composite could be repeatedly used for electrochemically controlled extraction and desorption of chloride and an ion exchanging capacity of 370 C per g of composite was obtained as a result of the high surface area of the cellulose substrate. The influence of the oxidation and reduction potentials on the chloride ion exchange capacity and the nucleation of delocalized positive charges, forming conductive paths in the polypyrrole film, was also investigated. The creation of conductive paths during oxidation followed an effective medium rather than a percolative behavior, indicating that some conduction paths survive the polymer reduction steps. The present high surface area material should be well-suited for use in, e.g., electrochemically controlled ion exchange or separation devices, as well as sensors based on the fact that the material is compact, light, mechanically stable, and moldable into paper sheets.
NASA Astrophysics Data System (ADS)
Han, Genquan; Wang, Yibo; Liu, Yan; Wang, Hongjuan; Liu, Mingshan; Zhang, Chunfu; Zhang, Jincheng; Cheng, Buwen; Hao, Yue
2015-05-01
In this work, relaxed GeSn p-channel tunneling field-effect transistors (pTFETs) with various Sn compositions are fabricated on Si. Enhancement of on-state current ION with the increase of Sn composition is observed in transistors, due to the reduction of direct bandgap EG. Ge0.93Sn0.07 and Ge0.95Sn0.05 pTFETs achieve 110% and 75% enhancement in ION, respectively, compared to Ge0.97Sn0.03 devices, at VGS - VTH = VDS = - 1.0 V. For the first time, ION enhancement in GeSn pTFET utilizing uniaxial tensile strain is reported. By applying 0.14% uniaxial tensile strain along [110] channel direction, Ge0.95Sn0.05 pTFETs achieve 12% ION improvement, over unstrained control devices at VGS - VTH = VDS = - 1.0 V. Theoretical study demonstrates that uniaxial tensile strain leads to the reduction of direct EG and affects the reduced tunneling mass, which bring the GBTBT rising, benefiting the tunneling current enhancement in GeSn TFETs.
Jin, Zhiyuan; Güven, Güray; Bocharova, Vera; Halámek, Jan; Tokarev, Ihor; Minko, Sergiy; Melman, Artem; Mandler, Daniel; Katz, Evgeny
2012-01-01
Novel biocompatible hybrid-material composed of iron-ion-cross-linked alginate with embedded protein molecules has been designed for the signal-triggered drug release. Electrochemically controlled oxidation of Fe(2+) ions in the presence of soluble natural alginate polymer and drug-mimicking protein (bovine serum albumin, BSA) results in the formation of an alginate-based thin-film cross-linked by Fe(3+) ions at the electrode interface with the entrapped protein. The electrochemically generated composite thin-film was characterized by electrochemistry and atomic force microscopy (AFM). Preliminary experiments demonstrated that the electrochemically controlled deposition of the protein-containing thin-film can be performed at microscale using scanning electrochemical microscopy (SECM) as the deposition tool producing polymer-patterned spots potentially containing various entrapped drugs. Application of reductive potentials on the modified electrode produced Fe(2+) cations which do not keep complexation with alginate, thus resulting in the electrochemically triggered thin-film dissolution and the protein release. Different experimental parameters, such as the film-deposition time, concentrations of compounds and applied potentials, were varied in order to demonstrate that the electrodepositon and electrodissolution of the alginate composite film can be tuned to the optimum performance. A statistical modeling technique was applied to find optimal conditions for the formation of the composite thin-film for the maximal encapsulation and release of the drug-mimicking protein at the lowest possible potential. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Liu, Yanglin; Wang, Yaping; Zhang, Yifang; Liang, Shuquan; Pan, Anqiang
2016-12-01
Transition metal oxides and graphene composites have been widely reported in energy storage and conversion systems. However, the controllable synthesis of graphene-based nanocomposites with tunable morphologies is far less reported. In this work, we report the fabrication of V2O5 and reduced graphene oxide composites with nanosheet or nanoparticle-assembled subunits by adjusting the solvothermal solution. As cathode materials for lithium-ion batteries, the nanosheet-assembled V2O5/graphene composite exhibits better rate capability and long-term cycling stability. The V2O5/graphene composites can deliver discharge capacities of 133, 131, and 122 mAh g-1 at 16 C, 32 C, and 64 C, respectively, in the voltage range of 2.5-4.0 V vs. Li/Li+. Moreover, the electrodes can retain 85% of their original capacity at 1C rate after 500 cycles. The superior electrochemical performances are attributed to the porous structures created by the connected V2O5 nanosheets and the electron conductivity improvement by graphene.
Cheng, Yayi; Huang, Jianfeng; Qi, Hui; Cao, Liyun; Luo, Xiaomin; Li, Jiayin; Xu, Zhanwei; Yang, Jun
2017-12-07
The Sn-C bonding content between the SnO 2 and CNTs interface was controlled by the hydrothermal method and subsequent heat treatment. Electrochemical analysis found that the SnO 2 @CNTs with high Sn-C bonding content exhibited much higher capacity contribution from alloying and conversion reaction compared with the low content of Sn-C bonding even after 200 cycles. The high Sn-C bonding content enabled the SnO 2 nanoparticles to stabilize on the CNTs surface, realizing an in situ pulverization process of SnO 2 . The in situ pulverized structure was beneficial to maintain the close electrochemical contact of the working electrode during the long-term cycling and provide ultrafast transfer paths for lithium ions and electrons, which promoted the alloying and conversion reaction kinetics greatly. Therefore, the SnO 2 @CNTs composite with high Sn-C bonding content displayed highly reversible alloying and conversion reaction. It is believed that the composite could be used as a reference for design chemically bonded metal oxide/carbon composite anode materials in lithium-ion batteries.
Jin, K.; Lu, C.; Wang, L. M.; ...
2016-04-14
The impact of compositional complexity on the ion-irradiation induced swelling and hardening is studied in Ni and six Ni-containing equiatomic alloys with face-centered cubic structure. The irradiation resistance at the temperature of 500 °C is improved by controlling the number and, especially, the type of alloying elements. Alloying with Fe and Mn has a stronger influence on swelling reduction than does alloying with Co and Cr. Lastly, the quinary alloy NiCoFeCrMn, with known excellent mechanical properties, has shown 40 times higher swelling tolerance than nickel.
NASA Astrophysics Data System (ADS)
Gupta, S.; Kumar, D.; Jin, T. L.; Nongjai, R.; Asokan, K.; Ghosh, A.; Aparnadevi, M.; Suri, P.; Piramanayagam, S. N.
2018-05-01
In this paper, magnetic and magnetization dynamic properties of compositionally patterned Co46Fe40Ta9Zr5 thin films are investigated. A combination of self-assembly and ion-implantation was employed to locally alter the composition of Co46Fe40Ta9Zr5 thin film in a periodic manner. 20 keV O+ and 60 keV N+ ions were implanted at different doses in order to modify the magnetization dynamic properties of the samples in a controlled fashion. Magnetic hysteresis loop measurements revealed significant changes in the coercivity for higher influences of 5 × 1016 ions per cm2. In particular, N+ implantation was observed to induce two phase formation with high and low coercivities. Broadband strip-line ferromagnetic resonance spectroscopy over wide range of frequency (8 - 20 GHz) was used to study the magnetization dynamics as a function of ion-beam dosage. With higher fluences, damping constant showed a continuous increase from 0.0103 to 0.0430. Such control of magnetic properties at nano-scale using this method is believed to be useful for spintronics and microwave device applications.
Study of Swift Heavy Ion Modified Conducting Polymer Composites for Application as Gas Sensor
Srivastava, Alok; Singh, Virendra; Dhand, Chetna; Kaur, Manindar; Singh, Tejvir; Witte, Karin; Scherer, Ulrich W.
2006-01-01
A polyaniline-based conducting composite was prepared by oxidative polymerisation of aniline in a polyvinylchloride (PVC) matrix. The coherent free standing thin films of the composite were prepared by a solution casting method. The polyvinyl chloride-polyaniline composites exposed to 120 MeV ions of silicon with total ion fluence ranging from 1011 to 1013 ions/cm2, were observed to be more sensitive towards ammonia gas than the unirradiated composite. The response time of the irradiated composites was observed to be comparably shorter. We report for the first time the application of swift heavy ion modified insulating polymer conducting polymer (IPCP) composites for sensing of ammonia gas.
Ion composition variety and variability around perihelion
NASA Astrophysics Data System (ADS)
Beth, Arnaud; Altwegg, Kathrin; Behar, Étienne; Broiles, Tom; Burch, Jim; Carr, Christopher; Eriksson, Anders; Galand, Marina; Goetz, Charlotte; Henri, Pierre; Heritier, Kévin; Nilsson, Hans; Odelstad, Elias; Richter, Ingo; Rubin, Martin; Vallieres, Xavier
2017-04-01
For two years, the Double Focusing Mass Spectrometer (DFMS), one of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) onboard Rosetta probed the neutral gas and the plasma composition of the comet 67P/Churyumov-Gerasimenko's coma (67P). Major ion species detected include water ions (e.g, H2O+, H3O+, HO+) observed throughout the escorting phase. The analysis of DFMS data revealed a large zoo of ion species near perihelion (summer 2015). In particular, protonated versions of high proton affinity neutrals (e.g., NH4+) were detected, but also hydrocarbon and organic ion species. Near perihelion, ion composition was also highly variable and showed interesting variations in the complexity of the observed ion species. We will first present an overview of the rich variety of ion species observed during perihelion. This study will be supported by ionospheric modeling of ion composition below the ion exobase. We will then show an intercomparison between DFMS data and Rosetta Plasma Consortium (RPC) plasma and particle data to interpret the DFMS ion composition variability. Our primary goal is to highlight any correlation between observations from these different instruments (i.e. ion composition, ion and electron number density, energy distribution, magnetic field) and to find relevant signatures of physical processes which can affect the chemistry and dynamics (e.g., acceleration and deflection) of the involved neutral and ion species.
Razaq, Aamir; Mihranyan, Albert; Welch, Ken; Nyholm, Leif; Strømme, Maria
2009-01-15
The electrochemically controlled anion absorption properties of a novel large surface area composite paper material composed of polypyrrole (PPy) and cellulose derived from Cladophora sp. algae, synthesized with two oxidizing agents, iron(III) chloride and phosphomolybdic acid (PMo), were analyzed in four different electrolytes containing anions (i.e., chloride, aspartate, glutamate, and p-toluenesulfonate) of varying size.The composites were characterized with scanning and transmission electron microscopy, N2 gas adsorption,and conductivity measurements. The potential-controlled ion exchange properties of the materials were studied by cyclic voltammetry and chronoamperometry at varying potentials. The surface area and conductivity of the iron(III) chloride synthesized sample were 58.8 m2/g and 0.65 S/cm, respectively, while the corresponding values for the PMo synthesized sample were 31.3 m2/g and 0.12 S/cm. The number of absorbed ions per sample mass was found to be larger for the iron(III) chloride synthesized sample than for the PMo synthesized one in all four electrolytes. Although the largest extraction yields were obtained in the presence of the smallest anion (i.e., chloride) for both samples, the relative degree of extraction for the largest ions (i.e., glutamate and p-toluenesulfonate) was higher for the PMo sample. This clearly shows that it is possible to increase the extraction yield of large anions by carrying out the PPy polymerization in the presence of large anions. The results likewise show that high ion exchange capacities, as well as extraction and desorption rates, can be obtained for large anions with high surface area composites coated with relatively thin layers of PPy.
Assessment of hydrogeochemical status of groundwater in a coastal region of Southeast coast of India
NASA Astrophysics Data System (ADS)
Chidambaram, S.; Sarathidasan, J.; Srinivasamoorthy, K.; Thivya, C.; Thilagavathi, R.; Prasanna, M. V.; Singaraja, C.; Nepolian, M.
2018-03-01
A study was conducted in a coastal region of Cuddalore district of Tamil Nadu, India, to identify the hydrogeochemical processes controlling the groundwater chemistry. The major geological units of the study area are sandstone, clay, alluvium, and laterite soils of Tertiary and Quaternary age. A total of 64 groundwater samples were measured for major ions and stable isotopes. Higher electrical conductivity values indicate the poor quality groundwater along the coastal region. Saline water intrusion mainly affects the hydrochemical composition of the aquifer water reflected by Na-Cl-type waters. Cl-/(Cl- + HCO3 -) ratio also indicates the mixing of fresh groundwater with saline water. The results of δD and δ18O analyses show that isotopic compositions of groundwater ranges from - 7.7 to - 2.1‰ for δ18O and from - 55.6 to - 18.5‰ for δD. Correlation and factor analysis were carried out to find the association of ions and to determine the major factors controlling the groundwater chemistry of the region. The study indicates that ion exchange, weathering, salt water intrusion along the coast, and anthropogenic impacts are the major controlling factors for the groundwater chemistry of the region.
Effect of alkali ions (Na+, K+, Cs+) on reaction mechanism of CZTS nano-particles synthesis
NASA Astrophysics Data System (ADS)
Kumar, Suresh; Altosaar, Mare; Grossberg, Maarja; Mikli, Valdek
2018-04-01
The control of morphology, elemental composition and phase composition of Cu2ZnSnS4 (CZTS) nano-crystals depends on the control of complex formation and surface stabilization of nano-particles in solution-based synthesis in oleylamine. At temperatures ≥280 °C, the control of nano-crystal's morphology and homogenous growth is difficult because of fast poly-nuclear growth occurring at higher temperatures. In the present work the effect of oleylamine complex formation with different alkali ions (Na+, K+ and Cs+) on nano-crystals growth at synthesis temperature of 280 °C was studied. It was found that nano-powders synthesized in the presence of Na+ and K+ ions showed the formation of crystals of different sizes - small nano-particles (18 nm-30 nm), large aggregated crystals (few nm to 1 μm) and large single crystals (1 μm - 4 μm). The presence of Cs+ ions in the nano-powder synthesis in oleylamine-metal precursor-CsOH solution promoted growth of nano-crystals of homogenous size. It is proposed that the formed oleylamine-Cs complexes a) enhance the formation and stabilization of oleylamine-metal (Cu, Zn and Sn) complexes before the injection of sulphur precursor into the oleylamine-metal precursor solution and b) after addition of sulphur stabilize the fast nucleated nano-particles and promote diffusion limited growth.
NASA Astrophysics Data System (ADS)
Tsai, Rung-Ywan; Ho, Fang C.
1994-11-01
Ion-assisted deposition (IAD) processes configured with a well-controlled plasma source at the center base of a vacuum chamber, which accommodates two independent e-gun sources, is used to deposition TiO2MgF2 and TiO2-SiO2 composite films of selected component ratios. Films prepared by this technology are found durable, uniform, and nonabsorbing in visible and near-IR regions. Single- and multilayer antireflection coatings with refractive index from 1.38 to 2.36 at (lambda) equals 550 nm are presented. Methods of enhancement in optical performance of these coatings are studied. The advantages of AR coatings formed by TiO2-MgF2 composite films over those similar systems consisting of TiO2-SiO2 composite films in both visible and near-IR regions are also presented.
Manganese oxide helices, rings, strands, and films, and methods for their preparation
Suib, Steven L.; Giraldo, Oscar; Marquez, Manuel; Brock, Stephanie
2003-01-07
Methods for the preparation of mixed-valence manganese oxide compositions with quaternary ammonium ions are described. The compositions self-assemble into helices, rings, and strands without any imposed concentration gradient. These helices, rings, and strands, as well as films having the same composition, undergo rapid ion exchange to replace the quaternary ammonium ions with various metal ions. And the metal-ion-containing manganese oxide compositions so formed can be heat treated to form semi-conducting materials with high surface areas.
After a dispersive event, rapid determination of elemental compositions of ions in mass spectra is essential for tentatively identifying compounds. A Direct Analysis in Real Time (DART)® ion source interfaced to a JEOL AccuTOF® mass spectrometer provided exact masses accurate to ...
NASA Astrophysics Data System (ADS)
Wang, Hua-Jie; Yu, Xue-Hong; Wang, Cai-Feng; Cao, Ying
2013-11-01
Series of self-assembled and mono-dispersed bovine serum albumin (BSA)-conjugated ZnS/CuS nano-composites with different Zn/Cu ratios had been successfully synthesized by a combination method of the biomimetic synthesis and ion-exchange strategy under the gentle conditions. High-resolution transmission electron microscopy observation, Fourier transform infrared spectra and zeta potential analysis demonstrated that BSA-conjugated ZnS/CuS nano-composites with well dispersity had the hierarchical structure and BSA was a key factor to control the morphology and surface electro-negativity of final products. The real-time monitoring by atomic absorption spectroscopy and powder X-ray diffraction revealed that the Zn/Cu ratio of nano-composites could be controlled by adjusting the ion-exchange time. In addition, the metabolic and morphological assays indicated that the metabolic proliferation and spread of rat pheochromocytoma (PC12) cells could be inhibited by nano-composites, with the high anti-cancer activity at a low concentration (4 ppm). What were more important, Zn and Cu in nano-composites exhibited a positive cooperativity at inhibiting cancer cell functions. The microscope observation and biochemical marker analysis clearly revealed that the nano-composites-included lipid peroxidation and disintegration of membrane led to the death of PC12 cells. Summarily, the present study substantiated the potential of BSA-conjugated ZnS/CuS nano-composites as anti-cancer drug.
Li, Xiaoming; Zhang, Shengli; Kulinich, Sergei A.; Liu, Yanli; Zeng, Haibo
2014-01-01
Luminescent carbon dots (L-CDs) with high quantum yield value (44.7%) and controllable emission wavelengths were prepared via a facile hydrothermal method. Importantly, the surface states of the materials could be engineered so that their photoluminescence was either excitation-dependent or distinctly independent. This was achieved by changing the density of amino-groups on the L-CD surface. The above materials were successfully used to prepare multicolor L-CDs/polymer composites, which exhibited blue, green, and even white luminescence. In addition, the excellent excitation-independent luminescence of L-CDs prepared at low temperature was tested for detecting various metal ions. As an example, the detection limit of toxic Be2+ ions, tested for the first time, was as low as 23 μM.
Razaq, Aamir; Nyström, Gustav; Strømme, Maria; Mihranyan, Albert; Nyholm, Leif
2011-01-01
Highly porous polypyrrole (PPy)-nanocellulose paper sheets have been evaluated as inexpensive and disposable electrochemically controlled three-dimensional solid phase extraction materials. The composites, which had a total anion exchange capacity of about 1.1 mol kg−1, were used for extraction and subsequent release of negatively charged fluorophore tagged DNA oligomers via galvanostatic oxidation and reduction of a 30–50 nm conformal PPy layer on the cellulose substrate. The ion exchange capacity, which was, at least, two orders of magnitude higher than those previously reached in electrochemically controlled extraction, originated from the high surface area (i.e. 80 m2 g−1) of the porous composites and the thin PPy layer which ensured excellent access to the ion exchange material. This enabled the extractions to be carried out faster and with better control of the PPy charge than with previously employed approaches. Experiments in equimolar mixtures of (dT)6, (dT)20, and (dT)40 DNA oligomers showed that all oligomers could be extracted, and that the smallest oligomer was preferentially released with an efficiency of up to 40% during the reduction of the PPy layer. These results indicate that the present material is very promising for the development of inexpensive and efficient electrochemically controlled ion-exchange membranes for batch-wise extraction of biomolecules. PMID:22195031
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Maoying; Zhang, Zhenyi; Cao, Tieping
Graphical abstract: Nanofibers and nanoribbons of poly (methyl methacrylate)/Eu{sup 3+} ions composites were successfully prepared by using a simple electrospinning technique. And the photoluminescence properties of the above PMMA/Eu{sup 3+} ions composites were studied. Highlights: Black-Right-Pointing-Pointer Nanofibers and nanoribbons of PMMA/Eu{sup 3+} ions composites are fabricated by electrospinning. Black-Right-Pointing-Pointer Photoluminescence properties of as-electrospun PMMA/Eu{sup 3+} ions composites are studied. Black-Right-Pointing-Pointer The ratios of electric- and magnetic-dipole transitions are enhanced by increasing electrospinning voltage. -- Abstract: Nanofibers and nanoribbons of poly (methyl methacrylate) (PMMA)/Eu{sup 3+} ions composites with different concentration of Eu{sup 3+} ions were successfully prepared by using a simplemore » electrospinning technique. From the results of scanning electron microscopy and energy-dispersive X-ray spectroscopy, we found that the morphology of the as-electrospun PMMA/Eu{sup 3+} ions composites could be changed from fiber to ribbon structure by adjusting the concentration of Eu{sup 3+} ions in the electrospun precursor solution. The coordination between the Eu{sup 3+} ions and PMMA molecules were investigated by Fourier transform infrared spectroscopy and differential thermal analysis. The photoluminescence (PL) properties of the as-electrospun PMMA/Eu{sup 3+} ions composites were studied in comparison to those of the Eu(NO{sub 3}){sub 3} powder. It was showed that the {sup 5}D{sub 0}-{sup 7}F{sub J} (J = 0, 1, 2, 3, 4) emission appeared in the PL spectra of the as-electrospun PMMA/Eu{sup 3+} ions composites, whereas the {sup 5}D{sub 0}-{sup 7}F{sub 0} emission was completely absent in the PL spectra of Eu(NO{sub 3}){sub 3} powder due to the different local environments surrounding Eu{sup 3+} ions. It was interesting to note that the intensity ratios of the electric-dipole and magnetic-dipole transitions for the PMMA/Eu{sup 3+} ions composites could be enhanced significantly by increasing electrospinning voltage.« less
Denton, M. H.; Thomsen, M. F.; Reeves, G. D.; ...
2017-10-03
The ion plasma sheet (~few hundred eV to ~few 10s keV) is usually dominated by H + ions. Here, changes in ion composition within the plasma sheet are explored both during individual events, and statistically during 54 calm-to-storm events and during 21 active-to-calm events. Ion composition data from the HOPE (Helium, Oxygen, Proton, Electron) instruments onboard Van Allen Probes satellites provide exceptional spatial and temporal resolution of the H +, O +, and He + ion fluxes in the plasma sheet. H+ shown to be the dominant ion in the plasma sheet in the calm-to-storm transition. However, the energy-flux ofmore » each ion changes in a quasi-linear manner during extended calm intervals. Heavy ions (O + and He +) become increasingly important during such periods as charge-exchange reactions result in faster loss for H + than for O + or He +. Results confirm previous investigations showing that the ion composition of the plasma sheet can be largely understood (and predicted) during calm intervals from knowledge of: (a) the composition of previously injected plasma at the onset of calm conditions, and (b) use of simple drift-physics models combined with calculations of charge-exchange losses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denton, M. H.; Thomsen, M. F.; Reeves, G. D.
The ion plasma sheet (~few hundred eV to ~few 10s keV) is usually dominated by H + ions. Here, changes in ion composition within the plasma sheet are explored both during individual events, and statistically during 54 calm-to-storm events and during 21 active-to-calm events. Ion composition data from the HOPE (Helium, Oxygen, Proton, Electron) instruments onboard Van Allen Probes satellites provide exceptional spatial and temporal resolution of the H +, O +, and He + ion fluxes in the plasma sheet. H+ shown to be the dominant ion in the plasma sheet in the calm-to-storm transition. However, the energy-flux ofmore » each ion changes in a quasi-linear manner during extended calm intervals. Heavy ions (O + and He +) become increasingly important during such periods as charge-exchange reactions result in faster loss for H + than for O + or He +. Results confirm previous investigations showing that the ion composition of the plasma sheet can be largely understood (and predicted) during calm intervals from knowledge of: (a) the composition of previously injected plasma at the onset of calm conditions, and (b) use of simple drift-physics models combined with calculations of charge-exchange losses.« less
Tunable self-organization of nanocomposite multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C. Q.; Pei, Y. T.; Shaha, K. P.
In this letter we report the controlled growth and microstructural evolution of self-assembled nanocomposite multilayers that are induced by surface ion-impingement. The nanoscale structures together with chemical composition, especially at the growing front, have been investigated with high-resolution transmission electron microscopy. Concurrent ion impingement of growing films produces an amorphous capping layer 3 nm in thickness where spatially modulated phase separation is initiated. It is shown that the modulation of multilayers as controlled by the self-organization of nanocrystallites below the capping layer, can be tuned through the entire film.
Modeling and control of a self-sensing polymer metal composite actuator
NASA Astrophysics Data System (ADS)
Nam, Doan Ngoc Chi; Ahn, Kyoung Kwan
2014-02-01
An ion polymer metal composite (IPMC) is an electro-active polymer (EAP) that bends in response to a small applied electrical field as a result of mobility of cations in the polymer network and vice versa. One drawback in the use of an IPMC is the sensing problem for such a small size actuator. The aim of this paper is to develop a physical model for a self-sensing IPMC actuator and to verify its applicability for practical position control. Firstly, ion dynamics inside a polymer membrane is investigated with an asymmetric solution in the presence of distributed surface resistance. Based on this analysis, a modified equivalent circuit and a simple configuration to realize the self-sensing IPMC actuator are proposed. Mathematical modelling and experimental evaluation indicate that the bending curvature can be obtained accurately using several feedback voltage signals along with the IPMC length. Finally, the controllability of the developed self-sensing IPMC actuator is investigated using a robust position control. Experimental results prove that the self-sensing characteristics can be applied in engineering control problems to provide a more convenient sensing method for IPMC actuating systems.
Lankford, Jr., James
1988-01-01
A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.
Non-isothermal electrochemical model for lithium-ion cells with composite cathodes
NASA Astrophysics Data System (ADS)
Basu, Suman; Patil, Rajkumar S.; Ramachandran, Sanoop; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin; Yeo, Taejung; Doo, Seokgwang
2015-06-01
Transition metal oxide cathodes for Li-ion batteries offer high energy density and high voltage. Composites of these materials have shown excellent life expectancy and improved thermal performance. In the present work, a comprehensive non-isothermal electrochemical model for a Lithium ion cell with a composite cathode is developed. The present work builds on lithium concentration-dependent diffusivity and thermal gradient of cathode potential, obtained from experiments. The model validation is performed for a wide range of temperature and discharge rates. Excellent agreement is found for high and room temperature with moderate success at low temperatures, which can be attributed to the low fidelity of material properties at low temperature. Although the cell operation is limited by electronic conductivity of NCA at room temperature, at low temperatures a shift in controlling process is seen, and operation is limited by electrolyte transport. At room temperature, the lithium transport in Cathode appears to be the main source of heat generation with entropic heat as the primary contributor at low discharge rates and ohmic heat at high discharge rates respectively. Improvement in electronic conductivity of the cathode is expected to improve the performance of these composite cathodes and pave way for its wider commercialization.
Choi, Bong Gill; Hong, Jinkee; Park, Young Chul; Jung, Doo Hwan; Hong, Won Hi; Hammond, Paula T; Park, Hoseok
2011-06-28
The chemistry and structure of ion channels within the polymer electrolytes are of prime importance for studying the transport properties of electrolytes as well as for developing high-performance electrochemical devices. Despite intensive efforts on the synthesis of polymer electrolytes, few studies have demonstrated enhanced target ion conduction while suppressing unfavorable ion or mass transport because the undesirable transport occurs through an identical pathway. Herein, we report an innovative, chemical strategy for the synthesis of polymer electrolytes whose ion-conducting channels are physically and chemically modulated by the ionic (not electronic) conductive, functionalized graphenes and for a fundamental understanding of ion and mass transport occurring in nanoscale ionic clusters. The functionalized graphenes controlled the state of water by means of nanoscale manipulation of the physical geometry and chemical functionality of ionic channels. Furthermore, the confinement of bound water within the reorganized nanochannels of composite membranes was confirmed by the enhanced proton conductivity at high temperature and the low activation energy for ionic conduction through a Grotthus-type mechanism. The selectively facilitated transport behavior of composite membranes such as high proton conductivity and low methanol crossover was attributed to the confined bound water, resulting in high-performance fuel cells.
NASA Astrophysics Data System (ADS)
Dongol, R.; Sundaram, S. K.
2017-09-01
The addition of Gadolinium (Gd)-based salt, specially GdCl3, in the Water Cherenkov Detectors (WCDs) enhances the sensitivity to neutrino detection. However, the unwanted Cl-based byproducts, significantly reduces the transparency of water and sensitivity of WCDs. An alternative method, to introduce Gd-ions in the WCDs, is through Gd-release from a custom designed Gd-doped glass, when in contact with water. This can potentially eliminate the use of Gd-based salts and byproducts. In this work, we report the Gd-ions release for a Gd-doped peralkaline (Na/Al > 1) borosilicate glass, which closely represents photomultiplier tube (PMT) glass composition used in WCDs. The purpose of the paper is to show that the Gd-ion release from a custom designed glass in the form of beads or powders is feasible and could be used as a controlled Gd-source in future WCDs to enhance neutrino detection. In addition, we present our results of Gd-solubility in the base glass composition.
NASA Astrophysics Data System (ADS)
El Abed, A.; Gaudin, E.; Darriet, J.; Whangbo, M.-H.
2002-02-01
Magnetic susceptibility measurements were carried out for two hexagonal perovskite-type oxides Sr1+x(Mn1-xNix)O3 with slightly different compositions (i.e., x={1}/{3} and 0.324). A significant difference in the susceptibilities of the two phases demonstrates the need to control phase compositions accurately. Sr4/3(Mn2/3Ni1/3)O3 consists of two spin sublattices, i.e., the Mn4+ and the Ni2+ ion sublattices. Spin dimer analysis was carried out to examine the relative strengths in the spin exchange interactions of the Mn4+ ion sublattice. The temperature dependence of the magnetic susceptibility of Sr4/3(Mn2/3Ni1/3)O3 was found consistent with a picture in which the Mn4+ ion sublattice has weakly interacting antiferromagnetically coupled (Mn4+)2 dimers, the Ni2+ ion sublattice acts as a paramagnetic system, and the two sublattices are nearly independent.
Sun, Li; Yan, Zhuanjun; Duan, Youxin; Zhang, Junyan; Liu, Bin
2018-06-01
The aim of this study was to improve the mechanical properties, wear resistance and antibacterial properties of conventional glass ionomer cements (GICs) by fluorinated graphene (FG), under the premise of not influencing their solubility and fluoride ion releasing property. FG with bright white color was prepared using graphene oxide by a hydrothermal reaction. Experimental modified GICs was prepared by adding FG to the traditional GICs powder with four different weight ratios (0.5wt%, 1wt%, 2wt% and 4wt%) using mechanical blending. Compressive and flexural strength of each experimental and control group materials were investigated using a universal testing machine. The Vickers microhardness of all the specimens was measured by a Vicker microhardness tester. For tribological properties of the composites, specimens of each group were investigated by high-speed reciprocating friction tester. Fluoride ion releasing was measured by fluoride ion selective electrode methods. The antibacterial effect of GICs/FG composites on selected bacteria (Staphylococci aureus and Streptococcus mutans) was tested with pellicle sticking method. The prepared GICs/FG composites with white color were successfully fabricated. Increase of Vickers microhardness and compressive strength and decrease of friction coefficient of the GICs/FG composites were achieved compared to unreinforced materials. The colony count against S. aureus and S. mutans decreased with the increase of the content of FG. And the antibacterial rate of S. mutans can be up to 85.27% when the FG content was 4wt%. Additionally, fluoride ion releasing property and solubility did not show significant differences between unreinforced and FG reinforced GICs. Adding FG to traditional GICs could not only improve mechanical and tribological properties of the composites, but also improve their antibacterial properties. In addition, the GICs/FG composites had no negative effect on the color, solubility and fluoride ion releasing properties, which will open up new roads for the application of dental materials. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
A retarding ion mass spectrometer for the Dynamics Explorer-1
NASA Technical Reports Server (NTRS)
Wright, W.
1985-01-01
The Retarding Ion Mass Spectrometer (RIMS) for Dynamics Explorer-1 is an instrument designed to measure the details of the thermal plasma distribution. It combines the ion temperature determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram direction. This manual provides a functional description of the RIMS, the instrument calibration, and a description of the commands which can be stored in the instrument logic to control its operation.
A versatile MOF-based trap for heavy metal ion capture and dispersion.
Peng, Yaguang; Huang, Hongliang; Zhang, Yuxi; Kang, Chufan; Chen, Shuangming; Song, Li; Liu, Dahuan; Zhong, Chongli
2018-01-15
Current technologies for removing heavy metal ions are typically metal ion specific. Herein we report the development of a broad-spectrum heavy metal ion trap by incorporation of ethylenediaminetetraacetic acid into a robust metal-organic framework. The capture experiments for a total of 22 heavy metal ions, covering hard, soft, and borderline Lewis metal ions, show that the trap is very effective, with removal efficiencies of >99% for single-component adsorption, multi-component adsorption, or in breakthrough processes. The material can also serve as a host for metal ion loading with arbitrary selections of metal ion amounts/types with a controllable uptake ratio to prepare well-dispersed single or multiple metal catalysts. This is supported by the excellent performance of the prepared Pd 2+ -loaded composite toward the Suzuki coupling reaction. This work proposes a versatile heavy metal ion trap that may find applications in the fields of separation and catalysis.
Mauk, B H
2014-01-01
Investigated here are factors that control the intensities and shapes of energetic ion spectra that make up the ring current populations of the strongly magnetized planets of the solar system, specifically those of Earth, Jupiter, Saturn, Uranus, and Neptune. Following a previous and similar comparative investigation of radiation belt electrons, we here turn our attention to ions. Specifically, we examine the possible role of the differential ion Kennel-Petschek limit, as moderated by Electromagnetic Ion Cyclotron (EMIC) waves, as a standard for comparing the most intense ion spectra within the strongly magnetized planetary magnetospheres. In carrying out this investigation, the substantial complexities engendered by the very different ion composition distributions of these diverse magnetospheres must be addressed, given that the dispersion properties of the EMIC waves are strongly determined by the ion composition of the plasmas within which the waves propagate. Chosen for comparison are the ion spectra within these systems that are the most intense observed, specifically at 100 keV and 1 MeV. We find that Earth and Jupiter are unique in having their most intense ion spectra likely limited and sculpted by the Kennel-Petschek process. The ion spectra of Saturn, Uranus, and Neptune reside far below their respective limits and are likely limited by interactions with gas and dust (Saturn) and by the absence of robust ion acceleration processes (Uranus and Neptune). Suggestions are provided for further testing the efficacy of the differential Kennel-Petschek limit for ions using the Van Allen Probes. PMID:26167438
The major-ion composition of Silurian seawater
Brennan, S.T.; Lowenstein, T.K.
2002-01-01
One-hundred fluid inclusions in Silurian marine halite were analyzed in order to determine the major-ion composition of Silurian seawater. The samples analyzed were from three formations in the Late Silurian Michigan Basin, the A-1, A-2, and B Evaporites of the Salina Group, and one formation in the Early Silurian Canning Basin (Australia), the Mallowa Salt of the Carribuddy Group. The results indicate that the major-ion composition of Silurian seawater was not the same as present-day seawater. The Silurian ocean had lower concentrations of Mg2+, Na+, and SO2-4, and much higher concentrations of Ca2+ relative to the ocean's present-day composition. Furthermore, Silurian seawater had Ca2+ in excess of SO2-4. Evaporation of Silurian seawater of the composition determined in this study produces KC1-type potash minerals that lack the MgSO4-type late stage salts formed during the evaporation of present-day seawater. The relatively low Na+ concentrations in Silurian seawater support the hypothesis that oscillations in the major-ion composition of the oceans are primarily controlled by changes in the flux of mid-ocean ridge brine and riverine inputs and not global or basin-scale, seawater-driven dolomitization. The Mg2+/Ca2+ ratio of Silurian seawater was ~1.4, and the K+/Ca2+ ratio was ~0.3, both of which differ from the present-day counterparts of 5 and 1, respectively. Seawaters with Mg2+/Ca2+ 2 (e.g., modern seawater) facilitate the precipitation of aragonite and high-magnesian calcite. Therefore, the early Paleozoic calcite seas were likely due to the low Mg2+/Ca2+ ratio of seawater, not the pCO2 of the Silurian atmosphere. Copyright ?? 2002 Elsevier Science Ltd.
Modification of WS2 nanosheets with controllable layers via oxygen ion irradiation
NASA Astrophysics Data System (ADS)
Song, Honglian; Yu, Xiaofei; Chen, Ming; Qiao, Mei; Wang, Tiejun; Zhang, Jing; Liu, Yong; Liu, Peng; Wang, Xuelin
2018-05-01
As one kind of two-dimensional materials, WS2 nanosheets have drawn much attention with different kinds of research methods. Yet ion irradiation method was barely used for WS2 nanosheets. In this paper, the structure, composition and optical band gap (Eg) of the multilayer WS2 films deposited by chemical vapor deposition (CVD) method on sapphire substrates before and after oxygen ion irradiation with different energy and fluences were studied. Precise tailored layer-structures and a controllable optical band gap of WS2 nanosheets were achieved after oxygen ion irradiation. The results shows higher energy oxygen irradiation changed the shape from triangular shaped grains to irregular rectangle shape but did not change 2H-WS2 phase structure. The intensity of E2g1 (Г) and A1g (Г) modes decreased and have small shifts after oxygen ion irradiation. The peak frequency difference between the E2g1 (Г) and A1g (Г) modes (Δω) decreased after oxygen ion irradiation, and this result indicates the number of layers decreased after oxygen ion irradiation. The Eg decreased with the increase of the energy and the fluence of oxygen ions. The number of layers, thickness and optical band gap changed after ion irradiation with different ion fluences and energies. The results proposed a new strategy for precise control of multilayer nanosheets and demonstrated the high applicability of ion irradiation in super-capacitors, field effect transistors and other applications.
Compact Dual Ion Composition Experiment for space plasmas—CoDICE
NASA Astrophysics Data System (ADS)
Desai, M. I.; Ogasawara, K.; Ebert, R. W.; Allegrini, F.; McComas, D. J.; Livi, S.; Weidner, S. E.
2016-07-01
The Compact Dual Ion Composition Experiment—CoDICE—simultaneously provides high-quality plasma and energetic ion composition measurements over six decades in energy in a wide variety of space plasma environments. CoDICE measures two critical ion populations in space plasmas: (1) Elemental and charge state composition, and 3-D velocity distributions of <10 eV/q-40 keV/q plasma ions; and (2) Elemental composition, energy spectra, and angular distributions of ˜30 keV->10 MeV energetic ions. CoDICE uses a novel, integrated, common time-of-flight subsystem that provides several advantages over the commonly used separate plasma and energetic ion sensors currently flying on several space missions. These advantages include reduced mass and volume compared to two separate instruments, reduced shielding in high-radiation environments, and simplified spacecraft interface and accommodation requirements. This paper describes the operation principles, electro-optic simulation results and applies the CoDICE concept for measuring plasma and energetic ion populations in Jupiter's magnetosphere.
Xu, Hockin H. K.; Moreau, Jennifer L.
2010-01-01
The two main challenges facing dental composite restorations are secondary caries and bulk fracture. Previous studies developed whisker-reinforced Ca-PO4 composites that were relatively opaque. The objective of this study was to develop an esthetic glass particle-reinforced, photo-cured calcium phosphate composite. Tetracalcium phosphate (TTCP) particles were incorporated into a resin for Ca and PO4 release, while glass particles provided reinforcement. Ion release and mechanical properties were measured after immersion in solutions with pH of 7, 5.5, and 4. For the composite containing 40% mass fraction of TTCP, incorporating glass fillers increased the strength (p < 0.05). Flexural strength (mean ± sd; n = 6) at 30% glass was (99 ± 18) MPa, higher than (54 ± 20) MPa at 0% glass (p < 0.05). Elastic modulus was 11 GPa at 30% glass, compared to 2 GPa without glass. At 28 d, the released Ca ion concentration was (4.61 ± 0.18) mmol/L at pH of 4, much higher than (1.14 ± 0.07) at pH of 5.5, and (0.27 ± 0.01) at pH of 7 (p < 0.05). PO4 release was also dramatically increased at cariogenic, acidic pH. The TTCP-glass composite had strength 2-3 fold that of a resin-modified glass ionomer control. In conclusion, the photo-cured TTCP-glass composite was “smart” and substantially increased the Ca and PO4 release when the pH was reduced from neutral to a cariogenic pH of 4, when these ions are most needed to inhibit tooth caries. Its mechanical properties were significantly higher than previous Ca, PO4 and fluoride releasing restoratives. Hence, the photo-cured TTCP-glass composite may have potential to provide the necessary combination of load-bearing and caries-inhibiting capabilities. PMID:19810118
Bombardment-induced segregation and redistribution
NASA Astrophysics Data System (ADS)
Lam, N. Q.; Wiedersich, H.
During ion bombardment, a number of processes can alter the compositional distribution and microstructure in near-surface regions of alloys. The relative importance of each process depends principally on the target composition, temperature, and ion characteristics. In addition to displacement mixing leading to a randomization of atomic locations, and preferential loss of alloying elements by sputtering, which are dominant at relatively low temperatures, several thermally-activated processes, including radiation-enhanced diffusion, radiation-induced segregation and Gibbsian adsorption, also play important roles. At elevated temperatures, nonequilibrium point defects induced by ion impacts become mobile and tend to anneal out by recombination and diffusion to extended sinks, such as dislocations, grain boundaries and free surfaces. The high defect concentrations, far exceeding the thermodynamic equilibrium values, can enhance diffusion-controlled processes, while persistent defect fluxes, originating from the spatial non-uniformity in defect production and annihilation, give rise to local redistribution of alloy constituents because of radiation-induced segregation. Moreover, when the alloy is maintained at high temperature, Gibbsian adsorption, driven by the reduction in free energy of the system, occurs even without irradiation; it involves a compositional perturbation in a few atom layers near the alloy surface. The combination of these processes leads to the complex development of a compositionally-modified layer in the subsurface region. Considerable progress has been made recently in identifying and understanding the relative contributions from the individual processes under various irradiation conditions. In the present paper, selected examples of these different phenomena and their synergistic effects on the evolution of the near-surface compositions of alloys during sputtering and ion implantation at elevated temperatures are discussed.
Ion conducting polymers and polymer blends for alkali metal ion batteries
DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra
2017-08-29
Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.
NASA Technical Reports Server (NTRS)
Biddle, A. P.; Reynolds, J. M.
1985-01-01
A system was developed for the calibration and development of thermal ion instrumentation. The system provides an extended beam with usable current rates, approx. 1 pA/sq cm, at beam energies as low as 1 eV, with much higher values available with increasing energy. A tandem electrostatic and variable geometry magnetic mirror configuration within the ion source optimizes the use of the ionizing electrons. The system is integrated under microcomputer control to allow automatic control and monitoring of the beam energy and composition and the mass and angle-dependent response of the instrument under test. The system is pumped by a combination of carbon vane and cryogenic sorption roughing pumps and ion and liquid helium operating pumps.
Ion composition and temperature in the topside ionosphere.
NASA Technical Reports Server (NTRS)
Brace, L. H.; Dunham, G. S.; Mayr, H. G.
1967-01-01
Particle and energy continuity equations derived and solved by computer method ion composition and plasma temperature measured by Explorer XXII PARTICLE and energy continuity equations derived and solved by computer method for ion composition and plasma temperature measured by Explorer XXII
Scintillation screen applications in a vacuum arc ion source with composite hydride cathode
NASA Astrophysics Data System (ADS)
Wang, X. H.; Tuo, X. G.; Yang, Z.; Peng, Y. F.; Li, J.; Lv, H. Y.; Li, J. H.; Long, J. D.
2018-05-01
Vacuum arc ion source with composite hydride cathode was developed to produce intense ion beams which can be applied in particle accelerator injections. Beam profile and beam composition are two fundamental parameters of the beam for the vacuum arc ion source in such specific applications. An aluminum-coated scintillation screen with an ICCD camera readout was used to show the space-time distribution of the beam directly. A simple magnetic analysis assembly with the scintillation screen shows the beam composition information of this kind ion source. Some physical and technical issues are discussed and analyzed in the text.
NASA Astrophysics Data System (ADS)
Li, Xin; Sun, Xiaohong; Gao, Zhiwen; Hu, Xudong; Guo, Jingdong; Cai, Shu; Guo, Ruisong; Ji, Huiming; Zheng, Chunming; Hu, Wenbin
2018-03-01
SnO2 has triggered lots of research efforts as anode for sodium-ion batteries. However, the volume expansion and poor conductivity lead to an unsatisfactory electrochemical performance for the practical application of SnO2. In this work, a novel carbon-coated SnO2 supported by porous carbon sphere composite is synthesized by hydrothermal process combining with annealing method. The porous carbon sphere@SnO2@carbon layer coating composite anode delivers a reversible capacity of 326 mAh g-1 over 80 cycles at a current density of 50 mA g-1. Even at 1600 mA g-1, a capacity of 82 mAh g-1 is still maintained after 550 cycles. Such excellent performance can be ascribed to the unique structure, which efficiently accommodates volume expansion, enhances conductivity and offers shortened sodium-ion transport pathway. The charge-storage mechanisms can be comprised of diffusion-controlled reaction and pseudocapacitance effect. At high scan rate of 1.0 mV s-1, the capacity contribution of pseudocapacitance effect could reach as high as 78%.
NASA Astrophysics Data System (ADS)
Zaitsev, F. S.; Gorelenkov, N. N.; Petrov, M. P.; Afanasyev, V. I.; Mironov, M. I.
2018-03-01
ITER plasma with parameters close to those with the inductive scenario is considered. The distribution functions of fast ions of deuterium D and tritium T are calculated while taking into account the elastic nuclear collisions with alpha particles 4He using the code FPP-3D. The D and T energy spectra detected by the neutral-particle analyzer (NPA) are determined. The plasma mixing effect on these spectra during sawtooth oscillations is studied. It is shown that the NPA makes it possible to detect sawtooth plasma oscillations in ITER and determine the percentage composition of the D‒T mixture in it both with the presence of instabilities and without them. A conclusion is drawn on the prospects of using NPA data in automatic controllers of thermonuclear fuel isotopic composition control and plasma oscillation regulation in ITER.
Bennett ion mass spectrometers on the Pioneer Venus Bus and Orbiter
NASA Technical Reports Server (NTRS)
Taylor, H. A., Jr.; Brinton, H. C.; Wagner, T. C. G.; Blackwell, B. H.; Cordier, G. R.
1980-01-01
Identical Bennett radio-frequency ion mass spectrometer instruments on the Pioneer Venus Bus and Orbiter have provided the first in-situ measurements of the detailed composition of the planet's ionosphere. The sensitivity, resolution, and dynamic range are sufficient to provide measurements of the solar-wind-induced bow-shock, the ionopause, and highly structured distributions of up to 16 thermal ion species within the ionosphere. The use of adaptive scan and detection circuits and servo-controlled logic for ion mass and energy analysis permits detection of ion concentrations as low as 5 ions/cu cm and ion flow velocities as large as 9 km/sec for O(+). A variety of commandable modes provides ion sampling rates ranging from 0.1 to 1.6 sec between measurements of a single constituent. A lightweight sensor and electronics housing are features of a compact instrument package.
Du, Xiao; Zhang, Hao; Hao, Xiaogang; Guan, Guoqing; Abudula, Abuliti
2014-06-25
A facile unipolar pulse electropolymerization (UPEP) technique is successfully applied for the preparation of ion-imprinted composite film composed of ferricyanide-embedded conductive polypyrrole (FCN/PPy) for the selective electrochemical removal of heavy metal ions from wastewater. The imprinted heavy metal ions are found to be easily removed in situ from the growing film only by tactfully applying potential oscillation due to the unstable coordination of FCN to the imprinted ions. The obtained Ni(2+) ion-imprinted FCN/PPy composite film shows fast uptake/release ability for the removal of Ni(2+) ions from aqueous solution, and the adsorption equilibrium time is less than 50 s. The ion exchange capacity reaches 1.298 mmol g(-1) and retains 93.5% of its initial value even after 1000 uptake/release cycles. Separation factors of 6.3, 5.6, and 6.2 for Ni(2+)/Ca(2+), Ni(2+)/K(+), and Ni(2+)/Na(+), respectively, are obtained. These characteristics are attributed to the high identification capability of the ion-imprinted composite film for the target ions and the dual driving forces resulting from both PPy and FCN during the redox process. It is expected that the present method can be used for simple preparation of other ion-imprinted composite films for the separation and recovery of target heavy metal ions as well.
NASA Astrophysics Data System (ADS)
Taut, A.; Berger, L.; Drews, C.; Wimmer-Schweingruber, R. F.
2015-04-01
Context. Pickup ions in the inner heliosphere mainly originate in two sources, one interstellar and one in the inner solar system. In contrast to the interstellar source that is comparatively well understood, the nature of the inner source has not been clearly identified. Former results obtained with the Solar Wind Ion Composition Spectrometer on-board the Ulysses spacecraft revealed that the composition of inner-source pickup ions is similar, but not equal, to the elemental solar-wind composition. These observations suffered from very low counting statistics of roughly one C+ count per day. Aims: Because the composition of inner-source pickup ions could lead to identifying their origin, we used data from the Charge-Time-Of-Flight sensor on-board the Solar and Heliospheric Observatory. It offers a large geometry factor that results in about 100 C+ counts per day combined with an excellent mass-per-charge resolution. These features enable a precise determination of the inner-source heavy pickup ion composition at 1 AU. To address the production mechanisms of inner-source pickup ions, we set up a toy model based on the production scenario involving the passage of solar-wind ions through thin dust grains to explain the observed deviations of the inner-source PUI and the elemental solar-wind composition. Methods: An in-flight calibration of the sensor allows identification of heavy pickup ions from pulse height analysis data by their mass-per-charge. A statistical analysis was performed to derive the inner-source heavy pickup ion relative abundances of N+, O+, Ne+, Mg+, Mg2+, and Si+ compared to C+. Results: Our results for the inner-source pickup ion composition are in good agreement with previous studies and confirm the deviations from the solar-wind composition. The large geometry factor of the Charge-Time-of-Flight sensor even allowed the abundance ratios of the two most prominent pickup ions, C+ and O+, to be investigated at varying solar-wind speeds. We found that the O+/C+ ratio increases systematically with higher solar-wind speeds. This observation is an unprecedented feature characterising the production of inner-source pickup ions. Comparing our observations to the toy model results, we find that both the deviation from the solar-wind composition and the solar-wind-speed dependent O+/C+ ratio can be explained.
NASA Astrophysics Data System (ADS)
Degefie, D. T.; El-Madany, T.-S.; Held, M.; Hejkal, J.; Hammer, E.; Dupont, J.-C.; Haeffelin, M.; Fleischer, E.; Klemm, O.
2015-10-01
The chemical composition of collected fog water and its temporal evolution was studied during the PARISFOG campaign in winter 2012/2013 at the SIRTA (Site Instrumental de Recherche par Télédétection Atmosphéric) atmospheric observatory outside Paris, France. A further development of the caltech active fog collector was applied, in which the collected fog water gets into contact with Teflon and polyether ether ketone (PEEK) material exclusively. The collector was operational whenever the visibility was below 1000 m. In addition, the turbulent and gravitational fluxes of fog water and water vapor flux were used to examine in detail the temporal evolution the chemical composition of two fogs. The technique was applied to two fog events, one representing a radiation fog and the other one representing a stratus lowering fog. The result revealed that the dominant inorganic species in the fog water were NH4+, NO3-, Ca2 + and SO42 -, which accounted for more than 85% of the ion balance. The pH ranged from 3.7 to 6.2. In the evolution the two fog events, the interaction among the turbulent fog water flux, gravitational fog water flux and water vapor flux controlled the major ion loads (amount of ions, dissolved in fog droplets per volume of air) and ion concentrations (amount dissolved per volume of liquid water) of the fog water. In the radiation fog event, an increase of ion loads and ion concentrations occurred when the direction of water vapor flux towards to the place where the condensation process occurred. A decrease of ion loads and ion concentrations mainly happened by gravitational fog water flux with a minor contribution from turbulent fog water flux. However, when the turbulent water vapor flux was oriented downward, it turned the turbulent fog water flux upward and offset the removal of ions in the fog. In the stratus lowering fog event, the turbulent fog water flux and the gravitational water flux together mainly contributed to the fog water deposition and removal of ions. Increases of ion loads and ion concentrations occurred in response to slight downward water vapor flux. This study also indicates that the turbulent transport of fog droplets contributed to the preferential deposition of certain sizes fog droplets such that it affected the chemical composition of the fog water. For instance, both the NO3- concentration and load decreased fast as compared to NH4+ and SO42 - during the deposition period. This suggested that the chemical composition was dependent on fog droplets size.
NASA Technical Reports Server (NTRS)
McDonald, Robert C.; VanBlarcom, Shelly L.; Kwasnik, Katherine E.
2013-01-01
A document discusses a thin layer of composite material, made from nano scale particles of nickel and Teflon, placed within a battery cell as a layer within the anode and/or the cathode. There it conducts electrons at room temperature, then switches to an insulator at an elevated temperature to prevent thermal runaway caused by internal short circuits. The material layer controls excess currents from metal-to-metal or metal-to-carbon shorts that might result from cell crush or a manufacturing defect
Method and apparatus for making diamond-like carbon films
Pern, Fu-Jann [Golden, CO; Touryan, Kenell J [Indian Hills, CO; Panosyan, Zhozef Retevos [Yerevan, AM; Gippius, Aleksey Alekseyevich [Moscow, RU
2008-12-02
Ion-assisted plasma enhanced deposition of diamond-like carbon (DLC) films on the surface of photovoltaic solar cells is accomplished with a method and apparatus for controlling ion energy. The quality of DLC layers is fine-tuned by a properly biased system of special electrodes and by exact control of the feed gas mixture compositions. Uniform (with degree of non-uniformity of optical parameters less than 5%) large area (more than 110 cm.sup.2) DLC films with optical parameters varied within the given range and with stability against harmful effects of the environment are achieved.
Sperm motility in fishes. (II) Effects of ions and osmolality: a review.
Alavi, Sayyed Mohammad Hadi; Cosson, Jacky
2006-01-01
The spermatozoa of most fish species are immotile in the testis and seminal plasma. Therefore, motility is induced after the spermatozoa are released into the aqueous environment during natural reproduction or into the diluent during artificial reproduction. There are clear relationships between seminal plasma composition and osmolality and the duration of fish sperm motility. Various parameters such as ion concentrations (K+, Na+, and Ca2+), osmotic pressure, pH, temperature and dilution rate affect motility. In the present paper, we review the roles of these ions on sperm motility in Salmonidae, Cyprinidae, Acipenseridae and marine fishes, and their relationship with seminal plasma composition. Results in the literature show that: 1. K+ is a key ion controlling sperm motility in Salmonidae and Acipenseridae in combination with osmotic pressure; this control is more simple in other fish species: sperm motility is prevented when the osmotic pressure is high (Cyprinidae) or low (marine fishes) compared to that of the seminal fluid. 2. Cations (mostly divalent, such as Ca2+) are antagonistic with the inhibitory effect of K+ on sperm motility. 3. In many species, Ca2+ influx and K+ or Na+ efflux through specific ionic channels change the membrane potential and eventually lead to an increase in cAMP concentration in the cell, which constitutes the initiation signal for sperm motility in Salmonidae. 4. Media that are hyper- and hypo-osmotic relative to seminal fluid trigger sperm motility in marine and freshwater fishes, respectively. 5. The motility of fish spermatozoa is controlled through their sensitivity to osmolality and ion concentrations. This phenomenon is related to ionic channel activities in the membrane and governs the motility mechanisms of axonemes.
Exact masses of monoisotopic ions and the relative isotopic abundances (RIAs) of ions greater in mass by 1 and 2 Da than the monoisotopic ion are independent and complementary physical properties useful for istinguishing among ion compositions possible for a given nominal mass. U...
Li, H; Atkin, R; Page, A J
2015-06-28
The energetic origins of the variation in friction with potential at the propylammonium nitrate-graphite interface are revealed using friction force microscopy (FFM) in combination with quantum chemical simulations. For boundary layer lubrication, as the FFM tip slides energy is dissipated via (1) boundary layer ions and (2) expulsion of near-surface ion layers from the space between the surface and advancing tip. Simulations reveal how changing the surface potential changes the ion composition of the boundary and near surface layer, which controls energy dissipation through both pathways, and thus the friction.
The preparation and characterization of optical thin films produced by ion-assisted deposition
NASA Astrophysics Data System (ADS)
Martin, P. J.; Netterfield, R. P.; Sainty, W. G.; Pacey, C. G.
1984-06-01
Ion-based deposition techniques have been successfully used to deposit compound films suitable for photothermal applications, as well as dielectric films with stable and reproducible optical properties. Thus, thin films of TiN, a-Si:H, and PbS have been obtained by ion-assisted deposition for photothermal solar-selective elements and similarly prepared dielectric layers of ZrO2, SiO2, and Al2O3 have been used as protective coatings on Ag and Al mirrors. It is shown that the technique of ion-assisted deposition affords control over the film density, microstructure, adhesion, composition, and optical properties. Details of the process and film properties are discussed.
Fabrication de couches minces a memoire de forme et effets de l'irradiation ionique
NASA Astrophysics Data System (ADS)
Goldberg, Florent
1998-09-01
Nickel and titanium when combined in the right stoichiometric proportion (1:1) can form alloys showing the shape memory effect. Within the scope of this thesis, thin films of such alloys have been successfully produced by sputtering. Precise control of composition is crucial in order to obtain the shape memory effect. A combination of analytical tools which can accurately determine the behavior of such materials is also required (calorimetric analysis, crystallography, composition analysis, etc.). Rutherford backscattering spectrometry has been used for quantitative composition analysis. Thereafter irradiation of films with light ions (He+) of few MeV was shown to allow lowering of the characteristic premartensitic transformation temperatures while preserving the shape memory effect. Those results open the door to a new field of research, particularly for ion irradiation and its potential use as a tool to modify the thermomechanical behavior of shape memory thin film actuators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palani, P. Bahavan, E-mail: bahavanpalani@gmail.com; Abidin, K. Sainul; Kannan, R., E-mail: rksrsrk@gmail.com
2016-05-23
The highest proton conductivity value of 0.0802 Scm{sup −1} is obtained at 6 wt% of protonated MMT added to the PVA/PEG blends. The polymer blend composite membranes are prepared with varied concentration of Poly vinyl alcohol (PVA), Poly ethylene glycol (PEG) and Montmorillonite (MMT) by solution casting method. The Na{sup +} MMT was modified (protonated) to H{sup +} MMT with ion exchange process. The prepared membranes were characterized by using TGA, FTIR, XRD, Ion Exchange Capacity, Water/Methanol uptake, swelling ratio and proton conductivity. The significant improvements in the hydrolytic stability were observed. In addition, thermal stability of the composite membranesmore » were improved and controlled by the addition of MMT. All the prepared membranes are shown appreciable values of proton conductivity at room temperature with 100% relative humidity.« less
Ion Temperature Control of the Io Plasma Torus
NASA Technical Reports Server (NTRS)
Delamere, P. A.; Schneider, N. M.; Steffl, A. J.; Robbins, S. J.
2005-01-01
We report on observational and theoretical studies of ion temperature in the Io plasma torus. Ion temperature is a critical factor for two reasons. First, ions are a major supplier of energy to the torus electrons which power the intense EUV emissions. Second, ion temperature determines the vertical extent of plasma along field lines. Higher temperatures spread plasma out, lowers the density and slows reaction rates. The combined effects can play a controlling role in torus energetics and chemistry. An unexpected tool for the study of ion temperature is the longitudinal structure in the plasma torus which often manifests itself as periodic brightness variations. Opposite sides of the torus (especially magnetic longitudes 20 and 200 degrees) have been observed on numerous occasions to have dramatically different brightness, density, composition, ionization state, electron temperature and ion temperature. These asymmetries must ultimately be driven by different energy flows on the opposite sides, presenting an opportunity to observe key torus processes operating under different conditions. The most comprehensive dataset for the study of longitudinal variations was obtained by the Cassini UVIS instrument during its Jupiter flyby. Steffl (Ph.D. thesis, 2005) identified longitudinal variations in all the quantities listed above wit the exception of ion temperature. We extend his work by undertaking the first search for such variation in the UVIS dataset. We also report on a 'square centimeter' model of the torus which extend the traditional 'cubic centimeter' models by including the controlling effects of ion temperature more completely.
Tian, Kuan; Xie, Changsheng; Xia, Xianping
2013-09-01
To reduce such side effects as pain and bleeding caused by copper-containing intrauterine device (Cu-IUD), a novel medicated intrauterine device, which is coated with an indomethacin (IDM) delivery system on the surface of copper/low-density polyethylene (Cu/LDPE) composite intrauterine device, has been proposed and developed in the present work. The IDM delivery system is a polyelectrolyte multilayer film, which is composed of IDM containing chitosan and alginate layer by layer, is prepared by using self-assembled polyelectrolyte multilayer method, and the number of the layers of this IDM containing chitosan/alginate multilayer film can be tailored by controlling the cyclic repetition of the deposition process. After the IDM containing chitosan/alginate multilayer film is obtained on the surface of Cu/LDPE composite intrauterine device, its release behavior of both IDM and cupric ion has been studied in vitro. The results show that the release duration of IDM increase with the increasing of thickness of the IDM containing chitosan/alginate multilayer film, and the initial burst release of cupric ion cannot be found in this novel medicated Cu/LDPE composite IUD. These results can be applied to guide the design of novel medicated Cu-IUD with minimal side effects for the future clinical use. Copyright © 2013 Elsevier B.V. All rights reserved.
Vanthanouvong, V; Kozlova, I; Johannesson, M; Nääs, E; Nordvall, S L; Dragomir, A; Roomans, G M
2006-04-01
The ionic composition of the airway surface liquid (ASL) in healthy individuals and in patients with cystic fibrosis (CF) has been debated. Ion transport properties of the upper airway epithelium are similar to those of the lower airways and it is easier to collect nasal ASL from the nose. ASL was collected with ion exchange beads, and the elemental composition of nasal fluid was determined by X-ray microanalysis in healthy subjects, CF patients, CF heterozygotes, patients with rhinitis, and with primary ciliary dyskinesia (PCD). In healthy subjects, the ionic concentrations were approximately isotonic. In CF patients, CF heterozygotes, rhinitis, and PCD patients, [Na] and [Cl] were significantly higher compared when compared with those in controls. [K] was significantly higher in CF and PCD patients compared with that in controls. Severely affected CF patients had higher ionic concentrations in their nasal ASL than in patients with mild or moderate symptoms. Female CF patients had higher levels of Na, Cl, and K than male patients. As higher salt concentrations in the ASL are also found in other patients with airway diseases involving chronic inflammation, it appears likely that inflammation-induced epithelial damage is important in determining the ionic composition of the ASL. Copyright (c) 2006 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Hwang, Keebum; Sohn, Hiesang; Yoon, Songhun
2018-02-01
Mesostructured niobium (Nb)-doped TiO2-carbon (Nb-TiO2-C) composites are synthesized by a hydrothermal process for application as anode materials in Li-ion batteries. The composites have a hierarchical porous structure with the Nb-TiO2 nanoparticles homogenously distributed throughout the porous carbon matrix. The Nb content is controlled (0-10 wt%) to investigate its effect on the physico-chemical properties and electrochemical performance of the composite. While the crystalline/surface structure varied with the addition of Nb (d-spacing of TiO2: 0.34-0.36 nm), the morphology of the composite remained unaffected. The electrochemical performance (cycle stability and rate capability) of the Nb-TiO2-C composite anode with 1 wt% Nb doping improved significantly. First, a full cut-off potential (0-2.5 V vs. Li/Li+) of Nb-doped composite anode (1 wt%) provides a higher energy utilization than that of the un-doped TiO2-C anode. Second, Nb-TiO2-C composite anode (1 wt%) exhibits an excellent long-term cycle stability (100% capacity retention, 297 mAh/g at 0.5 C after 100 cycles and 221 mAh/g at 2 C after 500 cycles) and improved rate-capability (192 mAh/g at 5 C), respectively (1 C: 150 mA/g). The superior electrochemical performance of Nb-TiO2-C (1 wt%) could be attributed to the synergistic effect of improved electronic conductivity induced by optimal Nb doping (1 wt%) and lithium-ion penetration (high diffusion kinetics) through unique pore structures.
