Science.gov

Sample records for ion cyclotron transmission

  1. Ion cyclotron resonance cell

    DOEpatents

    Weller, Robert R.

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  2. Ion cyclotron resonance cell

    DOEpatents

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  3. Method and apparatus for ion cyclotron spectrometry

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2010-08-17

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber that includes at least a first section that induces a first magnetron effect that increases a cyclotron frequency of an ion and at least a second section that induces a second magnetron effect that decreases the cyclotron frequency of an ion. The cyclotron frequency changes induced by the first and second magnetron effects substantially cancel one another so that an ion traversing the at least first and second sections will experience no net change in cyclotron frequency.

  4. ECR (Electron Cyclotron Resonance) ion sources for cyclotrons

    SciTech Connect

    Lyneis, C.M.

    1986-10-01

    In the last decade ECR (Electron Cyclotron Resonance) ion sources have evolved from a single large, power consuming, complex prototype into a variety of compact, simple, reliable, efficient, high performance sources of high charge state ions for accelerators and atomic physics. The coupling of ECR sources to cyclotrons has resulted in significant performance gains in energy, intensity, reliability, and variety of ion species. Seven ECR sources are in regular operation with cyclotrons and numerous other projects are under development or in the planning stag. At least four laboratories have ECR sources dedicated for atomic physics research and other atomic physics programs share ECR sources with cyclotrons. An ECR source is now installed on the injector for the CERN SPS synchrotron to accelerate O/sup 8 +/ to relativistic energies. A project is underway at Argonne to couple an ECR source to a superconducting heavy-ion linac. Although tremendous progress has been made, the field of ECR sources is still a relatively young technology and there is still the potential for further advances both in source development and understanding of the plasma physics. The development of ECR sources is reviewed. The important physics mechanisms which come into play in the operation of ECR Sources are discussed, along with various models for charge state distributions (CSD). The design and performance of several ECR sources are compared. The 88-Inch Cyclotron and the LBL ECR is used as an example of cyclotron+ECR operation. The future of ECR sources is considered.

  5. Method and apparatuses for ion cyclotron spectrometry

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2012-03-06

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber. The trapping electric field may comprise a field potential that, when taken in cross-section along the z-axis, includes at least one section that is concave down and at least one section that is concave up so that ions traversing the field potential experience a net magnetron effect on a cyclotron frequency of the ions that is substantially equal to zero. Other apparatuses and a method for performing ion cyclotron spectrometry are also disclosed herein.

  6. The electromagnetic ion cyclotron beam anisotropy instability

    NASA Technical Reports Server (NTRS)

    Peter Gary, S.; Schriver, David

    1987-01-01

    Electromagnetic instabilities driven by an anisotropic, relatively cool ion beam are studied for the case in which both the beam and the instabilities propagate parallel or antiparallel to a uniform magnetic field. At modest beam-core relative drift speeds, sufficiently large perpendicular-to-parallel beam temperature ratios and sufficiently large plasma beta, the mode of fastest growth rate is the ion cyclotron beam anisotropy instability. Because the right-hand polarized waves observed upstream of slow shocks in the earth's magnetotail can lead to the appropriate beam anisotropy, the ion cyclotron instability may be present and account for the left-hand polarized magnetic waves observed there. Also, because of its relatively low phase speed, the ion cyclotron beam anisotropy instability may provide the scattering necessary for ion Fermi acceleration at slow shocks of sufficiently high plasma beta.

  7. Alfven ion-cyclotron heating of ionospheric O(+) ions

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Sydora, R. D.; Ashour-Abdalla, M.

    1988-01-01

    Transversely heated ionospheric ions, in particular O(+) ions, are often observed flowing upward along auroral field lines. Currents observed in association with the transversely heated ions can drive shear Alfven waves and electrostatic ion-cyclotron waves unstable which can, in turn, be resonantly absorbed by the ions to produce the heating. Particle simulations are used to examine self-consistently the excitation of these waves and the associated heating. It is shown that the growth of the electrostatic ion-cyclotron waves quickly becomes suppressed as the ions become heated and the dominant wave fields are those of the shear Alfven wave. The resultant transverse ion heating is larger and faster than that produced by solely electrostatic ion-cyclotron wave heating. Due to trapping of ions by the shear Alfven wave, the temperature of the O(+) ions remains comparable to that of the H(+) ions.

  8. Xe/+/ -induced ion-cyclotron harmonic waves

    NASA Astrophysics Data System (ADS)

    Jones, D.

    Xenon ion sources on an ejectable package separated from the main payload during the flights of Porcupine rockets F3 and F4 which were launched from Kiruna, Sweden on March 19 and 31, 1979, respectively. The effects of the xenon ion beam, detected by the LF (f less than 16 kHz) wideband electric field experiment and analyzed by using a sonograph, are discussed. Particular attention is given to the stimulation of the ion-cyclotron harmonic waves which are usually linked to the local proton gyro-frequency, but are sometimes related to half that frequency. It was found that in a plasma dominated by O(+) ions, a small amount (1-10%) of protons could cause an effect such that the O(+) cyclotron harmonic waves are set up by the hydrogen ions, the net result being the observation of harmonic emissions separated by the hydrogen ion gyro frequency.

  9. Ion-cyclotron instability in magnetic mirrors

    SciTech Connect

    Pearlstein, L.D.

    1987-02-02

    This report reviews the role of ion-cyclotron frequency instability in magnetic mirrors. The modes discussed here are loss-cone or anisotropy driven. The discussion includes quasilinear theory, explosive instabilities of 3-wave interaction and non-linear Landau damping, and saturation due to non-linear orbits. (JDH)

  10. Ion Cyclotron Heating on Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Goulding, R. H.; Caughman, J. B. O.; Rapp, J.; Biewer, T. M.; Campbell, I. H.; Caneses, J. F.; Kafle, N.; Ray, H. B.; Showers, M. A.; Piotrowicz, P. A.

    2016-10-01

    Ion cyclotron heating will be used on Proto-MPEX (Prototype Material Plasma Exposure eXperiment) to increase heat flux to the target, to produce varying ion energies without substrate biasing, and to vary the extent of the magnetic pre-sheath for the case of a tilted target. A 25 cm long, 9 cm diameter dual half-turn helical ion cyclotron antenna has been installed in the device located at the magnetic field maximum. It couples power to ions via single pass damping of the slow wave at the fundamental resonance, and operates with ω 0.8ωci at the antenna location. It is designed to operate at power levels up to 30 kW, with a later 200 kW upgrade planned. Near term experiments include measuring RF loading at low power as a function of frequency and antenna gap. The plasma is generated by a helicon plasma source that has achieved ne > 5 ×1019m-3 operating with deuterium, as measured downstream from the ion cyclotron antenna location. Measurements will be compared with 1-D and 2-D models of RF coupling. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  11. Influence of injection beam emittance on beam transmission efficiency in a cyclotron

    NASA Astrophysics Data System (ADS)

    Kurashima, Satoshi; Kashiwagi, Hirotsugu; Miyawaki, Nobumasa; Yoshida, Ken-Ichi; Okumura, Susumu

    2014-02-01

    The JAEA AVF cyclotron accelerates various kinds of high-energy ion beams for research in biotechnology and materials science. Beam intensities of an ion species of the order of 10-9-10-6 ampere are often required for various experiments performed sequentially over a day. To provide ion beams with sufficient intensity and stability, an operator has to retune an ion source in a short time. However, the beam intensity downstream of the cyclotron rarely increases in proportion to the intensity at the ion source. To understand the cause of this beam behavior, transmission efficiencies of a 12C5+ beam from an electron cyclotron resonance ion source to the cyclotron were measured for various conditions of the ion source. Moreover, a feasible region for acceleration in the emittance of the injection beam was clarified using a transverse-acceptance measuring system. We confirmed that the beam emittance and profile were changed depending on the condition of the ion source and that matching between the beam emittance and the acceptance of the cyclotron was degraded. However, after fine-tuning to improve the matching, beam intensity downstream of the cyclotron increased.

  12. Electrostatic ion cyclotron velocity shear instability

    NASA Technical Reports Server (NTRS)

    Lemons, D. S.; Winske, D.; Gary, S. P.

    1992-01-01

    A local electrostatic dispersion equation is derived for a shear flow perpendicular to an ambient magnetic field, which includes all kinetic effects and involves only one important parameter. The dispersion equation is cast in the form of Gordeyev integrals and is solved numerically. Numerical solutions indicate that an ion cyclotron instability is excited. The instability occurs roughly at multiples of the ion cyclotron frequency (modified by the shear), with the growth rate or the individual harmonics overlapping in the wavenumber. At large values of the shear parameter, the instability is confined to long wavelengths, but at smaller shear, a second distinct branch at shorter wavelengths also appears. The properties of the instability obtained are compared with those obtained in the nonlocal limit by Ganguli et al. (1985, 1988).

  13. A simple electron cyclotron resonance ion sourcea)

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Moran, T. F.; Feeney, R. K.; Thomas, E. W.

    1996-04-01

    A simple, all permanent magnet, 2.45 GHz electron cyclotron resonance ion source has been developed for the production of stable beams of low charge state ions from gaseous feed materials. The source can produce ˜1 mA of low energy (3 kV) singly charged ion current in the 10-4 Torr pressure range. The source can also be operated in a more efficient low-pressure mode at an order of magnitude lower pressure. In this latter range, for example, the ionization efficiency of Ar is estimated to be 1% with charge states up to Ar8+ present. Operation in the low-pressure mode requires low power input (˜20 W). These features make the source especially suited for use with small accelerator systems for a number of applications including ion implantation, mass spectrometry, and atomic collision experiments where multiply charged ions are desirable. Design details and performance characteristics of the source are presented.

  14. The mirror and ion cyclotron anisotropy instabilities

    NASA Technical Reports Server (NTRS)

    Gary, S. P.

    1992-01-01

    The linear dispersion equation for fully electromagnetic waves and instabilities at arbitrary directions of propagation relative to a background magnetic field B(0) in a homogeneous Vlasov plasma is solved numerically for bi-Maxwellian particle distributions. For isotropic plasmas the dispersion and damping of the three modes below the proton cyclotron frequency are studied as functions of Beta(i) and T(e)/T(i). The transport ratios of helicity, cross-helicity, Alfven ratio, compressibility, and parallel compressibility are defined. Under the condition that the proton temperature perpendicular to B(0) is greater than the parallel temperature, the growth rates and transport ratios of the mirror instability and the ion cyclotron anisotropy instability are examined and compared. Both the proton parallel compressibility and the proton Alfven ratio are significantly different for the two growing modes.

  15. Observations of multiharmonic ion cyclotron waves due to inverse ion cyclotron damping in the northern magnetospheric cusp

    NASA Astrophysics Data System (ADS)

    Slapak, R.; Gunell, H.; Hamrin, M.

    2017-01-01

    We present a case study of inverse ion cyclotron damping taking place in the northern terrestrial magnetospheric cusp, exciting waves at the ion cyclotron frequency and its harmonics. The ion cyclotron waves are primarily seen as peaks in the magnetic-field spectral densities. The corresponding peaks in the electric-field spectral densities are not as profound, suggesting a background electric field noise or other processes of wave generation causing the electric spectral densities to smoothen out more compared to the magnetic counterpart. The required condition for inverse ion cyclotron damping is a velocity shear in the magnetic field-aligned ion bulk flow, and this condition is often naturally met for magnetosheath influx in the northern magnetospheric cusp, just as in the presented case. We note that some ion cyclotron wave activity is present in a few similar shear events in the southern cusp, which indicates that other mechanisms generating ion cyclotron waves may also be present during such conditions.

  16. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  17. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Chen, Yu; Leach, Franklin E; Kaiser, Nathan K; Dang, Xibei; Ibrahim, Yehia M; Norheim, Randolph V; Anderson, Gordon A; Smith, Richard D; Marshall, Alan G

    2015-01-01

    Enhancements to the ion source and transfer optics of our 9.4 T Fourier transform ion cyclotron resonance (ICR) mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole.

  18. Ion Cyclotron Waves in the VASIMR

    NASA Astrophysics Data System (ADS)

    Brukardt, M. S.; Bering, E. A.; Chang-Diaz, F. R.; Squire, J. P.; Longmier, B.

    2008-12-01

    The Variable Specific Impulse Magnetoplasma Rocket is an electric propulsion system under development at Ad Astra Rocket Company that utilizes several processes of ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Among these processes are parallel electric field acceleration, lower hybrid resonance heating, and ion cyclotron resonance heating. The VASIMR is capable of laboratory simulation of electromagnetic ion cyclotron wave heating during a single pass of the plasma through the resonance region. The plasma is generated by a helicon discharge of about 25 kW then passes through an RF booster stage that shoots left hand polarized slow mode waves from the high field side of the resonance. This paper will focus on the upgrades to the VX-200 test model over the last year. After summarizing the VX- 50 and VX-100 results, the new data from the VX-200 model will be presented. Lastly, the changes to the VASIMR experiment due to Ad Astra Rocket Company's new facility in Webster, Texas will also be discussed, including the possibility of collaborative experiments at the new facility.

  19. Electrostatic ion cyclotron velocity shear instability

    SciTech Connect

    Lemons, D.S.; Winske, D.; Gary, S.P. )

    1992-12-01

    An electrostatic ion cyclotron instability driven by sheared velocity flow perpendicular to a uniform magnetic field is investigated in the local approximation. The dispersion equation, which includes all kinetic effects and involves only one important parameter, is cast in the form of Gordeyev integrals and solved numerically. The instability occurs roughly at multiples of the ion cyclotron frequency (but modified by the shear) with the growth rate of the individual harmonics overlapping in wavenumber. At small values of the shear parameter, the instability exists in two branches, one at long wavelength, [kappa][rho][sub i] [approximately] 0.5, and one at short wavelength, [kappa][rho][sub i] > 1.5 ([kappa][rho][sub i] is the wavenumber normalized to the ion gyroradius). At larger values of the shear parameter only the longer wavelength branch persists. The growth rate of the long wavelength mode, maximized over wavenumber and frequency, increases monotonically with the shear parameter. Properties of the instability are compared to those of Ganguli et al. obtained in the nonlocal limit.

  20. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2015-01-19

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting in nearly lossless transmission.

  1. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis

  2. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern

  3. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Astrophysics Data System (ADS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2007-12-01

    It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis

  4. Ion cyclotron emission studies: Retrospects and prospects

    DOE PAGES

    Gorelenkov, N. N.

    2016-06-05

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfv,nic cyclotron instabilities with the linear growth rate similar ~ √(nα/ne) driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. Recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusionmore » devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. Finally, we discuss prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.« less

  5. Ion cyclotron emission studies: Retrospects and prospects

    SciTech Connect

    Gorelenkov, N. N.

    2016-06-05

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfv,nic cyclotron instabilities with the linear growth rate similar ~ √(nα/ne) driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. Recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusion devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. Finally, we discuss prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.

  6. Ion cyclotron emission studies: Retrospects and prospects

    NASA Astrophysics Data System (ADS)

    Gorelenkov, N. N.

    2016-05-01

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfvénic cyclotron instabilities with the linear growth rate √ {n_α /n_e } driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. More recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusion devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. We discuss further prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.

  7. Heavy ion cocktail beams at the 88 inch Cyclotron

    SciTech Connect

    Leitner, Daniela; McMahan, Margaret A.; Argento, David; Gimpel, Thomas; Guy, Aran; Morel, James; Siero, Christine; Thatcher, Ray; Lyneis, Claude M.

    2002-09-03

    Cyclotrons in combination with ECR ion sources provide the ability to accelerate ''cocktails'' of ions. A cocktail is a mixture of ions of near-identical mass-to-charge (m/q) ratio. The different ions cannot be separated by the injector mass-analyzing magnet and are tuned out of the ion source together. The cyclotron then is utilized as a mass analyzer by shifting the accelerating frequency. This concept was developed soon after the first ECR ion source became operational at the 88-Inch Cyclotron and has since become a powerful tool in the field of heavy ion radiation effects testing. Several different ''cocktails'' at various energies are available at the 88-Inch cyclotron for radiation effect testing, covering a broad range of linear energy transfer and penetration depth. Two standard heavy ion cocktails at 4.5 MeV/nucleon and 10 MeV/nucleon have been developed over the years containing ions from boron to bismuth. Recently, following requests for higher penetration depths, a 15MeV/nucleon heavy ion cocktail has been developed. Up to nine different metal and gaseous ion beams at low to very high charge states are tuned out of the ion source simultaneously and injected together into the cyclotron. It is therefore crucial to balance the ion source very carefully to provide sufficient intensities throughout the cocktail. The paper describes the set-up and tuning of the ion source for the various heavy ion cocktails.

  8. Response of thermal ions to electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Fuselier, S. A.

    1994-01-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  9. Response of thermal ions to electromagnetic ion cyclotron waves

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Fuselier, S. A.

    1994-10-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  10. Simulations of ion cyclotron anisotropy instabilities in the terrestrial magnetosheath

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Winske, Dan

    1993-01-01

    Enhanced transverse magnetic fluctuations observed below the proton cyclotron frequency in the terrestrial magnetosheath have been identified as due to the proton cyclotron and helium cyclotron instabilities driven by the T-perpendicular greater than T-parallel condition of the sheath ions. One-dimensional hybrid computer simulations are used here to examine the nonlinear properties of these two growing modes at relatively weak fluctuation energies and for wave vectors parallel to the background magnetic field. Second-order theory predicts fluctuating magnetic field energies at saturation of the proton cyclotron anisotropy instability in semiquantitative agreement with the simulation results. Introduction of the helium component enhances the wave-particle exchange rate for proton anisotropy reduction by that instability, thereby reducing the saturation energy of that mode. The simulations demonstrate that wave-particle interactions by the proton cyclotron and helium cyclotron instabilities lead to the anticorrelation observed by Anderson and Fuselier (1993).

  11. Ion source and injection line for high intensity medical cyclotron

    SciTech Connect

    Jia, XianLu Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-15

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  12. Nonresonant interaction of heavy ions with electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Gendrin, R.

    1985-01-01

    The motion of a heavy ion in the presence of an intense ultralow-frequency electromagnetic wave propagating along the dc magnetic field is analyzed. Starting from the basic equations of motion and from their associated two invariants, the heavy ion velocity-space trajectories are drawn. It is shown that after a certain time, particles whose initial phase angles are randomly distributed tend to bunch together, provided that the wave intensity b-sub-1 is sufficiently large. The importance of these results for the interpretation of the recently observed acceleration of singly charged He ions in conjunction with the occurrence of large-amplitude ion cyclotron waves in the equatorial magnetosphere is discussed.

  13. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency.

    PubMed

    Nagornov, Konstantin O; Kozhinov, Anton N; Tsybin, Yury O

    2017-04-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω+), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω+ quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω+ frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω+ frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences. Graphical Abstract ᅟ.

  14. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency

    NASA Astrophysics Data System (ADS)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Yury O.

    2017-02-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω+), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω+ quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω+ frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω+ frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences.

  15. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer

    DOE PAGES

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; ...

    2015-01-19

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting inmore » nearly lossless transmission.« less

  16. Nonlinear particle simulation of ion cyclotron waves in toroidal geometry

    SciTech Connect

    Kuley, A. Lin, Z.; Bao, J.; Wei, X. S.; Xiao, Y.

    2015-12-10

    Global particle simulation model has been developed in this work to provide a first-principles tool for studying the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation with realistic electron-to-ion mass ratio. Boris push scheme for the ion motion has been developed in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron and ion Bernstein waves in global gyrokinetic toroidal code (GTC). The nonlinear simulation capability is applied to study the parametric decay instability of a pump wave into an ion Bernstein wave side band and a low frequency ion cyclotron quasi mode.

  17. Nonlinear particle simulation of ion cyclotron waves in toroidal geometry

    NASA Astrophysics Data System (ADS)

    Kuley, A.; Bao, J.; Lin, Z.; Wei, X. S.; Xiao, Y.

    2015-12-01

    Global particle simulation model has been developed in this work to provide a first-principles tool for studying the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation with realistic electron-to-ion mass ratio. Boris push scheme for the ion motion has been developed in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron and ion Bernstein waves in global gyrokinetic toroidal code (GTC). The nonlinear simulation capability is applied to study the parametric decay instability of a pump wave into an ion Bernstein wave side band and a low frequency ion cyclotron quasi mode.

  18. VASIMR Simulation Studies of Auroral Ion Cyclotron Heating

    NASA Astrophysics Data System (ADS)

    Brukardt, M.; Bering, E. A.; Chang-Diaz, F. R.; Squire, J. P.; Glover, T. W.; Jacobs0n, V. T.; McCaskill, G. E.; Cassady, L. D.; Bengtson, R. D.

    2006-12-01

    Plasma physics has found an increasing range of practical industrial applications, including the development of electric spacecraft propulsion systems. One of these systems, the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine, both applies and can be used to simulate several important physical processes occurring in the magnetosphere. These processes include the mechanisms involved in the ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Auroral current region processes that are simulated in VASIMR include lower hybrid heating, parallel electric field acceleration and ion cyclotron acceleration. This paper will focus on using a physics demonstration model VASIMR to study ion cyclotron heating (ICRH) similar to auroral zone processes. The production of upward moving `ion conics' and ion heating are significant features in auroral processes. It is believed that ion cyclotron heating plays a role in these processes, but laboratory simulation of these auroral effects is difficult owing to the fact that the ions involved only pass through the acceleration region once. In the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) we have successfully simulated these effects. The current configuration of the VASIMR uses a helicon antenna with up to 20 kW of power to generate plasma then uses an RF booster stage that uses left hand polarized slow mode waves launched from the high field side of the resonance. The current setup for the booster uses 2 to 4 MHz waves with up to 20 kW of power. This is similar to the ion cyclotron heating in tokamaks, but in the VASIMR the ions only pass through the resonance region once. The rapid absorption of ion cyclotron waves has been predicted in recent theoretical studies. These theoretical predictions have been confirmed with several independent measurements. The ion cyclotron resonance heating (ICRH) shows a substantial increase in ion velocity. Pitch angle distribution studies

  19. Simultaneous observations of electrostatic oxygen cyclotron waves and ion conics

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Scales, W.; Vago, J.; Arnoldy, R.; Garbe, G.; Moore, T.

    1989-01-01

    A sounding rocket launched to 927 km apogee during an auroral substorm encountered regions of large quasi-static electric fields (not greater than 400 mV/m), ion conics (up to 700 eV maximum observed energy), and fluctuating electric fields near the oxygen cyclotron frequency. Since the fluctuating electric fields frequently exhibited spectral peaks just above the local oxygen cyclotron frequency, and since the fluctuating electric fields were linearly polarized, they are positively identified as electrostatic oxygen cyclotron waves (EOCW). The maximum amplitude of the EOCW was about 5 mV/m rms. The EOCW closely correlated with the presence of ion conics. Because of the relatively low amplitude of the EOCW and their relatively low coherence, it cannot be concluded that they are solely responsible for the production of the ion conics.

  20. Cyclotron modes of a multi-species ion plasma

    SciTech Connect

    Sarid, E.; Anderegg, F.; Driscoll, C. F.

    1995-04-15

    Cyclotron modes varying as exp(il{theta}), with l=1, 2 and 3, have been observed in an unneutralized Mg ion plasma. The l=1 mode is observed to be down-shifted from the corresponding cyclotron frequency, while the l{>=}2 modes are found to be up-shifted. Good agreement is found between the observed down-shifts of the l=1 modes of Mg{sup +} and Mg{sup ++} and the predictions of a multi-species cold plasma theory. The down-shifts depend on the composition and size of the plasma, and the relative abundance of each ion can thus be determined.

  1. High Power Ion Cyclotron Heating in the VASIMR

    NASA Astrophysics Data System (ADS)

    Longmier, B. W.; Brukardt, M. S.; Bering, E. A.; Chang Diaz, F.; Squire, J.

    2009-12-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR®) is an electric propulsion system under development at Ad Astra Rocket Company that utilizes several processes of ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Among these processes are parallel electric field acceleration, lower hybrid resonance heating, and ion cyclotron resonance heating. The VASIMR® is capable of laboratory simulation of electromagnetic ion cyclotron wave heating during a single pass of ions through the resonance region. The plasma is generated by a helicon discharge of 35 kW then passes through a 176 kW RF booster stage that couples left hand polarized slow mode waves from the high field side of the resonance. VX-200 auroral simulation results from the past year are discussed. Ambipolar acceleration has been shown to produce 35eV argon ions in the helicon exhaust. The effects on the ion exhaust with an addition of 150-200 kW of ion cyclotron heating are presented. The changes to the VASIMR® experiment at Ad Astra Rocket Company's new facility in Webster, Texas will also be discussed, including the possibility of collaborative experiments.

  2. Ion cyclotron heating experiments in magnetosphere plasma device RT-1

    NASA Astrophysics Data System (ADS)

    Nishiura, M.; Yoshida, Z.; Yano, Y.; Kawazura, Y.; Saitoh, H.; Yamasaki, M.; Mushiake, T.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2015-12-01

    The ion cyclotron range of frequencies (ICRF) heating with 3 MHz and ˜10 kW is being prepared in RT-1. The operation regime for electron cyclotron resonance (ECR) heating is surveyed as the target plasmas. ECRH with 8.2 GHz and ˜50 kW produces the plasmas with high energy electrons in the range of a few ten keV, but the ions still remain cold at a few ten eV. Ion heating is expected to access high ion beta state and to change the aspect of plasma confinement theoretically. The ICRF heating is applied to the target plasma as an auxiliary heating. The preliminary result of ICRF heating is reported.

  3. Ion cyclotron heating experiments in magnetosphere plasma device RT-1

    SciTech Connect

    Nishiura, M. Yoshida, Z.; Yano, Y.; Kawazura, Y.; Saitoh, H.; Yamasaki, M.; Mushiake, T.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2015-12-10

    The ion cyclotron range of frequencies (ICRF) heating with 3 MHz and ∼10 kW is being prepared in RT-1. The operation regime for electron cyclotron resonance (ECR) heating is surveyed as the target plasmas. ECRH with 8.2 GHz and ∼50 kW produces the plasmas with high energy electrons in the range of a few ten keV, but the ions still remain cold at a few ten eV. Ion heating is expected to access high ion beta state and to change the aspect of plasma confinement theoretically. The ICRF heating is applied to the target plasma as an auxiliary heating. The preliminary result of ICRF heating is reported.

  4. Electromagnetic ion cyclotron resonance heating in the VASIMR

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Chang-Díaz, F. R.; Squire, J. P.; Brukardt, M.; Glover, T. W.; Bengtson, R. D.; Jacobson, V. T.; McCaskill, G. E.; Cassady, L.

    2008-07-01

    Plasma physics has found an increasing range of practical industrial applications, including the development of electric spacecraft propulsion systems. One of these systems, the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine, both applies several important physical processes occurring in the magnetosphere. These processes include the mechanisms involved in the ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Auroral current region processes that are simulated in VASIMR include lower hybrid heating, parallel electric field acceleration and ion cyclotron acceleration. This paper will focus on using a physics demonstration model VASIMR to study ion cyclotron resonance heating (ICRH). The major purpose is to provide a VASIMR status report to the COSPAR community. The VASIMR uses a helicon antenna with up to 20 kW of power to generate plasma. This plasma is energized by an RF booster stage that uses left hand polarized slow mode waves launched from the high field side of the ion cyclotron resonance. The present setup for the booster uses 2 4 MHz waves with up to 20 kW of power. This process is similar to the ion cyclotron heating in tokamaks, but in the VASIMR the ions only pass through the resonance region once. The rapid absorption of ion cyclotron waves has been predicted in recent theoretical studies. These theoretical predictions have been supported with several independent measurements in this paper. The ICRH produced a substantial increase in ion velocity. Pitch angle distribution studies show that this increase takes place in the resonance region where the ion cyclotron frequency is equal to the frequency on the injected RF waves. Downstream of the resonance region the perpendicular velocity boost should be converted to axial flow velocity through the conservation of the first adiabatic invariant as the magnetic field decreases in the exhaust region of the VASIMR. In deuterium plasma, 80% efficient

  5. LH wave absorption by mode conversion near ion cyclotron harmonics

    SciTech Connect

    Ko, K.; Bers, A.; Fuchs, V.

    1981-02-01

    Numerical studies of the dispersion relation near the lower-hybrid frequency in an inhomogeneous plasma (..delta.. n, ..delta.. T, ..delta.. B) show that portions of an incident lower-hybrid wave spectrum undergo successive but partial mode conversions to warm-plasma waves in the presence of ion cyclotron harmonics. Wave absorption beyond the first mode conversion occurs near an ion cyclotron harmonic where ion Landau damping is enhanced. A second-order dispersion relation numerically in good agreement with the full dispersion relation in the mode conversion region is derived using the condition par. delta D/par. delta k = 0. The mode conversion efficiency at each confluence is evaluated by solving the corresponding differential equation.

  6. Nonlinear heating of ions by electron cyclotron frequency waves

    NASA Astrophysics Data System (ADS)

    Zestanakis, P. A.; Hizanidis, K.; Ram, A. K.; Kominis, Y.

    2010-11-01

    We study the nonlinear interaction of ions with electron cyclotron (EC) wave packets in a magnetized plasma. Previous studies have shown that such interactions with high frequency electrostatic lower hybrid waves can lead to coherent energization of ions. It requires the frequency bandwidth of the wave packet to be broader than the ion cyclotron frequency [1,2]. For the electromagnetic high frequency EC waves we have developed a more general theory, based on the Lie transform canonical perturbation method [3,4]. We apply the theory to the case of two overlapping EC beams. The wave frequency of each beam is assumed to be frequency modulated with a modulation bandwidth comparable to the ion cyclotron frequency. We present results for both X-mode and O-mode and illustrate the conditions for ion energization. [4pt] [1] D. Benisti, A. K. Ram, and A. Bers, Phys. Plasmas 5, 3224 (1998). [0pt] [2] A. K. Ram, A. Bers, and D. Benisti , J. Geophys. Res. 103, 9431 (1998). [0pt] [3] J.R. Cary and A.N. Kaufman, Phys. Fluids 24, 1238 (1981). [0pt] [4] R.L. Dewar, J. Phys A-Math. Gen 9, 2043 (1976).

  7. Evidence that the electrostatic ion cyclotron instability is saturated by ion heating. [in auroral arc

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Bering, E. A.; Mozer, F. S.

    1975-01-01

    Observations have been made of electric field oscillations near the local ion gyro frequency and of an intense beam of plasma ions at the edge of an auroral arc. The observations are in good agreement with ion heating as the saturation mechanism for electrostatic ion cyclotron waves.

  8. Personal computer based Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Guan, Shenheng; Jones, Patrick R.

    1988-12-01

    An IBM PC AT compatible computer is used to host the interface of a Fourier transform ion cyclotron resonance mass spectrometer or FTMS. A common fast memory bank for both ion-excitation waveform and data acquisition is reserved in the computer's system memory space. All the digital electronics circuitry is assembled on an IBM PC AT extension board. Neither an external frequency synthesizer nor a waveform digitizer is needed. Ion-excitation waveforms can be generated in either frequency-sweeping or inverse-Fourier transform modes. Both excitation and data acquisition can be carried out at eight megawords per second.

  9. Electrostatic ion-cyclotron waves in magnetospheric plasmas Nonlocal aspects

    NASA Technical Reports Server (NTRS)

    Ganguli, G.; Bakshi, P.; Palmadesso, P.

    1984-01-01

    The importance of the effect of the magnetic shear and the finite size of current channel on the electrostatic ion-cyclotron instability for the space plasmas is illustrated. A non-local treatment is used. When the channel width Lc, is larger than the shear length Ls, there is a large reduction in the growth rate along with a noteworthy reduction of the band of the unstable perpendicular wavelengths. For Lc less than or = Ls/10 the growth rate is not much altered from its local value, however for Lc/pi i less than or = 10 to the second power the growth rate starts falling below the local value and vanishes for Lc pi i. The non-local effects lead to enhanced coherence in the ion cyclotron waves. Previously announced in STAR as N84-14917

  10. Heating by waves in the ion cyclotron frequency range

    SciTech Connect

    Koch, R.

    1996-03-01

    The main aspects of heating with the fast wave in the ion cyclotron range of frequencies (ICRF) are reviewed. First, the ion cyclotron resonance mechanism, fundamental and harmonics, is examined. Then the properties of fast wave dispersion are reviewed, and the principles of minority and higher cylcotron harmonic heating are discussed. An elementary coupling model is worked out in order to outline the computation of the electrical properties of ICRF antennas. Using the simple model, the antenna radiation pattern inside the plasma is computed and the effect of phasing on the k spectrum and on the antenna radiation properties is illustrated. The quasi linear-Fokker-Planck computation of the deformation of distribution functions due to Radio-Frequency (RF) and tail formation are briefly discussed. 11 refs., 5 figs.

  11. Design options for an ITER ion cyclotron system

    SciTech Connect

    Swain, D.W.; Baity, F.W.; Bigelow, T.S.; Ryan, P.M.; Goulding, R.H.; Carter, M.D.; Stallings, D.C.; Batchelor, D.B.; Hoffman, D.J.

    1995-09-01

    Recent changes have occurred in the design requirements for the ITER ion cyclotron system, requiring in-port launchers in four main horizontal ports to deliver 50 MW of power to the plasma. The design is complicated by the comparatively large antenna-separatrix distance of 10--20 cm. Designs of a conventional strap launcher and a folded waveguide launcher than can meet the new requirements are presented.

  12. Nonlinear decay of electromagnetic ion cyclotron waves in the magnetosphere

    SciTech Connect

    Gomberoff, L.; Gratton, F.T.; Gnavi, G.

    1995-02-01

    The authors study the parametric decays of left-hand polarized electromagnetic ion cyclotron waves, propagating parallel to the external magnetic field, in the magnetosphere. They show that the presence of He{sup +} ions and a mixed population of thermal and hot protons give rise to new wave couplings. These couplings lead to a number of new instabilities. Some of the instabilities involve sound waves carried mainly by the He{sup +} ions, which can be very efficient in heating up the bulk of the He{sup +} ions via Landau damping. Other instabilities involve the branch of the left-hand polarized electromagnetic ion cyclotron waves which has a resonance at the He{sup +} ion gyrofrequency. These instabilities can also play a role in the energy transfer from the pump wave to the He{sup +} ions through resonance absorption, preferably in the direction perpendicular to the external magnetic field. The new couplings give rise to several types of parametric instabilities such as ordinary decay instabilities, beat wave instabilities, and modulational instabilities. There are also couplings where the pump wave decays into the two electromagnetic sideband waves. 42 refs., 10 figs.

  13. Plasma ion dynamics and beam formation in electron cyclotron resonance ion sources

    SciTech Connect

    Mascali, D.; Neri, L.; Miracoli, R.; Gammino, S.; Celona, L.; Ciavola, G.; Gambino, N.; Chikin, S.

    2010-02-15

    In electron cyclotron resonance ion sources it has been demonstrated that plasma heating may be improved by means of different microwave to plasma coupling mechanisms, including the ''frequency tuning'' and the ''two frequency heating''. These techniques affect evidently the electron dynamics, but the relationship with the ion dynamics has not been investigated in details up to now. Here we will try to outline these relations: through the study of ion dynamics we may try to understand how to optimize the electron cyclotron resonance ion sources brightness. A simple model of the ion confinement and beam formation will be presented, based on particle-in-cell and single particle simulations.

  14. Electrostatic ion-cyclotron waves in a nonuniform magnetic field

    NASA Technical Reports Server (NTRS)

    Cartier, S. L.; Dangelo, N.; Merlino, R. L.

    1985-01-01

    The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f is approximately greater than fci, where fci is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism.

  15. Linear and nonlinear physics of the magnetoacoustic cyclotron instability of fusion-born ions in relation to ion cyclotron emission

    SciTech Connect

    Carbajal, L. Cook, J. W. S.; Dendy, R. O.; Chapman, S. C.

    2014-01-15

    The magnetoacoustic cyclotron instability (MCI) probably underlies observations of ion cyclotron emission (ICE) from energetic ion populations in tokamak plasmas, including fusion-born alpha-particles in JET and TFTR [Dendy et al., Nucl. Fusion 35, 1733 (1995)]. ICE is a potential diagnostic for lost alpha-particles in ITER; furthermore, the MCI is representative of a class of collective instabilities, which may result in the partial channelling of the free energy of energetic ions into radiation, and away from collisional heating of the plasma. Deep understanding of the MCI is thus of substantial practical interest for fusion, and the hybrid approximation for the plasma, where ions are treated as particles and electrons as a neutralising massless fluid, offers an attractive way forward. The hybrid simulations presented here access MCI physics that arises on timescales longer than can be addressed by fully kinetic particle-in-cell simulations and by analytical linear theory, which the present simulations largely corroborate. Our results go further than previous studies by entering into the nonlinear stage of the MCI, which shows novel features. These include stronger drive at low cyclotron harmonics, the re-energisation of the alpha-particle population, self-modulation of the phase shift between the electrostatic and electromagnetic components, and coupling between low and high frequency modes of the excited electromagnetic field.

  16. Ion cyclotron heating experiments in PLT

    SciTech Connect

    Mazzucato, E.; Bell, R.; Bitter, M.; Cavallo, A.; Cohen, S.; Colestock, P.; Greene, G.; Hammett, G.; Hinnov, E.; Hosea, J.

    1985-03-01

    Results from ICRF heating experiments in the D-/sup 3/He minority regime on the PLT tokamak are reported. At the highest coupled rf power of 2.6 MW, a central ion temperature of 3.6 keV has been measured in plasmas with a central density of 5 x 10/sup 13/cm/sup -3/. The central value of the electron temperature is strongly modulated by the sawtooth internal relaxation and reaches values in excess of 3 keV. No deterioration of the ion heating efficiency has been found in the investigated range of plasma parameters.

  17. Technological issues of ion cyclotron heating of fusion plasmas

    SciTech Connect

    Hwang, D.Q.; Fortgang, C.M.

    1985-07-01

    With the recent promising results of plasma heating using electromagnetic waves (EM waves) in the ion cyclotron range of frequency (ICRF) on the Princeton Large Torus (PLT) tokamak the feasibility of employing ICRF heating to a reactor-like magnetic confinement device is increasing. The high power ICRF experiments funded on JET (Joint European Torus in England) and JT-60 (in Japan) will have rf source power in the range of 10-30 MW. The time scale for the duration of the RF pulse will range from seconds up to steady-state. The development of new RF components that can transmit and launch such high power, long pulse length, EM waves in a plasma environment is a major technological task. In general, the technology issues may be divided into two categories. The first category concerns the region where the plasma comes in contact with the wave launchers. The problems here are dominated by plasmamaterial interaction, heat deposition by the plasma onto the wave launcher, and erosion of the launcher material. It is necessary to minimize the heat deposition from the plasma, the losses of the RF wave energy in the structure, and to prevent sputtering of the antenna components. A solution involves a combined design using special materials and optimal shaping of the Faraday shield (the electrostatic shields which can be used both for an EM wave polarization adjustment and as a particle shield for the launcher). Recent studies by PPPL and McDonnell Douglas Corp. on the Faraday shield designs will be discussed. The second important area where technology development will be necessary is the transmission of high power RF waves through a gas/vacuum interface region. In the past, the vacuum feedthrough has been the bottle neck which prevented high power operation of the PLT antenna.

  18. A simple electron cyclotron resonance ion source (abstract)a)

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Moran, T. F.; Feeney, R. K.; Thomas, E. W.

    1996-03-01

    A simple, all permanent magnet, 2.45 GHz electron cyclotron resonance ion source has been developed for the production of stable beams of low charge state ions from gaseous feed materials. The source can produce ˜1 mA of low energy (3 kV) singly charged ion current in the 10-4 Torr pressure range. The source can also be operated in a more efficient low-pressure mode at an order of magnitude lower pressure. In this latter range, for example, the ionization efficiency of Ar is estimated to be 1% with charge states up to Ar8+ present. Operation in the low-pressure mode requires low power input (˜20 W). These features make the source especially suited for use with small accelerator systems for a number of applications including ion implantation, mass spectrometry, and atomic collision experiments where multiply charged ions are desirable. Design details and performance characteristics of the source are presented.

  19. Mode conversion at the higher ion cyclotron harmonics

    NASA Astrophysics Data System (ADS)

    Chiu, S. C.; Chan, V. S.; Harvey, R. W.; Porkolab, M.

    1989-07-01

    It has been demonstrated that mode conversion of fast waves to ion Bernstein waves can be calculated from a reduced second order differential equation for the wave fields rather than the 4th order equations used in earlier studies near the ion-ion hybrid resonance and the second harmonic resonance. Here the underlying justification of the method is discussed. It is shown that the method works for high harmonic resonances and an analytical formula for the tunneling coefficient is derived. The result is a generalization of a previous result obtained by Ngan and Swanson and is applicable when κ⊥ρi is large. Recently, there is interest in using fast waves for current drive at high ion cyclotron harmonics frequencies in tokamaks. Generally, the fast wave will encounter ion cyclotron harmonics within the plasma cross-section. For efficient current drive, the minimization of the mode conversion processes sets restrictions to the choice of frequencies and magnetic fields. This is discussed using the derived formula.

  20. Grating monochromator for electron cyclotron resonance ion source operation

    SciTech Connect

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shouichi; Watanabe, Shin-ichi; Yamaguchi, Hidetoshi; Shimoura, Susumu; Oyaizu, Michihiro; Kase, Masayuki; Kubono, Shigeru; Hattori, Toshiyuki

    2013-07-15

    Recently, we started to observe optical line spectra from an ECR plasma using a grating monochromator with a photomultiplier. The light intensity of line spectrum from the ECR plasma had a strong correlation with ion beam intensity measured by a magnetic mass analyzer. This correlation is a significant information for beam tuning because it allows the extraction of the desired ion species from the ECR plasma. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process, but this research gives new insights into its simplification. In this paper, the grating monochromator method for beam tuning of a Hyper-ECR ion source as an injector for RIKEN azimuthal varying field (AVF) cyclotron is described.