Dentin remineralization in acid challenge environment via PAMAM and calcium phosphate composite.
Liang, Kunneng; Weir, Michael D; Xie, Xianju; Wang, Lin; Reynolds, Mark A; Li, Jiyao; Xu, Hockin H K
2016-11-01
The objective of this study was to investigate the effects of poly (amido amine) (PAMAM), composite with nanoparticles of amorphous calcium phosphate (NACP), and the combined PAMAM+NACP nanocomposite treatment, on remineralization of demineralized dentin in a cyclic artificial saliva/lactic acid environment for the first time. Dentin specimens were prepared and demineralized with 37% phosphoric acid for 15s. Four groups were prepared: (1) dentin control, (2) dentin coated with PAMAM, (3) dentin with NACP composite, (4) dentin with PAMAM+NACP. Specimens were treated with a cyclic artificial saliva/lactic acid regimen for 21days. Acid neutralization and calcium (Ca) and phosphate (P) ion concentrations were measured. The remineralized dentin specimens were examined by scanning electron microscopy (SEM) and hardness testing. NACP nanocomposite had mechanical properties similar to commercial control composites (p>0.1). NACP composite had acid-neutralization and Ca and P ion release capability. PAMAM or NACP composite each alone achieved remineralization and increased the hardness of demineralized dentin (p<0.05). PAMAM+NACP nanocomposite achieved the greatest mineral regeneration in demineralized dentin and the greatest hardness increase in demineralized dentin, which approached the hardness of healthy dentin (p>0.1). The superior remineralization efficacy of PAMAM+NACP was demonstrated for the first time. PAMAM+NACP induced remineralization in demineralized dentin in an acid challenge environment, when conventional remineralization methods such as PAMAM did not work well. The novel PAMAM+NACP composite approach is promising for a wide range of dental applications to inhibit caries and protect tooth structures. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Snelling, J. M.; Johnson, J.; Engebretson, M. J.; Kim, E. H.; Tian, S.
2017-12-01
While it is currently well accepted that the free energy for growth of electromagnetic ion cyclotron (EMIC) waves in Earth's magnetosphere comes from unstable configurations of hot anisotropic ions that are injected into the ring current, several questions remain about what controls the instability. A recent study of the occurrence of EMIC waves relative to the plasmapause in Vallen Probes Data showed that plasma density gradients or enhancements were not the dominant factor in determining the site of EMIC wave generation [Tetrick et al. 2017]. However, the factors that control wave growth on each of the branches are not fully understood. For example, in some cases, the measured anisotropy is not adequate to explain local instability, and the relative importance of the density and composition of a cold plasma population is still uncertain. Several intervals of EMIC wave activity are analyzed to determine the role of a cold population in driving instability on each of the wave branches. This study utilizes the WHAMP (Waves in Homogeneous Anisotropic Magnetized Plasma) stability code with plasma distributions optimized to fit the observed distributions including temperature anisotropy, loss cone, and ring beam populations.
Heliosphere Instrument for Spectra, Composition and Anisotropy at Low Energies
NASA Technical Reports Server (NTRS)
Lanzerotti, L. J.; Gold, R. E.; Anderson, K. A.; Armstrong, T. P.; Lin, R. P.; Krimigis, S. M.; Pick, M.; Roelof, E. C.; Sarris, E. T.; Simnett, G. M.
1992-01-01
The Heliosphere Instrument for Spectra, Composition, and Anisotropy at Low Energies (HI-SCALE) is designed to make measurements of interplanetary ions and electrons throughout the entire Ulysses mission. The ions (E(i) greater than about 50 keV) and electrons (E(e) greater than about 30 keV) are identified uniquely and detected by five separate solid-state detector telescopes that are oriented to give nearly complete pitch-angle coverage from the spinning spacecraft. Ion elemental abundances are determined by Delta E vs E telescope using a thin (5 microns) front solid state detector element in a three-element telescope. Experimental operation is controlled by a microprocessor-based data system. Inflight calibration is provided by radioactive sources mounted on telescope covers which can be closed for calibration purposes and for radiation protection during the course of the mission. Ion and electron spectral information is determined using both broad-energy-range rate channels and a 32 channel pulse-height analyzer for more detailed spectra. Some initial in-ecliptic measurements are presented which demonstrate the features of the instrument.
Ion-conduction mechanisms in NaSICON-type membranes for energy storage and utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, Anthony H.; Ihlefeld, Jon F.; Bartelt, Norman Charles
2015-10-01
Next generation metal-ion conducting membranes are key to developing energy storage and utilization technologies like batteries and fuel ce lls. Sodium super-ionic conductors (aka NaSICON) are a class of compounds with AM 1 M 2 (PO 4 ) 3 stoichiometry where the choice of "A" and "M" cation varies widely. This report, which de scribes substitutional derivatives of NZP (NaZr 2 P 3 O 12 ), summarizes the accomplishments of a Laboratory D irected Research and Development (LDRD) project to analyze transport mec hanisms using a combination of in situ studies of structure, composition, and bonding, com bined with firstmore » principles theory and modeling. We developed an experimental platform and applied methods, such as synchrotron- based X-ray spectroscopies, to probe the electronic structure of compositionally well-controlled NaSICON films while in operation ( i.e ., conducting Na ions exposed to oxygen or water va por atmospheres). First principles theory and modeling were used to interpret the experimental observations and develop an enhanced understanding of atomistic processes that give rise to, and affect, ion conduction.« less
Ionosphere of Venus - First observations of day-night variations of the ion composition
NASA Technical Reports Server (NTRS)
Taylor, H. A., Jr.; Brinton, H. C.; Bauer, S. J.; Hartle, R. E.; Cloutier, P. A.; Daniell, R. E., Jr.; Donahue, T. M.
1979-01-01
Preliminary observations of day-night variations in the ion composition of the ionosphere of Venus, obtained by the Pioneer Venus Orbiter ion mass spectrometer experiment, are reported. A remarkable abundance and extent of ionization in the deep regions of the nightside ionosphere was observed, in spite of the long Venus night. A comparison of dayside and nightside ion distributions reveals a nightside composition similar in several respects to that of the dayside, with the ions O(+) and O2(+) forming the nightside F 2 and F 1 regions, respectively, as in the dayside. Important differences include a greater abundance of low-latitude ionization in the nightside, a significant increase of H(+) and NO(+) ions with increasing solar zenith angle, and extreme dynamic variability of the nightside region above 160 km. Ion composition data support the view that the nightside ionosphere can be maintained by the transport of ionization from the dayside.
NASA Technical Reports Server (NTRS)
Geiss, J.; Gloeckler, G.; Balsiger, H.; Fisk, L. A.; Galvin, A. B.; Gliem, F.; Hamilton, D. C.; Ipavich, F. M.; Livi, S.; Mall, U.
1992-01-01
The ion composition in the Jovian environment was investigated with the Solar Wind Ion Composition Spectrometer on board Ulysses. A hot tenuous plasma was observed throughout the outer and middle magnetosphere. In some regions two thermally different components were identified. Oxygen and sulfur ions with several different charge states, from the volcanic satellite Io, make the largest contribution to the mass density of the hot plasma, even at high latitude. Solar wind particles were observed in all regions investigated. Ions from Jupiter's ionosphere were abundant in the middle magnetosphere, particularly in the high-latitude region on the dusk side, which was traversed for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafalskyi, Dmytro, E-mail: dmytro.rafalskyi@lpp.polytechnique.fr; Popelier, Lara; Aanesland, Ane
The PEGASES (Plasma Propulsion with Electronegative Gases) thruster is a gridded ion thruster, where both positive and negative ions are accelerated to generate thrust. In this way, additional downstream neutralization by electrons is redundant. To achieve this, the thruster accelerates alternately positive and negative ions from an ion-ion plasma where the electron density is three orders of magnitude lower than the ion densities. This paper presents a first experimental study of the alternate acceleration in PEGASES, where SF{sub 6} is used as the working gas. Various electrostatic probes are used to investigate the source plasma potential and the energy, composition,more » and current of the extracted beams. We show here that the plasma potential control in such system is key parameter defining success of ion extraction and is sensitive to both parasitic electron current paths in the source region and deposition of sulphur containing dielectric films on the grids. In addition, large oscillations in the ion-ion plasma potential are found in the negative ion extraction phase. The oscillation occurs when the primary plasma approaches the grounded parts of the main core via sub-millimetres technological inputs. By controlling and suppressing the various undesired effects, we achieve perfect ion-ion plasma potential control with stable oscillation-free operation in the range of the available acceleration voltages (±350 V). The measured positive and negative ion currents in the beam are about 10 mA for each component at RF power of 100 W and non-optimized extraction system. Two different energy analyzers with and without magnetic electron suppression system are used to measure and compare the negative and positive ion and electron fluxes formed by the thruster. It is found that at alternate ion-ion extraction the positive and negative ion energy peaks are similar in areas and symmetrical in position with +/− ion energy corresponding to the amplitude of the applied acceleration voltage.« less
Soft Landing of Bare Nanoparticles with Controlled Size, Composition, and Morphology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Grant E.; Colby, Robert J.; Laskin, Julia
2015-01-01
A kinetically-limited physical synthesis method based on magnetron sputtering and gas aggregation has been coupled with size-selection and ion soft landing to prepare bare metal nanoparticles on surfaces with controlled coverage, size, composition, and morphology. Employing atomic force microscopy (AFM) and scanning electron microscopy (SEM), it is demonstrated that the size and coverage of bare nanoparticles soft landed onto flat glassy carbon and silicon as well as stepped graphite surfaces may be controlled through size-selection with a quadrupole mass filter and the length of deposition, respectively. The bare nanoparticles are observed with AFM to bind randomly to the flat glassymore » carbon surface when soft landed at relatively low coverage (1012 ions). In contrast, on stepped graphite surfaces at intermediate coverage (1013 ions) the soft landed nanoparticles are shown to bind preferentially along step edges forming extended linear chains of particles. At the highest coverage (5 x 1013 ions) examined in this study the nanoparticles are demonstrated with both AFM and SEM to form a continuous film on flat glassy carbon and silicon surfaces. On a graphite surface with defects, however, it is shown with SEM that the presence of localized surface imperfections results in agglomeration of nanoparticles onto these features and the formation of neighboring depletion zones that are devoid of particles. Employing high resolution scanning transmission electron microscopy in the high angular annular dark field imaging mode (STEM-HAADF) and electron energy loss spectroscopy (EELS) it is demonstrated that the magnetron sputtering/gas aggregation synthesis technique produces single metal particles with controlled morphology as well as bimetallic alloy nanoparticles with clearly defined core-shell structure. Therefore, this kinetically-limited physical synthesis technique, when combined with ion soft landing, is a versatile complementary method for preparing a wide range of bare supported nanoparticles with selected properties that are free of the solvent, organic capping agents, and residual reactants present with nanoparticles synthesized in solution.« less
Wang, Benlian; Sun, Gang; Anderson, David R.; Jia, Minghong; Previs, Stephen; Anderson, Vernon E.
2007-01-01
Protonated molecular peptide ions and their product ions generated by tandem mass spectrometry appear as isotopologue clusters due to the natural isotopic variations of carbon, hydrogen, nitrogen, oxygen and sulfur. Quantitation of the isotopic composition of peptides can be employed in experiments involving isotope effects, isotope exchange, isotopic labeling by chemical reactions, and studies of metabolism by stable isotope incorporation. Both ion trap and quadrupole-time of flight mass spectrometry are shown to be capable of determining the isotopic composition of peptide product ions obtained by tandem mass spectrometry with both precision and accuracy. Tandem mass spectra obtained in profile-mode of clusters of isotopologue ions are fit by non-linear least squares to a series of Gaussian peaks (described in the accompanying manuscript) which quantify the Mn/M0 values which define the isotopologue distribution (ID). To determine the isotopic composition of product ions from their ID, a new algorithm that predicts the Mn/M0 ratios is developed which obviates the need to determine the intensity of all of the ions of an ID. Consequently a precise and accurate determination of the isotopic composition a product ion may be obtained from only the initial values of the ID, however the entire isotopologue cluster must be isolated prior to fragmentation. Following optimization of the molecular ion isolation width, fragmentation energy and detector sensitivity, the presence of isotopic excess (2H, 13C, 15N, 18O) is readily determined within 1%. The ability to determine the isotopic composition of sequential product ions permits the isotopic composition of individual amino acid residues in the precursor ion to be determined. PMID:17559791
Titania bound sodium titanate ion exchanger
DeFilippi, Irene C. G.; Yates, Stephen Frederic; Shen, Jian-Kun; Gaita, Romulus; Sedath, Robert Henry; Seminara, Gary Joseph; Straszewski, Michael Peter; Anderson, David Joseph
1999-03-23
This invention is method for preparing a titania bound ion exchange composition comprising admixing crystalline sodium titanate and a hydrolyzable titanium compound and, thereafter drying the titania bound crystalline sodium titanate and subjecting the dried titania bound ion exchange composition to optional compaction and calcination steps to improve the physical strength of the titania bound composition.
Equatorial ion composition, 140-200 km, based on Atmosphere Explorer E data
NASA Technical Reports Server (NTRS)
Miller, N. J.; Grebowsky, J. M.; Hedin, A. E.; Spencer, N. W.
1993-01-01
We have used in situ measurements of ion composition and horizontal winds, taken from equatorial orbiting Atmosphere Explorer E in eccentric orbit during 1975-1976 to investigate the bottomside ionosphere at altitudes 140-200 km. Representative daytime altitude profiles of ionization were stable against wide variations in horizontal wind patterns. Special features that sometimes appeared in the structured nightside ionization were apparent ion composition waves, intermediate layers of enhanced ionization, and ionization depletions similar to equatorial ionization bubbles. Apparent ion composition waves displayed a horizontal wave length of about 650 km. Enhanced layers of ionization appeared to be newly separated from the bottomside midnight F layer; its ions were primarily NO(+) and O2(+) without significant densities of metallic ions, an indication that metallic ions are not required to produce the layers at altitudes above 140 km. Equatorial ionization depletions were observed at lower altitudes than previously reported and displayed molecular ion depletions as well as O(+) depletions.
Manufacturing of 57cm carbon-carbon composite ion optics for the NEXIS ion engine
NASA Technical Reports Server (NTRS)
Beatty, John S.; Snyder, John Steven; Shih, Wei
2005-01-01
Exploration of the outer planets can be taxing on the ion optics of ion propulsion systems because of the higher power and propellant throughout than the present state-of-the art. Carbon-carbon composite ion optics are an enabling technology extending the life of ion optics operated at high specific impulse, power, and propellant throughout because of their low erosion rates compared to molybdenum ion optics.
Atomic Precision Plasma Processing - Modeling Investigations
NASA Astrophysics Data System (ADS)
Rauf, Shahid
2016-09-01
Sub-nanometer precision is increasingly being required of many critical plasma processes in the semiconductor industry. Some of these critical processes include atomic layer etch and plasma enhanced atomic layer deposition. Accurate control over ion energy and ion / radical composition is needed during plasma processing to meet the demanding atomic-precision requirements. While improvements in mainstream inductively and capacitively coupled plasmas can help achieve some of these goals, newer plasma technologies can expand the breadth of problems addressable by plasma processing. Computational modeling is used to examine issues relevant to atomic precision plasma processing in this paper. First, a molecular dynamics model is used to investigate atomic layer etch of Si and SiO2 in Cl2 and fluorocarbon plasmas. Both planar surfaces and nanoscale structures are considered. It is shown that accurate control of ion energy in the sub-50 eV range is necessary for atomic scale precision. In particular, if the ion energy is greater than 10 eV during plasma processing, several atomic layers get damaged near the surface. Low electron temperature (Te) plasmas are particularly attractive for atomic precision plasma processing due to their low plasma potential. One of the most attractive options in this regard is energetic-electron beam generated plasma, where Te <0.5 eV has been achieved in plasmas of molecular gases. These low Te plasmas are computationally examined in this paper using a hybrid fluid-kinetic model. It is shown that such plasmas not only allow for sub-5 eV ion energies, but also enable wider range of ion / radical composition. Coauthors: Jun-Chieh Wang, Jason Kenney, Ankur Agarwal, Leonid Dorf, and Ken Collins.
Electron precipitation control of the Mars nightside ionosphere
NASA Astrophysics Data System (ADS)
Lillis, R. J.; Girazian, Z.; Mitchell, D. L.; Adams, D.; Xu, S.; Benna, M.; Elrod, M. K.; Larson, D. E.; McFadden, J. P.; Andersson, L.; Fowler, C. M.
2017-12-01
The nightside ionosphere of Mars is known to be highly variable, with densities varying substantially with ion species, solar zenith angle, solar wind conditions and geographic location. The factors that control its structure include neutral densities, day-night plasma transport, plasma temperatures, dynamo current systems driven by neutral winds, solar energetic particle events, superthermal electron precipitation, chemical reaction rates and the strength, geometry and topology of crustal magnetic fields. The MAVEN mission has been the first to systematically sample the nightside ionosphere by species, showing that shorter-lived species such as CO2+ and O+ are more correlated with electron precipitation flux than longer lived species such as O2+ and NO+, as would be expected, and is shown in the figure below from Girazian et al. [2017, under review at Geophysical Research Letters]. In this study we use electron pitch-angle and energy spectra from the Solar Wind Electron Analyzer (SWEA) and Solar Energetic Particle (SEP) instruments, ion and neutral densities from the Neutral Gas and Ion Mass Spectrometer (NGIMS), electron densities and temperatures from the Langmuir Probe and Waves (LPW) instrument, as well as electron-neutral ionization cross-sections. We present a comprehensive statistical study of electron precipitation on the Martian nightside and its effect on the vertical, local-time and geographic structure and composition of the ionosphere, over three years of MAVEN observations. We also calculate insitu electron impact ionization rates and compare with ion densities to judge the applicability of photochemical models of the formation and maintenance of the nightside ionosphere. Lastly, we show how this applicability varies with altitude and is affected by ion transport measured by the Suprathermal and thermal Ion Composition (STATIC) instrument.
1986-01-01
physiological functions: to alter the composition of the cell surface, for instance, by the insertion of receptors, channels, and pumps, and to release into the...localized alterations in lipid composition might serve to facilitate fusion under some circumstances, the involvement of proteins specialized for...594. Reuter. H., and N. Seitz. 1968. The dependence of Ca2* efllux from cardiac muscle on temperature and external ion composition . Journal o/Phywidoo
Bibliography on Ceramic Matrix Composites and Reinforcing Whiskers, Platelets, and Fibers, 1970-1990
1993-08-01
Ballistic A Study of the Critical Factors Controlling the Impact on Three Composite Ceramics Synthesis of Ceramic Matrix Composites from Snedeker, R. S...1.2.1.55 1.22.2 Mechanical and Structural Characterize’ion of Oxidation Kinetics of Silicon Carbide Whiskers the Nicalon Silicon Carbide Fibre Studied by X...Powders and Whiskers: An XPS Study 9 (10), 1218-20, Oct 1990 Taylor, T. N. (AD D250 694) J. Mater. Res. 4 (1), 189-203, Jan-Feb 1989 1.2.2.11 (AD D250 571
Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite
NASA Astrophysics Data System (ADS)
Primc, D.; Makovec, D.
2015-01-01
By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe3+/Fe2+ ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the supersaturation of the precipitating species was enabled by the controlled release of the Fe3+ ions from the nitrate complex with urea ([Fe((H2N)2C&z.dbd;O)6](NO3)3) and by using Mg(OH)2 as a solid precipitating agent. The platelet Ba-hexaferrite nanoparticles of different sizes were used as the cores. The controlled coating resulted in an exclusively heterogeneous nucleation and the topotactic growth of the spinel layers on both basal surfaces of the larger hexaferrite nanoplatelets. The direct magnetic coupling between the core and the shell resulted in a strong increase of the energy product |BH|max. Ultrafine core nanoparticles reacted with the precipitating species and homogeneous product nanoparticles were formed, which differ in terms of the structure and composition compared to any other compound in the BaO-Fe2O3 system.By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe3+/Fe2+ ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the supersaturation of the precipitating species was enabled by the controlled release of the Fe3+ ions from the nitrate complex with urea ([Fe((H2N)2C&z.dbd;O)6](NO3)3) and by using Mg(OH)2 as a solid precipitating agent. The platelet Ba-hexaferrite nanoparticles of different sizes were used as the cores. The controlled coating resulted in an exclusively heterogeneous nucleation and the topotactic growth of the spinel layers on both basal surfaces of the larger hexaferrite nanoplatelets. The direct magnetic coupling between the core and the shell resulted in a strong increase of the energy product |BH|max. Ultrafine core nanoparticles reacted with the precipitating species and homogeneous product nanoparticles were formed, which differ in terms of the structure and composition compared to any other compound in the BaO-Fe2O3 system. Electronic supplementary information (ESI) available: Synthesis (ESI #1) and properties (ESI #2) of the barium hexaferrite core nanoparticles, TEM of the nanoparticles synthesized under an excessive supersaturation (ESI #3), and magnetic properties of physical mixtures of the hard-magnetic hexaferrite and the soft-magnetic spinel ferrite (ESI #4). See DOI: 10.1039/c4nr05854b
Recent progress in empirical modeling of ion composition in the topside ionosphere
NASA Astrophysics Data System (ADS)
Truhlik, Vladimir; Triskova, Ludmila; Bilitza, Dieter; Kotov, Dmytro; Bogomaz, Oleksandr; Domnin, Igor
2016-07-01
The last deep and prolonged solar minimum revealed shortcomings of existing empirical models, especially of parameter models that depend strongly on solar activity, such as the IRI (International Reference Ionosphere) ion composition model, and that are based on data sets from previous solar cycles. We have improved the TTS-03 ion composition model (Triskova et al., 2003) which is included in IRI since version 2007. The new model called AEIKion-13 employs an improved description of the dependence of ion composition on solar activity. We have also developed new global models of the upper transition height based on large data sets of vertical electron density profiles from ISIS, Alouette and COSMIC. The upper transition height is used as an anchor point for adjustment of the AEIKion-13 ion composition model. Additionally, we show also progress on improvements of the altitudinal dependence of the ion composition in the AEIKion-13 model. Results of the improved model are compared with data from other types of measurements including data from the Atmosphere Explorer C and E and C/NOFS satellites, and the Kharkiv and Arecibo incoherent scatter radars. Possible real time updating of the model by the upper transition height from the real time COSMIC vertical profiles is discussed. Triskova, L.,Truhlik,V., Smilauer, J.,2003. An empirical model of ion composition in the outer ionosphere. Adv. Space Res. 31(3), 653-663.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzel, J; Jacobsen, B; Hutcheon, I D
2009-09-09
The {sup 53}Mn-{sup 53}Cr systematics of meteorite samples provide an important high resolution chronometer for early solar system events. Accurate determination of the initial abundance of {sup 53}Mn ({tau}{sub 1/2} = 3.7 Ma) by secondary ion mass spectrometry (SIMS) is dependent on properly correcting for differing ion yields between Mn and Cr by use of a relative sensitivity factor (RSF). Ideal standards for SIMS analysis should be compositionally and structurally similar to the sample of interest. However, previously published Mn-Cr studies rely on few standards (e.g., San Carlos olivine, NIST 610 glass) despite significant variations in chemical composition. We investigatemore » a potential correlation between RSF and bulk chemical composition by determining RSFs for {sup 55}Mn/{sup 52}Cr in 11 silicate glass and mineral standards (San Carlos olivine, Mainz glasses KL2-G, ML3B-G, StHs6/80-G, GOR128-G, BM90/21-G, and T1-G, NIST 610 glass, and three LLNL pyroxene-composition glasses). All standards were measured on the Cameca ims-3f ion microprobe at LLNL, and a subset were also measured on the Cameca ims-1270 ion microprobe at the Geological Survey of Japan. The standards cover a range of bulk chemical compositions with SiO{sub 2} contents of 40-71 wt.%, FeO contents of 0.05-20 wt.% and Mn/Cr ratios between 0.4 and 58. We obtained RSF values ranging from 0.83 to 1.15. The data obtained on the ims-1270 ion microprobe are within {approx}10% of the RSF values obtained on the ims-3f ion microprobe, and the RSF determined for San Carlos olivine (0.86) is in good agreement with previously published data. The typical approach to calculating an RSF from multiple standard measurements involves making a linear fit to measured {sup 55}Mn/{sup 52}Cr versus true {sup 55}Mn/{sup 52}Cr. This approach may be satisfactory for materials of similar composition, but fails when compositions vary significantly. This is best illustrated by the {approx}30% change in RSF we see between glasses with similar Mn/Cr ratios but variable Fe and Na content. We are developing an approach that uses multivariate analysis to evaluate the importance of different chemical components in controlling the RSF and predict the RSF of unknowns when standards of appropriate composition are not available. Our analysis suggests that Fe, Si, and Na are key compositional factors in these silicate standards. The RSF is positively correlated with Fe and Si and negatively correlated with Na. Work is currently underway to extend this analysis to a wider range of chemical compositions and to evaluate the variability of RSF on measurements obtained by NanoSIMS.« less
Goldstein, Harland L.; Breit, George N.; Reynolds, Richard L.
2017-01-01
Saline-surface crusts and their compositions at ephemeral, dry, and drying lakes are important products of arid-land processes. Detailed understanding is lacking, however, about interactions among locally variable hydrogeologic conditions, compositional control of groundwater on vadose zone and surface salts, and dust composition. Chemical and physical data from groundwater, sediments, and salts reveal compositional controls on saline-surface crusts across a wet playa, Mojave Desert, with bearing on similar settings elsewhere. The compositions of chemically and isotopically distinctive shallow (<3 m) water masses are recorded in the composition of associated salts. In areas with deeper and more saline groundwater, however, not all ions are transported through the vadose zone. Retention of arsenic and other elements in the vadose zone diminishes the concentrations of potentially toxic elements in surface salts, but creates a reservoir of these elements that may be brought to the surface during wetter conditions or by human disturbance. Selective wind-erosion loss of sulfate salts was identified by the compositional contrast between surface salt crusts and underlying groundwater. At the sub-basin scale, compositional links exist among groundwater, salt crusts, and dust from wet playas. Across the study basin, however, lateral variations in groundwater and solid-salt compositions are produced by hydrogeologic heterogeneity.
Huang, Yu; Shi, Xiaofeng; Yu, Xiang; Leymarie, Nancy; Staples, Gregory O; Yin, Hongfeng; Killeen, Kevin; Zaia, Joseph
2011-11-01
Microfluidic chip-based hydrophilic interaction chromatography (HILIC) is a useful separation system for liquid chromatography-mass spectrometry (LC-MS) in compositional profiling of heparan sulfate (HS) oligosaccharides; however, ions observed using HILIC LC-MS are low in charge. Tandem MS of HS oligosaccharide ions with low charge results in undesirable losses of SO(3) from precursor ions during collision induced dissociation. One solution is to add metal cations to stabilize sulfate groups. Another is to add a nonvolatile, polar compound such as sulfolane, a molecule known to supercharge proteins, to produce a similar effect for oligosaccharides. We demonstrate use of a novel pulsed makeup flow (MUF) HPLC-chip. The chip enables controlled application of additives during specified chromatographic time windows and thus minimizes the extent to which nonvolatile additives build up in the ion source. The pulsed MUF system was applied to LC-MS/MS of HS oligosaccharides. Metal cations and sulfolane were tested as additives. The most promising results were obtained for sulfolane, for which supercharging of the oligosaccharide ions increased their signal strengths relative to controls. Tandem MS of these supercharged precursor ions showed decreased abundances of product ions from sulfate losses yet more abundant product ions from backbone cleavages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chason, Eric; Shenoy, Vivek
Self-organized pattern formation enables the creation of nanoscale surface structures over large areas based on fundamental physical processes rather than an applied template. Low energy ion bombardment is one such method that induces the spontaneous formation of a wide variety of interesting morphological features (e.g., sputter ripples and/or quantum dots). This program focused on the processes controlling sputter ripple formation and the kinetics controlling the evolution of surfaces and nanostructures in high flux environments. This was done by using systematic, quantitative experiments to measure ripple formation under a variety of processing conditions coupled with modeling to interpret the results.
Ion-beam assisted laser printing of porous nanorings
NASA Astrophysics Data System (ADS)
Syubaev, S.; Kuchmizhak, A.; Nepomnyashchiy, A.
2017-09-01
Pulsed-laser fabrication of noble-metal nanorings with a tunable internal porous structure, which can be further uncapped by using an ion-beam etching procedure, was demonstrated for the first time. Density and average size of the pores were shown to be tuned in a wide range by varying an applied pulse energy and a chemical composition of the metal film controlled via the film magnetron deposition in the appropriate gaseous environment. According to our preliminary numerical simulations, the controlled porosity provides multifold near-field enhancement of the electromagnetic fields, making such structures promising for spectroscopic bioidentification based on a surface-enhanced Raman scattering.
The Effects of Propellant Burn on the Surface Composition of Gun Steel
1981-11-01
ion beam analysis method has been used to characterize the depths and compositions of the outer, sub-micron layers of gun steel surfaces that have...STEEL A. Niiler R. Birkmire S. E. Caldwell November 1981 US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND BALLISTIC RESEARCH LABORATORY...1L162618AH80 11. CONTROLLING OFFICE NAME AND ADDRESS US Army Armament Research § Development Command Ballistic Research Laboratory ATTN: DRDAR-BL. APG
NASA Astrophysics Data System (ADS)
Nguyen, Tuan Loi; Park, Duckshin; Hur, Jaehyun; Son, Hyung Bin; Park, Min Sang; Lee, Seung Geol; Kim, Ji Hyeon; Kim, Il Tae
2018-01-01
SnO2 has been considered as a promising anode material for lithium ion batteries (LIBs) because of its high theoretical capacity (782 mAh g-1). However, the reaction between lithium ions and Sn causes a large volume change, resulting in the pulverization of the anode, a loss of contact with the current collector, and a deterioration in electrochemical performance. Several strategies have been proposed to mitigate the drastic volume changes to extend the cyclic life of SnO2 materials. Herein, novel composites consisting of Cu and SnO2 were developed via the galvanic replacement reaction. The reaction was carried out at 180 °C for different durations and triethylene glycol was used as the medium solvent. The structure, morphology, and composition of the composites were analyzed by X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The reaction time affected the particle size, which in turn affected the reaction kinetics. Furthermore, the novel nanostructures contained an inactive metal phase (Cu), which acted both as the buffer space against the volume change of Sn during the alloying reaction and as the electron conductor, resulting in a lower impedance of the composites. When evaluated as potential anodes for LIBs, the composite electrodes displayed extraordinary electrochemical performance with a high capacity and Coulombic efficiency, an excellent cycling stability, and a superior rate capability compared to a Sn electrode.
Lin, Mei; Chen, Yuming; Chen, Bolei; Wu, Xiao; Kam, Kifung; Lu, Wei; Chan, Helen Lai Wa; Yuan, Jikang
2014-10-22
Novel architectured LiFePO4 (LFP) that consisted of ordered LFP nanocubes was prepared through a facile hydrothermal method using polyethylene glycol (PEG) as a surfactant. The micro/nanostructured LFP with various morphologies ranging from cube cluster to rugby-like structure was synthesized via controlling the pH values of the precursor. A reasonable assembly process elucidating the formation of the hierarchical structure is also provided based on the experimental results. After a combination of carbon (C) coating and reduced graphene oxide (RGO) wrapping, the obtained LFP/C/RGO composites exhibit enhanced electrochemical performance compared to that of blank LFP synthesized under the same condition. Among as-synthesized cube-cluster-like, dumbbell-like, rod-like, and rugby-like composites, the rugby-like LFP/C/RGO reveal the best electrochemical properties with the discharge specific capacity of ∼150 mA h g(-1) after 100 cycles and a high reversible specific capacity of 152 mA h g(-1) at 0.1 C. The prepared LFP/C/RGO composite can be a promising cathode material for high energy, low cost, and environmentally friendly lithium-ion batteries.
ION COMPOSITION ELUCIDATION (ICE)
Ion Composition Elucidation (ICE) utilizes selected ion recording with a double focusing mass spectrometer to simultaneously determine exact masses and relative isotopic abundances from mass peak profiles. These can be determined more accurately and at higher sensitivity ...
Li-Ion Localization and Energetics as a Function of Anode Structure.
McNutt, Nicholas W; McDonnell, Marshall; Rios, Orlando; Keffer, David J
2017-03-01
In this work, we study the effect of carbon composite anode structure on the localization and energetics of Li-ions. A computational molecular dynamics study is combined with experimental results from neutron scattering experiments to understand the effect of composite density, crystallite size, volume fraction of crystalline carbon, and ion loading on the nature of ion storage in novel, lignin-derived composite materials. In a recent work, we demonstrated that these carbon composites display a fundamentally different mechanism for Li-ion storage than traditional graphitic anodes. The edges of the crystalline and amorphous fragments of aromatic carbon that exist in these composites are terminated by hydrogen atoms, which play a crucial role in adsorption. In this work, we demonstrate how differences in composite structure due to changes in the processing conditions alter the type and extent of the interface between the amorphous and crystalline domains, thus impacting the nature of Li-ion storage. The effects of structural properties are evaluated using a suite of pair distribution functions as well as an original technique to extract archetypal structures, in the form of three-dimensional atomic density distributions, from highly disordered systems. The energetics of Li-ion binding are understood by relating changes in the energy and charge distributions to changes in structural properties. The distribution of Li-ion energies reveals that some structures lead to greater chemisorption, while others have greater physisorption. Carbon composites with a high volume fraction of small crystallites demonstrate the highest ion storage capacity because of the high interfacial area between the crystalline and amorphous domains. At these interfaces, stable H atoms, terminating the graphitic crystallites, provide favorable sites for reversible Li adsorption.
Li, Pengju; Gui, Yang; Blackwood, Daniel John
2018-05-22
Toxic metal ions, such as Ni2+ and Mn2+, in industrial waste streams are non-biodegradable and can cause damage to the human body. Electrochemical cleaning techniques are attractive as they offer more control and produce less sludge than chemical / biological approaches without the high pressures needed for membranes. Here nanoneedle structured α-MnO2/carbon fiber paper (CFP) composites were synthesized by a hydrothermal approach and used as electrodes for combined electro-adsorption and capacitive deionization removal of nickel and manganese ions from pseudo industrial waste streams. The specific performance of α-MnO2/CFP (16.4 mg Ni2+ per gram of active material) not only shows a great improve in comparison with its original CFP substrate (0.034 Ni2+ mg per gram), but is over six times that of activated carbon (2.5 mg Ni2+ per gram). The high performance of α-MnO2/CFP composite is attributed to its high surface area, desirable mesoporosity and pore size distribution that permits the further access of ions, and the property as a pseudocapacitor, which contributes to a more efficient electron/charge transfer in the faradic process. Unfortunately, it was also found that some Mn2+ ions are released due to partial reduction of the MnO2 when operated as a negative electrode. For the removal of Mn2+ ions an asymmetric arrangement, consisting of a MnO2/CFP positive electrode and an activated carbon negative electrode was employed. This arrangement reduced the Mn2+ concentration from 100 ppm to less than 2 ppm, a vast improvement over a systematical two activated carbon electrodes system that could only reach 42 ppm under the same conditions. It was also observed that as long as the MnO2/CFP composite was maintained as a positive electrode it was completely stable. The technique was able to reduce both Ni2+ and Mn2+ ions to well below the 10 ppm requirement for discharge into public sewers in Singapore.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popa, C. L.; Ciobanu, C. S.; Predoi, D., E-mail: dpredoi@gmail.com
The aim of this study was to synthetize new nanoparticles based on methyltrimethoxysilane coated hydroxyapatite (MTHAp) for lead removal in aqueous solutions. The morphological and compositional analysis of MTHAp was investigated by scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometer (EDS). Removal experiments of Pb{sup 2+} ions were carried out in aqueous solutions with controlled concentration of Pb{sup 2+} and at fixed pH of 5. After the removal experiment of Pb{sup 2+} ions from solutions, porous hydroxyapatite nanoparticles were transformed into PbMTHAp-5 via the adsorption of Pb{sup 2+} ions followed by a cation exchange reaction. Our resultsmore » demonstrate that the porous hydroxyapatite nanoparticles can be used as an adsorbent for removing Pb{sup 2+} ions from aqueous solution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Tsung-Han; Ertem, S. Piril; Maes, Ashley M.
2015-01-28
Random copolymers of isoprene and 4-vinylbenzyl chloride (VBCl) with varying compositions were synthesized via nitroxide-mediated polymerization. Subsequent quaternization afforded solvent processable and cross-linkable ionomers with a wide range of ion exchange capacities (IECs). Solution cast membranes were thermally cross-linked to form anion exchange membranes. Cross-linking was achieved by taking advantage of the unsaturations on the polyisoprene backbone, without added cross-linkers. A strong correlation was found between water uptake and ion conductivity of the membranes: conductivities of the membranes with IECs beyond a critical value were found to be constant related to their high water absorption. Environmentally controlled small-angle X-ray scatteringmore » experiments revealed a correlation between the average distance between ionic clusters and the ion conductivity, indicating that a well-connected network of ion clusters is necessary for efficient ion conduction and high ion conductivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faraby, H.; DiBattista, M.; Bandaru, P. R., E-mail: pbandaru@ucsd.edu
Metal deposition through focused ion beam (FIB) based systems is thought to result in material composed of the primary metal from the metallo-organic precursor in addition to carbon, oxygen, and gallium. We determined, through electrical resistance and chemical composition measurements on a wide range of FIB deposited platinum and tungsten lines, that the gallium ion (Ga{sup +}) concentration in the metal lines plays the dominant role in controlling the electrical resistivity. Effective medium theory, based on McLachlan's formalisms, was used to describe the relationship between the Ga{sup +} concentration and the corresponding resistivity.
A study of the formation and dynamics of the Earth's plasma sheet using ion composition data
NASA Technical Reports Server (NTRS)
Lennartsson, O. W.
1994-01-01
Over two years of data from the Lockheed Plasma Composition Experiment on the ISEE 1 spacecraft, covering ion energies between 100 eV/e and about 16 keV/e, have been analyzed in an attempt to extract new information about three geophysical issues: (1) solar wind penetration of the Earth's magnetic tail; (2) relationship between plasma sheet and tail lobe ion composition; and (3) possible effects of heavy terrestrial ions on plasma sheet stability.
NASA Astrophysics Data System (ADS)
Cui, Xiao; Yuqing, Zhao; Cui, Jiantao; Zheng, Qian; Bo, Wang
2018-02-01
The following paper reported and discussed a nitrite ion optical sensing platform based on a core-shell structure, using superamagnetic nanoparticles as the core, a silica molecular sieve MCM-41 as the shell and two rhodamine derivatives as probe, respectively. This superamagnetic core made this sensing platform reclaimable after finishing nitrite ion sensing procedure. This sensing platform was carefully characterized by means of electron microscopy images, porous structure analysis, magnetic response, IR spectra and thermal stability analysis. Detailed analysis suggested that the emission of these composite samples was quenchable by nitrite ion, showing emission turn off effect. A static sensing mechanism based on an additive reaction between chemosensors and nitrite ion was proposed. These composite samples followed Demas quenching equation against different nitrite ion concentrations. Limit of detection value was obtained as low as 0.4 μM. It was found that, after being quenched by nitrite ion, these composite samples could be reclaimed and recovered by sulphamic acid, confirming their recyclability.
A dendrite-suppressing composite ion conductor from aramid nanofibres.
Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A
2015-01-27
Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate 'weak links' where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.
Cho, Yong Sang; Hong, Myoung Wha; Jeong, Hoon-Jin; Lee, Seung-Jae; Kim, Young Yul; Cho, Young-Sam
2017-11-01
In this study, the fabrication method was proposed for the well-interconnected polycaprolactone/hydroxyapatite composite scaffold with exposed hydroxyapatite using modified WNM technique. To characterize well-interconnected scaffolds in terms of hydroxyapatite exposure, several assessments were performed as follows: morphology, mechanical property, wettability, calcium ion release, and cell response assessments. The results of these assessments were compared with those of control scaffolds which were fabricated by precision extruding deposition (PED) apparatus. The control PED scaffolds have interconnected pores with nonexposed hydroxyapatite. Consequently, cell attachment of proposed WNM scaffold was improved by increased hydrophilicity and surface roughness of scaffold surface resulting from the exposure of hydroxyapatite particles and fabrication process using powders. Moreover, cell proliferation and differentiation of WNM scaffold were increased, because the exposure of hydroxyapatite particles may enhance cell adhesion and calcium ion release. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2315-2325, 2017. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Koushik; Balog, Eva Rose M.; Sista, Prakash
We report a method for creating hybrid organic-inorganic “nanoflowers” using calcium or copper ions as the inorganic component and a recombinantly expressed elastin-like polypeptide (ELP) as the organic component. Polypeptides provide binding sites for the dynamic coordination with metal ions, and then such noncovalent complexes become nucleation sites for primary crystals of metal phosphates. We have shown that the interaction between the stimuli-responsive ELP and Ca{sup 2+} or Cu{sup 2+}, in the presence of phosphate, leads to the growth of micrometer-sized particles featuring nanoscale patterns shaped like flower petals. The morphology of these flower-like composite structures is dependent upon themore » temperature of growth and has been characterized by scanning electron microscopy. The composition of nanoflowers has also been analyzed by energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The temperature-dependent morphologies of these hybrid nanostructures, which arise from the controllable phase transition of ELPs, hold potential for morphological control of biomaterials in emerging applications such as tissue engineering and biocatalysis.« less
Chiral nematic porous germania and germanium/carbon films
NASA Astrophysics Data System (ADS)
Xu, Jing; Nguyen, Thanh-Dinh; Xie, Kai; Hamad, Wadood Y.; MacLachlan, Mark J.
2015-07-01
We report our extensive attempts and, ultimately, success to produce crack-free, chiral nematic GeO2/cellulose nanocrystal (CNC) composite films with tunable photonic properties from the controlled assembly of germanium(iv) alkoxides with the lyotropic liquid-crystalline CNCs in a mixed solvent of water/DMF. With different pyrolysis conditions, the photonic GeO2/CNC composites can be converted into freestanding chiral nematic films of amorphous GeO2, and semiconducting mesoporous GeO2/C and Ge/C replicas. These new materials are promising for chiral separation, enantioselective adsorption, catalysis, sensing, optoelectronics, and lithium ion batteries. Furthermore, the new, reproducible synthesis strategies developed may be applicable for constructing other composites and porous materials with chiral nematic ordering.We report our extensive attempts and, ultimately, success to produce crack-free, chiral nematic GeO2/cellulose nanocrystal (CNC) composite films with tunable photonic properties from the controlled assembly of germanium(iv) alkoxides with the lyotropic liquid-crystalline CNCs in a mixed solvent of water/DMF. With different pyrolysis conditions, the photonic GeO2/CNC composites can be converted into freestanding chiral nematic films of amorphous GeO2, and semiconducting mesoporous GeO2/C and Ge/C replicas. These new materials are promising for chiral separation, enantioselective adsorption, catalysis, sensing, optoelectronics, and lithium ion batteries. Furthermore, the new, reproducible synthesis strategies developed may be applicable for constructing other composites and porous materials with chiral nematic ordering. Electronic supplementary information (ESI) available: TGA, IR, Raman, TEM, SEM, BET. See DOI: 10.1039/c5nr02520f
Laser ion source for isobaric heavy ion collider experiment.
Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M
2016-02-01
Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.
NASA Astrophysics Data System (ADS)
Gu, Meng; Xiao, Xing-Cheng; Liu, Gao; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Ji-Guang; Liu, Jun; Browning, Nigel D.; Wang, Chong-Min
2014-01-01
Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact.
Controllable construction of flower-like FeS/Fe2O3 composite for lithium storage
NASA Astrophysics Data System (ADS)
Wang, Jie; He, Huan; Wu, Zexing; Liang, Jianing; Han, Lili; Xin, Huolin L.; Guo, Xuyun; Zhu, Ye; Wang, Deli
2018-07-01
Transitions metal sulfides/oxides have been considered as promising anode candidates for next generation lithium-ion batteries (LIBs) due to high theoretical capacities. However, the large volume change during lithiation/delithiation process and poor electronic conductivity often result in a poor charging/discharging performance. Herein, we design a flower-like FeS/Fe2O3 composite via a simple "solvothermal-oxidation" method, in which the Fe2O3 is most distributed on the surface of the flower. The unique porous structure and synergistic effect between FeS and Fe2O3 not only accommodate the large volume expansion, but also facilitate Li ion and electron transport. The Fe2O3 shell effectively reduce the dissolution of Li2Sx during discharge/charge process. When serving as the anode material in lithium ion battery, FeS/Fe2O3 exhibits superior specific capacity, rate capacity and cycling stability compared with pure FeS and Fe2O3.
NASA Astrophysics Data System (ADS)
Jeong, Hyun-Seok; Kim, Dong-Won; Jeong, Yeon Uk; Lee, Sang-Young
To improve the thermal shrinkage of the separators that are essential to securing the electrical isolation between electrodes in lithium-ion batteries, we develop a new separator based on a ceramic composite membrane. Introduction of microporous, ceramic coating layers onto both sides of a polyethylene (PE) separator allows such a progress. The ceramic coating layers consist of nano-sized alumina (Al 2O 3) powders and polymeric binders (PVdF-HFP). The microporous structure of the ceramic coating layers is observed to be crucial to governing the thermal shrinkage as well as the ionic transport of the ceramic composite separators. This microporous structure is determined by controlling the phase inversion, more specifically, nonsolvent (water) contents in the coating solutions. To provide a theoretical basis for this approach, a pre-investigation on the phase diagram for a ternary mixture comprising PVdF-HFP, acetone, and water is conducted. On the basis of this observation, the effect of phase inversion on the morphology and air permeability (i.e. Gurley value) of ceramic coating layers is systematically discussed. In addition, to explore the application of ceramic composite separators to lithium-ion batteries, the influence of the structural change in the coating layers on the thermal shrinkage and electrochemical performance of the separators is quantitatively identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Daiwon; Zhu, Chengzhou; Fu, Shaofang
2016-09-15
The electrochemically controlled ion-exchange properties of multi-wall carbon nanotube (MWNT)/electronically conductive polypyrrole (PPy) polymer composite in the various electrolyte solutions have been investigated. The ion-exchange behavior, rate and capacity of the electrochemically deposited polypyrrole with and without carbon nanotube (CNT) were compared and characterized using cyclic voltammetry (CV), chronoamperometry (CA), electrochemical quartz crystal microbalance (EQCM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It has been found that the presence of carbon nanotube backbone resulted in improvement in ion-exchange rate, stability of polypyrrole, and higher anion loading capacity per PPy due to higher surface area, electronic conductivity, porous structuremore » of thin film, and thinner film thickness providing shorter diffusion path. Chronoamperometric studies show that electrically switched anion exchange could be completed more than 10 times faster than pure PPy thin film. The anion selectivity of CNT/PPy film is demonstrated using X-ray photoelectron spectroscopy (XPS).« less
Ionosphere of venus: first observations of the dayside ion composition near dawn and dusk.
Taylor, H A; Brinton, H C; Bauer, S J; Hartle, R E; Donahue, T M; Cloutier, P A; Michel, F C; Daniell, R E; Blackwell, B H
1979-02-23
The first in situ measurements of the composition of the ionosphere of Venus are provided by independent Bennett radio-frequency ion mass spectrometers on the Pioneer Venus bits and orbiter spacecraft, exploring the dawn and duskside regions, respectively. An extensive composition of ion species, rich in oxygen, nitrogen, and carbon chemistry is idenitified. The dominant topside ion is O(+), with C(+), N(+), H(+), and He(+) as prominent secondary ions. In the lower ionosphere, the ionzization peak or F(1) layer near 150 kilometers reaches a concentration of about 5 x l0(3) ions per cubic centimeter, and is composed of the dominant molecular ion, O(2)(+), with NO(+), CO(+), and CO(2)(+), constituting less than 10 percent of the total. Below the O(+) peak near 200 kilometers, the ions exhibit scale heights consistent with a neutral gas temperature of about 180 K near the terminator. In the upper ionosphere, scale heights of all species reflect the effects of plasma transport, which lifts the composition upward to the often abrupt ionopause, or thermal ion boundary, which is observed to vary in height between 250 to 1800 kilometers, in response to solar wind dynamics.
Block Copolymer Composites: A Bio-Optic Synthetic System for Dynamic Control of Refractive Index
2005-06-16
Wagner (interfacial) polarization of dispersed, ion-conductive phases in PS - b -PEO containing NLO-active moieties. In this initiative we postulate that...either by application of an electric or magnetic field. Technical Results Spatial modulation of refractive index in PS - b -PEO composites. Over the 18 month...segments with ionizable salts and polarizable, electrorefractive moieties and nanocrystals. Simple devices comprised of thin films of PS - b -PEO/KDP, PS - b
Zhang, Jianjun; Liu, Zhihong; Kong, Qingshan; Zhang, Chuanjian; Pang, Shuping; Yue, Liping; Wang, Xuejiang; Yao, Jianhua; Cui, Guanglei
2013-01-01
A renewable and superior thermal-resistant cellulose-based composite nonwoven was explored as lithium-ion battery separator via an electrospinning technique followed by a dip-coating process. It was demonstrated that such nanofibrous composite nonwoven possessed good electrolyte wettability, excellent heat tolerance, and high ionic conductivity. The cells using the composite separator displayed better rate capability and enhanced capacity retention, when compared to those of commercialized polypropylene separator under the same conditions. These fascinating characteristics would endow this renewable composite nonwoven a promising separator for high-power lithium-ion battery.
Zhang, Jin; Wang, Beibei; Zhou, Jiachen; Xia, Ruoyu; Chu, Yingli; Huang, Jia
2017-01-17
The copper oxide (CuO) nanowires/functionalized graphene (f-graphene) composite material was successfully composed by a one-pot synthesis method. The f-graphene synthesized through the Birch reduction chemistry method was modified with functional group "-(CH₂)₅COOH", and the CuO nanowires (NWs) were well dispersed in the f-graphene sheets. When used as anode materials in lithium-ion batteries, the composite exhibited good cyclic stability and decent specific capacity of 677 mA·h·g -1 after 50 cycles. CuO NWs can enhance the lithium-ion storage of the composites while the f-graphene effectively resists the volume expansion of the CuO NWs during the galvanostatic charge/discharge cyclic process, and provide a conductive paths for charge transportation. The good electrochemical performance of the synthesized CuO/f-graphene composite suggests great potential of the composite materials for lithium-ion batteries anodes.
Intercalated layered clay composites and their applications
NASA Astrophysics Data System (ADS)
Phukan, Anjali
Supported inorganic reagents are rapidly emerging as new and environmentally acceptable reagents and catalysts. The smectite group of layered clay minerals, such as, Montmorillonite, provides promising character for adsorption, catalytic activity, supports etc. for their large surface area, swelling behavior and ion exchange properties. Aromatic compounds intercalated in layered clays are useful in optical molecular devices. Clay is a unique material for adsorption of heavy metals and various toxic substances. Clay surfaces are known to be catalytically active due to their surface acidity. Acid activated clays possess much improved surface areas and acidities and have higher pore volumes so that can absorb large molecules in the pores. The exchangeable cations in clay minerals play a key role in controlling surface acidity and catalytic activity. Recently, optically active metal-complex-Montmorillonite composites are reported to be active in antiracemization purposes. In view of the above, a research work, relating to the preparation of different modified clay composites and their catalytic applications were carried out. The different aspects and results of the present work have been reported in four major chapters. Chapter I: This is an introductory chapter, which contains a review of the literature regarding clay-based materials. Clay minerals are phyllosilicates with layer structure. Montmorillonite, a member of smectite group of clay, is 2:1 phyllosilicate, where a layer is composed of an octahedral sheet sandwiched by two tetrahedral sheets. Such clay shows cation exchange capacity (CEC) and is expressed in milli-equivalents per 100 gm of dry clay. Clays can be modified by interaction with metal ion, metal complexes, metal cluster and organic cations for various applications. Clays are also modified by treating with acid followed by impregnation with metal salts or ions. Montmorillonite can intercalate suitable metal complexes in excess of CEC to form double or pseudo-trilayer composites. Metal ion and metal ion metal salts intercalated on Montmorillonite are efficient catalysts for Friedel-Crafts (FC) reactions, such as benzylation of benzene, synthesis of Raspberry ketone [4-(4'-hydroxyphenyl)butan-2-one] etc. Montmorillonite clay can be used as a good support for controlled release of pesticides and medicinal drugs, adsorbent for cationic dyes, toxic substances and heavy metals effective adsorbent for radioactive and toxic industrial wastes,...
Balajthy, András; Somodi, Sándor; Pethő, Zoltán; Péter, Mária; Varga, Zoltán; Szabó, Gabriella P; Paragh, György; Vígh, László; Panyi, György; Hajdu, Péter
2016-08-01
In vitro manipulation of membrane sterol level affects the regulation of ion channels and consequently certain cellular functions; however, a comprehensive study that confirms the pathophysiological significance of these results is missing. The malfunction of 7-dehydrocholesterol (7DHC) reductase in Smith-Lemli-Opitz syndrome (SLOS) leads to the elevation of the 7-dehydrocholesterol level in the plasma membrane. T lymphocytes were isolated from SLOS patients to assess the effect of the in vivo altered membrane sterol composition on the operation of the voltage-gated Kv1.3 channel and the ion channel-dependent mitogenic responses. We found that the kinetic and equilibrium parameters of Kv1.3 activation changed in SLOS cells. Identical changes in Kv1.3 operation were observed when control/healthy T cells were loaded with 7DHC. Removal of the putative sterol binding sites on Kv1.3 resulted in a phenotype that was not influenced by the elevation in membrane sterol level. Functional assays exhibited impaired activation and proliferation rate of T cells probably partially due to the modified Kv1.3 operation. We concluded that the altered membrane sterol composition hindered the operation of Kv1.3 as well as the ion channel-controlled T cell functions.
NASA Astrophysics Data System (ADS)
Tumarkin, A. V.; Tepina, E. R.; Nenasheva, E. A.; Kartenko, N. F.; Kozyrev, A. B.
2012-06-01
The electrophysical properties of bulk ceramics based on Ba x Sr1 - x TiO3 solid solutions with a Mg-containing additive and planar variconds based on ferroelectric films obtained by the ion-plasma sputtering of targets with different elemental compositions are studied. Controllability n( U) = C(0)/ C( U) and the dielectric loss tangent (tanδ) of ferroelectric variconds are measured as functions of the elemental composition of the ferroelectric. The figure of merit of the variconds is estimated, and the film composition providing the best electrophysical parameters is determined.
Zhang, Jianjun; Yue, Liping; Kong, Qingshan; Liu, Zhihong; Zhou, Xinhong; Zhang, Chuanjian; Xu, Quan; Zhang, Bo; Ding, Guoliang; Qin, Bingsheng; Duan, Yulong; Wang, Qingfu; Yao, Jianhua; Cui, Guanglei; Chen, Liquan
2014-01-01
A sustainable, heat-resistant and flame-retardant cellulose-based composite nonwoven has been successfully fabricated and explored its potential application for promising separator of high-performance lithium ion battery. It was demonstrated that this flame-retardant cellulose-based composite separator possessed good flame retardancy, superior heat tolerance and proper mechanical strength. As compared to the commercialized polypropylene (PP) separator, such composite separator presented improved electrolyte uptake, better interface stability and enhanced ionic conductivity. In addition, the lithium cobalt oxide (LiCoO2)/graphite cell using this composite separator exhibited better rate capability and cycling retention than that for PP separator owing to its facile ion transport and excellent interfacial compatibility. Furthermore, the lithium iron phosphate (LiFePO4)/lithium cell with such composite separator delivered stable cycling performance and thermal dimensional stability even at an elevated temperature of 120°C. All these fascinating characteristics would boost the application of this composite separator for high-performance lithium ion battery. PMID:24488228
Ion processing element with composite media
Mann, Nick R.; Tranter, Troy J.; Todd, Terry A.; Sebesta, Ferdinand
2003-02-04
An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.
Ion processing element with composite media
Mann, Nick R [Blackfoot, ID; Tranter, Troy J [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Sebesta, Ferdinand [Prague, CZ
2009-03-24
An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.
Advanced Electrode Materials for High Energy Next Generation Li ion Batteries
NASA Astrophysics Data System (ADS)
Hayner, Cary Michael
Lithium ion batteries are becoming an increasingly ubiquitous part of modern society. Since their commercial introduction by Sony in 1991, lithium-ion batteries have grown to be the most popular form of electrical energy storage for portable applications. Today, lithium-ion batteries power everything from cellphones and electric vehicles to e-cigarettes, satellites, and electric aircraft. Despite the commercialization of lithium-ion batteries over twenty years ago, it remains the most active field of energy storage research for its potential improvement over current technology. In order to capitalize on these opportunities, new materials with higher energy density and storage capacities must be developed. Unfortunately, most next-generation materials suffer from rapid capacity degradation or severe loss of capacity when rapidly discharged. In this dissertation, the development of novel anode and cathode materials for advanced high-energy and high-power lithium-ion batteries is reported. In particular, the application of graphene-based materials to stabilize active material is emphasized. Graphene, a unique two-dimensional material composed of atomically thin carbon sheets, has shown potential to address unsatisfactory rate capability, limited cycling performance and abrupt failure of these next-generation materials. This dissertation covers four major subjects: development of silicon-graphene composites, impact of carbon vacancies on graphene high-rate performance, iron fluoride-graphene composites, and ternary iron-manganese fluoride synthesis. Silicon is considered the most likely material to replace graphite as the anode active material for lithium-ion batteries due to its ability to alloy with large amounts of lithium, leading to significantly higher specific capacities than the graphite standard. However, Si also expands in size over 300% upon lithiation, leading to particle fracture and isolation from conductive support, resulting in cell failure within a few charge-discharge cycles. To stabilize silicon materials, composites of silicon nanoparticles were dispersed between graphene sheets and supported by a 3-D network of graphite formed by reconstituted regions of graphene stacks. These free-standing, self-supported composites exhibited excellent Li-ion storage capacities higher than 2200 mAh/g and good cycling stability. In order to improve the advantages graphene can provide as a 3-D scaffold, carbon vacancies were introduced into the basal planes via an acid-oxidation treatment. These vacancies markedly enhance the rate performance of graphene materials as well as silicon-graphene composites. Silicon-graphene composites containing carbon vacancies achieved high accessible storage capacities at fast charge/discharge rates that rival supercapacitor performance while maintaining good cycling stability. Optimal carbon vacancy size and density were determined. Graphene composites were also formed with iron trifluoride (FeF 3), a high-energy cathode material with ability to store up to 712 mAh/g capacity, over 3X more than current state-of-the-art cathode materials. A facile route that combines co-assembly and photothermal reduction was developed to synthesize free-standing, flexible FeF3/graphene papers. The papers contained a uniform dispersion of FeF3 nanoparticles (< 40 nm) and open ion diffusion channels in the porous, conducting network of graphene sheets that resulted in a flexible paper cathode with high charge storage capacity, rate, and cycling performance, without the need for other carbon additives or binder. Free-standing FeF3/graphene composites showed a high storage capacity of >400 mAh/g and improved cycling performance compared to bare FeF3 particles. Lastly, novel ternary iron-manganese fluoride (FexMn 1-xF2) cathode materials were synthesized via a convenient, bottom-up solution-phase synthesis which allowed control of particle size, shape, and surface morphology. The synthesized materials exhibited nanoscale features with average particle size of 20-40 nm. These ternary metal composites exhibited key, desirable properties for next-generation Li-ion battery cathode materials. The described process constituted a translatable route to large-scale production of ternary metal fluoride nanoparticles.
Zhang, Zailei; Wang, Yanhong; Ren, Wenfeng; Tan, Qiangqiang; Chen, Yunfa; Li, Hong; Zhong, Ziyi; Su, Fabing
2014-05-12
Despite the promising application of porous Si-based anodes in future Li ion batteries, the large-scale synthesis of these materials is still a great challenge. A scalable synthesis of porous Si materials is presented by the Rochow reaction, which is commonly used to produce organosilane monomers for synthesizing organosilane products in chemical industry. Commercial Si microparticles reacted with gas CH3 Cl over various Cu-based catalyst particles to substantially create macropores within the unreacted Si accompanying with carbon deposition to generate porous Si/C composites. Taking advantage of the interconnected porous structure and conductive carbon-coated layer after simple post treatment, these composites as anodes exhibit high reversible capacity and long cycle life. It is expected that by integrating the organosilane synthesis process and controlling reaction conditions, the manufacture of porous Si-based anodes on an industrial scale is highly possible. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lee, Moon Joo; Hwang, Jun-Ki; Kim, Ji Hoon; Lim, Hyung-Seok; Sun, Yang-Kook; Suh, Kyung-Do; Lee, Young Moo
2016-02-01
Shape-tunable hydroxyl copolyimide (HPI) nanoparticles are fabricated by a re-precipitation method and are coated onto electrospun HPI membranes, followed by heat treatment to prepare thermally rearranged polybenzoxazole (TR-PBO) composite membranes. The morphology of HPI nanoparticles consisted of sphere and sea-squirt structures, which is controlled by changing the concentration of the stabilizer. The morphological characteristics of TR-PBO nanoparticles convert from HPI nanoparticles by heat treatment and their composite membranes is confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (ATR-IR), thermogravimetric analysis (TGA) analysis, and contact angle measurements. TGA and DSC measurements confirm the excellent thermal stability compared to Celgard, a commercial PP separator for lithium-ion batteries (LIBs). Further, TR-PBO nano-composite membranes used in coin-cell type LIBs as a separator show excellent high power density performance as compared to Celgard. This is due to the fact that sea-squirt structured nanoparticles have better electrochemical properties than sphere structured nanoparticles at high temperature.
Copper ions removal from water using functionalized carbon nanotubes–mullite composite as adsorbent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tofighy, Maryam Ahmadzadeh; Mohammadi, Toraj, E-mail: torajmohammadi@iust.ac.ir
Highlights: • CNTs–mullite composite was prepared via chemical vapor deposition (CVD) method. • The prepared composite was modified with concentrated nitric acid and chitosan. • The modified CNTs–mullite composites were used as novel adsorbents. • Copper ion removal from water by the prepared adsorbents was performed. • Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. - Abstract: Carbon nanotubes–mullite composite was synthesized by direct growth of carbon nanotubes on mullite particles via chemical vapor deposition method using cyclohexanol and ferrocene as carbon precursor and catalyst, respectively. The carbon nanotubes–mullite composite was oxidized withmore » concentrated nitric acid and functionalized with chitosan and then used as a novel adsorbent for copper ions removal from water. The results demonstrated that modification with concentrated nitric acid and chitosan improves copper ions adsorption capacity of the prepared composite, significantly. Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. The carbon nanotubes growth on mullite particles to form the carbon nanotubes–mullite composite with further modification is an inherently safe approach for many promising environmental applications to avoid some concerns regarding environment, health and safety. It was found that the modified carbon nanotubes–mullite composite can be considered as an excellent adsorbent for copper ions removal from water.« less
Nanocarbons for Battery Applications in China
2015-04-29
Lithium - Ion Batteries (LIBs) Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of...Conductive Additives in Lithium - Ion Batteries (LIBs) 3.3.3 As Composite Cathodes in Lithium -Sulfur (Li-S) Batteries 3.3.6.1 CNTs...composite electrode materials and conductive additives in lithium - ion batteries (LIBs) and composite cathodes in novel lithium -sulfur (Li-S) and
Li, Mei; Ma, Chao; Zhu, Qian-Cheng; Xu, Shu-Mao; Wei, Xiao; Wu, Yong-Min; Tang, Wei-Ping; Wang, Kai-Xue; Chen, Jie-Sheng
2017-04-11
Sodium-ion batteries have attracted considerable attention in recent years. In order to promote the practical application of sodium-ion batteries, the electrochemical performances, such as specific capacity, reversibility, and rate capability of the anode materials, should be further improved. In this work, a Fe 2 O 3 /C composite with a well-ordered mesoporous structure is prepared via a facile co-impregnation method by using mesoporous silica SBA-15 as a hard template. When used as an anode material for sodium-ion batteries, the well-ordered mesoporous structure ensures fast mass transport kinetics. The presence of nano-sized Fe 2 O 3 particles confined within the carbon walls significantly enhances the specific capacity of the composite. The carbon walls in the composite act not only as an active material contributing to the specific capacity, but also as a conductive matrix improving the cycling stability of Fe 2 O 3 nanoparticles. As a result, the well-ordered mesoporous Fe 2 O 3 /C composite exhibits high specific capacity, excellent cycleability, and high rate capability. It is proposed that this simple co-impregnation method is applicable for the preparation of well-ordered mesoporous transition oxide/carbon composite electrode materials for high performance sodium-ion and lithium-ion batteries.
NASA Technical Reports Server (NTRS)
Krupp, N.; Keppler, E.; Fraenz, M.; Korth, A.; Witte, M.; Moussas, X.; Blake, J. B.; Naidu, K.; Quenby, J. J.; Woch, J.
1992-01-01
Energetic particle measurements are reported which were obtained with the EPAC instrument on board the Ulysses spacecraft during March 1991 when a series of important flares occurred at the sun. The time interval March 22 through March 29 is studied in three periods with different ion compositions. At a quasi-perpendicular shock on March 23, shock-drift acceleration of protons, helium and electrons was observed. Thirteen hours after this shock the energetic ion composition changed dramatically by almost two orders of magnitude, signaling the arrival of a coronal mass ejection or driver gas. This driver gas was still present at the spacecraft when a second quasi-perpendicular shock passed the spacecraft. The ratio Fe/O increased from 0.6 to 1.0 indicative of a connection to solar particles for about six hours after the second shock. The second shock did not accelerate ions as well and electrons not at all. Six hours after this shock the same oxygen and ion composition was observed as before, indicating that the second shock did not alter the energetic ion composition. A third ion composition was observed before the driver gas disappeared which was significantly different from those observed before the first and between the two shocks.
Kamen, M.D.
1958-02-25
This patent describes an improved ion source for a calutron which is designed to eliminate the necessity of opening the evacuated calutron tank to permit entrance into the tank to place a further charge in thc ion source. The improved ion source comprises a charge reservoir positioned exerior to the calutron tank and connected to an ionizing device located within the tank by a channeled member. A section cf the tank wall supports the ion source structure and Is removable to allow withdrawal of the composite assembly. Heat is applied to the charge reservoir to vaporize the charge and force the charge to the ionizing device, and heat is also furnished along the connecting channel to prevent condensation of the vapor, a valve structure at the exit from the charge reservoir controls the amount of charge received by the ionizing device.
Energetic-ion acceleration and transport in the upstream region of Jupiter: Voyager 1 and 2
NASA Technical Reports Server (NTRS)
Baker, D. N.; Zwickl, R. D.; Carbary, J. F.; Krimigis, S. M.; Lepping, R. P.
1982-01-01
Long-lived upstream energetic ion events at Jupiter appear to be very similar in nearly all respects to upstream ion events at Earth. A notable difference between the two planetary systems is the enhanced heavy ion compositional signature reported for the Jovian events. This compositional feature has suggested that ions escaping from the Jovian magnetosphere play an important role in forming upstream ion populations at Jupiter. In contrast, models of energetic upstream ions at Earth emphasize in situ acceleration of reflected solar wind ions within the upstream region itself. Using Voyager 1 and 2 energetic ( approximately 30 keV) ion measurements near the magnetopause, in the magnetosheath, and immediately upstream of the bow shock, the compositional patterns are examined together with typical energy spectra in each of these regions. A model involving upstream Fermi acceleration early in events and emphasizing energetic particle escape in the prenoon part of the Jovian magnetosphere late in events is presented to explain many of the features in the upstream region of Jupiter.
Adsorptive features of polyacrylamide-apatite composite for Pb2+, UO(2)2+ and Th4+.
Ulusoy, Ulvi; Akkaya, Recep
2009-04-15
Micro-composite of polyacrylamide (PAA) and apatite (Apt) was prepared by direct polymerization of acrylamide in a suspension of Apt and characterized by means of FT-IR, XRD, SEM and BET analysis. The adsorptive features of PAA-Apt and Apt were then investigated for Pb(2+), UO(2)(2+) and Th(4+) in view of dependency on ion concentration, temperature, kinetics, ion selectivity and reusability. Experimentally obtained isotherms were evaluated with reference to Langmuir, Freundlich and Dubinin-Radushkevich (DR) models. Apt in PAA-Apt had higher adsorption capacity (0.81, 1.27 and 0.69 mol kg(-1)) than bare Apt (0.28, 0.41 and 1.33 mol kg(-1)) for Pb(2+) and Th(4+), but not for UO(2)(2+). The affinity to PAA-Apt increased for Pb(2+) and UO(2)(2+) but not changed for Th(4+). The values of enthalpy and entropy changed were positive for all ions for both Apt and PAA-Apt. Free enthalpy change was DeltaG<0. Well compatibility of adsorption kinetics to the pseudo-second-order model predicated that the rate-controlling step was a chemical sorption. This was consistent with the free energy values derived from DR model. The reusability tests for Pb(2+) for five uses proved that the composite was reusable to provide a mean adsorption of 53.2+/-0.7% from 4x10(-3)M Pb(2+) solution and complete recovery of the adsorbed ion was possible (98+/-1%). The results of this investigation suggested that the use of Apt in the micro-composite form with PAA significantly enhanced the adsorptive features of Apt.
Observations of Heavy Ions in the Magnetosphere
NASA Astrophysics Data System (ADS)
Kistler, L. M.
2017-12-01
There are two sources for the hot ions in the magnetosphere: the solar wind and the ionosphere. The solar wind is predominantly protons, with about 4% He++ and less than 1% other high charge state heavy ions. The ionospheric outflow is also predominantly H+, but can contain a significant fraction of heavy ions including O+, N+, He+, O++, and molecular ions (NO+, N2+, O2+). The ionospheric outflow composition varies significantly both with geomagnetic activity and with solar EUV. The variability in the contribution of the two sources, the variability in the ionospheric source itself, and the transport paths of the different species are all important in determining the ion composition at a given location in the magnetosphere. In addition to the source variations, loss processes within the magnetosphere can be mass dependent, changing the composition. In particular, charge exchange is strongly species dependent, and can lead to heavy ion dominance at some energies in the inner magnetosphere. In this talk we will review the current state of our understanding of the composition of the magnetosphere and the processes that determine it.
An accelerated solvent extraction (ASE) device was evaluated as a semi-automated means of extracting arsenicals from ribbon kelp. Objective was to investigate effect of experimentally controllable ASE parameters (pressure, temperature, static time and solvent composition) on extr...
USDA-ARS?s Scientific Manuscript database
Controlling elemental composition is critical for plant growth and development as well as the nutrition of humans who utilize plants for food. Uncovering the genes that underpin mineral ion homeostasis in plants is a critical first step towards understanding the biochemical networks that regulate a ...
A dendrite-suppressing composite ion conductor from aramid nanofibres
NASA Astrophysics Data System (ADS)
Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A.
2015-01-01
Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate ‘weak links’ where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Dukes, C.; Keller, L. P.; Baragiola, R.
2012-01-01
Solar wind ions are capable of altering the sur-face chemistry of the lunar regolith by a number of mechanisms including preferential sputtering, radiation-enhanced diffusion and sputter erosion of space weathered surfaces containing pre-existing compositional profiles. We have previously reported in-situ ion irradiation experiments supported by X-ray photoelectron spectroscopy (XPS) and analytical TEM that show how solar ions potentially drive Fe and Ti reduction at the monolayer scale as well as the 10-100 nm depth scale in lunar soils [1]. Here we report experimental data on the effect of ion irradiation on the major element surface composition in a mature mare soil.
Titan Ion Composition at Magnetosphere-Ionosphere Transition Region
NASA Technical Reports Server (NTRS)
Sittler, Edward C.; Hartle, R. E.; Shappirio, M.; Simpson, D. J.; COoper, J. F.; Burger, M. H.; Johnson, R. E.; Bertucci, C.; Luhman, J. G.; Ledvina, S. A.;
2006-01-01
Using Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS) ion composition data, we will investigate the compositional changes at the transition region between Saturn's magnetospheric flow and Titan's upper ionosphere. It is this region where scavenging of Titan's upper ionosphere can occur, where it is then dragged away by the magnetospheric flow as cold plasma for Saturn's magnetosphere. This cold plasma may form plumes as originally proposed by (1) during the Voyager 1 epoch. This source of cold plasma may have a unique compositional signature such as methane group ions. Water group ions that are observed in Saturn's outer magnetosphere (2,3) are relatively hot and probably come from the inner magnetosphere where they are born from fast neutrals escaping Enceladus (4) and picked up in the outer magnetosphere as hot plasma (5). This scenario will be complicated by pickup methane ions within Titan's mass loading region, as originally predicted by (6) based on Voyager 1 data and observationally confirmed by (3,7) using CAPS IMS data. But, CH4(+) ions or their fragments can only be produced as pickup ions from Titan's exosphere which can extend beyond the transition region of concern here, while CH5(+) ions can be scavenged from Titan's ionosphere. We will investigate these possibilities.
NASA Technical Reports Server (NTRS)
Biddle, A. P.; Reynolds, J. M.
1986-01-01
The design of a low-energy ion facility for development and calibration of thermal ion instrumentation is examined. A directly heated cathode provides the electrons used to produce ions by impact ionization and an applied magnetic field increases the path length followed by the electrons. The electrostatic and variable geometry magnetic mirror configuration in the ion source is studied. The procedures for the charge neutralization of the beam and the configuration and function of the 1.4-m drift tube are analyzed. A microcomputer is utilized to control and monitor the beam energy and composition, and the mass- and angle-dependent response of the instrument under testing. The facility produces a high-quality ion beam with an adjustable range of energies up to 150 eV; the angular divergence and uniformity of the beam is obtained from two independent retarding potential analyzers. The procedures for calibrating the instrument being developed are described.
The Plasma and Suprathermal Ion Composition (PLASTIC) Investigation on the STEREO Observatories
NASA Astrophysics Data System (ADS)
Galvin, A. B.; Kistler, L. M.; Popecki, M. A.; Farrugia, C. J.; Simunac, K. D. C.; Ellis, L.; Möbius, E.; Lee, M. A.; Boehm, M.; Carroll, J.; Crawshaw, A.; Conti, M.; Demaine, P.; Ellis, S.; Gaidos, J. A.; Googins, J.; Granoff, M.; Gustafson, A.; Heirtzler, D.; King, B.; Knauss, U.; Levasseur, J.; Longworth, S.; Singer, K.; Turco, S.; Vachon, P.; Vosbury, M.; Widholm, M.; Blush, L. M.; Karrer, R.; Bochsler, P.; Daoudi, H.; Etter, A.; Fischer, J.; Jost, J.; Opitz, A.; Sigrist, M.; Wurz, P.; Klecker, B.; Ertl, M.; Seidenschwang, E.; Wimmer-Schweingruber, R. F.; Koeten, M.; Thompson, B.; Steinfeld, D.
2008-04-01
The Plasma and Suprathermal Ion Composition (PLASTIC) investigation provides the in situ solar wind and low energy heliospheric ion measurements for the NASA Solar Terrestrial Relations Observatory Mission, which consists of two spacecraft (STEREO-A, STEREO-B). PLASTIC-A and PLASTIC-B are identical. Each PLASTIC is a time-of-flight/energy mass spectrometer designed to determine the elemental composition, ionic charge states, and bulk flow parameters of major solar wind ions in the mass range from hydrogen to iron. PLASTIC has nearly complete angular coverage in the ecliptic plane and an energy range from ˜0.3 to 80 keV/e, from which the distribution functions of suprathermal ions, including those ions created in pick-up and local shock acceleration processes, are also provided.
Fatigue Damage-Strength Relationships in Composite Laminates. Volume 1
1983-09-01
NUMBER 2. A ES ION N • /NT’S CATALOG NUMBER AFWAL-TR-83-3084, Vol I .A_"_.._ 4. TITLE (ad Subtitle) S. TYPE OF REPORT & PERIOD COVERED 1 June 1981...Fatigue Damage-Strength Relationships in Final: 31 May 1983 Composite Laminates 6. PERFORMING OAG. REPORT NUMBER 7. AUTHOR(e) 6. CONTRACT OR GRANT...I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE September 1983 AFWAL/FIBEC 13. NUMBER OF PAGES Wright Patterson AFB, OH 45433 55 14. MONITORING
Focal-surface detector for heavy ions
Erskine, John R.; Braid, Thomas H.; Stoltzfus, Joseph C.
1979-01-01
A detector of the properties of individual charged particles in a beam includes a gridded ionization chamber, a cathode, a plurality of resistive-wire proportional counters, a plurality of anode sections, and means for controlling the composition and pressure of gas in the chamber. Signals generated in response to the passage of charged particles can be processed to identify the energy of the particles, their loss of energy per unit distance in an absorber, and their angle of incidence. In conjunction with a magnetic spectrograph, the signals can be used to identify particles and their state of charge. The detector is especially useful for analyzing beams of heavy ions, defined as ions of atomic mass greater than 10 atomic mass units.
Defects and Interfaces on PtPb Nanoplates Boost Fuel Cell Electrocatalysis.
Sun, Yingjun; Liang, Yanxia; Luo, Mingchuan; Lv, Fan; Qin, Yingnan; Wang, Lei; Xu, Chuan; Fu, Engang; Guo, Shaojun
2018-01-01
Nanostructured Pt is the most efficient single-metal catalyst for fuel cell technology. Great efforts have been devoted to optimizing the Pt-based alloy nanocrystals with desired structure, composition, and shape for boosting the electrocatalytic activity. However, these well-known controls still show the limited ability in maximizing the Pt utilization efficiency for achieving more efficient fuel cell catalysis. Herein, a new strategy for maximizing the fuel cell catalysis by controlling/tuning the defects and interfaces of PtPb nanoplates using ion irradiation technique is reported. The defects and interfaces on PtPb nanoplates, controlled by the fluence of incident C + ions, make them exhibit the volcano-like electrocatalytic activity for methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), and oxygen reduction reaction (ORR) as a function of ion irradiation fluence. The optimized PtPb nanoplates with the mixed structure of dislocations, subgrain boundaries, and small amorphous domains are the most active for MOR, EOR, and ORR. They can also maintain high catalytic stability in acid solution. This work highlights the impact and significance of inducing/controlling the defects and interfaces on Pt-based nanocrystals toward maximizing the catalytic performance by advanced ion irradiation strategy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lammers, L. N.
2014-12-01
The dependence of the isotopic and trace element composition of calcium carbonate minerals on growth conditions including temperature, pH, and salinity is widely used to infer paleoclimate conditions. These inferences rely heavily on phenomenological observations of biogenic and inorganic precipitation both in and ex situ, where only limited variability in solution conditions can be explored. Ionic fluxes between the mineral surface and aqueous growth solution govern the net uptake of both stoichiometric and trace species during calcification, so developing a mechanistic understanding of the reactions governing these fluxes is critical to refine existing proxies and to develop new ones. The micro-scale mechanisms of calcite precipitation from aqueous solution have been extensively studied, and net ionic uptake post-nucleation is known to occur primarily at monomolecular kink sites along step edges at the mineral surface. In this talk, I will present a theoretical framework that uses the quasi-elementary ion attachment and detachment reactions governing ion uptake at kink sites to simultaneously model bulk mineral growth kinetics and tracer partitioning during calcite precipitation. Several distinct processes occur during ion uptake at kink sites that can influence the distribution of trace species, directly impacting the composition of various carbonate paleoproxies including δ44Ca, δ18O, Sr/Ca and Mg/Ca. The distribution of these trace species will be shown to depend on (1) the relative rates of ion desolvation during attachment to kink sites, (2) the relative rates of bond breaking during detachment from kink sites, and (3) the equilibrium partitioning of trace aqueous species. This model accounts for the impact of solution conditions on net ion fluxes and surface speciation, which in turn controls the population of kink sites available for direct ion exchange with the aqueous phase. The impacts of solution variables including pH, temperature and salinity can be treated independently, which unlike traditional partitioning studies allows the impacts of these parameters to be deconvolved. The type of theoretical framework discussed here can be readily extended to explicitly account for each of the major solution composition variables that are implicated in paleoproxy composition.
Kim, Hwan Jin; Zhang, Kan; Choi, Jae-Man; Song, Min Sang; Park, Jong Hyeok
2014-03-11
We report a synthetic scheme for preparing a SnO2-Sn-carbon triad inverse opal porous material using the controlled sintering of Sn precursor-infiltrated polystyrene (PS) nanobead films. Because the uniform PS nanobead film, which can be converted into carbon via a sintering step, uptakes the precursor solution, the carbon can be uniformly distributed throughout the Sn-based anode material. Moreover, the partial carbonization of the PS nanobeads under a controlled Ar/oxygen environment not only produces a composite material with an inverse opal-like porous nanostructure but also converts the Sn precursor/PS into a SnO2-Sn-C triad electrode.
Dewetting induced Au-Ge composite nanodot evolution in SiO2
NASA Astrophysics Data System (ADS)
Datta, D. P.; Chettah, A.; Siva, V.; Kanjilal, D.; Sahoo, P. K.
2018-01-01
A composite nanostructure comprising of Au and Ge gradually evolves on SiO2 surface when a bilayer of Au and Ge is irradiated by medium keV Xe-ion beam. The morphology progresses through different stages from nucleating patches to extended islands and finally a Au-Ge composite nanodot array develops on the insulator surface. While ion energy and fluence are found to determine dimensions of the nanostructures, existence of a characteristic lateral length scale is also detected at every stage of evolution. Through morphological and compositional analysis, the observed evolution is understood as an effect of ion beam induced dewetting of Au top layer. Numerical estimation based on the unified thermal spike model using the present experimental condition demonstrates formation of molten zones around the ion track due to nuclear and electronic energy deposition in the target. Dewetting results from mass flow onto the surface driven by local melting along the ion track and combines with sputter erosion of the bilayer film to lead to composite nanodot evolution. The generality of the ion induced processes provides possible route towards metal-semiconductor hybrid nanostructure synthesis on insulator surface.
Deshmukh, Megha A; Shirsat, Mahendra D; Ramanaviciene, Almira; Ramanavicius, Arunas
2018-07-04
Current review signifies recent trends and challenges in the development of electrochemical sensors based on organic conducting polymers (OCPs), carbon nanotubes (CNTs) and their composites for the determination of trace heavy metal ions in water are reviewed. OCPs and CNTs have some suitable properties, such as good electrical, mechanical, chemical and structural properties as well as environmental stability, etc. However, some of these materials still have significant limitations toward selective and sensitive detection of trace heavy metal ions. To overcome the limitations of these individual materials, OCPs/CNTs composites were developed. Application of OCPs/CNTs composite and their novel properties for the adsorption and detection of heavy metal ions outlined and discussed in this review.
Atomic precision etch using a low-electron temperature plasma
NASA Astrophysics Data System (ADS)
Dorf, L.; Wang, J.-C.; Rauf, S.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.
2016-03-01
Sub-nm precision is increasingly being required of many critical plasma etching processes in the semiconductor industry. Accurate control over ion energy and ion/radical composition is needed during plasma processing to meet these stringent requirements. Described in this work is a new plasma etch system which has been designed with the requirements of atomic precision plasma processing in mind. In this system, an electron sheet beam parallel to the substrate surface produces a plasma with an order of magnitude lower electron temperature Te (~ 0.3 eV) and ion energy Ei (< 3 eV without applied bias) compared to conventional radio-frequency (RF) plasma technologies. Electron beam plasmas are characterized by higher ion-to-radical fraction compared to RF plasmas, so a separate radical source is used to provide accurate control over relative ion and radical concentrations. Another important element in this plasma system is low frequency RF bias capability which allows control of ion energy in the 2-50 eV range. Presented in this work are the results of etching of a variety of materials and structures performed in this system. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in RF plasma processing systems, even during atomic layer etch. The experiments for Si etch in Cl2 based plasmas in the aforementioned etch system show that damage can be minimized if the ion energy is kept below 10 eV. Layer-by-layer etch of Si is also demonstrated in this etch system using electrical and gas pulsing.
Composite anode for lithium ion batteries
de Guzman, Rhet C.; Ng, K.Y. Simon; Salley, Steven O.
2018-03-06
A composite anode for a lithium-ion battery is manufactured from silicon nanoparticles having diameters mostly under 10 nm; providing an oxide layer on the silicon nanoparticles; dispersing the silicon nanoparticles in a polar liquid; providing a graphene oxide suspension; mixing the polar liquid containing the dispersed silicone nanoparticles with the graphene oxide suspension to obtain a composite mixture; probe-sonicating the mixture for a predetermined time; filtering the composite mixture to obtain a solid composite; drying the composite; and reducing the composite to obtain graphene and silicon.
Lin, Ning; Xu, Tianjun; Li, Tieqiang; Han, Ying; Qian, Yitai
2017-11-15
Si-containing graphite-based composites are considered as promising high-capacity anodes for lithium-ion batteries (LIBs). Here, a controllable and scalable self-assembly strategy is developed to produce micro-nanostructured graphite/Si/reduced graphene oxides composite (SGG). The self-assembly procedure is realized by the hydrogen bond interaction between acylamino-modified graphite and graphene oxides (GO); Si nanoparticles are in situ embedded between graphite and GO sheets uniformly. This architecture is able to overcome the incompatibility between Si nanoparticles and microsized graphite. Accordingly, the as-prepared SGG anode (Si 8 wt %) delivers a reversible Li-storage capacity of 572 mAh g -1 at 0.2 C, 502.2 mAh g -1 after 600 cycles at 0.8 C with a retention of 92%, and a capacity retention of 64% even at 10 C. The impressive electrochemical properties are ascribed to the stable architecture and three-dimensional conductive network constructed by graphite and graphene sheets, which can accommodate the huge volume change of Si, keep the conductive contact and structural integrity, and suppress side reactions with electrolyte. Additionally, the full-cell (LiFePO 4 cathode/SGG anode) delivers a specific capacity of 550 mAh g -1 with a working potential beyond 3.0 V.
Analysis of Ion Composition Estimation Accuracy for Incoherent Scatter Radars
NASA Astrophysics Data System (ADS)
Martínez Ledesma, M.; Diaz, M. A.
2017-12-01
The Incoherent Scatter Radar (ISR) is one of the most powerful sounding methods developed to estimate the Ionosphere. This radar system determines the plasma parameters by sending powerful electromagnetic pulses to the Ionosphere and analyzing the received backscatter. This analysis provides information about parameters such as electron and ion temperatures, electron densities, ion composition, and ion drift velocities. Nevertheless in some cases the ISR analysis has ambiguities in the determination of the plasma characteristics. It is of particular relevance the ion composition and temperature ambiguity obtained between the F1 and the lower F2 layers. In this case very similar signals are obtained with different mixtures of molecular ions (NO2+ and O2+) and atomic oxygen ions (O+), and consequently it is not possible to completely discriminate between them. The most common solution to solve this problem is the use of empirical or theoretical models of the ionosphere in the fitting of ambiguous data. More recent works take use of parameters estimated from the Plasma Line band of the radar to reduce the number of parameters to determine. In this work we propose to determine the error estimation of the ion composition ambiguity when using Plasma Line electron density measurements. The sensibility of the ion composition estimation has been also calculated depending on the accuracy of the ionospheric model, showing that the correct estimation is highly dependent on the capacity of the model to approximate the real values. Monte Carlo simulations of data fitting at different signal to noise (SNR) ratios have been done to obtain valid and invalid estimation probability curves. This analysis provides a method to determine the probability of erroneous estimation for different signal fluctuations. Also it can be used as an empirical method to compare the efficiency of the different algorithms and methods on when solving the ion composition ambiguity.
Al-Jubouri, Sama M; Curry, Nicholas A; Holmes, Stuart M
2016-12-15
A hierarchical structured composite made from clinoptilolite supported on date stones carbon is synthesized using two techniques. The composites are manufactured by fixing a natural zeolite (clinoptilolite) to the porous surface of date stones carbon or by direct hydrothermal synthesis on to the surface to provide a supported high surface area ion-exchange material for metal ion removal from aqueous streams. The fixing of the clinoptilolite is achieved using sucrose and citric acid as a binder. The composites and pure clinoptilolite were compared to test the efficacy for the removal of Sr 2+ ions from an aqueous phase. The encapsulation of the Sr 2+ using either vitrification or a geo-polymer addition was tested to ensure that the hazardous waste can be made safe for disposal. The hierarchical structured composites were shown to achieve a higher ion exchange capacity per gram of zeolite than the pure clinoptilolite (65mg/g for the pure natural clinoptilolite and 72mg/g for the pure synthesized clinoptilolite) with the synthesized composite (160mg/g) having higher capacity than the natural clinoptilolite composite (95mg/g). The rate at which the equilibria were established followed the same trend showing the composite structure facilitates diffusion to the ion-exchange sites in the zeolite. Copyright © 2016 Elsevier B.V. All rights reserved.
DETERMINING ION COMPOSITIONS USING AN ACCURATE MASS, TRIPLE QUADRUPOLE MASS SPECTROMETER
For the past decade, we have used double focusing mass spectrometers to determine
compositions of ions observed in mass spectra produced from compounds introduced by GC
based on measured exact masses of the ions and their +1 and +2 isotopic profiles arising from atoms of ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franz, Robert; Polcik, Peter; Anders, André
The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr 2+ ions were dominating in Ar and N 2 and Cr + in O 2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ionsmore » that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O 2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.« less
Franz, Robert; Polcik, Peter; Anders, André
2015-06-01
The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr 2+ ions were dominating in Ar and N 2 and Cr + in O 2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ionsmore » that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O 2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.« less
Xiao, Lian; Xia, Xianping; Xie, Changsheng; Ge, Man; Xiao, Cheng; Cai, Shuizhou
2013-07-01
Copper/low-density polyethylene (Cu/LDPE) porous composites are novel materials for copper-containing intrauterine devices (Cu-IUDs). Here we report a method, i.e., by changing the mass ratio of two kinds of porogens that have different melting points through the combined techniques of injection molding and particulate leaching, to prepare the Cu/LDPE porous composites with tunable pore morphology. After these Cu/LDPE porous composites with different pore morphologies were obtained, the influences of pore morphologies on their cupric ion release behaviors were studied. The results show that the pore morphology has great influence on the cupric ion release behavior of Cu/LDPE porous composites. This phenomenon is caused by the different influences of different pore morphologies on the effective porosity and the surface hydrophilicity. And those results can be applied to guide the fabrication of Cu/LDPE porous composite Cu-IUDs with minimal weight at an appropriate cupric ion release rate. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Jin; Wang, Beibei; Zhou, Jiachen; Xia, Ruoyu; Chu, Yingli; Huang, Jia
2017-01-01
The copper oxide (CuO) nanowires/functionalized graphene (f-graphene) composite material was successfully composed by a one-pot synthesis method. The f-graphene synthesized through the Birch reduction chemistry method was modified with functional group “–(CH2)5COOH”, and the CuO nanowires (NWs) were well dispersed in the f-graphene sheets. When used as anode materials in lithium-ion batteries, the composite exhibited good cyclic stability and decent specific capacity of 677 mA·h·g−1 after 50 cycles. CuO NWs can enhance the lithium-ion storage of the composites while the f-graphene effectively resists the volume expansion of the CuO NWs during the galvanostatic charge/discharge cyclic process, and provide a conductive paths for charge transportation. The good electrochemical performance of the synthesized CuO/f-graphene composite suggests great potential of the composite materials for lithium-ion batteries anodes. PMID:28772432
NASA Astrophysics Data System (ADS)
Carlson, W. D.
2012-12-01
Divalent cations in garnet (Mg, Fe, Mn, Ca) diffuse at rates that depend strongly on the host-crystal composition and on the ionic radius of the diffusant. Understanding of the nanoscale basis for these behaviors comes from atomistic simulations that calculate energies in the static limit for the defects and transition-state configurations associated with each diffusive step. Diffusion of divalent cations requires (a) creation of a cation-vacancy defect in a dodecahedral site and of a charge-compensating oxygen-vacancy defect that may or may not be in close spatial association; (b) except in the case of self-diffusion, creation of an impurity defect in which a foreign atom replaces the normal atom in a dodecahedral site adjacent to the vacancy; and (c) during the diffusive process, motion of the diffusing atom to a 'saddlepoint' position that represents the transition-state configuration. Comparisons of the system's energy in these various states, in structures of different composition and for ions of different ionic size, allows assessment of the nanoscale controls on diffusion kinetics. Molecular-statics calculations quantify defect energies and identify the transition-state configuration: the maximum energy along the diffusion path between two adjacent dodecahedral sites results when the diffusing ion is surrounded symmetrically by the six oxygen atoms that lie between the two sites. Across the range of end-member compositions, self-diffusion coefficients measured at identical conditions, and the tracer diffusivity of a single ion measured at identical conditions, can each vary by five orders of magnitude or more. Measured activation energies for these motions, however, are all equivalent to within ±6%. Calculated activation energies are in agreement with observations, in that they vary by only ±10%. Calculated vacancy-formation energies, on the other hand, are significantly larger in expanded structures; for example, that energy is greater for Prp than for Grs by ~ 470 kJ/mol. Thus in expanded structures, much higher vacancy concentrations can be produced at the same energetic cost, greatly enhancing rates of diffusion. The primary explanation for the more rapid diffusion of divalent cations in structures with larger cell dimensions therefore comes not from reduced saddlepoint strain energies in more compliant structures, but instead from the smaller energy required to create vacancy defects. Diffusivities of divalent cations exhibit a curious parabolic dependence on ionic size: for each structure, an optimally-sized ion exists, close in size to the dominant ion, that exhibits the fastest diffusion. Larger ions — and enigmatically, smaller ions — both diffuse more slowly. Calculated impurity-defect energies show that undersized impurity ions are bound more tightly in their sites, but the effects are too small in comparison to corresponding reductions in strain energy for the transition-state configuration to account for observed rate differences. Calculated vacancy-association energies reveal a slight tendency for vacancies to associate preferentially with larger impurity ions, but again the effect appears to be too small to provide a full explanation for observed behaviors.
Generation of multicomponent ion beams by a vacuum arc ion source with compound cathode.
Savkin, K P; Yushkov, Yu G; Nikolaev, A G; Oks, E M; Yushkov, G Yu
2010-02-01
This paper presents the results of time-of-flight mass spectrometry studies of the elemental and mass-to-charge state compositions of metal ion beams produced by a vacuum arc ion source with compound cathode (WC-Co(0.5), Cu-Cr(0.25), Ti-Cu(0.1)). We found that the ion beam composition agrees well with the stoichiometric composition of the cathode material from which the beam is derived, and the maximum ion charge state of the different plasma components is determined by the ionization capability of electrons within the cathode spot plasma, which is common to all components. The beam mass-to-charge state spectrum from a compound cathode features a greater fraction of multiply charged ions for those materials with lower electron temperature in the vacuum arc cathode spot, and a smaller fraction for those with higher electron temperature within the spot. We propose a potential diagram method for determination of attainable ion charge states for all components of the compound cathodes.
Survey of Voyager plasma science ions at Jupiter: 1. Analysis method
NASA Astrophysics Data System (ADS)
Bagenal, F.; Dougherty, L. P.; Bodisch, K. M.; Richardson, J. D.; Belcher, J. M.
2017-08-01
The Voyagers 1 and 2 spacecraft flew by Jupiter in March and July of 1979, respectively. The Plasma Science instrument (PLS) acquired detailed measurements of the plasma environment in the equatorial region of the magnetosphere between 4.9 and 4 RJ. While bulk plasma properties such as charge density, ion temperature, and bulk flow were reasonably well determined, the ion composition was only well constrained in occasional regions of cold plasma. The ion data obtained by the PLS instrument have been reanalyzed using physical chemistry models to constrain the composition and reduce the number of free parameters, particularly in regions of hotter plasma. This paper describes the method used for fitting the plasma data and presents the results versus time. Two companion papers describe the composition of heavy ions and present analysis of protons plus other minor ions.
Ion release from, and fluoride recharge of a composite with a fluoride-containing bioactive glass.
Davis, Harry B; Gwinner, Fernanda; Mitchell, John C; Ferracane, Jack L
2014-10-01
Materials that are capable of releasing ions such as calcium and fluoride, that are necessary for remineralization of dentin and enamel, have been the topic of intensive research for many years. The source of calcium has most often been some form of calcium phosphate, and that for fluoride has been one of several metal fluoride or hexafluorophosphate salts. Fluoride-containing bioactive glass (BAG) prepared by the sol-gel method acts as a single source of both calcium and fluoride ions in aqueous solutions. The objective of this investigation was to determine if BAG, when added to a composite formulation, can be used as a single source for calcium and fluoride ion release over an extended time period, and to determine if the BAG-containing composite can be recharged upon exposure to a solution of 5000ppm fluoride. BAG 61 (61% Si; 31% Ca; 4% P; 3% F; 1% B) and BAG 81 (81% Si; 11% Ca; 4% P; 3% F; 1% B) were synthesized by the sol-gel method. The composite used was composed of 50/50 Bis-GMA/TEGDMA, 0.8% EDMAB, 0.4% CQ, and 0.05% BHT, combined with a mixture of BAG (15%) and strontium glass (85%) to a total filler load of 72% by weight. Disks were prepared, allowed to age for 24h, abraded, then placed into DI water. Calcium and fluoride release was measured by atomic absorption spectroscopy and fluoride ion selective electrode methods, respectively, after 2, 22, and 222h. The composite samples were then soaked for 5min in an aqueous 5000ppm fluoride solution, after which calcium and fluoride release was again measured at 2, 22, and 222h time points. Prior to fluoride recharge, release of fluoride ions was similar for the BAG 61 and BAG 81 composites after 2h, and also similar after 22h. At the four subsequent time points, one prior to, and three following fluoride recharge, the BAG 81 composite released significantly more fluoride ions (p<0.05). Both composites were recharged by exposure to 5000ppm fluoride, although the BAG 81 composite was recharged more than the BAG 61 composite. The BAG 61 composite released substantially more calcium ions prior to fluoride recharge during each of the 2 and 22h time periods. Thereafter, the release of calcium at the four subsequent time points was not significantly different (p>0.05) for the two composites. These results show that, when added to a composite formulation, fluoride-containing bioactive glass made by the sol-gel route can function as a single source for both calcium and fluoride ions, and that the composite can be readily recharged with fluoride. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Suzuki, Shigeru; Ishii, Tetsuko; Yasuhara, Akio; Sakai, Shinichi
2005-01-01
A method for elucidating the elemental compositions of low molecular weight chemicals, based primarily on mass measurements made using liquid chromatography (LC) with time-of-flight mass spectrometry (TOFMS) and quadrupole/time-of-flight mass spectrometry (LC/QTOFMS), was developed and tested for 113 chemicals of environmental interest with molecular masses up to approximately 400 Da. As the algorithm incorporating the method is not affected by differences in the instrument used, or by the ionization method and other ionization conditions, the method is useful not only for LC/TOFMS, but also for all kinds of mass spectra measured with higher accuracy and precision (uncertainties of a few mDa) employing all ionization methods and on-line separation techniques. The method involves calculating candidate compositions for intact ionized molecules (ionized forms of the sample molecule that have lost or gained no more than a proton, i.e., [M+H](+) or [M-H](-)) as well as for fragment ions and corresponding neutral losses, and eliminating those atomic compositions for the molecules that are inconsistent with the corresponding candidate compositions of fragment ions and neutral losses. Candidate compositions were calculated for the measured masses of the intact ionized molecules and of the fragment ions and corresponding neutral losses, using mass uncertainties of 2 and 5 mDa, respectively. Compositions proposed for the ionized molecule that did not correspond to the sum of the compositions of a candidate fragment ion and its corresponding neutral loss were discarded. One, 2-5, 6-10, 11-20, and >20 candidate compositions were found for 65%, 39%, 1%, 1%, and 0%, respectively, for the 124 ionized molecules formed from the 113 chemicals tested (both positive and negative ions were obtained from 11 of the chemicals). However, no candidate composition was found for 2% of the test cases (i.e., 3 chemicals), for each of which the measured mass of one of the product ions was in error by 5-6.7 mDa.
Urea-based hydrothermal synthesis of LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery
NASA Astrophysics Data System (ADS)
Shi, Yang; Zhang, Minghao; Fang, Chengcheng; Meng, Ying Shirley
2018-08-01
A urea-based hydrothermal approach has been applied to synthesize LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials with focus on investigating the influence of the reaction conditions on their electrochemical performance. The compositions of the carbonate precursor are precisely controlled by tuning urea concentration, hydrothermal reaction temperature, and time. The mole ratio between urea and transition metal ions and reaction temperature influence the composition of the precursor; while the reaction time influences the electrochemical performance of the final product. The optimized materials show better cyclability and rate capability compared with the materials synthesized with other hydrothermal reaction conditions. The enhancement is attributed to the larger Li+ diffusion coefficient and lower charge transfer resistance, which are due to the lower degree of Li/Ni cation mixing and more uniform distribution of transition metal ions. This work is a systematic study on the synthesis of NCM523 cathode material by a urea-based hydrothermal approach.
Liang, Kunneng; Xiao, Shimeng; Wu, Junling; Li, Jiyao; Weir, Michael D; Cheng, Lei; Reynolds, Mark A; Zhou, Xuedong; Xu, Hockin H K
2018-04-01
Previous studies investigated short-term dentin remineralization; studies on long-term dentin remineralization after fluid challenges mimicking fluids in oral environment are lacking. The objective of this study was to develop a long-term remineralization method to via poly(amido amine) (PAMAM) and rechargeable composite containing nanoparticles of amorphous calcium phosphate (NACP) after fluid challenges for the first time. NACP composite was immersed at pH 4 to exhaust its calcium (Ca) and phosphate (P) ions, and then recharged with Ca and P ions, to test the remineralization of the exhausted and recharged NACP composite. Dentin was acid-etched with 37% phosphoric acid. Four groups were prepared: (1) dentin control, (2) dentin with PAMAM, (3) dentin with the recharged NACP composite, and (4) dentin with PAMAM plus recharged NACP composite. PAMAM-coated dentin was immersed in phosphate-buffered saline with shaking for 72 days, because there is fluid flow in the mouth which could potentially detach the PAMAM from dentin. Specimens were treated with a cyclic artificial saliva/lactic acid regimen for 35 days. After 72days of immersion plus shaking, the PAMAM still successfully fulfilled its mineralization nucleation. The recharged NACP composite still provided acid-neutralization and ion re-release, which did not decrease with increasing the number of recharge cycles. The immersed-PAMAM plus NACP achieved complete dentin remineralization and restored the hardness to that of healthy dentin. In conclusion, superior long-term remineralization of the PAMAM plus NACP method was demonstrated for the first time. The immersed-PAMAM plus recharged NACP completely remineralized the pre-demineralized dentin, even after prolonged fluid-challenge similar to that in oral environment. The novel PAMAM plus NACP composite method is promising to provide long-term tooth protection and caries inhibition. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Im, Jaemo; Auciello, O.; Baumann, P. K.; Streiffer, S. K.; Kaufman, D. Y.; Krauss, A. R.
2000-01-01
Precise control of composition and microstructure is critical for the production of (BaxSr1-x)Ti1+yO3+z (BST) dielectric thin films with the large dependence of permittivity on electric field, low losses, and high electrical breakdown fields that are required for successful integration of BST into tunable high-frequency devices. Here, we present results on composition-microstructure-electrical property relationships for polycrystalline BST films produced by magnetron-sputter deposition, that are appropriate for microwave and millimeter-wave applications such as varactors and frequency triplers. Films with controlled compositions were grown from a stoichiometric Ba0.5Sr0.5TiO3 target by control of the background processing gas pressure. It was determined that the (Ba+Sr)/Ti ratios of these BST films could be adjusted from 0.73 to 0.98 by changing the total (Ar+O2) process pressure, while the O2/Ar ratio did not strongly affect the metal ion composition. Film crystalline structure and dielectric properties as a function of the (Ba+Sr)/Ti ratio are discussed. Optimized BST films yielded capacitors with low dielectric losses (0.0047), among the best reported for sputtered BST, while still maintaining tunabilities suitable for device applications.
Io plasma torus ion composition: Voyager, Galileo, and Cassini
NASA Astrophysics Data System (ADS)
Nerney, Edward G.; Bagenal, Fran; Steffl, Andrew J.
2017-01-01
The Io torus produces ultraviolet emissions diagnostic of plasma conditions. We revisit data sets obtained by the Voyager 1, Galileo, and Cassini missions at Jupiter. With the latest version (8.0) of the CHIANTI atomic database we analyze UV spectra to determine ion composition. We compare ion composition obtained from observations from these three missions with a theoretical model of the physical chemistry of the torus by Delamere et al. (2005). We find ion abundances from the Voyager data similar to the Cassini epoch, consistent with the dissociation and ionization of SO2, but with a slightly higher average ionization state for sulfur, consistent with the higher electron temperature measured by Voyager. This reanalysis of the Voyager data produces a much lower oxygen:sulfur ratio than earlier analysis by Shemansky (1988), which was also reported by Bagenal (1994). We derive fractional ion compositions in the center of the torus to be S+/Ne 5%, S++/Ne 20%, S+++/Ne 5%, O+/Ne 20%, O++/Ne 3%, and Σ(On+)/Σ(Sn+) 0.8, leaving about 10-15% of the charge as protons. The radial profile of ion composition indicates a slightly higher average ionization state, a modest loss of sulfur relative to oxygen, and Σ(On+)/Σ(Sn+) 1.2 at about 8 RJ, beyond which the composition is basically frozen in. The Galileo observations of UV emissions from the torus suggest that the composition in June 1996 may have comprised a lower abundance of oxygen than usual, consistent with observations made at the same time by the EUVE satellite.
Roesch, Luiz Fernando Wurdig; Silveira, Rita C; Corso, Andréa L; Dobbler, Priscila Thiago; Mai, Volker; Rojas, Bruna S; Laureano, Álvaro M; Procianoy, Renato S
2017-01-01
Administering intravenous antibiotics during labor to women at risk for transmitting Group B Streptococcus (GBS) can prevent infections in newborns. However, the impact of intrapartum antibiotic prophylaxis on mothers' microbial community composition is largely unknown. We compared vaginal microbial composition in pregnant women experiencing preterm birth at ≤ 32 weeks gestation that received intrapartum antibiotic prophylaxis with that in controls. Microbiota in vaginal swabs collected shortly before delivery from GBS positive women that received penicillin intravenously during labor or after premature rupture of membranes was compared to controls. Microbiota was analyzed by 16S rRNA sequencing using the PGM Ion Torrent to determine the effects of penicillin use during hospitalization and GBS status on its composition. Penicillin administration was associated with an altered vaginal microbial community composition characterized by increased microbial diversity. Lactobacillus sp. contributed only 13.1% of the total community in the women that received penicillin compared to 88.1% in the controls. Streptococcus sp. were present in higher abundance in GBS positive woman compared to controls, with 60% of the total vaginal microbiota in severe cases identified as Streptococcus sp. Vaginal communities of healthy pregnant women were dominated by Lactobacillus sp. and contained low diversity, while Group B Streptococcus positive women receiving intrapartum antibiotic prophylaxis had a modified vaginal microbiota composition with low abundance of Lactobacillus but higher microbial diversity.
Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klinger, Robert J; Rathke, Jerome W
2013-11-26
The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al.sub.2O.sub.3 wall are available for positive ion coordination (i.e. Li.sup.+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.
Gerald II, Rex E.; Ruscic, Katarina J.; Sears, Devin N.; Smith, Luis J.; Klingler, Robert J.; Rathke, Jerome W.
2012-07-24
The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al2O3 wall are available for positive ion coordination (i.e. Li+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.
Brandão, Gustavo Antônio Martins; Simas, Rafael Menezes; de Almeida, Leandro Moreira; da Silva, Juliana Melo; Meneghim, Marcelo de Castro; Pereira, Antonio Carlos; de Almeida, Haroldo Amorim; Brandão, Ana Maria Martins
2013-01-01
To evaluate the in vitro ionic degradation and slot base corrosion of metallic brackets subjected to brushing with dentifrices, through analysis of chemical composition by Energy Dispersive Spectroscopy (EDS) and qualitative analysis by Scanning Electron Microscopy (SEM). Thirty eight brackets were selected and randomly divided into four experimental groups (n = 7). Two groups (n = 5) worked as positive and negative controls. Simulated orthodontic braces were assembled using 0.019 x 0.025-in stainless steel wires and elastomeric rings. The groups were divided according to surface treatment: G1 (Máxima Proteção Anticáries®); G2 (Total 12®); G3 (Sensitive®); G4 (Branqueador®); Positive control (artificial saliva) and Negative control (no treatment). Twenty eight brushing cycles were performed and evaluations were made before (T0) and after (T1) experiment. The Wilcoxon test showed no difference in ionic concentrations of titanium (Ti), chromium (Cr), iron (Fe) and nickel (Ni) between groups. G2 presented significant reduction (p < 0.05) in the concentration of aluminium ion (Al). Groups G3 and G4 presented significant increase (p < 0.05) in the concentration of aluminium ion. The SEM analysis showed increased characteristics indicative of corrosion on groups G2, G3 and G4. The EDS analysis revealed that control groups and G1 did not suffer alterations on the chemical composition. G2 presented degradation in the amount of Al ion. G3 and G4 suffered increase in the concentration of Al. The immersion in artificial saliva and the dentifrice Máxima Proteção Anticáries® did not alter the surface polishing. The dentifrices Total 12®, Sensitive® and Branqueador® altered the surface polishing.
Sadrolhosseini, Amir Reza; Noor, A. S. M.; Bahrami, Afarin; Lim, H. N.; Talib, Zainal Abidin; Mahdi, Mohd. Adzir
2014-01-01
Polypyrrole multi-walled carbon nanotube composite layers were used to modify the gold layer to measure heavy metal ions using the surface plasmon resonance technique. The new sensor was fabricated to detect trace amounts of mercury (Hg), lead (Pb), and iron (Fe) ions. In the present research, the sensitivity of a polypyrrole multi-walled carbon nanotube composite layer and a polypyrrole layer were compared. The application of polypyrrole multi-walled carbon nanotubes enhanced the sensitivity and accuracy of the sensor for detecting ions in an aqueous solution due to the binding of mercury, lead, and iron ions to the sensing layer. The Hg ion bonded to the sensing layer more strongly than did the Pb and Fe ions. The limitation of the sensor was calculated to be about 0.1 ppm, which produced an angle shift in the region of 0.3° to 0.6°. PMID:24733263
Wave Effects Related to Altitude Variations in the Ion Composition of the Ionosphere
NASA Astrophysics Data System (ADS)
Vavilov, D. I.; Shklyar, D. R.
2016-12-01
Properties of the waves, which can propagate in a magnetized plasma in the frequency range below the proton gyrofrequency, depend strongly on the ion composition of the plasma. Addition of a new sort of ions leads to the appearance of a new resonance frequency, at which the refractive index becomes infinite, and a new cutoff frequency, at which the refractive index becomes zero. In this case, the topology of frequency dependence of the squared refractive index changes. Specifically, a new oscillation branch appears, which is located above the cutoff frequency. A question arises whether these oscillations are excited if radiation with the corresponding frequency, which propagates in a different mode, is present in the plasma. A linear transformation of the waves is another important effect, which is related to variations in the ion plasma composition. These two issues, which are directly related to the theory of formation of proton whistlers in the ionosphere, where the ion composition varies with altitude, are considered in this work.
NASA Astrophysics Data System (ADS)
Zhang, A. Ping; He, Sailing; Kim, Kyoung Tae; Yoon, Yong-Kyu; Burzynski, Ryszard; Samoc, Marek; Prasad, Paras N.
2008-11-01
We report on the fabrication of nanoparticle/polymer submicron structures by combining holographic lithography and reactive ion etching. Silica nanoparticles are uniformly dispersed in a (SU8) polymer matrix at a high concentration, and in situ polymerization (cross-linking) is used to form a nanoparticle/polymer composite. Another photosensitive SU8 layer cast upon the nanoparticle/SU8 composite layer is structured through holographic lithography, whose pattern is finally transferred to the nanoparticle/SU8 layer by the reactive ion etching process. Honeycomb structures in a submicron scale are experimentally realized in the nanoparticle/SU8 composite.
Vesicle Adhesion and Fusion Studied by Small-Angle X-Ray Scattering.
Komorowski, Karlo; Salditt, Annalena; Xu, Yihui; Yavuz, Halenur; Brennich, Martha; Jahn, Reinhard; Salditt, Tim
2018-04-24
We have studied the adhesion state (also denoted by docking state) of lipid vesicles as induced by the divalent ions Ca 2+ or Mg 2+ at well-controlled ion concentration, lipid composition, and charge density. The bilayer structure and the interbilayer distance in the docking state were analyzed by small-angle x-ray scattering. A strong adhesion state was observed for DOPC:DOPS vesicles, indicating like-charge attraction resulting from ion correlations. The observed interbilayer separations of ∼1.6 nm agree quantitatively with the predictions of electrostatics in the strong coupling regime. Although this phenomenon was observed when mixing anionic and zwitterionic (or neutral) lipids, pure anionic membranes (DOPS) with highest charge density σ resulted in a direct phase transition to a multilamellar state, which must be accompanied by rupture and fusion of vesicles. To extend the structural assay toward protein-controlled docking and fusion, we have characterized reconstituted N-ethylmaleimide-sensitive factor attachment protein receptors in controlled proteoliposome suspensions by small-angle x-ray scattering. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery
Neudecker, Bernd J.; Bates, John B.
2001-01-01
Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.
Auto-combustion synthesis, Mössbauer study and catalytic properties of copper-manganese ferrites
NASA Astrophysics Data System (ADS)
Velinov, N.; Petrova, T.; Tsoncheva, T.; Genova, I.; Koleva, K.; Kovacheva, D.; Mitov, I.
2016-12-01
Spinel ferrites with nominal composition Cu 0.5Mn 0.5Fe 2 O 4 and different distribution of the ions are obtained by auto-combustion method. Mössbauer spectroscopy, X-ray Diffraction, Thermogravimetry-Differential Scanning Calorimetry, Scanning Electron Microscopy and catalytic test in the reaction of methanol decomposition is used for characterization of synthesized materials. The spectral results evidence that the phase composition, microstructure of the synthesized materials and the cation distribution depend on the preparation conditions. Varying the pH of the initial solution microstructure, ferrite crystallite size, cation oxidation state and distribution of ions in the in the spinel structure could be controlled. The catalytic behaviour of ferrites in the reaction of methanol decomposition also depends on the pH of the initial solution. Reduction transformations of mixed ferrites accompanied with the formation of Hägg carbide χ-Fe 5 C 2 were observed by the influence of the reaction medium.
Fabrication of Cu2 O-based Materials for Lithium-Ion Batteries.
Zhang, Li; Li, Qinyuan; Xue, Huaiguo; Pang, Huan
2018-05-25
The improvement of the performance of advanced batteries has played a key role in the energy research community since its inception. Therefore, it is necessary to explore high-performance materials for applications in advanced batteries. Among the variety of materials applied in batteries, much research has been dedicated to examine cuprous oxide materials as working electrodes in lithium cells to check their suitability as anodes for Li-ion cells and this has revealed great working capacities because of their specific characteristics (polymorphic forms, controllable structure, high cycling capacity, etc.). Thus, cuprous oxide and its composites will be fully introduced in this Review for their applications in advanced batteries. It is believed that, in the future, both the study and the impact of cuprous oxide and its composites will be much more profound and lasting. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Controlled delivery of antimicrobial gallium ions from phosphate-based glasses.
Valappil, S P; Ready, D; Abou Neel, E A; Pickup, D M; O'Dell, L A; Chrzanowski, W; Pratten, J; Newport, R J; Smith, M E; Wilson, M; Knowles, J C
2009-05-01
Gallium-doped phosphate-based glasses (PBGs) have been recently shown to have antibacterial activity. However, the delivery of gallium ions from these glasses can be improved by altering the calcium ion concentration to control the degradation rate of the glasses. In the present study, the effect of increasing calcium content in novel gallium (Ga2O3)-doped PBGs on the susceptibility of Pseudomonas aeruginosa is examined. The lack of new antibiotics in development makes gallium-doped PBG potentially a highly promising new therapeutic agent. The results show that an increase in calcium content (14, 15 and 16 mol.% CaO) cause a decrease in degradation rate (17.6, 13.5 and 7.3 microg mm(-2) h(-1)), gallium ion release and antimicrobial activity against planktonic P. aeruginosa. The most potent glass composition (containing 14 mol.% CaO) was then evaluated for its ability to prevent the growth of biofilms of P. aeruginosa. Gallium release was found to reduce biofilm growth of P. aeruginosa with a maximum effect (0.86 log(10) CFU reduction compared to Ga2O3-free glasses) after 48 h. Analysis of the biofilms by confocal microscopy confirmed the anti-biofilm effect of these glasses as it showed both viable and non-viable bacteria on the glass surface. Results of the solubility and ion release studies show that this glass system is suitable for controlled delivery of Ga3+. 71Ga NMR and Ga K-edge XANES measurements indicate that the gallium is octahedrally coordinated by oxygen atoms in all samples. The results presented here suggest that PBGs may be useful in controlled drug delivery applications, to deliver gallium ions in order to prevent infections due to P. aeruginosa biofilms.
Crystallization Behavior of Poly(ethylene oxide) in Vertically Aligned Carbon Nanotube Array.
Sheng, Jiadong; Zhou, Shenglin; Yang, Zhaohui; Zhang, Xiaohua
2018-03-27
We investigate the effect of the presence of vertically aligned multiwalled carbon nanotubes (CNTs) on the orientation of poly(ethylene oxide) (PEO) lamellae and PEO crystallinity. The high alignment of carbon nanotubes acting as templates probably governs the orientation of PEO lamellae. This templating effect might result in the lamella planes of PEO crystals oriented along a direction parallel to the long axis of the nanotubes. The presence of aligned carbon nanotubes also gives rise to the decreases in PEO crystallinity, crystallization temperature, and melting temperature due to the perturbation of carbon nanotubes to the crystallization of PEO. These effects have significant implications for controlling the orientation of PEO lamellae and decreasing the crystallinity of PEO and thickness of PEO lamellae, which have significant impacts on ion transport in PEO/CNT composite and the capacitive performance of PEO/CNT composite. Both the decreased PEO crystallinity and the orientation of PEO lamellae along the long axes of vertically aligned CNTs give rise to the decrease in the charge transfer resistance, which is associated with the improvements in the ion transport and capacitive performance of PEO/CNT composite.
Ionosphere of Venus - First observations of the dayside ion composition near dawn and dusk
NASA Technical Reports Server (NTRS)
Taylor, H. A., Jr.; Brinton, H. C.; Bauer, S. J.; Hartle, R. E.; Donahue, T. M.; Cloutier, P. A.; Michel, F. C.; Daniell, R. E., Jr.; Blackwell, B. H.
1979-01-01
Independent Bennett radio-frequency ion mass spectrometers on the Pioneer Venus bus and orbiter spacecraft obtained in situ measurements of the composition of the ionosphere of Venus. The spectrometer on the bus explored the dawn region while the spectrometer on the orbiter explored the duskside region. Information on the ion composition in the topside, the lower ionosphere, and the upper ionosphere is presented. Below the O(+) peak near 200 km, the ions are found to exhibit scale heights consistent with a neutral gas temperature of about 180 K near the terminator. In the upper ionosphere, scale heights of all species reflect the effects of plasma transport.
Astrochemistry in TSR and CSR Ion Storage Rings
NASA Astrophysics Data System (ADS)
Novotny, Oldrich
2017-04-01
Dissociative recombination (DR) of molecular ions plays a key role in controlling the charge density and composition of the cold interstellar medium (ISM). Experimental data on DR are required in order to understand the chemical network in the ISM and related processes such as star formation from molecular clouds. Needed data include not only total reaction cross sections, but also the chemical composition and excitation states of the neutral products. Utilizing the TSR storage ring in Heidelberg, Germany, we have carried out DR measurements for astrophysically important molecular ions. We use a merged electron-ion beams technique combined with event-by-event fragment counting and fragment imaging. The count rate of detected neutral DR products yields the absolute DR rate coefficient. Imaging the distribution of fragment distances provides information on the kinetic energy released including the states of both the initial molecule and the final products. Additional kinetic energy sensitivity of the employed detector allows for identification of fragmentation channels by fragment-mass combination within each dissociation event. Such combined information is essential for studies on DR of polyatomic ions with multi-channel breakup. The recently commissioned Cryogenic Storage Ring (CSR) in Heidelberg, Germany, extends the experimental capabilities of TSR by operation at cryogenic temperatures down to 6 K. At these conditions residual gas densities down to 100 cm-3 can be reached resulting in beam storage times of several hours. Long storage in the cold environment allows the ions to relax down to their rotational ground state, thus mimicking well the conditions in the cold ISM. A variety of astrophysically relevant reactions will be investigated at these conditions, such as DR, electron impact excitation, ion-neutral collisions, etc. We report our TSR results on DR of HCl+ and D2Cl+. We also present first results from the CSR commissioning experiments.
Oleshko, Vladimir P; Herzing, Andrew A; Twedt, Kevin A; Griebel, Jared J; McClelland, Jabez J; Pyun, Jeffrey; Soles, Christopher L
2017-09-19
We report the characterization of multiscale 3D structural architectures of novel poly[sulfur-random-(1,3-diisopropenylbenzene)] copolymer-based cathodes for high-energy-density Li-S batteries capable of realizing discharge capacities >1000 mAh/g and long cycling lifetimes >500 cycles. Hierarchical morphologies and interfacial structures have been investigated by a combination of focused Li ion beam (LiFIB) and analytical electron microscopy in relation to the electrochemical performance and physicomechanical stability of the cathodes. Charge-free surface topography and composition-sensitive imaging of the electrodes was performed using recently introduced low-energy scanning LiFIB with Li + probe sizes of a few tens of nanometers at 5 keV energy and 1 pA probe current. Furthermore, we demonstrate that LiFIB has the ability to inject a certain number of Li cations into the material with nanoscale precision, potentially enabling control of the state of discharge in the selected area. We show that chemical modification of the cathodes by replacing the elemental sulfur with organosulfur copolymers significantly improves its structural integrity and compositional homogeneity down to the sub-5-nm length scale, resulting in the creation of (a) robust functional interfaces and percolated conductive pathways involving graphitic-like outer shells of aggregated nanocarbons and (b) extended micro- and mesoscale porosities required for effective ion transport.
The isometric log-ratio (ilr)-ion plot: A proposed alternative to the Piper diagram
Shelton, Jenna L.; Engle, Mark A.; Buccianti, Antonella; Blondes, Madalyn S.
2018-01-01
The Piper diagram has been a staple for the analysis of water chemistry data since its introduction in 1944. It was conceived to be a method for water classification, determination of potential water mixing between end-members, and to aid in the identification of chemical reactions controlling a sample set. This study uses the information gleaned over the years since the release of the Piper diagram and proposes an alternative to it, capturing the strengths of the original diagram while adding new ideas to increase its robustness. The new method uses compositional data analysis to create 4 isometric log-ratio coordinates for the 6 major chemical species analyzed in the Piper diagram and transforms the data to a 4-field bi-plot, the ilr-ion plot. This ilr-ion plot conveys all of the information in the Piper diagram (water mixing, water types, and chemical reactions) while also visualizing additional data, the ability to examine Ca2+/Mg2+ versus Cl-/SO42−. The Piper and the ilr-ion plot were also compared using multiple synthetic and real datasets in order to illustrate the caveats and the advantages of using either diagram to analyze water chemistry data. Although there are challenges with using the ilr-ion plot (e.g., missing or zero values zeros in the dataset must be imputed by positive real numbers), it appears that the use of compositional data analysis coupled with the ilr-ion plot provides a more in-depth and complete analysis of water quality data compared to the original Piper diagram.
Pulsed plasma polymerization for controlling shrinkage and surface composition of nanopores
NASA Astrophysics Data System (ADS)
Asghar, Waseem; Ilyas, Azhar; Deshmukh, Rajendra R.; Sumitsawan, Sulak; Timmons, Richard B.; Iqbal, Samir M.
2011-07-01
Solid-state nanopores have emerged as sensors for single molecules and these have been employed to examine the biophysical properties of an increasingly large variety of biomolecules. Herein we describe a novel and facile approach to precisely adjust the pore size, while simultaneously controlling the surface chemical composition of the solid-state nanopores. Specifically, nanopores fabricated using standard ion beam technology are shrunk to the requisite molecular dimensions via the deposition of highly conformal pulsed plasma generated thin polymeric films. The plasma treatment process provides accurate control of the pore size as the conformal film deposition depends linearly on the deposition time. Simultaneously, the pore and channel chemical compositions are controlled by appropriate selection of the gaseous monomer and plasma conditions employed in the deposition of the polymer films. The controlled pore shrinkage is characterized with high resolution AFM, and the film chemistry of the plasma generated polymers is analyzed with FTIR and XPS. The stability and practical utility of this new approach is demonstrated by successful single molecule sensing of double-stranded DNA. The process offers a viable new advance in the fabrication of tailored nanopores, in terms of both the pore size and surface composition, for usage in a wide range of emerging applications.