  1. Glow plasma trigger for electron cyclotron resonance ion sources.

    PubMed

    Vodopianov, A V; Golubev, S V; Izotov, I V; Nikolaev, A G; Oks, E M; Savkin, K P; Yushkov, G Yu

    2010-02-01

    Electron cyclotron resonance ion sources (ECRISs) are particularly useful for nuclear, atomic, and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in an open magnetic trap heated by pulsed (100 micros and longer) high power (100 kW and higher) high-frequency (greater than 37.5 GHz) microwaves of gyrotrons is promising in the field of research in the development of electron cyclotron resonance sources for high charge state ion beams. Reaching high ion charge states requires a decrease in gas pressure in the magnetic trap, but this method leads to increases in time, in which the microwave discharge develops. The gas breakdown and microwave discharge duration becomes greater than or equal to the microwave pulse duration when the pressure is decreased. This makes reaching the critical plasma density initiate an electron cyclotron resonance (ECR) discharge during pulse of microwave gyrotron radiation with gas pressure lower than a certain threshold. In order to reduce losses of microwave power, it is necessary to shorten the time of development of the ECR discharge. For fast triggering of ECR discharge under low pressure in an ECRIS, we initially propose to fill the magnetic trap with the plasmas of auxiliary pulsed discharges in crossed ExB fields. The glow plasma trigger of ECR based on a Penning or magnetron discharge has made it possible not only to fill the trap with plasma with density of 10(12) cm(-3), required for a rapid increase in plasma density and finally for ECR discharge ignition, but also to initially heat the plasma electrons to T(e) approximately = 20 eV.

  2. Effects of energetic heavy ions on electromagnetic ion cyclotron wave generation in the plasmapause region

    NASA Technical Reports Server (NTRS)

    Kozyra, J. U.; Cravens, T. E.; Nagy, A. F.; Fontheim, E. G.; Ong, R. S. B.

    1984-01-01

    An expression for electromagnetic ion cyclotron convective growth rates is derived. The derivation of the dispersion relation and convective growth rates in the presence of a multicomponent energetic and cold plasma is presented. The effects that multiple heavy ions in the ring current and cold plasma produce in the growth and propagation characteristics of ion cyclotron waves are explored. Results of growth rate calculations using parameters consistent with conditions in the plasmapause region during the early recovery phase of geomagnetic storms are presented and compared with ground-based and satellite observations of waves in this region. The geophysical implications of the results are discussed.

  3. Ion beam driven resonant ion-cyclotron instability in a magnetized dusty plasma

    SciTech Connect

    Prakash, Ved; Vijayshri; Sharma, Suresh C.; Gupta, Ruby

    2014-03-15

    Electrostatic ion cyclotron waves are excited by axial ion beam in a dusty plasma via Cerenkov and slow cyclotron interaction. The dispersion relation of the instability is derived in the presence of positively/negatively charged dust grains. The minimum beam velocity needed for the excitation is estimated for different values of relative density of negatively charged dust grains. It is shown that the minimum beam velocity needed for excitation increases as the charge density carried by dust increases. Temperature of electrons and ions, charge and mass of dust grains, external static magnetic field and finite boundary of dusty plasma significantly modify the dispersion properties of these waves and play a crucial role in the growth of resonant ion cyclotron instability. The ion cyclotron modes with phase velocity comparable to the beam velocity possess a large growth rate. The maximum value of growth rate increases with the beam density and scales as the one-third power of the beam density in Cerenkov interaction and is proportional to the square root of beam density in slow cyclotron interaction.

  4. Pulsed magnetic field-electron cyclotron resonance ion source operation

    SciTech Connect

    Muehle, C.; Ratzinger, U.; Joest, G.; Leible, K.; Schennach, S.; Wolf, B.H.

    1996-03-01

    The pulsed magnetic field (PuMa)-electron cyclotron resonance (ECR) ion source uses a pulsed coil to improve the peak current by opening the magnetic bottle along the beam axis. After demonstration of the principle of the pulsed magnetic extraction, the ion source was tested with different gases. We received promising results from helium to krypton. The influence of the current in the pulsed coil on the analyzed ion current was measured. With increased current levels within the pulsed coil not only the pulse height of the PuMa pulse, but the pulse length can also be controlled. By using the pulsed coil the maximum of the charge state distribution can be shifted to higher charge states. {copyright} {ital 1996 American Institute of Physics.}

  5. On ion cyclotron current drive for sawtooth control

    NASA Astrophysics Data System (ADS)

    Eriksson, L.-G.; Johnson, T.; Mayoral, M.-L.; Coda, S.; Sauter, O.; Buttery, R. J.; McDonald, D.; Hellsten, T.; Mantsinen, M. J.; Mueck, A.; Noterdaeme, J.-M.; Santala, M.; Westerhof, E.; de Vries, P.; contributors, JET-EFDA

    2006-10-01

    Experiments using ion cyclotron current drive (ICCD) to control sawteeth are presented. In particular, discharges demonstrating shortening of fast ion induced long sawteeth reported in (Eriksson et al 2004 Phys. Rev. Lett. 92 235004) by ICCD have been analysed in detail. Numerical simulations of the ICCD driven currents are shown to be consistent with the experimental observations. They support the hypothesis that an increase in the magnetic shear, due to the driven current, at the surface where the safety factor is unity was the critical factor for the shortening of the sawteeth. In view of the potential utility of ICCD, the mechanisms for the current drive have been further investigated experimentally. This includes the influence of the averaged energy of the resonating ions carrying the current and the spectrum of the launched waves. The results of these experiments are discussed in the light of theoretical considerations.

  6. Simulations of heavy ion heating by electromagnetic ion cyclotron waves driven by proton temperature anisotropies

    NASA Technical Reports Server (NTRS)

    Tanaka, M.

    1985-01-01

    Heating of heavy ions by the electromagnetic ion cyclotron (EMIC) waves, which are driven by proton temperature anisotropies, is studied by means of hybrid particle simulations. Initially, relaxation of the temperature anisotropies in the proton distribution and isotropic heating of the heavy ions are observed (phase I), followed by substantial perpendicular heating of the heavy ions (phase II). The heavy ions are distinctly gyrophase modulated by the EMIC waves. The isotropic heating in phase I is due to magnetic trapping by the excited proton cyclotron waves. The perpendicular heating in phase II is attributed to cyclotron resonance with the EMIC waves, which becomes possible by means of the preceding heating in phase I. Saturation of the EMIC instability is instead attributed to magnetic trapping of the majority ions: protons. When the proton anisotropy is very large, frequency shift (decrease) of the proton cyclotron waves to less than 1/2 Ohm(p) is observed. The present mechanism is not only relevant to He(+) heating in the dayside equator of the magnetosphere, but it also predicts hot He2(+) ions behind the earth's bow shock.

  7. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low- frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  8. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low-frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  9. Ion-cyclotron turbulence and diagonal double layers in a magnetospheric plasma

    NASA Technical Reports Server (NTRS)

    Liperovskiy, V. A.; Pudovkin, M. I.; Skuridin, G. A.; Shalimov, S. L.

    1981-01-01

    A survey of current concepts regarding electrostatic ion-cyclotron turbulence (theory and experiment), and regarding inclined double potential layers in the magnetospheric plasma is presented. Anomalous resistance governed by electrostatic ion-cyclotron turbulence, and one-dimensional and two-dimensional models of double electrostatic layers in the magnetospheric plasma are examined.

  10. An ion cyclotron resonance study of reactions of some atomic and simple polyatomic ions with water

    NASA Technical Reports Server (NTRS)

    Karpas, Z.; Anicich, V. G.; Huntress, W. T., Jr.

    1978-01-01

    Reactions of various positive ions with water vapor were studied by ion cyclotron resonance mass spectrometric techniques. Rate constants and product distributions were determined for reactions of the ions: Ar(+), Co(+), N2(+), and CO2(+), CH2(+), and CH4(+), CH2Cl(+), HCO(+), H2CO(+), H2COH(+), H2S(+) and HS(+). The results obtained in this work are compared with earlier reported data where available.

  11. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    SciTech Connect

    Jeong, S. C.; Oyaizu, M.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Miyatake, H.; Niki, K.; Okada, M.; Watanabe, Y. X.; Otokawa, Y.; Osa, A.; Ichikawa, S.

    2012-02-15

    We investigated the ion-loss distribution on the sidewall of an electron cyclotron resonance (ECR) plasma chamber using the 18-GHz ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex (TRIAC). Similarities and differences between the ion-loss distributions (longitudinal and azimuthal) of different ion species (i.e., radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions that are typical volatile and nonvolatile elements) was qualitatively discussed to understand the element dependence of the charge breeding efficiency. Especially, the similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.

  12. Dynamic regimes of cyclotron instability in the afterglow mode of minimum-B electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Mansfeld, D.; Izotov, I.; Skalyga, V.; Tarvainen, O.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.

    2016-04-01

    The paper is concerned with the dynamic regimes of cyclotron instabilities in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source operated in pulsed mode. The instability appears in decaying ion source plasma shortly (1-10 ms) after switching off the microwave radiation of the klystron, and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high-energy electrons along the magnetic field lines. Recently it was shown that this plasma instability causes perturbations of the extracted ion current, which limits the performance of the ion source and generates strong bursts of bremsstrahlung emission. In this article we present time-resolved diagnostics of electromagnetic emission bursts related to cyclotron instability in the decaying plasma. The temporal resolution is sufficient to study the fine structure of the dynamic spectra of the electromagnetic emission at different operating regimes of the ion source. It was found that at different values of magnetic field and heating power the dynamic spectra demonstrate common features: Decreasing frequency from burst to burst and an always falling tone during a single burst of instability. The analysis has shown that the instability is driven by the resonant interaction of hot electrons, distributed between the electron cyclotron resonance (ECR) zone and the trap center, with slow extraordinary wave propagation quasi-parallel with respect to the external magnetic field.

  13. Excitation of low frequency waves by streaming ions via anomalous cyclotron resonance

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Dillenburg, D.; Gaffey, J. D., Jr.; Ziebell, L. F.; Goedert, J.; Freund, H. P.

    1978-01-01

    The effect of a small population of streaming ions on low-frequency waves with frequencies below the ion cyclotron frequency is analyzed for three modes of interest: Alfven waves, magnetosonic waves, and ion-cyclotron waves. The instability mechanism is the anomalous cyclotron resonance of the waves with the streaming ions. Conditions for excitation of the three types of waves are derived and expressions for the growth rates are obtained. Excitation of Alfven waves is possible even if the ratio of the densities of the streaming ions to the thermal ions is very small. For magnetosonic waves, excitation can easily occur if waves are propagating parallel or nearly parallel to the ambient magnetic field. As for ion-cyclotron waves, it is found that for the ion-whistler branch the excitation is suppressed over a broader range of wave frequencies than for the fast magnetosonic branch.

  14. Relativistic Magnetoacoustic Ion Cyclotron Instabilities Driven by MeV Ions

    NASA Astrophysics Data System (ADS)

    Chen, K. R.; Chen, Y. Y.; Huang, J. D.; Huang, X. E.

    2002-11-01

    The relativistic instabilities of the magnetoacoustic ion cyclotron waves driven by MeV ions is studied and compared with the classical instabilities. The waves can be unstable classically as driven by the fast ions due to the coupling of electromagnetic Alfven mode and the ion Bernstein mode. [ R. O. Dendy, C. N. Lashmore-Davies, and K. F. Kam Phys.Fluids B4 (4) Dec (1992)]. Obtained from the kinetic theory, the relativistic dispersion relation that includes the instability driving terms of both classical and relativistic effects is studied analytically and numerically. The growth rate raised by the relativistic effects is significantly larger than that of the classical effects. There are three relativistic terms from the electrostatic component, electromagnetic field component, and their coupling, respectively. All have the same sign; that is, they enhance each other to drive the relativistic magnetoacoustic ion cyclotron instability.

  15. Research and development of ion surfing RF carpets for the cyclotron gas stopper at the NSCL

    NASA Astrophysics Data System (ADS)

    Gehring, A. E.; Brodeur, M.; Bollen, G.; Morrissey, D. J.; Schwarz, S.

    2016-06-01

    A model device to transport thermal ions in the cyclotron gas stopper, a next-generation beam thermalization device under construction at the National Superconducting Cyclotron Laboratory, is presented. Radioactive ions produced by projectile fragmentation will come to rest at distances as large as 45 cm from the extraction orifice of the cyclotron gas stopper. The thermalized ions will be transported to the exit by RF carpets employing the recently developed "ion surfing" method. A quarter-circle prototype RF carpet was tested with potassium ions, and ion transport velocities as high as 60 m/s were observed over distances greater than 10 cm at a helium buffer gas pressure of 80 mbar. The transport of rubidium ions from an RF carpet to an electrode below was also demonstrated. The results of this study formed the basis of the design of the RF carpets for use in the cyclotron gas stopper.

  16. Gas phase ion - molecule reactions studied by Fourier transform ion cyclotron resonance mass spectrometry

    SciTech Connect

    Ross, C.W. III.

    1993-01-01

    Intrinsic thermodynamic information of molecules can easily be determined in the low pressure FT/ICR mass spectrometer. The gas phase basicity of two carbenes were measured by isolating the protonated carbene ion and reacting it with neutral reference compounds by the bracketing method. A fundamentally new-dimensional FT/ICR/MS experiment, SWIM (stored waveform ion modulation) 2D-FT/ICR MS/MS, is described. Prior encodement of the second dimension by use of two identical excitation waveforms separated by a variable delay period is replaced by a new encodement in which each row of the two-dimensional data array is obtained by use of a single stored excitation waveform whose frequency-domain magnitude spectrum is a sinusoid whose frequency increases from one row to the next. In the two-dimensional mass spectrum, the conventional one-dimensional FT/ICR mass spectrum appears along the diagonal, and each off-diagonal peak corresponds to an ion-neutral reaction whose ionic components may be identified by horizontal and vertical projections to the diagonal spectrum. All ion-molecule reactions in a gaseous mixture may be identified from a single 2D-FT/ICR MS/MS experiment, without any prior knowledge of the system. In some endoergic reactions there is a minimum energy threshold that must overcome for a reaction to occur. Hence, a simple sinusoidal modulation of parent ion cyclotron radius leads to a clipped sinusoidal signal of the product ion abundance in the second dimension, which upon Fourier transformation produces signals with harmonic and combination ion cyclotron resonance frequencies. Moreover, ion-molecule reaction rates may vary directly within kinetic energy rather than cyclotron radius. With SWIM, it is possible to tailor the excitation profile so as to produce a sinusoidal modulation of ion kinetic energy as a function of cyclotron frequency.

  17. Parallel Spectral Acquisition with an Ion Cyclotron Resonance Cell Array.

    PubMed

    Park, Sung-Gun; Anderson, Gordon A; Navare, Arti T; Bruce, James E

    2016-01-19

    Mass measurement accuracy is a critical analytical figure-of-merit in most areas of mass spectrometry application. However, the time required for acquisition of high-resolution, high mass accuracy data limits many applications and is an aspect under continual pressure for development. Current efforts target implementation of higher electrostatic and magnetic fields because ion oscillatory frequencies increase linearly with field strength. As such, the time required for spectral acquisition of a given resolving power and mass accuracy decreases linearly with increasing fields. Mass spectrometer developments to include multiple high-resolution detectors that can be operated in parallel could further decrease the acquisition time by a factor of n, the number of detectors. Efforts described here resulted in development of an instrument with a set of Fourier transform ion cyclotron resonance (ICR) cells as detectors that constitute the first MS array capable of parallel high-resolution spectral acquisition. ICR cell array systems consisting of three or five cells were constructed with printed circuit boards and installed within a single superconducting magnet and vacuum system. Independent ion populations were injected and trapped within each cell in the array. Upon filling the array, all ions in all cells were simultaneously excited and ICR signals from each cell were independently amplified and recorded in parallel. Presented here are the initial results of successful parallel spectral acquisition, parallel mass spectrometry (MS) and MS/MS measurements, and parallel high-resolution acquisition with the MS array system.

  18. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron.

    PubMed

    Hojo, S; Katagiri, K; Nakao, M; Sugiura, A; Muramatsu, M; Noda, A; Okada, T; Takahashi, Y; Komiyama, A; Honma, T; Noda, K

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C(4+) ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C(4+), for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source.

  19. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    DOE PAGES

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less

  20. Transport induced by ion cyclotron range of frequencies waves

    SciTech Connect

    Zhang, Debing Xu, Yingfeng; Wang, Shaojie

    2014-11-15

    The Vlasov equation, which includes the effect of the ion cyclotron range of frequencies (ICRF) waves, can be written as the Fokker-Planck equation which describes the quasilinear transport in phase space by using the Lie-transform method. The radial transport fluxes of particle, energy and parallel momentum driven by ICRF waves in the slab geometry have been derived. The results show that the ICRF-induced radial redistributions of particle, energy and parallel momentum are driven by the inhomogeneity in energy of the equilibrium distribution function, and related to the correlation between the excursion in the real space and the excursion in energy. For the case with strong asymmetry of k{sub y} spectrum, the ICRF-induced radial transport driven by the energy inhomogeneity dominates the ICRF-induced radial transport driven by the spatial inhomogeneity.

  1. Electromagnetic ion cyclotron waves observed in the plasma depletion layer

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Fuselier, S. A.; Murr, D.

    1991-01-01

    Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.

  2. Nonresonant interactions of electromagnetic ion cyclotron waves with relativistic electrons

    NASA Astrophysics Data System (ADS)

    Chen, Lunjin; Thorne, Richard M.; Bortnik, Jacob; Zhang, Xiao-Jia

    2016-10-01

    The dynamics of relativistic electrons traveling through a parallel-propagating, monochromatic electromagnetic ion cyclotron (EMIC) wave in the Earth's dipole field are investigated via test particle simulations. Both resonant and nonresonant responses in electron pitch angle are considered, and the differences between the two are highlighted. Nonresonant electrons, with energies below the minimum resonant energy down to hundreds of keV, are scattered stochastically in pitch angle and can be scattered into the atmospheric loss cone. The nonresonant effect is attributed to the spatial edge associated with EMIC wave packets. A condition for effective nonresonant response is also provided. This effect is excluded from current quasi-linear theory and can be a potentially important loss mechanism of relativistic and subrelativistic electrons in the radiation belts.

  3. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    SciTech Connect

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motion of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.

  4. Status report on electron cyclotron resonance ion sources at the Heavy Ion Medical Accelerator in Chiba

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Muramatsu, M.; Sekiguchi, M.; Yamada, S.; Jincho, K.; Okada, T.; Yamamoto, M.; Hattori, T.; Biri, S.; Baskaran, R.; Sakata, T.; Sawada, K.; Uno, K.

    2000-02-01

    The Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences (NIRS) is not only dedicated to cancer therapy, it is also utilized with various ion species for basic experiments of biomedical science, physics, chemistry, etc. Two electron cyclotron resonance (ECR) ion sources are installed for production of gaseous ions. One of them, the NIRS-ECR, is a 10 GHz ECR ion source, and is mainly operated to produce C4+ ions for daily clinical treatment. This source realizes good reproducibility and reliability and it is easily operated. The other source, the NIRS-HEC, is an 18 GHz ECR ion source that is expected to produce heavier ion species. The output ion currents of the NIRS-ECR and the NIRS-HEC are 430e μA for C4+ and 1.1e mA for Ar8+, respectively.

  5. Production of a highly charged uranium ion beam with RIKEN superconducting electron cyclotron resonance ion source

    SciTech Connect

    Higurashi, Y.; Ohnishi, J.; Nakagawa, T.; Haba, H.; Fujimaki, M.; Komiyama, M.; Kamigaito, O.; Tamura, M.; Aihara, T.; Uchiyama, A.

    2012-02-15

    A highly charged uranium (U) ion beam is produced from the RIKEN superconducting electron cyclotron resonance ion source using 18 and 28 GHz microwaves. The sputtering method is used to produce this U ion beam. The beam intensity is strongly dependent on the rod position and sputtering voltage. We observe that the emittance of U{sup 35+} for 28 GHz microwaves is almost the same as that for 18 GHz microwaves. It seems that the beam intensity of U ions produced using 28 GHz microwaves is higher than that produced using 18 GHz microwaves at the same Radio Frequency (RF) power.

  6. Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.

    PubMed

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2008-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well.

  7. Observation of Ion Cyclotron Heating in a Fast-flowing Plasma for an Advanced Plasma Thruster

    NASA Astrophysics Data System (ADS)

    Ando, Akira; Hatanaka, Motoi; Shibata, Masaki; Tobari, Hiroyuki; Hattori, Kunihiko; Inutake, Masaaki

    2004-11-01

    In the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) project in NASA, the combined system of the ion cyclotron heating and the magnetic nozzle is proposed to control a ratio of specific impulse to thrust at constant power. In order to establish the advanced plasma thruster, experiments of an ion heating and plasma acceleration by a magnetic nozzle are performed in a fast-flowing plasma in the HITOP device. A fast-flowing He plasma is produced by Magneto-Plasma-Dynamic Arcjet (MPDA) operated with an externally-applied magnetic field up to 1kG. RF waves with an ion cyclotron range of frequency (f=20-300kHz) is excited by a helically-wound antenna located downstream of the MPDA. Increases of an ion temperature and plasma stored energy measured by a diamagnetic coil clearly observed during the RF pulse. The heating efficiency is compared for various magnetic field configurations and strengths. There appears no indication of cyclotron resonance in a high density plasma where the ratio of ion cyclotron frequency to ion-ion collision one is below unity, because an ion-ion collisional effect is dominant. When the density becomes low and the ratio of ion cyclotron frequency to ion-ion collision one becomes high, features of ion cyclotron resonance are clearly appeared. The optimum magnetic field strength for the ion heating is slightly lower than that of the cyclotron resonance, which is caused by the Doppler effect due to the fast-flowing plasma. An ion energy distribution function is measured at a magnetic nozzle region by an electrostatic analyzer and increase of the parallel velocity is also observed.

  8. Precipitation of Relativistic Electrons by Electromagnetic Ion Cyclotron (EMIC) Waves

    NASA Astrophysics Data System (ADS)

    Denton, R. E.

    2015-12-01

    We use the electromagnetic ion cyclotron (EMIC) wave fields produced in a two dimensional hybrid code simulation (full dynamics particle ions, but inertialess fluid electrons) in dipole geometry in order to investigate the effect of magnetospheric EMIC waves on relativistic electrons. The plane of the simulation includes variation in the L shell direction and along magnetic field lines. Relativistic test particle electrons are inserted into the simulation when the wave fields are near their maximum amplitude. These electrons can be scattered into the loss cone so that they precipitate into the ionosphere. We find the effective pitch angle diffusion coefficient and probability of precipitation using these test particles. The pitch angle diffusion coefficients are largest for relativistic energies greater than 2 MeV, though they may be substantial for lower energies. The probability of precipitation is highest for low energy particles at small initial equatorial pitch angle. For high initial equatorial pitch angles, the probability of precipitation increases greatly with respect to particle energy. Starting from an isotropic pitch angle distribution of relativistic electrons with a Gaussian spread in the relativistic momentum, we find only a small drop in the probability of precipitation during 13 s time as the particle energy decreases. But that result depends on the initial pitch angle distribution. Starting with a distribution of particles steeply peaked at 90° initial equatorial pitch angle, the probability of precipitation would be greater for high-energy particles. We will discuss the mechanism of pitch angle scattering.

  9. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  10. Production of molecular ion beams using an electron cyclotron resonance ion source

    SciTech Connect

    Draganić, I. N.; Bannister, M. E.; Meyer, F. W.; Vane, C. R.; Havener, C. C.

    2011-06-01

    An all-permanent magnet electron cyclotron resonance (ECR) ion source is tuned to create a variety of intense molecular ion beams for basic energy research. Based on simultaneous injection of several gases with spectroscopic high purity or enriched isotope content (e.g., H2, D2, N2, O2, or CO) and lower power microwave heating, the ECR ion source produces diatomic molecular ion beams of H2+, D2+, HD+, HO+, DO+, NH+, ND+, and more complex polyatomic molecular ions such as H3+, D3+, HD2+, H2O+, D2O+, H3O+, D3O+, and NHn+, NDn+ with n=2,3,4 and possibly higher. Molecular ion beams have been produced with very high current intensities compared to other molecular beam sources. The recorded molecular ion beam spectra are discussed.

  11. Ring Current-Electromagnetic Ion Cyclotron Waves Coupling

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.

    2005-01-01

    The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.

  12. Electrostatic ion cyclotron, beam-plasma, and lower hybrid waves excited by an electron beam

    SciTech Connect

    Singh, N.; Conrad, J.R.; Schunk, R.W.

    1985-06-01

    It is pointed out that electrostatic ion cyclotron (EIC) waves have been extensively investigated in connection with both space and laboratory plasmas. The present investigation has the objective to study the excitation of low-frequency waves in a multiion plasma by electron beams. The frequencies considered range from below the lowest gyrofrequency of the heaviest ion to about the lower hybrid frequency. It is shown that electron-beam instabilities can produce peaks in the growth rate below the cyclotron frequency of each ion species if nonzero perpendicular wave number effects are included in the ion dynamics. The dispersion relations for neutralized ion Bernstein (NIB) and pure ion Bernstein (PIB) waves are considered along with an instability analysis for a cold plasma and warm electron beam, the electron beam-plasma mode, banded ion cyclotron (EIC) waves with small perpendicular wavelengths, and the growth lengths of the waves. 39 references.

  13. Electrostatic ion cyclotron, beam-plasma, and lower hybrid waves excited by an electron beam

    NASA Technical Reports Server (NTRS)

    Singh, N.; Conrad, J. R.; Schunk, R. W.

    1985-01-01

    It is pointed out that electrostatic ion cyclotron (EIC) waves have been extensively investigated in connection with both space and laboratory plasmas. The present investigation has the objective to study the excitation of low-frequency waves in a multiion plasma by electron beams. The frequencies considered range from below the lowest gyrofrequency of the heaviest ion to about the lower hybrid frequency. It is shown that electron-beam instabilities can produce peaks in the growth rate below the cyclotron frequency of each ion species if nonzero perpendicular wave number effects are included in the ion dynamics. The dispersion relations for neutralized ion Bernstein (NIB) and pure ion Bernstein (PIB) waves are considered along with an instability analysis for a cold plasma and warm electron beam, the electron beam-plasma mode, banded ion cyclotron (EIC) waves with small perpendicular wavelengths, and the growth lengths of the waves.

  14. Experiments on ion cyclotron damping at the deuterium fourth harmonic in DIII-D

    SciTech Connect

    Pinsker, R.I.; Petty, C.C.; Baity, F.W.; Bernabei, S.; Greenough, N.; Heidbrink, W.W.; Mau, T.K.; Porkolab, M.

    1999-05-01

    Absorption of fast Alfven waves by the energetic ions of an injected beam is evaluated in the DIII-D tokamak. Ion cyclotron resonance absorption at the fourth harmonic of the deuteron cyclotron frequency is observed with deuterium neutral beam injection (f = 60 MHz, B{sub T} = 1.9 T). Enhanced D-D neutron rates are evidence of absorption at the Doppler-shifted cyclotron resonance. Characteristics of global energy confinement provide further proof of substantial beam acceleration by the rf. In many cases, the accelerated deuterons cause temporary stabilization of the sawtooth (monster sawteeth), at relatively low rf power levels of {approximately}1 MW.

  15. Microwave emission related to cyclotron instabilities in a minimum-B electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Izotov, I.; Tarvainen, O.; Mansfeld, D.; Skalyga, V.; Koivisto, H.; Kalvas, T.; Komppula, J.; Kronholm, R.; Laulainen, J.

    2015-08-01

    Electron cyclotron resonance ion sources (ECRIS) have been essential in the research and applications of nuclear physics over the past 40 years. They are extensively used in a wide range of large-scale accelerator facilities for the production of highly charged heavy ion beams of stable and radioactive elements. ECRISs are susceptible to kinetic instabilities due to resonance heating mechanism leading to anisotropic electron velocity distribution function. Instabilities of cyclotron type are a proven cause of frequently observed periodic bursts of ‘hot’ electrons and bremsstrahlung, accompanied with emission of microwave radiation and followed by considerable drop of multiply charged ions current. Detailed studies of the microwave radiation associated with the instabilities have been performed with a minimum-B 14 GHz ECRIS operating on helium, oxygen and argon plasmas. It is demonstrated that during the development of cyclotron instability ‘hot’ electrons emit microwaves in sub-microsecond scale bursts at temporally descending frequencies in the 8-15 GHz range with two dominant frequencies of 11.09 and 12.59 GHz regardless of ECRIS settings i.e. magnetic field strength, neutral gas pressure or species and microwave power. The experimental data suggest that the most probable excited plasma wave is a slow extraordinary Z-mode propagating quasi-longitudinally with respect to the external magnetic field.

  16. ECR (electron cyclotron resonance) ion sources and applications with heavy-ion linacs

    SciTech Connect

    Pardo, R.C.

    1990-01-01

    The electron cyclotron resonance (ECR) ion source has been developed in the last few years into a reliable source of high charge-state heavy ions. The availability of heavy ions with relatively large charge-to-mass ratios (0.1--0.5) has made it possible to contemplate essentially new classes of heavy-ion linear accelerators. In this talk, I shall review the state-of-the-art in ECR source performance and describe some of the implications this performance level has for heavy-ion linear accelerator design. The present linear accelerator projects using ECR ion sources will be noted and the performance requirements of the ECR source for these projects will be reviewed. 30 refs., 3 figs.

  17. Ion cyclotron resonance heating in SST-1 tokamak

    SciTech Connect

    Bora, D.; Mukherjee, A.; Singh, J. P.; Gangopadhyay, S.; Kumar, Sunil; Singh RF Group, Raj

    1999-09-20

    Multimegawatt ion cyclotron resonance heating (ICRH) system is being developed for the steady state superconducting takamak SST-1 (1), which would form an important heating scheme during non-inductive steady state operation. 1.5 MW of RF power at different frequencies between 22-92 MHz is to be delivered to the plasma for pulse lengths of upto 1000 s. Water cooled antenna, interface and 9 inch Tx-line will ensure safe operation for long pulse operation. Three stages of matching would ensure maximum power coupling to the plasma. Power would be coupled to the plasma through two sets of antennae consisting of two strips in antenna box positioned 180 degree opposite to each other with capability of handling 0.8 MW/m{sup 2} heat load. Electromagnetic stress analysis of the antenna assembly shows that maximum 1.37 kNm torque would be exerted during plasma disruption operating at 3.0 T, 220 kA plasma current. Impurity generation by ICRH antennae is not so severe.

  18. High current DC negative ion source for cyclotron

    NASA Astrophysics Data System (ADS)

    Etoh, H.; Onai, M.; Aoki, Y.; Mitsubori, H.; Arakawa, Y.; Sakuraba, J.; Kato, T.; Mitsumoto, T.; Hiasa, T.; Yajima, S.; Shibata, T.; Hatayama, A.; Okumura, Y.

    2016-02-01

    A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H- beam of 10 mA and D- beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H- beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H- current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H- production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H- current dependence on the arc power.

  19. High current DC negative ion source for cyclotron

    SciTech Connect

    Etoh, H. Aoki, Y.; Mitsubori, H.; Arakawa, Y.; Sakuraba, J.; Kato, T.; Mitsumoto, T.; Hiasa, T.; Yajima, S.; Onai, M.; Hatayama, A.; Shibata, T.; Okumura, Y.

    2016-02-15

    A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H{sup −} beam of 10 mA and D{sup −} beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H{sup −} beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H{sup −} current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H{sup −} production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H{sup −} current dependence on the arc power.

  20. Refractory rf ovens and sputter probes for electron cyclotron resonance ion source

    SciTech Connect

    Cavenago, M.; Galata, A.; Kulevoy, T.; Petrenko, S.; Sattin, M.; Facco, A.

    2008-02-15

    Beams from electron cyclotron resonance ion source (ECRIS) with radio frequency ovens for refractory material (using a Mo coil) were recently demonstrated; results for Ti and V are here discussed, with temperature T{sub s}{>=}2300 K stably maintained and extracted current of about 1000 nA for V{sup 8+} and V{sup 9+}. The status of sputter probes is also reported, and the reason why trapping efficiency may be lower than in the oven case are investigated. The simple tubular probe concept show typical currents of Sn{sup 18+} about 250 nA, for the most abundant isotopes, but an operating pressure of about 300 {mu}Pa may be required. Some preliminary experiments were performed with Penning probes, showing that transmission of Sn or Pr from Penning cathode to ECRIS plasma is limited. Placement of tin onto anticathode and use of collimator between Penning and ECRIS are also discussed.

  1. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    SciTech Connect

    Jeong, S. C.; Oyaizu, M.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Miyatake, H.; Niki, K.; Okada, M.; Watanabe, Y. X.; Otokawa, Y.; Osa, A.; Ichikawa, S.

    2011-03-15

    The ion loss distribution in an electron cyclotron resonance ion source (ECRIS) was investigated to understand the element dependence of the charge breeding efficiency in an electron cyclotron resonance (ECR) charge breeder. The radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions (typical nonvolatile and volatile elements, respectively) were injected into the ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex to breed their charge states. Their respective residual activities on the sidewall of the cylindrical plasma chamber of the source were measured after charge breeding as functions of the azimuthal angle and longitudinal position and two-dimensional distributions of ions lost during charge breeding in the ECRIS were obtained. These distributions had different azimuthal symmetries. The origins of these different azimuthal symmetries are qualitatively discussed by analyzing the differences and similarities in the observed wall-loss patterns. The implications for improving the charge breeding efficiencies of nonvolatile elements in ECR charge breeders are described. The similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.

  2. A Tuning Method for Electrically Compensated Ion Cyclotron Resonance Mass Spectrometer Traps

    PubMed Central

    Brustkern, Adam M.; Rempel, Don L.; Gross, Michael L.

    2010-01-01

    We describe a method for tuning electrically compensated ion cyclotron resonance (ICR) traps by tracking the observed cyclotron frequency of an ion cloud at different oscillation mode amplitudes. Although we have used this method to tune the compensation voltages of a custom-built electrically compensated trap, the approach is applicable to other designs that incorporate electrical compensation. To evaluate the effectiveness of tuning, we examined the frequency shift as a function of cyclotron orbit size at different z-mode oscillation amplitudes. The cyclotron frequencies varied by ~ 12 ppm for ions with low z-mode oscillation amplitudes compared to those with high z-mode amplitudes. This frequency difference decreased to ~1 ppm by one iteration of trap tuning. PMID:20060743

  3. Cyclotron resonance phenomena in a non-neutral multispecies ion plasma

    SciTech Connect

    Sarid, E.; Anderegg, F.; Driscoll, C.F.

    1995-08-01

    Cyclotron modes of a non-neutral Mg ion plasma were studied in a long cylindrical Penning--Malmberg trap. Several modes with angular dependence exp({ital il}{theta}), {ital l}{ge}1, are observed near the cyclotron frequencies of the various Mg ions. The {ital l}=1 modes for the majority species are downshifted from the cyclotron frequencies, with downshifts as large as four times the diocotron frequency. These large shifts are quantitatively explained by a multispecies cold-plasma theory, including the dependence on the plasma size and composition. These dependencies allow the plasma size and composition to be obtained from the measured mode frequencies. In contrast, the {ital l}=1 downshifts for minority species are generally close to twice the diocotron frequency, and remain unexplained. Cyclotron heating of the plasma ions was also observed with a surprising effect of improving the plasma confinement. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  4. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.

  5. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    van Agthoven, Maria A.; Barrow, Mark P.; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A.; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B.

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules.

  6. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma

    SciTech Connect

    Kato, Yushi Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-15

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.

  7. Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)

    NASA Astrophysics Data System (ADS)

    Nakagawa, T.

    2014-02-01

    The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams.

  8. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma.

    PubMed

    Kato, Yushi; Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-01

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.

  9. Gas Feeding System Supplying the U-400M Cyclotron Ion Source with Hydrogen Isotopes

    NASA Astrophysics Data System (ADS)

    Yukhimchuk, A. A.; Antilopov, V. V.; Apasov, V. A.; Vinogradov, Yu. I.; Golubkov, A. N.; Gornostaev, Ye. V.; Grishechkin, S. K.; Demin, A. M.; Zlatoustovski, S. V.; Klevtsov, V. G.; Kuryakin, A. V.; Malkov, I. N.; Musyaev, R. K.; Pustovoi, V. I.; Bekhterev, V. V.; Bogomolov, S. L.; Gulbekian, G. G.; Yefremov, A. A.; Zelenak, A.; Leporis, M.; Loginov, V. N.; Oganessian, Yu. Ts.; Pashchenko, S. V.; Rodin, A. M.; Smirnov, Yu. I.; Ter-Akopian, G. M.; Yazvitski, N. Yu.

    2005-09-01

    Automated system feeding into ion source hydrogen isotopes as molecules with preset ratio of the fluxes is described. The control system automatically maintained the working parameters and provided graphic and digital representation of the controlled processes. The radiofrequency (RF) ion source installed at the axial injection line of the cyclotron produced ion beams of HD+, HT+, DT+, D2H+, etc. At a several months DT+ beam acceleration the tritium consumption was less than 108 Bq/hr. The intensity of a 58.2 MeV triton beam (T+ ions) extracted from the cyclotron chamber was about 10 nA.

  10. Beam-driven ion cyclotron harmonic resonances in the terrestrial foreshock

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Goldstein, M. L.; Gary, S. P.; Russell, C. T.

    1985-01-01

    A terrestrial upstream wave event which demonstrates multiple, ion cyclotron harmonic resonances between the interplanetary wave population and an observed proton beam is analyzed. The techniques and parameters employed in the data analysis are discussed, including the use of differential and band-pass filters. An upstream wave event demonstrating multiple harmonic waves is examined, and the instability analysis relevant to the ion beam observations thought to be responsible for that event is discussed. It is shown that an observed bi-Maxwellian ion beam is capable of generating right and left-hand polarized waves through ion cyclotron harmonic resonance.

  11. Dispersion relation of electrostatic ion cyclotron waves in multi-component magneto-plasma

    SciTech Connect

    Khaira, Vibhooti Ahirwar, G.

    2015-07-31

    Electrostatic ion cyclotron waves in multi component plasma composed of electrons (denoted by e{sup −}), hydrogen ions (denoted by H{sup +}), helium ions (denoted by He{sup +}) and positively charged oxygen ions (denoted by O{sup +})in magnetized cold plasma. The wave is assumed to propagate perpendicular to the static magnetic field. It is found that the addition of heavy ions in the plasma dispersion modified the lower hybrid mode and also allowed an ion-ion mode. The frequencies of the lower hybrid and ion- ion hybrid modes are derived using cold plasma theory. It is observed that the effect of multi-ionfor different plasma densities on electrostatic ion cyclotron waves is to enhance the wave frequencies. The results are interpreted for the magnetosphere has been applied parameters by auroral acceleration region.

  12. Collisional activation of ions by off-resonance irradiation in ion cyclotron resonance spectrometry

    NASA Astrophysics Data System (ADS)

    Shin, Seung Koo; Han, Seung-Jin; Seo, Jongcheol

    2009-06-01

    Collisional activation of ions in the ion cyclotron resonance (ICR) cell by short off-resonance burst irradiation (ORBI) was studied by time-resolved photodissociation of the meta-bromotoluene radical cation. Off-resonance chirp or single-frequency burst was applied for 2 ms to the probe ion in the presence of Ar buffer gas. The amount of internal energy imparted to the probe ion by collision under ORBI was precisely determined by time-resolved photodissociation spectroscopy. The rate of unimolecular dissociation of the probe ion following the photolysis at 532 nm was measured by monitoring the real-time appearance of the C7H7+ product ion. The internal energy of the probe ion was extracted from the known rate-energy curve. To help understand the collisional activation of an ion under ORBI, we simulated the radial trajectory of the ion using Green's method. The calculated radial kinetic energy was converted to the collision energy in the center-of-mass frame, and the collision frequency was estimated by using a reactive hard-sphere collision model with an ion-induced dipole potential. Both experiments and trajectory simulations suggest that chirp irradiation leads to less collisional activation of ions than other waveforms.

  13. High power Ion Cyclotron Resonance Heating (ICRH) in JET

    SciTech Connect

    Jacquinot, J.

    1988-01-01

    Ion Cyclotron Resonance Heating (ICRH) powers of up to 17 MW have been coupled to JET limiter plasmas. The plasma stored energy has reached 7 MJ with 13 MW of RF in 5 MA discharges with Z/sub eff/ = 2. When I/sub p//B/sub /phi// = 1 MA/T the stored energy can be 50% greater than the Goldston L mode scaling. This is due to transient stabilisation of sawteeth (up to 3 s) and to a significant energy content in the minority particles accelerated by RF (up to 30% of the total stored energy). Central temperatures of T/sub e/ - 11 keV and T/sub i/ = 8 keV have been reached with RF alone. (He/sup 3/)D fusion experiments have given a 60 kW fusion yield (fusion rate of 2 /times/ 10/sup 16/ s/sup /minus/1/ in the form of energetic fast particles (14.7 MeV(H), 3.6 MeV(He/sup 4/)) in agreement with modelling. When transposing the same calculation to a (D)T scenario, Q is predicted to be between 0.l2 and 0.8 using plasma parameters already achieved. For the first time, a peaked density profile generated by pellet injection could be reheated and sustained by ICRF for 1.2 s. Electron heat transport in the central region is reduced by a factor 2 to 3. The fusion product n/sub io//tau//sub E/T/sub io/ reaches 2.2 /times/ 10/sup 20/ m/sup /minus/3//center dot/s/center dot/kev in 3 MA discharges which is a factor of 2.3 times larger than with normal density profile. 18 refs., 13 figs., 3 tabs.

  14. Heating of ions to superthermal energies in the topside ionosphere by electrostatic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Ungstrup, E.; Klumpar, D. M.; Heikkila, W. J.

    1979-01-01

    The soft particle spectrometer on the Isis 2 spacecraft occasionally observes fluxes of ions moving upward out of the ionosphere in the vicinity of the auroral oval. These ion fluxes are characterized by a sharp pitch angle distribution usually peaked at an angle somewhat greater than 90 deg, indicative of particles heated to a large transverse temperature in a narrow range below the spacecraft. The observations are interpreted in terms of electrostatic ion cyclotron waves, which heat the ions to superthermal energies transverse to the earth's magnetic field. When the transverse energy increases, the repulsive force of the earth's magnetic field, proportional to the particle magnetic moment, repels the particles away from the earth.

  15. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Hill, N.C.; Limbach, P.A.; Shomo, R.E. II; Marshall, A.G. ); Appelhans, A.D.; Delmore, J.E. )

    1991-11-01

    The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  16. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  17. Model for the description of ion beam extraction from electron cyclotron resonance ion sources.

    PubMed

    Spädtke, P

    2010-02-01

    The finite difference method trajectory code KOBRA3-INP has been developed now for 25 years to perform the simulation of ion beam extraction in three dimensions. Meanwhile, the code has been validated for different applications: high current ion beam extraction from plasma sources for ion implantation technology, neutral gas heating in fusion devices, or ion thrusters for space propulsion. One major issue of the development of this code was to improve the flexibility of the applied model for the simulation of different types of particle sources. Fixed emitter sources might be simulated with that code as well as laser ion sources, Penning ion sources, electron cyclotron resonance ion sources (ECRISs), or H(-) sources, which require the simulation of negative ions, negative electrons, and positive charges simultaneously. The model which has been developed for ECRIS has now been used to explore the conditions for the ion beam extraction from a still nonexisting ion source, a so called ARC-ECRIS [P. Suominen and F. Wenander, Rev. Sci. Instrum. 79, 02A305 (2008)]. It has to be shown whether the plasma generator has similar properties like regular ECRIS. However, the emittance of the extracted beam seems to be much better compared to an ECRIS equipped with a hexapole.