Method for providing adhesion to a metal surface
Harrah, L.A.; Allred, R.E.; Wilson, K.V. Jr.
1992-02-18
A process for treating metal surfaces to obtain improved susceptibility to bonding with adhesive compositions is disclosed. A metal surface is oxidized with a halogen to form a monolayer of halide ions on the surface. The halide ions are then exchanged with azide ions to form an azide monolayer on the metal surface. Upon contact of the treated surface with an adhesive composition, the azide layer may be thermally or photochemically decomposed to form active nitrene species, which react to bond the adhesive composition to the metal surface.
Method for providing adhesion to a metal surface
Harrah, Larry A.; Allred, Ronald E.; Wilson, Jr., Kennard V.
1992-01-01
A process for treating metal surfaces to obtain improved susceptibility to bonding with adhesive compositions is disclosed. A metal surface is oxidized with a halogen to form a monolayer of halide ions on the surface. The halide ions are then exchanged with azide ions to form an azide monolayer on the metal surface. Upon contact of the treated surface with an adhesive composition, the azide layer may be thermally or photochemically decomposed to form active nitrene species, which react to bond the adhesive composition to the metal surface.
Wershaw, R. L.; Rutherford, D.W.; Rostad, C.E.; Garbarino, J.R.; Ferrer, I.; Kennedy, K.R.; Momplaisir, G.-M.; Grange, A.
2003-01-01
The compound 3-amino-4-hydroxyphenylarsonic acid (3-amino-HPAA) reacts with smectite to form a soluble azobenzene arsonic acid compound. This reaction is of particular interest because it provides a possible mechanism for the formation of a new type of arsenic compound in natural water systems. 3-Amino-HPAA is a degradation product excreted by chickens that are fed rations amended with roxarsone. Roxarsone is used to control coccidial intestinal parasites in most of the broiler chickens grown in the United States. The structure of the azobenzene arsonic acid compound was first inferred from negative-ion and positive-ion low-resolution mass-spectrometric analyses of the supernatant of the smectite suspension. Elemental composition of the parent ion determined by high-resolution positive-ion mass spectrometric measurements was consistent with the proposed structure of the azobenzene arsonic acid compound. Published by Elsevier Science B.V.
Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Selig, Daniela; Duvenbeck, Fabian; Moeginger, Bernhard
2016-07-01
Shear viscosity and ion viscosity of uncured visible light-curing (VLC) resins and resin based composites (RBC) are correlated with respect to the resin composition, temperature and filler content to check where Dielectric Analysis (DEA) investigations of VLC RBC generate similar results as viscosity measurements. Mixtures of bisphenol A glycidyl methacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) as well as the pure resins were investigated and compared with two commercial VLC dental resins and RBCs (VOCO, Arabesk Top and Grandio). Shear viscosity data was obtained using a Haake Mars III, Thermo Scientific. Ion viscosity measurements performed by a dielectric cure analyzer (DEA 231/1 Epsilon with Mini IDEX-Sensor, Netzsch-Gerätebau). Shear viscosity depends reciprocally on the mobility of molecules, whereas the ion viscosity also depends on the ion concentration as it is affected by both ion concentration and mixture viscosity. Except of pure TEGDMA, shear and ion viscosities depend on the resin composition qualitatively in a similar manner. Furthermore, shear and ion viscosities of the commercial VLC dental resins and composites exhibited the same temperature dependency regardless of filler content. Application of typical rheological models (Kitano and Quemada) revealed that ion viscosity measurements can be described with respect to filler contents of up to 30vol.%. Rheological behavior of a VLC RBC can be characterized by DEA under the condition that the ion concentration is kept constant. Both methods address the same physical phenomenon - motion of molecules. The proposed relations allows for calculating the viscosity of any Bis-GMA-TEGDMA mixture on the base of the viscosities of the pure components. This study demonstrated the applicability of DEA investigations of VLC RBCs with respect to quality assurance purposes. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Liu, Yao; Liu, Jingyuan; Bin, Duan; Hou, Mengyan; Tamirat, Andebet Gedamu; Wang, Yonggang; Xia, Yongyao
2018-05-02
Because of the low cost and abundant nature of the sodium element, sodium-ion batteries (SIBs) are attracting extensive attention, and a variety of SIB cathode materials have been discovered. However, the lack of high-performance anode materials is a major challenge of SIBs. Herein, we have synthesized ultrasmall TiO 2 -nanoparticle-coated reduced graphene oxide (TiO 2 @RGO) composites by using a one-pot hydrolysis method, which are then investigated as anode materials for SIBs. The morphology of TiO 2 @RGO has been characterized using transmission electron microscopy, indicating that the TiO 2 nanospheres uniformly grow on the surface of the RGO nanosheet. As-prepared TiO 2 @RGO composites exhibited a promising electrochemical performance in terms of cycling stability and rate capability, especially the initial cycle Coulombic efficiency of 60.7%, which is higher than that in previous reports. The kinetics of the electrode reaction has been investigated by cyclic voltammetry. The results indicate that the sodium-ion intercalation/extraction behavior is not controlled by the semiinfinite diffusion process, which gives rise to an outstanding rate performance. In addition, the electrochemical performance of TiO 2 @RGO composites in full cells, coupled with carbon-coated Na 3 V 2 (PO 4 ) 3 as the positive material, has been investigated. The discharge specific capacity was up to 117.2 mAh g -1 , and it remained at 84.6 mAh g -1 after 500 cycles under a current density of 2 A g -1 , which shows excellent cycling stability.
Photoluminescent Au-Ge composite nanodots formation on SiO2 surface by ion induced dewetting
NASA Astrophysics Data System (ADS)
Datta, D. P.; Siva, V.; Singh, A.; Kanjilal, D.; Sahoo, P. K.
2017-09-01
Medium energy ion irradiation on a bilayer of Au and Ge on SiO2 is observed to result in gradual morphological evolution from an interconnected network to a nanodot array on the insulator surface. Structural and compositional analyses reveal composite nature of the nanodots, comprising of both Au and Ge. The growing nanostructures are found to be photoluminescent at room temperature where the emission intensity and wavelengths vary with morphology. The growth of such nanostructures can be understood in terms of dewetting of the metal layer under ion irradiation due to ion-induced melting along the ion tracks. The visible PL emission is found to be related with evolution of the Au-Ge nanodots. The study indicates a route towards single step synthesis of metal-semiconductor nanodots on insulator surface.
A review on the key issues for lithium-ion battery management in electric vehicles
NASA Astrophysics Data System (ADS)
Lu, Languang; Han, Xuebing; Li, Jianqiu; Hua, Jianfeng; Ouyang, Minggao
2013-03-01
Compared with other commonly used batteries, lithium-ion batteries are featured by high energy density, high power density, long service life and environmental friendliness and thus have found wide application in the area of consumer electronics. However, lithium-ion batteries for vehicles have high capacity and large serial-parallel numbers, which, coupled with such problems as safety, durability, uniformity and cost, imposes limitations on the wide application of lithium-ion batteries in the vehicle. The narrow area in which lithium-ion batteries operate with safety and reliability necessitates the effective control and management of battery management system. This present paper, through the analysis of literature and in combination with our practical experience, gives a brief introduction to the composition of the battery management system (BMS) and its key issues such as battery cell voltage measurement, battery states estimation, battery uniformity and equalization, battery fault diagnosis and so on, in the hope of providing some inspirations to the design and research of the battery management system.
NASA Astrophysics Data System (ADS)
Goyal, Meetika; Aggarwal, Sanjeev; Sharma, Annu; Ojha, Sunil
2018-05-01
Temporal variations in nano-scale surface morphology generated on Polypropylene (PP) substrates utilizing 40 keV oblique argon ion beam have been presented. Due to controlled variation of crucial beam parameters i.e. ion incidence angle and erosion time, formation of ripple patterns and further its transition into dot nanostructures have been realized. Experimental investigations have been supported by evaluation of Bradley and Harper (B-H) coefficients estimated using SRIM (The Stopping and Range of Ions in Matter) simulations. Roughness of pristine target surfaces has been accredited to be a crucial factor behind the early time evolution of nano-scale patterns over the polymeric surface. Study of Power spectral density (PSD) spectra reveals that smoothing mechanism switch from ballistic drift to ion enhanced surface diffusion (ESD) which can be the most probable cause for such morphological transition under given experimental conditions. Compositional analysis and depth profiling of argon ion irradiated specimens using Rutherford Backscattering Spectroscopy (RBS) has also been correlated with the AFM findings.
Biological Impact of Bioactive Glasses and Their Dissolution Products.
Hoppe, Alexander; Boccaccini, Aldo R
2015-01-01
For many years, bioactive glasses (BGs) have been widely considered for bone tissue engineering applications due to their ability to bond to hard as well as soft tissue (a property termed bioactivity) and for their stimulating effects on bone formation. Ionic dissolution products released during the degradation of the BG matrix induce osteogenic gene expression leading to enhanced bone regeneration. Recently, adding bioactive metallic ions (e.g. boron, copper, cobalt, silver, zinc and strontium) to silicate (or phosphate and borate) glasses has emerged as a promising route for developing novel BG formulations with specific therapeutic functionalities, including antibacterial, angiogenic and osteogenic properties. The degradation behaviour of BGs can be tailored by adjusting the glass chemistry making these glass matrices potential carrier systems for controlled therapeutic ion release. This book chapter summarises the fundamental aspects of the effect of ionic dissolution products from BGs on osteogenesis and angiogenesis, whilst discussing novel BG compositions with controlled therapeutic ion release. © 2015 S. Karger AG, Basel.
ION COMPOSITION ELUCIDATION (ICE): AN INVESTIGATIVE ...
Ion Composition Elucidation (ICE) often leads to identification of compounds and provides high quality evidence for tracking compounds to their sources. Mass spectra for most organic compounds are not found in mass spectral libraries used to tentatively identify analytes. In addition, multiple matches are common. Ion Composition Elucidation provides the numbers of atoms of each element in the ions in the mass spectrum, greatly limiting the number of possible compounds that could produce the mass spectrum. Review of chemical and commercial literature then limits the number of possible compounds to one or a few that can be purchased to confirm tentative compound identifications by comparison of mass spectra and chromatographic retention times. Ion Composition Elucidation is conceptually simple relative to other analytical techniques and more easily explained to a judge or jury. It is based on sums of the exact masses of atoms and their isotopic abundances. Several applications of ICE are demonstrated for ultra-trace-level compounds in an extract of the effluent from a tertiary sewage treatment plant including: (i) measurement of five values to determine an ion's composition and to generate evidence for the compound's identity, (ii) rejection of incorrect library matches, (iii) rapid screening for a target compound in an extract, and (iv) a strategy for tracking unidentified compounds to their sources. The research focused on in the subtasks is the development and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskin, Julia; Johnson, Grant E.; Prabhakaran, Venkateshkumar
Immobilization of complex molecules and clusters on supports plays an important role in a variety of disciplines including materials science, catalysis and biochemistry. In particular, deposition of clusters on surfaces has attracted considerable attention due to their non-scalable, highly size-dependent properties. The ability to precisely control the composition and morphology of clusters and small nanoparticles on surfaces is crucial for the development of next generation materials with rationally tailored properties. Soft- and reactive landing of ions onto solid or liquid surfaces introduces unprecedented selectivity into surface modification by completely eliminating the effect of solvent and sample contamination on the qualitymore » of the film. The ability to select the mass-to-charge ratio of the precursor ion, its kinetic energy and charge state along with precise control of the size, shape and position of the ion beam on the deposition target makes soft-landing an attractive approach for surface modification. High-purity uniform thin films on surfaces generated using mass-selected ion deposition facilitate understanding of critical interfacial phenomena relevant to catalysis, energy generation and storage, and materials science. Our efforts have been directed toward understanding charge retention by soft-landed metal and metal-oxide cluster ions, which may affect both their structure and reactivity. Specifically, we have examined the effect of the surface on charge retention by both positively and negatively charged cluster ions. We found that the electronic properties of the surface play an important role in charge retention by cluster cations. Meanwhile, the electron binding energy is a key factor determining charge retention by cluster anions. These findings provide the scientific foundation for the rational design of interfaces for advanced catalysts and energy storage devices. Further optimization of electrode-electrolyte interfaces for applications in energy storage and electrocatalysis may be achieved by understanding and controlling the properties of soft-landed cluster ions.« less
NASA Astrophysics Data System (ADS)
Zhu, Jiangliu; Ren, Yurong; Yang, Bo; Chen, Wenkai; Ding, Jianning
2017-12-01
Embedded Si/graphene composite was fabricated by a novel method, which was in situ generated SiO2 particles on graphene sheets followed by magnesium-thermal reduction. The tetraethyl orthosilicate (TEOS) and flake graphite was used as original materials. On the one hand, the unique structure of as-obtained composite accommodated the large volume change to some extent. Simultaneously, it enhanced electronic conductivity during Li-ion insertion/extraction. The MR-Si/G composite is used as the anode material for lithium ion batteries, which shows high reversible capacity and ascendant cycling stability reach to 950 mAh·g-1 at a current density of 50 mA·g-1 after 60 cycles. These may be conducive to the further advancement of Si-based composite anode design.
2016-08-04
BAllistic SImulation Method for Lithium Ion Batteries (BASIMLIB) using Thick Shell Composites (TSC) in LS-DYNA Venkatesh Babu, Dr. Matt Castanier, Dr...Objective • Objective and focus of this work is to develop a – Robust simulation methodology to model lithium - ion based batteries in its module and full...unlimited Lithium Ion Phosphate (LiFePO4) battery cell, module and pack was modeled in LS-DYNA using both Thin Shell Layer (TSL) and Thick Shell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auciello, O.; Ameen, M.S.; Graettinger, T.M.
Ion beam sputtering is presently used to deposit films from single phase YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} targets. Generally, Ar+ ion beams ({approx}1500 eV) produced by Kaufman-type ion sources are used for this purpose. It has been observed that these ion beams induce compositional and morphological changes on the polycrystalline ceramic target surface, which results in the composition of sputtered flux displaying a time-dependent behavior. This in turn may lead to undesirably long times for reaching steady state conditions in the sputtering process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auciello, O.; Ameen, M.S.; Graettinger, T.
Ion beam sputtering is presently used to deposit films from single phase YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} targets. Generally, Ar{sup +} ion beams ({similar to}1500 eV) produced by Kaufman-type ion sources are used for this purpose. It has been observed that these ion beams induce compositional and morphological changes on the polycrystalline ceramic target surface, which results in the composition of sputtered flux displaying a time-dependent behavior. This in turn may lead to undesirably long times for reaching steady state conditions in the sputtering process.
NASA Technical Reports Server (NTRS)
Wong, M.; Berthelier, J.; Carlson, R.; Cooper, J.; Johnson, R.; Jurac, S.; Leblanc, F.; Shematovich, V.
2003-01-01
In this paper, we will provide insights into mass spectrometer requirements. In addition, we will describe the modeling of the neutrals ejected from likely surface materials and their ionization rates in the Jovian environment. We will use such models to connect the mass spectra measurements of the freshly formed ions to surface composition. We will also discuss what possible compositional signatures are for endogenic materials other than water ice. Finally, since a goal is to identify material composition with surface features, we will describe the transport of neutrals ejected from the surface prior to detection by either an ion or neutral mass spectrometer.
Liu, Sheng; Liu, Yang; Cebeci, Hülya; de Villoria, Roberto Guzmán; Lin, Jun-Hong
2011-01-01
Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fraction create unique opportunities for markedly improving the electromechanical performance of ionic polymer conductor network composite (IPCNC) actuators. Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast device actuation speed (>10% strain/second). One critical issue in developing advanced actuator materials is how to suppress the strain that does not contribute to the actuation (unwanted strain) thereby reducing actuation efficiency. Here our experiments demonstrate that the VA-CNTs give an anisotropic elastic response in the composite electrodes, which suppresses the unwanted strain and markedly enhances the actuation strain (>8% strain under 4 volts). The results reported here suggest pathways for optimizing the electrode morphology in IPCNCs using ultra-high volume fraction VA-CNTs to further enhanced performance. PMID:21765822
NASA Astrophysics Data System (ADS)
Kumar, Amit; Arruda, Thomas M.; Tselev, Alexander; Ivanov, Ilia N.; Lawton, Jamie S.; Zawodzinski, Thomas A.; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V.
2013-04-01
Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.
Biosynthesis of size-controlled gold nanoparticles using fungus, Penicillium sp.
Zhang, Xiaorong; He, Xiaoxiao; Wang, Kemin; Wang, Yonghong; Li, Huimin; Tan, Weihong
2009-10-01
The unique optoelectronic and physicochemical properties of gold nanoparticles are significantly dependent on the particle size, shape and structure. In this paper, biosynthesis of size-controlled gold nanoparticles using fungus Penicillium sp. is reported. Fungus Penicillium sp. could successfully bioreduce and nucleate AuCl4(-) ions, and lead to the assembly and formation of intracellular Au nanoparticles with spherical morphology and good monodispersity after exposure to HAuCl4 solution. Reaction temperature, as an important physiological parameter for fungus Penicillium sp. growth, could significantly control the size of the biosynthesized Au nanoparticles. The biological compositions and FTIR spectra analysis of fungus Penicillium sp. exposed to HAuCl4 solution indicated the intracellular reducing sugar played an important role in the occurrence of intracellular reduction of AuCl4(-) ions and the growth of gold nanoparticles. Furthermore, the intracellular gold nanoparticles could be easily separated from the fungal cell lysate by ultrasonication and centrifugation.
Kumar, Amit; Arruda, Thomas M; Tselev, Alexander; Ivanov, Ilia N; Lawton, Jamie S; Zawodzinski, Thomas A; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V
2013-01-01
Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.
Kumar, Amit; Arruda, Thomas M.; Tselev, Alexander; Ivanov, Ilia N.; Lawton, Jamie S.; Zawodzinski, Thomas A.; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V.
2013-01-01
Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes. PMID:23563856
Bio-reinforced self-healing concrete using magnetic iron oxide nanoparticles.
Seifan, Mostafa; Sarmah, Ajit K; Ebrahiminezhad, Alireza; Ghasemi, Younes; Samani, Ali Khajeh; Berenjian, Aydin
2018-03-01
Immobilization has been reported as an efficient technique to address the bacterial vulnerability for application in bio self-healing concrete. In this study, for the first time, magnetic iron oxide nanoparticles (IONs) are being practically employed as the protective vehicle for bacteria to evaluate the self-healing performance in concrete environment. Magnetic IONs were successfully synthesized and characterized using different techniques. The scanning electron microscope (SEM) images show the efficient adsorption of nanoparticles to the Bacillus cells. Microscopic observation illustrates that the incorporation of the immobilized bacteria in the concrete matrix resulted in a significant crack healing behavior, while the control specimen had no healing characteristics. Analysis of bio-precipitates revealed that the induced minerals in the cracks were calcium carbonate. The effect of magnetic immobilized cells on the concrete water absorption showed that the concrete specimens supplemented with decorated bacteria with IONs had a higher resistance to water penetration. The initial and secondary water absorption rates in bio-concrete specimens were 26% and 22% lower than the control specimens. Due to the compatible behavior of IONs with the concrete compositions, the results of this study proved the potential application of IONs for developing a new generation of bio self-healing concrete.
Ion composition in a noctilucent cloud
NASA Technical Reports Server (NTRS)
Goldberg, R. A.; Witt, G.
1976-01-01
Ion composition at mesospheric altitudes was measured and compared between high and mid-latitude sites under summer daytime conditions. Rocket-borne measurements were made with pumped quadrupole ion mass spectrometers. The mid-latitude data were obtained at Wallops Island, Virginia on June 30, 1973, at 1510 LMT. Large quantities of hydronium cluster ions were observed through 109+, with maximum concentrations at 55+ and 73+. Also, cluster ions of nitric oxide were observed through 84+. The high latitude launch occurred at Kiruna, Sweden on August 2, 1973, at 0700 LMT following visual sighting of a noctilucent cloud on the prior evening. The data near mesopause shows cluster ions, but also a preponderance of heavy ions between 90 and 145 AMU, with groupings 18 AMU apart but unrelated to the more typical cluster ions. One possible set of consistent identifications leads to iron and iron oxide hydrates. These results may suggest the presence of metallic particulates and ions which form hydrated clusters ions.
Ultra-high density aligned Carbon-nanotube with controled nano-morphology for supercapacitors
NASA Astrophysics Data System (ADS)
Ghaffari, Mehdi; Zhao, Ran; Liu, Yang; Zhou, Yue; Cheng, Jiping; Guzman de Villoria, Roberto; Wardle, B. L.; Zhang, Q. M.
2012-02-01
Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fractioncreate unique opportunities for developing unconventional supercapacitors with ultra-high energy density, power density, and long charge/discharge cycle life.Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast discharge speed. We investigate the charge-discharge characteristics of VA-CNTs with >20 vol% of CNT and ionic liquids as electrolytes. By employing both the electric and electromechanical spectroscopes, as well as nanostructured materials characterization, the ion transport and storage behaviors in porous electrodes are studied. The results suggest pathways for optimizing the electrode morphology in supercapacitorsusing ultra-high volume fraction VA-CNTs to further enhance performance.
Ring Current He Ion Control by Bounce Resonant ULF Waves
NASA Astrophysics Data System (ADS)
Kim, Hyomin; Gerrard, Andrew J.; Lanzerotti, Louis J.; Soto-Chavez, Rualdo; Cohen, Ross J.; Manweiler, Jerry W.
2017-12-01
Ring current energy He ion (˜65 keV to ˜520 keV) differential flux data from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft show considerable variability during quiet solar wind and geomagnetic time periods. Such variability is apparent from orbit to orbit (˜9 h) of the spacecraft and is observed to be ˜50-100% of the nominal flux. Using data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument, also aboard the Van Allen Probes spacecraft, we identify that a dominant source of this variability is from ULF waveforms with periods of tens of seconds. These periods correspond to the bounce resonant timescales of the ring current He ions being measured by RBSPICE. A statistical survey using the particle and field data for one full spacecraft precession period (approximately 2 years) shows that the wave and He ion flux variations are generally anticorrelated, suggesting the bounce resonant pitch angle scattering process as a major component in the scattering of He ions.
WHITED, BRYCE M.; GOLDSTEIN, AARON S.; SKRTIC, DRAGO; LOVE, BRIAN J.
2010-01-01
Several minerals, such as hydroxyapatite and β-tricalcium phosphate, have been incorporated into bioresorbable polyester bone scaffolds to increase the osteoconductivity both in vitro and in vivo. More soluble forms of calcium phosphate that release calcium and phosphate ions have been postulated as factors that increase osteoblast differentiation and mineralization. Recently, a zirconia-hybridized pyrophosphate-stabilized amorphous calcium phosphate (Zr-ACP) has been synthesized allowing controlled release of calcium and phosphate ions. When incorporated into bioresorbable scaffolds, Zr-ACP has the potential to induce osteoconductivity. In this study, 80–90% (w/v) porous poly(DL-LActic-co-glycolic acid) (PLGA) scaffolds were formed by thermal phase separation from dioxane while incorporating Zr-ACP. Scanning electron microscopy revealed a highly porous structure with a pore size ranging from a few μm to about 100 μm, smaller than we had hoped for. Zr-ACP particles were evenly dispersed in the composite structure and incorporated into the pore walls. The amorphous structure of the Zr-ACP was maintained during composite fabrication, as found by X-ray diffraction. Composite scaffolds had larger compressive yield strengths and moduli compared to pure polymer scaffolds. These initial efforts demonstrate that PLGA/Zr-ACP composites can be formed in ways that ultimately serve as promising bone scaffolds in tissue engineering. PMID:16768292
Ahmad, Munir; Ahmad, Mahtab; Usman, Adel R A; Al-Faraj, Abdullah S; Abduljabbar, Adel S; Al-Wabel, Mohammad I
2017-09-18
Biochar (BC) was produced from date palm tree leaves and its composites were prepared with nano zerovalent iron (nZVI-BC) and hen eggshell powder (EP-BC). The produced BC and its composites were characterized by SEM, XRD, BET, and FTIR for surface structural, mineralogical, and chemical groups and tested for their efficiency for nitrate removal from aqueous solutions in the presence and absence of chloride ions. The incidence of graphene and nano zerovalent iron (Fe 0 ) in the nZVI-BC composite was confirmed by XRD. The nZVI-BC composite possessed highest surface area (220.92 m 2 g -1 ), carbon (80.55%), nitrogen (3.78%), and hydrogen (11.09%) contents compared to other materials. Nitrate sorption data was fitted well to the Langmuir (R 2 = 0.93-0.98) and Freundlich (R 2 = 0.90-0.99) isotherms. The sorption kinetics was adequately explained by the pseudo-second-order, power function, and Elovich models. The nZVI-BC composite showed highest Langmuir predicted sorption capacity (148.10 mg g -1 ) followed by EP-BC composite (72.77 mg g -1 ). In addition to the high surface area, the higher nitrate removal capacity of nZVI-BC composite could be attributed to the combination of two processes, i.e., chemisorption (outer-sphere complexation) and reduction of nitrate to ammonia or nitrogen by Fe 0 . The appearance of Fe-O stretching and N-H bonds in post-sorption FTIR spectra of nZVI-BC composite suggested the occurrence of redox reaction and formation of Fe compound with N, such as ferric nitrate (Fe(NO 3 ) 3 ·9H 2 O). Coexistence of chloride ions negatively influenced the nitrate sorption. The decrease in nitrate sorption with increasing chloride ion concentration was observed, which could be due to the competition of free active sites on the sorbents between nitrate and chloride ions. The nZVI-BC composite exhibited higher nitrate removal efficiency compared to other materials even in the presence of highest concentration (100 mg L -1 ) of coexisting chloride ion.
Polymer matrix electroluminescent materials and devices
Marrocco, III, Matthew L.; Motamedi, Farshad J [Claremont, CA; Abdelrazzaq, Feras Bashir [Covina, CA; Abdelrazzaq, legal representative, Bashir Twfiq
2012-06-26
Photoluminescent and electroluminescent compositions are provided which comprise a matrix comprising aromatic repeat units covalently coordinated to a phosphorescent or luminescent metal ion or metal ion complexes. Methods for producing such compositions, and the electroluminescent devices formed therefrom, are also disclosed.
Ion Composition in Titan's Exosphere from the Cassini Plasma Spectrometer
NASA Astrophysics Data System (ADS)
Woodson, A.; Smith, H. T.; Johnson, R. E.
2013-12-01
A primary goal of the Cassini mission has been to characterize the complex interaction between Saturn's magnetosphere and Titan's ionosphere. To this end, the Cassini spacecraft carries two instruments-the Ion and Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS)-capable of energy- and mass-analysis. The Ion Mass Spectrometer (IMS), one of three instruments composing CAPS, is designed to characterize diffuse plasmas throughout the magnetosphere while the INMS is optimized for measurements within Titan's upper atmosphere. As such, mass-resolved ion compositions confirming a variety of hydrocarbons and nitriles have been extracted from INMS data for numerous Titan encounters. Similar analysis of IMS data, however, has largely been resolution-limited to the identification of 'light' and 'heavy' ion groups in the wake. Herein we present a technique for extracting Dalton-resolved ion compositions from IMS spectra acquired below ~5 Titan radii. The method is then applied to data from the T40 encounter and the resulting relative abundances compared with those derived from the INMS data for the same encounter.
Study on Antibacterial Property of PMMA Denture Base Materials with Negative Ion Powder
NASA Astrophysics Data System (ADS)
Liu, Meitian; Zhang, Xiaohui; Zhang, Jingting; Zheng, Qian; Liu, Bin
2018-01-01
To prepare the denture base resin with negative ion powder and evaluate the antibacterial effect of denture base resin with different contents of negative ion powder for clinical application. Method: Denture base material with negative ion powder was prepared by in-situ polymerization method, 50mm * 50mm * 2mm standard samples were prepared respectively. Antibacterial properties were tested with the film contact method. Experimental bacteria: Staphylococcus aureus (ATCC6538), Escherichia coli (ATCC8099).Result:With the increase of the amount of negative ion powder, the inhibition rate of the composite material to Escherichia coli and Staphylococcus aureus showed an increasing trend, and the number of residual bacteria on the surface showed a decreasing trend. When the content of negative ion powder was 2%, the composite material Staphylococcus aureus and Escherichia coli were 77.9% and 80.3% respectively. When the addition ratio was 5%, the bactericidal rate of the composite material to Staphylococcus aureus and Escherichia coli reached 98.2% and 99.1% respectively. Conclusion: The denture base material containing more than 2%wt negative ion powder has strong sterilization.
NASA Astrophysics Data System (ADS)
Chaikina, M. V.; Bulina, N. V.; Ishchenko, A. V.; Prosanov, I. Yu.
2014-02-01
The mechanochemical method is used to synthesize samples of hydroxyapatite (HA) with substitution of the phosphate ion by silicate and zirconate ions, and substitution of calcium ions by copper ions. In the process of mechanochemical synthesis, carbonate ions and water molecules are incorporated into the structure of HA due to interaction of components of the reaction mixture with air. Intrusion of carbonate into the structure of HA is a competing process with modification of apatite by silicate and zirconate anions; therefore, the composition of the product during synthesis differs from the prescribed one. After annealing of the samples, the composition of the anion-modified HA can be described by the formula Са10(РО4)6- х (АО4) х (ОН)2- х , where (АО4)4- is the modifying anion. Substitution of calcium by copper ions localized at the Са1 position has been detected. Silver ions are not incorporated into the structure of HA, but are distributed in the apatite matrix in the form of nanocrystals of metallic silver.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhirkov, I., E-mail: igozh@ifm.liu.se; Petruhins, A.; Dahlqvist, M.
2014-03-28
DC arc plasma from Ti, Al, and Ti{sub 1-x}Al{sub x} (x = 0.16, 0.25, 0.50, and 0.70) compound cathodes was characterized with respect to plasma chemistry and charge-state-resolved ion energy. Scanning electron microscopy, X-ray diffraction, and Energy-dispersive X-ray spectroscopy of the deposited films and the cathode surfaces were used for exploring the correlation between cathode-, plasma-, and film composition. Experimental work was performed at a base pressure of 10{sup −6} Torr, to exclude plasma-gas interaction. The plasma ion composition showed a reduction of Al of approximately 5 at. % compared to the cathode composition, while deposited films were in accordance with the cathodemore » stoichiometry. This may be explained by presence of neutrals in the plasma/vapour phase. The average ion charge states (Ti = 2.2, Al = 1.65) were consistent with reference data for elemental cathodes, and approximately independent on the cathode composition. On the contrary, the width of the ion energy distributions (IEDs) were drastically reduced when comparing the elemental Ti and Al cathodes with Ti{sub 0.5}Al{sub 0.5}, going from ∼150 and ∼175 eV to ∼100 and ∼75 eV for Ti and Al ions, respectively. This may be explained by a reduction in electron temperature, commonly associated with the high energy tail of the IED. The average Ti and Al ion energies ranged between ∼50 and ∼61 eV, and ∼30 and ∼50 eV, respectively, for different cathode compositions. The attained energy trends were explained by the velocity rule for compound cathodes, which states that the most likely velocities of ions of different mass are equal. Hence, compared to elemental cathodes, the faster Al ions will be decelerated, and the slower Ti ions will be accelerated when originating from compound cathodes. The intensity of the macroparticle generation and thickness of the deposited films were also found to be dependent on the cathode composition. The presented results may be of importance for choice of cathodes for thin film depositions involving compound cathodes.« less
Li, Wuxia; Fenton, J C; Cui, Ajuan; Wang, Huan; Wang, Yiqian; Gu, Changzhi; McComb, D W; Warburton, P A
2012-03-16
We report that, to enable studies of their compositional, structural and electrical properties, freestanding individual nanoobjects can be selectively felled in a controllable way by the technique of low-current focused-ion-beam (FIB) milling with the ion beam at a chosen angle of incidence to the nanoobject. To demonstrate the suitability of the technique, we report results for zigzag/straight tungsten nanowires grown vertically on support substrates and then felled for characterization. We also describe a systematic investigation of the effect of the experimental geometry and parameters on the felling process and on the induced wire-bending phenomenon. The method of felling freestanding nanoobjects using FIB is an advantageous new technique enabling investigations of the properties of selected individual nanoobjects.
NASA Astrophysics Data System (ADS)
Li, Wuxia; Fenton, J. C.; Cui, Ajuan; Wang, Huan; Wang, Yiqian; Gu, Changzhi; McComb, D. W.; Warburton, P. A.
2012-03-01
We report that, to enable studies of their compositional, structural and electrical properties, freestanding individual nanoobjects can be selectively felled in a controllable way by the technique of low-current focused-ion-beam (FIB) milling with the ion beam at a chosen angle of incidence to the nanoobject. To demonstrate the suitability of the technique, we report results for zigzag/straight tungsten nanowires grown vertically on support substrates and then felled for characterization. We also describe a systematic investigation of the effect of the experimental geometry and parameters on the felling process and on the induced wire-bending phenomenon. The method of felling freestanding nanoobjects using FIB is an advantageous new technique enabling investigations of the properties of selected individual nanoobjects.
NASA Astrophysics Data System (ADS)
Jurkane, A.; Gaidukov, S.
2017-10-01
A strong engineering interest in nanostructured conducting polymers and its composite materials have been widely used to build various sensor devices, electronic interconnect devices, fuel cells and batteries. Preparation of polymeric nano-composites with finely controlled structure, especially, at nano-scale, is still one of the most perspective modification ways of the properties of polymeric composites. Multi-walled carbon nanotube (MWCNT)/polyethylene oxide (PEO) and graphene nanosheets (GR)/PEO composites and composite of MWCNT/GR/PEO were prepared by solution casting and hot-pressing method. Composites were plasticized by 5% of Lithium triflate (LiTrifl), which play role of additional ion source in conducting polymer composite. Mechanical tensile tests were performed to evaluate nanoparticles influence on the mechanical strength of the conductive polymer composite materials. Difference of tensile tests of prepared composition can be seen from tensile tests data curves. The results of tensile tests indicated that the nanoparticles can provide PEO/5%LiTrifl composite with stiffening effects at rather low filler content (at least 0.05% by volume).
NASA Astrophysics Data System (ADS)
Melkozyorova, N. A.; Zinkevich, K. G.; Lebedev, E. A.; Alekseyev, A. V.; Gromov, D. G.; Kitsyuk, E. P.; Ryazanov, R. M.; Sysa, A. V.
2017-11-01
The features of electrophoretic deposition process of composite LiCoO2-based cathode and Si-based anode materials were researched. The influence of the deposition process parameters on the structure and composition of the deposit was revealed. The possibility of a local deposition of composites on a planar lithium-ion battery structure was demonstrated.
Roesch, Luiz Fernando Wurdig; Silveira, Rita C.; Corso, Andréa L.; Dobbler, Priscila Thiago; Mai, Volker; Rojas, Bruna S.; Laureano, Álvaro M.; Procianoy, Renato S.
2017-01-01
Background Administering intravenous antibiotics during labor to women at risk for transmitting Group B Streptococcus (GBS) can prevent infections in newborns. However, the impact of intrapartum antibiotic prophylaxis on mothers’ microbial community composition is largely unknown. We compared vaginal microbial composition in pregnant women experiencing preterm birth at ≤ 32 weeks gestation that received intrapartum antibiotic prophylaxis with that in controls. Methods Microbiota in vaginal swabs collected shortly before delivery from GBS positive women that received penicillin intravenously during labor or after premature rupture of membranes was compared to controls. Microbiota was analyzed by 16S rRNA sequencing using the PGM Ion Torrent to determine the effects of penicillin use during hospitalization and GBS status on its composition. Results Penicillin administration was associated with an altered vaginal microbial community composition characterized by increased microbial diversity. Lactobacillus sp. contributed only 13.1% of the total community in the women that received penicillin compared to 88.1% in the controls. Streptococcus sp. were present in higher abundance in GBS positive woman compared to controls, with 60% of the total vaginal microbiota in severe cases identified as Streptococcus sp. Conclusions Vaginal communities of healthy pregnant women were dominated by Lactobacillus sp. and contained low diversity, while Group B Streptococcus positive women receiving intrapartum antibiotic prophylaxis had a modified vaginal microbiota composition with low abundance of Lactobacillus but higher microbial diversity. PMID:28178310
NASA Technical Reports Server (NTRS)
Collier, M. R.; Sittler, E.; Chornay, D.; Cooper, J. F.; Coplan, M.; Johnson, R. E.
2004-01-01
We describe a low energy neutral atom imager suitable for composition measurements Europa and other icy Galilean moons in the Jovian magnetosphere. This instrument employs conversion surface technology and is sensitive to either neutrals converted to negative ions, neutrals converted to positive ions and the positive ions themselves depending on the power supply. On a mission such as the Jupiter Icy Moons Orbiter (JIMO), two back-to-back sensors would be flown with separate power supplies fitted to the neutral atom and iodneutral atom sides. This will allow both remote imaging of 1 eV < E < 4 keV neutrals from icy moon surfaces and atmospheres, and in situ measurements of ions at similar energies in the moon ionospheres and Jovian magnetospheric plasma. The instrument provides composition measurements of the neutrals and ions that enter the spectrometer with a mass resolution dependent on the time-of-flight subsystem and capable of resolving molecules. The lower energy neutrals, up to tens of eV, arise from atoms and molecules sputtered off the moon surfaces and out of the moon atmospheres by impacts of more energetic (keV to MeV) ions from the magnetosphere. Direct Simulation Monte Carlo (DSMC) models are used to convert measured neutral abundances to compositional distributions of primary and trace species in the sputtered surfaces and atmospheres. The escaping neutrals can also be detected as ions after photo- or plasma-ionization and pickup. Higher energy, keV neutrals come from charge exchange of magnetospheric ions in the moon atmospheres and provide information on atmospheric structure. At the jovicentric orbits of the icy moons the presence of toroidal gas clouds, as detected at Europa's orbit, provide M e r opportunities to analyze both the composition of neutrals and ions originating from the moon surfaces, and the characteristics of magnetospheric ions interacting with neutral cloud material. Charge exchange of low energy ions near the moons, and directional distributions of the resultant neutrals, allow indirect global mapping of magnetic field structures around the moons. Temporal variation of the magnetic structures can be linked to induced magnetic fields associated with subsurface oceans.
NASA Astrophysics Data System (ADS)
Cai, Z.; Wen, H.; Li, L.
2017-12-01
Accidental release of Marcellus Shale waters (MSW) can release high concentrations of chemicals that can deteriorate groundwater quality. It is important to understand the reactive transport and fate of chemicals from MSW. Natural aquifers typically have complex mineralogical compositions and are heterogeneous with large spatial variation in terms of physical and geochemical properties. To investigate the effects of mineralogical compositions, flow-through experiments and reactive transport modeling were carried out using 3 large columns (5 cm×50 cm, Quartz, Calcite, and Vermiculite). Results indicate calcite immobilizes heavy metals by precipitation and solid solution partitioning (coprecipitation). Vermiculite retards heavy metals through ion exchange. The sorbed chemicals however slowly release back to the groundwater. Na and Ca transport similarly to Br in Qtz and Cal columns however become sorbed in Vrm column during release through ion exchange by 27.8% and 46.5%, respectively and later slowly release back to aqueous phase. To understand the role of mineral spatial patterns, three 2D flow-cell (40 cm×12 cm×1 cm) experiments were carried out. All flow cells have the same clay mass within quartz matrix but different spatial patterns characterized by the relative length of the clay zone ( 0, ¼, ½) of the domain length (L). Results show that in the uniform column, ion exchange dominates and most Ba sorbs to the solid phase, to an extent Ba cannot precipitate out with SO4 as barite. In 1/2-Zone, however, most Ba precipitates as barite. In 1/4-Zone, both ion exchange and mineral precipitation occur. In general, the 1/2-Zone has the smallest ion exchange capacity for other species including Na, Ca, Mg, K and heavy metals (Mn, Cu, Zn, Cd and Pb) as well. Our flow cell experiment emphasizes the importance of mineral spatial patterns in regulating not only reaction rates but also the type of reactions in controlling the reactive transport of MSW chemicals. The column study suggests in carbonate rich aquifers, carbonate facilitate natural attenuation. In clay-rich aquifers, such as sandstone aquifers, clay helps alleviate the cation during MSW release however these sorbed cations will ultimately release back to the aqueous phase. In sand and gravel aquifers, mixing process primarily controls the concentration level.
NASA Astrophysics Data System (ADS)
Li, L. Y.; Cao, J. B.; Yang, J. Y.; Berthelier, J. J.; Lebreton, J.-P.
2015-12-01
Using the plasma data of Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite and the NRLMSISE-00 atmospheric model, we examined the semiannual and solar activity variations of the daytime plasma and neutral composition densities in the ionosphere-plasmasphere transition region (~670-710 km). The results demonstrate that the semiannually latitudinal variation of the daytime oxygen ions (O+) is basically controlled by that of neutral atomic oxygen (O), whereas the latitude distributions of the helium and hydrogen ions (He+ and H+) do not fully depend on the neutral atomic helium (He) and hydrogen (H). The summer enhancement of the heavy oxygen ions is consistent with the neutral O enhancement in the summer hemisphere, and the oxygen ion density has significantly the summer-dense and winter-tenuous hemispheric asymmetry with respect to the dip equator. Although the winter enhancements of the lighter He+ and H+ ions are also associated with the neutral He and H enhancements in the winter hemisphere, the high-density light ions (He+ and H+) and electrons (e-) mainly appear at the low and middle magnetic latitudes (|λ| < 50°). The equatorial accumulations of the light plasma species indicate that the light charged particles (He+, H+, and e-) are easily transported by some equatorward forces (e.g., the magnetic mirror force and centrifugal force). The frequent Coulomb collisions between the charged particles probably lead to the particle trappings at different latitudes. Moreover, the neutral composition densities also influence their ion concentrations during different solar activities. From the low-F10.7 year (2007-2008) to the high-F10.7 year (2004-2005), the daytime oxygen ions and electrons increase with the increasing neutral atomic oxygen, whereas the daytime hydrogen ions tend to decrease with the decreasing neutral atomic hydrogen. The helium ion density has no obvious solar activity variation, suggesting that the generation (via the neutral He photoionization) and loss (via the charge exchange with neutral nitrogen N2 and/or the recombination with electrons) of the daytime He+ ions are comparable during different solar activities.
Structural and photocatalytic studies on pure and Sn ion doped ZnO-graphene nanocomposites
NASA Astrophysics Data System (ADS)
Beura, Rosalin; Thangadurai, P.
2016-05-01
Graphene based metal oxide nanocomposites have been widely used as a photocatalyst for the treatment of water pollutants. This work demonstrates the synthesis of graphene composite with pure and Sn ion doped-ZnO and their photocatalytic properties are reported. Structural studies were carried out by X-ray diffraction and Raman spectroscopy to confirm the formation of the nanocomposites. Microstructure was characterized by scanning electron microscopy showing rod shaped ZnO and the layer structured graphene in the ZnO-graphene composite. In comparison with the undoped ZnO-graphene composite, the Sn ion doped ZnO-graphene composite have shown better degradation of methyl orange dye that is about 99% of degradation. Band gap of the composite materials was calculated to be 3.36 eV from the UV-Vis result.
Structural and photocatalytic studies on pure and Sn ion doped ZnO-graphene nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beura, Rosalin; Thangadurai, P., E-mail: thangaduraip.nst@pondiuni.edu.in
2016-05-23
Graphene based metal oxide nanocomposites have been widely used as a photocatalyst for the treatment of water pollutants. This work demonstrates the synthesis of graphene composite with pure and Sn ion doped-ZnO and their photocatalytic properties are reported. Structural studies were carried out by X-ray diffraction and Raman spectroscopy to confirm the formation of the nanocomposites. Microstructure was characterized by scanning electron microscopy showing rod shaped ZnO and the layer structured graphene in the ZnO-graphene composite. In comparison with the undoped ZnO-graphene composite, the Sn ion doped ZnO-graphene composite have shown better degradation of methyl orange dye that is aboutmore » 99% of degradation. Band gap of the composite materials was calculated to be 3.36 eV from the UV-Vis result.« less
Zhu, Jiangliu; Ren, Yurong; Yang, Bo; Chen, Wenkai; Ding, Jianning
2017-12-16
Embedded Si/graphene composite was fabricated by a novel method, which was in situ generated SiO 2 particles on graphene sheets followed by magnesium-thermal reduction. The tetraethyl orthosilicate (TEOS) and flake graphite was used as original materials. On the one hand, the unique structure of as-obtained composite accommodated the large volume change to some extent. Simultaneously, it enhanced electronic conductivity during Li-ion insertion/extraction. The MR-Si/G composite is used as the anode material for lithium ion batteries, which shows high reversible capacity and ascendant cycling stability reach to 950 mAh·g -1 at a current density of 50 mA·g -1 after 60 cycles. These may be conducive to the further advancement of Si-based composite anode design.
A Novel Charged Medium Consisting of Gas-Liquid Interfacial Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, Toshiro; Hatakeyama, Rikizo
Due to the unique properties of ionic liquids such as their extremely low vapor pressure and high heat capacity, we succeed in creating the reactive gas (plasmas)--liquid (ionic liquids) interfacial field under a low gas pressure condition, where the plasma ion behavior can be controlled. The effects of the plasma ion irradiation on the liquid medium are quantitatively revealed for the first time. In connection with the plasma ion irradiation, the potential structure and optical emission properties of the gas-liquid interfacial plasma are investigated by changing a polarity of the electrode in the liquid to evaluate the plasma-liquid interactions. Thesemore » results would contribute to synthesizing the metal nanoparticles with carbon nanotubes as a template in the ionic liquid. It is found that the high density, mono-dispersed, and isolated metal nanoparticles are synthesized between or inside the carbon nanotubes by controlling the gas-liquid interfacial plasmas. Furthermore, we can form novel nano-bio composite materials, such as DNA encapsulated carbon nanotubes using the plasma ion irradiation method in an electrolyte plasma with DNA, and demonstrate modifications of the electrical properties of the carbon nanotubes depending on the kinds of encapsulated DNA for the first time.« less
Electrospun AOPAN/RC blend nanofiber membrane for efficient removal of heavy metal ions from water.
Feng, Quan; Wu, Dingsheng; Zhao, Yong; Wei, Anfang; Wei, Qufu; Fong, Hao
2018-02-15
In this study, an innovative nano-material was prepared, which was ultilized to removal of heavy metal ions from wastewater. Polyacrylonitrile/cellulose acetate (PAN/CA) composite nanofibrous membranes were generated by the electronspinning technique first, and then amidoxime ployarcylonitrile/regenerate cellulose (AOPAN/RC) composite nanofibrous membranes were prepared by combining hydrolysis and amidoximation modification. The modification of composite nanofibers (AOPAN/RC) were consequently used in heavy metal ions adsorption. The characterizations of various different nanofibers were analyzed using scanning electron microscopy, Fourier transform infrared spectroscopy, surface area and pore size distribution analyzer and energy dispersive X-ray spectroscopy. Meantime, the adsorption equilibrium studies were studied. In addition, the saturation adsorption amount of nanofibrous membranes (at 25°C) for Fe(III), Cu(II) and Cd(II) of 7.47, 4.26 and 1.13mmolg -1 , respectively. The effects of pH value of solution, adsorption time and ions concentration on adsorption capacity were also investigated. Furthermore, the composite nanofibrous membranes after five times consecutive adsorption and desorption tests, the desorption rate of the Fe(III), Cu(II) and Cd(II) mental ions maintained more than 80% of their first desorption rate, AOPAN/RC composite nanofibrous reflected excellent resuability. Copyright © 2017 Elsevier B.V. All rights reserved.
Ion Composition of Comet 19P/Borrelly as Measured by the PEPE Ion Mass Spectrometer on DS1
NASA Astrophysics Data System (ADS)
Nordholt, J. E.; Reisenfeld, D. B.; Wiens, R. C.; Gary, P.
2002-12-01
Cometary compositions are of great interest because they hold important clues to the formation of the outer solar system, and to the sources of volatiles in the solar system, including the terrestrial planets. In order to understand the primordial compositions of cometary nuclei, it is important to also understand their evolution, as many of the comets most accessible to spacecraft are highly evolved. It is also important to understand the ion and neutral chemistry that occurs in the coma surrounding the nucleus if the coma ion composition is to be used to determine the original composition of the nucleus. Deep Space One (DS1) was only the second spacecraft, after Giotto, to use an ion mass-resolving instrument to explore cometary coma compositions in-situ, which it did during the flyby of Comet Borrelly on September 22, 2001. Borrelly is significantly more evolved than Halley. In addition, the encounter occurred at a significantly greater distance from the sun (1.36 AU vs 0.9 AU for Giotto at Halley). The Plasma Experiment for Planetary Exploration (PEPE) on board DS1 was capable of resolving electron and ion energy, angle of incidence, and ion mass composition. The PEPE ion data from the seven minutes surrounding closest approach (2171 km) have been extensively analyzed. The instrument response was modeled using SIMION and TRIM codes for all of the major species through 20 AMU plus CO (at its operating voltage PEPE was very insensitive to heavier molecules). Chi-squared minimization analysis is being carried out to determine the best fit and the uncertainties. Preliminary results for the predominant heavy ions are OH+ at (72 +/- 9)% of the total water-group ion density, H2O+ at (25 +/- 7)%, CH3+ at (5 +/- 3)%, and O+ at (4 +/- 5)%. Uncertainties are quoted at the 90% confidence level. Comparison with reported Halley compositions from Giotto shows that Borrelly clearly has a lower H3O+ abundance (< 9%), consistent with a more evolved comet. The presence of relatively high amounts of CH3+, proposed in the context of Halley to be produced by protonation of CH2+, is somewhat surprising in this context. Because the H3O+/H2O+ ratio is an indicator of the degree of protonation in the coma, a low H3O+/H2O+ ratio would predict a low CH3+/CH2+ ratio as well. However, this is not the case at Borrelly. The CH3+/H3O+ ratio will need further study in future comet models and observations.
Method for making glass-ceramic articles exhibiting high frangibility
Beall, George H.; Brydges, III., William T.; Ference, Joseph; Kozlowski, Theodore R.
1976-02-03
This invention is concerned with glass-ceramic articles having compositions within a very narrowly-delimited area of the MgO-Al.sub.2 O.sub.3 -B.sub.2 O.sub.3 -SiO.sub.2 field and having alpha-quartz and sapphirine as the principal crystal phases, resulting from nucleation through a combination of TiO.sub.2 and ZrO.sub.2. Upon contacting such articles with lithium ions at an elevated temperature, said lithium ions will replace magnesium ions on a two Li.sup.+-for-one Mg.sup..sup.+2 basis within the crystal structures, thereby providing a unitary glass-ceramic article having an integral surface layer wherein the principal crystal phase is a lithium-stuffed beta-quartz solid solution. That transformation of crystal phases results in compressive stresses being set up within the surface layer as the articles are cooled. Through the careful control of composition, crystallization treatment, and the parameters of the replacement reaction in the crystal structures, a tremendous degree of stored elastic energy can be developed within the articles such that they will demonstrate frangibility when fractured but will not exhibit undesirable spontaneous breakage and/or spalling.
Numerical calculation of ion runaway distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Embréus, O.; Stahl, A.; Hirvijoki, E.
2015-05-15
Ions accelerated by electric fields (so-called runaway ions) in plasmas may explain observations in solar flares and fusion experiments; however, limitations of previous analytic work have prevented definite conclusions. In this work, we describe a numerical solver of the 2D non-relativistic linearized Fokker-Planck equation for ions. It solves the initial value problem in velocity space with a spectral-Eulerian discretization scheme, allowing arbitrary plasma composition and time-varying electric fields and background plasma parameters. The numerical ion distribution function is then used to consider the conditions for runaway ion acceleration in solar flares and tokamak plasmas. Typical time scales and electric fieldsmore » required for ion acceleration are determined for various plasma compositions, ion species, and temperatures, and the potential for excitation of toroidal Alfvén eigenmodes during tokamak disruptions is considered.« less
Thermalization of Heavy Ions in the Solar Wind
NASA Astrophysics Data System (ADS)
Tracy, Patrick J.; Kasper, Justin C.; Zurbuchen, Thomas H.; Raines, Jim M.; Shearer, Paul; Gilbert, Jason
2015-10-01
Observations of velocity distribution functions from the Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer heavy ion composition instrument are used to calculate ratios of kinetic temperature and Coulomb collisional interactions of an unprecedented 50 ion species in the solar wind. These ions cover a mass per charge range of 1-5.5 amu/e and were collected in the time range of 1998-2011. We report the first calculation of the Coulomb thermalization rate between each of the heavy ion (A > 4 amu) species present in the solar wind along with protons (H+) and alpha particles (He2+). From these rates, we find that protons are the dominant source of Coulomb collisional thermalization for heavy ions in the solar wind and use this fact to calculate a collisional age for those heavy ion populations. The heavy ion thermal properties are well organized by this collisional age, but we find that the temperature of all heavy ions does not simply approach that of protons as Coulomb collisions become more important. We show that He2+ and C6+ follow a monotonic decay toward equal temperatures with protons with increasing collisional age, but O6+ shows a noted deviation from this monotonic decay. Furthermore, we show that the deviation from monotonic decay for O6+ occurs in solar wind of all origins, as determined by its Fe/O ratio. The observed differences in heavy ion temperature behavior point toward a local heating mechanism that favors ions depending on their charge and mass.
Grillo, Claudia A; Morales, María L; Mirífico, María V; Fernández Lorenzo de Mele, Mónica A
2013-07-01
The use of copper-based alloys for fixed dental crowns and bridges is increasingly widespread in several countries. The aim of this work is to study the dissolution of a zinc-aluminum-bronze and the cytotoxic effects of the ions released on UMR-106 osteoblastic cell line. Two sources of ions were used: (1) ions released by the metal alloy immersed in the cell culture and (2) salts of the metal ions. Conventional electrochemical techniques, atomic absorption spectroscopy [to obtain the average concentration of ions (AC) in solution], and energy dispersive X-ray (EDX) spectroscopy analysis were used to study the corrosion process. Corrosion tests revealed a strong influence of the composition of the electrolyte medium and the immersion time on the electrochemical response. The cytotoxicity was evaluated with (a) individual ions, (b) combinations of two ions, and (c) the mixture of all the ions released by a metal disc of the alloy. Importantly, synergistic cytotoxic effects were found when Al-Zn ion combinations were used at concentration levels lower than the cytotoxic threshold values of the individual ions. Cytotoxic effects in cells in the vicinity of the metal disc were also found. These results were interpreted considering synergistic effects and a diffusion controlled mechanism that yields to concentration levels, in the metal surroundings, several times higher than the measured AC value. Copyright © 2013 Wiley Periodicals, Inc.
Multi-block sulfonated poly(phenylene) copolymer proton exchange membranes
Fujimoto, Cy H [Albuquerque, NM; Hibbs, Michael [Albuquerque, NM; Ambrosini, Andrea [Albuquerque, NM
2012-02-07
Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.
Factor Composition and Attribute Functioning in Memory.
1978-04-01
in the recall of the same list in the two conditions. Several lines of thought led to the expectat ion that recall would be... of the number of lists learned. Clearly, recall increased directly as the number of lists learned increased . Even with only 18 subjects in each group...simultaneous learning was responsible. The proper control, it could be argued , would be the
Ma, Guo; Li, Sheng; Zhang, Weixin; Yang, Zeheng; Liu, Shulin; Fan, Xiaoming; Chen, Fei; Tian, Yuan; Zhang, Weibo; Yang, Shihe; Li, Mei
2016-03-07
One-dimensional (1D) micro- and nanostructured electrode materials with controllable phase and composition are appealing materials for use in lithium-ion batteries with high energy and power densities, but they are challenging to prepare. Herein, a novel ethanol-water mediated co-precipitation method by a chimie douce route (synthesis conducted under mild conditions) has been exploited to selectively prepare an extensive series of manganese-based electrode materials, manifesting the considerable generalizability and efficacy of the method. Moreover, by simply tuning the mixed solvent and reagents, transition metal oxide bars with differing aspect ratios and compositions were prepared with an unprecedented uniformity. Application prospects are demonstrated by Li-rich 0.5 Li2 MnO3 ⋅0.5 LiNi1/3 Co1/3 Mn1/3 O2 bars, which demonstrate excellent reversible capacity and rate capability thanks to the steerable nature of the synthesis and material quality. This work opens a new route to 1D micro- and nanostructured materials by customizing the precipitating solvent to orchestrate the crystallization process. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chudobova, Dagmar; Dostalova, Simona; Ruttkay-Nedecky, Branislav; Guran, Roman; Rodrigo, Miguel Angel Merlos; Tmejova, Katerina; Krizkova, Sona; Zitka, Ondrej; Adam, Vojtech; Kizek, Rene
2015-01-01
In this study, we focused on the effect of heavy metal ions in resistant strains of gram-positive bacteria Staphylococcus aureus using biochemical methods and mass spectrometry. Five nitrate solutions of heavy metals (Ag(+), Cu(2+), Cd(2+), Zn(2+) and Pb(2+)) were used to create S. aureus resistant strains. Biochemical changes of resistant strains in comparison with the non-resistant control strain of S. aureus were observed by microbiological (measuring - growth curves and inhibition zones) and spectrophotometric methods (antioxidant activity and alaninaminotransferase, aspartateaminotransferase, alkaline phosphatase, γ-glutamyltransferase activities). Mass spectrometry was employed for the qualitative analysis of the samples (changes in S. aureus protein composition) and for the identification of the strains database MALDI Biotyper was employed. Alterations, in terms of biochemical properties and protein composition, were observed in resistant strains compared to non-resistant control strain. Our results describe the possible option for the analysis of S. aureus resistant strains and may thus serve as a support for monitoring of changes in genetic information caused by the forming of resistance to heavy metals. Copyright © 2014 Elsevier GmbH. All rights reserved.
Ion composition during the formation of a midlatitude E sub S layer
NASA Technical Reports Server (NTRS)
Aikin, A. C.; Goldberg, R. A.; Azcarraga, A.
1973-01-01
The positive ion composition within a midlatitude sporadic E layer has been measured with the aid of a rocket-borne ion mass spectrometer launched from El Arenosillo, Spain on July 3, 1972 at 0743 LMT. Ionograms taken before and during the rocket flight showed a developing sporadic E layer near 114 km. Rocket data showed peaks in electron density and metallic ions at this same height. Both the maximum and total content of the metals are observed to be greater on the downleg than the upleg measurement.
Composite separators and redox flow batteries based on porous separators
Li, Bin; Wei, Xiaoliang; Luo, Qingtao; Nie, Zimin; Wang, Wei; Sprenkle, Vincent L.
2016-01-12
Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator. While a porous separator can also allow for volume and pressure regulation, in RFBs that utilize corrosive and/or oxidizing compounds, the composite separators described herein are preferable for their robustness in the presence of such compounds.
Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Zhihui; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049; Zhang, Feng
2015-04-15
By utilizing polydopamine (PD) nano-thick interlayer as mediator, polyethylenimine (PEI) brushes with abundant amine groups were grafted onto the surface of PD coated graphene oxide (GO) uniformly via a Michael-Addition reaction and produced a PEI–PD/GO composite nanosheets. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions as compared to PEI-coated GO and pure GO. The adsorption capacities for Cu{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, Hg{sup 2+} are up to 87, 106, 197, and 110 mg/g, respectively. To further make the GO based composite operable, PEI–PD/RGO aerogel was prepared through hydrothermal and achieved a high surface areamore » up to 373 m{sup 2}/g. Although the adsorption capacity of PEI–PD/RGO aerogel for heavy metal ions decreases a little as compared to PEI–PD/GO composite dispersion (38, 32, 95, 113 mg/g corresponding to Cu{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, and Hg{sup 2+}, respectively), it could be recycled several times in a simple way by releasing adsorbed metal ions, indicating its potential application for cleaning wastewater. - Graphical abstract: Polyethylenimine (PEI) brushes were grafted onto the surface of graphene oxide (GO) uniformly via a Michael-Addition reaction between the PEI and polydopamine interlayer coated on GO surface. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions compared to PEI-coated GO and pure GO. - Highlights: • We prepared polyethylenimine grafted polydopamine-mediated graphene oxide composites. • Introduction of PD layer increases metal ions adsorption capacity. • PEI–PD/RGO aerogel exhibited a superior adsorption performance. • PEI–PD/RGO aerogel can be recycled several times in a simple way.« less
NASA Technical Reports Server (NTRS)
Stuedemann, W.; Wilken, B.; Kremser, G.; Gloeckler, G.; Ipavich, F. M.
1986-01-01
Ion composition measurements in the entire energy range of the ring current population, obtained with the Charge-, Energy-, Mass-spectrometer instrument on the Charge Composition Explorer in September 1984, are reported. From the energy spectra obtained for all major constituents during the main phase of a magnetic storm, the number densities, energy densities, and mean energies are calculated and displayed as radial profiles. The mean energies of He(2+) are found to be about twice that of H(+) and He(+) throughout this storm, and the time profiles for the mean energies of all major ions are seen to bunch together (when normalizing mean energies by the ionic charge), with the largest variations of the energy densities and mean energies occurring for O(+) ions.
Iron-Based Nanomaterials/Graphene Composites for Advanced Electrochemical Sensors
Movlaee, Kaveh; Ganjali, Mohmmad Reza; Norouzi, Parviz
2017-01-01
Iron oxide nanostructures (IONs) in combination with graphene or its derivatives—e.g., graphene oxide and reduced graphene oxide—hold great promise toward engineering of efficient nanocomposites for enhancing the performance of advanced devices in many applicative fields. Due to the peculiar electrical and electrocatalytic properties displayed by composite structures in nanoscale dimensions, increasing efforts have been directed in recent years toward tailoring the properties of IONs-graphene based nanocomposites for developing more efficient electrochemical sensors. In the present feature paper, we first reviewed the various routes for synthesizing IONs-graphene nanostructures, highlighting advantages, disadvantages and the key synthesis parameters for each method. Then, a comprehensive discussion is presented in the case of application of IONs-graphene based composites in electrochemical sensors for the determination of various kinds of (bio)chemical substances. PMID:29168771
NASA Astrophysics Data System (ADS)
Han, Keyu; Heng, Liping; Wen, Liping; Jiang, Lei
2016-06-01
We design a novel type of artificial multiple nanochannel system with remarkable ion rectification behavior via a facile breath figure (BF) method. Notably, even though the charge polarity in the channel wall reverses under different pH values, this nanofluidic device displays the same ionic rectification direction. Compared with traditional nanochannels, this composite multiple ion channel device can be more easily obtained and has directional ionic rectification advantages, which can be applied in many fields.We design a novel type of artificial multiple nanochannel system with remarkable ion rectification behavior via a facile breath figure (BF) method. Notably, even though the charge polarity in the channel wall reverses under different pH values, this nanofluidic device displays the same ionic rectification direction. Compared with traditional nanochannels, this composite multiple ion channel device can be more easily obtained and has directional ionic rectification advantages, which can be applied in many fields. Electronic supplementary information (ESI) available: Pore size distribution histograms of the AAO substrates; SEM images of the side view of pure AAO membranes and top view of the flat PI/AAO composite film; the current-time curves of the flat composite film; the current-voltage characteristics curves of pure AAO nanochannels with different mean pore diameters; CA of the two surfaces of the composite PI/AAO film, the structural formula of the polymer polyimide resin (PI), and solid surface zeta potential. See DOI: 10.1039/c6nr02506d
Arruda, Thomas M; Kumar, Amit; Jesse, Stephen; Veith, Gabriel M; Tselev, Alexander; Baddorf, Arthur P; Balke, Nina; Kalinin, Sergei V
2013-09-24
The application of electric bias across tip-surface junctions in scanning probe microscopy can readily induce surface and bulk electrochemical processes that can be further detected though changes in surface topography, Faradaic or conductive currents, or electromechanical strain responses. However, the basic factors controlling tip-induced electrochemical processes, including the relationship between applied tip bias and the thermodynamics of local processes, remains largely unexplored. Using the model Li-ion reduction reaction on the surface in Li-ion conducting glass ceramic, we explore the factors controlling Li-metal formation and find surprisingly strong effects of atmosphere and back electrode composition on the process. We find that reaction processes are highly dependent on the nature of the counter electrode and environmental conditions. Using a nondepleting Li counter electrode, Li particles could grow significantly larger and faster than a depleting counter electrode. Significant Li ion depletion leads to the inability for further Li reduction. Time studies suggest that Li diffusion replenishes the vacant sites after ∼12 h. These studies suggest the feasibility of SPM-based quantitative electrochemical studies under proper environmental controls, extending the concepts of ultramicroelectrodes to the single-digit nanometer scale.