  18. C60 Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    SciTech Connect

    Smith, Donald F.; Robinson, Errol W.; Tolmachev, Aleksey V.; Heeren, Ronald M.; Pasa-Tolic, Ljiljana

    2011-12-15

    Secondary ion mass spectrometry (SIMS) has seen increased application for high spatial chemical imaging of complex biological surfaces. The advent and commercial availability of cluster and polyatomic primary ion sources (e.g. Au and Bi cluster and buckminsterfullerene (C60)) provide improved secondary ion yield and decreased fragmentation of surface species, thus accessibility to intact molecular ions. Despite developments in primary ion sources, development of mass spectrometers to fully exploit their advantages has been limited. Tandem mass spectrometry for identification of secondary ions is highly desirable, but implementation has proven to be difficult. Similarly, high mass resolution and high mass measurement accuracy would greatly improve the chemical specificity of SIMS. Here we combine, for the first time, the advantages of a C60 primary ion source with the ultra-high mass resolving power and high mass measurement accuracy of Fourier transform ion cyclotron resonance mass spectrometry. Mass resolving power in excess of 100,000 (m/Δm50%) is demonstrated, with mass measurement accuracies below 3 parts-per-million. Imaging of mouse brain tissue at 40 μm pixel size is shown. Tandem mass spectrometry of ions from biological tissue is demonstrated and molecular formulae can be assigned to fragment ions.

  19. HIGH FREQUENCY POWER TRANSMISSION LINE FOR CYCLOTRONS AND THE LIKE

    DOEpatents

    Armstrong, W.J.

    1954-04-20

    High-frequency power transmission systems, particularly a stacked capacitance alternating power current transmission line wherein maximum utilization of the effective conductios skin of the line conductors is achieved while enabling a low impedance to be obtained are reported. The transmission line consists of a number of flat metal strips with interleaved dielectric strips. The metal dielectric strips are coiled spirally with the axis of the spiral extending along the length of the strips, and the alternating metal strips at the output end have outwardly extending aligned lugs which are directly strapped together and connected to the respective terminals on the load. At the input end of the transmission line, similarly, the alternate metal strips are directly strapped together and connected to an altereating current source. With the arrangement described each metal strip conducts on both sides, so that the metal strips are designed to have a thickness corresponding to twice the depth of the "skin effect" conducting lamina of each conductor at the source frequency.

  20. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy.

    PubMed

    Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-01

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C(5+) ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C(5+) ion beam was got when work gas was CH4 while about 262 eμA of C(5+) ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  1. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source.

    PubMed

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm(2). The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  2. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm2. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  3. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    SciTech Connect

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Won, Mi-Sook; Lee, Seung Wook

    2016-02-15

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1–10 mm{sup 2}. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  4. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy

    NASA Astrophysics Data System (ADS)

    Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-01

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C5+ ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C5+ ion beam was got when work gas was CH4 while about 262 eμA of C5+ ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  5. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    SciTech Connect

    Yorita, T. Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K.

    2014-02-15

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  6. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Yorita, T.; Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K.

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  7. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    PubMed

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  8. Comparison of Moderate to High Ion Cyclotron Absorption on Energetic Ions in NSTX and DIII-D

    NASA Astrophysics Data System (ADS)

    Burby, J.; Pinsker, R. I.; Choi, M.

    2009-11-01

    Strong absorption of fast waves (FWs) on injected deuterons at ion cyclotron harmonic numbers in the 4-10 range is observed on both DIII-D and NSTX. The results from fast ion Dα spectroscopic measurements from the two devices differ significantly: deposition on fast ions peaks near the cyclotron harmonic layer closest to the magnetic axis in the conventional-aspect-ratio DIII-D, while results from the low-aspect-ratio NSTX show a broader deposition profile [1]. One root of the difference stems from the absorbing fast ions sampling more harmonic layers in NSTX than in DIII-D. We investigate cyclotron absorption in cases with multiple harmonic layers within a single ion gyroradius and related phenomena numerically and analytically by examining the response of individual charged particles to rf fields in various field configurations. 8pt [1] M. Podesta et al., RF Power in Plasmas (Proc.18th Top. Conf., Gent, Belgium, 2009), to be published.

  9. Impact of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    Effect of the ring current ions in the real part of electromagnetic ion Cyclotron wave dispersion relation is studied on global scale. Recent Cluster observations by Engebretson et al. showed that although the temperature anisotropy of is energetic (> 10 keV) ring current protons was high during the entire 22 November 2003 perigee pass, electromagnetic ion cyclotron waves were observed only in conjunction with intensification of the ion fluxes below 1 keV by over an order of magnitude. To study the effect of the ring current ions on the wave dispersive properties and the corresponding global wave redistribution, we use a self-consistent model of interacting ring current and electromagnetic ion cyclotron waves, and simulate the May 1998 storm. The main findings of our simulation can be summarized as follows: First, the plasma density enhancement in the night MLT sector during the main and recovery storm phases is mostly caused by injection of suprathermal plasma sheet H + (approximately < 1 keV), which dominate the thermal plasma density. Second, during the recovery storm phases, the ring current modification of the wave dispersion relation leads to a qualitative change of the wave patterns in the postmidnight-dawn sector for L > 4.75. This "new" wave activity is well organized by outward edges of dense suprathermal ring current spots, and the waves are not observed if the ring current ions are not included in the real part of dispersion relation. Third, the most intense wave-induced ring current precipitation is located in the night MLT sector and caused by modification of the wave dispersion relation. The strongest precipitating fluxes of about 8 X 10(exp 6)/ (cm(exp 2) - s X st) are found near L=5.75, MLT=2 during the early recovery phase on 4 May. Finally, the nightside precipitation is more intense than the dayside fluxes, even if there are less intense waves, because the convection field moves ring current ions into the loss cone on the nightside, but drives

  10. Effect of pulse-modulated microwaves on fullerene ion production with electron cyclotron resonance ion source.

    PubMed

    Asaji, T; Uchida, T; Minezaki, H; Oshima, K; Racz, R; Muramatsu, M; Biri, S; Kitagawa, A; Kato, Y; Yoshida, Y

    2012-02-01

    Fullerene plasmas generated by pulse-modulated microwaves have been investigated under typical conditions at the Bio-Nano electron cyclotron resonance ion source. The effect of the pulse modulation is distinct from that of simply structured gases, and then the density of the fullerene plasmas increased as decreasing the duty ratio. The density for a pulse width of 10 μs at the period of 100 μs is 1.34 times higher than that for CW mode. We have studied the responses of fullerene and argon plasmas to pulsed microwaves. After the turnoff of microwave power, fullerene plasmas lasted ∼30 times longer than argon plasmas.

  11. Investigations on the structure of the extracted ion beam from an electron cyclotron resonance ion source

    SciTech Connect

    Spaedtke, P.; Lang, R.; Maeder, J.; Rossbach, J.; Tinschert, K.; Maimone, F.

    2012-02-15

    Using improved beam diagnostic tools, the structure of an ion beam extracted from an electron cyclotron resonance ion source (ECRIS) becomes visible. Especially viewing targets to display the beam profile and pepper pot devices for emittance measurements turned out to be very useful. On the contrary, diagnostic tools integrating over one space coordinate like wire harps for profile measurements or slit-slit devices, respectively slit-grid devices to measure the emittance might be applicable for beam transport investigations in a quadrupole channel, but are not very meaningful for investigations regarding the given ECRIS symmetry. Here we try to reproduce the experimentally found structure on the ion beam by simulation. For the simulation, a certain model has to be used to reproduce the experimental results. The model is also described in this paper.

  12. Gated Trapped Ion Mobility Spectrometry Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Ridgeway, Mark E; Wolff, Jeremy J; Silveira, Joshua A; Lin, Cheng; Costello, Catherine E; Park, Melvin A

    2016-09-01

    Analysis of molecules by ion mobility spectrometry coupled with mass spectrometry (IMS-MS) provides chemical information on the three dimensional structure and mass of the molecules. The coupling of ion mobility to trapping mass spectrometers has historically been challenging due to the large differences in analysis time between the two devices. In this paper we present a modification of the trapped ion mobility (TIMS) analysis scheme termed "Gated TIMS" that allows efficient coupling to a Fourier Transform Ion Cyclotron Resonance (FT-ICR) analyzer. Analyses of standard compounds and the influence of source conditions on the TIMS distributions produced by ion mobility spectra of labile ubiquitin protein ions are presented. Ion mobility resolving powers up to 100 are observed. Measured collisional cross sections of ubiquitin ions are in excellent qualitative and quantitative agreement to previous measurements. Gated TIMS FT-ICR produces results comparable to those acquired using TIMS/time-of-flight MS instrument platforms as well as numerous drift tube IMS-MS studies published in the literature.

  13. Ion heating by strong electrostatic ion cyclotron turbulence. [in auroral zone

    NASA Technical Reports Server (NTRS)

    Lysak, R. L.; Hudson, M. K.; Temerin, M.

    1980-01-01

    A theory of the ion heating due to electrostatic ion cyclotron (EIC) waves in the auroral zone is presented. Due to the slowly convecting nature of the EIC mode, quasi-linear plateau formation cannot stabilize the waves, and growth occurs until the nonlinear mechanisms of ion resonance broadening and electron trapping provide saturation. The large amplitude and coherent nature of the resulting wave imply that quasi-linear theory provides only a lower limit to the ion heating. An upper bound on the heating rate is derived using a time-average model of ion dynamics in the coherent waves. The effects of ion heating in the presence of the magnetic gradient force and parallel electric fields are considered, with the result that perpendicular energies over 100 eV are easily attainable from a 1 eV source plasma. Perpendicular heating in the absence of a parallel electric field yields conical ion distributions, which in the presence of an electric field become field-aligned beams.

  14. Study of ion beam transport from the SECRAL electron cyclotron resonance ion source at the Institute of Modern Physics.

    PubMed

    Cao, Y; Lu, W; Zhang, W H; Sha, S; Yang, Y; Ma, B H; Wang, H; Zhu, Y H; Guo, J W; Fang, X; Lin, S H; Li, X X; Feng, Y C; Li, J Y; Zhao, H Y; Ma, H Y; Zhang, X Z; Guo, X H; Wu, Q; Sun, L T; Zhao, H W; Xie, D Z

    2012-02-01

    Ion beam transport from the Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) electron cyclotron resonance ion source was studied at the Institute of Modern Physics during 2010. Particle-in-cell simulations and experimental results have shown that both space charge and magnetic aberrations lead to a larger beam envelope and emittance growth. In the existing SECRAL extraction beam line, it has been shown that raising the solenoid lens magnetic field reduces aberrations in the subsequent dipole and results in lower emittance. Detailed beam emittance measurements are presented in this paper.

  15. Excitation of ion-cyclotron harmonic waves in lower-hybrid heating

    NASA Astrophysics Data System (ADS)

    Villalon, E.

    1981-06-01

    The parametric excitation of ion-cyclotron waves by a lower-hybrid pump field is studied in the assumption that the magnitude of the pump is constant. The spatial amplification factor is given as a function of the wavenumber mismatch as produced by the plasma density gradient, and of the linear damping rates of the excited ion-cyclotron and sideband waves. The analysis is applied to plasma edge parameters relevant to the JFT2 heating experiment. It is found that ion-cyclotron harmonic modes are excited depending on pump frequency and plasma density. These modes are shown to have finite damping rates. The parallel refractive indices n1z of the excited sideband fields are found to be always larger than that of the driven pump field. Transition to quasi-mode decay occurs either by decreasing the pump frequency or by increasing the applied RF-power.

  16. Magnetic signatures of ion cyclotron waves during Cassini's high-inclination orbits of Saturn

    NASA Astrophysics Data System (ADS)

    Meeks, Zachary; Simon, Sven

    2017-02-01

    Based on magnetic field data from Cassini's high-inclination orbits of Saturn (radius RS = 60 , 268 km), we analyze the latitudinal distribution of ion cyclotron waves in the giant planet's magnetosphere. Our survey takes into account magnetic field data from all high-inclination orbits between 2004 and 2015. We analyze the dependency of the occurrence rate and amplitude of the ion cyclotron waves on radial distance ρ to Saturn's rotation axis, vertical distance z to Saturn's equatorial plane, and magnetic latitude λ. The occurrence rate of ion cyclotron waves is approximately 100% in Saturn's equatorial plane between the orbits of Enceladus and Dione and decreases to 50% at altitudes of | z | ≈ 0.6RS . Ion cyclotron waves were detected up to | z | = 2.0RS . The occurrence rate displays strong, non-monotonic variations with respect to ρ, z, and λ. The vertical amplitude profile of the waves exhibits an M-like pattern with two distinct peaks near z = ± 0.3RS and the central minimum at z=0. Compared to earlier observations, we find this M-like structure to be inflated in±z direction by a factor of three. The available magnetic field data provides only weak evidence for a local impact of Enceladus and Dione on the ion cyclotron wave field. Using the observed Doppler shift of the ion cyclotron wave frequency during Cassini's high-inclination orbits, we demonstrate the existence of a narrow band of bidirectional wave propagation. This band is centered around Saturn's equatorial plane and possesses a half-width of | z | = 0.15RS , which agrees well with the vertical scale height of Saturn's neutral cloud. To the north of this band, all ion cyclotron waves propagate towards the north (z > 0); and to the south, all waves propagate towards the south (z < 0). In companion with our previous study (Meeks et al., 2016), this survey provides the complete three-dimensional picture of the ion cyclotron wave field between the orbits of Enceladus and Rhea during the Cassini

  17. Kinetic instabilities in pulsed operation mode of a 14 GHz electron cyclotron resonance ion source

    SciTech Connect

    Tarvainen, O. Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Izotov, I.; Mansfeld, D.; Skalyga, V.

    2016-02-15

    The occurrence of kinetic plasma instabilities is studied in pulsed operation mode of a 14 GHz A-electron cyclotron resonance type electron cyclotron resonance ion source. It is shown that the temporal delay between the plasma breakdown and the appearance of the instabilities is on the order of 10-100 ms. The most important parameters affecting the delay are magnetic field strength and neutral gas pressure. It is demonstrated that kinetic instabilities limit the high charge state ion beam production in the unstable operating regime.

  18. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Sun, L. T.; Feng, Y. C.; Fang, X.; Lu, W.; Zhang, W. H.; Cao, Y.; Zhang, X. Z.; Zhao, H. W.

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  19. Sensitive test for ion-cyclotron resonant heating in the solar wind.

    PubMed

    Kasper, Justin C; Maruca, Bennett A; Stevens, Michael L; Zaslavsky, Arnaud

    2013-03-01

    Plasma carrying a spectrum of counterpropagating field-aligned ion-cyclotron waves can strongly and preferentially heat ions through a stochastic Fermi mechanism. Such a process has been proposed to explain the extreme temperatures, temperature anisotropies, and speeds of ions in the solar corona and solar wind. We quantify how differential flow between ion species results in a Doppler shift in the wave spectrum that can prevent this strong heating. Two critical values of differential flow are derived for strong heating of the core and tail of a given ion distribution function. Our comparison of these predictions to observations from the Wind spacecraft reveals excellent agreement. Solar wind helium that meets the condition for strong core heating is nearly 7 times hotter than hydrogen on average. Ion-cyclotron resonance contributes to heating in the solar wind, and there is a close link between heating, differential flow, and temperature anisotropy.

  20. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source.

    PubMed

    Yang, Y; Sun, L T; Feng, Y C; Fang, X; Lu, W; Zhang, W H; Cao, Y; Zhang, X Z; Zhao, H W

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  1. Laser desorption studies of high mass biomolecules in Fourier-transform ion cyclotron resonance mass spectrometry.

    PubMed Central

    Solouki, T; Russell, D H

    1992-01-01

    Matrix-assisted laser desorption ionization is used to obtain Fourier-transform ion cyclotron resonance mass spectra of model peptides (e.g., gramicidin S, angiotensin I, renin substrate, melittin, and bovine insulin). Matrix-assisted laser desorption ionization yields ions having appreciable kinetic energies. Two methods for trapping the high kinetic energy ions are described: (i) the ion signal for [M+H]+ ions is shown to increase with increasing trapping voltages, and (ii) collisional relaxation is used for the detection of [M+H]+ ions of bovine insulin. Images PMID:1378614

  2. Observation of increased ion cyclotron resonance signal duration through electric field perturbations.

    PubMed

    Kaiser, Nathan K; Bruce, James E

    2005-09-15

    Ion motion in Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is complex and the subject of ongoing theoretical and experimental studies. Two predominant pathways for the loss of ICR signals are thought to include damping of cyclotron motion, in which ions lose kinetic energy and radially damp toward the center of the ICR cell, and dephasing of ion coherence, in which ions of like cyclotron frequency become distributed out of phase at similar cyclotron radii. Both mechanisms result in the loss of induced ion image current in FTICR-MS measurements and are normally inseparable during time-domain signal analysis. For conventional ICR measurements which take advantage of ion ensembles, maximization of the ion population size and density can produce the desired effect of increasing phase coherence of ions during cyclotron motion. However, this approach also presents the risk of coalescence of ion packets of similar frequencies. In general, ICR researchers in the past have lacked the tools necessary to distinguish or independently control dephasing and damping mechanisms for ICR signal loss. Nonetheless, the ability to impart greater phase coherence of ions in ICR measurements will allow significant advances in FTICR-MS research by improving the current understanding of ICR signal loss contributions of dephasing and damping of ion ensembles, increasing overall time-domain signal length, and possibly, resulting in more routine ultrahigh resolution measurements. The results presented here demonstrate the ability to employ a high density electron beam to perturb electric fields within the ICR cell during detection of cyclotron motion, in an approach we call electron-promoted ion coherence (EPIC). As such, EPIC reduces ICR signal degradation through loss of phase coherence, and much longer time-domain signals can be obtained. Our results demonstrate that time-domain signals can be extended by more than a factor of 4 with the implementation of EPIC, as

  3. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    SciTech Connect

    Inoue, T. Sugimoto, S.; Sasai, K.; Hattori, T.

    2014-02-15

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  4. Ion Extraction from a Toroidal Electron Cyclotron Resonance Ion Source: a Numerical Feasibility Study

    NASA Astrophysics Data System (ADS)

    Caliri, Claudia; Volpe, Francesco; Gammino, Santo; Mascali, David

    2013-10-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are magnetic mirror plasmas of microwave-heated electrons and cold multi-charged ions. The ions are extracted from one end of the mirror and injected in accelerators for nuclear and particle physics studies, hadrontherapy, or neutral beam injection in fusion plasmas. ECRIS devices progressed to higher and higher ion currents and charge states by adopting stronger magnetic fields (beneficial for confinement) and proportionally higher ECR frequencies. Further improvements would require the attainment of ``triple products'' comparable with major fusion experiments. For this, we propose a new, toroidal rather than linear, ECRIS geometry, which would at the same time improve confinement and make better use of the magnetic field. Ion extraction is more complicated than from a linear device, but feasible, as our modeling indicates. Possible techniques involve charge-dependent drifts, divertors, specially designed magnetic fields and associated loss-cones, electrostatic and/or magnetic deflectors, or techniques used in accelerators to transfer particles from one storage ring or accelerator to the next. Here we present single-particle tracings assessing and comparing these extraction techniques.

  5. Simulating Negative Pickup Ions and Ion Cyclotron Wave Generation at Europa (Invited)

    NASA Astrophysics Data System (ADS)

    Desai, R. T.; Cowee, M.; Gary, S. P.; Wei, H.; Coates, A. J.; Kataria, D. O.; Fu, X.

    2015-12-01

    The mass loading of space environments through the ionisation of planetary atmospheres is a fundamental process governing the plasma interactions and long term evolution of celestial bodies across the solar system. Regions containing significant pickup ion populations have been observed to exhibit a rich variety of electromagnetic plasma wave phenomena, the characteristics and properties of which can be used to infer the ion species present, their spatial and temporal distributions, and the global ionisation rates of the neutral material. In this study we present hybrid (kinetic ion, massless fluid electron) simulations of ion pickup and Ion Cyclotron (IC) waves observed in the Jovian magnetosphere and draw comparisons to sub-alfvénic pickup observed by Cassini in the Saturnian system, and also to supra-alfvénic pickup at planetary bodies immersed directly in the solar wind. At Jupiter, Europa has been identified as the secondary mass loader in the magnetosphere, orbiting within a neutral gas torus at ~9.38 Rj. Near Europa, Galileo magnetometer observations displayed bursty IC wave characteristics at the gyrofrequency of a number of species including SO2, K, Cl, O2, and Na, suggesting a complex mass loading environment. A particular deduction from the dataset was the presence of both positively and negatively charged pickup ions, inferred from the left and right hand polarisations of the transverse waves. Using hybrid simulations for both positively and negatively charged Cl pickup ions we are able to self-consistently reproduce the growth of both right and left hand near-circularly polarised waves in agreement with linear theory and, using the observed wave amplitudes, estimate Cl pickup ion densities at Europa.

  6. Analytical study of effects of positron density and temperature anisotropy on electrostatic ion cyclotron instability

    NASA Astrophysics Data System (ADS)

    Barati Moqadam Niyat, M.; Khorashadizadeh, S. M.; Niknam, A. R.

    2017-03-01

    The effects of the positron concentration and ion temperature anisotropy on the electrostatic ion cyclotron instability are studied analytically, in a magnetized electron-positron-ion plasma with temperature anisotropy, using the linear kinetic theory. Positrons and electrons are supposed to drift either in the same direction or in opposite directions relative to singly ionized stationary ions and parallel to the magnetic field. The dispersion relation of the electrostatic ion cyclotron waves is derived, and then the conditions for exciting the instability of the waves are investigated. Moreover, the condition for the marginally stable state is also studied. It is found that as the positron concentration and perpendicular ion temperature increase, the growth rate of the electrostatic ion cyclotron instability decreases, whereas the critical drift velocity increases. It is also found that for the chosen set of parameters, with electrons and positrons drifting in the same direction, the instability in the plasma is stronger than when the electrons and positrons drift in opposite directions. In addition, a comparison is made to the normal electron-ion plasma.

  7. Ion-cyclotron instability in plasmas described by product-bi-kappa distributions

    SciTech Connect

    Santos, M. S. dos; Ziebell, L. F. Gaelzer, R.

    2015-12-15

    The dispersion relation for parallel propagating waves in the ion-cyclotron branch is investigated numerically by considering that the velocity distribution of the ion population is a function of type product-bi-kappa. We investigate the effects of the non-thermal features and of the anisotropy associated with this type of distribution on the ion-cyclotron instability, as well as the influence of different forms of the electron distribution, by considering Maxwellian distributions, bi-kappa distributions, and product-bi-kappa distributions. The cases of ions described by either Maxwellian or bi-kappa distributions are also considered, for comparison. The results of the numerical analysis show that the increase in the non-thermal character associated with the anisotropic kappa distributions for ions contributes to enhance the instability as compared to that obtained in the Maxwellian case, in magnitude and in wave number range, with more significant enhancement for the case of ion product-bi-kappa distributions than for the case of ion bi-kappa distributions. It is also shown that the ion-cyclotron instability is decreased if the electrons are described by product-bi-kappa distributions, while electrons described by bi-kappa distributions lead to growth rates which are very similar to those obtained considering a Maxwellian distribution for the electron population.

  8. Effect of a RF Wave on Ion Cyclotron Instability in Size Distributed Impurities Containing Plasmas

    SciTech Connect

    Sharma, A. K.; Tripathi, V. K.; Annou, R.

    2008-09-07

    The effect of a large amplitude lower hybrid wave on current driven ion cyclotron waves in a dusty plasma where dust grains are size distributed is examined. The influence of the lower hybrid wave on the stabilization of the instability is studied. The efficacy of rf is dust density dependent.

  9. Oscillating two stream instability of electromagnetic pump in the ion cyclotron range of frequency in a plasma

    SciTech Connect

    Ahmad, Nafis; Tripathi, V. K.; Rafat, M.; Husain, Mudassir M.

    2009-06-15

    An analytical formalism of oscillating two stream instability of a large amplitude electromagnetic wave in the ion cyclotron range of frequency in a plasma is developed. The instability produces electrostatic ion cyclotron sidebands and a driven low frequency mode. The nonlinear coupling arises primarily due to the motion of ions and is strong when the pump frequency is close to ion cyclotron frequency and the oscillatory ion velocity is a significant fraction of acoustic speed. For propagation perpendicular to the ambient magnetic field, the X-mode pump wave produces flute type perturbation with maximum growth rate at some specific wavelengths, which are three to four times larger than the ion Larmor radius. For propagation at oblique angles to ambient magnetic field, the ion cyclotron O-mode, the growth rate increases with the wave number of the low frequency mode.

  10. Latitudinal dependence of nonlinear interaction between electromagnetic ion cyclotron wave and terrestrial ring current ions

    SciTech Connect

    Su, Zhenpeng Zhu, Hui; Zheng, Huinan; Xiao, Fuliang; Zhang, Min; Liu, Y. C.-M.; Shen, Chao; Wang, Yuming; Wang, Shui

    2014-05-15

    Electromagnetic ion cyclotron (EMIC) waves can lead to the rapid decay (on a timescale of hours) of the terrestrial ring current. Such decay process is usually investigated in the framework of quasi-linear theory. Here, both theoretical analysis and test-particle simulation are performed to understand the nonlinear interaction between ring current ions and EMIC waves. In particular, the dependence of the nonlinear wave-particle interaction processes on the ion initial latitude is investigated in detail. These nonlinear processes are classified into the phase trapping and phase bunching, and the phase bunching is further divided into the channel and cluster effects. Compared to the prediction of the quasi-linear theory, the ring current decay rate can be reduced by the phase trapping, increased by the channel effect phase bunching, but non-deterministically influenced by the cluster effect phase bunching. The ion initial latitude changes the occurrence of the phase trapping, modulates the transport direction and strength of the cluster effect phase bunching, and only slightly affects the channel effect phase bunching. The current results suggest that the latitudinal dependence of these nonlinear processes should be considered in the evaluation of the ring current decay induced by EMIC waves.

  11. A CW radiofrequency ion source for production of negative hydrogen ion beams for cyclotrons

    SciTech Connect

    Kalvas, T.; Tarvainen, O.; Komppula, J.; Koivisto, H.; Tuunanen, J.; Potkins, D.; Stewart, T.; Dehnel, M. P.

    2015-04-08

    A CW 13.56 MHz radiofrequency-driven ion source RADIS for production of H{sup −} and D{sup −} beams is under development for replacing the filament-driven ion source of the MCC30/15 cyclotron. The RF ion source has a 16-pole multicusp plasma chamber, an electromagnet-based magnetic filter and an external planar spiral RF antenna behind an AlN window. The extraction is a 5-electrode system with an adjustable puller electrode voltage for optimizing the beam formation, a water-cooled electron dump electrode and an accelerating einzel lens. At 2650 W of RF power, the source produces 1 mA of H{sup −} (2.6 mA/cm{sup 2}), which is the intensity needed at injection for production of 200 µA H{sup +} with the filament-driven ion source. A simple pepperpot device has been developed for characterizing the beam emittance. Plans for improving the power efficiency with the use of a new permanent magnet front plate is discussed.

  12. Simulation of ion cyclotron heating in the auroral current region in the VASIMR

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Chang-Diaz, F. R.; Squire, J. P.; Brukardt, M.; Glover, T. W.; Bengtson, R. D.; Jacobson, V. T.; McCaskill, G. E.; Cassady, L.

    Plasma physics has found an increasing range of practical industrial applications including the development of electric spacecraft propulsion systems One of these systems the Variable Specific Impulse Magnetoplasma Rocket VASIMR engine both applies and can be used to simulate several important physical processes occurring in the magnetosphere These processes include the mechanisms involved in the ion acceleration and heating that occur in the Birkeland currents of an auroral arc system Auroral current region processes that are simulated in VASIMR include lower hybrid heating parallel electric field acceleration and ion cyclotron acceleration This paper will focus on using a physics demonstration model VASIMR to study ion cyclotron heating ICRH similar to auroral zone processes The production of upward moving ion conics and ion heating are significant features in auroral processes It is believed that ion cyclotron heating plays a role in these processes but laboratory simulation of these auroral effects is difficult owing to the fact that the ions involved only pass through the acceleration region once In the Variable Specific Impulse Magnetoplasma Rocket VASIMR we have successfully simulated these effects The current configuration of the VASIMR uses a helicon antenna with up to 20 kW of power to generate plasma then uses an RF booster stage that uses left hand polarized slow mode waves launched from the high field side of the resonance The current setup for the booster uses 2 to 4 MHz waves with up to 20 kW of power This is

  13. Energy transfer between energetic ring current H(+) and O(+) by electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Thorne, Richard M.; Horne, Richard B.

    1994-01-01

    Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.

  14. Quantifying Fusion Born Ion Populations in Magnetically Confined Plasmas using Ion Cyclotron Emission

    DOE PAGES

    Carbajal, L.; Warwick Univ., Coventry; Dendy, R. O.; ...

    2017-03-07

    Ion cyclotron emission (ICE) offers unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity P ICE scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, n /n i , of fusion-born alpha-particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a longstanding question in the physics of fusion alpha particle confinement and stability in MCF plasmas. It confirms the MCI as the likely emissionmore » mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.« less

  15. Gas Feeding System Supplying the U-400M Cyclotron Ion Source with Hydrogen Isotopes

    SciTech Connect

    Yukhimchuk, A.A.; Angilopov, V.V.; Apasov, V.A.

    2005-07-15

    Automated system feeding into ion source hydrogen isotopes as molecules with preset ratio of the fluxes is described. The control system automatically maintained the working parameters and provided graphic and digital representation of the controlled processes. The radiofrequency (RF) ion source installed at the axial injection line of the cyclotron produced ion beams of HD{sup +}, HT{sup +}, DT{sup +}, D{sub 2}H{sup +}, etc. At a several months DT{sup +} beam acceleration the tritium consumption was less than 108 Bq/hr. The intensity of a 58.2 MeV triton beam (T{sup +} ions) extracted from the cyclotron chamber was about 10 nA.

  16. A comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Meeks, Zachary; Simon, Sven; Kabanovic, Slawa

    2016-09-01

    We present a comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn, considering all magnetic field data collected during the Cassini era (totaling to over 4 years of data from the equatorial plane). This dataset includes eight targeted flybys of Enceladus, three targeted flybys of Dione, and three targeted flybys of Rhea. Because all remaining orbits of Cassini are high-inclination, our study provides the complete map of ion cyclotron waves in Saturn's equatorial magnetosphere during the Cassini era. We provide catalogs of the radial and longitudinal dependencies of the occurrence rate and amplitude of the ion cyclotron fundamental and first harmonic wave modes. The fundamental wave mode is omnipresent between the orbits of Enceladus and Dione and evenly distributed across all Local Times. The occurrence rate of the fundamental mode displays a Fermi-Dirac-like profile with respect to radial distance from Saturn. Detection of the first harmonic mode is a rare event occurring in only 0.49% of measurements taken and always in conjunction with the fundamental mode. We also search for a dependency of the ion cyclotron wave field on the orbital positions of the icy moons Enceladus, Dione, and Rhea. On magnetospheric length scales, the wave field is independent of the moons' orbital positions. For Enceladus, we analyze wave amplitude profiles of seven close flybys (E9, E12, E13, E14, E17, E18, and E19), which occurred during the studied trajectory segments, to look for any local effects of Enceladan plume variability on the wave field. We find that even in the close vicinity of Enceladus, the wave amplitudes display no discernible dependency on Enceladus' angular distance to its orbital apocenter. Thus, the correlation between plume activity and angular distance to apocenter proposed by Hedman et al. (2013) does not leave a clearly distinguishable imprint in the ion cyclotron wave field.

  17. ARTEMIS-B: A room-temperature test electron cyclotron resonance ion source for the National Superconducting Cyclotron Laboratory at Michigan State University

    SciTech Connect

    Machicoane, G.; Cole, D.; Ottarson, J.; Stetson, J.; Zavodszky, P.

    2006-03-15

    The current scheme for ion-beam injection into the coupled cyclotron accelerator at the NSCL involves the use of two electron cyclotron resonance (ECR) ion sources. The first one is a 6.4 GHz fully superconducting that will be replaced within two years by SUSI, a third generation 18 GHz superconducting ECR ion source. The other source, ARTEMIS, is a room-temperature source based on the AECR-U design and built in collaboration with the University of Jyvaeskylae in 1999. Due to cyclotron operation constraint, very little time can be allowed to ion source development and optics studies of the cyclotron injection beam line. In this context, NSCL has decided to build ARTEMIS-B an exact replica of its room-temperature ECR ion source. The goal of this project is threefold. One is to improve the overall reliability of cyclotron operation through tests and studies of various ion source parameters that could benefit beam stability, tuning reproducibility, and of course overall extracted currents performance. Second is to implement and test modifications or upgrade made to the ion source: extraction geometry, new resistive or rf oven design, dual frequency use, liner, etc. Finally, this test source will be used to study various ion optics schemes such as electrostatic quadrupole doublet or triplet at the source extraction or the use of a correction sextupole and assess their effect on the ion beam through the use of an emittance scanner and imaging viewer that will be incorporated into ARTEMIS-B beam line. This article reviews the design and construction of ARTEMIS-B along with some initial commissioning results.

  18. Status of the ITER ion cyclotron heating and current drive system

    NASA Astrophysics Data System (ADS)

    Lamalle, P.; Beaumont, B.; Kazarian, F.; Gassmann, T.; Agarici, G.; Montemayor, T. Alonzo; Bamber, R.; Bernard, J.-M.; Boilson, D.; Cadinot, A.; Calarco, F.; Colas, L.; Courtois, X.; Deibele, C.; Durodié, F.; Fano, J.; Fredd, E.; Goulding, R.; Greenough, N.; Hillairet, J.; Jacquinot, J.; Kaye, A. S.; Kočan, M.; Labidi, H.; Leichtle, D.; Loarte, A.; McCarthy, M.; Messiaen, A.; Meunier, L.; Mukherjee, A.; Oberlin-Harris, C.; Patel, A. M.; Peters, B.; Rajnish, K.; Rasmussen, D.; Sanabria, R.; Sartori, R.; Singh, R.; Swain, D.; Trivedi, R. G.; Turner, A.

    2015-12-01

    The paper reports on latest developments for the ITER Ion Cyclotron Heating and Current Drive system: imminent acceptance tests of a prototype power supply at full power; successful factory acceptance of candidate RF amplifier tubes which will be tested on dedicated facilities; further design integration and experimental validation of transmission line components under 6MW hour-long pulses. The antenna Faraday shield thermal design has been validated above requirements by cyclic high heat flux tests. R&D on ceramic brazing is under way for the RF vacuum windows. The antenna port plug RF design is stable but major evolution of the mechanical design is in preparation to achieve compliance with the load specification, warrant manufacturability and incorporate late interface change requests. The antenna power coupling capability predictions have been strengthened by showing that, if the plasma scrape-off layer turns out to be steep and the edge density low, the reference burning plasma can realistically be displaced to improve the coupling.

  19. Numerical simulation of ions acceleration and extraction in cyclotron DC-110

    NASA Astrophysics Data System (ADS)

    Samsonov, E. V.; Gikal, B. N.; Borisov, O. N.; Ivanenko, I. A.

    2014-03-01

    In Flerov's Laboratory of Nuclear Reactions of JINR in the framework of project "Beta" a cyclotron complex for a wide range of applied research in nanotechnology (track membranes, surface modification, etc.) is created. The complex includes a dedicated heavy-ion cyclotron DC-110, which yields intense beams of accelerated ions Ar, Kr and Xe with a fixed energy of 2.5 MeV/A. The cyclotron is equipped with external injection on the base of ECR ion source, a spiral inflector and the system of ions extraction consisting of an electrostatic deflector and a passive magnetic channel. The results of calculations of the beam dynamics in measured magnetic field from the exit of spiral inflector to correcting magnet located outside the accelerator vacuum chamber are presented. It is shown that the design parameters of ion beams at the entrance of correcting magnet will be obtained using false channel, which is a copy of the passive channel, located on the opposite side of the magnetic system. Extraction efficiency of ions will reach 75%.

  20. Simulation and beamline experiments for the superconducting electron cyclotron resonance ion source VENUS

    SciTech Connect

    Todd, Damon S.; Leitner, Daniela; Lyneis, Claude M.; Grote, David P.

    2008-02-15

    The particle-in-cell code WARP has been enhanced to incorporate both two- and three-dimensional sheath extraction models giving WARP the capability of simulating entire ion beam transport systems including the extraction of beams from plasma sources. In this article, we describe a method of producing initial ion distributions for plasma extraction simulations in electron cyclotron resonance (ECR) ion sources based on experimentally measured sputtering on the source biased disk. Using this initialization method, we present preliminary results for extraction and transport simulations of an oxygen beam and compare them with experimental beam imaging on a quartz viewing plate for the superconducting ECR ion source VENUS.

  1. Status of the Bio-Nano electron cyclotron resonance ion source at Toyo University.

    PubMed

    Uchida, T; Minezaki, H; Ishihara, S; Muramatsu, M; Rácz, R; Asaji, T; Kitagawa, A; Kato, Y; Biri, S; Drentje, A G; Yoshida, Y

    2014-02-01

    In the paper, the material science experiments, carried out recently using the Bio-Nano electron cyclotron resonance ion source (ECRIS) at Toyo University, are reported. We have investigated several methods to synthesize endohedral C60 using ion-ion and ion-molecule collision reaction in the ECRIS. Because of the simplicity of the configuration, we can install a large choice of additional equipment in the ECRIS. The Bio-Nano ECRIS is suitable not only to test the materials production but also to test technical developments to improve or understand the performance of an ECRIS.

  2. Cold Electronstatic Ion Cyclotron Waves for Preionization and IBW Launching in LHD

    SciTech Connect

    Masayuki Ono

    1999-04-01

    A folded waveguide with E|| polarization is being installed on LHD device. The main purpose of the folded waveguide is to pre-ionize and create good target plasmas. The present manuscript proposes a launching of IBW via CESICW (Cold Electrostatic Ion Cyclotron Wave) for heating the core of LHD with the folded waveguide. The core heating can be accomplished by adding a minority hydrogen ion species in a helium majority plasma facilitating the mode-transformation of CESICW into IBW at the ion-ion hybrid resonance.

  3. A preliminary study of the electron cyclotron resonance ion source for the RAON injector

    NASA Astrophysics Data System (ADS)

    Hong, I. S.; Kim, Y.; Choi, S. J.; Heo, J. I.; Jin, H. C.; Park, B. S.

    2016-09-01

    We have built and tested an electron cyclotron resonance (ECR) ion source for the Rare Isotope Accelerator of Newness (RAON) injector. Fully superconducting magnets were developed for the ECR ion source. First, an oxygen plasma was ignited, and a preliminary highly-charged oxygen beam was extracted. Next, a 100 μA beam current of oxygen 5+ was extracted when a 1 kW microwave power was injected using a 28 GHz gyrotron. Finally, an off-site test facility was proposed to test the components of the injector by using heavy-ion beams generated by the ECR ion source.

  4. Observation of ion-cyclotron-frequency mode-conversion flow drive in tokamak plasmas.

    PubMed

    Lin, Y; Rice, J E; Wukitch, S J; Greenwald, M J; Hubbard, A E; Ince-Cushman, A; Lin, L; Porkolab, M; Reinke, M L; Tsujii, N

    2008-12-05

    Strong toroidal flow (Vphi) and poloidal flow (Vtheta) have been observed in D-3He plasmas with ion cyclotron range of frequencies (ICRF) mode-conversion (MC) heating on the Alcator C-Mod tokamak. The toroidal flow scales with the rf power Prf (up to 30 km/s per MW), and is significantly larger than that in ICRF minority heated plasmas at the same rf power or stored energy. The central Vphi responds to Prf faster than the outer regions, and the Vphi(r) profile is broadly peaked for r/a < or =0.5. Localized (0.3 < or = r/a < or =0.5) Vtheta appears when Prf > or =1.5 MW and increases with power (up to 0.7 km/s per MW). The experimental evidence together with numerical wave modeling suggests a local flow drive source due to the interaction between the MC ion cyclotron wave and 3He ions.

  5. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    PubMed

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  6. Ion cyclotron instability at Io: Hybrid simulation results compared to in situ observations

    NASA Astrophysics Data System (ADS)

    Šebek, Ondřej; Trávníček, Pavel M.; Walker, Raymond J.; Hellinger, Petr

    2016-08-01

    We present analysis of global three-dimensional hybrid simulations of Io's interaction with Jovian magnetospheric plasma. We apply a single-species model with simplified neutral-plasma chemistry and downscale Io in order to resolve the ion kinetic scales. We consider charge exchange, electron impact ionization, and photoionization by using variable rates of these processes to investigate their impact. Our results are in a good qualitative agreement with the in situ magnetic field measurements for five Galileo flybys around Io. The hybrid model describes ion kinetics self-consistently. This allows us to assess the distribution of temperature anisotropies around Io and thereby determine the possible triggering mechanism for waves observed near Io. We compare simulated dynamic spectra of magnetic fluctuations with in situ observations made by Galileo. Our results are consistent with both the spatial distribution and local amplitude of magnetic fluctuations found in the observations. Cyclotron waves, triggered probably by the growth of ion cyclotron instability, are observed mainly downstream of Io and on the flanks in regions farther from Io where the ion pickup rate is relatively low. Growth of the ion cyclotron instability is governed mainly by the charge exchange rate.