A conducive bioceramic/polymer composite biomaterial for diabetic wound healing.
Lv, Fang; Wang, Jie; Xu, Peng; Han, Yiming; Ma, Hongshi; Xu, He; Chen, Shijie; Chang, Jiang; Ke, Qinfei; Liu, Mingyao; Yi, Zhengfang; Wu, Chengtie
2017-09-15
Diabetic wound is a common complication of diabetes. Biomaterials offer great promise in inducing tissue regeneration for chronic wound healing. Herein, we reported a conducive Poly (caprolactone) (PCL)/gelatin nanofibrous composite scaffold containing silicate-based bioceramic particles (Nagelschmidtite, NAGEL, Ca 7 P 2 Si 2 O 16 ) for diabetic wound healing. NAGEL bioceramic particles were well distributed in the inner of PCL/gelatin nanofibers via co-electrospinning process and the Si ions maintained a sustained release from the composite scaffolds during the degradation process. The nanofibrous scaffolds significantly promoted the adhesion, proliferation and migration of human umbilical vein endothelial cells (HUVECs) and human keratinocytes (HaCaTs) in vitro. The in vivo study demonstrated that the scaffolds distinctly induced the angiogenesis, collagen deposition and re-epithelialization in the wound sites of diabetic mice model, as well as inhibited inflammation reaction. The mechanism for nanofibrous composite scaffolds accelerating diabetic wound healing is related to the activation of epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT) pathway in vivo and in vitro. Our results suggest that the released Si ions and nanofibrous structure of scaffolds have a synergetic effect on the improved efficiency of diabetic wound healing, paving the way to design functional biomaterials for tissue engineering and wound healing applications. In order to stimulate tissue regeneration for chronic wound healing, a new kind of conducive nanofibrous composite scaffold containing silicate-based bioceramic particles (Nagelschmidtite, NAGEL, Ca 7 P 2 Si 2 O 16 ) were prepared via co-electrospinning process. Biological assessments revealed that the NAGEL bioceramic particles could active epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT) pathway in vitro and in vivo. The new composite scaffold had potential as functional biomaterials for tissue engineering and wound healing applications. The strategy of introducing controllable amount of therapeutic ions instead of loading expensive drugs/growth factors on nanofibrous composite scaffold provides new options for bioactive biomaterials. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Compositional, structural, and optical changes of polyimide implanted by 1.0 MeV Ni+ ions
NASA Astrophysics Data System (ADS)
Mikšová, R.; Macková, A.; Pupikova, H.; Malinský, P.; Slepička, P.; Švorčík, V.
2017-09-01
The ion irradiation leads to deep structural and compositional changes in the irradiated polymers. Ni+ ions implanted polymers were investigated from the structural and compositional changes point of view and their optical properties were investigated. Polyimide (PI) foils were implanted with 1.0 MeV Ni+ ions at room temperature with fluencies of 1.0 × 1013-1.0 × 1015 cm-2 and two different ion implantation currents densities (3.5 and 7.2 nA/cm2). Rutherford Back-Scattering (RBS) and Elastic Recoil Detection Analysis (ERDA) were used for determination of oxygen and hydrogen escape in implanted PI. Atomic Force Microscopy (AFM) was used to follow surface roughness modification after the ion implantation and UV-Vis spectroscopy was employed to check the optical properties of the implanted PI. The implanted PI structural changes were analysed using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR). High energy Ni-ion implantation causes only a minor release of hydrogen and oxygen close to the polymer sub-surface region in about 60 nm thick layer penetrated by the ion beam; especially at ion fluencies below 1.0 × 1014 cm-2. The mostly pronounced structural changes of the Ni implanted PI were found for the samples implanted above ion fluence 1.0 × 1015 cm-2 and at the ion current density 7.2 nA/cm2, where the optical band gap significantly decreases and the reduction of more complex structural unit of PI monomer was observed.
Method and solvent composition for regenerating an ion exchange resin
Even, William R.; Irvin, David J.; Irvin, Jennifer A.; Tarver, Edward E.; Brown, Gilbert M.; Wang, James C. F.
2002-01-01
A method and composition for removing perchlorate from a highly selective ion exchange resin is disclosed. The disclosed approach comprises treating the resin in a solution of super critical or liquid carbon dioxide and one or more quaternary ammonium chloride surfactant compounds.
Gnaser, Hubert; Radny, Tobias
2015-12-01
Surfaces of InP were bombarded by 1.9 keV Ar(+) ions under normal incidence. The total accumulated ion fluence the samples were exposed to was varied from 1 × 10(17) cm(-2) to 3 × 10(18)cm(-2) and ion flux densities f of (0.4-2) × 10(14) cm(-2) s(-1) were used. Nanodot structures were found to evolve on the surface from these ion irradiations, their dimensions however, depend on the specific bombardment conditions. The resulting surface morphology was examined by atomic force microscopy (AFM). As a function of ion fluence, the mean radius, height, and spacing of the dots can be fitted by power-law dependences. In order to determine possible local compositional changes in these nanostructures induced by ion impact, selected samples were prepared for atom probe tomography (APT). The results indicate that by APT the composition of individual InP nanodots evolving under ion bombardment could be examined with atomic spatial resolution. At the InP surface, the values of the In/P concentration ratio are distinctly higher over a distance of ~1 nm and amount to 1.3-1.8. However, several aspects critical for the analyses were identified: (i) because of the small dimensions of these nanostructures a successful tip preparation proved very challenging. (ii) The elemental compositions obtained from APT were found to be influenced pronouncedly by the laser pulse energy; typically, low energies result in the correct stoichiometry whereas high ones lead to an inhomogeneous evaporation from the tips and deviations from the nominal composition. (iii) Depending again on the laser energy, a prolific emission of Pn cluster ions was observed, with n ≤ 11. Copyright © 2015. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Halekas, J. S.; Poppe, A. R.; Farrell, W. M.; McFadden, J. P.
2016-01-01
By analyzing the trajectories of ionized constituents of the lunar exosphere in time-varying electromagnetic fields, we can place constraints on the composition, structure, and dynamics of the lunar exosphere. Heavy ions travel slower than light ions in the same fields, so by observing the lag between field rotations and the response of ions from the lunar exosphere, we can place constraints on the composition of the ions. Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) provides an ideal platform to utilize such an analysis, since its two-probe vantage allows precise timing of the propagation of field discontinuities in the solar wind, and its sensitive plasma instruments can detect the ion response. We demonstrate the utility of this technique by using fully time-dependent charged particle tracing to analyze several minutes of ion observations taken by the two ARTEMIS probes 3000-5000 km above the dusk terminator on 25 January 2014. The observations from this time period allow us to reach several interesting conclusions. The ion production at altitudes of a few hundred kilometers above the sunlit surface of the Moon has an unexpectedly significant contribution from species with masses of 40 amu or greater. The inferred distribution of the neutral source population has a large scale height, suggesting that micrometeorite impact vaporization and/or sputtering play an important role in the production of neutrals from the surface. Our observations also suggest an asymmetry in ion production, consistent with either a compositional variation in neutral vapor production or a local reduction in solar wind sputtering in magnetic regions of the surface.
Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu
2016-05-19
Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances.
NASA Astrophysics Data System (ADS)
Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Cattani, M.; Brown, I. G.
2014-08-01
There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We have investigated nanocomposites produced by metal ion implantation into insulating substrates, where the implanted metal self-assembles into nanoparticles. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), which can be estimated by computer simulation using the TRIDYN code. TRIDYN is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study show that the nanoparticles form a bidimentional array buried a few nanometers below the substrate surface. We have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples show that metallic nanoparticles form in the insulating matrix. These nanocomposites have been characterized by measuring the resistivity of the composite layer as a function of the implantation dose. The experimental results are compared with a model based on percolation theory, in which electron transport through the composite is explained by conduction through a random resistor network formed by the metallic nanoparticles. Excellent agreement is found between the experimental results and the predictions of the theory. We conclude in that the conductivity process is due only to percolation (when the conducting elements are in geometric contact) and that the contribution from tunneling conduction is negligible.
Analysis of helium-ion scattering with a desktop computer
NASA Astrophysics Data System (ADS)
Butler, J. W.
1986-04-01
This paper describes a program written in an enhanced BASIC language for a desktop computer, for simulating the energy spectra of high-energy helium ions scattered into two concurrent detectors (backward and glancing). The program is designed for 512-channel spectra from samples containing up to 8 elements and 55 user-defined layers. The program is intended to meet the needs of analyses in materials sciences, such as metallurgy, where more than a few elements may be present, where several elements may be near each other in the periodic table, and where relatively deep structure may be important. These conditions preclude the use of completely automatic procedures for obtaining the sample composition directly from the scattered ion spectrum. Therefore, efficient methods are needed for entering and editing large amounts of composition data, with many iterations and with much feedback of information from the computer to the user. The internal video screen is used exclusively for verbal and numeric communications between user and computer. The composition matrix is edited on screen with a two-dimension forms-fill-in text editor and with many automatic procedures, such as doubling the number of layers with appropriate interpolations and extrapolations. The control center of the program is a bank of 10 keys that initiate on-event branching of program flow. The experimental and calculated spectra, including those of individual elements if desired, are displayed on an external color monitor, with an optional inset plot of the depth concentration profiles of the elements in the sample.
Electron backscatter diffraction studies of focused ion beam induced phase transformation in cobalt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, H.G., E-mail: helen.jones@npl.co.uk
A focused ion beam microscope was used to induce cubic to hexagonal phase transformation in a cobalt alloy, of similar composition to that of the binder phase in a hardmetal, in a controlled manner at 0°, 45° and 80° ion incident angles. The cobalt had an average grain size of ~ 20 μm, allowing multiple orientations to be studied, exposed to a range of doses between 6 × 10{sup 7} and 2 × 10{sup 10} ions/μm{sup 2}. Electron backscatter diffraction (EBSD) was used to determine the original and induced phase orientations, and area fractions, before and after the ion beammore » exposure. On average, less phase transformation was observed at higher incident angles and after lower ion doses. However there was an orientation effect where grains with an orientation close to (111) planes were most susceptible to phase transformation, and (101) the least, where grains partially and fully transformed at varying ion doses. - Highlights: •Ion-induced phase change in FCC cobalt was observed at multiple incidence angles. •EBSD was used to study the relationship between grain orientation and transformation. •Custom software analysed ion dose and phase change with respect to grain orientation. •A predictive capability of ion-induced phase change in cobalt was enabled.« less
Sponge-like reduced graphene oxide/silicon/carbon nanotube composites for lithium ion batteries
NASA Astrophysics Data System (ADS)
Fang, Menglu; Wang, Zhao; Chen, Xiaojun; Guan, Shiyou
2018-04-01
Three-dimensional sponge-like reduced graphene oxide/silicon/carbon nanotube composites were synthesized by one-step hydrothermal self-assembly using silicon nanoparticles, graphene oxide and amino modified carbon nanotubes to develop high-performance anode materials of lithium ion batteries. Scanning electron microscopy and transmission electron microscopy images show the structure of composites that Silicon nanoparticles are coated with reduced graphene oxide while amino modified carbon nanotubes wrap around the reduced graphene oxide in the composites. When applied to lithium ion battery, these composites exhibit high initial specific capacity of 2552 mA h/g at a current density of 0.05 A/g. In addition, reduced graphene oxide/silicon/carbon nanotube composites also have better cycle stability than bare Silicon nanoparticles electrode with the specific capacity of 1215 mA h/g after 100 cycles. The three-dimension sponge-like structure not only ensures the electrical conductivity but also buffers the huge volume change, which has broad potential application in the field of battery.
Magnetite solubility and phase stability in alkaline media at elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziemniak, S.E.; Jones, M.E.; Combs, K.E.S.
Magnetite, Fe{sub 3}O{sub 4}, is the dominant oxide constituent of the indigenous corrosion layers that form on iron base alloys in high purity, high temperature water. The apparent simultaneous stability of two distinct oxidation states of iron in this metal oxide is responsible for its unique solubility behavior. The present work was undertaken to extend the experimental and theoretical bases for estimating solubilities of an iron corrosion product (Fe{sub 3}O{sub 4}/Fe(OH){sub 2}) over a broader temperature range and in the presence of complexing, pH-controlling reagents. These results indicate that a surface layer of ferrous hydroxide controls magnetite solubility behavior atmore » low temperatures in much the same manner as a surface layer of nickel(II) hydroxide was previously reported to control the low temperature solubility behavior of NiO. The importance of Fe(III) ion complexes implies not only that most previously-derived thermodynamic properties of the Fe(OH){sub 3}{sup {minus}} ion are incorrect, but that magnetite phase stability probably shifts to favor a sodium ferric hydroxyphosphate compound in alkaline sodium phosphate solutions at elevated temperatures. The test methodology involved pumping alkaline solutions of known composition through a bed of Fe{sub 3}O{sub 4} granules and analyzing the emerging solution for Fe. Two pH-controlling reagents were tested: sodium phosphate and ammonia. Equilibria for the following reactions were described in thermodynamic terms: (a) Fe(OH){sub 2}/Fe{sub 3}O{sub 4} dissolution and transformation, (b) Fe(II) and Fe(III) ion hydroxocomplex formation (hydrolysis), (c) Fe(II) ion amminocomplex formation, and (d) Fe(II) and Fe(III) ion phosphatocomplex formation. 36 refs.« less
NASA Technical Reports Server (NTRS)
Yau, A. W.; Whalen, B. A.; Harris, F. R.; Gattinger, R. L.; Pongratz, M. B.
1985-01-01
Observations of plasma depletion, ion composition modification, and airglow emissions in the Waterhole experiments are presented. The detailed ion chemistry and airglow emission processes related to the ionospheric hole formation in the experiment are examined, and observations are compared with computer simulation results. The latter indicate that the overall depletion rates in different parts of the depletion region are governed by different parameters.
NASA Astrophysics Data System (ADS)
Kulik, M.; Kołodyńska, D.; Bayramov, A.; Drozdziel, A.; Olejniczak, A.; Żuk, J.
2018-06-01
The surfaces of (100) GaAs were irradiated with In+ ions. The implanted samples were isobaric annealed at 800 °C and then of dielectric function, the surface atomic concentrations of atoms and also the chemical composition of the near surface layers in these implanted semiconductor samples were obtained. The following investigation methods were used: spectroscopic ellipsometry (SE), Rutherford backscattering spectrometry analyses (RBSA) and X-ray photoelectron spectroscopy (XPS) in the study of the above mentioned quantities, respectively. The change of the shape spectra of the dielectric functions at about 3.0 eV phonon energy, diffusion of In+ ions as well as chemical composition changes were observed after ion implantation and the thermal treatment. Due to displacement of Ga ions from GaAs by the In+ ions the new chemical compound InAs was formed. The relative amounts Ga2O3 and As2O3 ratio increase in the native oxide layers with the fluences increase after the thermal treatment of the samples. Additionally, it was noticed that the quantities of InO2 increase with the increasing values of the irradiated ions before thermal treatment.
ToF-SIMS Characterization of Biocompatible Silk/Polypyrrole Electromechanical Actuators
NASA Astrophysics Data System (ADS)
Bradshaw, Nathan; Severt, Sean; Wang, Zhaoying; Klemke, Carly; Larson, Jesse; Zhu, Zihua; Murphy, Amanda; Leger, Janelle
2015-03-01
Materials capable of controlled movements that can also interface with biological environments are highly sought after for biomedical devices such as valves, blood vessel sutures, cochlear implants and controlled drug release devices. Recently we have reported the synthesis of films composed of a conductive interpenetrating network of the biopolymer silk fibroin and poly(pyrrole). These silk-PPy composites function as bilayer electromechanical actuators in a biologically-relevant environment, can be actuated repeatedly, and are able to generate forces comparable with natural muscle (>0.1 MPa), making them an ideal candidate for interfacing with biological tissues. Here, time of flight secondary ion mass spectrometry was used to investigate the migration of ions in the devices during actuation. These findings will be discussed in the context of the actuation mechanism and opportunities for further improvements in device stability and performance.
Direct write of copper-graphene composite using micro-cold spray
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dardona, Sameh, E-mail: dardona@utrc.utc.com; She, Ying; Schmidt, Wayde R.
Direct write of a new class of composite materials containing copper and graphene in the powder phase is described. The composite was synthesized using batch electroless plating of copper for various times onto Nano Graphene Platelets (NGP) to control the amount of copper deposited within the loosely aggregated graphene powder. Copper deposition was confirmed by both Focused Ion Beam (FIB) and Auger electron spectroscopic analysis. A micro-cold spray technique was used to deposit traces that are ∼230 μm wide and ∼5 μm thick of the formulated copper/graphene powder onto a glass substrate. The deposited traces were found to have goodmore » adhesion to the substrate with ∼65x the copper bulk resistivity.« less
Controllable synthesis of MnO2/polyaniline nanocomposite and its electrochemical capacitive property
2013-01-01
Polyaniline (PANI) and MnO2/PANI composites are simply fabricated by one-step interfacial polymerization. The morphologies and components of MnO2/PANI composites are modulated by changing the pH of the solution. Formation procedure and capacitive property of the products are investigated by XRD, FTIR, TEM, and electrochemical techniques. We demonstrate that MnO2 as an intermedia material plays a key role in the formation of sample structures. The MnO2/PANI composites exhibit good cycling stability as well as a high capacitance close to 207 F g−1. Samples fabricated with the facile one-step method are also expected to be adopted in other field such as catalysis, lithium ion battery, and biosensor. PMID:23594724
Controllable synthesis of MnO2/polyaniline nanocomposite and its electrochemical capacitive property
NASA Astrophysics Data System (ADS)
Meng, Fanhui; Yan, Xiuling; Zhu, Ye; Si, Pengchao
2013-04-01
Polyaniline (PANI) and MnO2/PANI composites are simply fabricated by one-step interfacial polymerization. The morphologies and components of MnO2/PANI composites are modulated by changing the pH of the solution. Formation procedure and capacitive property of the products are investigated by XRD, FTIR, TEM, and electrochemical techniques. We demonstrate that MnO2 as an intermedia material plays a key role in the formation of sample structures. The MnO2/PANI composites exhibit good cycling stability as well as a high capacitance close to 207 F g-1. Samples fabricated with the facile one-step method are also expected to be adopted in other field such as catalysis, lithium ion battery, and biosensor.
Scalable uniform construction of highly conditional quantum gates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Svetoslav S.; Vitanov, Nikolay V.
2011-08-15
We present a scalable uniform technique for the construction of highly conditional multiply-controlled-not quantum gates of trapped ion qubits, such as the Toffoli gate, without using ancilla states and circuits of an exorbitant number of concatenated one- and two-qubit gates. Apart from the initial dressing of the internal qubit states with vibrational phonons and the final restoration of the phonon ground state, our technique requires the application of just a single composite pulse on the target qubit and is applicable both in and outside the Lamb-Dicke regime. We design special narrowband composite pulses, which suppress all transitions but the conditionalmore » transition of the target qubit; moreover, these composite pulses significantly improve the spatial addressing selectivity.« less
Kim, Sun Kyung; Kim, Hyekyoung; Chang, Hankwon; Cho, Bong-Gyoo; Huang, Jiaxing; Yoo, Hyundong; Kim, Hansu; Jang, Hee Dong
2016-01-01
Over 40% of high-purity silicon (Si) is consumed as sludge waste consisting of Si, silicon carbide (SiC) particles and metal impurities from the fragments of cutting wire mixed in ethylene glycol based cutting fluid during Si wafer slicing in semiconductor fabrication. Recovery of Si from the waste Si sludge has been a great concern because Si particles are promising high-capacity anode materials for Li ion batteries. In this study, we report a novel one-step aerosol process that not only extracts Si particles but also generates Si-graphene (GR) composites from the colloidal mixture of waste Si sludge and graphene oxide (GO) at the same time by ultrasonic atomization-assisted spray pyrolysis. This process supports many advantages such as eco-friendly, low-energy, rapid, and simple method for forming Si-GR composite. The morphology of the as-formed Si-GR composites looked like a crumpled paper ball and the average size of the composites varied from 0.6 to 0.8 μm with variation of the process variables. The electrochemical performance was then conducted with the Si-GR composites for Lithium Ion Batteries (LIBs). The Si-GR composites exhibited very high performance as Li ion battery anodes in terms of capacity, cycling stability, and Coulombic efficiency. PMID:27646853
Ion Composition in Saturn's Plasma Environment: Early Results from the Cassini Plasma Spectrometer
NASA Technical Reports Server (NTRS)
Reisenfeld, D. B.; Baragiola, R. A.; Crary, F. J.; Coates, A. J.; Goldstein, R.; Hill, T. W.; Johnson, R. E.; McComas, D. J.; Sittler, E. C.; Shappirio, M. D.
2005-01-01
Prior to Cassini s arrival at Saturn, most of what was known about the composition of the plasma in Saturn s environment was derived from limited measurements by Pioneer 11 and Voyager 1 and 2 in 1979-1981[1-3]. The measurements reported here were made by the Cassini Plasma Spectrometer (CAPS) [4] during the first two Cassini orbits, including the closest approach to Saturn and the rings during the tour, and a close flyby of Titan. The CAPS instrument resolves ion energy/charge from 1 V to 50 kV and ion mass/charge from 1 to approx.100 amu/e, and it measures electron energy from 1 eV to 28 keV. Initial composition measurements of Saturn s magnetosphere show that protons dominate outside approx.8 R(sub s), while inside this radius the plasma is dominated by a mix of water-derived ions and N(+). Over the A and B rings a plasma layer is observed composed of O2(+) and O(+) . The close passage near Titan shows a rich network of both positive and negative molecular ions. We report preliminary analysis of these and other composition findings.
NASA Technical Reports Server (NTRS)
Grebowsky, J. M.; Hoegy, W. R.; Chen, T. C.
1993-01-01
Using a comprehensive ionospheric data set comprised of all available ion composition and plasma temperature measurements from satellites, the vertical distributions of ion composition and plasma temperatures are defined from middle latitudes up into the polar cap for summer conditions for altitudes below about 1200 km. These data are sufficient to allow a numerical estimation of the latitudinal variation of the light ion outflows from within the plasmasphere to the polar wind regions. The altitude at which significant light ion outflow begins is found to be lower during solar minimum conditions than during solar maximum. The H(+) outward speeds are of the order of 1 km/s near 1100 km during solar maximum but attain several km/s speeds for solar minimum. He(+) shows a similar altitude development of flow but attains polar cap speeds much less than 1 km/s at altitudes below 1100 km, particularly under solar maximum conditions. Outward flows are also found in the topside F-region for noontime magnetic flux tubes within the plasmasphere.
Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin H K
2015-03-01
Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining nanoparticles of silver/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry.
Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin HK
2015-01-01
Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining NAg/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry. PMID:25723095
Kaufmann, A; Walker, S; Mol, G
2016-04-15
Elucidation of the elemental compositions of unknown compounds (e.g., in metabolomics) generally relies on the availability of accurate masses and isotopic ratios. This study focuses on the information provided by the abundance ratio within a product ion pair (monoisotopic versus the first isotopic peak) when isolating and fragmenting the first isotopic ion (first isotopic mass spectrum) of the precursor. This process relies on the capability of the quadrupole within the Q Orbitrap instrument to isolate a very narrow mass window. Selecting only the first isotopic peak (first isotopic mass spectrum) leads to the observation of a unique product ion pair. The lighter ion within such an isotopologue pair is monoisotopic, while the heavier ion contains a single carbon isotope. The observed abundance ratio is governed by the percentage of carbon atoms lost during the fragmentation and can be described by a hypergeometric distribution. The observed carbon isotopologue abundance ratio (product ion isotopologue pattern) gives reliable information regarding the percentage of carbon atoms lost in the fragmentation process. It therefore facilitates the elucidation of the involved precursor and product ions. Unlike conventional isotopic abundances, the product ion isotopologue pattern is hardly affected by isobaric interferences. Furthermore, the appearance of these pairs greatly aids in cleaning up a 'matrix-contaminated' product ion spectrum. The product ion isotopologue pattern is a valuable tool for structural elucidation. It increases confidence in results and permits structural elucidations for heavier ions. This tool is also very useful in elucidating the elemental composition of product ions. Such information is highly valued in the field of multi-residue analysis, where the accurate mass of product ions is required for the confirmation process. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Density impact on performance of composite Si/graphite electrodes
Dufek, Eric J.; Picker, Michael; Petkovic, Lucia M.
2016-01-27
The ability of alkali-substituted binders for composite Si and graphite negative electrodes to minimize capacity fade for lithium ion batteries is investigated. Polymer films and electrodes are described and characterized by FTIR following immersion in electrolyte (1:2 EC:DMC) for 24 h. FTIR analysis following electrode formation displayed similar alkali-ion dependent shifts in peak location suggesting that changes in the vibrational structure of the binder are maintained after electrode formation. The Si and graphite composite electrodes prepared using the alkali-substituted polyacrylates were also exposed to electrochemical cycling and it has been found that the performance of the Na-substituted binder is superiormore » to a comparable density K-substituted system. However, in comparing performance across many different electrode densities attention needs to be placed on making comparisons at similar densities, as low density electrodes tend to exhibit lower capacity fade over cycling. This is highlighted by a 6% difference between a low density K-substituted electrode and a high density Na-substituted sample. As a result, this low variance between the two systems makes it difficult to quickly make a direct evaluation of binder performance unless electrode density is tightly controlled.« less
Bertagnolli, Caroline; Grishin, Andrey; Vincent, Thierry; Guibal, Eric
2017-03-21
A novel composite material was prepared by the grafting of tannic acid on polyethylenimine (PEI), which allows an efficient sorption of boron (sorption capacity close to 0.89 mmol B g -1 ). The encapsulation of this chelating sorbent (finely crushed) facilitates its use (readily solid/liquid separation, use in fixed-bed columns) at the expense of a loss in sorption capacity (proportionally decreased by the introduction of alginate having poor efficiency for boron uptake). Sorption isotherms are modeled using the Langmuir equation, while the kinetic profiles are presented a good fit by pseudo-second order rate equation. In addition, the encapsulating matrix introduces supplementary resistance to intraparticle diffusion, especially when the resin is dried without control: freeze-drying partially limits this effect. The stability (at long-term storage) of the sorbent is improved when the sorbent is stored under nitrogen atmosphere. The presence of an excess of NaCl was investigated. The degradation of the hydrogel (by ion-exchange of Ca(II) with Na(I)) leads to a decrease in the sorption performance of composite material but the action of Ca(II) ions in the solutions re-stabilizes the hydrogel.
Quality control tool of electrode coating for lithium-ion batteries based on X-ray radiography
NASA Astrophysics Data System (ADS)
Etiemble, A.; Besnard, N.; Adrien, J.; Tran-Van, P.; Gautier, L.; Lestriez, B.; Maire, E.
2015-12-01
A simple and efficient method, based on X-ray radiography, is developed to check the quality (homogeneity of the thickness, presence of defects) of NMC-, LFP- and NMC/LFP-based electrode coating for Li-ion batteries at the scale of several cm2 with a resolution of 20 μm. As a first step, the attenuation coefficient of NMC- and LFP-based coating is experimentally determined according to the Beer-Lambert law. Then, the attenuation coefficient of each active material is estimated from these experimental results and X-ray attenuation databases, which allows establishing an attenuation law for any coating composition. Finally, thanks to this relationship, the thickness can be evaluated in each spot of the film and the defects, such as pinholes or broad edges with gradual decrease of the thickness coating, can be detected. The analysis of NMC-, LFP- and NMC/LFP-based electrodes shows that the coating quality decreases as coating thickness increases and as the nanometric vs. micrometric material content increases in the coating composition. This reveals detrimental aspects of nanomaterials with respect to their use in composite electrode manufactured through conventional slot-die or casting process.
NASA Astrophysics Data System (ADS)
Tang, Xiaofu; Wen, Guangwu; Song, Yan
2018-04-01
We fabricate a novel 3D N-doped graphene/silicon composite for lithium-ion battery anodes, with Si nanoparticles uniformly dispersed and thoroughly embedded in the N-doped graphene matrix. The favorable structure of the composite results in a BET surface area and an average mesopore diameter of 189.2 m2 g-1 and 3.82 nm, respectively. The composite delivers reversible capacities as high as 1132 mA h g-1 after 100 cycles under a current of 5 A g-1 and 1017 mA h g-1 after 200 cycles at 1 A g-1, and exhibits an improved rate capability. The present approach shows promise for the preparation of other high-performance anode materials for lithium-ion batteries.
Extensional ionomeric polymer conductor composite actuators with ionic liquids
NASA Astrophysics Data System (ADS)
Liu, Sheng; Lin, Minren; Zhang, Qiming
2008-03-01
Although the Ionic Polymer-Metal Composite (IPMC) actuators developed up to date are in the form of bending actuators, development of extensional actuators based on IMPC is highly desirable from practical applications and fundamental understanding points of view. This talk presents the design, fabrication and characterization of a recent work on an extensional Ionic Polymer-Metal Composite actuator. The extensional actuator consists of the Nafion ionomer as the matrix and the sub-micron size RuO II particles as the conductive filler for the conductor/ionomr composites. In this investigation, several ionic liquids (IL) were investigated. For a Nafion/RuO II composite with 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf) IL, it was found that as the ions are driven into the ionomer/RuO II composite (the composite under negative voltage), an extensional strain of 0.9% was observed; while as the ions were expelled from the ionomer/RuO II composite (under positive voltage), a contraction of -1.2% was observed. The results indicate that multiple ions are participating in charge transport and actuation process. In this paper, we also discuss several design considerations for future extensional actuators with fast response, much improved strain and stress level. Especially an actuator based on multilayer configuration can significantly increase the electric field level in the actuator and consequently significantly improve the actuator speed. The extensional actuator investigated here provides a unique platform to investigate various phenomena related to ion transport and their interaction with the ionomer/conductor matrix to realize high electromechanical performance.
The Solar Wind Ion Composition Spectrometer
NASA Technical Reports Server (NTRS)
Gloeckler, G.; Geiss, J.; Balsiger, H.; Bedini, P.; Cain, J. C.; Fisher, J.; Fisk, L. A.; Galvin, A. B.; Gliem, F.; Hamilton, D. C.
1992-01-01
The Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses is designed to determine uniquely the elemental and ionic-charge composition, and the temperatures and mean speeds of all major solar-wind ions, from H through Fe, at solar wind speeds ranging from 175 km/s (protons) to 1280 km/s (Fe(8+)). The instrument, which covers an energy per charge range from 0.16 to 59.6 keV/e in about 13 min, combines an electrostatic analyzer with postacceleration, followed by a time-of-flight and energy measurement. The measurements made by SWICS will have an impact on many areas of solar and heliospheric physics, in particular providing essential and unique information on: (1) conditions and processes in the region of the corona where the solar wind is accelerated; (2) the location of the source regions of the solar wind in the corona; (3) coronal heating processes; (4) the extent and causes of variations in the composition of the solar atmosphere; (5) plasma processes in the solar wind; (6) the acceleration of energetic particles in the solar wind; (7) the thermalization and acceleration of interstellar ions in the solar wind, and their composition; and (8) the composition, charge states, and behavior of the plasma in various regions of the Jovian magnetosphere.
Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete
Sugama, Toshifumi; Kukacka, Lawrence E.; Horn, William H.
1985-01-01
Quick setting polymer concrete compositions with excellent structural properties are disclosed; these polymer concrete compositions are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate, which may be wet, and with a source of bivalent metallic ions.
A Review: Enhanced Anodes of Li/Na-Ion Batteries Based on Yolk-Shell Structured Nanomaterials
NASA Astrophysics Data System (ADS)
Wu, Cuo; Tong, Xin; Ai, Yuanfei; Liu, De-Sheng; Yu, Peng; Wu, Jiang; Wang, Zhiming M.
2018-09-01
Lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) have received much attention in energy storage system. In particular, among the great efforts on enhancing the performance of LIBs and SIBs, yolk-shell (YS) structured materials have emerged as a promising strategy toward improving lithium and sodium storage. YS structures possess unique interior void space, large surface area and short diffusion distance, which can solve the problems of volume expansion and aggregation of anode materials, thus enhancing the performance of LIBs and SIBs. In this review, we present a brief overview of recent advances in the novel YS structures of spheres, polyhedrons and rods with controllable morphology and compositions. Enhanced electrochemical performance of LIBs and SIBs based on these novel YS structured anode materials was discussed in detail. [Figure not available: see fulltext.
Kojima, Toru; Yamada, Hiromi; Isobe, Mitsuru; Yamamoto, Toshihiko; Takeuchi, Miyuki; Aoki, Dan; Matsushita, Yasuyuki; Fukushima, Kazuhiko
2014-11-01
It is important to understand the influence of bleach treatment on human hair because it is one of the most important chemical treatments in hair cosmetic processes. A comparison of the elemental composition of melanin between virgin hair and bleached hair would provide important information about the structural changes of melanin. To investigate the elemental composition of melanin granules in virgin black hair and bleached hair, these hair cross-sections are analyzed by using a nanoscale secondary ion mass spectrometry (NanoSIMS). The virgin black hair and bleached hair samples were embedded in resin and smooth hair cross-sections were obtained using an ultramicrotome. NanoSIMS measurements were performed using a Cs(+) primary ion beam to detect negative secondary ions. More intensive (16) O(-) ions were detected from the melanin granules of bleached hair than from those of virgin black hair in NanoSIMS (16) O(-) ion image. In addition, it was indicated that (16) O(-) ion intensity and (16) O(-) /(12) C(14) N(-) ion intensity ratio of melanin granules in bleached hair were higher than those in virgin black hair. Nanoscale secondary ion mass spectrometry analysis of the cross-sections of virgin black hair and bleached hair indicated that the oxygen content in melanin granules was increased by bleach treatment. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Dielectric analysis of depth dependent curing behavior of dental resin composites.
Steinhaus, Johannes; Moeginger, Bernhard; Grossgarten, Mandy; Rosentritt, Martin; Hausnerova, Berenika
2014-06-01
The aim of this study is to investigate depth dependent changes of polymerization process and kinetics of visible light-curing (VLC) dental composites in real-time. The measured quantity - "ion viscosity" determined by dielectric analysis (DEA) - provides the depth dependent reaction rate which is correlated to the light intensity available in the corresponding depths derived from light transmission measurements. The ion viscosity curves of two composites (VOCO Arabesk Top and Grandio) were determined during irradiation of 40s with a light-curing unit (LCU) in specimen depths of 0.5/0.75/1.0/1.25/1.5/1.75 and 2.0mm using a dielectric cure analyzer (NETZSCH DEA 231 with Mini IDEX sensors). The thickness dependent light transmission was measured by irradiation composite specimens of various thicknesses on top of a radiometer setup. The shape of the ion viscosity curves depends strongly on the specimen thickness above the sensor. All curves exhibit a range of linear time dependency of the ion viscosity after a certain initiation time. The determined initiation times, the slopes of the linear part of the curves, and the ion viscosities at the end of the irradiation differ significantly with depth within the specimen. The slopes of the ion viscosity curves as well as the light intensity values decrease with depth and fit to the Lambert-Beer law. The corresponding attenuation coefficients are determined for Arabesk Top OA2 to 1.39mm(-1) and 1.48mm(-1), respectively, and for Grandio OA2 with 1.17 and 1.39mm(-1), respectively. For thicknesses exceeding 1.5mm a change in polymerization behavior is observed as the ion viscosity increases subsequent to the linear range indicating some kind of reaction acceleration. The two VLC composites and different specimen thicknesses discriminate significantly in their ion viscosity evolution allowing for a precise characterization of the curing process even with respect to the polymerization mechanism. Copyright © 2014. Published by Elsevier Ltd.
Lithium ion beam divergence on SABRE extraction ion diode experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, D.L.; Cuneo, M.E.; Johnson, D.J.
Intense lithium beams are of particular interest for light ion inertial confinement fusion applications because lithium ions can be accelerated at high voltage in a single charge state (Li{sup +}) with a high mass-to-charge ratio and appropriate range for efficient focusing and heating of a hohlraum ICF target. Scaling to ion power densities adequate to drive high gain pellet implosions (600 TW at 30 MeV) will require a large number of beams transported, temporally bunched, and focused onto a target, with the necessary target standoff to ensure survival of the driver modules. For efficient long distance transport and focusing tomore » a small pellet, lithium beam divergence must be reduced to about 12 mrad or less (depending on the transport scheme). To support the eventual development of a light ion driver module for ICF applications, the authors are currently working to improve the composition, uniformity, and divergence of lithium ion beams produced by both passive LiF and active laser-generated lithium ion sources on extraction applied-B ion diodes on the SABRE accelerator (1 TW, 5 MV, 250 kA). While lithium beam divergence accounting and control are an essential goal of these experiments, divergence measurements for lithium beams present some unique problems not encountered to the same degree in divergence measurements on proton sources. To avoid these difficulties, the authors have developed a large aperture ion imaging diagnostic for time-resolved lithium divergence measurements. The authors will report on the operation of this lithium beam divergence diagnostic and on results of time-resolved divergence measurements in progress for passive LiF ion sources and laser-produced active lithium sources operated in diode configurations designed to control divergence growth. Comparisons will also be made with time-integrated divergence results obtained with small entrance aperture ultracompact pinhole cameras.« less
The ionospheric contribution to the plasma environment in near-earth space
NASA Technical Reports Server (NTRS)
Sharp, R. D.; Lennartsson, W.; Strangeway, R. J.
1985-01-01
SCATHA and ISEE 1 satellite ion mass spectrometer data on ion composition near GEO are reviewed. The data were gathered during and close to magnetic storm activity to assess the characteristics of ion composition variations in order to predict the effects of hot GEO plasma on spacecraft instruments. Attention is given to both substorms and storms, the former being associated, at high latitudes, with auroral activity, the latter with ring currents. The ionosphere was found to supply hot H(+), O(+) and He(+) ions to the GEO magnetosphere, while the solar wind carried H(+) and He(+) ions. The ionosphere was the dominant source in both quiet and storm conditions in the inner magnetosphere.
Ge, Yanling; Palva, Airi; Nordström, Katrina
2017-01-01
Infected superficial wounds were traditionally controlled by topical antibiotics until the emergence of antibiotic-resistant bacteria. Silver (Ag) is a kernel for alternative antibacterial agents to fight this resistance quandary. The present study demonstrates a method for immobilizing small-sized (~5 nm) silver nanoparticles on silica matrix to form a nanosilver–silica (Ag–SiO2) composite and shows the prolonged antibacterial effects of the composite in vitro. The composite exhibited a rapid initial Ag release after 24 h and a slower leaching after 48 and 72 h and was effective against both methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli). Ultraviolet (UV)-irradiation was superior to filter-sterilization in retaining the antibacterial effects of the composite, through the higher remaining Ag concentration. A gauze, impregnated with the Ag–SiO2 composite, showed higher antibacterial effects against MRSA and E. coli than a commercial Ag-containing dressing, indicating a potential for the management and infection control of superficial wounds. Transmission and scanning transmission electron microscope analyses of the composite-treated MRSA revealed an interaction of the released silver ions with the bacterial cytoplasmic constituents, causing ultimately the loss of bacterial membranes. The present results indicate that the Ag–SiO2 composite, with prolonged antibacterial effects, is a promising candidate for wound dressing applications. PMID:28878170
Erol, M M; Mouriňo, V; Newby, P; Chatzistavrou, X; Roether, J A; Hupa, L; Boccaccini, Aldo R
2012-02-01
The aim of this study was to synthesize and characterize new boron-containing bioactive glass-based scaffolds coated with alginate cross-linked with copper ions. A recently developed bioactive glass powder with nominal composition (wt.%) 65 SiO2, 15 CaO, 18.4 Na2O, 0.1 MgO and 1.5 B2O3 was fabricated as porous scaffolds by the foam replica method. Scaffolds were alginate coated by dipping them in alginate solution. Scanning electron microscopy investigations indicated that the alginate effectively attached on the surface of the three-dimensional scaffolds leading to a homogeneous coating. It was confirmed that the scaffold structure remained amorphous after the sintering process and that the alginate coating improved the scaffold bioactivity and mechanical properties. Copper release studies showed that the alginate-coated scaffolds allowed controlled release of copper ions. The novel copper-releasing composite scaffolds represent promising candidates for bone regeneration. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hua, Qiqi; Dai, Dongyang; Zhang, Chengzhi; Han, Fei; Lv, Tiezheng; Li, Xiaoshan; Wang, Shijie; Zhu, Rui; Liao, Haojie; Zhang, Shiguo
2018-05-01
Although several Si/C composite structures have been proposed for high-performance lithium-ion batteries (LIBs), they have still suffered from expensive and complex processes of nano-Si production. Herein, a simple, controllable oxygen inward diffusion was utilized to transform Si sludge obtained from the photovoltaic (PV) industry into the nano-Si/SiOx structure as a result of the high diffusion efficiency of O inside Si and high surface area of the sludge. After further process, a yolk/shell Si/C structure was obtained as an anode material for LIBs. This composite demonstrated an excellent cycling stability, with a high reversible capacity (˜ 1250 mAh/g for 500 cycles), by void space originally left by the SiOx accommodate inner Si expansion. We believe this is a rather simple way to convert the waste Si into a valuable nano-Si for LIB applications.
Effect of Si on DC arc plasma generation from Al-Cr and Al-Cr-Si cathodes used in oxygen
NASA Astrophysics Data System (ADS)
Zhirkov, I.; Landälv, L.; Göthelid, E.; Ahlgren, M.; Eklund, P.; Rosen, J.
2017-02-01
Al2O3 alloyed with Cr is an important material for the tooling industry. It can be synthesized from an arc discharge using Al-Cr cathodes in an oxygen atmosphere. Due to formation of Al-rich oxide islands on the cathode surface, the arc process stability is highly sensitive to oxygen pressure. For improved stability, the use of Al0.70Cr0.25Si0.05 cathodes has previously been suggested, where Si may reduce island formation. Here, we have investigated the effect of Si by comparing plasma generation and thin film deposition from Al0.7Cr0.3 and Al0.7Cr0.25Si0.05 cathodes. Plasma ion composition, ion energies, ion charge states, neutral species, droplet formation, and film composition have been characterized at different O2 flow rates for arc currents of 60 and 90 A. Si and related compounds are detected in plasma ions and in plasma neutrals. Scanning electron microscopy and energy dispersive X-ray analysis show that the cathode composition and the film composition are the same, with Si present in droplets as well. The effect of Si on the process stability, ion energies, and ion charge states is found to be negligible compared to that of the arc current. The latter is identified as the most relevant parameter for tuning the properties of the reactive discharge. The present work increases the fundamental understanding of plasma generation in a reactive atmosphere, and provides input for the choice of cathode composition and process parameters in reactive DC arc synthesis.
NASA Astrophysics Data System (ADS)
Tomita, Yasumasa; Kimura, Noritaka; Izumi, Yusuke; Arai, Juichi; Kohno, Yoshiumi; Kobayashi, Kenkichiro
2017-06-01
4LiF-NiMn2O4 composites are synthesized by the mechanical milling of LiF and NiMn2O4 in a molar ratio of 4: 1 for 36-192 h. The synthesized composites are investigated by XRD, charge-discharge measurements, and XPS. A broad XRD peak of 4LiF-NiMn2O4 was observed and those of LiF and NiMn2O4 disappear after the milling of 144 h and more. The discharge capacity of the 4LiF-NiMn2O4 composites changes with the milling time, with the composite prepared by milling for 144 h exhibiting a discharge capacity of 256 mA h g-1 at 0.1 C for voltages of 2.0-4.8 V. With a cut-off voltage of 4.8 V or more, decomposition of the electrolyte proceeds along with the charge process, so the charge-discharge current efficiency deteriorates and the discharge voltage decreases. In the charge-discharge measurement without the capacity limit, although the charge-discharge efficiency was low due to the decomposition of the electrolyte, the high discharge capacity of 310 mA h g-1 was obtained. The XPS data suggests that the Ni2+ ion and Mn3+ ion are oxidized to Ni3+ and Mn4+ ion in charge process up to 4.8 V and are reduced to Ni2+ ion and Mn3+ ion during the discharge process.
Ion-implanted planar-buried-heterostructure diode laser
Brennan, Thomas M.; Hammons, Burrell E.; Myers, David R.; Vawter, Gregory A.
1991-01-01
A Planar-Buried-Heterostructure, Graded-Index, Separate-Confinement-Heterostructure semiconductor diode laser 10 includes a single quantum well or multi-quantum well active stripe 12 disposed between a p-type compositionally graded Group III-V cladding layer 14 and an n-type compositionally graded Group III-V cladding layer 16. The laser 10 includes an ion implanted n-type region 28 within the p-type cladding layer 14 and further includes an ion implanted p-type region 26 within the n-type cladding layer 16. The ion implanted regions are disposed for defining a lateral extent of the active stripe.
NASA Astrophysics Data System (ADS)
Song, Hee Jo; Kim, Jae-Chan; Dar, Mushtaq Ahmad; Kim, Dong-Wan
2018-02-01
With the increasing demand for high energy density in energy-storage systems, a high-voltage cathode is essential in rechargeable Li-ion and Na-ion batteries. The operating voltage of a triclinic-polymorph Na2CoP2O7, also known as the rose form, is above 4.0 V (vs. Na/Na+), which is relatively high compared to that of other cathode materials. Thus, it can be employed as a potential high-voltage cathode material in Na-ion batteries. However, it is difficult to synthesize a pure rose phase because of its low phase stability, thus limiting its use in high-voltage applications. Herein, compositional-engineered, rose-phase Na2-2xCo1+xP2O7/C (x = 0, 0.1 and 0.2) nanopowder are prepared using a wet-chemical method. The Na2-2xCo1+xP2O7/C cathode shows high electrochemical reactivity with Na ions at 4.0 V, delivering high capacity and high energy density.
NASA Astrophysics Data System (ADS)
Ding, Zhengping; Liu, Jiatu; Ji, Ran; Zeng, Xiaohui; Yang, Shuanglei; Pan, Anqiang; Ivey, Douglas G.; Wei, Weifeng
2016-10-01
Li2MSiO4 (M = Mn, Fe, Co, Ni, et al.) has received great attention because of the theoretical possibility to reversibly deintercalate two Li+ ions from the structure. However, the silicates still suffer from low electronic conductivity, sluggish lithium ion diffusion and structural instability upon deep cycling. In order to solve these problems, a "hard-soft" templating method has been developed to synthesize three-dimensionally ordered macroporous (3DOM) Li2FeSiO4/C composites. The 3DOM Li2FeSiO4/C composites show a high reversible capacity (239 mAh g-1) with ∼1.50 lithium ion insertion/extraction, a capacity retention of nearly 100% after 420 cycles and excellent rate capability. The enhanced electrochemical performance is ascribed to the interconnected carbon framework that improves the electronic conductivity and the 3DOM structure that offers short Li ion diffusion pathways and restrains volumetric changes.
Kitagawa, Haruaki; Miki-Oka, Saeki; Mayanagi, Gen; Abiko, Yuki; Takahashi, Nobuhiro; Imazato, Satoshi
2018-03-01
Resin composites containing surface pre-reacted glass-ionomer (S-PRG) fillers have been reported to inhibit Streptococcus mutans growth on their surfaces, and their inhibitory effects were attributed to BO 3 3- and F - ions. The aim of this study was to evaluate S. mutans acid production through glucose metabolism on resin composite containing S-PRG fillers and assess inhibitory effects of BO 3 3- and F - on S. mutans metabolic activities. The pH change through S. mutans acid production on experimental resin composite was periodically measured after the addition of glucose. Inhibitory effects of BO 3 3- or F - solutions on S. mutans metabolism were evaluated by XTT assays and measurement of the acid production rate. The pH of experimental resin containing S-PRG fillers was significantly higher than that of control resin containing silica fillers (p < 0.05). OD 450 values by XTT assays and S. mutans acid production rates significantly decreased in the presence of BO 3 3- and F - compared with the absence of these ions (p < 0.05). pH reduction by S. mutans acid production was inhibited on resin composite containing S-PRG fillers. Moreover, S. mutans glucose metabolism and acid production were inhibited in the presence of low concentrations of BO 3 3- or F - . BO 3 3- or F - released from resin composite containing S-PRG fillers exhibits inhibitory effects on S. mutans metabolism at concentrations lower than those which inhibit bacterial growth. Copyright © 2017 Elsevier Ltd. All rights reserved.
Colloidal Synthesis of Silicon-Carbon Composite Material for Lithium-Ion Batteries.
Su, Haiping; Barragan, Alejandro A; Geng, Linxiao; Long, Donghui; Ling, Licheng; Bozhilov, Krassimir N; Mangolini, Lorenzo; Guo, Juchen
2017-08-28
We report colloidal routes to synthesize silicon@carbon composites for the first time. Surface-functionalized Si nanoparticles (SiNPs) dissolved in styrene and hexadecane are used as the dispersed phase in oil-in-water emulsions, from which yolk-shell and dual-shell hollow SiNPs@C composites are produced via polymerization and subsequent carbonization. As anode materials for Li-ion batteries, the SiNPs@C composites demonstrate excellent cycling stability and rate performance, which is ascribed to the uniform distribution of SiNPs within the carbon hosts. The Li-ion anodes composed of 46 wt % of dual-shell SiNPs@C, 46 wt % of graphite, 5 wt % of acetylene black, and 3 wt % of carboxymethyl cellulose with an areal loading higher than 3 mg cm -2 achieve an overall specific capacity higher than 600 mAh g -1 , which is an improvement of more than 100 % compared to the pure graphite anode. These new colloidal routes present a promising general method to produce viable Si-C composites for Li-ion batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Imaging and Rapid-Scanning Ion Mass Spectrometer (IRM) for the CASSIOPE e-POP Mission
NASA Astrophysics Data System (ADS)
Yau, Andrew W.; Howarth, Andrew; White, Andrew; Enno, Greg; Amerl, Peter
2015-06-01
The imaging and rapid-scanning ion mass spectrometer (IRM) is part of the Enhanced Polar Outflow Probe (e-POP) instrument suite on the Canadian CASSIOPE small satellite. Designed to measure the composition and detailed velocity distributions of ions in the ˜1-100 eV/q range on a non-spinning spacecraft, the IRM sensor consists of a planar entrance aperture, a pair of electrostatic deflectors, a time-of-flight (TOF) gate, a hemispherical electrostatic analyzer, and a micro-channel plate (MCP) detector. The TOF gate measures the transit time of each detected ion inside the sensor. The hemispherical analyzer disperses incident ions by their energy-per-charge and azimuth in the aperture plane onto the detector. The two electrostatic deflectors may be optionally programmed to step through a sequence of deflector voltages, to deflect ions of different incident elevation out of the aperture plane and energy-per-charge into the sensor aperture for sampling. The position and time of arrival of each detected ion at the detector are measured, to produce an image of 2-dimensional (2D), mass-resolved ion velocity distribution up to 100 times per second, or to construct a composite 3D velocity distribution by combining successive images in a deflector voltage sequence. The measured distributions are then used to investigate ion composition, density, drift velocity and temperature in polar ion outflows and related acceleration and transport processes in the topside ionosphere.
Ion Composition Elucidation (ICE) often leads to identification of compounds and provides high quality evidence for tracking compounds to their sources. Mass spectra for most organic compounds are not found in mass spectral libraries used to tentatively identify analytes. In addi...
Ion conducting fluoropolymer carbonates for alkali metal ion batteries
DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Balsara, Nitash P.; Thelen, Jacob; Devaux, Didier
2017-09-05
Liquid or solid electrolyte compositions are described that comprise a homogeneous solvent system and an alkali metal salt dissolved in said solvent system. The solvent system may comprise a fluoropolymer, having one or two terminal carbonate groups covalently coupled thereto. Batteries containing such electrolyte compositions are also described.
Both field and laboratory studies have shown that mayflies (Ephemeroptera) tend to be relatively sensitive to elevated major ion concentrations, but very little is known about how ionic composition influences these responses. The present study evaluated the toxicity of various m...
Ionosphere of venus: first observations of the effects of dynamics on the dayside ion composition.
Taylor, H A; Brinton, H C; Bauer, S J; Hartle, R E; Cloutier, P A; Michel, F C; Daniell, R E; Donahue, T M; Maehl, R C
1979-02-23
Bennett radio-frequency ion mass spectrometers have returned the first in situ measurements of the Venus dayside ion composition, including evidence of pronounced structural variability resulting from a dynamic interaction with the solar wind. The ionospheric envelope, dominated above 200 kilometers by O(+), responds dramatically to variations in the solar wind pressure, Which is observed to compress the thermal ion distributions from heights as great as 1800 kilometers inward to 280 kilometers. At the thermal ion boundary, or ionopause, the ambient ions are swept away by the solar wind, such that a zone of accelerated suprathermnal plasma is encountered. At higher altitudes, extending outward on some orbits for thousands of kilometers to the bows shock, energetic ion currents are detected, apparently originating from the shocked solar wind plasma. Within the ionosphere, observations of pass-to-pass differences in the ion scale heights are indicative of the effects of ion convection stimlulated by the solar wind interaction.
Rangreez, Tauseef Ahmad; Alhogbi, Basma G.; Naushad, Mu.
2017-01-01
In this study, graphene Th(IV) phosphate was prepared by sol–gel precipitation method. The ion-exchange behavior of this cation-exchanger was studied by investigating properties like ion-exchange capacity for various metal ions, the effect of eluent concentration, elution behavior, and thermal effect on ion-exchange capacity (IEC). Several physicochemical properties as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) study, thermal studies, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies were also carried out. The material possessed an IEC of 1.56 meq·dry·g−1 of the exchanger and was found to be nano-composite. The selectivity studies showed that the material is selective towards Pb(II) ions. The selectivity of this cation-exchanger was demonstrated in the binary separation of Pb(II) ions from mixture with other metal ions. The recovery was found to be both quantitative and reproducible. PMID:28737717
Metal-coordination: Using one of nature’s tricks to control soft material mechanics
Holten-Andersen, Niels; Jaishankar, Aditya; Harrington, Matthew; Fullenkamp, Dominic E.; DiMarco, Genevieve; He, Lihong; McKinley, Gareth H.; Messersmith, Phillip B.; Lee, Ka Yee C.
2015-01-01
Growing evidence supports a critical role of dynamic metal-coordination crosslinking in soft biological material properties such as self-healing and underwater adhesion1. Using bio-inspired metal-coordinating polymers, initial efforts to mimic these properties have shown promise2. Here we demonstrate how bio-inspired aqueous polymer network mechanics can be easily controlled via metal-coordination crosslink dynamics; metal ion-based crosslink stability control allows aqueous polymer network relaxation times to be finely tuned over several orders of magnitude. In addition to further biological material insights, our demonstration of this compositional scaling mechanism should provide inspiration for new polymer material property-control designs. PMID:26413297
NASA Astrophysics Data System (ADS)
Ghyngazov, S. A.; Vasiliev, I. P.; Frangulyan, T. S.; Chernyavski, A. V.
2015-10-01
The effect of ion treatment on the phase composition and mechanical properties of the near-surface layers of zirconium ceramic composition 97 ZrO2-3Y2O3 (mol%) was studied. Irradiation of the samples was carried out by accelerated ions of aluminum with using vacuum-arc source Mevva 5-Ru. Ion beam had the following parameters: the energy of the accelerated ions E = 78 keV, the pulse current density Ji = 4mA / cm2, current pulse duration equal τ = 250 mcs, pulse repetition frequency f = 5 Hz. Exposure doses (fluence) were 1016 и 1017 ion/cm2. The depth distribution implanted ions was studied by SIMS method. It is shown that the maximum projected range of the implanted ions is equal to 250 nm. Near-surface layers were investigated by X-ray diffraction (XRD) at fixed glancing incidence angle. It is shown that implantation of aluminum ions into the ceramics does not lead to a change in the phase composition of the near-surface layer. The influence of implanted ions on mechanical properties of ceramic near-surface layers was studied by the method of dynamic nanoindentation using small loads on the indenter P=300 mN. It is shown that in ion- implanted ceramic layer the processes of material recovery in the deformed region in the unloading mode proceeds with higher efficiency as compared with the initial material state. The deformation characteristics of samples before and after ion treatment have been determined from interpretation of the resulting P-h curves within the loading and unloading sections by the technique proposed by Oliver and Pharr. It was found that implantation of aluminum ions in the near-surface layer of zirconia ceramics increases nanohardness and reduces the Young's modulus.
Saijai, Sakuntala; Ando, Akinori; Inukai, Ryuya; Shinohara, Makoto; Ogawa, Jun
2016-06-27
Nitrifying microbial consortia were enriched from bark compost in a water system by regulating the amounts of organic nitrogen compounds and by controlling the aeration conditions with addition of CaCO 3 for maintaining suitable pH. Repeated enrichment showed reproducible mineralization of organic nitrogen via the conversion of ammonium ions ([Formula: see text]) and nitrite ions ([Formula: see text]) into nitrate ions ([Formula: see text]). The change in microbial composition during the enrichment was investigated by PCR-DGGE analysis with a focus on prokaryote, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and eukaryote cell types. The microbial transition had a simple profile and showed clear relation to nitrogen ions transition. Nitrosomonas and Nitrobacter were mainly detected during [Formula: see text] and [Formula: see text] oxidation, respectively. These results revealing representative microorganisms acting in each ammonification and nitrification stages will be valuable for the development of artificial simple microbial consortia for organic hydroponics that consisted of identified heterotrophs and autotrophic nitrifying bacteria.
Dual Ion Species Plasma Expansion from Isotopically Layered Cryogenic Targets
NASA Astrophysics Data System (ADS)
Scott, G. G.; Carroll, D. C.; Astbury, S.; Clarke, R. J.; Hernandez-Gomez, C.; King, M.; Alejo, A.; Arteaga, I. Y.; Dance, R. J.; Higginson, A.; Hook, S.; Liao, G.; Liu, H.; Mirfayzi, S. R.; Rusby, D. R.; Selwood, M. P.; Spindloe, C.; Tolley, M. K.; Wagner, F.; Zemaityte, E.; Borghesi, M.; Kar, S.; Li, Y.; Roth, M.; McKenna, P.; Neely, D.
2018-05-01
A dual ion species plasma expansion scheme from a novel target structure is introduced, in which a nanometer-thick layer of pure deuterium exists as a buffer species at the target-vacuum interface of a hydrogen plasma. Modeling shows that by controlling the deuterium layer thickness, a composite H+/D+ ion beam can be produced by target normal sheath acceleration (TNSA), with an adjustable ratio of ion densities, as high energy proton acceleration is suppressed by the acceleration of a spectrally peaked deuteron beam. Particle in cell modeling shows that a (4.3 ±0.7 ) MeV per nucleon deuteron beam is accelerated, in a directional cone of half angle 9°. Experimentally, this was investigated using state of the art cryogenic targetry and a spectrally peaked deuteron beam of (3.4 ±0.7 ) MeV per nucleon was measured in a cone of half angle 7°-9°, while maintaining a significant TNSA proton component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleddermann, C.B.
The sputter deposition of high-temperature superconducting thin films was studied using optical emission spectroscopy. Argon or oxygen ions generated by a Kaufman ion gun were used to sputter material from a composite target containing yttrium, barium, and copper which had been oxygen annealed. The impact of ions onto the target generates a plume of sputtered material which includes various excited-state atoms and molecules. In these studies, optical emission is detected for all the metallic components of the film as well as for metallic oxides ejected from the target. No emission due to atomic or molecular oxygen was detected, however. Variationsmore » in sputter conditions such as changes in sputter ion energy, oxygen content of the beam, and target temperature are shown to greatly affect the emission intensity, which may correlate to the characteristics of the sputtering and the quality of the films deposited. The results suggest that optical emission from the sputtered material may be useful for real-time monitoring and control of the sputter deposition process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sills, L.G.