  7. Observations of rotation in JET plasmas with electron heating by ion cyclotron resonance heating

    NASA Astrophysics Data System (ADS)

    Hellsten, T.; Johnson, T. J.; Van Eester, D.; Lerche, E.; Lin, Y.; Mayoral, M.-L.; Ongena, J.; Calabro, G.; Crombé, K.; Frigione, D.; Giroud, C.; Lennholm, M.; Mantica, P.; Nave, M. F. F.; Naulin, V.; Sozzi, C.; Studholme, W.; Tala, T.; Versloot, T.; Contributors, JET-EFDA

    2012-07-01

    The rotation of L-mode plasmas in the JET tokamak heated by waves in the ion cyclotron range of frequencies (ICRF) damped on electrons, is reported. The plasma in the core is found to rotate in the counter-current direction with a high shear and in the outer part of the plasma with an almost constant angular rotation. The core rotation is stronger in magnitude than observed for scenarios with dominating ion cyclotron absorption. Two scenarios are considered: the inverted mode conversion scenarios and heating at the second harmonic 3He cyclotron resonance in H plasmas. In the latter case, electron absorption of the fast magnetosonic wave by transit time magnetic pumping and electron Landau damping (TTMP/ELD) is the dominating absorption mechanism. Inverted mode conversion is done in (3He)-H plasmas where the mode converted waves are essentially absorbed by electron Landau damping. Similar rotation profiles are seen when heating at the second harmonic cyclotron frequency of 3He and with mode conversion at high concentrations of 3He. The magnitude of the counter-rotation is found to decrease with an increasing plasma current. The correlation of the rotation with the electron temperature is better than with coupled power, indicating that for these types of discharges the dominating mechanism for the rotation is related to indirect effects of electron heat transport, rather than to direct effects of ICRF heating. There is no conclusive evidence that mode conversion in itself affects rotation for these discharges.

  8. ENSEMBLE SIMULATIONS OF PROTON HEATING IN THE SOLAR WIND VIA TURBULENCE AND ION CYCLOTRON RESONANCE

    SciTech Connect

    Cranmer, Steven R.

    2014-07-01

    Protons in the solar corona and heliosphere exhibit anisotropic velocity distributions, violation of magnetic moment conservation, and a general lack of thermal equilibrium with the other particle species. There is no agreement about the identity of the physical processes that energize non-Maxwellian protons in the solar wind, but a traditional favorite has been the dissipation of ion cyclotron resonant Alfvén waves. This paper presents kinetic models of how ion cyclotron waves heat protons on their journey from the corona to interplanetary space. It also derives a wide range of new solutions for the relevant dispersion relations, marginal stability boundaries, and nonresonant velocity-space diffusion rates. A phenomenological model containing both cyclotron damping and turbulent cascade is constructed to explain the suppression of proton heating at low alpha-proton differential flow speeds. These effects are implemented in a large-scale model of proton thermal evolution from the corona to 1 AU. A Monte Carlo ensemble of realistic wind speeds, densities, magnetic field strengths, and heating rates produces a filled region of parameter space (in a plane described by the parallel plasma beta and the proton temperature anisotropy ratio) similar to what is measured. The high-beta edges of this filled region are governed by plasma instabilities and strong heating rates. The low-beta edges correspond to weaker proton heating and a range of relative contributions from cyclotron resonance. On balance, the models are consistent with other studies that find only a small fraction of the turbulent power spectrum needs to consist of ion cyclotron waves.

  9. Observations of single-pass ion cyclotron heating in a trans-sonic flowing plasma

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Díaz, F. R. Chang; Squire, J. P.; Glover, T. W.; Carter, M. D.; McCaskill, G. E.; Longmier, B. W.; Brukardt, M. S.; Chancery, W. J.; Jacobson, V. T.

    2010-04-01

    The VAriable Specific Impulse Magnetoplasma Rocket (VASIMR®) is a high power electric spacecraft propulsion system, capable of Isp/thrust modulation at constant power [F. R. Chang Díaz et al., Proceedings of the 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 8-11 Jan. 2001]. The VASIMR® uses a helicon discharge to generate plasma. This plasma is energized by an rf booster stage that uses left hand polarized slow mode waves launched from the high field side of the ion cyclotron resonance. In the experiments reported in this paper, the booster uses 2-4 MHz waves with up to 50 kW of power. This process is similar to the ion cyclotron heating (ICH) in tokamaks, but in the VASIMR® the ions only pass through the resonance region once. The rapid absorption of ion cyclotron waves has been predicted in recent theoretical studies. These theoretical predictions have been supported with several independent measurements in this paper. The single-pass ICH produced a substantial increase in ion velocity. Pitch angle distribution studies showed that this increase took place in the resonance region where the ion cyclotron frequency was roughly equal to the frequency on the injected rf waves. Downstream of the resonance region the perpendicular velocity boost should be converted to axial flow velocity through the conservation of the first adiabatic invariant as the magnetic field decreases in the exhaust region of the VASIMR®. This paper will review all of the single-pass ICH ion acceleration data obtained using deuterium in the first VASIMR® physics demonstrator machine, the VX-50. During these experiments, the available power to the helicon ionization stage increased from 3 to 20+ kW. The increased plasma density produced increased plasma loading of the ICH coupler. Starting with an initial demonstration of single-pass ion cyclotron acceleration, the experiments demonstrate significant improvements in coupler efficiency and in ion heating efficiency. In

  10. Ion cyclotron and spin-flip emissions from fusion products in tokamaks

    SciTech Connect

    Arunasalam, V.; Greene, G.J.; Young, K.M.

    1993-02-01

    Power emission by fusion products of tokamak plasmas in their ion cyclotron range of frequencies (ICRF) and at their spin-flip resonance frequency is calculated for some specific model fusion product velocity-space distribution functions. The background plasma of say deuterium (D) is assumed to be in equilibrium with a Maxwellian distribution both for the electrons and ions. The fusion product velocity distributions analyzed here are: (1) A monoenergetic velocity space ring distribution. (2) A monoenergetic velocity space spherical shell distribution. (3) An anisotropic Maxwellian distribution with T {perpendicular} {ne} T{parallel}and with appreciable drift velocity along the confining magnetic field. Single ``dressed`` test particle spontaneous emission calculations are presented first and the radiation temperature for ion cyclotron emission (ICE) is analyzed both for black-body emission and nonequilibrium conditions. Thresholds for instability and overstability conditions are then examined and quasilinear and nonlinear theories of the electromagnetic ion cyclotron modes are discussed. Distinctions between ``kinetic or causal instabilities`` and ``hydrodynamic instabilities`` are drawn and some numerical estimates are presented for typical tokamak parameters. Semiquantitative remarks are offered on wave accessibility, mode conversion, and parametric decay instabilities as possible for spatially localized ICE. Calculations are carried out both for k{parallel} = 0 for k{parallel} {ne} 0. The effects of the temperature anisotropy and large drift velocities in the parallel direction are also examined. Finally, proton spin-flip resonance emission and absorption calculations are also presented both for thermal equilibrium conditions and for an ``inverted`` population of states.

  11. Ion cyclotron and spin-flip emissions from fusion products in tokamaks

    SciTech Connect

    Arunasalam, V.; Greene, G.J.; Young, K.M.

    1993-02-01

    Power emission by fusion products of tokamak plasmas in their ion cyclotron range of frequencies (ICRF) and at their spin-flip resonance frequency is calculated for some specific model fusion product velocity-space distribution functions. The background plasma of say deuterium (D) is assumed to be in equilibrium with a Maxwellian distribution both for the electrons and ions. The fusion product velocity distributions analyzed here are: (1) A monoenergetic velocity space ring distribution. (2) A monoenergetic velocity space spherical shell distribution. (3) An anisotropic Maxwellian distribution with T [perpendicular] [ne] T[parallel]and with appreciable drift velocity along the confining magnetic field. Single dressed'' test particle spontaneous emission calculations are presented first and the radiation temperature for ion cyclotron emission (ICE) is analyzed both for black-body emission and nonequilibrium conditions. Thresholds for instability and overstability conditions are then examined and quasilinear and nonlinear theories of the electromagnetic ion cyclotron modes are discussed. Distinctions between kinetic or causal instabilities'' and hydrodynamic instabilities'' are drawn and some numerical estimates are presented for typical tokamak parameters. Semiquantitative remarks are offered on wave accessibility, mode conversion, and parametric decay instabilities as possible for spatially localized ICE. Calculations are carried out both for k[parallel] = 0 for k[parallel] [ne] 0. The effects of the temperature anisotropy and large drift velocities in the parallel direction are also examined. Finally, proton spin-flip resonance emission and absorption calculations are also presented both for thermal equilibrium conditions and for an inverted'' population of states.

  12. Progress in theory and simulation of ion cyclotron emission from magnetic confinement fusion plasmas

    NASA Astrophysics Data System (ADS)

    Dendy, Richard; Chapman, Ben; Chapman, Sandra; Cook, James; Reman, Bernard; McClements, Ken; Carbajal, Leopoldo

    2016-10-01

    Suprathermal ion cyclotron emission (ICE) is detected from all large tokamak and stellarator plasmas. Its frequency spectrum has narrow peaks at sequential cyclotron harmonics of the energetic ion population (fusion-born or neutral beam-injected) at the outer edge of the plasma. ICE was the first collective radiative instability driven by confined fusion-born ions observed in deuterium-tritium plasmas in JET and TFTR, and the magnetoacoustic cyclotron instability is the most likely emission mechanism. Contemporary ICE measurements are taken at very high sampling rates from the LHD stellarator and from the conventional aspect ratio KSTAR tokamak. A correspondingly advanced modelling capability for the ICE emission mechanism has been developed using 1D3V PIC and hybrid-PIC codes, supplemented by analytical theory. These kinetic codes simulate the self-consistent full orbit dynamics of energetic and thermal ions, together with the electric and magnetic fields and the electrons. We report recent progress in theory and simulation that addresses: the scaling of ICE intensity with energetic particle density; the transition between super-Alfvénic and sub-Alfvénic regimes for the collectively radiating particles; and the rapid time evolution that is seen for some ICE measurements. This work was supported in part by the RCUK Energy Programme [Grant Number EP/I501045] and by Euratom.

  13. Performance Evaluation of a Dual Linear Ion Trap-Fourier Transform Ion Cyclotron Resonance Mass Spectrometer for Proteomics Research

    PubMed Central

    Weisbrod, Chad R.; Hoopmann, Michael R.; Senko, Michael W.; Bruce, James E.

    2014-01-01

    A novel dual cell linear ion trap Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) and its performance characteristics are reported. A linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer has been modified to incorporate a LTQ-Velos mass spectrometer. This modified instrument features efficient ion accumulation and fast MS/MS acquisition capabilities of dual cell linear RF ion trap instruments coupled to the high mass accuracy, resolution, and dynamic range of a FT-ICR for improved proteomic coverage. The ion accumulation efficiency is demonstrated to be an order of magnitude greater than that observed with LTQ-FT Ultra instrumentation. The proteome coverage with yeast was shown to increase over the previous instrument generation by 50% (100% increase on the peptide level). In addition, many lower abundance level yeast proteins were only detected with this modified instrument. This novel configuration also enables beam type CID fragmentation using a dual cell RF ion trap mass spectrometer. This technique involves accelerating ions between traps while applying an elevated DC offset to one of the traps to accelerate ions and induce fragmentation. This instrument design may serve as a useful option for labs currently considering purchasing new instrumentation or upgrading existing instruments. PMID:23590889

  14. A gas-jet transport and catcher technique for on-line production of radioactive ion beams using an electron cyclotron resonance ion-source.

    PubMed

    Naik, V; Chakrabarti, A; Bhattacharjee, M; Karmakar, P; Bandyopadhyay, A; Bhattacharjee, S; Dechoudhury, S; Mondal, M; Pandey, H K; Lavanyakumar, D; Mandi, T K; Dutta, D P; Kundu Roy, T; Bhowmick, D; Sanyal, D; Srivastava, S C L; Ray, A; Ali, Md S

    2013-03-01

    Radioactive ion beams (RIB) have been produced on-line, using a gas-jet recoil transport coupled Electron Cyclotron Resonance (ECR) ion-source at the VECC-RIB facility. Radioactive atoms∕molecules carried through the gas-jet were stopped in a catcher placed inside the ECR plasma chamber. A skimmer has been used to remove bulk of the carrier gas at the ECR entrance. The diffusion of atoms∕molecules through the catcher has been verified off-line using stable isotopes and on-line through transmission of radioactive reaction products. Beams of (14)O (71 s), (42)K (12.4 h), (43)K (22.2 h), and (41)Ar (1.8 h) have been produced by bombarding nitrogen and argon gas targets with proton and alpha particle beams from the K130 cyclotron at VECC. Typical measured intensity of RIB at the separator focal plane is found to be a few times 10(3) particles per second (pps). About 3.2 × 10(3) pps of 1.4 MeV (14)O RIB has been measured after acceleration through a radiofrequency quadrupole linac. The details of the gas-jet coupled ECR ion-source and RIB production experiments are presented along with the plans for the future.

  15. The third generation superconducting 28 GHz electron cyclotron resonance ion source VENUS (invited)

    SciTech Connect

    Lyneis, C.; Leitner, D.; Leitner, M.; Taylor, C.; Abbott, S.

    2010-02-15

    VENUS is a third generation electron cyclotron resonance (ECR) ion source, which incorporates a high field superconducting NbTi magnet structure, a 28 GHz gryotron microwave source and a state of the art closed cycle cryosystem. During the decade from initial concept to regular operation, it has demonstrated both the feasibility and the performance levels of this new generation of ECR ion sources and required innovation on magnet construction, plasma chamber design, and beam transport. In this paper, the development, performance, and major innovations are described as well as a look to the potential to construct a fourth generation ECR ion source.

  16. Bio-Nano ECRIS: An electron cyclotron resonance ion source for new materials production

    SciTech Connect

    Uchida, T.; Minezaki, H.; Tanaka, K.; Asaji, T.; Muramatsu, M.; Kitagawa, A.; Kato, Y.; Biri, S.

    2010-02-15

    We developed an electron cyclotron resonance ion source (ECRIS) for new materials production on nanoscale. Our main target is the endohedral fullerenes, which have potential in medical care, biotechnology, and nanotechnology. In particular, iron-encapsulated fullerene can be applied as a contrast material for magnetic resonance imaging or microwave heat therapy. Thus, our new ECRIS is named the Bio-Nano ECRIS. In this article, the recent progress of the development of the Bio-Nano ECRIS is reported: (i) iron ion beam production using induction heating oven and (ii) optimization of singly charged C{sub 60} ion beam production.

  17. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, G.D.

    1998-11-24

    Microwave injection methods are disclosed for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant ``volume`` ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources. 5 figs.

  18. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, Gerald D.

    1998-01-01

    Microwave injection methods for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant "volume" ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources.

  19. Bio-Nano ECRIS: An electron cyclotron resonance ion source for new materials productiona)

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Minezaki, H.; Tanaka, K.; Muramatsu, M.; Asaji, T.; Kato, Y.; Kitagawa, A.; Biri, S.; Yoshida, Y.

    2010-02-01

    We developed an electron cyclotron resonance ion source (ECRIS) for new materials production on nanoscale. Our main target is the endohedral fullerenes, which have potential in medical care, biotechnology, and nanotechnology. In particular, iron-encapsulated fullerene can be applied as a contrast material for magnetic resonance imaging or microwave heat therapy. Thus, our new ECRIS is named the Bio-Nano ECRIS. In this article, the recent progress of the development of the Bio-Nano ECRIS is reported: (i) iron ion beam production using induction heating oven and (ii) optimization of singly charged C60 ion beam production.

  20. Ion cyclotron emission due to collective instability of fusion products and beam ions in TFTR and JET

    NASA Astrophysics Data System (ADS)

    Dendy, R. O.; McClements, K. G.; Lashmore-Davies, C. N.; Cottrell, G. A.; Majeski, R.; Cauffman, S.

    1995-12-01

    Ion cyclotron emission (ICE) has been observed from neutral beam heated TFTR, and JET tritium experiments at sequential cyclotron harmonics of both fusion products and beam ions. The emission originates from the outer midplane plasma, where fusion products and beam ions are likely to have a drifting ring-type velocity-space distribution that is anisotropic and sharply peaked. Fusion product driven ICE in both TFTR and JET can be attributed to the magnetoacoustic cyclotron instability, which involves the excitation of obliquely propagating waves on the fast Alfven/ion Bernstein branch at cyclotron harmonics of the fusion products. Differences between ICE observations in JET and TFTR appear to reflect the sensitivity of the instability growth rate to the ratio vbirth/cA where vbirth is the fusion product birth speed and cA is the local Alfven speed for fusion products in the outer midplane edge of TFTR supershots, vbirth < cA for alpha particles in the outer midplane edge of JET, the opposite inequality applies. If sub-Alfvenic fusion products are isotropic or have undergone even a moderate degree of thermalization, the magnetoacoustic instability cannot occur. In contrast, the super-Alfvenic alpha particles that are present in the outer midplane of JET can drive the magnetoacoustic cyclotron instability even if they are isotropic or have a relatively broad distribution of speeds. These conclusions may account for the observation that fusion product driven ICE in JET persists for longer than fusion product driven ICE in TFTR. Moreover, the time evolution of the maximum growth rate, obtained using the Sigmar model for the alpha particle distribution and TFTR data for the fusion product source rate, closely follows the observed time evolution of the ICE amplitude in TFTR supershot discharges. Other observed features of fusion product driven ICE that match the linear instability include the scaling with fusion product density, doublet splitting of spectral peaks, the

  1. Are Ring Current Ions Lost in Electromagnetic Ion Cyclotron Wave Dispersion Relation?

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by

  2. Effect of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by

  3. Filamental quenching of the current-driven ion-cyclotron instability

    NASA Technical Reports Server (NTRS)

    Cartier, S. L.; Dangelo, N.; Merlino, R. L.; Krumm, P. H.

    1985-01-01

    Since their discovery by D'Angelo and Motley (1962), ion-cyclotron waves have been an area of active research. Drummond and Rosenbluth (1962) have first conducted a theoretical analysis of the current-driven ion-cyclotron wave instability, taking into account a uniform, magnetized plasma, without magnetic shear, in which electrons drift along B field lines with the same drift velocity at all points in the plasma. Bakshi et al. (1983) have found conditions for which the instability is completely quenched. This phenomenon has been referred to as filamental quenching. The present investigation is concerned with a systematic test of the filamental quenching effect. It is found that filamental quenching operates at widths of the current channel comparable to the local Larmor radius, in agreement with the conclusions of Bakshi et al.

  4. On the excitation of cyclotron harmonic waves by newborn heavy ions

    NASA Technical Reports Server (NTRS)

    Brinca, Armando L.; Tsurutani, Bruce T.

    1989-01-01

    Wave measurements in planetary foreshocks and cometary environments show the sporadic occurrence of magnetic spectra with harmonic structure related to ion-cyclotron frequencies. Dilute populations of anisotropic and/or drifting charged particles can excite obliquely propagating modes with spacecraft frequencies close to the observed harmonics. Previous analyses of this generation mechanism are extended to drifting and nondrifting loss-cone-type distributions of heavy ions in a dense hydrogen magnetoplasma, characterizing the complex (real frequency and growth rate) dispersion, polarization, and compressibility of the unstable cyclotron harmonic waves. Solution of the full kinetic dispersion equation shows that it is possible to attain harmonic excitation, both in the drifting and nondrifting regimes. However, the bandwidth inherent to frequency Doppler shifts of obliquely propagating waves might preclude the observation of spectral structure in the spacecraft frame. The Giotto observations in the upstream region of comet Halley provide a reference to discuss the results.

  5. Origin of ion-cyclotron turbulence in the downward Birkeland current region

    SciTech Connect

    Basu, B.; Jasperse, J. R.; Lund, E. J.; Grossbard, N.

    2011-02-15

    Linear stability analysis of the electron velocity distributions, which are observed in the FAST satellite measurements in the downward Birkeland current region of the magnetosphere, is presented. The satellite-measured particle (electrons and protons) velocity distributions are fitted with analytic functions and the dispersion relation is derived in terms of the plasma dispersion functions associated with those distribution functions. Numerical solutions of the dispersion relation show that the bump-on-tail structure of the electron velocity distribution can excite electrostatic ion-cyclotron instabilities by the Landau resonance mechanism. Nonlinear evolution of these instabilities may explain the observed electrostatic ion-cyclotron turbulence in the Birkeland current region. Excitation of other types of instabilities by the fitted electron velocity distributions and their relevance are also discussed.

  6. Use of a krypton isotope for rapid ion changeover at the Lawrence Berkeley Laboratory 88-inch cyclotron

    NASA Technical Reports Server (NTRS)

    Soli, George A.; Nichols, Donald K.

    1989-01-01

    An isotope of krypton, Kr86, has been combined with a mix of Ar, Ne, and N ions at the electron cyclotron resonance (ECR) source, at the Lawrence Berkeley Laboratory cyclotron, to provide rapid ion changeover in Single Event Phenomena (SEP) testing. The new technique has been proved out successfully by a recent Jet Propulsion Laboratory (JPL) test in which it was found that there was no measurable contamination from other isotopes.

  7. INSTRUMENTS AND METHODS OF INVESTIGATION: Plasma isotope separation based on ion cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Dolgolenko, Dmitrii A.; Muromkin, Yurii A.

    2009-04-01

    Experiments that have been conducted in the USA, France, and Russia to investigate isotopically selective ion cyclotron resonance (ICR) as a tool for plasma isotope separation are analyzed. Because this method runs into difficulties at low values of the relative isotope mass difference ΔM/M, for some elements (for gadolinium, as an example) isotope separation still remains a problem. There are ways to solve it, however, as experimental results and theoretical calculations suggest.

  8. Note: Production of a mercury beam with an electron cyclotron resonance ion source

    SciTech Connect

    Vondrasek, R.; Pardo, R.; Scott, R.

    2013-11-15

    An electron cyclotron resonance ion source has been utilized to produce mercury beams with intensities of 4.5 eμA of {sup 202}Hg{sup 29+} and 3.0 eμA of {sup 202}Hg{sup 31+} from natural abundance mercury metal. The production technique relies on the evaporation of liquid mercury into the source plasma vacuum region and utilizes elemental mercury instead of a volatile organic compound as the neutral feed material.

  9. Note: Production of a mercury beam with an electron cyclotron resonance ion source.

    PubMed

    Vondrasek, R; Pardo, R; Scott, R

    2013-11-01

    An electron cyclotron resonance ion source has been utilized to produce mercury beams with intensities of 4.5 eμA of (202)Hg(29+) and 3.0 eμA of (202)Hg(31+) from natural abundance mercury metal. The production technique relies on the evaporation of liquid mercury into the source plasma vacuum region and utilizes elemental mercury instead of a volatile organic compound as the neutral feed material.

  10. An ICR study of ion-molecule reactions of PH(n)+ ions. [of importance to interstellar chemistry, using ion cyclotron resonance techniques

    NASA Technical Reports Server (NTRS)

    Thorne, L. R.; Anicich, V. G.; Huntress, W. T.

    1983-01-01

    The reactions of PH(n)+ ions (n = 0-3) were examined with a number of neutrals using ion-cyclotron-resonance techniques. The reactions examined have significance for the distribution of phosphorus in interstellar molecules. The results indicate that interstellar molecules containing the P-O bond are likely to be more abundant than those containing the P-H bond.

  11. Stability of plasmas sustained by ion cyclotron wave excitation in the central cell of the Tara tandem mirror

    NASA Astrophysics Data System (ADS)

    Golovato, S. N.; Brau, K.; Casey, J.; Gerver, M. J.; Horne, S.; Irby, J.; Kesner, J.; Lane, B.; Machuzak, J.; Myer, R.; Post, R. S.; Sevillano, E.; Wang, L.

    1989-04-01

    The stability of plasmas produced by radio-frequency heating in the ion cyclotron frequency range (ICRF) has been studied in the central cell of the Tara tandem mirror [Nucl. Fusion 22, 549 (1982); Plasma Physics and Controlled Nuclear Fusion Research 1986, Proceedings of the 11th International Conference, Kyoto (IAEA, Vienna, 1987), Vol. II, p. 251]. Ion cyclotron wave excitation by a slot antenna provided stability against macroscopic plasma motions in an axisymmetric configuration. The maintenance of macroscopic stability depended on the ICRF power, gas fueling rate, ion cyclotron resonance location, and ω/ωci at the antenna location. The ICRF ponderomotive force model is consistent with many of the observed stability features and predicts that the E+ component of the ion cyclotron wave was responsible for the stabilization. The Alfvén ion cyclotron microinstability was observed when the plasma β⊥ and anisotropy were sufficiently high. Magnetic probe measurements of the unstable mode identified it as an ion cyclotron wave and the instability threshold was within a factor of 2 of the theoretical value.

  12. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Delahaye, P.; Kutsaev, Sergey; Maunoury, L.

    2012-11-01

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a 252Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies of both gaseous and solid species including 14.7% for the radioactive species 143Ba27+. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for 23Na7+ and 17.9% for 39K10+ were obtained injecting stable Na+ and K+ beams from a surface ionization source.

  13. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source

    SciTech Connect

    Vondrasek, R.; Kutsaev, Sergey; Delahaye, P.; Maunoury, L.

    2012-11-15

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a {sup 252}Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies of both gaseous and solid species including 14.7% for the radioactive species {sup 143}Ba{sup 27+}. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for {sup 23}Na{sup 7+} and 17.9% for {sup 39}K{sup 10+} were obtained injecting stable Na{sup +} and K{sup +} beams from a surface ionization source.

  14. A revolutionary concept to improve the efficiency of ion cyclotron antennas

    SciTech Connect

    Milanesio, D. Maggiora, R.

    2014-06-15

    The successful design of an ion cyclotron (IC) antenna mainly relies on the capability of coupling high power to the plasma (MW), feature that is currently reached by allowing rather high voltages (tens of kV) on the unavoidable unmatched part of the feeding lines. This requirement is often responsible of arcs along the transmission lines and other unwanted phenomena, such as rectification discharges or hotspots, that considerably limit the usage of IC launchers. In this work, we suggest and describe a revolutionary approach based on high impedance surfaces, which allows to increase the antenna radiation efficiency and, hence, to highly reduce the imposed voltages to couple the same level of power to the plasma. High-impedance surfaces are periodic metallic structures (patches) displaced usually on top of a dielectric substrate and grounded by means of vertical posts usually embedded inside a dielectric, in a mushroom-like shape. In terms of working properties, high impedance surfaces are electrically thin in-phase reflectors, i.e., they present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. While the usual design of a high impedance surface requires the presence of a dielectric layer, some alternative solutions can be realised in vacuum, taking advantage of double layers of metallic patches. After an introductory part on the properties of high impedance surfaces, this work documents both their design by means of numerical codes and their implementation on a scaled mock-up.

  15. Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves

    SciTech Connect

    Zhang Yang; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Vincena, S.; Carter, T. A.; Gekelman, W.; Leneman, D.; Pribyl, P.

    2008-10-15

    The Doppler-shifted cyclotron resonance ({omega}-k{sub z}v{sub z}={omega}{sub f}) between fast ions and shear Alfven waves is experimentally investigated ({omega}, wave frequency; k{sub z}, axial wavenumber; v{sub z}, fast-ion axial speed; {omega}{sub f}, fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li{sup +} source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude {delta} B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8{omega}{sub ci}. Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.

  16. Toward a System-Based Approach to Electromagnetic Ion Cyclotron Waves in Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Gamayunov, K. V.; Engebretson, M. J.; Rassoul, H.

    2015-12-01

    We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz) is able to supply the level of seed fluctuations that guarantees growth of EMIC waves up to an observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze magnetic field data from the Polar and Van Allen Probes spacecraft to test this nonlinear mechanism. We restrict our analysis to magnetic spectra only. We do not analyze the third-order moment for total energy of the magnetic and velocity fluctuations, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our data analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability. Keywords: nonlinear energy cascade, ultra low frequency waves, electromagnetic ion cyclotron waves, seed fluctuationsAcknowledgments: This paper is based upon work

  17. Ion-cyclotron instability in current-carrying Lorentzian (kappa) and Maxwellian plasmas with anisotropic temperatures: A comparative study

    SciTech Connect

    Basu, B.; Grossbard, N. J.

    2011-09-15

    Current-driven electrostatic ion-cyclotron instability has so far been studied for Maxwellian plasma with isotropic and anisotropic temperatures. Since satellite-measured particle velocity distributions in space are often better modeled by the generalized Lorentzian (kappa) distributions and since temperature anisotropy is quite common in space plasmas, theoretical analysis of the current-driven, electrostatic ion-cyclotron instability is carried out in this paper for electron-proton plasma with anisotropic temperatures, where the particle parallel velocity distributions are modeled by kappa distributions and the perpendicular velocity distributions are modeled by Maxwellian distributions. Stability properties of the excited ion cyclotron modes and, in particular, their dependence on electron to ion temperature ratio and ion temperature anisotropy are presented in more detail. For comparison, the corresponding results for bi-Maxwellian plasma are also presented. Although the stability properties of the ion cyclotron modes in the two types of plasmas are qualitatively similar, significant quantitative differences can arise depending on the values of {kappa}{sub e} and {kappa}{sub i}. The comparative study is based on the numerical solutions of the respective linear dispersion relations. Quasilinear estimates of the resonant ion heating rates due to ion-cyclotron turbulence in the two types of plasma are also presented for comparison.

  18. Demonstration of effective control of fast-ion-stabilized sawteeth by electron-cyclotron current drive.

    PubMed

    Lennholm, M; Eriksson, L-G; Turco, F; Bouquey, F; Darbos, C; Dumont, R; Giruzzi, G; Jung, M; Lambert, R; Magne, R; Molina, D; Moreau, P; Rimini, F; Segui, J-L; Song, S; Traisnel, E

    2009-03-20

    In a tokamak plasma, sawtooth oscillations in the central temperature, caused by a magnetohydrodynamic instability, can be partially stabilized by fast ions. The resulting less frequent sawtooth crashes can trigger unwanted magnetohydrodynamic activity. This Letter reports on experiments showing that modest electron-cyclotron current drive power, with the deposition positioned by feedback control of the injection angle, can reliably shorten the sawtooth period in the presence of ions with energies >or=0.5 MeV. Certain surprising elements of the results are evaluated qualitatively in terms of existing theory.

  19. Design of a new electron cyclotron resonance ion source at Oshima National College of Maritime Technology

    SciTech Connect

    Asaji, T. Hirabara, N.; Izumihara, T.; Nakamizu, T.; Ohba, T.; Nakamura, T.; Furuse, M.; Hitobo, T.; Kato, Y.

    2014-02-15

    A new electron cyclotron resonance ion/plasma source has been designed and will be built at Oshima National College of Maritime Technology by early 2014. We have developed an ion source that allows the control of the plasma parameters over a wide range of electron temperatures for material research. A minimum-B magnetic field composed of axial mirror fields and radial cusp fields was designed using mainly Nd-Fe-B permanent magnets. The axial magnetic field can be varied by three solenoid coils. The apparatus has 2.45 GHz magnetron and 2.5–6.0 GHz solid-state microwave sources.

  20. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    SciTech Connect

    Asaji, T. Ohba, T.; Uchida, T.; Yoshida, Y.; Minezaki, H.; Ishihara, S.; Racz, R.; Biri, S.; Kato, Y.

    2014-02-15

    A synthesis technology of endohedral fullerenes such as Fe@C{sub 60} has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C{sub 60} was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  1. Development of DRAGON electron cyclotron resonance ion source at Institute of Modern Physics.

    PubMed

    Lu, W; Xie, D Z; Zhang, X Z; Xiong, B; Ruan, L; Sha, S; Zhang, W H; Cao, Y; Lin, S H; Guo, J W; Fang, X; Guo, X H; Li, X X; Ma, H Y; Yang, Y; Wu, Q; Zhao, H Y; Ma, B H; Wang, H; Zhu, Y H; Feng, Y C; Li, J Y; Li, J Q; Sun, L T; Zhao, H W

    2012-02-01

    A new room temperature electron cyclotron resonance (ECR) ion source, DRAGON, is under construction at IMP. DRAGON is designed to operate at microwaves of frequencies of 14.5-18 GHz. Its axial solenoid coils are cooled with evaporative medium to provide an axial magnetic mirror field of 2.5 T at the injection and 1.4 T at the extraction, respectively. In comparison to other conventional room temperature ECR ion sources, DRAGON has so far the largest bore plasma chamber of inner diameter of 126 mm with maximum radial fields of 1.4-1.5 T produced by a non-Halbach permanent sextupole magnet.

  2. Development of Electron Cyclotron Resonance Ion Source for Synthesis of Endohedral Metallofullerenes

    SciTech Connect

    Tanaka, K.; Muramatsu, M.; Uchida, T.; Hanajiri, T.; Yoshida, Y.; Biri, S.; Kitagawa, A.; Kato, Y.

    2008-11-03

    A new electron cyclotron resonance ion source (ECRIS) has been constructed for synthesis of endohedral metallofullerenes. The main purpose of the ion source is to produce new biological and medical materials. The design is based on ECRIS for production of multicharged ion beams with a traditional minimum-B magnetic field. An 8-10 GHz traveling wave tube (TWT) amplifier and a 2.45 GHz magnetron have been applied as microwave sources. Fullerene and metal vapor are introduced with a filament heating micro-oven and an induction heating oven, respectively. In preliminary ion-extraction test, Ar{sup +} is 54 {mu}A. Many broken fullerenes such as C{sub 58} and C{sub 56} are observed in fullerene ion beams.

  3. Status of the pulsed magnetic field electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Mühle, C.; Ratzinger, U.; Bleuel, W.; Jöst, G.; Leible, K.; Schennach, S.; Wolf, B. H.

    1994-04-01

    Synchrotrons like the heavy-ion synchrotron SIS at GSI need an efficient low duty cycle injector (typical 1-pulse/s and 200-μs pulse length). To improve the peak current, an electron cyclotron resonance (ECR) ion source has been designed using a pulsed magnetic field (PuMa) to force ion extraction. We replaced the hexapole of a 10-GHz Minimafios ECR ion source by a vacuum chamber containing a water-cooled bilayered solenoid coil and a decapole permanent magnetic structure. A pulse line feeds the solenoid with a 250-μs pulse which increases the magnetic field in the minimum B region by 0.3 T. This process opens the magnetic bottle along the beam axis resulting in an extracted ion pulse. First tests of the PuMa ECR configuration in cw and pulsed operation are presented and analyzed.

  4. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Johnson, T.; Dumont, R.; Eriksson, J.; Eriksson, L.-G.; Giacomelli, L.; Girardo, J.-B.; Hellsten, T.; Khilkevitch, E.; Kiptily, V. G.; Koskela, T.; Mantsinen, M.; Nocente, M.; Salewski, M.; Sharapov, S. E.; Shevelev, A. E.; Contributors, JET

    2016-11-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast ion diagnostics, showing an overall good agreement. Finally, a sawtooth activity for these experiments has been observed and interpreted using SPOT/RFOF simulations in the framework of Porcelli’s theoretical model, where NBI+ICRH accelerated ions are found to have a strong stabilizing effect, leading to monster sawteeth.

  5. New tandem type ion source based on electron cyclotron resonance for universal source of synthesized ion beams

    SciTech Connect

    Kato, Yushi Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Nishiokada, Takuya; Sato, Fuminobu; Iida, Toshiyuki

    2014-02-15

    A new tandem type source has been constructed on the basis of electron cyclotron resonance (ECR) plasma for producing synthesized ion beams. We investigate feasibility and hope to realize the device which has wide range operation window in a single device to produce many kinds of ion beams based on ECR ion source (ECRIS). It is considered that ECR plasmas are necessary to be available to individual operations with different plasma parameters. Both of analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas. We describe construction of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source.

  6. New tandem type ion source based on electron cyclotron resonance for universal source of synthesized ion beams.

    PubMed

    Kato, Yushi; Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Nishiokada, Takuya; Sato, Fuminobu; Iida, Toshiyuki

    2014-02-01

    A new tandem type source has been constructed on the basis of electron cyclotron resonance (ECR) plasma for producing synthesized ion beams. We investigate feasibility and hope to realize the device which has wide range operation window in a single device to produce many kinds of ion beams based on ECR ion source (ECRIS). It is considered that ECR plasmas are necessary to be available to individual operations with different plasma parameters. Both of analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas. We describe construction of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source.

  7. Cyclotron mode frequencies and resonant absorption in multi-species ion plasmas

    SciTech Connect

    Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.

    2015-05-15

    Cyclotron mode frequencies are studied on trapped rigid-rotor multi-species ion plasmas. Collective effects and radial electric fields shift the mode frequencies away from the “bare” cyclotron frequencies 2πF{sub c}{sup (s)}≡(q{sub s}B/M{sub s}c) for each species s. These frequency shifts are measured on the distinct cyclotron modes (m=0,1, and 2) with cos(mθ) azimuthal dependence. We find that for radially uniform plasmas the frequency shifts corroborate a simple theory expression, in which collective effects enter only through the E × B rotation frequency f{sub E} and the species fraction δ{sub s}. The m = 1 center-of-mass mode is in agreement with a simple “clump” model. Additionally, ultra-cold ion plasmas exhibit centrifugal separation by mass, and additional frequency shifts are observed, in agreement with a more general theory.

  8. Wave Heating in Ion Cyclotron Ranges of Frequencies in RT-1

    NASA Astrophysics Data System (ADS)

    Nishiura, M.; Yoshida, Z.; Yano, Y.; Kawazura, Y.; Mushiake, T.; Saitoh, H.; Yamasaki, M.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2015-11-01

    The magnetosphere plasma device RT-1 has been developed for the studies on magnetosphere and advanced fusion plasmas. A levitated superconducting coil produces magnetic dipole fields that realize a high confinement state. The electron cyclotron resonance heating (ECRH) with 8.2 GHz and 50 kW produces the plasmas with hot electrons in a few ten keV range. We reported that the local electron beta exceeded 1 in RT-1 plasmas. In such situation, the ions still remain cold at a few ten eV. Heating ions is expected to access high ion beta state and to improve the plasma confinement theoretically. Therefore the ion cyclotron range of frequencies (ICRF) heating with 2-4 MHz and 10 kW is being prepared in RT-1. Based on the results of the TASK-WF2 code, the ∩ shape loop antenna was designed for a slow wave excitation, and was implemented in the RT-1. In the ICRF heating experiments, a base plasma was sustained by ECRH. We observed the clear increase in diamagnetic signals and impurity ion temperature (CIII) in helium plasmas at the neutral gas pressure of 3 mPa, if the ICRF power of 10 kW is comparable to the ECRH one. This result is the first time in a magnetosphere plasma device. The results related to the ICRF heating will be presented in detail. JSPS KAKENHI Grant Nos 23224014 and 24360384.

  9. Ion cyclotron range of frequencies heating of plasma with small impurity production

    DOEpatents

    Ohkawa, Tihiro

    1987-01-01

    Plasma including plasma ions is magnetically confined by a magnetic field. The plasma has a defined outer surface and is intersected by resonance surfaces of respective common ion cyclotron frequency of a predetermined species of plasma ions moving in the magnetic field. A radio frequency source provides radio frequency power at a radio frequency corresponding to the ion cyclotron frequency of the predetermined species of plasma ions moving in the field at a respective said resonance surface. RF launchers coupled to the radio frequency source radiate radio frequency energy at the resonance frequency onto the respective resonance surface within the plasma from a plurality of locations located outside the plasma at such respective distances from the intersections of the respective resonance surface and the defined outer surface and at such relative phases that the resulting interference pattern provides substantially null net radio frequency energy over regions near and including substantial portions of the intersections relative to the radio frequency energy provided thereby at other portions of the respective resonance surface within the plasma.

  10. Potential of ion cyclotron resonance frequency current drive via fast waves in DEMO

    NASA Astrophysics Data System (ADS)

    Kazakov, Ye O.; Van Eester, D.; Wauters, T.; Lerche, E.; Ongena, J.

    2015-02-01

    For the continuous operation of future tokamak-reactors like DEMO, non-inductively driven toroidal plasma current is needed. Bootstrap current, due to the pressure gradient, and current driven by auxiliary heating systems are currently considered as the two main options. This paper addresses the current drive (CD) potential of the ion cyclotron resonance frequency (ICRF) heating system in DEMO-like plasmas. Fast wave CD scenarios are evaluated for both the standard midplane launch and an alternative case of exciting the waves from the top of the machine. Optimal ICRF frequencies and parallel wave numbers are identified to maximize the CD efficiency. Limitations of the high frequency ICRF CD operation are discussed. A simplified analytical method to estimate the fast wave CD efficiency is presented, complemented with the discussion of its dependencies on plasma parameters. The calculated CD efficiency for the ICRF system is shown to be similar to those for the negative neutral beam injection and electron cyclotron resonance heating.

  11. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics

    NASA Astrophysics Data System (ADS)

    Lu, W.; Sun, L. T.; Qian, C.; Guo, J. W.; Fang, X.; Feng, Y. C.; Yang, Y.; Ma, H. Y.; Zhang, X. Z.; Ma, B. H.; Xiong, B.; Guo, S. Q.; Ruan, L.; Zhao, H. W.

    2015-04-01

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months' commissioning, some outstanding results have been achieved, such as 1.97 emA of O6+, 1.7 emA of Ar8+, 1.07 emA of Ar9+, and 118 euA of Bi28+. The source has also successfully delivered O5+ and Ar8+ ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  12. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics

    SciTech Connect

    Lu, W. Sun, L. T.; Qian, C.; Feng, Y. C.; Ma, H. Y.; Zhang, X. Z.; Ma, B. H.; Zhao, H. W.; Guo, J. W.; Fang, X.; Yang, Y.; Xiong, B.; Guo, S. Q.; Ruan, L.

    2015-04-15

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months’ commissioning, some outstanding results have been achieved, such as 1.97 emA of O{sup 6+}, 1.7 emA of Ar{sup 8+}, 1.07 emA of Ar{sup 9+}, and 118 euA of Bi{sup 28+}. The source has also successfully delivered O{sup 5+} and Ar{sup 8+} ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  13. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics.

    PubMed

    Lu, W; Sun, L T; Qian, C; Guo, J W; Fang, X; Feng, Y C; Yang, Y; Ma, H Y; Zhang, X Z; Ma, B H; Xiong, B; Guo, S Q; Ruan, L; Zhao, H W

    2015-04-01

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months' commissioning, some outstanding results have been achieved, such as 1.97 emA of O(6+), 1.7 emA of Ar(8+), 1.07 emA of Ar(9+), and 118 euA of Bi(28+). The source has also successfully delivered O(5+) and Ar(8+) ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  14. Diagnostics of a charge breeder electron cyclotron resonance ion source helium plasma with the injection of 23Na1+ ions

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Koivisto, H.; Galatà, A.; Angot, J.; Lamy, T.; Thuillier, T.; Delahaye, P.; Maunoury, L.; Mascali, D.; Neri, L.

    2016-05-01

    This work describes the utilization of an injected 23Na1+ ion beam as a diagnostics of the helium plasma of a charge breeder electron cyclotron resonance ion source. The obtained data allows estimating the upper limit for the ion-ion collision mean-free path of the incident sodium ions, the lower limit of ion-ion collision frequencies for all charge states of the sodium ions and the lower limit of the helium plasma density. The ion-ion collision frequencies of high charge state ions are shown to be at least on the order of 1-10 MHz and the plasma density is estimated to be on the order of 1011 cm-3 or higher. The experimental results are compared to simulations of the 23Na1+ capture into the helium plasma. The results indicate that the lower breeding efficiency of light ions in comparison to heavier elements is probably due to different capture efficiencies in which the in-flight ionization of the incident 1 + ions plays a vital role.