In this study, hydrogenated amorphous silicon carbide thin films were deposited by reactive ion-beam sputtering under varying conditions to determine whether a film's optical properties can be controlled, focusing on refractive index. Using a Kaufman type ion source to sputter a pure silicon target, three distinct series of films were grown. The first series varied the mixture of methane and argon used in the ion-beam. holding all other parameters constant. For the second series the gas mix was fixed, and only the beam energy (beam voltage) was varied. The final series also varied beam energy, but was grown with amore » graphite shield next to the target to reduce metal contamination sputtered from chamber surfaces. Results show the index of refraction increased monotonically with beam energy up to a beam voltage of 1300 volts. Both the second and third series of films followed this trend, but analysis of differences in atomic composition between two series revealed opposite trends for how the silicon to carbon content ratio and refractive index were related. More precise control of the gas flow, and sputtering from only the intended (silicon)target would have reduced experimental errors.« less
Composite proton exchange membrane based on sulfonated organic nanoparticles
NASA Astrophysics Data System (ADS)
Pitia, Emmanuel Sokiri
As the world sets its sight into the future, energy remains a great challenge. Proton exchange membrane (PEM) fuel cell is part of the solution to the energy challenge because of its high efficiency and diverse application. The purpose of the PEM is to provide a path for proton transport and to prevent direct mixing of hydrogen and oxygen at the anode and the cathode, respectively. Hence, PEMs must have good proton conductivity, excellent chemical stability, and mechanical durability. The current state-of-the-art PEM is a perfluorosulfonate ionomer, Nafion®. Although Nafion® has many desirable properties, it has high methanol crossover and it is expensive. The objective of this research was to develop a cost effective two-phase, composite PEM wherein a dispersed conductive organic phase preferentially aligned in the transport direction controls proton transport, and a continuous hydrophobic phase provides mechanical durability to the PEM. The hypothesis that was driving this research was that one might expect better dispersion, higher surface to volume ratio and improved proton conductivity of a composite membrane if the dispersed particles were nanometer in size and had high ion exchange capacity (IEC, = [mmol sulfonic acid]/gram of polymer). In view of this, considerable efforts were employed in the synthesis of high IEC organic nanoparticles and fabrication of a composite membrane with controlled microstructure. High IEC, ~ 4.5 meq/g (in acid form, theoretical limit is 5.4 meq/g) nanoparticles were achieved by emulsion copolymerization of a quaternary alkyl ammonium (QAA) neutralized-sulfonated styrene (QAA-SS), styrene, and divinylbenzene (DVB). The effects of varying the counterion of the sulfonated styrene (SS) monomer (alkali metal and QAA cations), SS concentration, and the addition of a crosslinking agent (DVB) on the ability to stabilize the nanoparticles to higher IECs were assessed. The nanoparticles were ion exchanged to acid form. The extent of ion exchange was characterized with solid state 13C NMR spectroscopy, FTIR spectroscopy, TGA, elemental analysis, and titration. The results indicate the extent of ion exchange was ~ 70-80%. Due to the mass of QAA, the remaining QAA reduced the IEC of the nanoparticles to < 2.2 meq/g. In fabricating the composite membranes, the nanoparticles and polystyrene were solution cast in a continuous process with and without electric field. The electric field had no effect on the water uptake. Based on the morphology and the proton conductivity, it appears orientation of the nanoparticles did not occur. We hypothesize the lack of orientation was caused by swelling of the particles with the solvent. The solvent inside the particle minimized polarizability, and thus prevented orientation. The composite membranes were limited to low proton conductivity of ~ 10-5 S/cm due to low IEC of the nanoparticles, but good dispersion of the nanoparticles was achieved. Future work should look into eliminating the QAA during synthesis and developing a rigid core for the nanoparticles.
Evidences of in vivo bioactivity of Fe-bioceramic composites for temporary bone implants.
Ulum, Mokhamad F; Nasution, Ahmad K; Yusop, Abdul H; Arafat, Andril; Kadir, Mohammed Rafiq A; Juniantito, Vetnizah; Noviana, Deni; Hermawan, Hendra
2015-10-01
Iron-bioceramic composites have been developed as biodegradable implant materials with tailored degradation behavior and bioactive features. In the current work, in vivo bioactivity of the composites was comprehensively studied by using sheep animal model. Five groups of specimens (Fe-HA, Fe-TCP, Fe-BCP composites, and pure-Fe and SS316L as controls) were surgically implanted into medio proximal region of the radial bones. Real-time ultrasound analysis showed a decreased echo pattern at the peri-implant biodegradation site of the composites indicating minimal tissue response during the wound healing process. Peripheral whole blood biomarkers monitoring showed a normal dynamic change of blood cellular responses and no stress effect was observed. Meanwhile, the released Fe ion concentration was increasing along the implantation period. Histological analysis showed that the composites corresponded with a lower inflammatory giant cell count than that of SS316L. Analysis of the retrieved implants showed a thicker degradation layer on the composites compared with pure-Fe. It can be concluded that the iron-bioceramic composites are bioactive and induce a preferable wound healing process. © 2014 Wiley Periodicals, Inc.
Metal hydride compositions and lithium ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Kwo; Nei, Jean
Heterogeneous metal hydride (MH) compositions comprising a main region comprising a first metal hydride and a secondary region comprising one or more additional components selected from the group consisting of second metal hydrides, metals, metal alloys and further metal compounds are suitable as anode materials for lithium ion cells. The first metal hydride is for example MgH.sub.2. Methods for preparing the composition include coating, mechanical grinding, sintering, heat treatment and quenching techniques.
Humelnicu, Doina; Dinu, Maria Valentina; Drăgan, Ecaterina Stela
2011-01-15
Adsorption features of UO(2)(2+) and Th(4+) ions from simulated radioactive solutions onto a novel chitosan/clinoptilolite (CS/CPL) composite as beads have been investigated compared with chitosan cross-linked with epichlorohydrin. The effects of contact time, the initial metal ion concentration, sorbent mass and temperature on the adsorption capacity of the CS-based sorbents were investigated. The adsorption kinetics was well described by the pseudo-second order equation, and the adsorption isotherms were better fitted by the Sips model. The maximum experimental adsorption capacities were 328.32 mg Th(4+)/g composite, and 408.62 mg UO(2)(2+)/g composite. The overall adsorption tendency of CS/CPL composite toward UO(2)(2+) and Th(4+) radiocations in the presence of Cu(2+), Fe(2+) and Al(3+), under competitive conditions, followed the order: Cu(2+)>UO(2)(2+)>Fe(2+)>Al(3+), and Cu(2+)>Th(4+)>Fe(2+)>Al(3+), respectively. The negative values of Gibbs free energy of adsorption indicated the spontaneity of the adsorption of radioactive ions on both the CS/CPL composite and the cross-linked CS. The desorption level of UO(2)(2+) from the composite CS/CPL, by using 0.1M Na(2)CO(3), was around 92%, and that of Th(4+) ions, performed by 0.1M HCl, was around 85%, both values being higher than the desorption level of radiocations from the cross-linked CS, which were 89% and 83%, respectively. Copyright © 2010 Elsevier B.V. All rights reserved.
Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu
2016-01-01
Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances. PMID:27193448
O’Donnell, J.N.R.; Antonucci, J.M.; Skrtic, D.
2009-01-01
Water sorption (WS), mechanical strength, and ion release of polymeric composites formulated with 40 % as-made or milled amorphous calcium phosphate (ACP) are compared after 1, 2 and 3 months of aqueous exposure. Ethoxylated bisphenol A dimethacrylate, triethylene glycol dimethacrylate, 2-hydroxyethyl methacrylate and methacryloxyethyl phthalate comprised the resin. The WS (mass %) peaked at 3 months. WS of as-made ACP composites was significantly higher than WS of milled ACP composites and copolymers. Both composite groups experienced decreases in biaxial flexural strength (BFS) with water aging, with milled ACP composites retaining a significantly higher BFS throughout immersion. Ion release was moderately reduced in milled ACP composites, though they remained superior to as-made ACP composites due to significantly lower WS and higher BFS after prolonged aqueous exposure. PMID:19774100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tracy, Patrick J.; Kasper, Justin C.; Zurbuchen, Thomas H.
Observations of velocity distribution functions from the Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer heavy ion composition instrument are used to calculate ratios of kinetic temperature and Coulomb collisional interactions of an unprecedented 50 ion species in the solar wind. These ions cover a mass per charge range of 1–5.5 amu/e and were collected in the time range of 1998–2011. We report the first calculation of the Coulomb thermalization rate between each of the heavy ion (A > 4 amu) species present in the solar wind along with protons (H{sup +}) and alpha particles (He{sup 2+}). From these rates, wemore » find that protons are the dominant source of Coulomb collisional thermalization for heavy ions in the solar wind and use this fact to calculate a collisional age for those heavy ion populations. The heavy ion thermal properties are well organized by this collisional age, but we find that the temperature of all heavy ions does not simply approach that of protons as Coulomb collisions become more important. We show that He{sup 2+} and C{sup 6+} follow a monotonic decay toward equal temperatures with protons with increasing collisional age, but O{sup 6+} shows a noted deviation from this monotonic decay. Furthermore, we show that the deviation from monotonic decay for O{sup 6+} occurs in solar wind of all origins, as determined by its Fe/O ratio. The observed differences in heavy ion temperature behavior point toward a local heating mechanism that favors ions depending on their charge and mass.« less
The role of nitrogen ions in the ring current dynamics
NASA Astrophysics Data System (ADS)
Ilie, R.; Liemohn, M. W.; Dandouras, I. S.
2017-12-01
Changes in the ion composition throughout the Earth's magnetosphere can have profound implications on plasma structures and dynamics, since it can modify the temperature and the magnetic field configuration, altering the convection patterns inside the magnetosphere. The ratio of hydrogen to oxygen ions has been shown to be highly dependent of geomagnetic activity, with the O+ content increasing with increasing activity. This suggests that ions of ionospheric origin can become the dominant species in the inner magnetosphere during disturbed times. Therefore, numerous studies have focused on the transport and energization of O+ through the ionosphere-magnetosphere system; however, relatively few have considered the contribution of N+, in addition to that of O+ to the near-Earth plasma dynamics, even though past observations have established that N+ is a significant ion species in the ionosphere and its presence in the magnetosphere is significant. Ring current observations from the Active Magnetospheric Particle Tracer Explorer (AMPTE) spacecraft show that high energy N+ fluxes are comparable to those of O+ during disturbed times, confirming the substantial presence of N+ions in the inner magnetosphere. In spite of only 12% mass difference, N+ and O+ have different ionization potentials, scale heights and charge exchange cross sections. The latter, together with the geocoronal density distribution, plays a key role in the formation of Energetic Neutral Atoms (ENAs), which in turn control the energy budget of the inner magnetosphere and the decay of the ring current. Numerical simulations using the Hot Electron and Ion Drift Integrator (HEIDI) model suggest that the contribution of N+ to the ring current dynamics is significant, as the presence of N+, in addition to that of O+, alters the development and the decay rate of the ring current. These findings suggest that differentiating the N+ transport from that of O+ in the near-Earth environment has a profound impact on global magnetosphere dynamics, as plasma composition affects both the local and the global properties of the plasma.
Superabsorbing gel for actinide, lanthanide, and fission product decontamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaminski, Michael D.; Mertz, Carol J.
The present invention provides an aqueous gel composition for removing actinide ions, lanthanide ions, fission product ions, or a combination thereof from a porous surface contaminated therewith. The composition comprises a polymer mixture comprising a gel forming cross-linked polymer and a linear polymer. The linear polymer is present at a concentration that is less than the concentration of the cross-linked polymer. The polymer mixture is at least about 95% hydrated with an aqueous solution comprising about 0.1 to about 3 percent by weight (wt %) of a multi-dentate organic acid chelating agent, and about 0.02 to about 0.6 molar (M)more » carbonate salt, to form a gel. When applied to a porous surface contaminated with actinide ions, lanthanide ions, and/or other fission product ions, the aqueous gel absorbs contaminating ions from the surface.« less
NASA Astrophysics Data System (ADS)
Saputro, S.; Masykuri, M.; Mahardiani, L.; Hidayah, AN
2018-03-01
This research are to find out the influence of adsorbent composition between rice husk and water hyacinth in decreasing of Pb2+ ion in simulation liquid waste; the optimumcomposition of combination adsorbent of rice husk and water hyacinth charcoal on Pb2+ ion adsorption; and theeffectivenessof SPS as a method to determine the decreasing level of Pb2+ ion in simulation liquid waste by combination adsorbent of rice husk and water hyacinth charcoal in µg/L level. Rice husk and water hyacinth carbonization using muffle furnace at 350°C for 1 hour. Rice husk charcoal activation in a 2 N NaOH solution and water hyacinth charcoal activated in a 5 M HCl solution. Contacting the combination adsorbent of rice husk and water hyacinth charcoal with a Pb2+ solution with variation of mass composition, 1:0 ; 0:1 ; 1:1 ; 1:2 and 2:1. Analysis of the Pb2+ ion level using SPS method. Characterization of rice husk and water hyacinth charcoal using the FTIR. The results showed that the combination adsorbent composition of rice husk and water hyacinth charcoal have an impact on decreasing Pb2+ ion level. The optimum composition of combination adsorbent of rice husk and water hyacinth charcoal on the adsorption Pb2+ ion is 1:2. SPS is an effective method to determine the decreasing Pb2+ ion in simulation liquid waste from the adsorption process by combination adsorbent of rice husk and water hyacinth in µg/L, with Limit of Detection (LOD) was 0,06 µg/L.
Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery
NASA Astrophysics Data System (ADS)
Xu, Xin; Meng, Zhen; Zhu, Xueling; Zhang, Shunlong; Han, Wei-Qiang
2018-03-01
Pyrite FeS2 has long been used as commercial primary lithium batteries at room temperature. To achieve rechargeable FeS2 battery, biomass-carbon@FeS2 composites are prepared using green and renewable auricularia auricula as carbon source through the process of carbonization and sulfuration. The auricularia auricula has strong swelling characteristics to absorb aqueous solution which can effectively absorb Fe ions into its body. FeS2 homogeneously distributed in biomass carbon matrix performs high electronic and ionic conductivity. The specific capacity of biomass-carbon@FeS2 composites remains 850 mAh g-1 after 80 cycles at 0.5C and 700 mAh g-1 at the rate of 2C after 150 cycles. Biomass-carbon@FeS2 composites exhibit high-rate capacity in lithium-ion battery.
Lee, Seung Jong; Kim, Hye Jin; Hwang, Tae Hoon; Choi, Sunghun; Park, Sung Hyeon; Deniz, Erhan; Jung, Dae Soo; Choi, Jang Wook
2017-03-08
Despite the high theoretical capacity, silicon (Si) anodes in lithium-ion batteries have difficulty in meeting the commercial standards in various aspects. In particular, the huge volume change of Si makes it very challenging to simultaneously achieve high initial Coulombic efficiency (ICE) and long-term cycle life. Herein, we report spray pyrolysis to prepare Si-SiO x composite using an aqueous precursor solution containing Si nanoparticles, citric acid, and sodium hydroxide (NaOH). In the precursor solution, Si nanoparticles are etched by NaOH with the production of [SiO 4 ] 4- . During the dynamic course of spray pyrolysis, [SiO 4 ] 4- transforms to SiO x matrix and citric acid decomposes to carbon surface layer with the assistance of NaOH that serves as a decomposition catalyst. As a result, a Si-SiO x composite, in which Si nanodomains are homogeneously embedded in the SiO x matrix with carbon surface layer, is generated by a one-pot process with a residence time of only 3.5 s in a flow reactor. The optimal composite structure in terms of Si domain size and Si-to-O ratio exhibited excellent electrochemical performance, such as reversible capacity of 1561.9 mAh g -1 at 0.06C rate and ICE of 80.2% and 87.9% capacity retention after 100 cycles at 1C rate.
Johnson, Grant E.; Gunaratne, K. Don Dasitha; Laskin, Julia
2014-01-01
Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+ (bpy = bipyridine), onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces. PMID:24961913
Gaye, M. M.; Valentine, S. J.; Hu, Y.; Mirjankar, N.; Hammoud, Z. T.; Mechref, Y.; Lavine, B. K.; Clemmer, D. E.
2012-01-01
Three disease phenotypes, Barrett’s esophagus (BE), high-grade dysplasia (HGD), esophageal adenocarcinoma (EAC), and a set of normal control (NC) serum samples are examined using a combination of ion mobility spectrometry (IMS), mass spectrometry (MS) and principal component analysis (PCA) techniques. Samples from a total of 136 individuals were examined, including: 7 characterized as BE, 12 as HGD, 56 as EAC and 61 as NC. In typical datasets it was possible to assign ~20 to 30 glycan ions based on MS measurements. Ion mobility distributions for these ions show multiple features. In some cases, such as the [S1H5N4+3Na]3+ and [S1F1H5N4+3Na]3+ glycan ions, the ratio of intensities of high-mobility features to low-mobility features vary significantly for different groups. The degree to which such variations in mobility profiles can be used to distinguish phenotypes is evaluated for eleven N-linked glycan ions. An outlier analysis on each sample class followed by an unsupervised PCA using a genetic algorithm for pattern recognition reveals that EAC samples are separated from NC samples based on 46 features originating from the 11-glycan composite IMS distribution. PMID:23126309
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Grant E.; Gunaratne, Kalupathirannehelage Don D.; Laskin, Julia
2014-06-16
Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+, onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivitymore » of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.« less
Chromium Ions Improve Moisure Resistance of Epoxy Resins
NASA Technical Reports Server (NTRS)
St. Clair, A. K.; St. Clair, T. L.; Stoakley, D. M.; Singh, J. J.; Sprinkle, D. R.
1986-01-01
Broad spectrum of thermosetting epoxy resins used on commercial and military aircraft, primarily as composite matrices and adhesives. In new technique, chromium-ion containing epoxy with improved resistance to moisture produced where chromium ions believed to prevent absorption of water molecules by coordinating themselves to hydroxyl groups on epoxy chain. Anticipated that improved epoxy formulation useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft. Improvement made without sacrifice in mechanical properties of polymer.
NASA Astrophysics Data System (ADS)
Zhu, X. P.; Zhang, Z. C.; Pushkarev, A. I.; Lei, M. K.
2016-01-01
High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200-300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.
NASA Astrophysics Data System (ADS)
Xia, Hongbo; Wu, Suli; Bi, Jiajie; Zhang, Shufen
2017-11-01
Here a simple and effective method was explored to fabricate M/TiO2 (M = Ag, Au) composites, which required neither pre-treatment of TiO2 nor any additives as reducing agent. Using amorphous TiO2 spheres functionalized with SH groups as starting materials, the noble metallic ions (Ag, Au) can be adsorbed by TiO2 due to their special affinity with SH groups, which is beneficial to the uniform dispersion of metallic ions on the surface of TiO2. Then the adsorbed ions were reduced to form noble metal nanoparticles by heating process (95 °C) directly without additive as reduction agent. Meanwhile, the amorphous TiO2 was transformed into anatase phase during the heating process. Thus, the transformation of TiO2 along with the reduction of noble metallic ions (Ag, Au) was simultaneously carried out by heating. The XRD patterns proved the formation of anatase TiO2 after heating. The characterizations of XPS and TEM proved the formation of Ag and Au nanoparticles on the surface of TiO2. The element mapping indicated that Ag nanoparticles are dispersed uniformly on the surface of TiO2. The photocatalytic activity of the composites has been investigated by the degradation of methyl orange under visible light irradiation. The results showed that when Ag/TiO2 (2.8 wt%) was used as photocatalyst, about 98% of the MO molecules were degraded in 70 min.
NASA Astrophysics Data System (ADS)
Stapel, D.; Brox, O.; Benninghoven, A.
1999-02-01
The influence of primary ion energy, mass and composition on sputtering and secondary ion emission of arachidic acid Langmuir-Blodgett mono- and multilayers, deposited on gold substrates, has been investigated. Ga +, Ar +, 129Xe+ and SF 5+ in the energy range 5-25 keV were used as primary ions. Yields Y, damage cross-sections σ, and ion formation efficiencies E have been determined for selected secondary ions, characterizing the molecular overlayer, the overlayer substrate interface and the substrate. We found a strong influence of layer thickness and of primary ion energy, mass and composition on Y, σ and E. Information depth increases with increasing ion energy and decreasing mass of primary ions, being higher for SF 5+ than for Xe +. Y, σ and E increase with increasing primary ion mass. They are considerably higher for a molecular (SF 5+) than for atomic ions of comparable mass ( 129Xe+). The experimental results supply information on the extension of impact cascades, generated in different substrate materials by different primary ion species and different energies. They demonstrate that in analytical SIMS application information depths can be minimized and yields and ion formation efficiencies can be maximized by the use of molecular primary ions.
Dominance of high-energy (>150 keV) heavy ion intensities in Earth's middle to outer magnetosphere
NASA Astrophysics Data System (ADS)
Cohen, Ian J.; Mitchell, Donald G.; Kistler, Lynn M.; Mauk, Barry H.; Anderson, Brian J.; Westlake, Joseph H.; Ohtani, Shinichi; Hamilton, Douglas C.; Turner, Drew L.; Blake, J. Bernard; Fennell, Joseph F.; Jaynes, Allison N.; Leonard, Trevor W.; Gerrard, Andrew J.; Lanzerotti, Louis J.; Allen, Robert C.; Burch, James L.
2017-09-01
Previous observations have driven the prevailing assumption in the field that energetic ions measured by an instrument using a bare solid state detector (SSD) are predominantly protons. However, new near-equatorial energetic particle observations obtained between 7 and 12 RE during Phase 1 of the Magnetospheric Multiscale mission challenge the validity of this assumption. In particular, measurements by the Energetic Ion Spectrometer (EIS) instruments have revealed that the intensities of heavy ion species (specifically oxygen and helium) dominate those of protons at energies ≳150-220 keV in the middle to outer (>7 RE) magnetosphere. Given that relative composition measurements can drift as sensors degrade in gain, quality cross-calibration agreement between EIS observations and those from the SSD-based Fly's Eye Energetic Particle Spectrometer (FEEPS) sensors provides critical support to the veracity of the measurement. Similar observations from the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instruments aboard the Van Allen Probes spacecraft extend the ion composition measurements into the middle magnetosphere and reveal a strongly proton-dominated environment at L≲6 but decreasing proton intensities at L≳6. It is concluded that the intensity dominance of the heavy ions at higher energies (>150 keV) arises from the existence of significant populations of multiply-charged heavy ions, presumably of solar wind origin.
Graphene/Ionic Liquid Composite Films and Ion Exchange
Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan
2014-01-01
Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force. PMID:24970602
NASA Technical Reports Server (NTRS)
Hoffman, J. H.
1975-01-01
The ion mass spectrometer (IMS) on the ISIS-II satellite is described; it measures the composition and distribution of positive ions in the earth's ionosphere in the mass range of 1 to 64 atomic mass units. Significant data were received which show a wide variation in ion composition at night near the equator and in the daytime poleward of the plasmapause. It was found that these data enable further study of the polar wind and that the experiment produced timely data during the August, 1972 magnetic storm to show the development of a unique ionosphere above the plasmapause during the period of the storm. The scientific objectives and results of the experiment, the technical description of the instrument, a bibliography with sample papers attached, and a summary of recommendations for further study are presented.
NASA Astrophysics Data System (ADS)
Wu, Xuan; Zhao, Wei; Wang, Hong; Qi, Xiujun; Xing, Zheng; Zhuang, Quanchao; Ju, Zhicheng
2018-02-01
Potassium-ion batteries are attracting great attention as a promising alternative to lithium-ion batteries due to the abundance and low price of potassium. Herein, the phosphorus/carbon composite, obtained by a simple ball-milling of 20 wt% commercial red phosphorus and 80 wt% graphite, is studied as a novel anode for potassium-ion batteries. Considering the high theoretical specific capacity of phosphorus and formation of stable phosphorus-carbon bond, which can alleviate the volume expansion efficiently, the phosphorus/carbon composite exhibits a high charge capacity of 323.5 mA h g-1 after 50 cycles at a current density of 50 mA g-1 with moderate rate capability and cycling stability. By the X-ray diffraction analysis, the alloying-dealloying mechanism of phosphorus is proposed to form a KP phase. Meanwhile, prepotassiation treatment is conducted to improve the low initial coulomb efficiency.
Hydrothermally stable, low-temperature NO.sub.x reduction NH.sub.3-SCR catalyst
Narula, Chaitanya K.; Yang, Xiaofan
2016-10-25
A catalyst composition includes a heterobimetallic zeolite characterized by a chabazite structure loaded with copper ions and at least one trivalent metal ion other than Al.sup.3+. The catalyst composition decreases NO.sub.x emissions in diesel exhaust and is suitable for operation in a catalytic converter.
Hydrothermally stable, low-temperature NO.sub.x reduction NH.sub.3-SCR catalyst
Narula, Chaitanya K; Yang, Xiaofan
2015-03-24
A catalyst composition includes a heterobimetallic zeolite characterized by a chabazite structure loaded with copper ions and at least one trivalent metal ion other than Al.sup.3+. The catalyst composition decreases NO.sub.x emissions in diesel exhaust and is suitable for operation in a catalytic converter.
When tentatively identifying compounds in complex mixtures using mass spectral libraries, multiple matches or no plausible matches due to a high level of chemical noise or interferences can occur. Worse yet, most analytes are not in the libraries. In each case, Ion Composition El...
Zhao, Jun Hui; Thomson, Douglas J; Pilapil, Matt; Pillai, Rajesh G; Rahman, G M Aminur; Freund, Michael S
2010-04-02
Dynamic resistive memory devices based on a conjugated polymer composite (PPy(0)DBS(-)Li(+) (PPy: polypyrrole; DBS(-): dodecylbenzenesulfonate)), with field-driven ion migration, have been demonstrated. In this work the dynamics of these systems has been investigated and it has been concluded that increasing the applied field can dramatically increase the rate at which information can be 'written' into these devices. A conductance model using space charge limited current coupled with an electric field induced ion reconfiguration has been successfully utilized to interpret the experimentally observed transient conducting behaviors. The memory devices use the rising and falling transient current states for the storage of digital states. The magnitude of these transient currents is controlled by the magnitude and width of the write/read pulse. For the 500 nm length devices used in this work an increase in 'write' potential from 2.5 to 5.5 V decreased the time required to create a transient conductance state that can be converted into the digital signal by 50 times. This work suggests that the scaling of these devices will be favorable and that 'write' times for the conjugated polymer composite memory devices will decrease rapidly as ion driving fields increase with decreasing device size.
Huang, Xiaodan; Sun, Bing; Chen, Shuangqiang; Wang, Guoxiu
2014-01-01
The synthesis of nanoporous graphene by a convenient carbon nanofiber assisted self-assembly approach is reported. Porous structures with large pore volumes, high surface areas, and well-controlled pore sizes were achieved by employing spherical silica as hard templates with different diameters. Through a general wet-immersion method, transition-metal oxide (Fe3O4, Co3O4, NiO) nanocrystals can be easily loaded into nanoporous graphene papers to form three-dimensional flexible nanoarchitectures. When directly applied as electrodes in lithium-ion batteries and supercapacitors, the materials exhibited superior electrochemical performances, including an ultra-high specific capacity, an extended long cycle life, and a high rate capability. In particular, nanoporous Fe3O4-graphene composites can deliver a reversible specific capacity of 1427.5 mAh g(-1) at a high current density of 1000 mA g(-1) as anode materials in lithium-ion batteries. Furthermore, nanoporous Co3O4-graphene composites achieved a high supercapacitance of 424.2 F g(-1) . This work demonstrated that the as-developed freestanding nanoporous graphene papers could have significant potential for energy storage and conversion applications. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of CuO and ZnO addition on the multicomponent phosphate glasses: Spectroscopic studies
NASA Astrophysics Data System (ADS)
Szumera, Magdalena; Wacławska, Irena; Sułowska, Justyna
2016-06-01
The spectra of phosphate-silicate glasses from the P2O5-SiO2-K2O-MgO-CaO system modified with the addition of CuO or ZnO have been studied by means of FTIR, Raman and 31P MAS NMR spectroscopy. All glasses were synthesized by the conventional melt-quenching technique and their homogeneous chemical composition was controlled and confirmed. By using the aforementioned research techniques, the presence of structural units with various degrees of polymerization was shown in the structure of analyzed phosphate-silicate glasses: Q3, Q2, Q1 and Q0. It was found that an increase in the content of CuO or ZnO in the composition of analyzed glasses, which are introduced at the expense of decreasing amounts of CaO and MgO, has a different influence on the phospho-oxygen network. It was shown that copper ions cause its gradual polymerization, while zinc ions cause its depolymerization. At the same time, polymerization of the silico-oxygen subnetwork was found. Additionally, in the case of glasses containing increasing amounts of ZnO, a change of the role of zinc ions in the vitreous matrix was confirmed (from the modifier to a structure-forming component).
Sputtering by the Solar Wind: Effects of Variable Composition
NASA Technical Reports Server (NTRS)
Killen, R. M.; Arrell, W. M.; Sarantos, M.; Delory, G. T.
2011-01-01
It has long been recognized that solar wind bombardment onto exposed surfaces in the solar system will produce an energetic component to the exospheres about those bodies. Laboratory experiments have shown that there is no increase in the sputtering yield caused by highly charged heavy ions for metallic and for semiconducting surfaces, but the sputter yield can be noticeably increased in the case of a good insulating surface. Recently measurements of the solar wind composition have become available. It is now known that the solar wind composition is highly dependent on the origin of the particular plasma. Using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), broken down into its various components, we have estimated the total sputter yield for each type of solar wind. Whereas many previous calculations of sputtering were limited to the effects of proton bombardment. we show that the heavy ion component. especially the He++ component. can greatly enhance the total sputter yield during times when the heavy ion population is enhanced. We will discuss sputtering of both neutrals and ions.
NASA Astrophysics Data System (ADS)
Kim, Jihoon; Lee, Yongkyu; Jeon, Jae-Deok; Kwak, Seung-Yeop
2018-04-01
A series of ion-exchange membranes for vanadium redox flow batteries (VRBs) are prepared by filling the pores of a poly(tetrafluoroethylene) (PTFE) substrate with sulfonated poly(ether ether ketone) (SPEEK) and microporous Engelhard titanosilicate-10 (ETS-10). The effects of ETS-10 incorporation and PTFE reinforcement on membrane properties and VRB single-cell performance are investigated using various characterization tools. The results show that these composite membranes exhibit improved mechanical properties and reduced vanadium-ion permeabilities owing to the interactions between ETS-10 and SPEEK, the suppressed swelling of PTFE, and the unique ETS-10 framework. The composite membrane with 3 wt% ETS-10 (referred to as "SE3/P") exhibits the best membrane properties and highest ion selectivity. The VRB system with the SE3/P membrane exhibits higher cell capacity, higher cell efficiency, and lower capacity decay than that with a Nafion membrane. These results indicate that this composite membrane has potential as an alternative to Nafion in VRB systems.
NASA Astrophysics Data System (ADS)
Yang, X.; Cheng, S.; Li, J.
2017-12-01
To commemorate the 70th anniversary of the victory of the Chinese people's Anti-Japanese War and the World Anti-Fascist War, an international parade was held in Beijing in September 2015. In order to ensure satisfactory air quality during this event, a phased emission control measures were taken in Beijing and its surrounding provinces. The 24-h PM2.5 samples were collected in Beijing from August 1 to September 15, 2015 covering the period before, during and after this large-scale event. The observed PM2.5 data, meteorological data, emission reduction measures, and air mass trajectory simulation results were systematically analyzed to understand the pollution characteristics and chemical compositions of PM2.5 in Beijing. The results indicated that PM2.5 concentration during the two emission control phases was reduced by 61.7% comparing to the non-control period, but the regional transport of pollutants and meteorological conditions had a more prominent impact on PM2.5 than emission reduction during phase 2. The secondary water-soluble ions including SO42-, NO3-, and NH4+ were found as the main ions present in PM2.5. During the entire emission control period, organic carbon (OC) and elemental carbon (EC) mass concentrations were decreased by 53.1% and 57.9%. A PM2.5 mass balance was analyzed, and it was found that the organic matter accounted for 29.3, 37.6 and 28.5% of the PM2.5 mass before, during and after the emission control, while the contribution of mobile sources to PM2.5 was relatively outstanding after a series of emission control measures.
NASA Technical Reports Server (NTRS)
Krimigis, S. M.; Mcentire, R. W.; Potemra, T. A.; Gloeckler, G.; Scarf, F. L.; Shelley, E. G.
1985-01-01
Compositional studies of the equatorial distributions of ring current ions during the September 4, 1984 magnetic storm have been made possible by comprehensive energy, charge state, and mass coverage data from the Charge Composition Explorer satellite. An examination of ion spectra at an L value of about 4 on September 5, in the local evening sector, shows that energy density was dominated by protons, with O ions contributing about 27 percent at the peak of about 150 keV, while He ions contributed less than about 2 percent. September 6 ion spectra, taken during the recovery phase of the storm, indicate that ion densities at more than 20 keV had decreased markedly, and that the ring current energy density was primarily provided by protons.
Compositional transformations in ion implanted polymers
NASA Astrophysics Data System (ADS)
Abdul-Kader, A. M.; Turos, A.; Grambole, D.; Jagielski, J.; Piątkowska, A.; Madi, N. K.; Al-Maadeed, M.
2005-10-01
Changes of surface layer composition produced by ion bombardment of polyethylene and polypropylene samples were studied. These materials are under consideration for load bearing surfaces in biological and technical applications. To improve their tribological properties, surface layers are usually modified by ionizing radiation. Therefore, to study the mechanism of transformations induced by ion beam bombardment selected polymers were implanted with H, He and Ar ions to the fluences ranging from 1 × 1013 to 2 × 1016/cm2. RBS and NRA techniques were applied for sample analysis. Important hydrogen release was observed with increasing ion dose and was correlated with the ion stopping power. Another important effect observed was the rapid oxidation of samples, which apparently occurs after exposure of implanted samples to the air. Up to 10 at.% of oxygen can be incorporated in the implanted layer.
NASA Astrophysics Data System (ADS)
Pranoto; Masykur, A.; Nugroho, Y. A.
2018-03-01
Adsorption of chromium hexavalent (Cr(VI)) ion in aqueous solution was investigated. This research was purposed to study the influence of the composition of ACZ, temperature activation, and contact time against adsorption capacity of Cr(VI) ion in aqueous solution. Determination of adsorption effectivity using several parameter such as composition variation of ACZ, contact time, pH, activation temperature, and concentration. In this research, andisol clay and zeolite has been activated with NaOH 3 M and 1 M, respectively. Temperature variation used 100, 200, and 400°C. While composition variation ACZ used 0:100, 25:75, 50:50, 75:25, 100:0. The pH variation was used 2 – 6 and concentration variation using 2, 4, 6, 8, 10, and 12 ppm. Characterization in this research used such as UV-Vis, Surface Area Analyzer (SAA) and Acidity Analysis. Result of this research is known that optimum composition of ACZ was 50:50 with calcination temperature 100°C. Optimum adsorption of Cr(VI) at pH 4 with removal percentage 76.10 % with initial concentration 2 ppm and adsorption capacity is 0.16 mg/g. Adsorption isotherm following freundlich isotherm with value Kf = 0.17 mg/g and value n is 0.963. Based on results, ACZ composite can be used as Cr(VI) ion adsorbents in aqueous solutions.
Park, Gi Dae; Kang, Yun Chan
2016-03-14
A simple one-pot synthesis of metal selenide/reduced graphene oxide (rGO) composite powders for application as anode materials in sodium-ion batteries was developed. The detailed mechanism of formation of the CoSe(x)-rGO composite powders that were selected as the first target material in the spray pyrolysis process was studied. The crumple-structured CoSe(x)-rGO composite powders prepared by spray pyrolysis at 800 °C had a crystal structure consisting mainly of Co0.85 Se with a minor phase of CoSe2. The bare CoSe(x) powders prepared for comparison had a spherical shape and hollow structure. The discharge capacities of the CoSe(x)-rGO composite and bare CoSe(x) powders in the 50th cycle at a constant current density of 0.3 A g(-1) were 420 and 215 mA h g(-1), respectively, and their capacity retentions measured from the second cycle were 80 and 46%, respectively. The high structural stability of the CoSe(x)-rGO composite powders for repeated sodium-ion charge and discharge processes resulted in superior sodium-ion storage properties compared to those of the bare CoSe(x) powders. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Borkowski, Leszek; Sroka-Bartnicka, Anna; Drączkowski, Piotr; Ptak, Agnieszka; Zięba, Emil; Ślósarczyk, Anna; Ginalska, Grażyna
2016-05-01
Apatite forming ability of hydroxyapatite (HAP) and carbonate hydroxyapatite (CHAP) containing composites was compared. Two composite materials, intended for filling bone defects, were made of polysaccharide polymer and one of two types of hydroxyapatite. The bioactivity of the composites was evaluated in vitro by soaking in a simulated body fluid (SBF), and the formation of the apatite layer was determined by scanning electron microscopy with energy-dispersive spectrometer and Raman spectroscopy. The results showed that both the composites induced the formation of apatite layer on their surface after soaking in SBF. In addition, the sample weight changes and the ion concentration of the SBF were scrutinized. The results showed the weight increase for both materials after SBF treatment, higher weight gain and higher uptake of calcium ions by HAP containing scaffolds. SBF solution analysis indicated loss of calcium and phosphorus ions during experiment. All these results indicate apatite forming ability of both biomaterials and suggest comparable bioactive properties of composite containing pure hydroxyapatite and carbonate-substituted one. Copyright © 2016 Elsevier B.V. All rights reserved.
TiO₂ Nanobelt@Co₉S₈ Composites as Promising Anode Materials for Lithium and Sodium Ion Batteries.
Zhou, Yanli; Zhu, Qian; Tian, Jian; Jiang, Fuyi
2017-09-02
TiO₂ anodes have attracted great attention due to their good cycling stability for lithium ion batteries and sodium ion batteries (LIBs and SIBs). Unfortunately, the low specific capacity and poor conductivity limit their practical application. The mixed phase TiO₂ nanobelt (anatase and TiO₂-B) based Co₉S₈ composites have been synthesized via the solvothermal reaction and subsequent calcination. During the formation process of hierarchical composites, glucose between TiO₂ nanobelts and Co₉S₈ serves as a linker to increase the nucleation and growth of sulfides on the surface of TiO₂ nanobelts. As anode materials for LIBs and SIBs, the composites combine the advantages of TiO₂ nanobelts with those of Co₉S₈ nanomaterials. The reversible specific capacity of TiO₂ nanobelt@Co₉S₈ composites is up to 889 and 387 mAh·g -1 at 0.1 A·g -1 after 100 cycles, respectively. The cooperation of excellent cycling stability of TiO₂ nanobelts and high capacities of Co₉S₈ nanoparticles leads to the good electrochemical performances of TiO₂ nanobelt@Co₉S₈ composites.
Conical pitch angle distributions of very low-energy ion fluxes observed by ISEE 1
NASA Technical Reports Server (NTRS)
Horwitz, J. L.; Baugher, C. R.; Chappell, C. R.; Shelley, E. G.; Young, D. T.
1982-01-01
Observations are presented of conical distributions of low-energy ion fluxes from throughout the magnetosphere. The data were provided by the plasma composition experiment (PCE) on ISEE 1. ISEE 1 was launched in October 1977 into a highly elliptical orbit with a 30 deg inclination to the equator and 22.5 earth radii apogee. Particular attention is given to data taken when the instrument was in its thermal plasma mode, sampling ions in the energy per charge range 0-100 eV/e. Attention is given to examples of conical distributions in 0- to 100-eV/e ions, the occurrence of conical distributions of 0- to 100-eV ions in local time-geocentric distance and latitude-geocentric distance coordinates, the cone angles in 0- to 100-eV ion conics, Kp distributions of 0- to 100-eV ion conics, and some compositional aspects of 0- to 100-eV ion conics.
NASA Astrophysics Data System (ADS)
Kondratenko, Mikhail S.; Karpushkin, Evgeny A.; Gvozdik, Nataliya A.; Gallyamov, Marat O.; Stevenson, Keith J.; Sergeyev, Vladimir G.
2017-02-01
A series of composite proton-exchange membranes have been prepared via sol-gel modification of commercial Nafion membranes with [N-(2-aminoethyl)-3-aminopropyl]trimethoxysilane. The structure and physico-chemical properties (water uptake, ion-exchange capacity, vanadyl ion permeability, and proton conductivity) of the prepared composite membranes have been studied as a function of the precursor loading (degree of the membrane modification). If the amount of the precursor is below 0.4/1 M ratio of the amino groups of the precursor to the sulfonic groups of Nafion, the composite membranes exhibit decreased vanadium ion permeability while having relatively high proton conductivity. With respect to the use of a non-modified Nafion membrane, the performance of the composite membrane with an optimum precursor loading in a single-cell vanadium redox flow battery demonstrates enhanced energy efficiency in 20-80 mA cm-2 current density range. The maximum efficiency increase of 8% is observed at low current densities.
Chen, Wenju; Shi, Liyi; Wang, Zhuyi; Zhu, Jiefang; Yang, Haijun; Mao, Xufeng; Chi, Mingming; Sun, Lining; Yuan, Shuai
2016-08-20
The developments of high-performance lithium ion battery are eager to the separators with high ionic conductivity and thermal stability. In this work, a new way to adjust the comprehensive properties of inorganic-organic composite separator was investigated. The cellulose diacetate (CDA)-SiO2 composite coating is beneficial for improving the electrolyte wettability and the thermal stability of separators. Interestingly, the pore structure of composite coating can be regulated by the weight ratio of SiO2 precursor tetraethoxysilane (TEOS) in the coating solution. The electronic performance of lithium ion batteries assembled with modified separators are improved compared with the pristine PE separator. When weight ratio of TEOS in the coating solution was 9.4%, the composite separator shows the best comprehensive performance. Compared with the pristine PE separator, its meltdown temperature and the break-elongation at elevated temperature increased. More importantly, the discharge capacity and the capacity retention improved significantly. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Reddy, Y. Govinda; Sekhar, M. Chandra; Sadananda Chary, A.; Narender Reddy, S.
2018-02-01
Composites of Alumina dispersed Lead Nitrate of different particles sizes (0.3µm, 36.9µm) were prepared through mechanical mixing process. These composites have been characterized by using XRD and SEM. Transport properties of these systems have been studied by means of impedance spectroscopy in the frequency range 100Hz to 4MHz in the temperature range from room temperature to 300°C. Temperature dependent conductivity spectra for composites with different mole percentages of alumina and with different particle sizes (0.3µm, 36.9µm) studied. The contact surface area between host and dispersoid increases with the decrease in particle size. These studies indicate that the conductivity in these systems is mainly due to the contribution enhanced concentration of mobile ions at the interfacial regions of host and dispersoid materials and increased mobility of charge carriers along the grain boundaries. It is believed that mechanism of conductivity through anti-Frenkel disorder (NO3 - ions) in these composites.
LEICA - A low energy ion composition analyzer for the study of solar and magnetospheric heavy ions
NASA Technical Reports Server (NTRS)
Mason, Glenn M.; Hamilton, Douglas C.; Walpole, Peter H.; Heuerman, Karl F.; James, Tommy L.; Lennard, Michael H.; Mazur, Joseph E.
1993-01-01
The SAMPEX LEICA instrument is designed to measure about 0.5-5 MeV/nucleon solar and magnetospheric ions over the range from He to Ni. The instrument is a time-of-flight mass spectrometer which measures particle time-of-flight over an about 0.5 m path, and the residual energy deposited in an array of Si solid state detectors. Large area microchannel plates are used, resulting in a large geometrical factor for the instrument (0.6 sq cm sr) which is essential for accurate compositional measurements in small solar flares, and in studies of precipitating magnetospheric heavy ions.
Xu, Gui-Liang; Chen, Zonghai; Zhong, Gui-Ming; Liu, Yuzi; Yang, Yong; Ma, Tianyuan; Ren, Yang; Zuo, Xiaobing; Wu, Xue-Hang; Zhang, Xiaoyi; Amine, Khalil
2016-06-08
Sodium-ion batteries are promising alternatives to lithium-ion batteries for large-scale applications. However, the low capacity and poor rate capability of existing anodes for sodium-ion batteries are bottlenecks for future developments. Here, we report a high performance nanostructured anode material for sodium-ion batteries that is fabricated by high energy ball milling to form black phosphorus/Ketjenblack-multiwalled carbon nanotubes (BPC) composite. With this strategy, the BPC composite with a high phosphorus content (70 wt %) could deliver a very high initial Coulombic efficiency (>90%) and high specific capacity with excellent cyclability at high rate of charge/discharge (∼1700 mAh g(-1) after 100 cycles at 1.3 A g(-1) based on the mass of P). In situ electrochemical impedance spectroscopy, synchrotron high energy X-ray diffraction, ex situ small/wide-angle X-ray scattering, high resolution transmission electronic microscopy, and nuclear magnetic resonance were further used to unravel its superior sodium storage performance. The scientific findings gained in this work are expected to serve as a guide for future design on high performance anode material for sodium-ion batteries.
Zhao, Yunshan; Liu, Dan; Chen, Jie; Zhu, Liyan; Belianinov, Alex; Ovchinnikova, Olga S; Unocic, Raymond R; Burch, Matthew J; Kim, Songkil; Hao, Hanfang; Pickard, Daniel S; Li, Baowen; Thong, John T L
2017-06-27
The ability to engineer the thermal conductivity of materials allows us to control the flow of heat and derive novel functionalities such as thermal rectification, thermal switching and thermal cloaking. While this could be achieved by making use of composites and metamaterials at bulk length-scales, engineering the thermal conductivity at micro- and nano-scale dimensions is considerably more challenging. In this work, we show that the local thermal conductivity along a single Si nanowire can be tuned to a desired value (between crystalline and amorphous limits) with high spatial resolution through selective helium ion irradiation with a well-controlled dose. The underlying mechanism is understood through molecular dynamics simulations and quantitative phonon-defect scattering rate analysis, where the behaviour of thermal conductivity with dose is attributed to the accumulation and agglomeration of scattering centres at lower doses. Beyond a threshold dose, a crystalline-amorphous transition was observed.
Zhao, Yunshan; Liu, Dan; Chen, Jie; Zhu, Liyan; Belianinov, Alex; Ovchinnikova, Olga S.; Unocic, Raymond R.; Burch, Matthew J.; Kim, Songkil; Hao, Hanfang; Pickard, Daniel S.; Li, Baowen; Thong, John T. L.
2017-01-01
The ability to engineer the thermal conductivity of materials allows us to control the flow of heat and derive novel functionalities such as thermal rectification, thermal switching and thermal cloaking. While this could be achieved by making use of composites and metamaterials at bulk length-scales, engineering the thermal conductivity at micro- and nano-scale dimensions is considerably more challenging. In this work, we show that the local thermal conductivity along a single Si nanowire can be tuned to a desired value (between crystalline and amorphous limits) with high spatial resolution through selective helium ion irradiation with a well-controlled dose. The underlying mechanism is understood through molecular dynamics simulations and quantitative phonon-defect scattering rate analysis, where the behaviour of thermal conductivity with dose is attributed to the accumulation and agglomeration of scattering centres at lower doses. Beyond a threshold dose, a crystalline-amorphous transition was observed. PMID:28653663
Zhao, Yunshan; Liu, Dan; Chen, Jie; ...
2017-06-27
The ability to engineer the thermal conductivity of materials allows us to control the flow of heat and derive novel functionalities such as thermal rectification, thermal switching and thermal cloaking. While this could be achieved by making use of composites and metamaterials at bulk length-scales, engineering the thermal conductivity at micro- and nano-scale dimensions is considerably more challenging. Here, we show that the local thermal conductivity along a single Si nanowire can be tuned to a desired value (between crystalline and amorphous limits) with high spatial resolution through selective helium ion irradiation with a well-controlled dose. The underlying mechanism ismore » understood through molecular dynamics simulations and quantitative phonon-defect scattering rate analysis, where the behaviour of thermal conductivity with dose is attributed to the accumulation and agglomeration of scattering centres at lower doses. Finally, we observed threshold dose beyond a crystalline-amorphous transition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yunshan; Liu, Dan; Chen, Jie
The ability to engineer the thermal conductivity of materials allows us to control the flow of heat and derive novel functionalities such as thermal rectification, thermal switching and thermal cloaking. While this could be achieved by making use of composites and metamaterials at bulk length-scales, engineering the thermal conductivity at micro- and nano-scale dimensions is considerably more challenging. Here, we show that the local thermal conductivity along a single Si nanowire can be tuned to a desired value (between crystalline and amorphous limits) with high spatial resolution through selective helium ion irradiation with a well-controlled dose. The underlying mechanism ismore » understood through molecular dynamics simulations and quantitative phonon-defect scattering rate analysis, where the behaviour of thermal conductivity with dose is attributed to the accumulation and agglomeration of scattering centres at lower doses. Finally, we observed threshold dose beyond a crystalline-amorphous transition.« less
NASA Astrophysics Data System (ADS)
Sonwalkar, V. S.; Butler, J.; Reddy, A.
2017-12-01
We present a new method to remotely measure magnetospheric electron density and ion composition using lightning generated nonducted whistlers observed on a satellite. Electron and ion densities play important roles in magnetospheric processes such as wave-particle interactions in the equatorial region and ion-neutral dynamics in the ionosphere, and are important for calculating space weather effects such as particle precipitation, GPS scintillations, and satellite drag. The nonducted whistler resulting from a single lightning appears on a spectrogram as a series of magnetospherically reflected traces with characteristic dispersion (time delay versus frequency) and upper and lower cut off frequencies. Ray tracing simulations show that these observed characteristics depend on the magnetospheric electron density and ion composition. The cut off frequencies depend on both electron density and ion composition. The dispersion depends strongly on electron density, but weakly on ion composition. Using an iterative process to fit the measured dispersion and cutoff frequencies to those obtained from ray tracing simulations, it is possible to construct the electron and ion density profiles of the magnetosphere. We demonstrate our method by applying it to nonducted whistlers observed on OGO 1 and Van Allen probe satellites. In one instance (08 Nov 1965), whistler traces observed on OGO 1 (L = 2.4, λm = -6°) displayed a few seconds of dispersion and cutoff frequencies in the 1-10 kHz range. Ray tracing analysis showed that a diffusive equilibrium density model with the following parameters can reproduce the observed characteristics of the whistler traces: 1900 el/cc at L=2.4 and the equator, 358,000 el/cc at F2 peak (hmF2 = 220 km), the relative ion concentrations αH+ = 0.2, αHe+ = 0.2, and αO+ = 0.6 at 1000 km, and temperature 1600 K. The method developed here can be applied to whistlers observed on the past, current, and future magnetospheric satellite missions carrying wave instrument (e.g. OGO, ISEE 1, DE 1, POLAR, CLUSTER, Van Allen Probes). The method can be easily extended to make tomographic measurements of magnetospheric electron and ion density by analyzing a series of whistlers observed along the satellite orbit.
NASA Astrophysics Data System (ADS)
Yang, Zhao; Su, Danyang; Yang, Jinping; Wang, Jing
2017-09-01
3d transition-metal oxides, especially Fe3O4, as anode materials for the lithium-ion batteries have been attracting intensive attentions in recent years due to their high energy capacity and low toxicity. A new Fe3O4/C composite with hollow spheres in porous three-dimensional (3D) nanostructure, which was synthesized by a facile solvothermal method using FeCl3·6H2O and porous spongy carbon as raw materials. The specific surface area and microstructures of composite were characterized by nitrogen adsorption-desorption isotherm method, FE-SEM and HR-TEM. A homogeneous distribution of hollow Fe3O4 spheres (diameter ranges from 120 nm to 150 nm) in the spongy carbon (pore size > 200 nm) conductive 3D-network significantly reduced the lithium-ion diffusion length and increased the electrochemical reaction area, and further more enhanced the lithium ion battery performance, such as discharge capacity and cycle life. As an anode material for the lithium-ion battery, the title composite exhibit excellent electrochemical properties. The Fe3O4/C composite electrode achieved a relatively high reversible specific capacity of 1450.1 mA h g-1 in the first cycle at 100 mA g-1, and excellent rate capability (69% retention at 1000 mA g-1) with good cycle stability (only 10% loss after 100 cycles).
Investigation of ionic conduction in PEO-PVDF based blend polymer electrolytes
NASA Astrophysics Data System (ADS)
Patla, Subir Kumar; Ray, Ruma; Asokan, K.; Karmakar, Sanat
2018-03-01
We investigate the effect of blend host polymer on solid polymer electrolyte (SPE) films doped with ammonium iodide (NH4I) salt using a variety of experimental techniques. Structural studies on the composite SPEs show that the blending of Poly(ethylene oxide) (PEO)-Poly(vinylidene fluoride) (PVDF) polymers in a suitable ratio enhances the amorphous fraction of the polymer matrix and facilitates fast ion conduction through it. We observe that the addition of a small amount of PVDF in the PEO host polymer enhances the ion - polymer interaction leading to more ion dissociation. As a result, the effective number of mobile charge carriers within the polymer matrix increases. Systematic investigation in these blend SPEs shows that the maximum conductivity (1.01 × 10-3 S/cm) is obtained for PEO - rich (80 wt. % PEO, 20 wt. % PVDF) composites at 35 wt. % NH4I concentration at room temperature. Interestingly, at higher salt concentrations (above 35 wt. %), the conductivity is found to decrease in this system. The reduction of conductivity at higher salt concentrations is the consequence of decrease in the carrier concentration due to the formation of an ion pair and ion aggregates. PVDF-rich compositions (20 wt. % PEO and 80 wt. % PVDF), on the other hand, show a very complex porous microstructure. We also observe a much lower ionic conductivity (maximum ˜ 10-6 S/cm at 15 wt. % salt) in these composite systems relative to PEO-rich composites.
Chemical Stability of Bioglass in Simulated Oral Environment.
Sm, Moazzami; R, Sadid Zadeh; K, Kianoush; M, Sarmad; F, Barani Karbaski; R, Amiri Daluyi; Rb, Kazemi
2016-09-01
Bioglasses are a series of biocompatible dental materials, which are considered as light conducting inserts in resin composite restorations. Consequently, their chemical stability is more essential when they are used in conjunction with resin composite. The aim of this study was to evaluate and compare the chemical stability of Bioglass with dental porcelain and resin composite by determining the amount of released K+, Na+, Ca2+ ions and silicone elements from these materials as a result of exposure to tested solutions with different pH levels including: Sodium Bicarbonate [SB, (pH=9.2)], Sodium Buffer Lactate [SBL, (pH=2.4)], Acetic Acid [AA, (pH=2.4)], and Distilled Water [DW, (pH=6.2)]. In this experimental study, forty 2.0 × 4.0 cylindrical rods for each tested material group (Dental porcelain, Resin composite and Bioglass) were prepared. They were divided into four subgroups of 10 rods each, which immersed in one of the four testing solutions in a designated container. The containers were stored at 50°C and 100% humidity for one week. The released ions were measured by using a spectrophotometer (µg/cm 2 /ml). The data were statistically analyzed by nonparametric Kruskal-Wallis H test. It was observed that the tested materials released ions at different levels of concentration. The significant amounts of Sodium, Calcium, and Silicon ions release were measured in Bioglass subgroups in all the tested solutions ( p < 0.001). Potassium ion release from dental porcelain was the largest in all solutions except for AA in which Bioglass had the greatest potassium ion release ( p < 0.001). A greater structural instability was observed for Biogalss group than dental porcelain and resin composite in testing solutions with different pH levels.
NASA Astrophysics Data System (ADS)
Desai, M. I.; Ogasawara, K.; Ebert, R. W.; McComas, D. J.; Allegrini, F.; Weidner, S. E.; Alexander, N.; Livi, S. A.
2015-05-01
We have developed a novel concept for a Compact Dual Ion Composition Experiment (CoDICE) that simultaneously provides high quality plasma and energetic ion composition measurements over 6 decades in ion energy in a wide variety of space plasma environments. CoDICE measures the two critical ion populations in space plasmas: (1) mass and ionic charge state composition and 3D velocity and angular distributions of ˜10 eV/q-40 keV/q plasma ions—CoDICE-Lo and (2) mass composition, energy spectra, and angular distributions of ˜30 keV-10 MeV energetic ions—CoDICE-Hi. CoDICE uses a common, integrated Time-of-Flight (TOF) versus residual energy (E) subsystem for measuring the two distinct ion populations. This paper describes the CoDICE design concept, and presents results of the laboratory tests of the TOF portion of the TOF vs. E subsystem, focusing specifically on (1) investigation of spill-over and contamination rates on the start and stop microchannel plate (MCP) anodes vs. secondary electron steering and focusing voltages, scanned around their corresponding model-optimized values, (2) TOF measurements and resolution and angular resolution, and (3) cross-contamination of the start and stop MCPs' singles rates from CoDICE-Lo and -Hi, and (4) energy resolution of avalanche photodiodes near the lower end of the CoDICE-Lo energy range. We also discuss physical effects that could impact the performance of the TOF vs. E subsystem in a flight instrument. Finally, we discuss advantages of the CoDICE design concept by comparing with capabilities and resources of existing flight instruments.
Desai, M I; Ogasawara, K; Ebert, R W; McComas, D J; Allegrini, F; Weidner, S E; Alexander, N; Livi, S A
2015-05-01
We have developed a novel concept for a Compact Dual Ion Composition Experiment (CoDICE) that simultaneously provides high quality plasma and energetic ion composition measurements over 6 decades in ion energy in a wide variety of space plasma environments. CoDICE measures the two critical ion populations in space plasmas: (1) mass and ionic charge state composition and 3D velocity and angular distributions of ∼10 eV/q-40 keV/q plasma ions—CoDICE-Lo and (2) mass composition, energy spectra, and angular distributions of ∼30 keV-10 MeV energetic ions—CoDICE-Hi. CoDICE uses a common, integrated Time-of-Flight (TOF) versus residual energy (E) subsystem for measuring the two distinct ion populations. This paper describes the CoDICE design concept, and presents results of the laboratory tests of the TOF portion of the TOF vs. E subsystem, focusing specifically on (1) investigation of spill-over and contamination rates on the start and stop microchannel plate (MCP) anodes vs. secondary electron steering and focusing voltages, scanned around their corresponding model-optimized values, (2) TOF measurements and resolution and angular resolution, and (3) cross-contamination of the start and stop MCPs' singles rates from CoDICE-Lo and -Hi, and (4) energy resolution of avalanche photodiodes near the lower end of the CoDICE-Lo energy range. We also discuss physical effects that could impact the performance of the TOF vs. E subsystem in a flight instrument. Finally, we discuss advantages of the CoDICE design concept by comparing with capabilities and resources of existing flight instruments.
NASA Astrophysics Data System (ADS)
David, Lamuel; Singh, Gurpreet
2013-03-01
We study synthesis of free-standing polymer derived SiCN/ MoS2 composite paper anode for Li-ion battery application. This was achieved following a two-step approach: First, polysilazane was interfaced with exfoliated MoS2 nanosheets which upon pyrolysis resulted in SiCN/MoS2 composite. Second, dispersion of SiCN/MoS2 in isopropanol was vacuum filtered resulting in formation of a self-standing composite paper. Physical and chemical characterization of the composite was carried out by use of electron microscopy, Fourier transform infrared spectroscopy (FT-IR) and Thermo-gravimetric analysis (TGA). FT-IR data indicated complete conversion of polysilazane precursor to SiCN ceramic, while electron microscopy confirmed layered structure of the paper. Thermo-gravimetric analysis showed enhanced thermodynamic stability of the composite paper up to 800 °C. Electrochemical analysis of SiCN/MoS2 composite paper anodes showed that Li-ion can reversible intercalate in the voltage range of 0-2.5 V with a first cycle discharge capacity of 770 mAh/g at a current density of 100 mA/g.
Formation of carbon nitride — a novel hard coating
NASA Astrophysics Data System (ADS)
Chubaci, J. F. D.; Ogata, K.; Fujimoto, F.; Watanabe, S.; Biersack, J. P.
1996-08-01
Increasing efforts have been reported on the formation of carbon nitride. Vapor deposition and simultaneous ion bombardment from accelerators or plasmas (IBAD) proved to be a successful technique for the preparation of this material. In our preparation, the properties of the films were controlled by varying the nitrogen ion energy and the flux composition ratio {C}/{N}. The deposited films with high nitrogen incorporation ( {C}/{N} = 0.6 ˜ 0.7 ) and low implantation energies (< 1.0 keV) showed high Knoop hardnesses of up to 63 GPa. XPS and FT-IR measurements indicated a high fraction of triple bonded CN. X-ray diffraction showed an amorphous structure. Computer simulations by the dynamic TRIM code are used to study the formation parameters, nitrogen ion energy and {C}/{N} ratio. This turned on to be useful in understanding the formation process of the carbon nitride films grown on silicon wafers, fused silica and tungsten carbide substrates.
EDITORIAL: Nanotechnological selection Nanotechnological selection
NASA Astrophysics Data System (ADS)
Demming, Anna
2013-01-01
At the nanoscale measures can move from a mass-scale analogue calibration to counters of discrete units. The shift redefines the possible levels of control that can be achieved in a system if adequate selectivity can be imposed. As an example as ionic substances pass through nanoscale pores, the quantity of ions is low enough that the pore can contain either negative or positive ions. Yet precise control over this selectivity still raises difficulties. In this issue researchers address the challenge of how to regulate the ionic selectivity of negative and positive charges with the use of an external charge. The approach may be useful for controlling the behaviour, properties and chemical composition of liquids and has possible technical applications for nanofluidic field effect transistors [1]. Selectivity is a critical advantage in the administration of drugs. Nanoparticles functionalized with targeting moieties can allow delivery of anti-cancer drugs to tumour cells, whilst avoiding healthy cells and hence reducing some of the debilitating side effects of cancer treatments [2]. Researchers in Belarus and the US developed a new theranostic approach—combining therapy and diagnosis—to support the evident benefits of cellular selectivity that can be achieved when nanoparticles are applied in medicine [3]. Their process uses nanobubbles of photothermal vapour, referred to as plasmonic nanobubbles, generated by plasmonic excitations in gold nanoparticles conjugated to diagnosis-specific antibodies. The intracellular plasmonic nanobubbles are controlled by laser fluence so that the response can be tuned in individual living cells. Lower fluence allows non-invasive high-sensitive imaging for diagnosis and higher fluence can disrupt the cellular membrane for treatments. The selective response of carbon nanotubes to different gases has leant them to be used within various different types of sensors, as summarized in a review by researchers at the University of California, Riverside [4]. Mangu et al in the US have developed highly sensitive and selective room temperature gas sensors made from composites of multiwalled carbon nanotubes and polymers [5]. They report sensitivities as high as 28% when exposed to 100 ppm of NH3 and 29.8% to 100 ppm of NO2. Nanopore structures are also showing increasing promise for sensing and biophysical characterization applications, in particular DNA [6]. An applied potential drives negatively charged DNA molecules through nanopores in a membrane and gives rise to current blockage pulses that are characteristic of specific analytes. Solid-state nanopore structures hold advantages over biological pores, such as those in α-haemolysin protein, as they are more resilient to experimental conditions, and ideally should also allow control of the nanopore diameter, channel length and surface composition. Asghar and colleagues have now reported a method that enables just that, 'a rapid solid-state nanopore fabrication and controlled pore shrinking process which does provide simultaneous in situ control of surface properties' [7]. In addition, they demonstrate the viability of the approach for single molecule sensor applications using double-stranded DNA. In this issue, researchers in China report on a different approach which allows control over the transport of ionic fluids through nanopore-type structures. They describe the rapid field effect control of electrical conductance in single nanotube nanofluidic transistors [1]. Rather than seeking to control the charge of thenanotube inner surface, Gong and colleagues control polarity switching based on negative and positive ion selectivity using an external charge. 'The polarity of the nanotube can be reversed and tuned by the external field, which could find interesting applications in the field of ion separation and energy conversion', they explain, adding that the system may also find a use as a voltage sensor through the detection of the type of ions across the channel. The aim of achieving selectivity encompasses a huge range of fields in nanotechnology research, from sensing and medicine to nanoelectronics and self-assembly. As our understanding of how nanosystems behave deepens, so too does the hunger to improve our capabilities, allowing greater precision and control in manipulating these systems. Selectivity is far from trivial when shrinking to systems of nanoscale dimensions, but the range of opportunities it brings just keeps on growing. References [1] Gong X, Li J, Guo C, Xu K and Hui Y 2012 Molecular switch for tuning ions across nanopores by an external electric field Nanotechnology 24 025502 [2] Brannon-Peppas L and Blanchette J O 2004 Nanoparticle and targeted systems for cancer therapy Adv. Drug Deliv. Rev 56 1649-59 [3] Lukianova-Hleb E Y, Hanna E Y, Hafner J H and Lapotko D O 2010 Tunable plasmonic nanobubbles for cell theranostics Nanotechnology 21 085102 [4] Zhang T, Mubeen S, Myung N V and Deshusses M A 2008 Recent progress in carbon nanotube-based gas sensors Nanotechnology 19 332001 [5] Mangu R, Rajaputra S and Singh V P 2011 MWCNT-polymer composites as highly sensitive and selective room temperature gas sensors Nanotechnology 22 215502 [6]Meller A, Nivon L, Brandin E, Golovchenko J and Branton D 2000 Rapid nanopore discrimination between single polynucleotide molecules Proc. Natl Acad. Sci. 97 1079-84 [7] Asghar W, Ilyas A, Deshmukh R R, Sumitsawan S, Timmons R B and Iqbal S M 2011 Pulsed plasma polymerization for controlling shrinkage and surface composition of nanopores Nanotechnology 22 285304
NASA Astrophysics Data System (ADS)
Jiang, Kedan; Liu, Yun; Pan, Yefei; Wang, Ru; Hu, Panbing; He, Rujia; Zhang, Lingli; Tong, Guoxiu
2017-05-01
An easy metal-ion-steered solvothermal method was developed for the one-step synthesis of monodisperse, uniform NixFe3-xO4 polycrystalline nanospheres with tunable sphere diameter (40-400 nm) and composition (0 ≤ x ≤ 0.245) via changing just Ni2+/Fe3+ molar ratio (γ). With g increased from 0:1 to 2:1, sphere diameter gradually decreased and crystal size exhibited an inversed U-shaped change tendency, followed by increased Ni/Fe atom ratio from 0% to 0.0888%. An in situ-reduction, coordination-precipitation transformation mechanism was proposed to interpret the metal-ion-steered growth. Size- and composition-dependent static magnetic and microwave absorbing properties were systematically investigated. Saturation magnetization declines with g in a Boltzmann model due to the changes of crystal size, sphere diameter, and Ni content. The coercivity reaches a maximum at γ = 0.75:1 because of the critical size of Fe3O4 single domain (25 nm). Studies on microwave absorption reveal that 150-400 nm Fe3O4 nanospheres mainly obey the quarter-wavelength cancellation model with the single-band absorption; 40-135 nm NixFe3-xO4 nanospheres (0 ≤ x ≤ 0.245) obey the one and three quarter-wavelength cancellation model with the multi-band absorption. 150 nm Fe3O4 nanospheres exhibit the optimal EM wave-absorbing property with an absorbing band of 8.94 GHz and the maximum RL of -50.11 dB.
A Spinel-integrated P2-type Layered Composite: High-rate Cathode for Sodium-ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianming; Yan, Pengfei; Kan, Wang Hay
2016-01-14
Sodium-ion batteries (SIB) are being intensively investigated, owing to the natural abundance and low cost of Na resources. However, the SIBs still suffer from poor rate capability due to the large ionic radius of Na+ ion and the significant kinetic barrier to Na+-ion transport. Here, we present an Fd-3m spinel-integrated P2-type layered composite (P2 + Fd-3m) material as a high-rate cathode for SIBs. The P2 + Fd-3m composite material Na0.50Ni1/6Co1/6Mn2/3O2 shows significantly enhanced discharge capacity, energy density, and rate capability as compared to the pure P2-type counterpart. The composite delivers a high capacity of 85 mA h g-1 when dischargingmore » at a very high current density of 1500 mA g-1 (10C rate) between 2.0 and 4.5 V, validating it as a promising cathode candidate for high-power SIBs. The superior performance is ascribed to the improved kinetics in the presence of the integrated-spinel phase, which facilitates fast electron transport to coordinate with the timely Na+-ion insertion/extraction. The findings of this work also shed light on the importance of developing lattice doping, surface coating, and electrolyte additives to further improve the structural and interfacial stability of P2-type cathode materials and fully realize their practical applications in sodium-ion batteries.« less
Linear Ion Trap for the Mars Organic Molecule Analyzer
NASA Astrophysics Data System (ADS)
Brinckerhoff, William; Arevalo, Ricardo; Danell, Ryan; van Amerom, Friso; Pinnick, Veronica; Li, Xiang; Hovmand, Lars; Getty, Stephanie; Mahaffy, Paul; Goesmann, Fred; Steininger, Harald
2014-05-01
The 2018 ExoMars rover mission includes the Mars Organic Molecule Analyzer (MOMA) investigation. MOMA will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from radiative and oxidative degradation. When combined with the complement of instruments in the rover's Pasteur Payload, MOMA has the potential to reveal the presence of a wide range of organics preserved in a variety of mineralogical environments, and to begin to understand the structural character and potential origin of those compounds. MOMA includes a linear, or 2D, ion trap mass spectrometer (ITMS) that is designed to analyze molecular composition of (i) gas evolved from pyrolyzed powder samples and separated on a gas chromatograph and (ii) ions directly desorbed from solid samples at Mars ambient pressure using a pulsed laser and a fast-valve capillary ion inlet system. This "dual source" approach gives MOMA unprecedented breadth of detection over a wide range of molecular weights and volatilities. Analysis of nonvolatile, higher-molecular weight organics such as carboxylic acids and peptides even in the presence of significant perchlorate concentrations is enabled by the extremely short (~1 ns) pulses of the desorption laser. Use of the ion trap's tandem mass spectrometry mode permits selective focus on key species for isolation and controlled fragmentation, providing structural analysis capabilities. The flight-like engineering test unit (ETU) of the ITMS, now under construction, will be used to verify breadboard performance with high fidelity, while simultaneously supporting the development of analytical scripts and spectral libraries using synthetic and natural Mars analog samples guided by current results from MSL. ETU campaign data will strongly advise the specifics of the calibration applied to the MOMA flight model as well as the science operational procedures during the mission.
NASA Astrophysics Data System (ADS)
Khudik, Vladimir; Yi, S. Austin; Shvets, Gennady
2012-10-01
Acceleration of ions in the two-specie composite target irradiated by a circularly polarized laser pulse is studied analytically and via particle-in-cell (PIC) simulations. A self-consistent analytical model of the composite target is developed. In this model, target parameters are stationary in the center of mass of the system: heavy and light ions are completely separated from each other and form two layers, while electrons are bouncing in the potential well formed by the laser ponderomotive and electrostatic potentials. They are distributed in the direction of acceleration by the Boltzmann law and over velocities by the Maxwell-Juttner law. The laser pulse interacts directly only with electrons in a thin sheath layer, and these electrons transfer the laser pressure to the target ions. In the fluid approximation it is shown, the composite target is still susceptible to the Rayleigh-Taylor instability [1]. Using PIC simulations we found the growth rate of initially seeded perturbations as a function of their wavenumber for different composite target parameters and compare it with analytical results. Useful scaling laws between this rate and laser pulse pressure and target parameters are discussed.[4pt] [1] T.P. Yu, A. Pukhov, G. Shvets, M. Chen, T. H. Ratliff, S. A. Yi, and V. Khudik, Phys. Plasmas, 18, 043110 (2011).
Yuan, Ruoxin; Kang, Wenbin; Zhang, Chuhong
2018-06-02
In an effort to explore the use of organic high-performance lithium ion battery cathodes as an alternative to resolve the current bottleneck hampering the development of their inorganic counterparts, a rational strategy focusing on the optimal composition of covalent triazine-based frameworks (CTFs) with carbon-based materials of varied dimensionalities is delineated. Two-dimensional reduced graphene oxide (rGO) with a compatible structural conformation with the layered CTF is the most suitable scaffold for the tailored mesopores in the polymeric framework, providing outstanding energy storage ability. Through facile ionothermal synthesis and structure engineering, the obtained CTF-rGO composite possesses a high specific surface area of 1357.27 m²/g, and when used as a lithium ion battery cathode it delivers a large capacity of 235 mAh/g in 80 cycles at 0.1 A/g along with a stable capacity of 127 mAh/g over 2500 cycles at 5 A/g. The composite with modified pore structure shows drastically improved performance compared to a pristine CTF, especially at large discharge currents. The CTF-rGO composite with excellent capacity, stability, and rate performance shows great promise as an emerging high-performance cathode that could revolutionize the conventional lithium-ion battery industry.
Latitudinal distribution of the Jovian plasma sheet ions observed by Juno JADE-I
NASA Astrophysics Data System (ADS)
Kim, T. K. H.; Valek, P. W.; McComas, D. J.; Allegrini, F.; Bagenal, F.; Bolton, S. J.; Connerney, J. E. P.; Ebert, R. W.; Levin, S.; Louarn, P.; Pollock, C. J.; Ranquist, D. A.; Szalay, J.; Thomsen, M. F.; Wilson, R. J.
2017-12-01
The Jovian plasma sheet is a region where the centrifugal force dominates the heavy ion plasma. Properties of the plasma sheet ions near the equatorial plane have been studied with in-situ measurements from the Pioneer, Voyager, and Galileo spacecraft. However, the ion properties for the off-equator regions are not well known due to the limited measurements. Juno is the first polar orbiting spacecraft that can investigate the high latitude region of the Jovian magnetosphere. With Juno's unique trajectory, we will investigate the latitudinal distribution of the Jovian plasma sheet ions using measurements from the Jovian Auroral Distributions Experiment Ion sensor (JADE-I). JADE-I measures an ion's energy-per-charge (E/Q) from 0.01 keV/q to 46.2 keV/q with an electrostatic analyzer (ESA) and a mass-per-charge (M/Q) up to 64 amu/q with a carbon-foil-based time-of-flight (TOF) mass spectrometer. We have shown that the ambiguity between and (both have M/Q of 16) can be resolved in JADE-I using a semi-empirical simulation tool based on carbon foil effects (i.e., charge state modification, angular scattering, and energy loss) from incident ions passing through the TOF mass spectrometer. Based on the simulation results, we have developed an Ion Composition Analysis Tool (ICAT) that determines ion composition at each energy step of JADE-I (total of 64 steps). The velocity distribution for each ion species can be obtained from the ion composition as a function of each energy step. Since there is an ambipolar electric field due to mobile electrons and equatorially confined heavy ions, we expect to see acceleration along the field line. This study will show the species separated velocity distribution at various latitudes to investigate how the plasma sheet ions evolve along the field line.
Ganapathy, Swapna; van Eck, Ernst R H; Kentgens, Arno P M; Mulder, Fokko M; Wagemaker, Marnix
2011-12-23
The power density of lithium-ion batteries requires the fast transfer of ions between the electrode and electrolyte. The achievable power density is directly related to the spontaneous equilibrium exchange of charged lithium ions across the electrolyte/electrode interface. Direct and unique characterization of this charge-transfer process is very difficult if not impossible, and consequently little is known about the solid/liquid ion transfer in lithium-ion-battery materials. Herein we report the direct observation by solid-state NMR spectroscopy of continuous lithium-ion exchange between the promising nanosized anatase TiO(2) electrode material and the electrolyte. Our results reveal that the energy barrier to charge transfer across the electrode/electrolyte interface is equal to or greater than the barrier to lithium-ion diffusion through the solid anatase matrix. The composition of the electrolyte and in turn the solid/electrolyte interface (SEI) has a significant effect on the electrolyte/electrode lithium-ion exchange; this suggests potential improvements in the power of batteries by optimizing the electrolyte composition. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chandra, A.
2013-07-01
Synthesis and ion transport characterization of a new Ag+ ion conducting glass-polymer electrolyte (GPE) films: (1- x) PEO: x [0.8(0.75AgI:0.25AgCl):0.2(Ag2O:V2O5)], where 0 < x < 50 wt%, are reported. The composition: 70PEO: 30[0.8(0.75AgI:0.25AgCl):0.2(Ag2O:V2O5)] with conductivity ( σ) 7.7 × 10-7 Ω-1 cm-1 is identified as highest conducting composition referred to as the optimum conducting composition (OCC). Approximately two and half orders of conductivity enhancement have been achieved in OCC from that of the pure polymer poly(ethylene oxide). The glass-polymer complexation is confirmed by the XRD, FTIR, DSC and TGA techniques. The ion transport behavior has been reported on the basis of experimental measurements on some basic ionic parameters. A solid state polymeric battery has been fabricated by using GPE OCC as an electrolyte and their important cell parameters have been also calculated from the discharge profiles.
Heavy ion composition in the inner heliosphere: Predictions for Solar Orbiter
NASA Astrophysics Data System (ADS)
Lepri, S. T.; Livi, S. A.; Galvin, A. B.; Kistler, L. M.; Raines, J. M.; Allegrini, F.; Collier, M. R.; Zurbuchen, T.
2014-12-01
The Heavy Ion Sensor (HIS) on SO, with its high time resolution, will provide the first ever solar wind and surpathermal heavy ion composition and 3D velocity distribution function measurements inside the orbit of Mercury. These measurements will provide us the most in depth examination of the origin, structure and evolution of the solar wind. The near co-rotation phases of the orbiter will enable the most accurate mapping of in-situ structures back to their solar sources. Measurements of solar wind composition and heavy ion kinetic properties enable characterization of the sources, transport mechanisms and acceleration processes of the solar wind. This presentation will focus on the current state of in-situ studies of heavy ions in the solar wind and their implications for the sources of the solar wind, the nature of structure and variability in the solar wind, and the acceleration of particles. Additionally, we will also discuss opportunities for coordinated measurements across the payloads of Solar Orbiter and Solar Probe in order to answer key outstanding science questions of central interest to the Solar and Heliophysics communities.
NASA Technical Reports Server (NTRS)
Balsiger, H.
1981-01-01
The composition of hot magnetospheric plasma through different regions of the magnetosphere is described on the basis of mass spectrometer measurements by the GEOS 1, GEOS 2, and ISEE-1 spacecraft. Coordinated composition measurements on the different spacecraft also provide information on the spatial and temporal characteristics of the plasma during storms. Data on ion origins are also provided.
NASA Technical Reports Server (NTRS)
Zipf, E. C., Jr.
1974-01-01
Results obtained by rocket-borne optical spectrometry are presented. Composition measurements and auroral studies are reported. The production of N (D-2) atoms by photo-absorption processes, and by electron impact excitation of N2 are discussed along with vibrationally excited CO2(+) ions in planetary atmospheres.
NASA Technical Reports Server (NTRS)
Goel, M. K.; Rao, B. C. N.; Chandra, S.; Maier, E. J.
1977-01-01
Magnetic-storm phenomena at low latitudes are discussed based on ion-composition /O(+), H(+), He(+)/ and electron- and ion-temperature measurements from the OGO-4 and Isis-2 satellites. For the moderately severe storms considered, the effects of changes in the neutral composition and in the neutral and plasma temperatures are discussed, and it is shown that these changes would not produce the observed O(+) increase during storms at low latitudes. It is suggested that the observed increase in O(+) in the topside region is a manifestation of the vertical lifting of ionization of the F-layer. The argument in favor of vertical lifting is further substantiated by the observed changes in the F-region critical frequency and the height parameters.
NASA Astrophysics Data System (ADS)
Noh, Taegeun; Tak, Yong Suk; Nam, Jaedo; Jeon, Jaewook; Kim, Hunmo; Choi, Hyoukryeol; Bae, Sang Sik
2001-07-01
Behaviors of nafion-based actuators are significantly affected by interfacial area between electrode and polymer electrolyte. Replication method was utilized to manufacture a large surface-area composite actuator. Etched aluminum foil was used as a template for replication using liquid nafion solution. Measurement of double layer charging and scanning electron microscopy indicated that interfacial area was greatly increased by replication method. Higher surface area induced a better bending performance of ionic polymer metal composite (IPMC). In parallel, the effect of cations on IPMC was interpreted with constant current experiment, linear sweep voltammetry and electrochemical impedance spectroscopy. For univalent cations, ion size is the most influencing parameter on ionic mobility inside membrane. However, ion-ion interaction affects an ionic mobility for divalent cations.
Observations of thermal ion influxes about the space shuttle
NASA Technical Reports Server (NTRS)
Grebowsky, Joe M.; Schaefer, A.
1990-01-01
Ion mass spectrometer measurements made as part of the University of Iowa's Plasma Diagnostic Package on the STS-3 and Spacelab 2 Space Shuttle missions sampled a variety of ion composition and collected ion current responses to gas emissions from the vehicle. The only other shuttle ion measurements were made by an Air Force Geophysics Laboratory (AFGL) quadrupole spectrometer flown on STS-4. Gas emissions change the distribution of the incoming plasma through scattering and charge transfer processes. A background flux of contaminant ion species (mostly relating to water) always exists in the near vicinity of the shuttle with a magnitude which is dependent on the look direction of the spectrometer but which varies differently with changes in the angle of attack than that of the ambient ions. There is a near shuttle wake cavity in the contaminant ion distributions which has a different spatial configuration than the wake of the ambient ions. Although water dumps produce the most persistent ion perturbations, the sources for ion current modification were best delineated from measurements made when only one or two of the Reaction Control System thrusters fired for a relatively long duration. Contaminant ion perturbations associated with such firings were observed to persist for the order of a second after the cessation of the firings. The dense thruster plumes are efficient collisional, charge exchange barriers to the passage of ambient ions. Collected ion current perturbations were more evident for firings of the rear verniers, whose plumes scatter off projecting surfaces, than for the nose thrusters. The effect of the Vernier firings was found to depend not only on the location and attitude of the spectrometer with respect to the shuttle and thruster plume direction, but also on the orientation of the local magnetic field with respect to the shuttle velocity.
In Situ Measurements of Meteoric Ions. Chapter 8
NASA Technical Reports Server (NTRS)
Grebowsky, Joseph M.; Aikin, Arthur C.; Vondrak, Richard R. (Technical Monitor)
2001-01-01
Metal ions found in the atmosphere above 60 km are the result of incoming meteoroid atmospheric ablation. Layers of metal ions are detected by sounding rocket in situ mass spectrometric sampling in the 80 to 130 km region, which coincides with the altitude region where meteors are observed. Enhancements of metal ion concentrations occur during meteor showers. Even outside of shower periods, the metal ion altitude profiles vary from measurement to measurement. Double layers are frequent at middle latitudes. More than 40 different meteoric atomic and molecular ions, including isotopes, have been detected. Atmospheric metal ions on average have an abundance that matches chrondritic material, the same composition as the early solar system. However there are frequently local departures from this composition due to differential ablation, species dependent chemistry and mass dependent ion transport. Metal ions react with atmospheric O2, O, O3, H2O and H2O2 to form oxygenated and hydrogenated ionic compounds. Metal atomic ions at high altitudes have long lifetimes. As a result, these ions, in the presence of Earth's magnetic field, are transported over long distances by upper atmospheric winds and ionospheric electric fields. Satellite measurements have detected metal ions as high as, approximately 1000 km and have revealed circulation of the ions on a global scale.
NASA Astrophysics Data System (ADS)
Okuyama, Katsushi; Komatsu, Hisanori; Yamamoto, Hiroko; Pereira, Patricia N. R.; Bedran-Russo, Ana K.; Nomachi, Masaharu; Sato, Takahiro; Sano, Hidehiko
2011-10-01
The use of fluoride for the prevention of caries is based on the transformation of hydroxylapatite to fluoroapatite in the presence of fluoride ions, thereby strengthening tooth structure. Adhesion of dentin and resin composite (tooth-colored restoration material) requires a dentin bonding system, since resin composite is not able to adhere to dentin directly. Demineralization of dentin by acid etching is an important step in the dentin bonding system, however, demineralization also introduces weaknesses in tooth structure. If the demineralized dentin could be strengthened by the application of fluoride, then the dentin-resin composite bond strength might also improve. To test this hypothesis, the present study evaluated the influence of fluoride applications on the strength of the dentin-resin composite bond by (1) tensile strength testing analyses, (2) SEM analyses of tooth structure, and (3) detection of calcium (Ca) and fluorine (F) distribution patterns by micro proton-induced X-ray emission (μ-PIXE) and micro proton-induced gamma-ray emission (μ-PIGE) analyses conducted at the Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) at the Takasaki Advanced Radiation Research Institute (TARRI). In this study, the dentin in extracted human molars was exposed by grinding and the dentin was etched with 35% phosphoric acid. Fluoride was applied at two concentrations, 0.022% (100 ppm F) and 2.21% (10,000 ppm F) NaF solution, for two time periods, 30 and 60 s, prior to bonding the resin composite with the treated dentin. Controls were prepared in the same manner, but without the fluoride application. Bond strength was measured with a micro-tensile testing unit, and the fluorine and calcium distributions at the interface between dentin and resin composite were detected by μ-PIGE and μ-PIXE analysis, respectively. Results indicate that the 10,000 ppm F applications resulted in higher bond strengths than observed in either the 100 ppm F applications or the control group. In addition, PIGE analyses showed high concentrations of fluorine in the hybrid bonding layer of the 10,000 ppm F samples, suggesting that the fluorine contributes to the strength of the dentin-resin composite bond. Detection of fluoroapatite within the hybrid bonding layer suggests that bond strength involves remineralization processes.
Inference of the ring current ion composition by means of charge exchange decay
NASA Technical Reports Server (NTRS)
Smith, P. H.; Hoffman, R. A.; Bewtra, N. K.
1981-01-01
The analysis of data from the Explorer 45 (S3-A) electrostatic analyzer in the energy range 5-30 keV has provided some new results on the ring current ion composition. It has been well established that the storm time ring current has a decay time of several days, during which the particle fluxes decrease nearly monotonically. By analyzing the measured ion fluxes during the several day storm recovery period and assuming that beside hydrogen other ions were present and that the decays were exponential in nature, three separate lifetimes for the ions were established. These fitted decay lifetimes are in excellent agreement with the expected charge exchange decay lifetimes for H(+), O(+) and He(+) in the energy and L value range of the data.
Solid lithium ion conducting electrolytes and methods of preparation
Narula, Chaitanya K; Daniel, Claus
2013-05-28
A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.
Solid lithium ion conducting electrolytes and methods of preparation
Narula, Chaitanya K.; Daniel, Claus
2015-11-19
A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.
Stähli, Christoph; Muja, Naser; Nazhat, Showan N
2013-02-01
The success of tissue engineering is dependent on rapid scaffold vascularization after engraftment. Copper ions are well known to be angiogenic but exhibit cytotoxicity at elevated doses. The high sensitivity to copper concentration underlines the need of a controlled release mechanism. This study investigated the effect of copper ions released from phosphate-based glasses (PGs) on human umbilical vein endothelial cells (HUVECs) under standard growth conditions (SGC), as well as in a reduced nutrient environment (RNE) with decreased bovine serum and growth factor concentrations to approximate conditions in the core of large volume scaffolds where nutrient diffusion is limited. Initially, HUVECs were exposed to a range of CuCl(2) concentrations in order to identify an optimal response in terms of their metabolism, viability, and apoptotic activity. Under SGC, HUVEC metabolic activity and viability were reduced in a dose-dependent manner in the presence of 0.44-12 ppm Cu(2+). In contrast, HUVEC death induced by the RNE was delayed by an optimal dose of 4 ppm Cu(2+), which was associated with a down-regulation of apoptosis as evidenced by caspase-3/7 activity. Copper ion release from soluble PGs of the formulation 50P(2)O(5)-30CaO-(20-x)Na(2)O-xCuO [mol%] (x=0, 1, 5 and 10) demonstrated a controllable increase with CuO content. The presence of 4 ppm copper ions released from the 10% CuO PG composition reproduced the delay in HUVEC death in the RNE, suggesting the potential of these materials to extend survival of transplanted endothelial cells in large volume scaffolds.
Combining Bioactive Multifunctional Dental Composite with PAMAM for Root Dentin Remineralization
Xiao, Shimeng; Liang, Kunneng; Weir, Michael D.; Cheng, Lei; Liu, Huaibing; Zhou, Xuedong; Ding, Yi; Xu, Hockin H. K.
2017-01-01
Objectives. The objectives of this study were to: (1) develop a bioactive multifunctional composite (BMC) via nanoparticles of amorphous calcium phosphate (NACP), 2-methacryloyloxyethyl phosphorylcholine (MPC), dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of silver (NAg); and (2) investigate the effects of combined BMC + poly (amido amine) (PAMAM) on remineralization of demineralized root dentin in a cyclic artificial saliva/lactic acid environment for the first time. Methods. Root dentin specimens were prepared and demineralized with 37% phosphoric acid for 15 s. Four groups were prepared: (1) root dentin control; (2) root dentin with BMC; (3) root dentin with PAMAM; (4) root dentin with BMC + PAMAM. Specimens were treated with a cyclic artificial saliva/lactic acid regimen for 21 days. Calcium (Ca) and phosphate (P) ion concentrations and acid neutralization were determined. The remineralized root dentin specimens were examined via hardness testing and scanning electron microscopy (SEM). Results. Mechanical properties of BMC were similar to commercial control composites (p = 0.913). BMC had excellent Ca and P ion release and acid-neutralization capability. BMC or PAMAM alone each achieved slight mineral regeneration in demineralized root dentin. The combined BMC + PAMAM induced the greatest root dentin remineralization, and increased the hardness of pre-demineralized root dentin to match that of healthy root dentin (p = 0.521). Significance. The excellent root dentin remineralization effects of BMC + PAMAM were demonstrated for the first time. BMC + PAMAM induced effective and complete root dentin remineralization in an acid challenge environment. The novel BMC + PAMAM method is promising for Class V and other restorations to remineralize and protect tooth structures. PMID:28772450
Combining Bioactive Multifunctional Dental Composite with PAMAM for Root Dentin Remineralization.
Xiao, Shimeng; Liang, Kunneng; Weir, Michael D; Cheng, Lei; Liu, Huaibing; Zhou, Xuedong; Ding, Yi; Xu, Hockin H K
2017-01-22
Objectives . The objectives of this study were to: (1) develop a bioactive multifunctional composite (BMC) via nanoparticles of amorphous calcium phosphate (NACP), 2-methacryloyloxyethyl phosphorylcholine (MPC), dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of silver (NAg); and (2) investigate the effects of combined BMC + poly (amido amine) (PAMAM) on remineralization of demineralized root dentin in a cyclic artificial saliva/lactic acid environment for the first time. Methods . Root dentin specimens were prepared and demineralized with 37% phosphoric acid for 15 s. Four groups were prepared: (1) root dentin control; (2) root dentin with BMC; (3) root dentin with PAMAM; (4) root dentin with BMC + PAMAM. Specimens were treated with a cyclic artificial saliva/lactic acid regimen for 21 days. Calcium (Ca) and phosphate (P) ion concentrations and acid neutralization were determined. The remineralized root dentin specimens were examined via hardness testing and scanning electron microscopy (SEM). Results . Mechanical properties of BMC were similar to commercial control composites ( p = 0.913). BMC had excellent Ca and P ion release and acid-neutralization capability. BMC or PAMAM alone each achieved slight mineral regeneration in demineralized root dentin. The combined BMC + PAMAM induced the greatest root dentin remineralization, and increased the hardness of pre-demineralized root dentin to match that of healthy root dentin ( p = 0.521). Significance . The excellent root dentin remineralization effects of BMC + PAMAM were demonstrated for the first time. BMC + PAMAM induced effective and complete root dentin remineralization in an acid challenge environment. The novel BMC + PAMAM method is promising for Class V and other restorations to remineralize and protect tooth structures.
Impact of Near-Earth Plasma Sheet Dynamics on the Ring Current Composition
NASA Astrophysics Data System (ADS)
Kistler, L. M.; Mouikis, C.; Menz, A.; Spence, H. E.; Mitchell, D. G.; Gkioulidou, M.; Lanzerotti, L. J.; Skoug, R. M.; Larsen, B.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.
2014-12-01
How the dynamics in the near-earth plasma sheet affects the heavy ion content, and therefore the ion pressure, of the ring current in Earth's magnetosphere is an outstanding question. Substorms accelerate plasma in the near-earth region and drive outflow from the aurora, and both these processes can preferentially enhance the population of heavy ions in this region. These heavy ions are then driven into the inner magnetosphere during storms. Thus understanding how the composition of the ring current changes requires simultaneous observations in the near-earth plasma sheet and in the inner magnetosphere. We use data from the CODIF instrument on Cluster and HOPE, RBSPICE, and MagEIS instruments on the Van Allen Probes to study the acceleration and transport of ions from the plasma sheet into the ring current. During the main phase of a geomagnetic storm on Aug 4-6, 2013, the Cluster spacecraft were moving inbound in the midnight central plasma sheet, while the apogees of the two Van Allen Probes were located on the duskside. The Cluster spacecraft measure the composition and spectral changes in the plasma sheet, while the Van Allen Probes measure the ions that reach the inner magnetosphere. A strong increase in 1-40 keV O+ was observed at the Cluster location during the storm main phase, and the Van Allen Probes observed both H+ and O+ being driven deep into the inner magnetosphere. By comparing the variations in phase space density (PSD) vs. magnetic moment at the Cluster and the Van Allen Probes locations, we examine how the composition changes non-adiabatically in the near-earth plasma sheet, and how those changes are propagated into the inner magnetosphere, populating the hto ion ring current.
Zhang, Yan; He, Ting; Liu, Guanglei; Zu, Lianhai; Yang, Jinhu
2017-07-20
In this paper, we report the successful design and synthesis of a hierarchically porous MoS 2 /C composite aerogel by simple one-pot mass preparation. The synthesis involves the in situ formation of MoS 2 nanosheets on agarose molecular chains, the gelation of MoS 2 -deposited agarose monomers to generate a composite hydrogel, and in situ transformation of the composite hydrogel into a MoS 2 /C composite aerogel through carbonization. This composite aerogel can be used as a high-performance electrode material for supercapacitors and lithium-ion batteries. When tested as a supercapacitor electrode, it achieves a high specific capacitance of 712.6 F g -1 at 1 A g -1 and 97.3% capacity retention after 13 000 cycles at 6 A g -1 . In addition, as a lithium-ion battery electrode, it exhibits a superior rate capability (653.2 mA h g -1 at 0.1 A g -1 and 334.5 mA h g -1 at 5.0 A g -1 ) and an ultrahigh capacity retention of nearly 100% after 1000 cycles at 1 A g -1 . These performances may be ascribed to the unique structure of the MoS 2 /C composite aerogel, such as hierarchical pores, (002) plane-expanded MoS 2 and interconnected carbon networks embedded uniformly with MoS 2 nanosheets. This work may provide a general and simple approach for mass preparation of composite aerogel materials and pave the way for promising materials applied in both supercapacitors and lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Nandi, Chiranjit; Grover, V.; Kulriya, P. K.; Poswal, A. K.; Prakash, Amrit; Khan, K. B.; Avasthi, D. K.; Tyagi, A. K.
2018-02-01
Inert matrix fuel concept for minor actinide transmutation proposes stabilized zirconia as the major component for inert matrix. The present study explores Nd-stabilized zirconia (Zr0.8Nd0.2O1.9; Nd as surrogate for Am) and its composites for radiation tolerance against fission fragments. The introduction of MgO in the composite with stabilised zirconia is performed from the point of view to enhance the thermal conductivity. The radiation damage is also compared with Nd-stabilized zirconia co-doped with Y3+ (Zr0.8Nd0.1Y0.1O1.9) in order to mimic doping of minor actinides in Y3+ containing stabilized zirconia (Nd as surrogate for Am). The compositions were synthesized by gel combustion followed by high temperature sintering and characterised by XRD, SEM and EDS. Irradiation was carried out by 120 MeV Au ions at various fluences and irradiation induced structural changes were probed by in-situ X-ray diffraction (XRD). XRD demonstrated the retention of crystallinity for all the three samples but the extent of the damage was found to be highly dependent on the nominal composition. It was observed that introduction of Y3+ along with Nd3+ to stabilize cubic zirconia imparted poorer radiation stability. On the other hand, formation of a CERCER composite of MgO with Nd-stabilised zirconia enhanced its behaviour against swift heavy ion irradiation. Investigating these compositions by XANES spectroscopy post irradiation did not show any change in local electronic structure of constituent ions.
NASA Astrophysics Data System (ADS)
Yan, Ru; He, Wei; Zhai, Tianhua; Ma, Houyi
2018-06-01
Seeing that amino trimethylene phosphonic acid (ATMP) possesses very strong complexation ability to metal ions and the phosphonic acid group has good affinity for the oxidized iron surface, herein a simple and rapid film-forming method (one-step assembly method) was developed to construct the ATMP-Zn complex conversion layers (ATMP-Zn layers for short) on the cold-rolled steel (CRS) substrate. Zinc ions were found to participate in the formation process of ATMP-based composite film, which made the Zn-containing ATMP film significantly different in appearance, thickness, microstructure and film-forming mechanisms from the Zn-free ATMP film. There was mainly iron (ш) phosphonate in the Zn-free ATMP film, whereas there were Zn2+-ATMP complex and a certain amount of ZnO in the ATMP-Zn composite film. In addition, electrochemical test results clearly indicate that corrosion resistance of ATMP-Zn composite film was greatly enhanced due to the presence of Zn component. Moreover, the corrosion resistance performance could be controlled by adjusting film-forming time, pH and ATMP concentration in the film-forming solutions. The present study provides a new method for the design and fabrication of high-quality environmentally-friendly conversion layers.
NASA Astrophysics Data System (ADS)
Akceoglu, Garbis Atam; Li, Oi Lun; Saito, Nagahiro
2016-04-01
DNA extraction is the key step at various research areas like biotechnology, diagnostic development, paternity determination, and forensic science . Solid support extraction is the most common method for DNA purification. In this method, Na+ ions have often been applied as binding buffers in order to obtain high extraction efficiency and high quality of DNA; however, the presence of Na+ ions might be interfering with the downstream DNA applications. In this study, we proposed graphite oxide (GO)/magnetite composite/cellulose as an innovative material for Na+-free DNA extraction. The total wt.% of GO was fixed at 4.15% in the GO/cellulose/magnetite composite . The concentration of magnetite within the composites were controlled at 0-3.98 wt.%. The extraction yield of DNA increased with increasing weight percentage of magnetite. The highest yield was achieved at 3.98 wt.% magnetite, where the extraction efficiency was reported to be 338.5 ng/µl. The absorbance ratios between 260 nm and 280 nm (A260/A280) of the DNA elution volume was demonstrated as 1.81, indicating the extracted DNA consisted of high purity. The mechanism of adsorption of DNA was provided by (1) π-π interaction between the aromatic ring in GO and nucleobases of DNA molecule, and (2) surface charge interaction between the positive charge magnetite and anions such as phosphates within the DNA molecules. The results proved that the GO/cellulose/magnetite composite provides a Na+-free method for selective DNA extraction with high extraction efficiency of pure DNA.
Formation of conductive polymers using nitrosyl ion as an oxidizing agent
Choi, Kyoung-Shin; Jung, Yongju; Singh, Nikhilendra
2016-06-07
A method of forming a conductive polymer deposit on a substrate is disclosed. The method may include the steps of preparing a composition comprising monomers of the conductive polymer and a nitrosyl precursor, contacting the substrate with the composition so as to allow formation of nitrosyl ion on the exterior surface of the substrate, and allowing the monomer to polymerize into the conductive polymer, wherein the polymerization is initiated by the nitrosyl ion and the conductive polymer is deposited on the exterior surface of the substrate. The conductive polymer may be polypyrrole.
Composition dependent thermal annealing behaviour of ion tracks in apatite
NASA Astrophysics Data System (ADS)
Nadzri, A.; Schauries, D.; Mota-Santiago, P.; Muradoglu, S.; Trautmann, C.; Gleadow, A. J. W.; Hawley, A.; Kluth, P.
2016-07-01
Natural apatite samples with different F/Cl content from a variety of geological locations (Durango, Mexico; Mud Tank, Australia; and Snarum, Norway) were irradiated with swift heavy ions to simulate fission tracks. The annealing kinetics of the resulting ion tracks was investigated using synchrotron-based small-angle X-ray scattering (SAXS) combined with ex situ annealing. The activation energies for track recrystallization were extracted and consistent with previous studies using track-etching, tracks in the chlorine-rich Snarum apatite are more resistant to annealing than in the other compositions.
Dynamics Explorer 1: Energetic Ion Composition Spectrometer (EICS)
NASA Technical Reports Server (NTRS)
Shelley, E. G.; Peterson, W. K.; Collin, H. L.
1994-01-01
The Energetic Ion Composition Spectrometer (EICS) experiment was selected as part of the Dynamics Explorer (DE) Program. One of the primary goals of the DE program was to investigate in detail the plasma physics processes responsible for energizing thermal (approximately 1 eV) ionospheric ions and transporting them to the earth's plasma sheet and distant polar cap. The results of the EICS data analysis (including support of other investigators) and of the archiving efforts supported by this contract are summarized in this document. Also reported are some aspects of our operational support activities.
Ion-Molecule Reactions and Chemical Composition of Emanated from Herculane Spa Geothermal Sources
Cosma, Constantin; Suciu, Ioan; Jäntschi, Lorentz; Bolboacă, Sorana D.
2008-01-01
The paper presents a chemical composition analysis of the gases emanated from geothermal sources in the Herculane Spa area (Romania). The upper homologues of methane have been identified in these gases. An ion-molecule reaction mechanism could be implicated in the formation of the upper homologues of methane. The CH4+ ions that appear under the action of radiation are the starting point of these reactions. The presence of hydrogen in the emanated gases may be also a result of these reactions. PMID:19325844
NASA Astrophysics Data System (ADS)
Bhandarkar, Y. V.; Ghaisas, S. V.; Ogale, S. B.
1988-07-01
Ion-beam mixing at an Fe:metallic glass (Fe67Co18B14Si1) interface is studied by employing the technique of conversion electron Mössbauer spectroscopy (CEMS). A 230-Å-thick overlayer of iron (enriched to 33% in the concentration of 57Fe Mössbauer isotope) was deposited on the shiny surface of metallic glass and such composites were bombarded with 100-keV Kr+ ions at dose values in the range between 1×1015 and 2×1016 ions/cm2. The transformations in the local atomic arrangements across the interface were investigated by monitoring the changes in the hyperfine-interaction parameters. It is shown that mixing leads to significant changes in the composition, in the vicinity of the interface as a function of the ion dose. At low dose (1×1015 ions/cm2) the local atomic coordination is found to be rich in the transition-metal concentration, while at a higher dose (2×1016 ions/cm2) it is observed to be rich in the boron concentration. Interestingly, at an intermediate dose 1×1016 ions/cm2 the composite near the interface region partially crystallizes and this structural state is found to revert back to the amorphous state upon thermal annealing at 300 °C. The observations made on the basis of CEMS are well supported by x-ray diffraction measurements.
NASA Astrophysics Data System (ADS)
Gomez, R. G.; Fuselier, S. A.; Mukherjee, J.; Gonzalez, C. A.
2017-12-01
Pickup ions found near the earth are generally picked up in the rest frame of the solar wind, and propagate radially outward from their point of origin. While propagating, they simultaneously gyrate about the magnetic field. Pickup ions come in two general populations; interstellar and inner source ions. Interstellar ions originate in the interstellar medium, enter the solar system in a neutral charge state, are gravitationally focused on the side of the sun opposite their arrival direction and, are ionized when they travel near the sun. Inner-source ions originate at a location within the solar system and between the sun and the observation point. Both pickup ion populations share similarities in composition and charge states, so measuring of their dynamics, using their velocity distribution functions, f(v)'s, is absolutely essential to distinguishing them, and to determining their spatial and temporal origins. Presented here will be the results of studies conducted with the four Hot Plasma Composition Analyzers of the Magnetospheric Multiscale Mission (MMS-HPCA). These instruments measure the full sky (4π steradians) distribution functions of near earth plasmas at a 10 second cadence in an energy-to-charge range 0.001-40 keV/e. The instruments are also capable of parsing this combined energy-solid angle phase space with 22.5° resolution polar angle, and 11.25° in azimuthal angle, allowing for clear measurement of the pitch angle scattering of the ions.
Microstructured Electrolyte Membranes to Improve Fuel Cell Performance
NASA Astrophysics Data System (ADS)
Wei, Xue
Fuel cells, with the advantages of high efficiency, low greenhouse gas emission, and long lifetime are a promising technology for both portable power and stationary power sources. The development of efficient electrolyte membranes with high ionic conductivity, good mechanical durability and dense structure at low cost remains a challenge to the commercialization of fuel cells. This thesis focuses on exploring novel composite polymer membranes and ceramic electrolytes with the microstructure engineered to improve performance in direct methanol fuel cells (DMFCs) and solid oxide fuel cells (SOFCs), respectively. Polymer/particle composite membranes hold promise to meet the demands of DMFCs at lower cost. The structure of composite membranes was controlled by aligning proton conducting particles across the membrane thickness under an applied electric field. The field-induced structural changes caused the membranes to display an enhanced water uptake, proton conductivity, and methanol permeability in comparison to membranes prepared without an applied field. Although both methanol permeability and proton conductivity are enhanced by the applied field, the permeability increase is relatively lower than the proton conductivity improvement, which results in enhanced proton/methanol selectivity and improved DMFC performance. Apatite ceramics are a new class of fast ion conductors being studied as alternative SOFC electrolytes in the intermediate temperature range. An electrochemical/hydrothermal deposition method was developed to grow fully dense apatite membranes containing well-developed crystals with c-axis alignment to promote ion conductivity. Hydroxyapatite seed crystals were first deposited onto a metal substrate electrochemically. Subsequent ion substitution during the hydrothermal growth process promoted the formation of dense, fully crystalline films with microstructure optimal for ion transport. The deposition parameters were systematically investigated, such as reactant type, reagent concentration, solution pH, and reaction time. Dense apatite films were formed on palladium substrates that can serve as intermediate temperature fuel cell anodes. The novel apatite membrane structure is promising for fuel cell applications, as well as in improving the biocompatibility of orthopedic implants when coated on stainless steel or titanium substrates.
NASA Astrophysics Data System (ADS)
Dandouras, Iannis; Poppe, Andrew R.; Fillingim, Matt O.; Kistler, Lynn M.; Mouikis, Christopher G.; Rème, Henri
2017-04-01
Heavy molecular ions escaping from a planetary atmosphere can contribute to the long-term evolution of its composition. The ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) spacecraft has recently observed outflowing molecular ions at lunar distances in the terrestrial magnetotail (Poppe et al., 2016). Backward particle tracing indicated that these ions should originate from the terrestrial inner magnetosphere. Here we have examined Cluster data acquired by the CIS-CODIF (Cluster Ion Spectrometry-Composition Distribution Function) ion mass spectrometer, obtained in the terrestrial magnetosphere. An event was selected where the orbital conditions were favourable and the Cluster spacecraft were in the high-latitude inner magnetosphere a few hours before the ARTEMIS molecular ion detection. Analysis shows that the CIS-CODIF instrument detected a series of energetic ion species, including not only O+ but also a group of molecular ions around 30 amu. Given the 5-7 m/Δm mass resolution of the instrument, these could include N2+, NO+, or O2+. These ions were detected by Cluster about 14 hours before the ARTEMIS observation in the lunar environment, a time which is compatible with the transfer to lunar distances. The event was during an active period followed by a northward rotation of the IMF. Although energetic heavy molecular ions have been detected in the storm time magnetosphere in the past (e.g. Klecker et al., 1986; Christon et al., 1994), this event constitutes the first coordinated observation in the Earth's inner magnetosphere and at the Moon. Additional events of coordinated outflowing molecular ion observations are currently under analysis. Future missions, as the proposed ESCAPE mission, should investigate in detail the mechanisms of molecular ion acceleration and escape, their link to the solar and magnetospheric activity, and their role in the magnetospheric dynamics and in the long-term evolution of the atmospheric composition.
Synthesis of sponge-like hydrophobic NiBi3 surface by 200 keV Ar ion implantation
NASA Astrophysics Data System (ADS)
Siva, Vantari; Datta, D. P.; Chatterjee, S.; Varma, S.; Kanjilal, D.; Sahoo, Pratap K.
2017-07-01
Sponge-like nanostructures develop under Ar-ion implantation of a Ni-Bi bilayer with increasing ion fluence at room temperature. The surface morphology features different stages of evolution as a function of ion fluence, finally resulting in a planar surface at the highest fluence. Our investigations on the chemical composition reveal a spontaneous formation of NiBi3 phase on the surface of the as deposited bilayer film. Interestingly, we observe a competition between crystallization and amorphization of the existing poly-crystalline phases as a function of the implanted fluence. Measurements of contact angle by sessile drop method clearly show the ion-fluence dependent hydrophobic nature of the nano-structured surfaces. The wettability has been correlated with the variation in roughness and composition of the implanted surface. In fact, our experimental results confirm dominant effect of ion-sputtering as well as ion-induced mixing at the bilayer interface in the evolution of the sponge-like surface.
Systematic measurements of ion-proton differential streaming in the solar wind.
Berger, L; Wimmer-Schweingruber, R F; Gloeckler, G
2011-04-15
The small amount of heavy ions in the highly rarefied solar wind are sensitive tracers for plasma-physics processes, which are usually not accessible in the laboratory. We have analyzed differential streaming between heavy ions and protons in the solar wind at 1 AU. 3D velocity vector and magnetic field measurements from the Solar Wind Electron Proton Alpha Monitor and the Magnetometer aboard the Advanced Composition Explorer were used to reconstruct the ion-proton difference vector v(ip) = v(i) - v(p) from the 12 min 1D Solar Wind Ion Composition Spectrometer observations. We find that all 44 analyzed heavy ions flow along the interplanetary magnetic field at velocities which are smaller than, but comparable to, the local Alfvén speed C(A). The flow speeds of 35 of the 44 ion species lie within the range of ±0.15C(A) around 0.55C(A), the flow speed of He(2+).
Cheng, Gong; Wang, Zhi-Gang; Denagamage, Sachira; Zheng, Si-Yang
2016-04-27
Successful control of homogeneous and complete coating of graphene or graphene-based composites with well-defined metal organic framework (MOF) layers is a great challenge. Herein, novel magnetic graphene MOF composites were constructed via a simple strategy for self-assembly of well-distributed, dense, and highly porous MOFs on both sides of graphene nanosheets. Graphene functionalized with magnetic nanoparticles and carboxylic groups on both sides was explored as the backbone and template to direct the controllable self-assembly of MOFs. The prepared composite materials have a relatively high specific surface area (345.4 m(2) g(-1)), and their average pore size is measured to be 3.2 nm. Their relatively high saturation magnetization (23.8 emu g(-1)) indicates their strong magnetism at room temperature. Moreover, the multifunctional composite was demonstrated to be a highly effective affinity material in selective extraction and separation of low-concentration biomolecules from biological samples, in virtue of the size-selection property of the unique porous structure and the excellent affinity of the composite materials. Besides providing a solution for the construction of well-defined functional graphene-based MOFs, this work could also contribute to selective extraction of biomolecules, in virtue of the universal affinity between immobilized metal ions and biomolecules.
The heavy-ion compositional signature in He-3-rich solar particle events
NASA Technical Reports Server (NTRS)
Mason, G. M.; Reames, D. V.; Von Rosenvinge, T. T.; Klecker, B.; Hovestadt, D.
1986-01-01
A survey of the approx. 1 MeV/nucleon heavy ion abundances in 66 He-3-rich solar particle events was performed using the Max-Planck-Institut/University of Maryland and Goddard Space Flight Center instruments on the ISEE-3 spacecraft. The observations were carried out in interplanetary space over the period 1978 October through 1982 June. Earlier observations were confirmed which show an enrichment of heavy ions in He-3-rich events, relative to the average solar energetic particle composition in large particle events. For the survey near 1.5 MeV/nucleon the enrichments compared to large solar particle events are approximately He4:C:O:Ne:Mg:Si:Fe = 0.44:0.66:1.:3.4:3.5:4.1:9.6. Surprising new results emerging from the present broad survey are that the heavy ion enrichment pattern is the same within a factor of approx. 2 for almost all cases, and the degree of heavy ion enrichment is uncorrelated with the He-3 enrichment. Overall, the features established appear to be best explained by an acceleration mechanism in which the He-3 enrichment process is not responsible for the heavy ion enrichment, but rather the heavy ion enrichment is a measure of the ambient coronal composition at the sites where the He-3-rich events occur.
The heavy ion compositional signature in 3He-rich solar particle events
NASA Technical Reports Server (NTRS)
Mason, G. M.; Reames, D. V.; Klecker, B.; Hovestadt, D.; Vonrosenvinge, T. T.
1985-01-01
A survey of the approx. 1 MeV/nucleon heavy ion abundances in 66 He3-rich solar particle events was performed using the Max-Planck-Institut/University of Maryland and Goddard Space Flight Center instruments on the ISEE-3 spacecraft. The observations were carried out in interplanetary space over the period 1978 October through 1982 June. Earlier observations were confirmed which show an enrichment of heavy ions in HE3-rich events, relative to the average solar energetic particle composition in large particle events. For the survey near 1.5 MeV/nucleon the enrichments compared to large solar particle events are approximately He4:C:O:Ne:Mg:Si:Fe = 0.44:0.66:1.:3.4:3.5:4.1:9.6. Surprising new results emerging from the present broad survey are that the heavy ion enrichment pattern is the same within a factor of approx. 2 for almost all cases, and the degree of heavy ion enrichment is uncorrelated with the He3 enrichment. Overall, the features established appear to be best explained by an acceleration mechanism in which the He3 enrichment process is not responsible for the heavy ion enrichment, but rather the heavy ion enrichment is a measure of the ambient coronal composition at the sites where the He3-rich events occur.
Singh, A V; Sharma, Naresh Kumar; Rathore, Abhay S
2012-01-01
A new composite cation exchanger, tamarind sulphonic acid (TSA) resin has been synthesized. The chemically modified TSA ion exchange resin has been used for the removal and preconcentration of Zn2+, Cd2+, Fe2+, Co2+ and Cu2+ ions in aqueous solution and effluent from the Laxmi steel plant in Jodhpur, India. This type of composite represents a new class of hybrid ion exchangers with good ion exchange capacity, stability, reproducibility and selectivity for toxic metal ions found in effluent from the steel industry. The characterization of the resin was carried out by determining the ion-exchange capacity, elemental analysis, pH titration, Fourier transform infrared spectra and thermal analysis. The distribution coefficients (K(d)) of toxic metal ions were determined in a reference aqueous solution and the steel plant effluent at different pH values; the absorbency of different metal ions on the TSA resin was studied for up to 10 cycles. The adsorption of different metal ions on TSA resin follows the order: Co2+ > Cu2+ > Zn2+ > Fe2+ > Cd2+. The ion exchange capacity of TSA resin is 2.87%.
Zhou, Xibin; Zhang, Yahe; Zhao, Suoqi; Hsu, Chang Samuel; Shi, Quan
2013-12-15
Monohydric alcohols are common in natural products, bio-oils, and medicine. We have found that monohydric alcohols can form O3 (ions containing three oxygen atoms) and O4 adduct ions in negative electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), which would significantly affect the composition analysis of alcohols, especially in a complex mixture. It is necessary to study the reaction pathways and the method to eliminate or reduce the 'artifact' adducts. Octadecanol, cholesterol, squalanol and two complex monohydric alcohol mixtures were selected as model compounds. These samples were subjected to negative ion ESI FT-ICR MS analysis. The composition and formation mechanism of adducts were studied by the ultrahigh-resolution accurate mass measurement for elemental composition, along with the MS(2) isolation and collision-induced dissociation (CID) experiments for structural determination. The reaction pathway of O3 adduct formation is the coupling of a monohydric alcohol ion with a CO2 to form a stable O3 ionic species by likely a covalent bond (source of CO2 is not clear). The O4 species are formed by O3 ionic species adducted with an alcohol molecule of the solvent, such as methanol or ethanol, by likely a hydrogen bond. These adduct ions could be eliminated or reduced by increasing collision energy. However, excessive collision energy would fragment monohydric alcohol ions. The formation mechanisms of O3 and O4 adducts from monohydric alcohols in negative ion ESI FT-ICR MS were proposed. The solvent adduction effects can be eliminated or reduced by optimizing the collision energy of CID in FT-ICR MS. Copyright © 2013 John Wiley & Sons, Ltd.
Lu, Xin; Yin, Qiangfeng; Xin, Zhong; Li, Yang; Han, Ting
2011-11-30
Poly(aminopropyl/methyl)silsesquioxane (PAMSQ) particles have been synthesized by a one-step hydrolytic co-condensation process using 3-aminopropyltriethoxysilane (APTES) and methyltrimethoxysilane (MTMS) as precursors in the presence of base catalyst in aqueous medium. The amino functionalities of the particles could be controlled by adjusting the organosilanes feed ratio. The compositions of the amino-functionalized polysilsesquioxanes were confirmed by FT-IR spectroscopy, solid-state (29)Si NMR spectroscopy, and elemental analysis. The strong adsorbability of Cu(II) and Pb(II) ions onto PAMSQ particles was systematically examined. The effect of adsorption time, initial metal ions concentration and pH of solutions was studied to optimize the metal ions adsorbability of PAMSQ particles. The kinetic studies indicated that the adsorption process well fits the pseudo-second-order kinetics. Adsorption phenomena appeared to follow Langmuir isotherm. The PAMSQ particles demonstrate the highest Cu(II) and Pb(II) adsorption capacity of 2.29 mmol/g and 1.31 mmol/g at an initial metal ions concentration of 20mM, respectively. The PAMSQ particles demonstrate a promising application in the removal of Cu(II) and Pb(II) ions from aqueous solutions. Copyright © 2011 Elsevier B.V. All rights reserved.
Pramatarova, L; Pecheva, E; Krastev, V; Riesz, F
2007-03-01
Material surfaces play critical role in biology and medicine since most biological reactions occur on surfaces and interfaces. There are many examples showing that the surface properties of the materials control and are directly involved in biological reactions and processes in-vitro like blood compatibility, protein absorption, cell development, etc. The rules that govern the diversity of biological surface phenomenon are fundamental physical laws. Stainless steel doped with Cr, Ni and Mo is widely used material in medicine and dentistry due to its excellent corrosion resistance and mechanical properties. The interest in this material has stimulated extensive studies on improving its bone-bonding properties. This paper describes the surface modification of Cr-Ni stainless steel (AISI 316) by a whole surface sequential implantation of Ca and P ions (the basic ions of hydroxyapatite). Three groups of stainless steel samples are prepared: (i) ion-implanted, (ii) ion-implanted and thermally treated at 600( composite function)C in air for 1 h and (iii) initials. The surface chemistry and topography before and after the surface modification are characterized by X-ray photoelectron spectroscopy, Auger electron spectroscopy, magic mirror method, atomic force microscopy and contact angle measurements.
Potential-dependent, switchable ion selectivity in aqueous media using titanium disulfide.
Srimuk, Pattarachai; Lee, Juhan; Fleischmann, Simon; Aslan, Mesut; Kim, Choonsoo; Presser, Volker
2018-05-01
Selective removal of ions by electrochemical processes is a promising approach to enable various water treatment applications such as water softening or heavy metal removal. Ion intercalation materials have been investigated for their intrinsic ability to prefer one specific ion over others, showing a preference for (small) monovalent ions over multivalent species. In this work, we present for the first time a fundamentally different approach: tunable ion selectivity not by modifying the electrode material, but by changing the operational voltage. We used titanium disulfide which shows distinctly different potentials for the intercalation of different cations and formed thereof binder-free composite electrodes with carbon nanotubes. Capitalizing on this potential difference, we demonstrate controllable cation selectivity by online monitoring the effluent stream during electrochemical operation by inductively coupled plasma optical emission spectrometry for aqueous 50 mM CsCl and MgCl2. We obtained a molar selectivity of Mg2+ over Cs+ of 31 (strong Mg preference) in the potential range between -396 mV and -220 mV vs. Ag/AgCl. By adjusting the operational potential window to -219 mV to +26 mV vs. Ag/AgCl, Cs+ is preferred over Mg2+ by 1.7-times (Cs preference). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis and characterization of Ag+ ion conducting glassy electrolytes
NASA Astrophysics Data System (ADS)
Chandra, Angesh; Bhatt, Alok; Chandra, Archana
2013-07-01
Synthesis and characterization of new Ag+ ion conducting glassy systems: x[0.75AgI:0.25AgC1]: (1 - x)[Ag2O:P2O5], where 0.1 < x < 1 in molar weight fraction, are reported. The present glassy electrolytes have been synthesized by melt-quench technique using a high-speed twin roller-quencher. An alternate host salt: "quenched [0.75AgI:0.25AgC1] mixed system/solid solution", has been used in place of the traditional host AgI. The compositional dependence conductivity studies on the glassy systems: x[0.75AgI:0.25AgC1]:(1 - x)[Ag2O:P2O5] as well as xAgI:(1 - x)[Ag2O:P2O5] prepared identically, indicated that the composition at x = 0.75 exhibited the highest room temperature conductivity (σ ~ 5.5 x 10-3 S cm-1). The composition: 0.75[0.75AgI:0.25AgC1]:0.25[Ag2O:P2O5] has been referred to as optimum conducting composition (OCC). The some basic ion transport parameters viz. ionic conductivity (σ), ionic mobility (μ), mobile ion concentration (n), ionic drift velocity (vd), ion transference number (tion) and activation energy (Ea) values have been characterized with the help of various experimental techniques. A solid state battery was fabricated and its basic cell parameters calculated.
Wang, Xiu; Huang, Kai; Chen, Ying; Liu, Jiafa; Chen, Shan; Cao, Jianlei; Mei, Surong; Zhou, Yikai; Jing, Tao
2018-05-15
The nano-sized sorbents restrict their practical application in flow-through system due to excessive pressure. In this study, dumbbell MnO 2 /gelatin composites were synthesized based on the protein-assisted synthesis technology. Then they were immobilized on the amino-modified polymethyl methacrylate (PMMA) plate. SEM, TEM, XRD, XPS and FT-IR were employed to study the surface properties and the adsorption mechanism of MnO 2 /gelatin composites. Adsorption experiments for Pb(II) and Cd(II) ions were performed to study the adsorption isotherms, kinetics, and thermodynamics as well as the influencing factors. The maximum adsorption capacities of Pb(II) and Cd(II) ions were 318.7 mg g -1 and 105.1 mg g -1 respectively. The adsorption process met the pseudo-second-order kinetic model. Subsequently, MnO 2 /gelatin composites modified plates were used to remove the heavy metal ions in surface water and wastewater samples. The removal efficiencies of Pb(II) ion was changed from 83% (wastewater) to 100% (surface water), when the initial concentration was 10 mg L -1 . This device exhibited great application prospect in the removal of heavy metals taking advantage of its high removal efficiency, excellent stability and reusability and ease of operation. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sittler, Edward; Hartle, Richard; Ali, Ashraf; Cooper, John; Lipatov, Alexander; Simpson, David; Sarantos, Menelaos; Chornay, Dennis; Smith, Todd
2017-01-01
We present ion composition measurements of Titan's topside ionosphere using both T9 and T15 Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS) measurements. The IMS is able to make measurements of Titan's ionosphere due to ionospheric outflows as originally reported for the T9 flyby. This allows one to take advantage of the unique capabilities of the CAPS IMS which measures both the mass-per-charge (M/Q) of the ions and the fragments of the ions produced inside the sensor such as carbon, nitrogen and oxygen fragments. Specific attention will be given to such ions as NH4 +, N +, O +, CH4 +, CxHy +, and HCNH + ions as examples. The CAPS IMS uses a time-of-flight (TOF) technique which accelerates ions up to 14.6 kV, so they can pass through ultra-thin carbon foils. Neutral fragments are used to measure the ion M/Q and positive fragments to measure the atomic components. We preliminarily find, by using IMS measurements of T9 and T15 ionospheric outflows, evidence for methane group ions, nitrogen ions, ammonium ions, water group ions and CnHm + ions with n = 2, 3, and 4 within Titan's topside ionosphere. E.C. Sittler acknowledges support at Goddard Space Flight Center by the CAPS Cassini Project from JPL funds under contract # NAS703001TONMO711123/1405851.
Narula, Chaitanya K.; Yang, Xiaofan
2017-07-04
A catalyst composition includes a heterobimetallic zeolite characterized by a chabazite structure loaded with copper ions and at least one trivalent metal ion other than Al.sup.3+. The catalyst composition decreases NO.sub.x emissions in diesel exhaust and is suitable for operation in a catalytic converter.
Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won
2016-01-01
Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842
Ion Composition of Titan's Ionosphere Observed During T9 Magnetotail Crossing
NASA Technical Reports Server (NTRS)
Sittler, Edward; Hartle, Richard; Cooper, John; Shappirio, Marcus; Johnson, Robert; Simpson, David
2011-01-01
In a recent paper, Sittler et al., (2010) presented new results on the T9 encounter by the Cassini spacecraft when it passed through Titan s induced magnetotail. Two crossings were observed, but the first crossing, event 1, is thought to be out flowing ionosphere plasma. T9 is ideal for CAPS IMS probing of the ionosphere, since the ion densities at the higher altitudes of the T9 flyby approx. 10,000 km, allows measurements to be made down to 1 eV without saturating its detectors. Sittler et al., (2010) reported possible detection of NH4+ ions, but favored the detection of CH5+ and C2H5+ ions. In this report we investigate both the medium mass resolution (straight through (ST)) and high mass resolution (linear electric field (LEF)) composition data from the Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS). We present a more in depth analysis of the composition data and make comparisons with ionospheric models including nitrogen chemistry such as that by Vuitton et al. (2007). The LEF data does not support NH4+ identification, but favors a CH5+ and C2H5+ identification, but also molecular ions C2N+ and CH2NH2+ are chemically allowed possibilities.
NASA Astrophysics Data System (ADS)
Xu, Xinhua; Lu, Ping; Guo, Meiqing; Fang, Mingzhong
2010-02-01
A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly( DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.
An Amorphous Carbon Nitride Composite Derived from ZIF-8 as Anode Material for Sodium-Ion Batteries.
Fan, Jing-Min; Chen, Jia-Jia; Zhang, Qian; Chen, Bin-Bin; Zang, Jun; Zheng, Ming-Sen; Dong, Quan-Feng
2015-06-08
An composite comprising amorphous carbon nitride (ACN) and zinc oxide is derived from ZIF-8 by pyrolysis. The composite is a promising anode material for sodium-ion batteries. The nitrogen content of the ACN composite is as high as 20.4 %, and the bonding state of nitrogen is mostly pyridinic, as determined by X-ray photoelectron spectroscopy (XPS). The composite exhibits an excellent Na(+) storage performance with a reversible capacity of 430 mA h g(-1) and 146 mA h g(-1) at current densities of 83 mA g(-1) and 8.33 A g(-1) , respectively. A specific capacity of 175 mA h g(-1) was maintained after 2000 cycles at 1.67 A g(-1) , with only 0.016 % capacity degradation per cycle. Moreover, an accelerating rate calorimetry (ARC) test demonstrates the excellent thermal stability of the composite, with a low self heating rate and high onset temperature (210 °C). These results shows its promise as a candidate material for high-capacity, high-rate anodes for sodium-ion batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wei, Wenping; Zhang, Huamin; Li, Xianfeng; Zhang, Hongzhang; Li, Yun; Vankelecom, Ivo
2013-02-14
Polyvinylidene fluoride (PVDF) ultrafiltration membranes were investigated for the first time in vanadium redox flow battery (VFB) applications. Surprisingly, PVDF ultrafiltration membranes with hydrophobic pore walls and relatively large pore sizes of several tens of nanometers proved able to separate vanadium ions and protons efficiently, thus being suitable as a VFB separator. The ion selectivity of this new type of VFB membrane could be tuned readily by controlling the membrane morphology via changes in the composition of the membrane casting solution, and the casting thickness. The results showed that the PVDF membranes offered good performances and excellent stability in VFB applications, where it could, performance-wise, truly substitute Nafion in VFB applications, but at a much lower cost.