  15. Transverse acceleration of oxygen ions by electromagnetic ion cyclotron resonance with broad band left-hand polarized waves

    NASA Technical Reports Server (NTRS)

    Chang, T.; Crew, G. B.; Hershkowitz, N.; Jasperse, J. R.; Retterer, J. M.

    1986-01-01

    Central plasma sheet (CPS) ion conics are oxygen-dominated, with peak energies ranging from tens to hundreds of eV centered around pitch-angles between 115 and 130 degrees. Because of the lack of correlation between the CPS conics and the observed currents and/or electron beam-like structures, it is not likely that all of these conics are generated by interactions with electrostatic ion cyclotron waves or lower hybrid waves. Instead, it is suggested that the observed intense broad band electric field fluctuations in the frequency range between 0 and 100 Hz can be responsible for the transverse energization of the ions through cyclotron resonance heating with the left-hand polarized electromagnetic waves. This process is much more efficient for heating the oxygen ions than hydrogen ions, thus providing a plausible explanation of the oxygen dominance in CPS conics. Simple algebraic expressions are given from which estimates of conic energy and pitch angle can be easily calculated. This suggested mechanism can also provide some preheating of the oxygen ions in the boundary plasma sheet (BPS) where discrete aurorae form.

  16. First results of the 2.45 GHz Oshima electron cyclotron resonance ion source

    SciTech Connect

    Asaji, T.; Nakamura, T.; Furuse, M.; Hitobo, T.; Uchida, T.; Muramatsu, M.; Kato, Y.

    2016-02-15

    A new electron cyclotron resonance ion source has been constructed at Oshima College with a 2.45 GHz magnetron microwave source and permanent magnets employed as the main components. In addition, a solid-state power amplifier with a frequency range of 2.5–6.0 GHz was installed to study two-frequency plasma heating. Three solenoid coils were set up for adjusting the axial magnetic fields. Argon plasma generation and ion beam production have been conducted during the first year of operation. Ion current densities in the ECR plasma were measured using a biased disk. For 2.45 and 4.65 GHz two-frequency plasma heating, the ion density was approximately 1.5 times higher than that of 2.45 GHz single-frequency heating.

  17. Modelling of the ion cyclotron resonance heating scenarios for W7-X stellarator

    NASA Astrophysics Data System (ADS)

    Kazakov, Ye. O.; Van Eester, D.; Ongena, J.; Fülöp, T.

    2014-02-01

    The construction of the world largest superconducting stellarator Wendelstein 7-X (W7-X) has reached the final stage. One of the main scientific objectives of the W7-X project is to prove experimentally the predicted good confinement of high-energy ions. Ion cyclotron resonance heating (ICRH) system is considered to be installed in W7-X to serve as a localized source of high energy ions. ICRH heating scenarios relevant for hydrogen and deuterium phases of W7-X operation are summarized. The heating efficiency in (3He)-H plasmas is qualitatively analyzed using a modified version of the 1D TOMCAT code able to account for stellarator geometry. The minority ion absorption is shown to be maximized at the helium-3 concentration ˜2% for the typical plasma and ICRH parameters to be available during the initial phase of W7-X.

  18. Progress in the development of an H- ion source for cyclotrons

    NASA Astrophysics Data System (ADS)

    Etoh, H.; Aoki, Y.; Mitsubori, H.; Arakawa, Y.; Kato, T.; Sakuraba, J.; Mitsumoto, T.; Yajima, S.; Okumura, Y.

    2015-04-01

    A multi-cusp DC H- ion source has been developed for cyclotrons in medical use. Beam optics of the H- ion beam is studied using a 2D beam trajectory code. The simulation results are compared with the experimental results obtained in the Mark I source, which has produced up to 16 mA H- ion beams. The optimum extraction voltages show good agreement between the calculation and the experimental results. A new ion source, Mark II source, is designed to achieve the next goal of producing an H- beam of 20 mA. The magnetic field configurations and the plasma electrode design are optimized for Cs-seeded operation. Primary electron trajectory simulation shows that primary electrons are confined well and the magnetic filter prevents the primary electrons from entering into the extraction region.

  19. Progress in the development of an H{sup −} ion source for cyclotrons

    SciTech Connect

    Etoh, H. Aoki, Y.; Mitsubori, H.; Arakawa, Y.; Kato, T.; Sakuraba, J.; Mitsumoto, T.; Yajima, S.; Okumura, Y.

    2015-04-08

    A multi-cusp DC H{sup −} ion source has been developed for cyclotrons in medical use. Beam optics of the H{sup −} ion beam is studied using a 2D beam trajectory code. The simulation results are compared with the experimental results obtained in the Mark I source, which has produced up to 16 mA H{sup −} ion beams. The optimum extraction voltages show good agreement between the calculation and the experimental results. A new ion source, Mark II source, is designed to achieve the next goal of producing an H{sup −} beam of 20 mA. The magnetic field configurations and the plasma electrode design are optimized for Cs-seeded operation. Primary electron trajectory simulation shows that primary electrons are confined well and the magnetic filter prevents the primary electrons from entering into the extraction region.

  20. Control system renewal for efficient operation in RIKEN 18 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Uchiyama, A.; Ozeki, K.; Higurashi, Y.; Kidera, M.; Komiyama, M.; Nakagawa, T.

    2016-02-01

    A RIKEN 18 GHz electron cyclotron resonance ion source (18 GHz ECRIS) is used as an external ion source at the Radioactive Ion Beam Factory (RIBF) accelerator complex to produce an intense beam of medium-mass heavy ions (e.g., Ca and Ar). In most components that comprise the RIBF, the control systems (CSs) are integrated by the Experimental Physics and Industrial Control System (EPICS). On the other hand, a non-EPICS-based system has hardwired controllers, and it is used in the 18 GHz ECRIS CS as an independent system. In terms of efficient and effective operation, the 18 GHz ECRIS CS as well as the RIBF CS should be renewed using EPICS. Therefore, we constructed an 18 GHz ECRIS CS by using programmable logic controllers with embedded EPICS technology. In the renewed system, an operational log system was developed as a new feature, for supporting of the 18 GHz ECRIS operation.

  1. Control system renewal for efficient operation in RIKEN 18 GHz electron cyclotron resonance ion source

    SciTech Connect

    Uchiyama, A. Ozeki, K.; Higurashi, Y.; Kidera, M.; Komiyama, M.; Nakagawa, T.

    2016-02-15

    A RIKEN 18 GHz electron cyclotron resonance ion source (18 GHz ECRIS) is used as an external ion source at the Radioactive Ion Beam Factory (RIBF) accelerator complex to produce an intense beam of medium-mass heavy ions (e.g., Ca and Ar). In most components that comprise the RIBF, the control systems (CSs) are integrated by the Experimental Physics and Industrial Control System (EPICS). On the other hand, a non-EPICS-based system has hardwired controllers, and it is used in the 18 GHz ECRIS CS as an independent system. In terms of efficient and effective operation, the 18 GHz ECRIS CS as well as the RIBF CS should be renewed using EPICS. Therefore, we constructed an 18 GHz ECRIS CS by using programmable logic controllers with embedded EPICS technology. In the renewed system, an operational log system was developed as a new feature, for supporting of the 18 GHz ECRIS operation.

  2. The preliminary tests of the superconducting electron cyclotron resonance ion source DECRIS-SC2.

    PubMed

    Efremov, A; Bekhterev, V; Bogomolov, S; Drobin, V; Loginov, V; Lebedev, A; Yazvitsky, N; Yakovlev, B

    2012-02-01

    A new compact version of the "liquid He-free" superconducting ECR ion source, to be used as an injector of highly charged heavy ions for the MC-400 cyclotron, is designed and built at the Flerov Laboratory of Nuclear Reactions in collaboration with the Laboratory of High Energy Physics of JINR. The axial magnetic field of the source is created by the superconducting magnet and the NdFeB hexapole is used for the radial plasma confinement. The microwave frequency of 14 GHz is used for ECR plasma heating. During the first tests, the source shows a good enough performance for the production of medium charge state ions. In this paper, we will present the design parameters and the preliminary results with gaseous ions.

  3. Modelling of the ion cyclotron resonance heating scenarios for W7-X stellarator

    SciTech Connect

    Kazakov, Ye. O.

    2014-02-12

    The construction of the world largest superconducting stellarator Wendelstein 7-X (W7-X) has reached the final stage. One of the main scientific objectives of the W7-X project is to prove experimentally the predicted good confinement of high-energy ions. Ion cyclotron resonance heating (ICRH) system is considered to be installed in W7-X to serve as a localized source of high energy ions. ICRH heating scenarios relevant for hydrogen and deuterium phases of W7-X operation are summarized. The heating efficiency in ({sup 3}He)-H plasmas is qualitatively analyzed using a modified version of the 1D TOMCAT code able to account for stellarator geometry. The minority ion absorption is shown to be maximized at the helium-3 concentration ∼2% for the typical plasma and ICRH parameters to be available during the initial phase of W7-X.

  4. A Self-Consistent Model of the Interacting Ring Current Ions and Electromagnetic Ion Cyclotron Waves, Initial Results: Waves and Precipitating Fluxes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.

    2002-01-01

    Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. These equations for the ion phase space distribution function and for the wave power spectral density were solved on aglobal magnetospheric scale undernonsteady state conditions during the 2-5 May 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the ion cyclotron wave-active zones during extreme geomagnetic disturbances on 4 May 1998 are presented and discussed in detail.

  5. Development of a miniature microwave electron cyclotron resonance plasma ion thruster for exospheric micro-propulsion

    SciTech Connect

    Dey, Indranuj; Toyoda, Yuji; Yamamoto, Naoji; Nakashima, Hideki

    2015-12-15

    A miniature microwave electron cyclotron resonance plasma source [(discharge diameter)/(microwave cutoff diameter) < 0.3] has been developed at Kyushu University to be used as an ion thruster in micro-propulsion applications in the exosphere. The discharge source uses both radial and axial magnetostatic field confinement to facilitate electron cyclotron resonance and increase the electron dwell time in the volume, thereby enhancing plasma production efficiency. Performance of the ion thruster is studied at 3 microwave frequencies (1.2 GHz, 1.6 GHz, and 2.45 GHz), for low input powers (<15 W) and small xenon mass flow rates (<40 μg/s), by experimentally measuring the extracted ion beam current through a potential difference of ≅1200 V. The discharge geometry is found to operate most efficiently at an input microwave frequency of 1.6 GHz. At this frequency, for an input power of 8 W, and propellant (xenon) mass flow rate of 21 μg/s, 13.7 mA of ion beam current is obtained, equivalent to an calculated thrust of 0.74 mN.

  6. Development of a miniature microwave electron cyclotron resonance plasma ion thruster for exospheric micro-propulsion.

    PubMed

    Dey, Indranuj; Toyoda, Yuji; Yamamoto, Naoji; Nakashima, Hideki

    2015-12-01

    A miniature microwave electron cyclotron resonance plasma source [(discharge diameter)/(microwave cutoff diameter) < 0.3] has been developed at Kyushu University to be used as an ion thruster in micro-propulsion applications in the exosphere. The discharge source uses both radial and axial magnetostatic field confinement to facilitate electron cyclotron resonance and increase the electron dwell time in the volume, thereby enhancing plasma production efficiency. Performance of the ion thruster is studied at 3 microwave frequencies (1.2 GHz, 1.6 GHz, and 2.45 GHz), for low input powers (<15 W) and small xenon mass flow rates (<40 μg/s), by experimentally measuring the extracted ion beam current through a potential difference of ≅1200 V. The discharge geometry is found to operate most efficiently at an input microwave frequency of 1.6 GHz. At this frequency, for an input power of 8 W, and propellant (xenon) mass flow rate of 21 μg/s, 13.7 mA of ion beam current is obtained, equivalent to an calculated thrust of 0.74 mN.

  7. Experiment study of an electron cyclotron resonant ion source based on a tapered resonance cavity

    SciTech Connect

    Yang, Juan; Shi, Feng; Jin, Yizhou; Wang, Yunmin; Komurasaki, Kimiya

    2013-12-15

    Electron cyclotron resonant plasma is one type of magnetised plasma generated by continuous microwave energy. It has the property of high degree of ionization and large volume at low gas pressure, which makes it useful for space propulsion and material processing. This article presents the experiment study of the plasma properties and ion beam extraction from an electron cyclotron resonant ion source based on a tapered resonance cavity. Optical emission spectroscopy based on a simple collisional radiation model was used for plasma diagnosis. Experiment results show that, at microwave power setting ranging from 7.06 to 17.40 W and mass flow rate ranging from 1 to 10 sccm, argon gas can be ionized. Ion beam of 109.1 mA from the ion source can be extracted at microwave power of 30 W, mass flow rate of 10 sccm, and accel voltage of 800 V. The diagnosed plasma temperature and density are 2.4–5.2 eV and 2 × 10{sup 16}–4.8 × 10{sup 17} m{sup −3}, respectively.

  8. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1985-01-01

    The author built and tested a low energy cyclotron for radiocarbon dating similar to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. The author found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. The author shows how a conventional carbon negative ion source located outside the cyclotron magnet, would produce sufficient beam and provide for quick sample changing to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  9. Numerical simulations of gas mixing effect in electron cyclotron resonance ion sources

    NASA Astrophysics Data System (ADS)

    Mironov, V.; Bogomolov, S.; Bondarchenko, A.; Efremov, A.; Loginov, V.

    2017-01-01

    The particle-in-cell Monte Carlo collisions code nam-ecris is used to simulate the electron cyclotron resonance ion source (ECRIS) plasma sustained in a mixture of Kr with O2 , N2 , Ar, Ne, and He. The model assumes that ions are electrostatically confined in the ECR zone by a dip in the plasma potential. A gain in the extracted krypton ion currents is seen for the highest charge states; the gain is maximized when oxygen is used as a mixing gas. The special feature of oxygen is that most of the singly charged oxygen ions are produced after the dissociative ionization of oxygen molecules with a large kinetic energy release of around 5 eV per ion. The increased loss rate of energetic lowly charged ions of the mixing element requires a building up of the retarding potential barrier close to the ECR surface to equilibrate electron and ion losses out of the plasma. In the mixed plasmas, the barrier value is large (˜1 V ) compared to pure Kr plasma (˜0.01 V ), with longer confinement times of krypton ions and with much higher ion temperatures. The temperature of the krypton ions is increased because of extra heating by the energetic oxygen ions and a longer time of ion confinement. In calculations, a drop of the highly charged ion currents of lighter elements is observed when adding small fluxes of krypton into the source. This drop is caused by the accumulation of the krypton ions inside plasma, which decreases the electron and ion confinement times.

  10. Liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometric characterization of protein kinase C phosphorylation.

    PubMed

    Chalmers, Michael J; Quinn, John P; Blakney, Greg T; Emmett, Mark R; Mischak, Harold; Gaskell, Simon J; Marshall, Alan G

    2003-01-01

    A vented column, capillary liquid chromatography (LC) microelectrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR (9.4 T)) mass spectrometry (MS) approach to phosphopeptide identification is described. A dual-ESI source capable of rapid (approximately 200 ms) switching between two independently controlled ESI emitters was constructed. The dual-ESI source, combined with external ion accumulation in a linear octopole ion trap, allowed for internal calibration of every mass spectrum during LC. LC ESI FT-ICR positive-ion MS of protein kinase C (PKC) revealed four previously unidentified phosphorylated peptides (one within PKC(alpha), one within PKC(delta), and two within PKC(zeta)). Internal calibration improved the mass accuracy for LC MS spectra from an absolute mean (47 peptide ions) of 11.5 ppm to 1.5 ppm. Five additional (out of eight known) activating sites of PKC phosphorylation, not detected in positive-ion experiments, were observed by subsequent negative-ion direct infusion nanoelectrospray. Extension of the method to enable infrared multiphoton dissociation of all ions in the ICR cell prior to every other mass measurement revealed the diagnostic neutral loss of H3PO4 from phosphorylated peptide ions. The combination of accurate-mass MS and MS/MS offers a powerful new tool for identifying the presence and site(s) of phosphorylation in peptides, without the need for additional wet chemical derivatization.

  11. A study on vacuum aspects of electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Taki, G. S.; Mallick, C.; Bhandari, R. K.

    2008-05-01

    The electron cyclotron resonance (ECR) ion source is special type hot plasma machine where the high temperature electrons co-exist with multiply charge state ions and neutrals. A few years ago 6.4 GHz. ECR ion source (VEC-ECR) was developed indigenously at VECC. This multiply charged ion source is being used continuously to inject heavy ion beams into the cyclotron. Vacuum plays the major role in ECR ion source. The water cooled plasma chamber is made from an oxygen free high conductivity copper billet to meet the suitable surface condition for vacuum purpose. The entire volume of the ion source is pumped by two 900 1/s special type oil diffusion pumps to achieve 5×10-8 Torr. Usually main plasma chamber is pumped by the plasma itself. Moreover a few 1/s additional pumping speed is provided through extraction hole and pumping slot on the extraction electrode. A study has been carried out to understand the role of vacuum on the multiply charged heavy ion production process. Considering the ion production and loss criteria, it is seen that for getting Ar18+ better vacuum is essential for lower frequency operation. So, an ECR ion source can give better charge state current output operating at higher frequency and stronger confining magnetic field under a specific vacuum condition. The low pressure condition is essential to minimize charge exchange loss due to recombination of multiply charged ions with the neutral atoms. A fixed ratio of neutral to electron density must be maintained for optimizing a particular charge state in the steady state condition. As the electron density is proportional to square of the injected microwave frequency (nevpropf2) a particular operating pressure is essential for a specific charge state. From the study, it has been obtained that the production of Ar18+ ions needs a pressure ~ 9.6×10-8 Torr for 6.4 GHz. ECR ion source. It is also obtained that an ECR ion source, works at a particular vacuum level, can give better charge state

  12. Hybrid Simulations of Ion Cyclotron Waves in Non-uniform Magnetic Field: Application to the Corona and Solar Wind

    NASA Astrophysics Data System (ADS)

    Omidi, N.; Russell, C. T.; Jian, L.; Isenberg, P. A.; Wei, H.

    2013-12-01

    The presence of ions with perpendicular temperature larger than parallel in the corona is expected to result in the generation of ion cyclotron waves. Spacecraft observations in the interplanetary medium provide evidence for the presence of ion cyclotron waves generated near the Sun. In this presentation we examine the possibility that the observed ion cyclotron waves are generated in the corona and propagate into the interplanetary medium. To this end, we perform 2.5-D electromagnetic hybrid (kinetic ions, fluid electrons) simulations with non-uniform magnetic field. By initializing ions with perpendicular temperature larger than parallel in a finite region of space, we investigate the generation of ion cyclotron waves in the high magnetic field region and their propagation to larger radial distances with weaker magnetic field strength. Specifically, we examine the propagation properties of the waves and the extent to which they are impacted by the presence of non-uninform magnetic field and nonlinear processes. Results show that at least in some cases, wave propagation is coupled to the outward motion (along the magnetic field) of the ions responsible for the generation of the waves. In such cases, wave generation may be ongoing for regions much larger than the initial source region where ions with temperature anisotropy are initialized. In this study we examine how the properties of ion cyclotron waves (e.g. spectral power, polarization) and their radial dependence vary with changes in the magnetic field model, level of temperature anisotropy, the nature of source ions (e.g. O5+; He++) and relative speed between the various ion species.

  13. Freja observations of electromagnetic ion cyclotron ELF waves and transverse oxygen ion acceleration on auroral field lines

    SciTech Connect

    Erlandson, R.E.; Zanetti, L.J.; Acuna, M.H.; Eliasson, L.; Boehm, M.H.; Blomberg, L.G.

    1994-08-15

    Extremely low-frequency (ELF) magnetic and electric field plasma wave emissions were recorded on 2 October 1993 on auroral field lines by the Magnetic Field Experiment during Freja orbit 4770. The ELF wave frequencies were below the local oxygen gyrofrequency (25 Hz) and between the helium and proton gyrofrequencies (100 to 400 Hz). The ELF waves, interpreted as electromagnetic ion cyclotron (EMIC) waves, were observed in a region of inverted-V-type electron precipitation. The EMIC waves were correlated over time with auroral and lower energy ({approximately} 100 eV) electrons, which are both possible sources of free energy, and also with transversely accelerated oxygen ions. The waves above the helium gyrofrequency were more closely correlated with the transverse oxygen ion acceleration than the waves below the oxygen gyrofrequency. These observations are consistent with a scenario in which electron beams generate EMIC waves, which then produce transverse oxygen ion acceleration through a gyroresonant interaction. 16 refs., 4 figs.

  14. Studies of emittance of multiply charged ions extracted from high temperature superconducting electron cyclotron resonance ion source, PKDELIS

    SciTech Connect

    Rodrigues, G.; Lakshmy, P. S.; Kumar, Sarvesh; Mandal, A.; Kanjilal, D.; Roy, A.; Baskaran, R.

    2010-02-15

    For the high current injector project at Inter University Accelerator Centre, a high temperature superconducting electron cyclotron resonance (ECR) ion source, PKDELIS, would provide the high charge state ions. The emittance of the ECR ion source is an important parameter to design further beam transport system and to match the acceptances of the downstream radio frequency quadrupole and drift tube linac accelerators of the high current injector. The emittance of the analyzed beam of PKDELIS ECR source has been measured utilizing the three beam size technique. A slit and two beam profile monitors positioned at fixed distances from each other were used to measure the beam size. The digitized beam profiles have been analyzed to determine the emittance of various multiply charged ions. The variation of emittance with gas mixing, ultrahigh frequency power, and extraction energy are discussed in this presentation.

  15. Influence of Magnetic Shear on the Collisional Current Driven Ion Cyclotron Instability.

    DTIC Science & Technology

    1984-07-05

    I DRIVEN ION CYCLOTRON INSTA9ILITY(U) NAVAL RESEARCH LAB MASHINOTON DC P SATYRNARAYRNA ET AL. S5 JUL 64 UNCLASSIFIED NRLD-NR-5345 FIG 2/9 L II 13J6...These results are verified by directly solving Eq. (14) using a numerical shooting code. We present the former results in the following. In Fig . 1 we...some light on the magnetic shear required to significantly reduce the growth rate, we plot in Fig . 2, the normalized growth rate versus the normalized

  16. Theoretical analysis of the EAST 4-strap ion cyclotron range of frequency antenna with variational theory

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Hui; Zhang, Xin-Jun; Zhao, Yan-Ping; Qin, Cheng-Ming; Chen, Zhao; Yang, Lei; Wang, Jian-Hua

    2016-08-01

    A variational principle code which can calculate self-consistently currents on the conductors is used to assess the coupling characteristic of the EAST 4-strap ion cyclotron range of frequency (ICRF) antenna. Taking into account two layers of antenna conductors without lateral frame but with slab geometry, the antenna impedances as a function of frequency and the structure of RF field excited inside the plasma in various phasing cases are discussed in this paper. Project supported by the National Magnetic Confinement Fusion Science Program, China (Grant No. 2015GB101001) and the National Natural Science Foundation of China (Grant Nos. 11375236 and 11375235).

  17. Roadmap for the design of a superconducting electron cyclotron resonance ion source for Spiral2

    SciTech Connect

    Thuillier, T.; Angot, J.; Lamy, T.; Peaucelle, C.

    2012-02-15

    A review of today achieved A/Q = 3 heavy ions beams is proposed. The daily operation A/Q = 3 ion beam intensities expected at Spiral2 are at the limit or above best record 3rd generation electron cyclotron resonance ion source (ECRIS) intensities. The necessity to build a new fully superconducting to fulfill these requirements is outlined. A discussion on the volume of the future source is proposed and the minimum value of 12 liters is derived. An analysis of the x-ray absorption superconducting ECRIS is presented based on VENUS experimental data and geometry. This study underlines the necessity to include a complete x-ray study at the time of source conception. The specifications foreseen for the new ECRIS are presented, followed with the roadmap for the design.

  18. Progress towards the development of a realistic electron cyclotron resonance ion source extraction model

    SciTech Connect

    Winklehner, D.; Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Strohmeier, M. M.

    2012-02-15

    In this paper, an ongoing effort to provide a simulation and design tool for electron cyclotron resonance ion source extraction and low energy beam transport is described and benchmarked against experimental results. Utilizing the particle-in-cell code WARP, a set of scripts has been developed: A semiempirical method of generating initial conditions, a 2D-3D hybrid method of plasma extraction and a simple beam transport deck. Measured emittances and beam profiles of uranium and helium beams are shown and the influence of the sextupole part of the plasma confinement field is investigated. The results are compared to simulations carried out using the methods described above. The results show that the simulation model (with some additional refinements) represents highly charged, well-confined ions well, but that the model is less applicable for less confined, singly charged ions.

  19. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    SciTech Connect

    Thomae, R. Conradie, J.; Fourie, D.; Mira, J.; Nemulodi, F.; Kuechler, D.; Toivanen, V.

    2016-02-15

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  20. Cyclotron resonances of ions with obliquely propagating waves in coronal holes and the fast solar wind

    NASA Astrophysics Data System (ADS)

    Hollweg, Joseph V.; Markovskii, S. A.

    2002-06-01

    There is a growing consensus that cyclotron resonances play important roles in heating protons and ions in coronal holes where the fast solar wind originates and throughout interplanetary space as well. Most work on cyclotron resonant interactions has concentrated on the special, but unrealistic, case of propagation along the ambient magnetic field, B0, because of the great simplification it gives. This paper offers a physical discussion of how the cyclotron resonances behave when the waves propagate obliquely to B0. We show how resonances at harmonics of the cyclotron frequency come about, and how the physics can be different depending on whether E⊥ is in or perpendicular to the plane containing k and B0 (k is wave vector, and E⊥ is the component of the wave electric field perpendicular to B0). If E⊥ is in the k-B0 plane, the resonances are analogous to the Landau resonance and arise because the particle tends to stay in phase with the wave during the part of its orbit when it is interacting most strongly with E⊥. If E⊥ is perpendicular to the k-B0 plane, then the resonances depend on the fact that the particle is at different positions during the parts of its orbit when it is interacting most strongly with E⊥. Our main results are our equations (10), (11), and (13) for the secular rate of energy gain (or loss) by a resonant particle and the unfamiliar result that ions can resonate with a purely right-hand circularly polarized wave if the propagation is oblique. We conclude with some speculations about the origin of highly obliquely propagating ion resonant waves in the corona and solar wind. We point out that there are a number of instabilities that may generate such waves locally in the corona and solar wind.

  1. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator

    SciTech Connect

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook

    2016-02-15

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.

  2. Radiofrequency and 2.45 GHz electron cyclotron resonance H- volume production ion sources

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Peng, S. X.

    2016-10-01

    The volume production of negative hydrogen ions ({{{H}}}-) in plasma ion sources is based on dissociative electron attachment (DEA) to rovibrationally excited hydrogen molecules (H2), which is a two-step process requiring both, hot electrons for ionization, and vibrational excitation of the H2 and cold electrons for the {{{H}}}- formation through DEA. Traditionally {{{H}}}- ion sources relying on the volume production have been tandem-type arc discharge sources equipped with biased filament cathodes sustaining the plasma by thermionic electron emission and with a magnetic filter separating the main discharge from the {{{H}}}- formation volume. The main motivation to develop ion sources based on radiofrequency (RF) or electron cyclotron resonance (ECR) plasma discharges is to eliminate the apparent limitation of the cathode lifetime. In this paper we summarize the principles of {{{H}}}- volume production dictating the ion source design and highlight the differences between the arc discharge and RF/ECR ion sources from both, physics and technology point-of-view. Furthermore, we introduce the state-of-the-art RF and ECR {{{H}}}- volume production ion sources and review the challenges and future prospects of these yet developing technologies.

  3. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator

    NASA Astrophysics Data System (ADS)

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook

    2016-02-01

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.

  4. Investigation of electrostatic waves in the ion cyclotron range of frequencies in L-4 and ACT-1

    SciTech Connect

    Ono, Masayuki.

    1993-05-01

    Electrostatic waves in the ion cyclotron range of frequencies (ICRF) were studied in the Princeton L-4 and ACT-1 devices for approximately ten years, from 1975 to 1985. The investigation began in the L-4 linear device, looking for the parametric excitation of electrostatic ion cyclotron waves in multi-ion-species plasmas. In addition, this investigation verified multi-ion-species effects on the electrostatic ion cyclotron wave dispersion religion including the ion-ion hybrid resonance. Finite-Larmor-radius modification of the wave dispersion relation was also observed, even for ion temperatures of T[sub i] [approx] 1/40 eV. Taking advantage of the relatively high field and long device length of L-4, the existence of the cold electrostatic ion cyclotron wave (CES ICW) was verified. With the arrival of the ACT-1 toroidal device, finite-Larmor-radius (FLR) waves were studied in a relatively collisionless warm-ion hydrogen plasma. Detailed investigations of ion Bernstein waves (IBW) included the verification of mode-transformation in their launching, their wave propagation characteristics, their absorption, and the resulting ion heating. This basic physics activity played a crucial role in developing a new reactor heating concept termed ion Bernstein wave heating. Experimental research in the lower hybrid frequency range confirmed the existence of FLR effects near the lower hybrid resonance, predicted by Stix in 1965. In a neon plasma with a carefully placed phased wave exciter, the neutralized ion Bernstein wave was observed for the first time. Using a fastwave ICRF antenna, two parasitic excitation processes for IBW -- parametric instability and density-gradient-driven excitation -- were also discovered. In the concluding section of this paper, a possible application of externally launched electrostatic waves is suggested for helium ash removal from fusion reactor plasmas.

  5. Investigation of electrostatic waves in the ion cyclotron range of frequencies in L-4 and ACT-1

    SciTech Connect

    Ono, Masayuki

    1993-05-01

    Electrostatic waves in the ion cyclotron range of frequencies (ICRF) were studied in the Princeton L-4 and ACT-1 devices for approximately ten years, from 1975 to 1985. The investigation began in the L-4 linear device, looking for the parametric excitation of electrostatic ion cyclotron waves in multi-ion-species plasmas. In addition, this investigation verified multi-ion-species effects on the electrostatic ion cyclotron wave dispersion religion including the ion-ion hybrid resonance. Finite-Larmor-radius modification of the wave dispersion relation was also observed, even for ion temperatures of T{sub i} {approx} 1/40 eV. Taking advantage of the relatively high field and long device length of L-4, the existence of the cold electrostatic ion cyclotron wave (CES ICW) was verified. With the arrival of the ACT-1 toroidal device, finite-Larmor-radius (FLR) waves were studied in a relatively collisionless warm-ion hydrogen plasma. Detailed investigations of ion Bernstein waves (IBW) included the verification of mode-transformation in their launching, their wave propagation characteristics, their absorption, and the resulting ion heating. This basic physics activity played a crucial role in developing a new reactor heating concept termed ion Bernstein wave heating. Experimental research in the lower hybrid frequency range confirmed the existence of FLR effects near the lower hybrid resonance, predicted by Stix in 1965. In a neon plasma with a carefully placed phased wave exciter, the neutralized ion Bernstein wave was observed for the first time. Using a fastwave ICRF antenna, two parasitic excitation processes for IBW -- parametric instability and density-gradient-driven excitation -- were also discovered. In the concluding section of this paper, a possible application of externally launched electrostatic waves is suggested for helium ash removal from fusion reactor plasmas.

  6. Generation of plasma rotation in a tokamak by ion-cyclotron absorption of fast Alfven waves

    SciTech Connect

    F.W. Perkins; R.B. White; P. Bonoli

    2000-06-13

    Control of rotation in tokamak plasmas provides a method for suppressing fine-scale turbulent transport by velocity shear and for stabilizing large-scale magnetohydrodynamic instabilities via a close-fitting conducting shell. The experimental discovery of rotation in a plasma heated by the fast-wave minority ion cyclotron process is important both as a potential control method for a fusion reactor and as a fundamental issue, because rotation arises even though this heating process introduces negligible angular momentum. This paper proposes and evaluates a mechanism which resolves this apparent conflict. First, it is assumed that angular momentum transport in a tokamak is governed by a diffusion equation with a no-slip boundary condition at the plasma surface and with a torque-density source that is a function of radius. When the torque density source consists of two separated regions of positive and negative torque density, a non-zero central rotation velocity results, even when the total angular momentum input vanishes. Secondly, the authors show that localized ion-cyclotron heating can generate regions of positive and negative torque density and consequently central plasma rotation.

  7. Ion cyclotron emission calculations using a 2D full wave numerical code

    NASA Astrophysics Data System (ADS)

    Batchelor, D. B.; Jaeger, E. F.; Colestock, P. L.

    1987-09-01

    Measurement of radiation in the HF band due to cyclotron emission by energetic ions produced by fusion reactions or neutral beam injection promises to be a useful diagnostic on large devices which are entering the reactor regime of operation. A number of complications make the modelling and interpretation of such measurements difficult using conventional geometrical optics methods. In particular the long wavelength and lack of high directivity of antennas in this frequency regime make observation of a single path across the plasma into a viewing dump impractical. Pickup antennas effectively see the whole plasma and wall reflection effects are important. We have modified our 2D full wave ICRH code2 to calculate wave fields due to a distribution of energetic ions in tokamak geometry. The radiation is modeled as due to an ensemble of localized source currents distributed in space. The spatial structure of the coherent wave field is then calculated including cyclotron harmonic damping as compared to the usual procedure of incoherently summing powers of individual radiators. This method has the advantage that phase information from localized radiating currents is globally retained so the directivity of the pickup antennas is correctly represented. Also standing waves and wall reflections are automatically included.

  8. Wave solutions of ion cyclotron heated plasmas with self-consistent velocity distributions in a tokamak

    NASA Astrophysics Data System (ADS)

    Lee, Jungpyo; Wright, John; Bonoli, Paul; Harvey, Robert

    2015-11-01

    We describe a numerical model for the propagation and absorption of ion cyclotron waves in a tokamak with a non-Maxwellian velocity space distribution function. The non-Maxwellian distribution is calculated by solving Maxwell's equations and the Fokker-Plank equation self-consistently. This approach will be useful to interpret measurements of minority hydrogen tail formation during ICRF heating experiments in Alcator C-Mod. To couple the Maxwell equation solver with Fokker-Plank equation solver, the quasilinear diffusion coefficients for the fundamental ion cyclotron absorption and the first harmonic absorption are calculated. In a previous study, the all-orders spectral algorithm wave solver (AORSA) was coupled with the Fokker-Plank code (CQL3D) to find the self-consistent non-Maxwellian distribution. We derive the modified quasilinear diffusion coefficients for the finite Larmor radius (FLR) approximation using a significantly faster wave solver (TORIC) following the approach by Jaeger. The coupled TORIC-CQL3D model will be compared against results from AORSA-CQL3D in order to verify the accuracy of the reduced FLR physics in TORIC. Work supported by US Department of Energy Contract No. DE-FC02-01ER54648.

  9. Limitations of electron cyclotron resonance ion source performances set by kinetic plasma instabilities

    SciTech Connect

    Tarvainen, O. Laulainen, J.; Komppula, J.; Kronholm, R.; Kalvas, T.; Koivisto, H.; Izotov, I.; Mansfeld, D.; Skalyga, V.

    2015-02-15

    Electron cyclotron resonance ion source (ECRIS) plasmas are prone to kinetic instabilities due to anisotropy of the electron energy distribution function stemming from the resonant nature of the electron heating process. Electron cyclotron plasma instabilities are related to non-linear interaction between plasma waves and energetic electrons resulting to strong microwave emission and a burst of energetic electrons escaping the plasma, and explain the periodic oscillations of the extracted beam currents observed in several laboratories. It is demonstrated with a minimum-B 14 GHz ECRIS operating on helium, oxygen, and argon plasmas that kinetic instabilities restrict the parameter space available for the optimization of high charge state ion currents. The most critical parameter in terms of plasma stability is the strength of the solenoid magnetic field. It is demonstrated that due to the instabilities the optimum B{sub min}-field in single frequency heating mode is often ≤0.8B{sub ECR}, which is the value suggested by the semiempirical scaling laws guiding the design of modern ECRISs. It is argued that the effect can be attributed not only to the absolute magnitude of the magnetic field but also to the variation of the average magnetic field gradient on the resonance surface.

  10. Production of electron cyclotron resonance plasma by using multifrequencies microwaves and active beam profile control on a large bore electron cyclotron resonance ion source with permanent magnets.

    PubMed

    Kato, Yushi; Watanabe, Takeyoshi; Matsui, Yuuki; Hirai, Yoshiaki; Kutsumi, Osamu; Sakamoto, Naoki; Sato, Fuminobu; Iida, Toshiyuki

    2010-02-01

    A new concept on magnetic field with all magnets on plasma production and confinement has been proposed to enhance efficiency of an electron cyclotron resonance (ECR) plasma for broad and dense ion beam source under the low pressure. The magnetic field configuration is constructed by a pair of magnets assembly, i.e., comb-shaped magnet which cylindrically surrounds the plasma chamber. The resonance zones corresponding to the fundamental ECR for 2.45 GHz and 11-13 GHz frequencies are constructed at different positions. The profiles of the plasma parameters in the ECR ion source are different from each frequency of microwave. Large bore extractor is set at the opposite side against the microwave feeds. It is found that differences of their profiles also appear at those of ion beam profiles. We conducted to launch simultaneously multiplex frequencies microwaves controlled individually, and tried to control the profiles of the plasma parameters and then those of extracted ion beam.

  11. Predicting electromagnetic ion cyclotron wave amplitude from unstable ring current plasma conditions

    NASA Astrophysics Data System (ADS)

    Fu, Xiangrong; Cowee, Misa M.; Jordanova, Vania K.; Gary, S. Peter; Reeves, Geoffrey D.; Winske, Dan

    2016-11-01

    Electromagnetic ion cyclotron (EMIC) waves in the Earth's inner magnetosphere are enhanced fluctuations driven unstable by ring current ion temperature anisotropy. EMIC waves can resonate with relativistic electrons and play an important role in precipitation of MeV radiation belt electrons. In this paper, we investigate the excitation and saturation of EMIC instability in a homogeneous plasma using both linear theory and nonlinear hybrid simulations. We have explored a four-dimensional parameter space, carried out a large number of simulations, and derived a scaling formula that relates the saturation EMIC wave amplitude to initial plasma conditions. Such scaling can be used in conjunction with ring current models like ring current-atmosphere interactions model with self-consistent magnetic field to provide global dynamic EMIC wave maps that will be more accurate inputs for radiation belt modeling than statistical models.

  12. Propagation and linear mode conversion of magnetosonic and electromagnetic ion cyclotron waves in the radiation belts

    NASA Astrophysics Data System (ADS)

    Horne, Richard B.; Miyoshi, Yoshizumi

    2016-10-01

    Magnetosonic waves and electromagnetic ion cyclotron (EMIC) waves are important for electron acceleration and loss from the radiation belts. It is generally understood that these waves are generated by unstable ion distributions that form during geomagnetically disturbed times. Here we show that magnetosonic waves could be a source of EMIC waves as a result of propagation and a process of linear mode conversion. The converse is also possible. We present ray tracing to show how magnetosonic (EMIC) waves launched with large (small) wave normal angles can reach a location where the wave normal angle is zero and the wave frequency equals the so-called crossover frequency whereupon energy can be converted from one mode to another without attenuation. While EMIC waves could be a source of magnetosonic waves below the crossover frequency, magnetosonic waves could be a source of hydrogen band waves but not helium band waves.

  13. Electromagnetic Ion Cyclotron Waves in the Inner Magnetosphere with a Kappa-Maxwellian Proton Distribution

    NASA Astrophysics Data System (ADS)

    Singh, S.; Sugiyama, H.; Omura, Y.; Shoji, M.; Nunn, D.; Summers, D.

    2014-12-01

    Electromagnetic ion cyclotron (EMIC) waves are studied in kappa-Maxwellian plasma. The plasma is assumed to have five-components, i.e., electrons, cold and hot protons, singly charged helium and oxygen ions. The hot anisotropic protons are assumed to have kappa-Maxwellian anisotropic particle distribution function. The numerical results are obtained using KUPDAP (Kyoto University Plasma Dispersion Analysis Package), a full dispersion solver developed at Kyoto University. The growth/damping of oxygen, helium, and proton bands and higher harmonics of the EMIC waves are studied. The effects of the kappa distribution on the growth/damping of these waves are clearly demonstrated. The findings from our model are applied to EMIC wave observations in the inner magnetosphere by the Cluster spacecraft.

  14. Electromagnetic ion cyclotron waves in the Earth's magnetosphere with a kappa-Maxwellian particle distribution

    NASA Astrophysics Data System (ADS)

    Sugiyama, Hajime; Singh, Satyavir; Omura, Yoshiharu; Shoji, Masafumi; Nunn, David; Summers, Danny

    2015-10-01

    A theoretical model to study electromagnetic ion cyclotron (EMIC) waves in kappa-Maxwellian plasma is developed. The plasma is assumed to have five components, i.e., electrons, cool and hot protons, and singly charged helium and oxygen ions. The kappa-Maxwellian anisotropic particle distribution function is assumed for the hot protons. We use the Kyoto University Plasma Dispersion Analysis Package, a full dispersion solver developed at Kyoto University, to obtain the numerical results and delineate the oxygen, helium, and proton bands. Higher harmonics of the EMIC waves are also studied, and the effects of the kappa distribution on the growth of these waves are clearly demonstrated. Our results are applied to Cluster spacecraft observations of EMIC waves in the inner magnetosphere.

  15. Nonlocal effects on the convective properties of the electrostatic current-driven ion-cyclotron instability

    NASA Technical Reports Server (NTRS)

    Ganguli, G.; Bakshi, P.; Palmadesso, P.

    1984-01-01

    The convective behavior of the current-driven ion-cyclotron instability (CDICI) in the presence of nonlocal magnetic-shear and current-channel-width effects is investigated theoretically using the analytical approach of Bakshi et al. (1983). The results are presented in graphs and discussed. Three different CDICI regimes defined by the ratio of the channel width to the shear length are obtained: a purely nonlocal regime with reduced temporal growth rate and group velocity in the z direction going to zero (ratios greater than about 0.1); a regime corresponding to the results of local theory (ratios less than 0.01); and a regime characterized by decreasing temporal growth rate and by z and y group velocities which become negative when the channel width becomes less than the mean ion Larmor radius (ratios 0.001 or less).

  16. Finite-width currents, magnetic shear, and the current-driven ion-cyclotron instability

    NASA Technical Reports Server (NTRS)

    Bakshi, P.; Ganguli, G.; Palmadesso, P.

    1983-01-01

    Our earlier results that non-local effects due to even a small magnetic shear produce a significant reduction of the growth rate of the ion cyclotron instability driven by a uniform current are now generalized to finite width currents. Externally prescribed as well as self-consistent shears are considered. If the current width Lc exceeds the shear length Ls, the previous results are recovered. Shear becomes less effective with reduction of Lc, and for typical parameters, the growth rate attains its (shearless) local value for Lc/Ls approximately less than 10 to the minus 2. Non-local effects of the finite current width itself come into play if Lc is further reduced to a few ion Larmor radii and can quench the instability. Previously announced in STAR as N83-28996

  17. Performance of an ion-cyclotron-wave plasma apparatus operated in the radiofrequency sustained mode

    NASA Technical Reports Server (NTRS)

    Swett, C. C.; Woollett, R. R.

    1973-01-01

    An experimental study has been made of an ion-cyclotron-wave apparatus operated in the RF-sustained mode, that is, a mode in which the Stix RF coil both propagates the waves and maintains the plasma. Problems associated with this method of operation are presented. Some factors that are important to the coupling of RF power are noted. In general, the wave propagation and wave damping data agree with theory. Some irregularities in wave fields are observed. Maximum ion temperature is 870 eV at a density of five times 10 to the 12th power cu cm and RF power of 90 kW. Coupling efficiency is 70 percent.

  18. Fourier-Transform ion cyclotron mass spectrometry (FT-ICR MS)

    SciTech Connect

    Robinson, Errol W.

    2014-03-28

    FT-ICR MS achieves the highest resolution and best mass measurement accuracy of any mass spectrometry method. These remarkable achievements are due to several factors, including multi-channel detection, measurement of frequency, magnetic field stability, and dependence of cyclotron frequency on only the magnetic field and ion mass to charge ratio, not on ion kinetic energy and other factors. Significant advances in magnet technology, instrument design and construction continue to enhance the capabilities of FT-ICR MS. FT-ICR has been applied to a variety of analytical challenges and is particularly suited to the analysis of complex mixtures and in applications where high resolution and mass measurement accuracy are critical analytical parameters.

  19. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    SciTech Connect

    Uchida, T.; Rácz, R.; Biri, S.; Kato, Y.; Yoshida, Y.

    2016-02-15

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  20. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Rácz, R.; Muramatsu, M.; Kato, Y.; Kitagawa, A.; Biri, S.; Yoshida, Y.

    2016-02-01

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  1. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification.

    PubMed

    Uchida, T; Rácz, R; Muramatsu, M; Kato, Y; Kitagawa, A; Biri, S; Yoshida, Y

    2016-02-01

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  2. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P.; Kewlani, H.; Mishra, L.; Mittal, K. C.; Patil, D. S.

    2013-07-15

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10{sup −4}–10{sup −3} mbar and 400–1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 10{sup 10} cm{sup −3} to 3.8 × 10{sup 11} cm{sup −3} and 4–14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  3. First results from the new RIKEN superconducting electron cyclotron resonance ion source (invited).

    PubMed

    Nakagawa, T; Higurashi, Y; Ohnishi, J; Aihara, T; Tamura, M; Uchiyama, A; Okuno, H; Kusaka, K; Kidera, M; Ikezawa, E; Fujimaki, M; Sato, Y; Watanabe, Y; Komiyama, M; Kase, M; Goto, A; Kamigaito, O; Yano, Y

    2010-02-01

    The next generation heavy ion accelerator facility, such as the RIKEN radio isotope (RI) beam factory, requires an intense beam of high charged heavy ions. In the past decade, performance of the electron cyclotron resonance (ECR) ion sources has been dramatically improved with increasing the magnetic field and rf frequency to enhance the density and confinement time of plasma. Furthermore, the effects of the key parameters (magnetic field configuration, gas pressure, etc.) on the ECR plasma have been revealed. Such basic studies give us how to optimize the ion source structure. Based on these studies and modern superconducting (SC) technology, we successfully constructed the new 28 GHz SC-ECRIS, which has a flexible magnetic field configuration to enlarge the ECR zone and to optimize the field gradient at ECR point. Using it, we investigated the effect of ECR zone size, magnetic field configuration, and biased disk on the beam intensity of the highly charged heavy ions with 18 GHz microwaves. In this article, we present the structure of the ion source and first experimental results with 18 GHz microwave in detail.

  4. Ion heating in the field-reversed configuration (FRC) by rotating magnetic fields (RMF) near cyclotron resonance

    SciTech Connect

    Samuel A. Cohen; Alan H. Glasser

    2000-07-20

    The trajectories of ions confined in a Solovev FRC equilibrium magnetic geometry and heated with a small-amplitude, odd-parity rotating magnetic field, have been studied with a Hamiltonian computer code. When the RMF frequency is in the ion-cyclotron range, explosive heating occurs. Higher-energy ions are found to have betatron-type orbits, preferentially localized near the FRC midplane. These results are relevant to a compact magnetic-fusion-reactor design.

  5. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    PubMed

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  6. Scattering of relativistic and ultra-relativistic electrons by obliquely propagating Electromagnetic Ion Cyclotron waves

    NASA Astrophysics Data System (ADS)

    Uzbekov, Bogdan; Shprits, Yuri Y.; Orlova, Ksenia

    2016-10-01

    Electromagnetic Ion Cyclotron (EMIC) waves are transverse plasma waves that are generated in the Earth magnetosphere by ring current protons with temperature anisotropy in three different bands: below the H+, He+ and O+ ion gyrofrequencies. EMIC events are enhanced during the main phase of a geomagnetic storm when intensifications in the electric field result in enhanced injections of ions and are usually confined to high-density regions just inside the plasmapause or within drainage plumes. EMIC waves are capable of scattering radiation belt electrons and thus provide an important link between the intensification of the electric field, ion populations, and radiation belt electrons. Bounce-averaged diffusion coefficients computed with the assumption of parallel wave propagation are compared to the results of the code that uses the full cold plasma dispersion relation taking into account oblique propagation of waves and higher-order resonances. We study the sensitivity of the scattering rates to a number of included higher-order resonances, wave spectral distribution parameters, wave normal angle distribution parameters, ambient plasma density, and ion composition. Inaccuracies associated with the neglect of higher-order resonances and oblique propagation of waves are compared to potential errors introduced by uncertainties in the model input parameters.

  7. A simulation of X-ray shielding for a superconducting electron cyclotron resonance ion source

    SciTech Connect

    Park, Jin Yong; Won, Mi-Sook; Lee, Byoung-Seob; Yoon, Jang-Hee; Choi, Seyong; Ok, Jung-Woo; Choi, Jeong-Sik; Kim, Byoung-Chul

    2014-02-15

    It is generally assumed that large amounts of x-rays are emitted from the ion source of an Electron Cyclotron Resonance (ECR) instrument. The total amount of x-rays should be strictly limited to avoid the extra heat load to the cryostat of the superconducting ECR ion source, since they are partly absorbed by the cold mass into the cryostat. A simulation of x-ray shielding was carried out to determine the effective thickness of the x-ray shield needed via the use of Geant4. X-ray spectra of the 10 GHz Nanogan ECR ion source were measured as a function of the thickness variation in the x-ray shield. The experimental results were compared with Geant4 results to verify the effectiveness of the x-ray shield. Based on the validity in the case of the 10 GHz ECR ion source, the x-ray shielding results are presented by assuming the spectral temperature of the 28 GHz ECR ion source.

  8. Plasma heating in stellarators by radio frequency electromagnetic waves at the fundamental ion cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir A.

    1998-11-01

    A perturbation method is developed to find the structure of Alfven wave modes in a cylindrical waveguide filled with a cold, collisional, uniform plasma with a vacuum layer between the plasma and a conducting wall when the magnetic field in the waveguide is a superposition of a uniform and an inhomogeneous /ell=2 (quadrupole) field created by helical windings. The influence of the helical field on the wave mode structure is treated as a perturbation. This innovative technique is applied in order to investigate the possibility of direct heating of plasma ions at the fundamental ion cyclotron resonance in stellarator magnetic field configuration. However, the theoretical development itself is unique and complete, and it can be useful for the analysis of other similar plasma models. We investigated the mode structure of an m=[+]1 (azimuthal wave number) fast wave which is modified by the magnetic field inhomogeneity. We found that the m=[- ]1 azimuthal component of the modified m=[+]1 fast Alfven wave is left-hand polarized in the central part of the plasma. This implies a coupling between the m=[+]1 fast (right-hand polarized) wave and m=[-]1 slow (left- hand polarized) waves due to the inhomogeneity of the /ell=2 fields. The coupling efficiency is examined for different plasma parameters. Results demonstrate that efficient coupling between the modes occurs for appropriate plasma parameters in this model, indicating that efficient plasma heating at the fundamental ion cyclotron frequency is possible in stellarators. The results of the analysis also point the way to a general theory of linear wave coupling in any inhomogeneous, anisotropic medium, since conventional mode conversion theory may be seen as just another example of this general theory.

  9. Status report of the 28 GHz superconducting electron cyclotron resonance ion source VENUS (invited)

    SciTech Connect

    Leitner, D.; Lyneis, C.M.; Loew, T.; Todd, D.S.; Virostek, S.; Tarvainen, O.

    2006-03-15

    The superconducting versatile electron cyclotron resonance (ECR) ion source for nuclear science (VENUS) is a next generation superconducting ECR ion source designed to produce high-current, high-charge-state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the rare isotope accelerator (RIA) front end, where the goal is to produce intense beams of medium-charge-state ions. Example beams for the RIA accelerator are 15 p {mu}A of Kr{sup 17+}(260 e {mu}A), 12 p {mu}A of Xe{sup 20+} (240 e {mu}A of Xe{sup 20+}), and 8 p {mu}A of U{sup 28+}(230 e {mu}A). To achieve these high currents, VENUS has been optimized for operation at 28 GHz, reaching maximal confinement fields of 4 and 3 T axially and over 2.2 T on the plasma chamber wall radially. After a commissioning phase at 18 GHz, the source started the 28 GHz operation in the summer of 2004. During that ongoing 28 GHz commissioning process, record ion-beam intensities have been extracted. For instance, measured extracted currents for the low to medium charge states were 270 e {mu}A of Xe{sup 27+} and 245 e {mu}A of Bi{sup 29+}, while for the higher charge states 15 e {mu}A of Xe{sup 34+}, 15 e {mu}A of Bi{sup 41+}, and 0.5 e {mu}A of Bi{sup 50+} could be produced. Results from the ongoing 28 GHz commissioning as well as results using double-frequency heating with 18 and 28 GHz for oxygen and xenon are presented. The effect of the minimum B field on the ion source performance has been systematically measured for 18 and 28 GHz. In both cases the performance peaked at a minimum B field of about 80% of the resonance field. In addition, a strong dependence of the x-ray flux and energy on the minimum B field value was found.

  10. Chirped dissipative ion-cyclotron solitons in the Earth's low-altitude ionospheric plasma with two ion species

    SciTech Connect

    Kovaleva, I. Kh.

    2013-03-15

    Conditions for the excitation of small-scale nonlinear ion-cyclotron gradient-drift dissipative structures in cold ionospheric plasma are considered. The solution for the wave electric field in this structure in the form of a chirped soliton satisfying the equation of the Ginzburg-Landau type is derived in the electrostatic approach. The dissipative structure as a whole represents the chirped soliton accompanied by the comoving quasineutral plasma hump. The possibility of the excitation of two modes of this type (the high- and low-frequency ones) in plasma containing light and heavy ion impurities is considered. The role of electromagnetic corrections and the possible contribution introduced by these structures to the transport processes in the ionosphere are discussed.

  11. Fishbones in Joint European Torus plasmas with high ion-cyclotron-resonance-heated fast ions energy content

    SciTech Connect

    Nabais, F.; Borba, D.; Mantsinen, M.; Nave, M.F.F.; Sharapov, S.E.; Joint

    2005-10-01

    In Joint European Torus (JET) [P. J. Lomas, Plasma Phys. Controled Fusion 31, 1481 (1989)], discharges with ion cyclotron resonance heating only, low-density plasmas and high fast ions energy contents provided a scenario where fishbones behavior has been observed to be related with sawtooth activity: Crashes of monster sawteeth abruptly changed the type of observed fishbones from low-frequency fishbones [B. Coppi and F. Porcelli, Phys. Rev. Lett. 57, 2272 (1986)] to high-frequency fishbones [L. Chen, R. White, and M. Rosenbluth, Phys. Rev. Lett. 52, 1122 (1984)]. During periods between crashes, the type of observed fishbones gradually changed in the opposite way. Two new fishbones regimes have been observed in intermediate stages: Fishbones bursts covering both high and low frequencies and low amplitude bursts of both types occurring simultaneously. Both sawtooth and fishbones behavior have been explained using a variational formalism.

  12. Time evolution of endpoint energy of Bremsstrahlung spectra and ion production from an electron cyclotron resonance ion source

    SciTech Connect

    Tarvainen, Ollie; Ropponen, Tommi; Jones, Peter; Kalvas, Taneli

    2008-01-01

    Electron cyclotron resonance ion sources (ECRIS) are used to produce high charge state heavy ion beams for the use of nuclear and materials science, for instance. The most powerful ECR ion sources today are superconducting. One of the problems with superconducting ECR ion sources is the use of high radio frequency (RF) power which results in bremsstrahlung radiation adding an extra heat load to the cryostat. In order to understand the electron heating process and timescales in the ECR plasma, time evolution measurement of ECR bremsstrahlung was carried out. In the measurements JYFL 14 GHz ECRIS was operated in a pulsed mode and bremsstrahlung data from several hundred RF pulses was recorded. Time evolution of ion production was also studied and compared to one of the electron heating theories. To analyze the measurement data at C++ program was developed. Endpoint energies of the bremsstrahlung spectra as a function of axial magnetic field strength, pressure and RF power are presented and ion production timescales obtained from the measurements are compared to bremsstrahlung emission timescales and one of the stochastic heating theories.

  13. Development of steady-state operation using ion cyclotron heating in the Large Helical Device

    SciTech Connect

    Kasahara, H.; Seki, T.; Saito, K.; Seki, R.; Kumazawa, R.; Yoshimura, Y.; Kubo, S.; Shimozuma, T.; Igami, H.; Takahashi, H.; Tokitani, M.; Ashikawa, N.; Shoji, M.; Kamio, S.; Tsuchiya, H.; Yoshimura, S.; Tamura, N.; Suzuki, C.; Yamada, H.; Mutoh, T.; and others

    2014-06-15

    Using a handshake shape (HAS) antenna phasing dipole for ion cyclotron heating (ICH), the heating efficiency was higher than that using a previous poloidal array antenna in the Large Helical Device. In order to sustain the dipole operation, real-time feedback for impedance matching and maintaining the same phase and power was adopted during long-pulse discharge. The HAS antenna was designed to reduce parasitic losses associated with energetic particle and radio-frequency (RF) sheath effects by field-aligned current concentration on the midplane. Local hot spots and the inhomogeneity of the diverter heat profile in the toroidal direction were reduced. The long-pulse discharge with an electron density (n{sub e0}) of 1 × 10{sup 19} m{sup −3}, center electron temperature (T{sub e0}) of 2.5 keV, a plasma duration time (t{sub d}) of 19 min, and RF heating power (P{sub RF}) of 1 MW was achieved by ICH and electron cyclotron heating.

  14. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves. 1; Waves in Multi Ion Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gumayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2006-01-01

    The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves [Khazanov et al., 2003] is presented. In order to adequately take into account the wave propagation and refraction in a multi-ion plasmasphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate spatial, temporal, and spectral evolutions of the ring current and electromagnetic ion cyclotron waves. To demonstrate the effects of EMIC wave propagation and refraction on the EMIC wave energy distributions and evolution we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, due to the density gradient at the plasmapause, the net wave refraction is suppressed, and He(+)-mode grows preferably at plasmapause. This result is in a total agreement with the previous ray tracing studies, and very clear observed in presented B-field spectrograms. Second, comparison the global wave distributions with the results from other ring current model [Kozyra et al., 1997] reveals that our model provides more intense and higher plasmapause organized distributions during the May, 1998 storm period. Finally, the found He(+)-mode energy distributions are not Gaussian distributions, and most important that wave energy can occupy not only the region of generation, i. e. the region of small wave normal angles, but the entire wave normal angle region and even only the region near 90 degrees. The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping, and subsequent downward heat transport and excitation of stable auroral red arcs.

  15. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves: Waves in Multi-Ion Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2006-01-01

    The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves (Khazanov et al., 2003) is presented In order to adequately take into account wave propagation and refraction in a multi-ion magnetosphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate the spatial, temporal, and spectral evolution of the ring current and of electromagnetic ion cyclotron waves To demonstrate the effects of EMIC wave propagation and refraction on the wave energy distribution and evolution, we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, owing to the density gradient at the plasmapause, the net wave refraction is suppressed, and He+-mode grows preferably at the plasmapause. This result is in total agreement with previous ray tracing studies and is very clearly found in presented B field spectrograms. Second, comparison of global wave distributions with the results from another ring current model (Kozyra et al., 1997) reveals that this new model provides more intense and more highly plasmapause-organized wave distributions during the May 1998 storm period Finally, it is found that He(+)-mode energy distributions are not Gaussian distributions and most important that wave energy can occupy not only the region of generation, i.e., the region of small wave normal angles, but all wave normal angles, including those to near 90 . The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping and subsequent downward heat transport and excitation of stable auroral red arcs.

  16. An inverted cylindrical sputter magnetron as metal vapor supply for electron cyclotron resonance ion sources

    SciTech Connect

    Weichsel, T. Hartung, U.; Kopte, T.; Zschornack, G.; Kreller, M.; Silze, A.

    2014-05-15

    An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 10{sup 10} cm{sup −3} to 1 × 10{sup 11} cm{sup −3}, when the magnetron plasma is exposed to the magnetic mirror field of the ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 10{sup 18} atoms/s for aluminum, which meets the demand for the production of a milliampere Al{sup +} ion beam.

  17. An inverted cylindrical sputter magnetron as metal vapor supply for electron cyclotron resonance ion sources.

    PubMed

    Weichsel, T; Hartung, U; Kopte, T; Zschornack, G; Kreller, M; Silze, A

    2014-05-01

    An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 10(10) cm(-3) to 1 × 10(11) cm(-3), when the magnetron plasma is exposed to the magnetic mirror field of the ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 10(18) atoms/s for aluminum, which meets the demand for the production of a milliampere Al(+) ion beam.

  18. Experiments with biased side electrodes in electron cyclotron resonance ion sources.

    PubMed

    Drentje, A G; Kitagawa, A; Uchida, T; Rácz, R; Biri, S

    2014-02-01

    The output of highly charged ions from an electron cyclotron resonance ion source (ECRIS) consists of ionic losses from a highly confined plasma. Therefore, an increase of the output of the ions of interest always is a compromise between an increase in the confinement and an increase of the losses. One route towards a solution consists of attacking the losses in directions - i.e., radial directions - that do not contribute to the required output. This was demonstrated in an experiment (using the Kei ECRIS at NIRS, Japan) where radial losses were electrostatically reduced by positively biasing one set of six "side" electrodes surrounding the plasma in side-ward directions attached (insulated) to the cylindrical wall of the plasma chamber. Recently new studies were performed in two laboratories using two essentially different ion sources. At the BioNano ECRIS (Toyo University, Japan) various sets of electrodes were used; each of the electrodes could be biased individually. At the Atomki ECRIS (Hungary), one movable, off-axis side electrode was applied in technically two versions. The measurements show indeed a decrease of ionic losses but different effectivities as compared to the biased disk.

  19. Experiments with biased side electrodes in electron cyclotron resonance ion sources

    SciTech Connect

    Drentje, A. G. Kitagawa, A.; Uchida, T.; Rácz, R.; Biri, S.

    2014-02-15

    The output of highly charged ions from an electron cyclotron resonance ion source (ECRIS) consists of ionic losses from a highly confined plasma. Therefore, an increase of the output of the ions of interest always is a compromise between an increase in the confinement and an increase of the losses. One route towards a solution consists of attacking the losses in directions – i.e., radial directions – that do not contribute to the required output. This was demonstrated in an experiment (using the Kei ECRIS at NIRS, Japan) where radial losses were electrostatically reduced by positively biasing one set of six “side” electrodes surrounding the plasma in side-ward directions attached (insulated) to the cylindrical wall of the plasma chamber. Recently new studies were performed in two laboratories using two essentially different ion sources. At the BioNano ECRIS (Toyo University, Japan) various sets of electrodes were used; each of the electrodes could be biased individually. At the Atomki ECRIS (Hungary), one movable, off-axis side electrode was applied in technically two versions. The measurements show indeed a decrease of ionic losses but different effectivities as compared to the biased disk.

  20. Dominance of second Bessel peak in relativistic electromagnetic ion cyclotron instabilities driven by fusion-produced fast ions

    SciTech Connect

    Chen, K. R.; Chen, H. K.; Lee, S. H.

    2007-09-15

    Relativistic electromagnetic ion cyclotron instabilities driven by fusion-produced fast ions in magnetized plasmas can have two peaks in their growth rate spectrum. The wave numbers of these two peaks are close to the first and second peaks, respectively, of the Bessel function that is in the resonance driving term. The driving of the second Bessel and growth rate peak occurring at a higher wave number is weaker than that of the first peak. Surprisingly, as in contrast to conventional wisdom, the second peak can dominate near the instability threshold. For the higher energy of fusion-produced fast ion such as 14.7 MeV, the slow ion temperature is required to be higher for overcoming the threshold to drive a cubic instability, which is determined by an Alfvenic condition. This cubic instability is due to the coupling of the first-order slow ion resonance and second-order fast ion resonance. This finite temperature effect is on the slow ion resonance and increases with wave number and thus the threshold is first satisfied near the second peak. Therefore, the second peak appears earlier in the instability spectrum and dominates near the threshold. The cubic instability has a much larger frequency mismatch than a coupled quadratic instability; a larger frequency mismatch indicates more fast ion energy to loss before the nonlinear saturation of the instability. When the slow ion temperature or density is about twice that of the threshold, the second peak has transited from the cubic to the coupled quadratic instability while the first peak remains as the cubic instability, in contrast to the previous 3.02 MeV proton case.

  1. Ion cyclotron and lower hybrid arrays applicable to current drive in fusion reactors

    SciTech Connect

    Bosia, G.; Ragona, R.; Helou, W.; Goniche, M.; Hillaret, J.

    2014-02-12

    This paper presents concepts for Ion Cyclotron and Lower Hybrid Current Drive arrays applicable to fusion reactors and based on periodically loaded line power division. It is shown that, in large arrays, such as the ones proposed for fusion reactor applications, these schemes can offer, in principle, a number of practical advantages, compared with currently adopted ones, such as in-blanket operation at significantly reduced power density, lay out suitable for water cooling, single ended or balanced power feed, simple and load independent impedance matching In addition, a remote and accurate real time measurement of the complex impedance of all array elements as well as detection, location, and measurement of the complex admittance of a single arc occurring anywhere in the structure is possible.

  2. Ion Cyclotron Waves Observed in the Comet Halley: A New Look to Giotto Observations

    NASA Astrophysics Data System (ADS)

    Rodriguez-Martinez, M. R.; Blanco-Cano, X.; Aguilar-Rodriguez, E.; Haro-Corzo, S. S. A. R., Sr.; Arriaga-Contreras, V. V. R.

    2015-12-01

    Ion Cyclotron Waves (ICW) were observed with Giotto spacecraft. Magnetic field data have been analyzed in the past to determine the nature of ICW and compared with other comets, as Giacobini-Zinner and Grigg-Skjellerup. It is important to develop tools that allow re-analyze these data in order to know better the characteristics of these waves. In this work we have applied a Fast Fourier Transform (FFT) analysis in which we define the transverse and compressive powers for a better contrast and characterization of ICW. The information obtained will be presented through dynamic spectra in several time intervals. This tool will allow to explore the possibility to check the existence of Harmonic Mode Waves (HMW) of these waves. Finally, we use linear kinetic theory, using WHAMP code, in order to determine conditions for wave growth in a plasma resembling the regions where these waves were observed.

  3. An explanation for experimental observations of harmonic cyclotron emission induced by fast ions

    SciTech Connect

    Chen, K.R.; Horton, W.; Van Dam, J.W.

    1993-09-01

    An explanation, supported by numerical simulations and analytical theory, is given for the harmonic cyclotron emission induced by fast ions in tokamak plasmas - particular, for the emission observed at low harmonics in deuterium-deuterium md deuterium-tritium experiments in the Joint European Tokamak. We show that the first proton harmonic is one of the highest spectral peaks whereas the first alpha is weak. We also compare the relative spectral amplitudes of different harmonics. Our results axe consistent with the experimental observations. The simulations verify that the instabilities are caused by a weak relativistic mass effect. Simulation that a nonuniform magnetic field leads to no appreciable change in the growth and saturation amplitude of the waves.

  4. Application of Fourier transform ion cyclotron resonance mass spectrometry to oligosaccharides.

    PubMed

    Park, Youmie; Lebrilla, Carlito B

    2005-01-01

    The application of Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to the structural elucidation of oligosaccharides is described. This review covers the analyses of oligosaccharides in the context of the unique features of FTICR MS and the improvements in instrumentation that make it possible to study this class of compounds. It consists of work performed initially to understand the fundamental aspects of oligosaccharide ionization and unimolecular fragmentation. More recent investigation includes the application of the technique to samples of direct biological origin. Chemical and enzymatic degradation methods in conjunction with mass spectrometry (MS) and the use front-end methods with FTICR MS are also discussed. The current applications including the characterization of bacterial lipooligosaccharides and phosporylated carbohydrates are described.

  5. Studies of electromagnetic ion cyclotron waves using AMPTE/CCE and dynamics explorer

    NASA Technical Reports Server (NTRS)

    Erlandson, Robert E.

    1994-01-01

    The overall objective of this research is to investigate the generation and propagation of electromagnetic ion cyclotron (EMIC) waves in the frequency range from 0.2 to 5 Hz (Pc 1 frequency band). Data used in this research were acquired by the AMPTE/CCE, DE-1, and DE-2 satellites. One of the primary questions addressed in this research is the role which EMIC waves have on the transfer of energy from the equatorial magnetosphere to the ionosphere. The primary result from this research is that some fraction of EMIC waves, generated in the equatorial magnetosphere, are Landau damped in the ionosphere and are therefore a heat source for ionospheric electrons. This result as well as other results are summarized below.

  6. Progress in high-temperature oven development for 28 GHz electron cyclotron resonance ion source

    SciTech Connect

    Ohnishi, J. Higurashi, Y.; Nakagawa, T.

    2016-02-15

    We have been developing a high-temperature oven using UO{sub 2} in the 28 GHz superconducting electron cyclotron resonance ion source at RIKEN since 2013. A total of eleven on-line tests were performed. The longest operation time in a single test was 411 h, and the consumption rate of UO{sub 2} was approximately 2.4 mg/h. In these tests, we experienced several problems: the ejection hole of a crucible was blocked with UO{sub 2} and a crucible was damaged because of the reduction of tungsten strength at high temperature. In order to solve these problems, improvements to the crucible shape were made by simulations using ANSYS.

  7. Prospects for advanced electron cyclotron resonance and electron beam ion source charge breeding methods for EURISOL

    SciTech Connect

    Delahaye, P.; Jardin, P.; Maunoury, L.; Traykov, E.; Varenne, F.; Angot, J.; Lamy, T.; Sortais, P.; Thuillier, T.; Ban, G.; Celona, L.; Lunney, D.; Choinski, J.; Gmaj, P.; Jakubowski, A.; Steckiewicz, O.; Kalvas, T.; and others

    2012-02-15

    As the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to post-acceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R and D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources. We describe here the guidelines of this R and D.

  8. Neoclassical transport of energetic minority tail ions generated by ion-cyclotron resonance heating in tokamak geometry

    SciTech Connect

    Chang, C.S. . Courant Inst. of Mathematical Sciences); Hammett, G.W.; Goldston, R.J. . Plasma Physics Lab.)

    1990-01-01

    Neoclassical transport of energetic minority tail ions, which are generated by high powered electromagnetic waves of the Ion Cyclotron Range of Frequencies (ICRF) at the fundamental harmonic resonance, is studied analytically in tokamak geometry. The effect of Coulomb collisions on the tail ion transport is investigated in the present work. The total tail ion transport will be the sum of the present collision-driven transport and the wave-driven transport, which is due to the ICRF-wave scattering of the tail particles as reported in the literature. The transport coefficients have been calculated kinetically, and it is found that the large tail ion viscosity, driven by the localized ICRF-heating and Coulomb slowing-down collisions, induces purely convective particle transport of the tail species, while the energy transport is both convective and diffusive. The rate of radial particle transport is shown to be usually small, but the rate of radial energy transport is larger and may not be negligible compared to the Coulomb slowing-down rate. 18 refs., 2 figs.

  9. Impact of ion cyclotron wall conditioning on fuel removal from plasma-facing components at TEXTOR

    NASA Astrophysics Data System (ADS)

    Carrasco, A. G.; Möller, S.; Petersson, P.; Ivanova, D.; Kreter, A.; Rubel, M.; Wauters, T.

    2014-04-01

    Ion cyclotron wall conditioning (ICWC) is based on low temperature and low density plasmas produced and sustained by ion cyclotron resonance (ICR) pulses in reactive or noble gases. The technique is being developed for ITER. It is tested in tokamaks in the presence of toroidal magnetic field (0.2-3.8 T) and heating power of the order of 105 W. ICWC with hydrogen, deuterium and oxygen-helium mixture was studied in the TEXTOR tokamak. The exposed samples were pre-characterized limiter tiles mounted on specially designed probes. The objectives were to assess the reduction of deuterium content, the uniformity of the reduction and the retention of seeded oxygen. For the last objective oxygen-18 was used as a marker. ICWC in hydrogen caused a drop of deuterium content in the tile by a factor of more than 2: from 4.5 × 1018 to 1.9 × 1018 D cm-2. A decrease of the fuel content by approximately 25% was achieved by the ICWC in oxygen, while no reduction of the fuel content was measured after exposure to discharges in deuterium. These are the first data ever obtained showing quantitatively the local decrease of deuterium in wall components treated by ICWC in a tokamak. The oxygen retention in the tiles exposed to ICWC with oxygen-helium was analyzed for different orientations and radial positions with respect to plasma. An average retention of 1.38 × 1016 18O cm-2 was measured. A maximum of the retention, 4.4 × 1016 18O cm-2, was identified on a sample surface near the plasma edge. The correlation with the gas inlet and antennae location has been studied.

  10. Ion Heating in Inhomogeneous Expanding Solar Wind Plasma: The Role of Parallel and Oblique Ion-cyclotron Waves

    NASA Astrophysics Data System (ADS)

    Ozak, N.; Ofman, L.; Viñas, A.-F.

    2015-01-01

    Remote sensing observations of coronal holes show that heavy ions are hotter than protons and their temperature is anisotropic. In-situ observations of fast solar wind streams provide direct evidence for turbulent Alfvén wave spectrum, left-hand polarized ion-cyclotron waves, and He++ - proton drift in the solar wind plasma, which can produce temperature anisotropies by resonant absorption and perpendicular heating of the ions. Furthermore, the solar wind is expected to be inhomogeneous on decreasing scales approaching the Sun. We study the heating of solar wind ions in inhomogeneous plasma with a 2.5D hybrid code. We include the expansion of the solar wind in an inhomogeneous plasma background, combined with the effects of a turbulent wave spectrum of Alfvénic fluctuations and initial ion-proton drifts. We study the influence of these effects on the perpendicular ion heating and cooling and on the spectrum of the magnetic fluctuations in the inhomogeneous background wind. We find that inhomogeneities in the plasma lead to enhanced heating compared to the homogenous solar wind, and the generation of significant power of oblique waves in the solar wind plasma. The cooling effect due to the expansion is not significant for super-Alfvénic drifts, and is diminished further when we include an inhomogeneous background density. We reproduce the ion temperature anisotropy seen in observations and previous models, which is present regardless of the perpendicular cooling due to solar wind expansion. We conclude that small scale inhomogeneities in the inner heliosphere can significantly affect resonant wave ion heating.

  11. ION HEATING IN INHOMOGENEOUS EXPANDING SOLAR WIND PLASMA: THE ROLE OF PARALLEL AND OBLIQUE ION-CYCLOTRON WAVES

    SciTech Connect

    Ozak, N.; Ofman, L.; Viñas, A.-F.

    2015-01-20

    Remote sensing observations of coronal holes show that heavy ions are hotter than protons and their temperature is anisotropic. In-situ observations of fast solar wind streams provide direct evidence for turbulent Alfvén wave spectrum, left-hand polarized ion-cyclotron waves, and He{sup ++} - proton drift in the solar wind plasma, which can produce temperature anisotropies by resonant absorption and perpendicular heating of the ions. Furthermore, the solar wind is expected to be inhomogeneous on decreasing scales approaching the Sun. We study the heating of solar wind ions in inhomogeneous plasma with a 2.5D hybrid code. We include the expansion of the solar wind in an inhomogeneous plasma background, combined with the effects of a turbulent wave spectrum of Alfvénic fluctuations and initial ion-proton drifts. We study the influence of these effects on the perpendicular ion heating and cooling and on the spectrum of the magnetic fluctuations in the inhomogeneous background wind. We find that inhomogeneities in the plasma lead to enhanced heating compared to the homogenous solar wind, and the generation of significant power of oblique waves in the solar wind plasma. The cooling effect due to the expansion is not significant for super-Alfvénic drifts, and is diminished further when we include an inhomogeneous background density. We reproduce the ion temperature anisotropy seen in observations and previous models, which is present regardless of the perpendicular cooling due to solar wind expansion. We conclude that small scale inhomogeneities in the inner heliosphere can significantly affect resonant wave ion heating.

  12. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources

    SciTech Connect

    Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C. M.; Prestemon, S.; Sabbi, G. L.; Todd, D. S.

    2009-05-04

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb{sub 3}Sn superconducting technology for several years. At the moment, Nb{sub 3}Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb{sub 3}Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb{sub 3}Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb{sub 3}Sn- , particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell

  13. Nb{sub 3}Sn superconducting magnets for electron cyclotron resonance ion sources

    SciTech Connect

    Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C. M.; Prestemon, S.; Sabbi, G. L.; Todd, D. S.

    2010-02-15

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb{sub 3}Sn superconducting technology for several years. At the moment, Nb{sub 3}Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb{sub 3}Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb{sub 3}Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb{sub 3}Sn, particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell

  14. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources.

    PubMed

    Ferracin, P; Caspi, S; Felice, H; Leitner, D; Lyneis, C M; Prestemon, S; Sabbi, G L; Todd, D S

    2010-02-01

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb(3)Sn superconducting technology for several years. At the moment, Nb(3)Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb(3)Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb(3)Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb(3)Sn, particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell pretensioned with water

  15. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P. Mishra, L.; Kewlani, H.; Mittal, K. C.; Patil, D. S.

    2014-03-15

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, −2 to −4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10{sup −3} mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  16. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source.

    PubMed

    Roychowdhury, P; Mishra, L; Kewlani, H; Patil, D S; Mittal, K C

    2014-03-01

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20-40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, -2 to -4 kV, and 0 kV, respectively. The total ion beam current of 30-40 mA is recorded on Faraday cup at 40 keV of beam energy at 600-1000 W of microwave power, 800-1000 G axial magnetic field and (1.2-3.9) × 10(-3) mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  17. Selective nonresonant acceleration of He-3(2+) and heavy ions by H(+) cyclotron waves. [in solar flares

    NASA Technical Reports Server (NTRS)

    Varvoglis, H.; Papadopoulos, K.

    1983-01-01

    The model advanced by Fisk (1978) to explain the anomalous enhancements in the abundance of some ionic species in energetic solar particle flux measurements at about 1 AU is revised by including the proper nonlinear physics of particle energization by electrostatic ion cyclotron (EIC) waves. The revised model contains two basic concepts by Fisk: the energization by EIC waves and the need for a second stage acceleration. There is no need for exciting He-4(2+) cyclotron waves, since the dominant process is nonresonant and can be accomplished by hydrogen cyclotron waves. The A/Q selectivity in the flux available for energization in the second stage process enters through the nonlinear saturation level, which in conventional theories depends on the current that drives the instabilities.

  18. Molecular and negative ion production by a standard electron cyclotron resonance ion source.

    PubMed

    Rácz, R; Biri, S; Juhász, Z; Sulik, B; Pálinkás, J

    2012-02-01

    Molecular and negative ion beams, usually produced in special ion sources, play an increasingly important role in fundamental and applied atomic physics. The ATOMKI-ECRIS is a standard ECR ion source, designed to provide highly charged ion (HCI) plasmas and beams. In the present work, H(-), O(-), OH(-), O(2)(-), C(-), C(60)(-) negative ions and H(2)(+), H(3)(+), OH(+), H(2)O(+), H(3)O(+), O(2)(+) positive molecular ions were generated in this HCI-ECRIS. Without any major modification in the source and without any commonly applied tricks (such as usage of cesium or magnetic filter), negative ion beams of several μA and positive molecular ion beams in the mA range were successfully obtained.

  19. Molecular and negative ion production by a standard electron cyclotron resonance ion source

    SciTech Connect

    Racz, R.; Biri, S.; Juhasz, Z.; Sulik, B.

    2012-02-15

    Molecular and negative ion beams, usually produced in special ion sources, play an increasingly important role in fundamental and applied atomic physics. The ATOMKI-ECRIS is a standard ECR ion source, designed to provide highly charged ion (HCI) plasmas and beams. In the present work, H{sup -}, O{sup -}, OH{sup -}, O{sub 2}{sup -}, C{sup -}, C{sub 60}{sup -} negative ions and H{sub 2}{sup +}, H{sub 3}{sup +}, OH{sup +}, H{sub 2}O{sup +}, H{sub 3}O{sup +}, O{sub 2}{sup +} positive molecular ions were generated in this HCI-ECRIS. Without any major modification in the source and without any commonly applied tricks (such as usage of cesium or magnetic filter), negative ion beams of several {mu}A and positive molecular ion beams in the mA range were successfully obtained.

  20. Effects of electromagnetic ion cyclotron rising tone emissions on the magnetospheric plasmas

    NASA Astrophysics Data System (ADS)

    Shoji, M.; Omura, Y.

    2015-12-01

    We perform self-consistent hybrid simulations on electromagnetic ion cyclotron (EMIC) triggered emissions with a gradient of the non-uniform ambient magnetic field and obtained broadband and clear rising tone EMIC emissions. We also performed the test particle simulations for scattering of the relativistic electrons. Broadband emissions induce rapid precipitation of energetic protons and relativistic electrons into the loss cone since the scattering by the concurrent triggering takes place faster than that of the coherent emissions. The coherent triggered emission causes efficient proton acceleration around the equator because of the stable particle trapping by the coherent rising tone emission. Nonlinear trapping causes significant relativistic electron scattering in wide energy range. Since the frequency of the rising tone emissions reaches close to the gyro-frequency and the emission also induces lower band EMIC waves which are also close to the gyro-frequency, the minimum resonance energy of the electrons reaches 300 keV. The higher energetic electrons (with 6 MeV to 20 MeV) are scattered almost 70 % for both broadband and rising tone cases. The hybrid simulations including cold ion heating are also performed, which shows the selective heating of heavy ions (Helium and Oxygen). These heating mechanism also makes the dynamic spectrum of the EMIC wave complex.

  1. Electron cyclotron resonance heating by magnetic filter field in a negative hydrogen ion source

    SciTech Connect

    Kim, June Young Cho, Won-Hwi; Dang, Jeong-Jeung; Chung, Kyoung-Jae Hwang, Y. S.

    2016-02-15

    The influence of magnetic filter field on plasma properties in the heating region has been investigated in a planar-type inductively coupled radio-frequency (RF) H{sup −} ion source. Besides filtering high energy electrons near the extraction region, the magnetic filter field is clearly observed to increase the electron temperature in the heating region at low pressure discharge. With increasing the operating pressure, enhancement of electron temperature in the heating region is reduced. The possibility of electron cyclotron resonance (ECR) heating in the heating region due to stray magnetic field generated by a filter magnet located at the extraction region is examined. It is found that ECR heating by RF wave field in the discharge region, where the strength of an axial magnetic field is approximately ∼4.8 G, can effectively heat low energy electrons. Depletion of low energy electrons in the electron energy distribution function measured at the heating region supports the occurrence of ECR heating. The present study suggests that addition of axial magnetic field as small as several G by an external electromagnet or permanent magnets can greatly increase the generation of highly ro-vibrationally excited hydrogen molecules in the heating region, thus improving the performance of H{sup −} ion generation in volume-produced negative hydrogen ion sources.

  2. Helicon Plasma Injector and Ion Cyclotron Acceleration Development in the VASIMR Experiment

    NASA Technical Reports Server (NTRS)

    Squire, Jared P.; Chang, Franklin R.; Jacobson, Verlin T.; McCaskill, Greg E.; Bengtson, Roger D.; Goulding, Richard H.

    2000-01-01

    In the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) radio frequency (rf) waves both produce the plasma and then accelerate the ions. The plasma production is done by action of helicon waves. These waves are circular polarized waves in the direction of the electron gyromotion. The ion acceleration is performed by ion cyclotron resonant frequency (ICRF) acceleration. The Advanced Space Propulsion Laboratory (ASPL) is actively developing efficient helicon plasma production and ICRF acceleration. The VASIMR experimental device at the ASPL is called VX-10. It is configured to demonstrate the plasma production and acceleration at the 10kW level to support a space flight demonstration design. The VX-10 consists of three electromagnets integrated into a vacuum chamber that produce magnetic fields up to 0.5 Tesla. Magnetic field shaping is achieved by independent magnet current control and placement of the magnets. We have generated both helium and hydrogen high density (>10(exp 18) cu m) discharges with the helicon source. ICRF experiments are underway. This paper describes the VX-10 device, presents recent results and discusses future plans.

  3. Development of a novel mass spectrometer equipped with an electron cyclotron resonance ion source.

    PubMed

    Kidera, Masanori; Takahashi, Kazuya; Enomoto, Shuichi; Mitsubori, Youhei; Goto, Akira; Yano, Yasushige

    2007-01-01

    The ionization efficiency of an electron cyclotron resonance ion source (ECRIS) is generally high, and all elements can be fundamentally ionized by the high-temperature plasma. We focused our attention on the high potentiality of ECRIS as an ion source for mass spectrometers and attempted to customize the mass spectrometer equipped with an ECRIS. Precise measurements were performed by using an ECRIS that was specialized and customized for elemental analysis. By using the charge-state distribution and the isotope ratio, the problem of overlap such as that observed in the spectra of isobars could be solved without any significant improvement in the mass resolution. When the isotope anomaly (or serious mass discrimination effect) was not observed in ECR plasma, the system was found to be very effective for isotope analysis. In this paper, based on the spectrum (ion current as a function of an analyzing magnet current) results of low charged state distributions (2+, 3+, 4+, ...) of noble gases, we discuss the feasibility of an elemental analysis system employing an ECRIS, particularly for isotopic analysis. The high-performance isotopic analysis obtained for ECRIS mass spectrometer in this study suggests that it can be widely applied to several fields of scientific study that require elemental or isotopic analyses with high sensitivity.