NASA Astrophysics Data System (ADS)
Reddy, M. Jaipal; Chu, Peter P.
A composite of mesoporous silica (SBA-15) with a polyethylene oxide (PEO) polymer electrolyte is examined for use in various electrochemical devices. Incorporation of SBA-15 in a PEO:LiClO 4 polymer electrolyte facilitates salt dissociation, enhances ion conductivity, and improves miscibility between organic and inorganic moieties. Optimized conductivity is found at 10 wt.% SBA-15 composition, above this concentration the conductivity is reduced due to aggregation of a SBA-15:Li rich phase. Heating above melt temperature of PEO allows more of the polymer segments to interact with SBA-15. This results in a greater degree of disorder upon cooling, and the ion conductivity is enhanced. A 7Li MAS NMR study reveals three types of lithium-ion coordination. Two major types of conduction mechanism can be identified: one through conventional amorphous PEO; a second via hopping in a sequential manner by replacing the nearby vacancies ('holes') on the surface (both interior and exterior) of the SBA-15 channels.
Relaxation dynamics in AgI-doped silver vanadate superionic glasses.
Bhattacharya, S; Ghosh, A
2005-09-22
Relaxation dynamics of Ag+ ions in several series of AgI-Ag2O-V2O5 superionic glasses has been studied in the frequency range from 10 Hz to 2 MHz and in the temperature range from 93 to 323 K. The composition dependence of the dc conductivity and the activation energy of these glasses has been compared with those of AgI-doped silver phosphate and borate glasses. The frequency-dependent electrical data have been analyzed in the framework of conductivity formalism. We have obtained the mobile ion concentration and the power-law exponent from the analysis of the conductivity spectra. We have observed that the concentration of Ag+ ions is independent of temperature and the conductivity is primarily determined by the mobility. A fraction of the Ag+ ions in the glass compositions are involved in the dynamic process. We have also shown that the power-law exponent is independent of temperature. The results are also supported by the temperature and composition independence of the scaling of the conductivity spectra.
Alkaline battery, separator therefore
NASA Technical Reports Server (NTRS)
Schmidt, George F. (Inventor)
1980-01-01
An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.
NASA Astrophysics Data System (ADS)
Owen, D. Des. R.; Pawlowsky-Glahn, V.; Egozcue, J. J.; Buccianti, A.; Bradd, J. M.
2016-08-01
Isometric log ratios of proportions of major ions, derived from intuitive sequential binary partitions, are used to characterize hydrochemical variability within and between coal seam gas (CSG) and surrounding aquifers in a number of sedimentary basins in the USA and Australia. These isometric log ratios are the coordinates corresponding to an orthonormal basis in the sample space (the simplex). The characteristic proportions of ions, as described by linear models of isometric log ratios, can be used for a mathematical-descriptive classification of water types. This is a more informative and robust method of describing water types than simply classifying a water type based on the dominant ions. The approach allows (a) compositional distinctions between very similar water types to be made and (b) large data sets with a high degree of variability to be rapidly assessed with respect to particular relationships/compositions that are of interest. A major advantage of these techniques is that major and minor ion components can be comprehensively assessed and subtle processes—which may be masked by conventional techniques such as Stiff diagrams, Piper plots, and classic ion ratios—can be highlighted. Results show that while all CSG groundwaters are dominated by Na, HCO3, and Cl ions, the proportions of other ions indicate they can evolve via different means and the particular proportions of ions within total or subcompositions can be unique to particular basins. Using isometric log ratios, subtle differences in the behavior of Na, K, and Cl between CSG water types and very similar Na-HCO3 water types in adjacent aquifers are also described. A complementary pair of isometric log ratios, derived from a geochemically-intuitive sequential binary partition that is designed to reflect compositional variability within and between CSG groundwater, is proposed. These isometric log ratios can be used to model a hydrochemical pathway associated with methanogenesis and/or to delineate groundwater associated with high gas concentrations.
NASA Astrophysics Data System (ADS)
Huang, Xiaosong
2014-06-01
Porous separator functions to electrically insulate the negative and positive electrodes yet communicate lithium ions between the two electrodes when infiltrated with a liquid electrolyte. The separator must fulfill numerous requirements (e.g. permeability, wettability, and thermal stability) in order to optimize the abuse tolerance and electrochemical performance of a battery. Non-woven mat separators have advantages such as high porosity and heat resistance. However, their applications in lithium ion batteries are very limited as their inadequate pore structures could cause accelerated battery performance degradation and even internal short. This work features the development of thermally stable non-woven composite separators using a low cost paper-making process. The composite separators offer significantly improved thermal dimensional stability and exhibit superior wettability by the liquid electrolyte compared to a conventional polypropylene separator. The open porous structures of the non-woven composite separators also resulted in high effective ionic conductivities. The electrochemical performance of the composite separators was tested in coin cells. Stable cycle performances and improved rate capabilities have been observed for the coin cells with these composite separators.
Guan, Qun; Cheng, Jianli; Li, Xiaodong; Wang, Bin; Huang, Ling; Nie, Fude; Ni, Wei
2015-01-01
CoO nanocrystal/graphene nanosheets (GNS) composites, consisting of a triangular CoO nanocrystal of 2~20 nm on the surface of GNS, are synthesized by a mild synthetic method. First, cobalt acetate tetrahydrate is recrystallized in the alcohol solution at a low temperature. Then, graphene oxide mixed with cobalt-precursor followed by high vacuum annealing to form the CoO nanocrystal/GNS composites. The CoO nanocrystal/GNS composites exhibit a high reversible capacity of 1481.9 m Ah g−1 after 30 cycles with a high Coulombic efficiency of over 96% when used as anode materials for lithium ion battery. The excellent electrochemical performances may be attributed to the special structure of the composites. The well-dispersed triangular CoO nanocrystal on the substrate of conductive graphene can not only have a shorter diffusion length for lithium ions, better stress accommodation capability during the charge-discharge processes and more accessible active sites for lithium-ion storage and electrolyte wetting, but also possess a good conductive network, which can significantly improve the whole electrochemical performance. PMID:25961670
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Changjiang; Yang, Shuli; Zhao, Xinfei
2016-07-15
Highlights: • Composite separators of PVDF and MMT for lithium-ion batteries were electrospun. • Thermal dimensional stability and tensile property of composite separators get improved. • Presence of montmorillonite promotes electrical properties of PVDF fibrous separators. • Batteries consisting of PVDF/MMT-5% separator achieve the best performance. - Abstract: Composite separators of poly(vinylidene fluoride) (PVDF) with different contents of montmorillonite (MMT) for Li-ion batteries have been fabricated by electrospinning. The morphology, function group, crystallinity, and mechanical properties of membranes were investigated by scanning electron microscope (SEM), Fourier Transform infrared spectra (FT-IR), differential scanning calorimetry (DSC), and tensile test, respectively. Interlayer spacingmore » of MMT in polymer was characterized by X-ray diffraction (XRD). In addition, the results of electrochemical measurements suggest that PVDF/MMT-5% composite membrane has maximum ionic conductivity of 4.2 mS cm{sup −1}, minimum interfacial resistance of 97 Ω, and excellent electrochemical stability. The cell comprising PVDF/MMT-5% composite membrane shows higher capacity and more stable cycle performance than the one using commercial Celgard PP membrane.« less
Choi, Seung Ho; Kang, Yun Chan
2015-11-11
Mixed metal sulfide composite microspheres with a yolk-shell structure for sodium-ion batteries are studied. Tin-molybdenum oxide yolk-shell microspheres prepared by a one-pot spray pyrolysis process transform into yolk-shell SnS-MoS2 composite microspheres. The discharge capacities of the yolk-shell and dense-structured SnS-MoS2 composite microspheres for the 100th cycle are 396 and 207 mA h g(-1), and their capacity retentions measured from the second cycle are 89 and 47%, respectively. The yolk-shell SnS-MoS2 composite microspheres with high structural stability during repeated sodium insertion and desertion processes have low charge-transfer resistance even after long-term cycling. The synergetic effect of the yolk-shell structure and uniform mixing of the SnS and MoS2 nanocrystals result in the excellent sodium-ion storage properties of the yolk-shell SnS-MoS2 composite microspheres by improving their structural stability during cycling.
NASA Astrophysics Data System (ADS)
Yusmaniar, Purwanto, Agung; Putri, Elfriyana Awalita; Rosyidah, Dzakiyyatur
2017-03-01
Silica gel modified by 3-aminopropyltriethoxysilane (APTES) was synthesized from rice husk ash combined with activated carbon from coconut shell yielded the composite adsorbent. The composite was characterized by Fourier Transform Infra Red spectroscopy (FT-IR), Electron Dispersive X-Ray (EDX), Surface Area Analyzer (SAA) and adsorption test by Atomic Absorption Spectrometry (AAS). This composite adsorbent has been used moderately for the removal of lead ions from metal solutions and compared with silica gel modified APTES and activated carbon. The adsorption experiments of Pb -ions by adsorbents were performed at different pH and contact time with the same metal solutions concentration, volume solution, and adsorbent dosage. The optimum pH for the adsorption was found to be 5.0 and the equilibrium was achieved for Pb with 20 min of contact time. Pb ions adsorption by composite silica gel modified APTES-activated carbon followed by Langmuir isotherm model with qmax value of 46.9483 mg/g that proved an adsorbent mechanism consistent to the mechanism of monolayer formation.
Overview of ion source characterization diagnostics in INTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandyopadhyay, M., E-mail: mainak@iter-india.org; Sudhir, Dass; Bhuyan, M.
2016-02-15
INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction regionmore » will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.« less
Overview of ion source characterization diagnostics in INTF
NASA Astrophysics Data System (ADS)
Bandyopadhyay, M.; Sudhir, Dass; Bhuyan, M.; Soni, J.; Tyagi, H.; Joshi, J.; Yadav, A.; Rotti, C.; Parmar, Deepak; Patel, H.; Pillai, S.; Chakraborty, A.
2016-02-01
INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction region will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.
NASA Astrophysics Data System (ADS)
Guo, Jiacheng; Guo, Xingwu; Wang, Shaohua; Zhang, Zhicheng; Dong, Jie; Peng, Liming; Ding, Wenjiang
2016-03-01
The effects of glycine on the mechanism of electrodeposition of Ni-Mn alloy film prepared in ChCl-urea ionic liquid were studied in order to control the composition, microstructure and properties of the film. The cyclic voltammograms revealed that the presence of glycine in the ionic liquid can inhibit the reduction of Ni2+ ions but promote the reduction of Mn2+ ions in the cathodic scan. However, it promoted the dissolution of both Ni and Mn deposits in the ChCl-urea ionic liquids during the reverse scan. Glycine changed the mode of Ni-Mn film growth from Volmer-Weber mode into Stranski-Krastanov mode. The Mn content in the Ni-Mn film increased with the increase of concentration of glycine and current density. The Ni-Mn alloy film with 3.1 at.% Mn exhibited the lowest corrosion current density of 3 × 10-7 A/cm2 compared with other films prepared and exhibited better corrosion resistance than pure Ni film in 3.5 wt.% NaCl solution.
Clay Mineral Crystal Structure Tied to Composition
2016-12-13
This diagram illustrates how the dimensions of clay minerals' crystal structure are affected by which ions are present in the composition of the mineral. Different clay minerals were identified this way at two sites in Mars' Gale Crater: "Murray Buttes" and "Yellowknife Bay." In otherwise identical clay minerals, a composition that includes aluminum and ferric iron ions (red dots) results in slightly smaller crystalline unit cells than one that instead includes magnesium and ferrous iron ions (green dots). Ferric iron is more highly oxidized than ferrous iron. Crystalline cell units are the basic repeating building blocks that define minerals. X-ray diffraction analysis, a capability of the Chemistry and Mineralogy (CheMin) instrument on NASA's Curiosity Mars rover, identifies minerals from their crystalline structure. http://photojournal.jpl.nasa.gov/catalog/PIA21148
Schmidt, Axel; Löhrer, Daniel; Alsop, Richard J.; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Wirtz, Monika; Rheinstädter, Maikel C.; Gründer, Stefan; Wiemuth, Dominik
2016-01-01
The bile acid-sensitive ion channel (BASIC) is a member of the degenerin/epithelial Na+ channel (Deg/ENaC) family of ion channels. It is mainly found in bile duct epithelial cells, the intestinal tract, and the cerebellum and is activated by alterations of its membrane environment. Bile acids, one class of putative physiological activators, exert their effect by changing membrane properties, leading to an opening of the channel. The physiological function of BASIC, however, is unknown. Deg/ENaC channels are characterized by a trimeric subunit composition. Each subunit is composed of two transmembrane segments, which are linked by a large extracellular domain. The termini of the channels protrude into the cytosol. Many Deg/ENaC channels contain regulatory domains and sequence motifs within their cytosolic domains. In this study, we show that BASIC contains an amphiphilic α-helical structure within its N-terminal domain. This α-helix binds to the cytosolic face of the plasma membrane and stabilizes a closed state. Truncation of this domain renders the channel hyperactive. Collectively, we identify a cytoplasmic domain, unique to BASIC, that controls channel activity via membrane interaction. PMID:27679529
Schmidt, Axel; Löhrer, Daniel; Alsop, Richard J; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Wirtz, Monika; Rheinstädter, Maikel C; Gründer, Stefan; Wiemuth, Dominik
2016-11-18
The bile acid-sensitive ion channel (BASIC) is a member of the degenerin/epithelial Na + channel (Deg/ENaC) family of ion channels. It is mainly found in bile duct epithelial cells, the intestinal tract, and the cerebellum and is activated by alterations of its membrane environment. Bile acids, one class of putative physiological activators, exert their effect by changing membrane properties, leading to an opening of the channel. The physiological function of BASIC, however, is unknown. Deg/ENaC channels are characterized by a trimeric subunit composition. Each subunit is composed of two transmembrane segments, which are linked by a large extracellular domain. The termini of the channels protrude into the cytosol. Many Deg/ENaC channels contain regulatory domains and sequence motifs within their cytosolic domains. In this study, we show that BASIC contains an amphiphilic α-helical structure within its N-terminal domain. This α-helix binds to the cytosolic face of the plasma membrane and stabilizes a closed state. Truncation of this domain renders the channel hyperactive. Collectively, we identify a cytoplasmic domain, unique to BASIC, that controls channel activity via membrane interaction. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Food-induced changes of lipids in rat neuronal tissue visualized by ToF-SIMS imaging.
Dowlatshahi Pour, Masoumeh; Jennische, Eva; Lange, Stefan; Ewing, Andrew G; Malmberg, Per
2016-09-06
Time of flight secondary ion mass spectrometry (ToF-SIMS) was used to image the lipid localization in brain tissue sections from rats fed specially processed cereals (SPC). An IonTof 5 instrument equipped with a Bi cluster ion gun was used to analyze the tissue sections. Data from 15 brain samples from control and cereal-fed rats were recorded and exported to principal components analysis (PCA). The data clearly show changes of certain lipids in the brain following cereal feeding. PCA score plots show a good separation in lipid distribution between the control and the SPC-fed group. The loadings plot reveal that the groups separated mainly due to changes in cholesterol, vitamin E and c18:2, c16:0 fatty acid distribution as well as some short chain monocarboxylic fatty acid compositions. These insights relate to the working mechanism of SPC as a dietary supplement. SPC is thought to activate antisecretory factor (AF), an endogenous protein with regulatory function for inflammation and fluid secretion. These data provide insights into lipid content in brain following SPC feeding and suggest a relation to activating AF.
NASA Astrophysics Data System (ADS)
Harkrider, Curtis Jason
2000-08-01
The incorporation of gradient-index (GRIN) material into optical systems offers novel and practical solutions to lens design problems. However, widespread use of gradient-index optics has been limited by poor correlation between gradient-index designs and the refractive index profiles produced by ion exchange between glass and molten salt. Previously, a design-for- manufacture model was introduced that connected the design and fabrication processes through use of diffusion modeling linked with lens design software. This project extends the design-for-manufacture model into a time- varying boundary condition (TVBC) diffusion model. TVBC incorporates the time-dependent phenomenon of melt poisoning and introduces a new index profile control method, multiple-step diffusion. The ions displaced from the glass during the ion exchange fabrication process can reduce the total change in refractive index (Δn). Chemical equilibrium is used to model this melt poisoning process. Equilibrium experiments are performed in a titania silicate glass and chemically analyzed. The equilibrium model is fit to ion concentration data that is used to calculate ion exchange boundary conditions. The boundary conditions are changed purposely to control the refractive index profile in multiple-step TVBC diffusion. The glass sample is alternated between ion exchange with a molten salt bath and annealing. The time of each diffusion step can be used to exert control on the index profile. The TVBC computer model is experimentally verified and incorporated into the design- for-manufacture subroutine that runs in lens design software. The TVBC design-for-manufacture model is useful for fabrication-based tolerance analysis of gradient-index lenses and for the design of manufactureable GRIN lenses. Several optical elements are designed and fabricated using multiple-step diffusion, verifying the accuracy of the model. The strength of multiple-step diffusion process lies in its versatility. An axicon, imaging lens, and curved radial lens, all with different index profile requirements, are designed out of a single glass composition.
Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1984-01-01
The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.
Application of Laser Induced Breakdown Spectroscopy to Monitor Rare Earth Ions in Glass Matrix
NASA Astrophysics Data System (ADS)
Sharma, Prakash; Carter, Michael; Kumar, Akshaya
2013-05-01
The Laser Induced breakdown spectroscopy (LIBS) is a real time online technique that can be used to monitor the concentration of rare earth ions in amorphous glass matrix. This study has significant application in the glass industry where the composition of the glass can be monitored in real time using LIBS technology for quality control. The Eu3 + ions doped silicate glasses were developed via sol gel method. The glasses of varying molar percentages of Eu3 + (0.02, 0.05 and 0.08 mole percent), were prepared to study the effect of variation in concentration of Eu3 + ions on the LIBS signal and to calculate its limit of detection (LOD). The spectral assignment of the observed LIBS spectrum has been made. In order to find the maximum signal to noise ratio, we also recorded the intensity of LIBS signal for various integration start delay (ISD) time at a constant power of (pulsed Nd: YAG) laser. The ocean optics LIBS 2500plus spectrometer along with a Q switched Nd:YAG laser (Quantel, Big Sky) were used to record the LIBS spectrum.
NASA Astrophysics Data System (ADS)
Xu, Zhiqiang; Liu, Wei; Yang, Yuanyi; Sun, Lijuan; Deng, Yi; Liao, Li
2017-12-01
In this work, we developed an eco-friendly strategy for preparing Co3O4 nanowires. The process consisted of two steps: controllable synthesis of metal cobalt nanowires followed by a facile air-oxidization step. The 1D nanowire structure with a high aspect ratio was easily achieved via a magnetic-field-assisted self-assembly of cobalt ion complexes during reduction. After air-calcinations, the Co3O4 nanowires were prepared in large scale and ready to be used as the anode material for lithium-ion batteries. The Co3O4 nanowires, which possessed a length ranging from 3 to 8 μm with the aspect ratio more than 15, exhibited a reversible lithium storage capacity up to 790 mAh/g when using a small amount of defect-free graphene flakes as conductive additives. The superior electrochemical performances were ascribable to the synergistic "flat-on" effect between the 1D nanowires and the 2D graphene. Therefore, the Co3O4 nanowire/graphene composite holds promising application for lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Acevedo-Peña, Próspero; Haro, Marta; Rincón, Marina E.; Bisquert, Juan; Garcia-Belmonte, Germà
2014-12-01
Nanotechnology produces hybrids with superior properties than its individual constituents. Here MWCNT@TiO2 composites have been synthesized by controlled hydrolysis of titanium isopropoxide over MWCNT, to be incorporated into Li-ion battery electrodes. Outstanding rate capability of the coated nanotubes is observed in comparison to pristine TiO2. Specific storage capacity as high as 250 mAh g-1 is achieved for the nanocomposite electrode which doubles that encountered for TiO2-based anodes. The mechanism explaining the enhancement in power performance has been revealed by means of electrochemical impedance methods. Although both pristine TiO2 and MWCNT@TiO2 would potentially exhibit comparable specific capacity, the charge transfer resistance for the latter is reduced by a factor 10, implying a key role of MWCNTs to favor the interfacial Li+ ion intake from the electrolyte. MWCNT efficiently provides electrons to the nanostructure through the Ti-C bond which assists the Li+ ion incorporation. These findings provide access to the detailed lithiation kinetics of a broad class of nanocomposites for battery applications.
Insertion compounds and composites made by ball milling for advanced sodium-ion batteries
Zhang, Biao; Dugas, Romain; Rousse, Gwenaelle; Rozier, Patrick; Abakumov, Artem M.; Tarascon, Jean-Marie
2016-01-01
Sodium-ion batteries have been considered as potential candidates for stationary energy storage because of the low cost and wide availability of Na sources. However, their future commercialization depends critically on control over the solid electrolyte interface formation, as well as the degree of sodiation at the positive electrode. Here we report an easily scalable ball milling approach, which relies on the use of metallic sodium, to prepare a variety of sodium-based alloys, insertion layered oxides and polyanionic compounds having sodium in excess such as the Na4V2(PO4)2F3 phase. The practical benefits of preparing sodium-enriched positive electrodes as reservoirs to compensate for sodium loss during solid electrolyte interphase formation are demonstrated by assembling full C/P′2-Na1[Fe0.5Mn0.5]O2 and C/‘Na3+xV2(PO4)2F3' sodium-ion cells that show substantial increases (>10%) in energy storage density. Our findings may offer electrode design principles for accelerating the development of the sodium-ion technology. PMID:26777573
Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1986-01-01
The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.
NASA Astrophysics Data System (ADS)
Chaban, M. O.; Rozhdestvenska, L. M.; Palchyk, O. V.; Dzyazko, Y. S.; Dzyazko, O. G.
2018-04-01
A number of nanomaterials containing titanium dioxide and manganese dioxide were synthesized. The effect of synthesis conditions on structural and sorption characteristics for the selective extraction of lithium ions from solutions was studied. The ion-exchange materials were investigated with the methods of electron microscopy, thermogravimetric and X-ray analyses. During thermal synthesis phases of lithium manganese titanium spinel and TiO2 are being formed. Replacing a part of manganese with titanium ions leads to a decrease in the dissolution of Mn and to an increase in chemical stability. Composites with optimal values of selectivity and sorption rates were used to remove lithium ions from solutions with high salt background. The recovery degree of lithium ions under dynamic conditions reached 99%, the highest sorption capacity was found at pH 10.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paknahad, Elham; Grosvenor, Andrew P.
Glass-ceramic composite materials have been investigated for nuclear waste sequestration applications due to their ability to incorporate large amounts of radioactive waste elements. A key property that needs to be understood when developing nuclear waste sequestration materials is how the structure of the material responds to radioactive decay of nuclear waste elements, which can be simulated by high energy ion implantation. Borosilicate glass-ceramic composites containing brannerite-type (CeTi2O6) or zirconolite-type (CaZrTi2O7) oxides were synthesized at different annealing temperatures and investigated after being implanted with high-energy Au ions to mimic radiation induced structural damage. Backscattered electron (BSE) images were collected to investigatemore » the interaction of the brannerite crystallites with the glass matrix before and after implantation and showed that the morphology of the crystallites in the composite materials were not affected by radiation damage. Surface sensitive Ti K-edge glancing angle XANES spectra collected from the implanted composite materials showed that the structures of the CeTi2O6 and CaZrTi2O7 ceramics were damaged as a result of implantation; however, analysis of Si L2,3-edge XANES spectra indicated that the glass matrix was not affected by ion implantation.« less
NASA Astrophysics Data System (ADS)
Paknahad, Elham; Grosvenor, Andrew P.
2017-12-01
Glass-ceramic composite materials have been investigated for nuclear waste sequestration applications due to their ability to incorporate large amounts of radioactive waste elements. A key property that needs to be understood when developing nuclear waste sequestration materials is how the structure of the material responds to radioactive decay of nuclear waste elements, which can be simulated by high energy ion implantation. Borosilicate glass-ceramic composites containing brannerite-type (CeTi2O6) or zirconolite-type (CaZrTi2O7) oxides were synthesized at different annealing temperatures and investigated after being implanted with high-energy Au ions to mimic radiation induced structural damage. Backscattered electron (BSE) images were collected to investigate the interaction of the brannerite crystallites with the glass matrix before and after implantation and showed that the morphology of the crystallites in the composite materials were not affected by radiation damage. Surface sensitive Ti K-edge glancing angle XANES spectra collected from the implanted composite materials showed that the structures of the CeTi2O6 and CaZrTi2O7 ceramics were damaged as a result of implantation; however, analysis of Si L2,3-edge XANES spectra indicated that the glass matrix was not affected by ion implantation.
Time-lag and Correlation between ACE and RBSPICE Injection Event Observations during Storm Times
NASA Astrophysics Data System (ADS)
Madanian, H.; Patterson, J. D.; Manweiler, J. W.; Soto-chavez, A. R.; Gerrard, A. J.; Lanzerotti, L. J.
2017-12-01
The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the Van Allen Probes mission measures energetic charged particles [ 20 keV to 1 MeV] in the inner magnetosphere and ring current. During geomagnetic storms, injections of energetic ions into the ring current change the ion population and produce geomagnetic field depressions on Earth's surface. We analyzed the magnetic field strength and particle composition in the interplanetary medium measured by instruments on the Advanced Composition Explorer (ACE) spacecraft near the inner Lagrangian point. The Electron, Proton, and Alpha Monitor-Low Energy Magnetic Spectrometer (EPAM-LEMS) sensor on ACE measures energetic particles [ 50 keV to 5 MeV] in the interplanetary space. The SYM-H index is utilized to classify the storm events by magnitude and to select more than 60 storm events between 2013 and 2017. We cross-compared ACE observations at storm times, with the RBSPICE ion measurements at dusk to midnight magnetic local time and over the 3-6 L-shell range. We report on the relative composition of the solar particles and the relative composition of the inner magnetospheric hot plasma during storm times. The data correlation is accomplished by shifting the observation time from ACE to RBSPICE using the solar wind velocity at the time of the observation. We will discuss time lags between storm onset at the magnetopause and injection events measured for each storm.
Adsorption of heavy metal ions by hierarchically structured magnetite-carbonaceous spheres.
Gong, Jingming; Wang, Xiaoqing; Shao, Xiulan; Yuan, Shuang; Yang, Chenlin; Hu, Xianluo
2012-11-15
Magnetically driven separation technology has received considerable attention in recent decade for its great potential application. In this work, hierarchically structured magnetite-carbonaceous microspheres (Fe(3)O(4)-C MSs) have been synthesized for the adsorption of heavy metal ions from aqueous solution. Each sphere contains numerous unique rattle-type structured magnetic particles, realizing the integration of rattle-type building unit into microspheres. The as-prepared composites with high BET surface area, hierarchical as well as mesoporous structures, exhibit an excellent adsorption capacity for heavy metal ions and a convenient separation procedure with the help of an external magnet. It was found that the maximum adsorption capacity of the composite toward Pb(2+) was ∼126mgg(-1), displaying a high efficiency for the removal of heavy metal ions. The Freundlich adsorption isotherm was applicable to describe the removal processes. Kinetics of the Pb(2+) removal was found to follow pseudo-second-order rate equation. The as-prepared composite of Fe(3)O(4)-C MSs as well as Pb(2+)-adsorbed composite were carefully examined by scanning electron microscopy (SEM), Zeta potential measurements, Fourier transform infrared spectroscopy (FT-IR), nitrogen sorption measurements, and X-ray photoelectron spectroscopy (XPS). Based on the characterization results, a possible mechanism of Pb(2+) removal with the composite of Fe(3)O(4)-C MSs was proposed. Copyright © 2012 Elsevier B.V. All rights reserved.
Ha, Jeonghyun; Park, Seung-Keun; Yu, Seung-Ho; Jin, Aihua; Jang, Byungchul; Bong, Sungyool; Kim, In; Sung, Yung-Eun; Piao, Yuanzhe
2013-09-21
A composite of modified graphene and LiFePO4 has been developed to improve the speed of charging-discharging and the cycling stability of lithium ion batteries using LiFePO4 as a cathode material. Chemically activated graphene (CA-graphene) has been successfully synthesized via activation by KOH. The as-prepared CA-graphene was mixed with LiFePO4 to prepare the composite. Microscopic observation and nitrogen sorption analysis have revealed the surface morphologies of CA-graphene and the CA-graphene/LiFePO4 composite. Electrochemical properties have also been investigated after assembling coin cells with the CA-graphene/LiFePO4 composite as a cathode active material. Interestingly, the CA-graphene/LiFePO4 composite has exhibited better electrochemical properties than the conventional graphene/LiFePO4 composite as well as bare LiFePO4, including exceptional speed of charging-discharging and excellent cycle stability. That is because the CA-graphene in the composite provides abundant porous channels for the diffusion of lithium ions. Moreover, it acts as a conducting network for easy charge transfer and as a divider, preventing the aggregation of LiFePO4 particles. Owing to these properties of CA-graphene, LiFePO4 could demonstrate enhanced and stably long-lasting electrochemical performance.
NASA Astrophysics Data System (ADS)
Toyoda, H.; Sugai, H.; Kato, K.; Yoshida, A.; Okuda, T.
1986-06-01
The composition of particle flux to deposit hydrogenated amorphous silicon films in a glow discharge is controlled by a combined electrostatic-magnetic deflection technique. As a result, the films are formed firstly without hydrogen ion flux, secondly by neutral flux only, and thirdly by all species fluxes. Comparison of these films reveals the significant role of hydrogen in the surface reactions. Hydrogen breaks the Si-Si bond, decreases the sticking probability of the Si atom, and replaces the SiH bond by a SiH2 bond to increase the hydrogen content of the films.
Optical properties of YbF3-CaF2 composite thin films deposited by electron-beam evaporation
NASA Astrophysics Data System (ADS)
Wang, Songlin; Mi, Gaoyuan; Zhang, Jianfu; Yang, Chongmin
2018-03-01
We studied electron-beam evaporated YbF3-CaF2 composite films on ZnS substrate at different deposition parameters. The optical properties of films have been fitted, the surface roughness have been measured by AFM. The results of experiments indicated that increased the refractive indices, extinction coefficients, and surface roughness at higher deposition rate. The refractive index of composite film deposited by electron-beam evaporation with assisted-ion source was obviously higher than it without assisted-ion source.
Zarkesh, Ibrahim; Ghanian, Mohammad Hossein; Azami, Mahmoud; Bagheri, Fatemeh; Baharvand, Hossein; Mohammadi, Javad; Eslaminejad, Mohamadreza Baghaban
2017-09-01
Biphasic calcium phosphate (BCP) microspheres are of great interest due to their high stability and osteoinductive properties at specific compositions. However, the need for optimal performance at a unique composition limits their flexibility for tuning drug release by modulation of bulk properties and presents the question of engineering surface topography as an alternative. It is necessary to have a facile method to control surface topography at a defined bulk composition. Here, we have produced BCP microspheres with different surface topographies that have the capability to be used as tunable drug release systems. We synthesized calcium deficient hydroxyapatite (CDHA) microparticles by precipitating calcium and phosphate ions onto ethylenediaminetetraacetic acid (EDTA) templates. The morphology and surface topography of CDHA microparticles were controlled using process parameters, which governed nucleation and growth. These parameters included template concentration, heat rate, and stirring speed. Under low heat rate and static conditions, we could obtain spherical microparticles with long and short nanosheets on their surfaces at low and high EDTA concentrations, respectively. These nanostructured microspheres were subsequently crystallized by thermal treatment to produce EDTA-free BCP microspheres with intact morphology. These biocompatible BCP microspheres were highly effective in loading and prolonged release of both small molecule [dexamethasone (Dex)] and protein [bovine serum albumin (BSA)] models. This strategy has enabled us to control the surface topography of BCP microspheres at defined compositions and holds tremendous promise for drug delivery and tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Sustainability Impact of Nanomaterial Enhanced Lithium Ion Batteries
NASA Astrophysics Data System (ADS)
Ganter, Matthew
Energy storage devices are becoming an integral part of sustainable energy technology adoption, particularly, in alternative transportation (electric vehicles) and renewable energy technologies (solar and wind which are intermittent). The most prevalent technology exhibiting near-term impact are lithium ion batteries, especially in portable consumer electronics and initial electric vehicle models like the Chevy Volt and Nissan Leaf. However, new technologies need to consider the full life-cycle impacts from material production and use phase performance to the end-of-life management (EOL). This dissertation investigates the impacts of nanomaterials in lithium ion batteries throughout the life cycle and develops strategies to improve each step in the process. The embodied energy of laser vaporization synthesis and purification of carbon nanotubes (CNTs) was calculated to determine the environmental impact of the novel nanomaterial at beginning of life. CNTs were integrated into lithium ion battery electrodes as conductive additives, current collectors, and active material supports to increase power, energy, and thermal stability in the use phase. A method was developed to uniformly distribute CNT conductive additives in composites. Cathode composites with CNT additives had significant rate improvements (3x the capacity at a 10C rate) and higher thermal stability (40% reduction in exothermic energy released upon overcharge). Similar trends were also measured with CNTs in anode composites. Advanced free-standing anodes incorporating CNTs with high capacity silicon and germanium were measured to have high capacities where surface area reduction improved coulombic efficiencies and thermal stability. A thermal stability plot was developed that compares the safety of traditional composites with free-standing electrodes, relating the results to thermal conductivity and surface area effects. The EOL management of nanomaterials in lithium ion batteries was studied and a novel recycling technique, referred to as refunctionalization , for lithium ion cathode materials was developed. Refunctionalization is the treatment of active materials in order to regain electrochemical performance at EOL which eliminates the need to recycle to the elemental level and can lead to greater environmental and economic savings. The lithium ion capacity of EOL lithium iron phosphate (LiFePO4) nanomaterial cathode was regained through chemical and electrochemical re-lithiation techniques. The embodied energy of refunctionalized LiFePO4 was calculated to be 50% less than cathode synthesized from virgin materials. Overall, these results contribute to an improved understanding of the life cycle impacts for nanomaterials in batteries. The CNT embodied energy calculation established the first life cycle inventory for laser vaporization CNTs, whereas the novel refunctionalization strategies established a new EOL pathway to recover cathodes at a higher value state than traditional recycling. At the same time, CNT enhanced battery electrodes increased power and energy in the use phase while demonstrating the unique ability to engineer electrodes to control thermal stability, which enables better performing and safer batteries.
On the origins of energetic ions in the Earth's dayside magnetosheath
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuselier, S.A.; Klumpar, D.M.; Shelley, E.G.
1991-01-01
Energetic ion events in the Earth's dayside subsolar magnetosheath (0900 - 1300 Local Time) are surveyed using data from the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer (AMPTE/CCE) Hot Plasma Composition Experiment. Ion species carrying the signature of their origin (O{sup +} and energetic He{sup 2+}) are used to distinguish between magnetospheric and solar wind orgins for the energetic ion events. The results of this survey indicate that the majority of energetic (10-17 keV/e) H{sup +} and He{sup 2+} ions observed in the dayside magnetosheath are accelerated from the solar wind population. The energetic He{sup 2+} to H{sup +} densitymore » ratio in the magnetosheath is consistent with that predicted from first-order Fermi acceleration of solar wind ions in the turbulent regions upstream and downstream from the Earth's quasi-parallel bow shock. Although the majority of the energetic ions appear to be of solar wind origin, magnetospheric O{sup +} is also occasionally present in the magnetosheath. The simultaneous occurence of both energetic He{sup 2+} and magnetospheric O{sup +} indicates that, on occasion, both Fermi acceleration of solar wind ions and leakage of magnetospheric ions occurs in the dayside magnetosheath.« less
Study of chloride ion transport of composite by using cement and starch as a binder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armynah, Bidayatul; Halide, Halmar; Zahrawani,
This study presents the chemical bonding and the structural properties of composites from accelerator chloride test migration (ACTM). The volume fractions between binder (cement and starch) and charcoal in composites are 20:80 and 60:40. The effect of the binder to the chemical composition, chemical bonding, and structural properties before and after chloride ion passing through the composites was determined by X-ray fluorescence (XRF), by Fourier transform infra-red (FTIR), and x-ray diffraction (XRD), respectively. From the XRD data, XRF data, and the FTIR data shows the amount of chemical composition, the type of binding, and the structure of composites are dependingmore » on the type of binder. The amount of chloride migration using starch as binder is higher than that of cement as a binder due to the density effects.« less
The Development for Polymer Actuator Active Catheter System
Sewa, S.; Onishi, K.; Oguro, K.; Asaka, K.; Taki, W.; Toma, N.
2001-01-01
Summary Electric stimuli polymer-metal composite actuator material has been developed for active catheter system and other widely new applications. The polymer actuator is made of ion exchange polymer and gold as electrode, and a pulse voltage of 3 volts on the actuator gave a quick bend 90 degree angle. This composite material is possible to make small size, light and soft actuator. So now we can actually develop an active catheter for the interventional radiology surgery. The prototype polymer actuator active catheter has been developed by using polymer actuator technology and Micro Electronics Mechanical System (MEMS) technologies. The active catheter is controllable from the outside of the body by electric signal. The tip part of the catheter is made of the polymer actuator tube and bends 90 degree angles. The animal tests (dog) showed good actuator performance to control right direction and bending angle at bifurcation of blood vessel and aneurysms. PMID:20663388
NASA Technical Reports Server (NTRS)
McDonald, Robert; Brawn, Shelly; Harrison, Katherine; O'Toole, Shannon; Moeller, Michael
2011-01-01
Lithium primary and lithium ion secondary batteries provide high specific energy and energy density. The use of these batteries also helps to reduce launch weight. Both primary and secondary cells can be packaged as high-rate cells, which can present a threat to crew and equipment in the event of external or internal short circuits. Overheating of the cell interior from high current flows induced by short circuits can result in exothermic reactions in lithium primary cells and fully charged lithium ion secondary cells. Venting of the cell case, ejection of cell components, and fire have been reported in both types of cells, resulting from abuse, cell imperfections, or faulty electronic control design. A switch has been developed that consists of a thin layer of composite material made from nanoscale particles of nickel and Teflon that conducts electrons at room temperature and switches to an insulator at an elevated temperature, thus interrupting current flow to prevent thermal runaway caused by internal short circuits. The material is placed within the cell, as a thin layer incorporated within the anode and/or the cathode, to control excess currents from metal-to-metal or metal-to-carbon shorts that might result from cell crush or a manufacturing defect. The safety of high-rate cells is thus improved, preventing serious injury to personnel and sensitive equipment located near the battery. The use of recently available nanoscale particles of nickel and Teflon permits an improved, homogeneous material with the potential to be fine-tuned to a unique switch temperature, sufficiently below the onset of a catastrophic chemical reaction. The smaller particles also permit the formation of a thinner control film layer (<50 m), which can be incorporated into commercial high-rate lithium primary and secondary cells. The innovation permits incorporation in current lithium and lithium-ion cell designs with a minimal impact on cell weight and volume. The composite thermal switch (CTS(TradeMark)) coating can be incorporated in either the anode or cathode or both. The coating can be applied in a variety of different processes that permits incorporation in the cell and electrode manufacturing processes. The CTS responds quickly and halts current flow in the hottest parts of the cell first. The coating can be applied to metal foil and supplied as a cell component onto which the active electrode materials are coated.
Atomic oxygen ions as ionospheric biomarkers on exoplanets
NASA Astrophysics Data System (ADS)
Mendillo, Michael; Withers, Paul; Dalba, Paul A.
2018-04-01
The ionized form of atomic oxygen (O+) is the dominant ion species at the altitude of maximum electron density in only one of the many ionospheres in our Solar System — Earth's. This ionospheric composition would not be present if oxygenic photosynthesis was not an ongoing mechanism that continuously impacts the terrestrial atmosphere. We propose that dominance of ionospheric composition by O+ ions at the altitude of maximum electron density can be used to identify a planet in orbit around a solar-type star where global-scale biological activity is present. There is no absolute numerical value required for this suggestion of an atmospheric plasma biomarker — only the dominating presence of O+ ions at the altitude of peak electron density.
NASA Astrophysics Data System (ADS)
Zhang, Jinjun; Wang, Xiaoyan; Wang, Jimei; Wang, Jing; Ji, Zhijiang
2016-01-01
TiO2 nanoparticles were immobilized on diatomite by hydrolysis-deposition method using titanium tetrachloride as precursor. The effect of sulfate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst was characterized by TG-DSC, XRD, BET surface area, SEM, FT-IR spectroscopy, XPS and UV-vis diffuse reflectance spectra. The results indicate that addition of a small amount of sulfate ions promotes the formation of anatase phase and inhibits the transformation from anatase to rutile. On the other hand, sulfate ions immobilized on the surface of TiO2/diatomite have strong affinity for electrons, capturing the photo-generated electrons, which hinders the recombination of electrons and holes.
NASA Technical Reports Server (NTRS)
Banks, B. A. (Inventor)
1984-01-01
A carbon coating is vacuum arc deposited on a smooth surface of a target which is simultaneously ion beam sputtered. The bombarding ions have sufficient energy to create diamond bonds. Spalling occurs as the carbon deposit thickens. The resulting diamond-like carbon flakes are mixed with a binder or matrix material to form a composite material having improved thermal, electrical, mechanical, and tribological properties when used in aerospace structures and components.
Effect of calcium phosphate nanocomposite on in vitro remineralization of human dentin lesions.
Weir, Michael D; Ruan, Jianping; Zhang, Ning; Chow, Laurence C; Zhang, Ke; Chang, Xiaofeng; Bai, Yuxing; Xu, Hockin H K
2017-09-01
Secondary caries is a primary reason for dental restoration failures. The objective of this study was to investigate the remineralization of human dentin lesions in vitro via restorations using nanocomposites containing nanoparticles of amorphous calcium phosphate (NACP) or NACP and tetracalcium phosphate (TTCP) for the first time. NACP was synthesized by a spray-drying technique and incorporated into a resin consisting of ethoxylated bisphenol A dimethacrylate (EBPADMA) and pyromellitic glycerol dimethacrylate (PMGDM). After restoring the dentin lesions with nanocomposites as well as a non-releasing commercial composite control, the specimens were treated with cyclic demineralization (pH 4, 1h per day) and remineralization (pH 7, 23h per day) for 4 or 8 weeks. Calcium (Ca) and phosphate (P) ion releases from composites were measured. Dentin lesion remineralization was measured at 4 and 8 weeks by transverse microradiography (TMR). Lowering the pH increased ion release of NACP and NACP-TTCP composites. At 56 days, the released Ca concentration in mmol/L (mean±SD; n=3) was (13.39±0.72) at pH 4, much higher than (1.19±0.06) at pH 7 (p<0.05). At 56 days, P ion concentration was (5.59±0.28) at pH 4, much higher than (0.26±0.01) at pH 7 (p<0.05). Quantitative microradiography showed typical subsurface dentin lesions prior to the cyclic demineralization/remineralization treatment, and dentin remineralization via NACP and NACP-TTCP composites after 4 and 8 weeks of treatment. At 8 weeks, NACP nanocomposite achieved dentin lesion remineralization (mean±SD; n=15) of (48.2±11.0)%, much higher than (5.0±7.2)% for dentin in commercial composite group after the same cyclic demineralization/remineralization regimen (p<0.05). Novel NACP-based nanocomposites were demonstrated to achieve dentin lesion remineralization for the first time. These results, coupled with acid-neutralization and good mechanical properties shown previously, indicate that the NACP-based nanocomposites are promising for restorations to inhibit caries and protect tooth structures. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhirkov, Igor, E-mail: igozh@ifm.liu.se; Rosen, Johanna; Oks, Efim
2015-06-07
DC arc plasma from Ti, Al, and Ti{sub 1−x}Al{sub x} (x = 0.16, 0.25, 0.50, and 0.70) compound cathodes has been characterized with respect to plasma chemistry (charged particles) and charge-state-resolved ion energy for Ar and N{sub 2} pressures in the range 10{sup −6} to 3 × 10{sup −2} Torr. Scanning electron microscopy was used for exploring the correlation between the cathode and film composition, which in turn was correlated with the plasma properties. In an Ar atmosphere, the plasma ion composition showed a reduction of Al of approximately 5 at. % compared to the cathode composition, while deposited films were in accordance with the cathodemore » stoichiometry. Introducing N{sub 2} above ∼5 × 10{sup −3} Torr, lead to a reduced Al content in the plasma as well as in the film, and hence a 1:1 correlation between the cathode and film composition cannot be expected in a reactive environment. This may be explained by an influence of the reactive gas on the arc mode and type of erosion of Ti and Al rich contaminations, as well as on the plasma transport. Throughout the investigated pressure range, a higher deposition rate was obtained from cathodes with higher Al content. The origin of generated gas ions was investigated through the velocity rule, stating that the most likely ion velocities of all cathode elements from a compound cathode are equal. The results suggest that the major part of the gas ions in Ar is generated from electron impact ionization, while gas ions in a N{sub 2} atmosphere primarily originate from a nitrogen contaminated layer on the cathode surface. The presented results provide a contribution to the understanding processes of plasma generation from compound cathodes. It also allows for a more reasonable approach to the selection of composite cathode and experimental conditions for thin film depositions.« less
Habchi, Baninia; Alves, Sandra; Jouan-Rimbaud Bouveresse, Delphine; Appenzeller, Brice; Paris, Alain; Rutledge, Douglas N; Rathahao-Paris, Estelle
2018-01-01
Due to the presence of pollutants in the environment and food, the assessment of human exposure is required. This necessitates high-throughput approaches enabling large-scale analysis and, as a consequence, the use of high-performance analytical instruments to obtain highly informative metabolomic profiles. In this study, direct introduction mass spectrometry (DIMS) was performed using a Fourier transform ion cyclotron resonance (FT-ICR) instrument equipped with a dynamically harmonized cell. Data quality was evaluated based on mass resolving power (RP), mass measurement accuracy, and ion intensity drifts from the repeated injections of quality control sample (QC) along the analytical process. The large DIMS data size entails the use of bioinformatic tools for the automatic selection of common ions found in all QC injections and for robustness assessment and correction of eventual technical drifts. RP values greater than 10 6 and mass measurement accuracy of lower than 1 ppm were obtained using broadband mode resulting in the detection of isotopic fine structure. Hence, a very accurate relative isotopic mass defect (RΔm) value was calculated. This reduces significantly the number of elemental composition (EC) candidates and greatly improves compound annotation. A very satisfactory estimate of repeatability of both peak intensity and mass measurement was demonstrated. Although, a non negligible ion intensity drift was observed for negative ion mode data, a normalization procedure was easily applied to correct this phenomenon. This study illustrates the performance and robustness of the dynamically harmonized FT-ICR cell to perform large-scale high-throughput metabolomic analyses in routine conditions. Graphical abstract Analytical performance of FT-ICR instrument equipped with a dynamically harmonized cell.
The new applications of sputtering and ion plating
NASA Technical Reports Server (NTRS)
Spalvins, T.
1977-01-01
The potential industrial applications of sputtering and ion plating are strictly governed by the unique features these methods possess. The outstanding features of each method, the resultant coating characteristics and the various sputtering modes and configurations are discussed. New, more complex coatings and deposits can be developed such as graded composition structures (metal-ceramic seals), laminated and dispersion strengthened composites which improve the mechanical properties and high temperature stability. Specific industrial areas where future effort of sputtering and ion plating will concentrate to develop intricate alloy or compound coatings and solve difficult problem areas are discussed.
Method of making an ion-implanted planar-buried-heterostructure diode laser
Brennan, Thomas M.; Hammons, Burrell E.; Myers, David R.; Vawter, Gregory A.
1992-01-01
Planar-buried-heterostructure, graded-index, separate-confinement-heterostructure semiconductor diode laser 10 includes a single quantum well or multi-quantum well active stripe 12 disposed between a p-type compositionally graded Group III-V cladding lever 14 and an n-type compositionally graded Group III-V cladding layer 16. The laser 10 includes an iion implanted n-type region 28 within the p-type cladding layer 14 and further includes an ion implanted p-type region 26 within the n-type cladding layer 16. The ion implanted regions are disposed for defining a lateral extent of the active stripe.
Species-specific toxicity of major ion salts 1: Fathead minnows and pond snails
Elevated major ion concentrations (Na, K, Ca, Mg, Cl, SO4, HCO3) have been recognized as a cause of surface water impairment and the toxicity of these major ions has been shown to be dependent on the specific ion composition of the water. A long-term research project was initiate...
Elevated major ion concentrations (Na, K, Ca, Mg, Cl, SO4, HCO3) have been recognized as a cause of surface water impairment and the toxicity of these major ions has been shown to be dependent on the specific ion composition of the water. A long-term research project was initiate...
Khan, Anish; Khan, Aftab Aslam Parwaz; Asiri, Abdullah M.; Rub, Malik Abdul
2014-01-01
Poly(o-anisidine) molybdophosphate was expediently obtained by sol-gel mixing of Poly(o-anisidine) into the inorganic matrices of molybdophosphate, which was allowed to react with silver nitrate to the formation of poly(o-anisidine) molybdophosphate embedded silver nano composite. The composite was characterized by Fourier Transform Infrared Spectroscopy, X-ray powder diffraction, UV-Vis Spectrophotometry, Fluorescence Spectroscopy, Scanning Electron Microscopy/Energy-dispersive X-ray Spectroscopy and Thermogravimertic Analysis. Ion exchange capacity and distribution studies were carried out to understand the ion-exchange capabilities of the nano composite. On the basis of highest distribution studies, this nano composite cation exchanger was used as preparation of heavy metal ion selective membrane. Membrane was characterized for its performance as porosity and swelling later on was used for the preparation of membrane electrode for Hg(II), having better linear range, wide working pH range (2–4.5) with fast response in the real environment. PMID:24805257
NASA Astrophysics Data System (ADS)
Primc, Darinka; Belec, Blaž; Makovec, Darko
2016-03-01
Composite nanoparticles can be synthesized by coating a shell made of one material onto core nanoparticles made of another material. Here we report on a novel method for coating a magnetic iron oxide onto the surface of core nanoparticles in an aqueous suspension. The method is based on the heterogeneous nucleation of an initial product of Fe3+/Fe2+ co-precipitation on the core nanoparticles. The close control of the supersaturation of the precipitating species required for an exclusively heterogeneous nucleation and the growth of the shell were achieved by immobilizing the reactive Fe3+ ions in a nitrate complex with urea ([Fe((CO(NH2)2)6](NO3)3) and by using solid Mg(OH)2 as the precipitating reagent. The slow thermal decomposition of the complex at 60 °C homogeneously releases the reactive Fe3+ ions into the suspension of the core nanoparticles. The key stage of the process is the thermal hydrolysis of the released Fe3+ ions prior to the addition of Mg(OH)2. The thermal hydrolysis results in the formation of γ-FeOOH, exclusively at the surfaces of the core nanoparticles. After the addition of the solid hydroxide Mg(OH)2, the pH increases and at pH 5.7 the Fe2+ precipitates and reacts with the γ-FeOOH to form magnetic iron oxide with a spinel structure (spinel ferrite) at the surfaces of the core nanoparticles. The proposed low-temperature method for the synthesis of composite nanoparticles is capable of forming well-defined interfaces between the two components, important for the coupling of the different properties. The procedure is environmentally friendly, inexpensive, and appropriate for scaling up to mass production.
Tomina, Veronika V; Melnyk, Inna V; Zub, Yuriy L; Kareiva, Aivaras; Vaclavikova, Miroslava; Kessler, Vadim G
2017-01-01
Spherical silica particles with bifunctional (≡Si(CH2)3NH2/≡SiCH3, ≡Si(CH2)3NH2/≡Si(CH2)2(CF2)5CF3) surface layers were produced by a one-step approach using a modified Stöber method in three-component alkoxysilane systems, resulting in greatly increased contents of functional components. The content of functional groups and thermal stability of the surface layers were analyzed by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, and 13C and 29Si solid-state NMR spectroscopy revealing their composition and organization. The fine chemical structure of the surface in the produced hybrid adsorbent particles and the ligand distribution were further investigated by electron paramagnetic resonance (EPR) and electron spectroscopy of diffuse reflectance (ESDR) spectroscopy using Cu2+ ion coordination as a probe. The composition and structure of the emerging surface complexes were determined and used to provide an insight into the molecular structure of the surfaces. It was demonstrated that the introduction of short hydrophobic (methyl) groups improves the kinetic characteristics of the samples during the sorption of copper(II) ions and promotes fixation of aminopropyl groups on the surface of silica microspheres. The introduction of long hydrophobic (perfluoroctyl) groups changes the nature of the surface, where they are arranged in alternately hydrophobic/hydrophilic patches. This makes the aminopropyl groups huddled and less active in the sorption of metal cations. The size and aggregation/morphology of obtained particles was optimized controlling the synthesis conditions, such as concentrations of reactants, basicity of the medium, and the process temperature. PMID:28243572
Jalem, Randy; Kimura, Mayumi; Nakayama, Masanobu; Kasuga, Toshihiro
2015-06-22
The ongoing search for fast Li-ion conducting solid electrolytes has driven the deployment surge on density functional theory (DFT) computation and materials informatics for exploring novel chemistries before actual experimental testing. Existing structure prototypes can now be readily evaluated beforehand not only to map out trends on target properties or for candidate composition selection but also for gaining insights on structure-property relationships. Recently, the tavorite structure has been determined to be capable of a fast Li ion insertion rate for battery cathode applications. Taking this inspiration, we surveyed the LiMTO4F tavorite system (M(3+)-T(5+) and M(2+)-T(6+) pairs; M is nontransition metals) for solid electrolyte use, identifying promising compositions with enormously low Li migration energy (ME) and understanding how structure parameters affect or modulate ME. We employed a combination of DFT computation, variable interaction analysis, graph theory, and a neural network for building a crystal structure-based ME prediction model. Candidate compositions that were predicted include LiGaPO4F (0.25 eV), LiGdPO4F (0.30 eV), LiDyPO4F (0.30 eV), LiMgSO4F (0.21 eV), and LiMgSeO4F (0.11 eV). With chemical substitutions at M and T sites, competing effects among Li pathway bottleneck size, polyanion covalency, and local lattice distortion were determined to be crucial for controlling ME. A way to predict ME for multiple structure types within the neural network framework was also explored.
NASA Astrophysics Data System (ADS)
Bianchi, Federico; Garmash, Olga; He, Xucheng; Yan, Chao; Iyer, Siddharth; Rosendahl, Ida; Xu, Zhengning; Rissanen, Matti P.; Riva, Matthieu; Taipale, Risto; Sarnela, Nina; Petäjä, Tuukka; Worsnop, Douglas R.; Kulmala, Markku; Ehn, Mikael; Junninen, Heikki
2017-11-01
In order to investigate the negative ions in the boreal forest we have performed measurements to chemically characterise the composition of negatively charged clusters containing highly oxygenated molecules (HOMs). Additionally, we compared this information with the chemical composition of the neutral gas-phase molecules detected in the ambient atmosphere during the same period. The chemical composition of the ions was retrieved using an atmospheric pressure interface time-of-flight mass spectrometer (APi-TOF-MS) while the gas-phase neutral molecules (mainly sulfuric acid and HOMs) were characterised using the same mass spectrometer coupled to a nitrate-based chemical ionisation unit (CI-APi-TOF). Overall, we divided the identified HOMs in two classes: HOMs containing only carbon, hydrogen and oxygen and nitrogen-containing HOMs or organonitrates (ONs). During the day, among the ions, in addition to the well-known pure sulfuric acid clusters, we found a large number of HOMs clustered with nitrate (NO3-) or bisulfate (HSO4-), with the first one being more abundant. During the night, the distribution of ions, mainly composed of HOM clustered with NO3-, was very similar to the neutral compounds that are detected in the CI-APi-TOF as adducts with the artificially introduced primary ion (NO3-). For the first time, we identified several clusters containing up to 40 carbon atoms. These ions are formed by up to four oxidised α-pinene units clustered with NO3-. While we know that dimers (16-20 carbon atoms) are probably formed by a covalent bond between two α-pinene oxidised units, it is still unclear what bonding formed larger clusters. Finally, diurnal profiles of the negative ions were consistent with the neutral compounds revealing that ONs peak during the day while HOMs are more abundant at night-time. However, during the day, a large fraction of the negative charge is taken up by the pure sulfuric acid clusters causing differences between ambient ions and neutral compounds (i.e. less available charge for HOM and ON).
Synthesis of Copper Oxide/Graphite Composite for High-Performance Rechargeable Battery Anode.
Cho, Sanghun; Ahn, Yong-Keon; Yin, Zhenxing; You, Duck-Jae; Kim, Hyunjin; Piao, Yuanzhe; Yoo, Jeeyoung; Kim, Youn Sang
2017-08-25
A novel copper oxide/graphite composite (GCuO) anode with high capacity and long cycle stability is proposed. A simple, one-step synthesis method is used to prepare the GCuO, through heat treatment of the Cu ion complex and pristine graphite. The gases generated during thermal decomposition of the Cu ion complex (H 2 and CO 2 ) induce interlayer expansion of the graphite planes, which assists effective ion intercalation. Copper oxide is formed simultaneously as a high-capacity anode material through thermal reduction of the Cu ion complex. Material analyses reveal the formation of Cu oxide nanoparticles and the expansion of the gaps between the graphite layers from 0.34 to 0.40 nm, which is enough to alleviate layer stress for reversible ion intercalation for Li or Na batteries. The GCuO cell exhibits excellent Li-ion battery half-cell performance, with a capacity of 532 mAh g -1 at 0.2 C (C-rate) and capacity retention of 83 % after 250 cycles. Moreover, the LiFePO 4 /GCuO full cell is fabricated to verify the high performance of GCuO in practical applications. This cell has a capacity of 70 mAh g -1 and a coulombic efficiency of 99 %. The GCuO composite is therefore a promising candidate for use as an anode material in advanced Li- or Na-ion batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tidrow, Steven Clay
Two primary concerns, in the sputter deposition of high T_{c} material films, are the prevention of oxygen deficiency in the films and the elimination of the negative ion effect. "Oxygen deficiency" occurs when the amount of oxygen incorporated into the film is less than the amount of oxygen required to form the superconducting material lattice. Oxygen deficiency is due to the volatile nature of oxygen. The negative ion effect occurs when an atom or molecule (typically oxygen) gains an extra electron, is accelerated away from the target and impinges upon a film being grown directly in front of the sputtering target. The impinging particle has enough energy to cause resputtering of the deposited film. The presence of Sr and to a greater extent Ba, may enhance the negative ion effect in these materials. However, it is oxygen which readily forms negative ions that is primarily responsible for the negative ion effect. Thus, oxygen must be given special attention in the sputter deposition of high T_{c} material films. A specially designed sputtering system is used to demonstrate that the negative ion effect can be reduced such that large uniform high T_{c} material films possessing predicted and repeated composition can be grown in an on-axis arrangement. Utilizing this same sputtering system and the volatile nature of oxygen, it is demonstrated that oxygen processes occurring in the chamber during growth of high T_ {c} material films can be investigated using the tracer ^{18}O. In particular, it is shown that ^{18}O can be utilized as a tool for (1) investigating the negative ion effect, (2) investigating oxygen incorporation into high T_{c} material films, (3) investigating oxygen incorporation into the target, (4) tailoring films for oxygen migration and interface investigations and (5) tailoring films for the other specific oxygen investigations. Such sputtering systems that utilize the tracer ^{18}O are necessary for systematic growth of high T_ {c} material films for systematic investigations into the nature of these materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, X. P.; Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024; Zhang, Z. C.
High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, takingmore » into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.« less
Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Xiaorui, E-mail: gxr_1320@sina.com; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189; Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA
Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg–Al and Mg–Fe layered double hydroxides (LDHs) have been synthesized by the calcination–rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV–vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO{sub 3}{sup 2−} solutions imply that Mg{sub 3}Al–VC LDH is a better controlled release system than Mg{sub 3}Fe–VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and amore » diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO{sub 3}{sup 2−} solution. - Graphical abstract: Vitamin C anions have been intercalated in the interlayer space of layered double hydroxide and released in CO{sub 3}{sup 2−} solution and deionised water. - Highlights: • Vitamin C intercalated Mg–Al and Mg–Fe layered double hydroxides were prepared. • Release property of vitamin C in aqueous CO{sub 3}{sup 2−} solution is better. • Avrami-Erofe’ev and first-order models provide better fit for release results. • Diffusion-controlled and ion exchange processes occur in deionised water. • An ion exchange process occurs in CO{sub 3}{sup 2−} solution.« less
Zhang, Ji-Guang; Benson, David K.; Tracy, C. Edwin
1998-01-01
The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.
The extraction of negative carbon ions from a volume cusp ion source
NASA Astrophysics Data System (ADS)
Melanson, Stephane; Dehnel, Morgan; Potkins, Dave; McDonald, Hamish; Hollinger, Craig; Theroux, Joseph; Martin, Jeff; Stewart, Thomas; Jackle, Philip; Philpott, Chris; Jones, Tobin; Kalvas, Taneli; Tarvainen, Olli
2017-08-01
Acetylene and carbon dioxide gases are used in a filament-powered volume-cusp ion source to produce negative carbon ions for the purpose of carbon implantation for gettering applications. The beam was extracted to an energy of 25 keV and the composition was analyzed with a spectrometer system consisting of a 90° dipole magnet and a pair of slits. It is found that acetylene produces mostly C2- ions (up to 92 µA), while carbon dioxide produces mostly O- with only trace amounts of C-. Maximum C2- current was achieved with 400 W of arc power and, the beam current and composition were found to be highly dependent on the pressure in the source. The beam properties as a function of source settings are analyzed, and plasma properties are measured with a Langmuir probe. Finally, we describe testing of a new RF H- ion source, found to produce more than 6 mA of CW H- beam.
ISEE-1 data reduction and analysis plasma composition experiment
NASA Technical Reports Server (NTRS)
Lennartsson, W.; Sharp, R. D.
1985-01-01
The plasma composition experiment covers energies from OeV to 17 keV/e and has a mass-per-charge range from less than 1 to about 150 amu. Measurements were made from the inner ring current region to the plasma sheet, magnetotail lobes, and the magnetopause boundary layers and beyond. Possibly the most significant results from the experiment are those related to energetic (0+) ions of terrestrial origin. These ions are found in every region of the magnetosphere reached by the spacecraft and can have energy and pitch-angle distributions that are similar to those traditionally associated with protons of solar wind origin. The (0+) ions are commonly the most numerous ions in the 0.1 - 17 keV/e energy range and are often a substantial part of the ion population at large distances as well, especially during geomagnetically disturbed conditions. An overview of results obtained for the (0+) and other ions with energies in the 0.1 - 17 keV/e range in the magnetosphere is given.