  4. Comparison of Monte-Carlo Ion Cyclotron Heating Model with Full-Wave Linear Absorption Model

    NASA Astrophysics Data System (ADS)

    Choi, M.; Chan, V. S.; Berry, L. A.; Jaeger, E. F.; Green, D.; Bonoli, P.; Wright, J.

    2009-05-01

    To fully account for the wave-particle interaction physics in ion-cyclotron resonant frequency heating experiments, the 5-D Monte-Carlo code ORBIT-RF is being coupled with the 2-D full wave code AORSA to iteratively evolve ion distribution in x-v space that is used to update the dielectric tensor in AORSA for evaluating the full-wave fields. It is demonstrated that using the full-wave fields from a Maxwellian dielectric tensor in AORSA and confining the resonant ions to their initial orbits in ORBIT-RF, ORBIT-RF largely reproduces the AORSA linear wave absorption profiles for fundamental and higher harmonic ICRF heating. An exception is an observed inward shift of the ORBIT-RF absorption peak for high harmonics near the magnetic-axis compared with that of AORSA, which can be attributed to a finite orbit width effect. Analysis of power absorption in velocity space confirms that significant power is absorbed by energetic particles with their banana tips at resonance locations.

  5. Proton Heating by Pick-up Ion Driven Cyclotron Waves in the Outer Heliosphere: Hybrid Expanding Box Simulations

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr; Trávníček, Pavel M.

    2016-11-01

    Using a one-dimensional hybrid expanding box model, we investigate properties of the solar wind in the outer heliosphere. We assume a proton-electron plasma with a strictly transverse ambient magnetic field and, aside from the expansion, we take into account the influence of a continuous injection of cold pick-up protons through the charge-exchange process between the solar wind protons and hydrogen of interstellar origin. The injected cold pick-up protons form a ring distribution function, which rapidly becomes unstable, and generate Alfvén cyclotron waves. The Alfvén cyclotron waves scatter pick-up protons to a spherical shell distribution function that thickens over that time owing to the expansion-driven cooling. The Alfvén cyclotron waves heat solar wind protons in the perpendicular direction (with respect to the ambient magnetic field) through cyclotron resonance. At later times, the Alfvén cyclotron waves become parametrically unstable and the generated ion-acoustic waves heat protons in the parallel direction through Landau resonance. The resulting heating of the solar wind protons is efficient on the expansion timescale.

  6. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results

    NASA Astrophysics Data System (ADS)

    Anupriya; Jones, Chad A.; Dearden, David V.

    2016-08-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy.

  7. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results.

    PubMed

    Anupriya; Jones, Chad A; Dearden, David V

    2016-08-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy. Graphical Abstract ᅟ.

  8. Application of Local Time Dependent Ion Composition to Observations, Modeling, and Effects of Electromagnetic Ion Cyclotron Waves

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Angelopoulos, V.; Chen, L.; Thorne, R. M.

    2014-12-01

    Numerous global magnetospheric studies on electromagnetic ion cyclotron (EMIC) waves have revealed the typical wave properties observed throughout the Earth's magnetosphere. The observed trends in the wave properties at various geocentric distances and local time sectors, although in general agreement, elude satisfactory explanation without further details on the ambient plasma properties, the low-energy (few to ~100 eV) ions in particular. Recent studies also described techniques to deduce the presence and properties of low-energy ions and the application of such a technique to THEMIS (Time History of Events and Macroscale Interactions during Substorms) data has revealed the typical low-energy ion compositional properties throughout the Earth's magnetosphere. Motivated by the recent work on EMIC waves and low-energy ion composition, we analyze typical wave cases observed at each local time sector by the THEMIS satellites and apply the composition techniques or the statistical low-energy ion composition data to constrain the low-energy components in modeling of each wave case in the context of linear hot plasma theory. We find that the observed waves are modeled well with hot plasma theory and both are fully consistent with the composition of the ambient plasma. Our results suggest that combined ion composition and wave measurements are critical for further assessment of the effects of the waves on energetic particles. In the cases we report on here, we find the waves could resonantly interact with electrons at energies in excess of 2 MeV and therefore do not have an effect on the dominant trapped electron population.

  9. A proposal for a novel H ion source based on electron cyclotron resonance heating and surface ionization

    SciTech Connect

    Tarvainen, Ollie A; Kurennoy, Sergey

    2008-01-01

    A design for a novel H{sup -} ion source based on electron cyclotron resonance plasma heating and surface ionization is presented. The plasma chamber of the source is an rf-cavity designed for TE{sub 111} eigenmode at 2.45 GHz. The desired mode is excited with a loop antenna. The ionization process takes place on a cesiated surface of a biased converter electrode. The H{sup -} ion beam is further 'self-extracted' through the plasma region. The magnetic field of the source is optimized for plasma generation by electron cyclotron resonance heating, and beam extraction. The design features of the source are discussed in detail and the attainable H{sup -} ion current, beam emittance and duty factor of the novel source are estimated.

  10. A Proposal for a Novel H{sup -} Ion Source Based on Electron Cyclotron Resonance Plasma Heating and Surface Ionization

    SciTech Connect

    Tarvainen, O.; Kurennoy, S.

    2009-03-12

    A design for a novel H{sup -} ion source based on electron cyclotron resonance plasma heating and surface ionization is presented. The plasma chamber of the source is an rf-cavity designed for TE{sub 111} eigenmode at 2.45 GHz. The desired mode is excited with a loop antenna. The ionization process takes place on a cesiated surface of a biased converter electrode. The H{sup -} ion beam is further ''self-extracted'' through the plasma region. The magnetic field of the source is optimized for plasma generation by electron cyclotron resonance heating, and beam extraction. The design features of the source are discussed in detail and the attainable H{sup -} ion current, beam emittance and duty factor of the novel source are estimated.

  11. Particle-in-cell Simulations of Continuously Driven Mirror and Ion Cyclotron Instabilities in High Beta Astrophysical and Heliospheric Plasmas

    NASA Astrophysics Data System (ADS)

    Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel

    2015-02-01

    We use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is β ~ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with p > p ∥ and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale as the background magnetic field (with δB ~ 0.3 langBrang in the secular phase). At early times, the ion magnetic moment is well-conserved but once the fluctuation amplitudes exceed δB ~ 0.1 langBrang, the magnetic moment is no longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and low-luminosity accretion disks around black holes.

  12. New method for comprehensive detection of chemical warfare agents using an electron-cyclotron-resonance ion-source mass spectrometer.

    PubMed

    Kidera, Masanori; Seto, Yasuo; Takahashi, Kazuya; Enomoto, Shuichi; Kishi, Shintaro; Makita, Mika; Nagamatsu, Tsuyoshi; Tanaka, Tatsuhiko; Toda, Masayoshi

    2011-03-01

    We developed a detection technology for vapor forms of chemical warfare agents (CWAs) with an element analysis system using an electron cyclotron resonance ion source. After the vapor sample was introduced directly into the ion source, the molecular material was decomposed into elements using electron cyclotron resonance plasma and ionized. The following CWAs and stimulants were examined: diisopropyl fluorophosphonate (DFP), 2-chloroethylethylsulfide (2CEES), cyanogen chloride (CNCl), and hydrogen cyanide (HCN). The type of chemical warfare agents, specifically, whether it was a nerve agent, blister agent, blood agent, or choking agent, could be determined by measuring the quantities of the monatomic ions or CN(+) using mass spectrometry. It was possible to detect gaseous CWAs that could not be detected by a conventional mass spectrometer. The distribution of electron temperature in the plasma could be closely controlled by adjusting the input power of the microwaves used to generate the electron cyclotron resonance plasma, and the target compounds could be detected as molecular ions or fragment ions, enabling identification of the target agents.

  13. New method for comprehensive detection of chemical warfare agents using an electron-cyclotron-resonance ion-source mass spectrometer

    NASA Astrophysics Data System (ADS)

    Kidera, Masanori; Seto, Yasuo; Takahashi, Kazuya; Enomoto, Shuichi; Kishi, Shintaro; Makita, Mika; Nagamatsu, Tsuyoshi; Tanaka, Tatsuhiko; Toda, Masayoshi

    2011-03-01

    We developed a detection technology for vapor forms of chemical warfare agents (CWAs) with an element analysis system using an electron cyclotron resonance ion source. After the vapor sample was introduced directly into the ion source, the molecular material was decomposed into elements using electron cyclotron resonance plasma and ionized. The following CWAs and stimulants were examined: diisopropyl fluorophosphonate (DFP), 2-chloroethylethylsulfide (2CEES), cyanogen chloride (CNCl), and hydrogen cyanide (HCN). The type of chemical warfare agents, specifically, whether it was a nerve agent, blister agent, blood agent, or choking agent, could be determined by measuring the quantities of the monatomic ions or CN + using mass spectrometry. It was possible to detect gaseous CWAs that could not be detected by a conventional mass spectrometer. The distribution of electron temperature in the plasma could be closely controlled by adjusting the input power of the microwaves used to generate the electron cyclotron resonance plasma, and the target compounds could be detected as molecular ions or fragment ions, enabling identification of the target agents.

  14. PARTICLE-IN-CELL SIMULATIONS OF CONTINUOUSLY DRIVEN MIRROR AND ION CYCLOTRON INSTABILITIES IN HIGH BETA ASTROPHYSICAL AND HELIOSPHERIC PLASMAS

    SciTech Connect

    Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel E-mail: eliot@berkeley.edu

    2015-02-10

    We use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is β ∼ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with p > p {sub ∥} and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale as the background magnetic field (with δB ∼ 0.3 (B) in the secular phase). At early times, the ion magnetic moment is well-conserved but once the fluctuation amplitudes exceed δB ∼ 0.1 (B), the magnetic moment is no longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and low-luminosity accretion disks around black holes.

  15. Structural characterization of phospholipids by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Marto, J A; White, F M; Seldomridge, S; Marshall, A G

    1995-11-01

    Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode.

  16. The effect of plasma shear flow on drift Alfven instabilities of a finite beta plasma and on anomalous heating of ions by ion cyclotron turbulence

    NASA Astrophysics Data System (ADS)

    Jo, Young Hyun; Lee, Hae June; Mikhailenko, Vladimir V.; Mikhailenko, Vladimir S.

    2016-01-01

    It was derived that the drift-Alfven instabilities with the shear flow parallel to the magnetic field have significant difference from the drift-Alfven instabilities of a shearless plasma when the ion temperature is comparable with electron temperature for a finite plasma beta. The velocity shear not only modifies the frequency and the growth rate of the known drift-Alfven instability, which develops due to the inverse electron Landau damping, but also triggers a combined effect of the velocity shear and the inverse ion Landau damping, which manifests the development of the ion kinetic shear-flow-driven drift-Alfven instability. The excited unstable waves have the phase velocities along the magnetic field comparable with the ion thermal velocity, and the growth rate is comparable with the frequency. The development of this instability may be the efficient mechanism of the ion energization in shear flows. The levels of the drift--Alfven turbulence, resulted from the development of both instabilities, are determined from the renormalized nonlinear dispersion equation, which accounts for the nonlinear effect of the scattering of ions by the electromagnetic turbulence. The renormalized quasilinear equation for the ion distribution function, which accounts for the same effect of the scattering of ions by electromagnetic turbulence, is derived and employed for the analysis of the ion viscosity and ions heating, resulted from the interactions of ions with drift-Alfven turbulence. In the same way, the phenomena of the ion cyclotron turbulence and anomalous anisotropic heating of ions by ion cyclotron plasma turbulence has numerous practical applications in physics of the near-Earth space plasmas. Using the methodology of the shearing modes, the kinetic theory of the ion cyclotron turbulence of the plasma with transverse current with strong velocity shear has been developed.

  17. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometric analysis of metal-ion selected dynamic protein libraries.

    PubMed

    Cooper, Helen J; Case, Martin A; McLendon, George L; Marshall, Alan G

    2003-05-07

    The application of electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry to the investigation of the relative stabilities (and thus packing efficiencies) of Fe-bound trihelix peptide bundles is demonstrated. Small dynamic protein libraries are created by metal-ion assisted assembly of peptide subunits. Control of the trimeric aggregation state is coupled to stability selection by exploiting the coordination requirements of Fe(2+) in the presence of bidentate 2,2'-bipyridyl ligands covalently appended to the peptide monomers. At limiting metal-ion concentration, the most thermodynamically stable, optimally packed peptide trimers dominate the mass spectrum. The identities of optimally stable candidate trimers observed in the ESI FT-ICR mass spectra are confirmed by resynthesis of exchange-inert analogues and measurement of their folding free energies. The peptide composition of the trimers may be determined by infrared multiphoton dissociation (IRMPD) MS(3) experiments. Additional sequence information for the peptide subunits is obtained from electron capture dissociation (ECD) of peptides and metal-bound trimers. The experiments also suggest the presence of secondary structure in the gas phase, possibly due to partial retention of the solution-phase coiled coil structure.

  18. Identification of sites of ubiquitination in proteins: a fourier transform ion cyclotron resonance mass spectrometry approach.

    PubMed

    Cooper, Helen J; Heath, John K; Jaffray, Ellis; Hay, Ronald T; Lam, Tukiet T; Marshall, Alan G

    2004-12-01

    Structural elucidation of posttranslationally modified peptides and proteins is of key importance in the understanding of an array of biological processes. Ubiquitination is a reversible modification that regulates many cellular functions. Consequences of ubiquitination depend on whether a single ubiquitin or polyubiquitin chain is added to the tagged protein. The lysine residue through which the polyubiquitin chain is formed is also critical for biological activity. Robust methods are therefore required to identify sites of ubiquitination modification, both in the target protein and in ubiquitin. Here, we demonstrate the suitability of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry, in conjunction with activated ion electron capture dissociation (AI ECD) or infrared multiphoton dissociation (IRMPD), for the analysis of ubiquitinated proteins. Polyubiquitinated substrate protein GST-Ubc5 was generated in vitro. Tryptic digests of polyubiquitinated species contain modified peptides in which the ubiquitin C-terminal Gly-Gly residues are retained on the modified lysine residues. Direct infusion microelectrospray FT-ICR of the digest and comparison with an in silico digest enables identification of modified peptides and therefore sites of ubiquitination. Fifteen sites of ubiquitination were identified in GST-Ubc5 and four sites in ubiquitin. Assignments were confirmed by AI ECD or IRMPD. The Gly-Gly modification is stable and both tandem mass spectrometric techniques are suitable, providing extensive sequence coverage and retention of the modification on backbone fragments.

  19. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox

    NASA Astrophysics Data System (ADS)

    Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E.; Tolmachev, Aleksey V.; Tolić, Nikola; Robinson, Errol W.; Koppenaal, David W.; Paša-Tolić, Ljiljana

    2016-12-01

    We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged Substance P with minimal spectral averaging, and 8158 molecular formulas assigned to Suwannee River Fulvic Acid standard with root-mean-square (RMS) error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apo-transferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g., 6 s time-domains with absorption mode processing yielded resolution of approximately 1 M at m/z = 2700).

  20. Electromagnetic ion cyclotron waves in the inner magnetosphere with a losscone proton distribution

    NASA Astrophysics Data System (ADS)

    Singh, Satyavir; Omura, Yoshiharu

    2016-07-01

    Electromagnetic ion cyclotron (EMIC) waves are studied in the inner magnetospheric plasma. The plasma is assumed to have five components, i.e., electrons, cold and hot protons, singly charged helium and oxygen ions. The hot protons are assumed to have an anisotropic losscone distribution particle distribution. The numerical results are obtained using KUPDAP (Kyoto University Plasma Dispersion Analysis Package), a full dispersion solver developed at Kyoto University. The hot plasma dispersion relation and polarizations of EMIC waves in oblique propagation are very complex. Although we find that nonlinear wave growth process is dominant near the equatorial region generating EMIC rising tone emissions, the propagation characteristics of the emissions such as linear growth/damping rates, variation of polarizations, and Poynting vectors in the presence of energetic protons have not been studied quantitatively.The growth/damping of oxygen, helium, and proton bands and higher harmonics of the EMIC waves are studied. The findings from our model are applied to EMIC wave observations in the inner magnetosphere by the Cluster spacecraft.

  1. High-Power Arctic Lidar for observations of Sodium layer and Calcium Ion Cyclotron Resonance Heating

    NASA Astrophysics Data System (ADS)

    Wuerker, R. F.; Foley, J.; Kidd, P.; Wong, A. Y.

    1998-11-01

    The UCLA HIPAS Observatory is located at 64o 54' 22"N, 146o 50' 33" W. It passes under the auroral oval, has a 2.7 m diameter liquid mirror collector (LMT), and two bistatic laser illuminators; a Doubled YAG pumped dye laser and a Doubled (tunable) Alexandrite laser. The first emits 0.1 J - 10 ns pulses at 590nm (Na) at 20 Hz. The second laser emits 0.15 J -10 ns pulses at 393 nm (Ca+) and 391.4 nm (N2) at 10 Hz. New sporadic sodium layers have been observed during the passage of the electrojet and auroras in periods of 20-30 seconds, indicating that sodium is liberated from micrometeors during auroral precipitations. The Laser Induced Fluorescence techniques will be used to observe the acceleration of the Ca+ ions when they are driven by the 80 MW (ERP) 2.85MHz RF array, modulated at the Ca+ ion Cyclotron Frequency. 1. Ionospheric Modifaction and Enviromental Research in the Auroral Region in Plasma Science and the Environment. Publisher: AIP Press, Woodbury, NY. Editors: W. Manheimer, L. Sugiyama, T. Stix; Chapter 3, pgs. 41-75, 1997. Research supported by ONR N00014-96-C-0040

  2. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox

    SciTech Connect

    Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E.; Tolmachev, Aleksey V.; Tolić, Nikola; Robinson, Errol W.; Koppenaal, David W.; Paša-Tolić, Ljiljana

    2016-10-12

    We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged substance P with minimal spectral averaging, and 8,158 molecular formulas assigned to Suwannee River Fulvic Acid standard with RMS error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apotransferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g. 6 s time-domains with absorption mode processing yielded resolution of approximately 1M at m/z =2,700).

  3. Development of gas pulsing system for electron cyclotron resonance ion sourcea)

    NASA Astrophysics Data System (ADS)

    Hojo, S.; Honma, T.; Muramatsu, M.; Sakamoto, Y.; Sugiura, A.

    2008-02-01

    A gas-pulsing system for an electron cyclotron resonance ion source with all permanent magnets (Kei2 source) at NIRS has been developed and tested. The system consists of a small vessel (30ml) to reserve CH4 gas and two fast solenoid valves that are installed at both sides of the vessel. They are connected to each other and to the Kei2 source by using a stainless-steel pipe (4mm inner diameter), where the length of the pipe from the valve to the source is 60cm and the conductance is 1.2l /s. From the results of the test, almost 300eμA for a pulsed C4+12 beam was obtained at a Faraday cup in an extraction-beam channel with a pressure range of 4000Pa in the vessel. At this time, the valve has an open time of 10ms and the delay time between the valve open time and the application of microwave power is 100ms. In experiments, the conversion efficiency for input CH4 molecules to the quantity of extracted C4+12 ions in one beam pulse was found to be around 3% and the ratio of the total amount of the gas requirement was only 10% compared with the case of continuous gas provided in 3.3s of repetition in HIMAC.

  4. Instability of the parallel electromagnetic modes in Kappa distributed plasmas - II. Electromagnetic ion-cyclotron modes

    NASA Astrophysics Data System (ADS)

    Lazar, M.; Poedts, S.

    2014-01-01

    The low-frequency fluctuations of the interplanetary magnetic field are frequently attributed to electromagnetic ion-cyclotron (EMIC) waves generated either locally and self-consistently by the temperature anisotropy of ions, or in the corona and transported by the super-Alfvénic solar wind. This paper conducts a refined analysis of the EMIC instability in the presence of suprathermal populations. The anisotropic distributions are modelled with two different power-law distributions functions, the additive bi-Kappa (BK) and the more general product-bi-Kappa (PBK) distribution function. EMIC solutions are derived exactly numerically for the full range of the plasma parameters, including conditions relevant for the solar wind and magnetospheric plasmas. Accurate physical correlations are provided between the maximum growth rates and the instability threshold conditions. The expectation that the instability might be stimulated by the suprathermals is confirmed by both Kappa models, but in a complementary way: while the instability thresholds are lowered by the BK model, at higher anisotropies the growth rates are enhanced only by the PBK model.

  5. A double-layer based model of ion confinement in electron cyclotron resonance ion source

    SciTech Connect

    Mascali, D. Neri, L.; Celona, L.; Castro, G.; Gammino, S.; Ciavola, G.; Torrisi, G.; Sorbello, G.

    2014-02-15

    The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this “barrier” confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.

  6. Production of highly charged heavy ions by 18 GHz superconducting electron cyclotron resonance at Research Center for Nuclear Physics.

    PubMed

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2010-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has been installed as a subject of the azimuthally varying field cyclotron upgrade project (K. Hatanaka et al., in Proceedings of the 17th International Conference on Cyclotrons and Their Applications, Tokyo, Japan, 18-22 October 2004, pp. 115-117), in order to increase beam currents and to extend the variety of ions. The production development of several ions has been performed since 2006 and some of them have already been used for user experiments [T. Yorita et al., Rev. Sci. Instrum. 79, 02A311 (2008)]. Further optimizations for each component such as the material of plasma electrode, material, and shape of bias probe and mirror field have been continued and more intense ion beams have been obtained for O, N, and Ar. For the purpose of obtaining highly charged Xe with several microamperes, the optimization of position and shape of plasma electrode and bias disk has also been done and highly charged Xe(32+) beam has been obtained successfully.

  7. Ultracompact/ultralow power electron cyclotron resonance ion source for multipurpose applications

    SciTech Connect

    Sortais, P.; Lamy, T.; Medard, J.; Angot, J.; Latrasse, L.; Thuillier, T.

    2010-02-15

    In order to drastically reduce the power consumption of a microwave ion source, we have studied some specific discharge cavity geometries in order to reduce the operating point below 1 W of microwave power (at 2.45 GHz). We show that it is possible to drive an electron cyclotron resonance ion source with a transmitter technology similar to those used for cellular phones. By the reduction in the size and of the required microwave power, we have developed a new type of ultralow cost ion sources. This microwave discharge system (called COMIC, for COmpact MIcrowave and Coaxial) can be used as a source of light, plasma or ions. We will show geometries of conductive cavities where it is possible, in a 20 mm diameter chamber, to reduce the ignition of the plasma below 100 mW and define typical operating points around 5 W. Inside a simple vacuum chamber it is easy to place the source and its extraction system anywhere and fully under vacuum. In that case, current densities from 0.1 to 10 mA/cm{sup 2} (Ar, extraction 4 mm, 1 mAe, 20 kV) have been observed. Preliminary measurements and calculations show the possibility, with a two electrodes system, to extract beams within a low emittance. The first application for these ion sources is the ion injection for charge breeding, surface analyzing system and surface treatment. For this purpose, a very small extraction hole is used (typically 3/10 mm for a 3 {mu}A extracted current with 2 W of HF power). Mass spectrum and emittance measurements will be presented. In these conditions, values down to 1 {pi} mm mrad at 15 kV (1{sigma}) are observed, thus very close to the ones currently observed for a surface ionization source. A major interest of this approach is the possibility to connect together several COMIC devices. We will introduce some new on-going developments such as sources for high voltage implantation platforms, fully quartz radioactive ion source at ISOLDE or large plasma generators for plasma immersion, broad or ribbon

  8. Effect of high energy electrons on H- production and destruction in a high current DC negative ion source for cyclotron

    NASA Astrophysics Data System (ADS)

    Onai, M.; Etoh, H.; Aoki, Y.; Shibata, T.; Mattei, S.; Fujita, S.; Hatayama, A.; Lettry, J.

    2016-02-01

    Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H- production. The modelling results reasonably explains the dependence of the H- extraction current on the arc-discharge power in the experiments.

  9. Effect of high energy electrons on H⁻ production and destruction in a high current DC negative ion source for cyclotron.

    PubMed

    Onai, M; Etoh, H; Aoki, Y; Shibata, T; Mattei, S; Fujita, S; Hatayama, A; Lettry, J

    2016-02-01

    Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H(-) production. The modelling results reasonably explains the dependence of the H(-) extraction current on the arc-discharge power in the experiments.

  10. Formation of a conical distribution and intense ion heating in the presence of hydrogen cyclotron waves. [in earth ionosphere

    NASA Technical Reports Server (NTRS)

    Okuda, H.; Ashour-Abdalla, M.

    1981-01-01

    In the considered investigation, it is assumed that the field aligned currents are responsible for producing electrostatic harmonic cyclotron waves (EHC). Using a one-dimensional simulation model in which the electron velocity distribution is maintained by a constant injection of the initial distribution, it is shown that, in contrast to earlier initial value simulations, EHC waves grow to a large amplitude, resulting in the formation of an anisotropic ion velocity distribution. Both the heating rate and the anisotropy are in reasonable agreement with the quasi-linear theory, taking into account the cyclotron resonance. The results show that the saturation is due to the combined effects of wave induced diffusion in an electron velocity space and the heating of ions perpendicularly. Both these effects reduce the growth rate.

  11. Current density distributions and sputter marks in electron cyclotron resonance ion sources

    SciTech Connect

    Panitzsch, Lauri; Peleikis, Thies; Boettcher, Stephan; Stalder, Michael; Wimmer-Schweingruber, Robert F.

    2013-01-15

    Most electron cyclotron resonance ion sources use hexapolar magnetic fields for the radial confinement of the plasma. The geometry of this magnetic structure is then-induced by charged particles-mapped onto the inner side of the plasma electrode via sputtering and deposition. The resulting structures usually show two different patterns: a sharp triangular one in the central region which in some cases is even sputtered deep into the material (referred to as thin groove or sharp structure), and a blurred but still triangular-like one in the surroundings (referred to as broad halo). Therefore, both patterns seem to have different sources. To investigate their origins we replaced the standard plasma electrode by a custom-built plasma electrode acting as a planar, multi-segment current-detector. For different biased disc voltages, detector positions, and source biases (referred to the detector) we measured the electrical current density distributions in the plane of the plasma electrode. The results show a strong and sharply confined electron population with triangular shape surrounded by less intense and spatially less confined ions. Observed sputter- and deposition marks are related to the analysis of the results. Our measurements suggest that the two different patterns (thin and broad) indeed originate from different particle populations. The thin structures seem to be caused by the hot electron population while the broad marks seem to stem from the medium to highly charged ions. In this paper we present our measurements together with theoretical considerations and substantiate the conclusions drawn above. The validity of these results is also discussed.

  12. On RF heating of inhomogeneous collisional plasma under ion-cyclotron resonance conditions

    SciTech Connect

    Timofeev, A. V.

    2015-11-15

    During ion-cyclotron resonance (ICR) heating of plasma by the magnetic beach method, as well as in some other versions of ICR heating, it is necessary to excite Alfvén oscillations. In this case, it is difficult to avoid the phenomenon of the Alfvén resonance, in which Alfvén oscillations transform into lower hybrid oscillations. The latter efficiently interact with electrons, due to which most of the deposited RF energy is spent on electron (rather than ion) heating. The Alfvén resonance takes place due to plasma inhomogeneity across the external magnetic field. Therefore, it could be expected that variations in the plasma density profile would substantially affect the efficiency of the interaction of RF fields with charged particles. However, the results obtained for different plasma density profiles proved to be nearly the same. In the present work, a plasma is considered the parameters of which correspond to those planned in future ICR plasma heating experiments on the PS-1 facility at the Kurchatov Institute. When analyzing the interaction of RF fields with charged particles, both the collisionless resonance interaction and the interaction caused by Coulomb collisions are taken into account, because, in those experiments, the Coulomb collision frequency will be comparable with the frequency of the heating field. Antennas used for ICR heating excite RF oscillations with a wide spectrum of wavenumbers along the magnetic field. After averaging over the spectrum, the absorbed RF energy calculated with allowance for collisions turns out to be close to that absorbed in collisionless plasma, the energy fraction absorbed by electrons being substantially larger than that absorbed by ions.

  13. The electromagnetic ion-cyclotron instability in bi-Kappa distributed plasmas

    NASA Astrophysics Data System (ADS)

    Lazar, M.

    2012-11-01

    Context. Observations regularly show low-frequency fluctuations of the interplanetary magnetic field (IMF), which are attributed to the electromagnetic ion-cyclotron (EMIC) waves generated either locally and self-consistently by the kinetic anisotropies of ions, or closer to the Sun (through a nonlinear cascade from long to short wavelengths), and transported by the super-Alfvénic solar wind. As a back reaction, ions can be pitch-angle scattered and accelerated, leading to the observed suprathermal populations, which are invariably anisotropic and are well described by the generalized Kappa models. Aims: A refined analysis is proposed for the EMIC wave instability as one of the most plausible constraints for the proton temperature anisotropy Tp,⊥ > Tp,∥, where ∥ and ⊥ denote directions relative to the stationary IMF. In the context of a strong, but not clear competition with the mirror instability that can develop in the same conditions, an advanced Kappa model is expected to provide the first realistic insights into the EMIC instability conditions in the solar wind. Methods: Because the solar wind is a poor-collisional plasma, the dispersion/stability formalism is based on the fundamental kinetic Vlasov-Maxwell equations for an nonthermal bi-Kappa distributed plasma. EMIC solutions are derived exactly numerically, providing accurate physical correlations between the maximum growth rates and the instability threshold conditions, which are here derived for the full range of values of the plasma beta, including the solar wind and magnetospheric plasma conditions. Results: The lowest thresholds (close to the marginal stability), which are the most relevant for the instability conditions, decrease with the increase in density of suprathermal populations. This is contrary to what was found before in a less general model, but it is fully predicted by the enhanced fluctuations of this instability for sufficiently low temperature anisotropies. These results

  14. On RF heating of inhomogeneous collisional plasma under ion-cyclotron resonance conditions

    NASA Astrophysics Data System (ADS)

    Timofeev, A. V.

    2015-11-01

    During ion-cyclotron resonance (ICR) heating of plasma by the magnetic beach method, as well as in some other versions of ICR heating, it is necessary to excite Alfvén oscillations. In this case, it is difficult to avoid the phenomenon of the Alfvén resonance, in which Alfvén oscillations transform into lower hybrid oscillations. The latter efficiently interact with electrons, due to which most of the deposited RF energy is spent on electron (rather than ion) heating. The Alfvén resonance takes place due to plasma inhomogeneity across the external magnetic field. Therefore, it could be expected that variations in the plasma density profile would substantially affect the efficiency of the interaction of RF fields with charged particles. However, the results obtained for different plasma density profiles proved to be nearly the same. In the present work, a plasma is considered the parameters of which correspond to those planned in future ICR plasma heating experiments on the PS-1 facility at the Kurchatov Institute. When analyzing the interaction of RF fields with charged particles, both the collisionless resonance interaction and the interaction caused by Coulomb collisions are taken into account, because, in those experiments, the Coulomb collision frequency will be comparable with the frequency of the heating field. Antennas used for ICR heating excite RF oscillations with a wide spectrum of wavenumbers along the magnetic field. After averaging over the spectrum, the absorbed RF energy calculated with allowance for collisions turns out to be close to that absorbed in collisionless plasma, the energy fraction absorbed by electrons being substantially larger than that absorbed by ions.

  15. Current density distributions and sputter marks in electron cyclotron resonance ion sources.

    PubMed

    Panitzsch, Lauri; Peleikis, Thies; Böttcher, Stephan; Stalder, Michael; Wimmer-Schweingruber, Robert F

    2013-01-01

    Most electron cyclotron resonance ion sources use hexapolar magnetic fields for the radial confinement of the plasma. The geometry of this magnetic structure is then--induced by charged particles--mapped onto the inner side of the plasma electrode via sputtering and deposition. The resulting structures usually show two different patterns: a sharp triangular one in the central region which in some cases is even sputtered deep into the material (referred to as thin groove or sharp structure), and a blurred but still triangular-like one in the surroundings (referred to as broad halo). Therefore, both patterns seem to have different sources. To investigate their origins we replaced the standard plasma electrode by a custom-built plasma electrode acting as a planar, multi-segment current-detector. For different biased disc voltages, detector positions, and source biases (referred to the detector) we measured the electrical current density distributions in the plane of the plasma electrode. The results show a strong and sharply confined electron population with triangular shape surrounded by less intense and spatially less confined ions. Observed sputter- and deposition marks are related to the analysis of the results. Our measurements suggest that the two different patterns (thin and broad) indeed originate from different particle populations. The thin structures seem to be caused by the hot electron population while the broad marks seem to stem from the medium to highly charged ions. In this paper we present our measurements together with theoretical considerations and substantiate the conclusions drawn above. The validity of these results is also discussed.

  16. Role of Parallel and Oblique Ion-Cyclotron Waves in Heating Ions in an Inhomogeneous Expanding Solar Wind Plasma

    NASA Astrophysics Data System (ADS)

    Ofman, L.; Ozak, N. O.; Vinas, A. F.

    2014-12-01

    In-situ observations of fast solar wind streams at distances of 0.29 AU and beyond by Helios and recently by MESSENGER, and at ~1 AU by STEREO, ACE, and Wind spacecraft provide direct evidence for the presence of turbulent Alfvén wave spectrum and of left-hand polarized ion-cyclotron waves as well as He++ - proton drift in the solar wind plasma. The waves and the super-Alfvénic drift can produce temperature anisotropies by resonant absorption and perpendicular heating of the ions. Measurements indicate that proton velocity distributions are generally non-Maxwellian with evidence for beams, while remote sensing observations of coronal holes have shown that heavy ions are hotter than protons with a temperature anisotropy greater than one (Ti,perp> Ti,||). In addition to the anisotropy, it is expected that the solar wind will be inhomogeneous on decreasing scales approaching the Sun. Here we use a 2.5 D hybrid code and extend previous work to study the heating of solar wind ions (H+, He+) in an inhomogeneous plasma background. We explore the effects of an initial ion drift and of a turbulent wave spectrum on the perpendicular ion heating and cooling and on the spectrum of the magnetic fluctuations in the inhomogeneous background solar wind. Using the 2D hybrid model we find that inhomogeneities in the plasma generate significant power of oblique waves in the solar wind plasma, in addition to enhanced heating compared to the homogenous solar wind case. We find that the cooling effect due to the solar wind expansion is only significant when sub-Alfvénic drifts are explored. On the other hand, the cooling is not significant in the presence of a super-Alfvénic drift, and it is even less significant when we include an inhomogeneous background density. We are able to reproduce the ion temperature anisotropy seen in observations and previous models and find that small-scale inhomogeneities in the inner heliosphere can have a significant impact on resonant wave ion

  17. Characterization of the onset of ion cyclotron parametric decay instability of lower hybrid waves in a diverted tokamak

    SciTech Connect

    Baek, S. G. Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Porkolab, M.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; LaBombard, B.; Lau, C.; Takase, Y.

    2014-06-15

    The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize reactor-relevant steady-state plasmas by controlling current density profile. However, current drive efficiency precipitously decreases as the line averaged density (n{sup ¯}{sub e}) increases above ∼1 × 10{sup 20} m{sup −3}. Previous simulations show that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer plasmas [Wallace et al., Phys. Plasmas 19, 062505 (2012)]. A recent observation [Baek et al., Plasma Phys. Controlled Fusion 55, 052001 (2013)] shows that the configuration dependent ion cyclotron parametric decay instability (PDI) is excited in the density range where the discrepancy between the experiments and simulations remains. Comparing the observed spectra with the homogeneous growth rate spectra indicates that the observed ion cyclotron PDI can be excited not only at the low-field-side but also at the high-field-side (HFS) edge of the tokamak. The model analysis shows that a relevant PDI process to Alcator C-Mod LHCD experiments is decay into ion cyclotron quasi-mode driven by parallel coupling. The underlying cause of the observed onset of ion cyclotron PDI is likely due to the weaker radial penetration of the LH wave in high density plasmas, which can lead to enhanced convective growth. Configuration-dependent PDIs are found to be correlated with different edge density profiles in different magnetic configurations. While the HFS edge of the tokamak can be potentially susceptible to PDI, as evidenced by experimental observations and ray-tracing analyses, enhancing single-pass absorption is expected to help recover the LHCD efficiency at reactor-relevant densities because it could suppress several parasitic loss mechanisms that are exacerbated in multi-pass regimes.

  18. Dissipative ion-cyclotron oscillitons in a form of solitons with chirp in Earth's low-altitude ionosphere

    SciTech Connect

    Kovaleva, I. Kh.

    2012-10-15

    In this paper, we consider theoretically nonlinear ion-cyclotron gradient-drift dissipative structures (oscillitons) in low ionospheric plasmas. Similar to Nonlinear Optics and Condensed Matter Physics, the Ginzburg-Landau equation for the envelope of electric wave fields is derived, and solutions for oscillitons in the form of solitons with chirp are examined. The whole dissipative structure constitutes a soliton with a moving charge-neutral density hump. Conditions for excitation and properties of the structures are considered.

  19. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited)

    SciTech Connect

    Vondrasek, R.; Levand, A.; Pardo, R.; Savard, G.; Scott, R.

    2012-02-15

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi {sup 252}Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci {sup 252}Cf source to produce radioactive beams with intensities up to 10{sup 6} ions/s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for {sup 23}Na{sup 8+}, 15.6% for {sup 84}Kr{sup 17+}, and 13.7% for {sup 85}Rb{sup 19+} with typical breeding times of 10 ms/charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for {sup 143}Cs{sup 27+} and 14.7% for {sup 143}Ba{sup 27+}. The project has been commissioned with a radioactive beam of {sup 143}Ba{sup 27+} accelerated to 6.1 MeV/u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.

  20. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited)a)

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Levand, A.; Pardo, R.; Savard, G.; Scott, R.

    2012-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi 252Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci 252Cf source to produce radioactive beams with intensities up to 106 ions/s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for 23Na8+, 15.6% for 84Kr17+, and 13.7% for 85Rb19+ with typical breeding times of 10 ms/charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for 143Cs27+ and 14.7% for 143Ba27+. The project has been commissioned with a radioactive beam of 143Ba27+ accelerated to 6.1 MeV/u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.

  1. The effects of gas mixing and plasma electrode position on the emittance of an electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Suominen, P.; Tarvainen, O.; Koivisto, H.

    2004-05-01

    Gas mixing is a commonly used method to improve the intensities and the charge state distribution of ion beams extracted from an electron cyclotron resonance ion source (ECRIS). At the same time, the emittance of the ion beam should be as small as possible. In this work we have studied the effect of the gas mixing method on the ion beam quality by measuring the emittance and brightness of different ion beams using helium, oxygen, and argon with several gas feeding ratios. All measurements were performed with the JYFL 6.4 GHz ECRIS. At the second stage of the experiments the emittance and the ion beam brightness were studied as a function of the plasma electrode position. The extraction system constructed for this experiment can be moved online.

  2. Studies of electromagnetic ion cyclotron waves using AMPTE/CCE and Dynamics Explorer. Semiannual report, 1 June-1 December 1993

    SciTech Connect

    Erlandson, R. E.

    1993-12-31

    The principal activity during the past six months has involved the analysis of ion cyclotron waves recorded from DE-2 using the magnetic field experiment and electric field experiment. The results of this study have been published in the Geophysical Research Letters (GRL). The primary finding of this paper is that ion cyclotron waves were found to heat electrons, as observed in the DE-2 Langmuir probe data, through a Landau damping process. A second activity, which was started during the last six months, involves the study of large amplitude approximately one Hz electric and magnetic field oscillations recorded in the nightside auroral zone at substorm onset. Work is under way to determine the properties of these waves and investigate any association these waves may have with the substorm initiation process. A third activity under way involves a comprehensive study of ion cyclotron waves recorded at ionospheric altitudes by DE-2. This study will be an extension of the work reported in the GRL paper and will involve a larger sampling of wave events. This paper will focus on wave properties at ionospheric altitudes. A fourth activity involves a more in-depth analysis of the acceleration mechanisms and the resulting electron distributions based on the observations presented in the GRL paper.

  3. Initial velocity distribution of MALDI/LDI ions measured by internal MALDI source Fourier-transform ion cyclotron resonance mass spectrometry.

    PubMed

    Chagovets, Vitaliy; Frankevich, Vladimir; Zenobi, Renato

    2014-11-01

    A new method for measuring the ion velocity distribution using an internal matrix-assisted laser desorption/ionization (MALDI) source Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer is described. The method provides the possibility of studying ion velocities without any influence of electric fields in the direction of the instrument axis until the ions reach the ICR cell. It also allows to simultaneously account for and to estimate not only the velocity distribution but the angular distribution as well. The method was demonstrated using several types of compounds in laser desorption/ionization (LDI) mode.

  4. Ion cyclotron resonance heating systems upgrade toward high power and CW operations in WEST

    SciTech Connect

    Hillairet, Julien Mollard, Patrick; Bernard, Jean-Michel; Argouarch, Arnaud; Berger-By, Gilles; Charabot, Nicolas; Colas, Laurent; Delaplanche, Jean-Marc; Ekedahl, Annika; Fedorczak, Nicolas; Ferlay, Fabien; Goniche, Marc; Hatchressian, Jean-Claude; Helou, Walid; Jacquot, Jonathan; Joffrin, Emmanuel; Litaudon, Xavier; Lombard, Gilles; Magne, Roland; Patterlini, Jean-Claude; and others

    2015-12-10

    The design of the WEST (Tungsten-W Environment in Steady-state Tokamak) Ion cyclotron resonance heating antennas is based on a previously tested conjugate-T Resonant Double Loops prototype equipped with internal vacuum matching capacitors. The design and construction of three new WEST ICRH antennas are being carried out in close collaboration with ASIPP, within the framework of the Associated Laboratory in the fusion field between IRFM and ASIPP. The coupling performance to the plasma and the load-tolerance have been improved, while adding Continuous Wave operation capability by introducing water cooling in the entire antenna. On the generator side, the operation class of the high power tetrodes is changed from AB to B in order to allow high power operation (up to 3 MW per antenna) under higher VSWR (up to 2:1). Reliability of the generators is also improved by increasing the cavity breakdown voltage. The control and data acquisition system is also upgraded in order to resolve and react on fast events, such as ELMs. A new optical arc detection system comes in reinforcement of the V{sub r}/V{sub f} and SHAD systems.

  5. Optimizing ion-cyclotron resonance frequency heating for ITER: dedicated JET experiments

    NASA Astrophysics Data System (ADS)

    Lerche, E.; Van Eester, D.; Ongena, J.; Mayoral, M.-L.; Laxaback, M.; Rimini, F.; Argouarch, A.; Beaumont, P.; Blackman, T.; Bobkov, V.; Brennan, D.; Brett, A.; Calabro, G.; Cecconello, M.; Coffey, I.; Colas, L.; Coyne, A.; Crombe, K.; Czarnecka, A.; Dumont, R.; Durodie, F.; Felton, R.; Frigione, D.; Gatu Johnson, M.; Giroud, C.; Gorini, G.; Graham, M.; Hellesen, C.; Hellsten, T.; Huygen, S.; Jacquet, P.; Johnson, T.; Kiptily, V.; Knipe, S.; Krasilnikov, A.; Lamalle, P.; Lennholm, M.; Loarte, A.; Maggiora, R.; Maslov, M.; Messiaen, A.; Milanesio, D.; Monakhov, I.; Nightingale, M.; Noble, C.; Nocente, M.; Pangioni, L.; Proverbio, I.; Sozzi, C.; Stamp, M.; Studholme, W.; Tardocchi, M.; Versloot, T. W.; Vdovin, V.; Vrancken, M.; Whitehurst, A.; Wooldridge, E.; Zoita, V.; EFDA Contributors, JET

    2011-12-01

    In the past years, one of the focal points of the JET experimental programme was on ion-cyclotron resonance heating (ICRH) studies in view of the design and exploitation of the ICRH system being developed for ITER. In this brief review, some of the main achievements obtained in JET in this field during the last 5 years will be summarized. The results reported here include important aspects of a more engineering nature, such as (i) the appropriate design of the RF feeding circuits for optimal load resilient operation and (ii) the test of a compact high-power density antenna array, as well as RF physics oriented studies aiming at refining the numerical models used for predicting the performance of the ICRH system in ITER. The latter include (i) experiments designed for improving the modelling of the antenna coupling resistance under various plasma conditions and (ii) the assessment of the heating performance of ICRH scenarios to be used in the non-active operation phase of ITER.

  6. Theoretical and numerical modelling of chaotic electrostatic ion cyclotron (EIC) oscillations by Jerk equation

    SciTech Connect

    Wharton, A. M. Kumar Shaw, Pankaj; Janaki, M. S.; Sekar Iyengar, A. N.

    2014-02-15

    In the last few years, third order explicit autonomous differential equations, known as jerk equations, have generated great interest as they show features of regular and chaotic motion. In this paper, we have modelled chaotic electrostatic ion cyclotron oscillations using a third order nonlinear ordinary differential equation (ODE) and investigated its nonlinear dynamical properties. The nonlinear ODE has been derived for a plasma system from a two fluid model in the presence of a source term, under the influence of an external magnetic field, which is perpendicular to the direction of the wave vector. It is seen that the equation does not require an external forcing term to obtain chaotic behaviour. The stability of the solutions of the equation has been investigated analytically as well as numerically, and the bifurcation diagram obtained shows a number of interesting phenomena for various regimes of parameters. The coexisting attractors as well as their corresponding basins are shown and the phase space portraits at different conditions are obtained numerically and shown here. The results obtained here are in agreement with preliminary experiments conducted for a similar configuration of a plasma system.

  7. Method for calibrating a Fourier transform ion cyclotron resonance mass spectrometer

    DOEpatents

    Smith, Richard D.; Masselon, Christophe D.; Tolmachev, Aleksey

    2003-08-19

    A method for improving the calibration of a Fourier transform ion cyclotron resonance mass spectrometer wherein the frequency spectrum of a sample has been measured and the frequency (f) and intensity (I) of at least three species having known mass to charge (m/z) ratios and one specie having an unknown (m/z) ratio have been identified. The method uses the known (m/z) ratios, frequencies, and intensities at least three species to calculate coefficients A, B, and C, wherein the mass to charge ratio of a least one of the three species (m/z).sub.i is equal to ##EQU1## wherein f.sub.i is the detected frequency of the specie, G(I.sub.i) is a predetermined function of the intensity of the species, and Q is a predetermined exponent. Using the calculated values for A, B, and C, the mass to charge ratio of the unknown specie (m/z).sub.ii is calculated as the sum of ##EQU2## wherein f.sub.ii is the measured frequency of the unknown specie, and (I.sub.ii) is the measured intensity of the unknown specie.

  8. High-Throughput Metabolic Profiling of Soybean Leaves by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Yilmaz, Ali; Rudolph, Heather L; Hurst, Jerod J; Wood, Troy D

    2016-01-19

    As a relatively recent research field, plant metabolomics has gained increasing interest in the past few years and has been applied to answer biological questions through large-scale qualitative and quantitative analyses of the plant metabolome. The combination of sensitivity and selectivity offered by mass spectrometry (MS) for measurement of many metabolites in a single shot makes it an indispensable platform in metabolomics. In this regard, Fourier-transform ion cyclotron resonance (FTICR) has the unique advantage of delivering high mass resolving power and mass accuracy simultaneously, making it ideal for the study of complex mixtures such as plant extracts. Here we optimize soybean leaf extraction methods compatible with high-throughput reproducible MS-based metabolomics. In addition, matrix-assisted laser desorption ionization (MALDI) and direct LDI of soybean leaves are compared for metabolite profiling. The extraction method combined with electrospray (ESI)-FTICR is supported by the significant reduction of chlorophyll and its related metabolites as the growing season moves from midsummer to the autumn harvest day. To our knowledge for the first time, the use of ESI-FTICR MS and MALDI-FTICR MS is described in a complementary manner with the aim of metabolic profiling of plant leaves that have been collected at different time points during the growing season.

  9. Study and design of the ion cyclotron resonance heating system for the stellarator Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Ongena, J.; Messiaen, A.; Van Eester, D.; Schweer, B.; Dumortier, P.; Durodie, F.; Kazakov, Ye. O.; Louche, F.; Vervier, M.; Koch, R.; Krivska, A.; Lyssoivan, A.; Van Schoor, M.; Wauters, T.; Borsuk, V.; Neubauer, O.; Schmitz, O.; Offermans, G.; Altenburg, Y.; Baylard, C.; Birus, D.; Bozhenkov, S.; Hartmann, D. A.; Kallmeyer, J. P.; Renard, S.; Wolf, R. C.; Fülöp, T.

    2014-06-01

    The current status of the mechanical and electromagnetic design for the ICRF antenna system for W7-X is presented. Two antenna plugins are discussed: one consisting of a pair of straps with pre-matching to cover the first frequency band, 25-38 MHz, and a second one consisting of two short strap triplets to cover a frequency band around 76 MHz. This paper focusses on the two strap antenna for the lower frequency band. Power coupling of the antenna to a reference plasma profile is studied with the help of the codes TOPICA and Microwave Studio that deliver the scattering matrix needed for the optimization of the geometric parameters of the straps and antenna box. Radiation power spectra for different phasings of the two straps are obtained using the code ANTITER II and different heating scenario are discussed. The potential for heating, fast particle generation, and current drive is discussed. The problem of RF coupling through the plasma edge and of edge power deposition is summarized. Important elements of the complete ion cyclotron resonance heating system are discussed: a resonator circuit with tap feed to limit the maximum voltage in the system, and a decoupler to counterbalance the large mutual coupling between the 2 straps. The mechanical design highlights the challenges encountered with this antenna: adaptation to a large variety of plasma configurations, the limited space within the port to accommodate the necessary matching components and the watercooling needed for long pulse operation.

  10. Study and design of the ion cyclotron resonance heating system for the stellarator Wendelstein 7-X

    SciTech Connect

    Ongena, J.; Messiaen, A.; Van Eester, D.; Schweer, B.; Dumortier, P.; Durodie, F.; Kazakov, Ye. O.; Louche, F.; Vervier, M.; Koch, R.; Krivska, A.; Lyssoivan, A.; Van Schoor, M.; Wauters, T.; Borsuk, V.; Neubauer, O.; Schmitz, O.; Altenburg, Y.; Baylard, C.; and others

    2014-06-15

    The current status of the mechanical and electromagnetic design for the ICRF antenna system for W7-X is presented. Two antenna plugins are discussed: one consisting of a pair of straps with pre-matching to cover the first frequency band, 25–38 MHz, and a second one consisting of two short strap triplets to cover a frequency band around 76 MHz. This paper focusses on the two strap antenna for the lower frequency band. Power coupling of the antenna to a reference plasma profile is studied with the help of the codes TOPICA and Microwave Studio that deliver the scattering matrix needed for the optimization of the geometric parameters of the straps and antenna box. Radiation power spectra for different phasings of the two straps are obtained using the code ANTITER II and different heating scenario are discussed. The potential for heating, fast particle generation, and current drive is discussed. The problem of RF coupling through the plasma edge and of edge power deposition is summarized. Important elements of the complete ion cyclotron resonance heating system are discussed: a resonator circuit with tap feed to limit the maximum voltage in the system, and a decoupler to counterbalance the large mutual coupling between the 2 straps. The mechanical design highlights the challenges encountered with this antenna: adaptation to a large variety of plasma configurations, the limited space within the port to accommodate the necessary matching components and the watercooling needed for long pulse operation.

  11. Understanding ion cyclotron harmonic fast wave heating losses in the scrape off layer of tokamak plasmas

    SciTech Connect

    Bertelli, N; Jaeger, E F; Hosea, J C; Phillips, C K; Berry, L; Bonoli, P T; Gerhardt, S P; Green, D; LeBlanc, B; Perkins, R J; Ryan, P M; Taylor, G; Valeo, E J; Wilso, J R; Wright, J C

    2014-07-01

    Fast waves at harmonics of the ion cyclotron frequency, which have been used successfully on National Spherical Torus Experiment (NSTX), will also play an important role in ITER and are a promising candidate for the Fusion Nuclear Science Facility (FNSF) designs based on spherical torus (ST). Experimental studies of high harmonic fast waves (HHFW) heating on the NSTX have demonstrated that substantial HHFW power loss occurs along the open field lines in the scrape-off layer (SOL), but the mechanism behind the loss is not yet understood. The full wave RF code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain, is applied to specific NSTX discharges in order to predict the effects and possible causes of this power loss. In the studies discussed here, a collisional damping parameter has been implemented in AORSA as a proxy to represent the real, and most likely nonlinear, damping processes. A prediction for the NSTX Upgrade (NSTX-U) experiment, that will begin operation next year, is also presented, indicating a favorable condition for the experiment due to a wider evanescent region in edge density.*Research supported by the U.S. DOE under Contract No. DE-AC02-09CH11466 with Princeton University.

  12. RF Sources for the ITER Ion Cyclotron Heating and Current Drive System

    SciTech Connect

    Hosea, J.; Brunkhorst, C.; Fredd, E.; Goulding, R. H.; Goulding, R. H.; Greenough, N.; Kung, C.; Rasmussen, D. A.; Swain, D. W.; Wilson, J. R.

    2005-10-04

    The RF source requirements for the ITER ion cyclotron (IC) heating and current drive system are very challenging ? 20 MW CW power into an antenna load with a VSWR of up to 2 over the frequency range of 35-65 MHz. For the two present antenna designs under consideration, 8 sources providing 2.5 MW each are to be employed. For these sources, the outputs of two final power amplifiers (FPAs), using the high power CPI 4CM2500KG tube, are combined with a 180? hybrid combiner to easily meet the ITER IC source requirements ? 2.5 MW is supplied at a VSWR of 2 at ? 70% of the maximum tube power available in class B operation. The cylindrical cavity configuration for the FPAs is quite compact so that the 8 combined sources fit into the space allocated at the ITER site with room to spare. The source configuration is described in detail and its projected operating power curves are presented. Although the CPI tube has been shown to be stable under high power operating conditions on many facilities, a test of the combined FPA source arrangement is in preparation using existing high power 30 MHz amplifiers to assure that this configuration can be made robustly stable for all phases at a VSWR up to 2. The possibility of using 12 sources to feed a suitably modified antenna design is also discussed in the context of providing flexibility for specifying the final IC antenna design.

  13. Ion Cyclotron Wall Conditioning Experiments on Tore Supra in Presence of the Toroidal Magnetic Field

    SciTech Connect

    Wauters, T.; Douai, D.; Bremond, S.; Lombard, G.; Pegourie, B.; Tsitrone, E.; de la Cal, E.; Lyssoivan, A.; Van Schoor, M.

    2009-11-26

    Wall conditioning techniques applicable in the presence of the high toroidal magnetic field will be required for the operation of ITER for tritium removal, isotopic ratio control and recovery to normal operation after disruptions. Recently ion cyclotron wall conditioning (ICWC) experiments have been carried out on Tore Supra in order to assess the efficiency of this technique in ITER relevant conditions. The ICRF discharges were operated in He/H{sub 2} mixtures at the Tore Supra nominal field (3.8 T) and a RF frequency of 48 MHz, i.e. within the ITER operational space. RF pulses of 60 s (max.) were applied using a standard Tore Supra two-strap resonant double loop antenna in ICWC mode, operated either in {pi} or 0-phasing with a noticeable improvement of the RF coupling in the latter case. In order to assess the efficiency of the technique for the control of isotopic ratio the wall was first preloaded using a D{sub 2} glow discharge. After 15 minutes of ICWC in He/H{sub 2} gas mixtures the isotopic ratio was altered from 4% to 50% at the price of an important H implantation into the walls. An overall analysis comparing plasma production and the conditioning efficiency as a function of discharge parameters is given.

  14. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    SciTech Connect

    Skalyga, V.; Sidorov, A.; Izotov, I.; Golubev, S.; Razin, S.; Strelkov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2015-09-07

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.

  15. Ion cyclotron resonance heating systems upgrade toward high power and CW operations in WEST

    NASA Astrophysics Data System (ADS)

    Hillairet, Julien; Mollard, Patrick; Zhao, Yanping; Bernard, Jean-Michel; Song, Yuntao; Argouarch, Arnaud; Berger-By, Gilles; Charabot, Nicolas; Chen, Gen; Chen, Zhaoxi; Colas, Laurent; Delaplanche, Jean-Marc; Dumortier, Pierre; Durodié, Frédéric; Ekedahl, Annika; Fedorczak, Nicolas; Ferlay, Fabien; Goniche, Marc; Hatchressian, Jean-Claude; Helou, Walid; Jacquot, Jonathan; Joffrin, Emmanuel; Litaudon, Xavier; Lombard, Gilles; Maggiora, Riccardo; Magne, Roland; Milanesio, Daniele; Patterlini, Jean-Claude; Prou, Marc; Verger, Jean-Marc; Volpe, Robert; Vulliez, Karl; Wang, Yongsheng; Winkler, Konstantin; Yang, Qingxi; Yuan, Shuai

    2015-12-01

    The design of the WEST (Tungsten-W Environment in Steady-state Tokamak) Ion cyclotron resonance heating antennas is based on a previously tested conjugate-T Resonant Double Loops prototype equipped with internal vacuum matching capacitors. The design and construction of three new WEST ICRH antennas are being carried out in close collaboration with ASIPP, within the framework of the Associated Laboratory in the fusion field between IRFM and ASIPP. The coupling performance to the plasma and the load-tolerance have been improved, while adding Continuous Wave operation capability by introducing water cooling in the entire antenna. On the generator side, the operation class of the high power tetrodes is changed from AB to B in order to allow high power operation (up to 3 MW per antenna) under higher VSWR (up to 2:1). Reliability of the generators is also improved by increasing the cavity breakdown voltage. The control and data acquisition system is also upgraded in order to resolve and react on fast events, such as ELMs. A new optical arc detection system comes in reinforcement of the Vr/Vf and SHAD systems.

  16. Ion Cyclotron Wall Conditioning Experiments on Tore Supra in Presence of the Toroidal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Wauters, T.; Douai, D.; Brémond, S.; de la Cal, E.; Lombard, G.; Lyssoivan, A.; Pegourié, B.; Tsitrone, E.; Van Schoor, M.; Van Oost, G.

    2009-11-01

    Wall conditioning techniques applicable in the presence of the high toroidal magnetic field will be required for the operation of ITER for tritium removal, isotopic ratio control and recovery to normal operation after disruptions. Recently ion cyclotron wall conditioning (ICWC) experiments have been carried out on Tore Supra in order to assess the efficiency of this technique in ITER relevant conditions. The ICRF discharges were operated in He/H2 mixtures at the Tore Supra nominal field (3.8 T) and a RF frequency of 48 MHz, i.e. within the ITER operational space. RF pulses of 60 s (max.) were applied using a standard Tore Supra two-strap resonant double loop antenna in ICWC mode, operated either in π or 0-phasing with a noticeable improvement of the RF coupling in the latter case. In order to assess the efficiency of the technique for the control of isotopic ratio the wall was first preloaded using a D2 glow discharge. After 15 minutes of ICWC in He/H2 gas mixtures the isotopic ratio was altered from 4% to 50% at the price of an important H implantation into the walls. An overall analysis comparing plasma production and the conditioning efficiency as a function of discharge parameters is given.

  17. Ultrahigh resolution simulations of mode converted ion cyclotron waves and lower hybrid waves

    NASA Astrophysics Data System (ADS)

    Wright, J. C.; Bonoli, P. T.; D'Azevedo, E.; Brambilla, M.

    2004-12-01

    Full wave studies of mode conversion (MC) processes in toroidal plasmas have required prohibitive amount of computer resources in the past because of the disparate spatial scales involved. The TORIC code [Brambilla, Nucl. Fusion 38 (1998) 1805] solves the linear sixth order reduced wave equation for the ion cyclotron range of frequencies (ICRF), in toroidal geometry using a Fourier representation for the poloidal dimension and finite elements in the flux dimension. The range of problems that TORIC can do has been extended through both new serial algorithms and parallelization of memory and processing. The implementation of out-of-core memory management, FFT convolutions, and improved memory management brought MC studies just into range of the serial version of the code running on a NERSC Cray SV1. Some simple tests and arguments show that more resolution than is possible on a single processor system is needed to fully resolve these scenarios. By distributing the large linear system across many processors in conjunction with the out-of-core technique, the resolution limitations are effectively removed. ScaLAPACK is used to do the linear algebra operations and message passing interface (MPI) is used to distribute the significant amount of post-processing. The new parallel version of the code can easily do the most difficult MC problems on present day tokamaks (Alcator C-Mod and Asdex-Upgrade), with only 32 pc from a local Beowulf cluster. Using 48 or more processors admits us to problems in the lower hybrid range of frequencies.

  18. First operation and effect of a new tandem-type ion source based on electron cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Kato, Yushi; Kimura, Daiju; Yano, Keisuke; Kumakura, Sho; Imai, Youta; Nishiokada, Takuya; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-01

    A new tandem type source has been constructed on the basis of electron cyclotron resonance plasma for producing synthesized ion beams in Osaka University. Magnetic field in the first stage consists of all permanent magnets, i.e., cylindrically comb shaped one, and that of the second stage consists of a pair of mirror coil, a supplemental coil and the octupole magnets. Both stage plasmas can be individually operated, and produced ions in which is energy controlled by large bore extractor also can be transported from the first to the second stage. We investigate the basic operation and effects of the tandem type electron cyclotron resonance ion source (ECRIS). Analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas in dual plasmas operation as well as each single operation. We describe construction and initial experimental results of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source in future.

  19. First operation and effect of a new tandem-type ion source based on electron cyclotron resonance

    SciTech Connect

    Kato, Yushi Kimura, Daiju; Yano, Keisuke; Kumakura, Sho; Imai, Youta; Nishiokada, Takuya; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-15

    A new tandem type source has been constructed on the basis of electron cyclotron resonance plasma for producing synthesized ion beams in Osaka University. Magnetic field in the first stage consists of all permanent magnets, i.e., cylindrically comb shaped one, and that of the second stage consists of a pair of mirror coil, a supplemental coil and the octupole magnets. Both stage plasmas can be individually operated, and produced ions in which is energy controlled by large bore extractor also can be transported from the first to the second stage. We investigate the basic operation and effects of the tandem type electron cyclotron resonance ion source (ECRIS). Analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas in dual plasmas operation as well as each single operation. We describe construction and initial experimental results of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source in future.

  20. Cyclotron Institute Upgrade Project

    SciTech Connect

    Clark, Henry; Yennello, Sherry; Tribble, Robert

    2014-08-26

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88”) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  1. Ion source and low energy injection line for a central region model cyclotron

    SciTech Connect

    Zhang Tianjue; Li Zhenguo; Lu Yinlong; Wei Sumin; Cai Hongru; Ge Tao; Wu Longcheng; Pan Gaofeng; Yao Hongjuan; Kuo, T.; Yuan, D.

    2008-02-15

    At CIAE, a 100 MeV H{sup -} cyclotron (CYCIAE-100) is under design and construction. A central region model (CRM) cyclotron was built for various experimental verifications for the CYCIAE-100 project and for research and development of high current injection to accelerate milliampere H{sup -} beam. The H{sup -} multicusp source built in 2003 has been improved recently to make the source operation more stable. A new injection line for axial low energy high current injection has been designed and constructed for the CRM cyclotron.

  2. Measurements and analysis of bremsstrahlung x-ray spectrum obtained in NANOGAN electron cyclotron resonance ion source

    SciTech Connect

    Baskaran, R.; Selvakumaran, T. S.; Rodrigues, G.; Kanjilal, D.; Roy, A.

    2008-02-15

    From the ECR plasma, hot electrons leak across the magnetic lines of force and by striking the plasma chamber produce bremsstrahlung x-rays. The wall bremsstrahlung gives information on the confinement status of hot electron. In our studies, experimental measurements are carried out in NANOGAN electron cyclotron resonance (ECR) ion source for the wall bremsstrahlung x-rays and the results are presented. While optimizing a particular charge state in ECR ion source, experimental parameters are adjusted to get a maximum current. The wall bremsstrahlung components are studied in these cases for understanding the hot electron confinement conditions.

  3. Lifetime measurement of a collision complex using ion cyclotron double resonance - H2C6N2(+)

    NASA Technical Reports Server (NTRS)

    Anicich, Vincent G.; Sen, Atish D.; Huntress, Wesley T., Jr.; Mcewan, Murray J.

    1991-01-01

    In the ion-molecule reaction between HC3N(+) and HC3N, the lifetime of the collision complex (H2C6N2+)-asterisk was long enough that ion cyclotron double-resonance techniques could be used to probe the distribution of the lifetimes of the collision complex. The mean lifetime of the collision complex at room temperature was measured as 180 microsec with a distribution ranging from 60 to 260 microsec as measured at the half-heights in the distribution. Lifetimes of this magnitude with respect to unimolecular dissociation allow for some stabilization of the collision complex by the slower process of infrared photon emission.

  4. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator

    SciTech Connect

    Park, Bum-Sik Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-15

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  5. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator.

    PubMed

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  6. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  7. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    SciTech Connect

    Toivanen, V. Küchler, D.

    2016-02-15

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  8. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  9. Electromagnetic ion-cyclotron instability in a dusty plasma with product-bi-kappa distributions for the plasma particles

    NASA Astrophysics Data System (ADS)

    dos Santos, M. S.; Ziebell, L. F.; Gaelzer, R.

    2017-01-01

    We study the dispersion relation for parallel propagating ion-cyclotron (IC) waves in a dusty plasma, considering situations where the velocity dispersion along perpendicular direction is greater than along the parallel direction, and considering the use of product-bi-kappa (PBK) velocity distributions for the plasma particles. The results obtained by numerical solution of the dispersion relation, in a case with isotropic Maxwellian distributions for electrons and PBK distribution for ions, show the occurrence of the electromagnetic ion-cyclotron instability (EMIC), and show that the decrease in the kappa indexes of the PBK ion distribution leads to significant increase in the magnitude of the growth rates and in the range of wavenumber for which the instability occurs. On the other hand, for anisotropic Maxwellian distribution for ions and PBK distribution for electrons, the decrease of the kappa index in the PBK electron distribution contributes to reduce the growth rate of the EMIC instability, but the reduction effect is less pronounced than the increase obtained with ion PBK distribution with the same kappa index. The results obtained also show that, as a general rule, the presence of a dust population contributes to reduce the instability in magnitude of the growth rates and range, but that in the case of PBK ion distribution with small kappa indexes the instability may continue to occur for dust populations which would eliminate completely the instability in the case of bi-Maxwellian ion distributions. It has also been seen that the anisotropy due to the kappa indexes in the ion PBK distribution is not so efficient in producing the EMIC instability as the ratio of perpendicular and parallel ion temperatures, for equivalent value of the effective temperature.

  10. Helium cyclotron resonance within the earth's magnetosphere

    SciTech Connect

    Mauk, B.H.; McIlwain, C.E.; McPherron, R.L.

    1981-01-01

    A histogram of electromagnetic Alfven/ion cyclotron wave frequencies, sampled within the geostationary enviroment and normalized by the equatorial proton cyclotron frequency, shows a dramatic gap centered near the helium (He/sup +/) cyclotron frequency. Also, strongly cyclotron phase bunched helium ions (20--200 eV) have been observed directly within the vicinity of wave environments. These observations are interpreted as resulting from the absorption of the waves through cyclotron resonance by cool ambient populations of helium ions.

  11. A study on interactions between ions and polarized Alfvén waves below cyclotron resonance frequency

    NASA Astrophysics Data System (ADS)

    Lu, Xing-Qiang; Tang, Wei-Zhong; Guo, Wei; Gong, Xue-Yu

    2016-12-01

    Ion heating by different polarized Alfvén waves below the cyclotron resonance frequency is studied using test-particle simulation. The results indicate that the interactions between ions and waves are affected by the polarization and frequency of the waves. If the frequency of waves is higher ( ω > 0.1 Ω p ), the interactions between ions and left-hand (LH) waves are stronger than right-hand (RH) waves due to the sub-cyclotron resonance. However, with the decrease of the frequency, the interactions between different polarized Alfvén waves and particles tend to be the same. The heating effects of LH waves on ions are better than RH waves at higher frequencies. When the frequency of the waves is lower enough ( ω < 0.1 Ω p ), the heating effects of LH waves and RH waves on ions are almost identical. The change of heating efficiency with the polarization and frequency of the waves is consistent with the change of the heating effect.

  12. Self-consistent full-wave and Fokker-Planck calculations for ion cyclotron heating in non-Maxwellian plasmasa)

    NASA Astrophysics Data System (ADS)

    Jaeger, E. F.; Berry, L. A.; Ahern, S. D.; Barrett, R. F.; Batchelor, D. B.; Carter, M. D.; D'Azevedo, E. F.; Moore, R. D.; Harvey, R. W.; Myra, J. R.; D'Ippolito, D. A.; Dumont, R. J.; Phillips, C. K.; Okuda, H.; Smithe, D. N.; Bonoli, P. T.; Wright, J. C.; Choi, M.

    2006-05-01

    Magnetically confined plasmas can contain significant concentrations of nonthermal plasma particles arising from fusion reactions, neutral beam injection, and wave-driven diffusion in velocity space. Initial studies in one-dimensional and experimental results show that nonthermal energetic ions can significantly affect wave propagation and heating in the ion cyclotron range of frequencies. In addition, these ions can absorb power at high harmonics of the cyclotron frequency where conventional two-dimensional global-wave models are not valid. In this work, the all-orders global-wave solver AORSA [E. F. Jaeger et al., Phys. Rev. Lett. 90, 195001 (2003)] is generalized to treat non-Maxwellian velocity distributions. Quasilinear diffusion coefficients are derived directly from the wave fields and used to calculate energetic ion velocity distributions with the CQL3D Fokker-Planck code [R. W. Harvey and M. G. McCoy, Proceedings of the IAEA Technical Committee Meeting on Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada, 1992 (USDOC NTIS Document No. DE93002962)]. For comparison, the quasilinear coefficients can be calculated numerically by integrating the Lorentz force equations along particle orbits. Self-consistency between the wave electric field and resonant ion distribution function is achieved by iterating between the global-wave and Fokker-Planck solutions.

  13. Observations of compound sawteeth in ion cyclotron resonant heating plasma using ECE imaging on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Hussain, Azam; Zhao, Zhenling; Xie, Jinlin; Zhu, Ping; Liu, Wandong; Ti, Ang

    2016-04-01

    The spatial and temporal evolutions of compound sawteeth were directly observed using 2D electron cyclotron emission imaging on experimental advanced superconducting tokamak. The compound sawtooth consists of partial and full collapses. After partial collapse, the hot core survives as only a small amount of heat disperses outwards, whereas in the following full collapse a large amount of heat is released and the hot core dissipates. The presence of two q = 1 surfaces was not observed. Instead, the compound sawtooth occurs mainly at the beginning of an ion cyclotron resonant frequency heating pulse and during the L-H transition phase, which may be related to heat transport suppression caused by a decrease in electron heat diffusivity.

  14. Heavy-ion injector based on an electron cyclotron ion source for the superconducting linear accelerator of the Rare Isotope Science Project

    SciTech Connect

    Hong, In-Seok Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho

    2016-02-15

    The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation.

  15. Heavy-ion injector based on an electron cyclotron ion source for the superconducting linear accelerator of the Rare Isotope Science Project.

    PubMed

    Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho

    2016-02-01

    The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation.

  16. Ion cyclotron emission from fusion-born ions in large tokamak plasmas: a brief review from JET and TFTR to ITER

    NASA Astrophysics Data System (ADS)

    Dendy, R. O.; McClements, K. G.

    2015-04-01

    Ion cyclotron emission (ICE) was the first collective radiative instability, driven by confined fusion-born ions, observed from deuterium-tritium plasmas in JET and TFTR. ICE comprises strongly suprathermal emission, which has spectral peaks at multiple ion cyclotron harmonic frequencies as evaluated at the outer mid-plane edge of tokamak plasmas. The measured intensity of ICE spectral peaks scaled linearly with measured fusion reactivity in JET. In other large tokamak plasmas, ICE is currently used as an indicator of fast ions physics. The excitation mechanism for ICE is the magnetoacoustic cyclotron instability (MCI); in the case of JET and TFTR, the MCI is driven by a set of centrally born trapped fusion products, lying just inside the trapped-passing boundary in velocity space, whose drift orbits make large radial excursions to the outer mid-plane edge. Diagnostic exploitation of ICE in future experiments therefore rests in part on deep understanding of the MCI, and recent advances in computational plasma physics have led to substantial recent progress, reviewed here. Particle-in-cell simulations of the MCI, with fully kinetic ions and electrons, were reported in 2013, using plasma parameters for JET ICE observations. The hybrid approximation for plasma simulations, where ions are treated as particles and electrons as a neutralising massless fluid, was then applied and reported in 2014. These simulations extend previous studies deep into the nonlinear regime of the MCI, and corroborate predictions by linear analytical theory, thereby strengthening further the link to ICE measurements. ICE is a potential diagnostic for confined alpha-particles in ITER, where measurements of ICE could yield information on energetic ion behaviour supplementing that obtainable from other diagnostics. In addition, it may be possible to use ICE to study fast ion redistribution and loss due to MHD activity in ITER.

  17. Note: {sup 6}Li III light intensity observation for {sup 6}Li{sup 3+} ion beam operation at Hyper-Electron Cyclotron Resonance ion source

    SciTech Connect

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shoichi; Yamaguchi, Hidetoshi; Shimoura, Susumu; Watanabe, Shin-ichi; Oyaizu, Michihiro; Kobayashi, Kiyoshi; Kotaka, Yasuteru; Nishimura, Makoto; Kase, Masayuki; Kubono, Shigeru; Hattori, Toshiyuki

    2014-12-15

    The light intensity of {sup 6}Li III line spectrum at λ = 516.7 nm was observed during {sup 6}Li{sup 3+} beam tuning at the Hyper-Electron Cyclotron Resonance (ECR) ion source. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process. However, {sup 6}Li III line intensity observation conducted in this study gives new insights into its simplification of this process. The light intensity of {sup 6}Li III line spectrum from the ECR plasma was found to have a strong correlation with the extracted {sup 6}Li{sup 3+} beam intensity from the RIKEN Azimuthal Varying Field cyclotron.

  18. Van Allen Probes observations of electromagnetic ion cyclotron waves triggered by enhanced solar wind dynamic pressure

    NASA Astrophysics Data System (ADS)

    Cho, J.-H.; Lee, D.-Y.; Noh, S.-J.; Shin, D.-K.; Hwang, J.; Kim, K.-C.; Lee, J. J.; Choi, C. R.; Thaller, S.; Skoug, R.

    2016-10-01

    Magnetospheric compression due to impact of enhanced solar wind dynamic pressure Pdyn has long been considered as one of the generation mechanisms of electromagnetic ion cyclotron (EMIC) waves. With the Van Allen Probe-A observations, we identify three EMIC wave events that are triggered by Pdyn enhancements under prolonged northward interplanetary magnetic field (IMF) quiet time preconditions. They are in contrast to one another in a few aspects. Event 1 occurs in the middle of continuously increasing Pdyn while Van Allen Probe-A is located outside the plasmapause at postmidnight and near the equator (magnetic latitude (MLAT) -3°). Event 2 occurs by a sharp Pdyn pulse impact while Van Allen Probe-A is located inside the plasmapause in the dawn sector and rather away from the equator (MLAT 12°). Event 3 is characterized by amplification of a preexisting EMIC wave by a sharp Pdyn pulse impact while Van Allen Probe-A is located outside the plasmapause at noon and rather away from the equator (MLAT -15°). These three events represent various situations where EMIC waves can be triggered by Pdyn increases. Several common features are also found among the three events. (i) The strongest wave is found just above the He+ gyrofrequency. (ii) The waves are nearly linearly polarized with a rather oblique propagation direction ( 28° to 39° on average). (iii) The proton fluxes increase in immediate response to the Pdyn impact, most significantly in tens of keV energy, corresponding to the proton resonant energy. (iv) The temperature anisotropy with T⊥ > T|| is seen in the resonant energy for all the events, although its increase by the Pdyn impact is not necessarily always significant. The last two points (iii) and (iv) may imply that in addition to the temperature anisotropy, the increase of the resonant protons must have played a critical role in triggering the EMIC waves by the enhanced Pdyn impact.

  19. Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry

    PubMed Central

    Han, Jun; Danell, Ryan M.; Patel, Jayanti R.; Gumerov, Dmitry R.; Scarlett, Cameron O.; Speir, J. Paul; Parker, Carol E.; Rusyn, Ivan; Zeisel, Steven; Borchers, Christoph H.

    2008-01-01

    With unmatched mass resolution, mass accuracy, and exceptional detection sensitivity, Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS) has the potential to be a powerful new technique for high-throughput metabolomic analysis. In this study, we examine the properties of an ultrahigh-field 12-Tesla (12T) FTICR-MS for the identification and absolute quantitation of human plasma metabolites, and for the untargeted metabolic fingerprinting of inbred-strain mouse serum by direct infusion (DI). Using internal mass calibration (mass error ≤1 ppm), we determined the rational elemental compositions (incorporating unlimited C, H, N and O, and a maximum of two S, three P, two Na, and one K per formula) of approximately 250 out of 570 metabolite features detected in a 3-min infusion analysis of aqueous extract of human plasma, and were able to identify more than 100 metabolites. Using isotopically-labeled internal standards, we were able to obtain excellent calibration curves for the absolute quantitation of choline with sub-pmol sensitivity, using 500 times less sample than previous LC/MS analyses. Under optimized serum dilution conditions, chemical compounds spiked into mouse serum as metabolite mimics showed a linear response over a 600-fold concentration range. DI/FTICR-MS analysis of serum from 26 mice from 2 inbred strains, with and without acute trichloroethylene (TCE) treatment, gave a relative standard deviation (RSD) of 4.5%. Finally, we extended this method to the metabolomic fingerprinting of serum samples from 49 mice from 5 inbred strains involved in an acute alcohol toxicity study, using both positive and negative electrospray ionization (ESI). Using these samples, we demonstrated the utility of this method for high-throughput metabolomics, with more than 400 metabolites profiled in only 24 h. Our experiments demonstrate that DI/FTICR-MS is well-suited for high-throughput metabolomic analysis. PMID:19081807

  20. The impact of UVCS/SOHO observations on models of ion-cyclotron resonance heating of the solar corona

    NASA Technical Reports Server (NTRS)

    Cranmer, S. R.; Field, G. B.; Noci, G.; Kohl, J. L.

    1997-01-01

    The compatibility between theoretical models and observations of the temperatures and anisotropic distributions of hydrogen and minor ions in the solar corona is examined. The ultraviolet coronagraph spectrometer (UVCS) instrument onboard SOHO measured hydrogen kinetic temperatures along lines of sight in coronal holes in excess of 3 x 10(exp 6) K and O(+5) ion kinetic temperatures of at least 2 x 10(exp 8) K. Various features of plasma heating by the dissipation of high-frequency ion-cyclotron resonance Alfven waves, which may be the most natural physical mechanism to produce certain plasma conditions, are examined. Preliminary quantitative models of the ion motion in polar coronal holes are presented, and it is shown that such models can be used to predict the spectrum of waves required to reproduce the observations. Indeed, the more ionic species that are observed spectroscopically, the greater the extent in frequency space the wave spectrum can be inferred.

  1. Self-Consistent Model of Magnetospheric Ring Current and Electromagnetic Ion Cyclotron Waves: The 2-7 May 1998 Storm

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.

    2003-01-01

    A complete description of a self-consistent model of magnetospheric ring current interacting with electromagnetic ion cyclotron waves is presented. The model is based on the system of two kinetic equations; one equation describes the ring current ion dynamics, and another equation describes the wave evolution. The effects on ring current ions interacting with electromagnetic ion cyclotron waves and back on waves are considered self-consistently by solving both equations on a global magnetospheric scale under nonsteady state conditions. The developed model is employed to simulate the entire 2-7 May 1998 storm period. First, the trapped number fluxes of the ring current protons are calculated and presented along with comparison with the data measured by the three- dimensional hot plasma instrument Polar/HYDRA. Incorporating in the model the wave-particle interaction leads to much better agreement between the experimental data and the model results. Second, examining of the wave (MLT, L shell) distributions produced by the model during the storm progress reveals an essential intensification of the wave emission about 2 days after the main phase of the storm. This result is well consistent with the earlier ground-based observations. Finally, the theoretical shapes and the occurrence rates of the wave power spectral densities are studied. It is found that about 2 days after the storm s main phase on 4 May, mainly non-Gaussian shapes of power spectral densities are produced.

  2. A "screened" electrostatic ion trap for enhanced mass resolution, mass accuracy, reproducibility, and upper mass limit in Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Wang, M; Marshall, A G

    1989-06-01

    Until now, it was thought that the optimal static electromagnetic ion trap for Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry should be designed to produce a quadrupolar electrical potential, for which the ion cyclotron frequency is independent of the ion's preexcitation location within the trap. However, a quadrupolar potential results in a transverse (to the magnetic field) electric field that increases linearly with distance from the center of the trap. That radially linear electric field shifts the observed ICR frequency, increases the ICR orbital radius, and ultimately limits the highest mass-to-charge ratio ion that can be contained within the trap. In this paper, we propose a new static electromagnetic ion "trap" in which grounded screens placed just inside the usual "trapping" plates produce a good approximation to a "particle-in-a-box" potential (rather than the quadrupolar "harmonic oscillator" potential). SIMION calculations confirm that the electric potential of the screened trap is near zero almost everywhere within the trap. For our screened orthorhombic (2.5 in. X 2 in. X 2 in.) trap, the experimental ICR frequency shift due to trapping voltage is reduced by a factor of approximately 100, and the experimental variation of ICR frequency with ICR radius is reduced by a factor of approximately 10 compared to a conventional (unscreened) 2-in. cubic ion trap.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Spatially resolved measurements of electron cyclotron resonance ion source beam profile characteristics

    SciTech Connect

    Panitzsch, Lauri; Stalder, Michael; Wimmer-Schweingruber, Robert F.

    2011-03-15

    Simulations predict that the concentric rings and the triangular structures in the profiles of strongly focused ion beams that are found in different experiments should be dominated by ion species with the same or at least similar m/q-ratio. To verify these theoretical predictions we have tuned our ECR ion source to deliver a beam consisting of multiple ion species whose particular m/q-depending focusing ranges from weakly focused to overfocused. We then recorded spatially resolved charge-state distributions of the beam profile at characteristic positions in the plane perpendicular to the beam line. The results validate theoretical predictions and are summarized in this paper. To achieve the required beam profile characteristics we moved the extraction along the beam line to achieve stronger focusing than by only changing the extraction voltage. To fit the regions of interest of the beam profile into the transmission area of the sector magnet, we steered the beam by moving the extraction in the plane perpendicular to the beam axis. The results of both investigations, beam focusing and beam steering by using a 3D-movable extraction, are also reported in this paper. A brief overview of the new beam monitor extensively used during these measurements, the Faraday cup array, is also given.

  4. Experimental investigation of ion cyclotron range of frequencies heating scenarios for ITER's half-field hydrogen phase performed in JET

    NASA Astrophysics Data System (ADS)

    Lerche, E.; Van Eester, D.; Johnson, T. J.; Hellsten, T.; Ongena, J.; Mayoral, M.-L.; Frigione, D.; Sozzi, C.; Calabro, G.; Lennholm, M.; Beaumont, P.; Blackman, T.; Brennan, D.; Brett, A.; Cecconello, M.; Coffey, I.; Coyne, A.; Crombe, K.; Czarnecka, A.; Felton, R.; Giroud, C.; Gorini, G.; Hellesen, C.; Jacquet, P.; Kiptily, V.; Knipe, S.; Krasilnikov, A.; Maslov, M.; Monakhov, I.; Noble, C.; Nocente, M.; Pangioni, L.; Proverbio, I.; Sergienko, G.; Stamp, M.; Studholme, W.; Tardocchi, M.; Vdovin, V.; Versloot, T.; Voitsekhovitch, I.; Whitehurst, A.; Wooldridge, E.; Zoita, V.; EFDA Contributors, JET

    2012-07-01

    Two ion cyclotron range of frequencies (ICRF) heating schemes proposed for the half-field operation phase of ITER in hydrogen plasmas—fundamental H majority and second harmonic 3He ICRF heating—were recently investigated in JET. Although the same magnetic field and RF frequencies (f ≈ 42 MHz and f ≈ 52 MHz, respectively) were used, the density and particularly the plasma temperature were lower than those expected in the initial phase of ITER. Unlike for the well-performing H minority heating scheme to be used in 4He plasmas, modest heating efficiencies (η = Pabsorbed/Plaunched < 40%) with dominant electron heating were found in both H plasma scenarios studied, and enhanced plasma-wall interaction manifested by high radiation losses and relatively large impurity content in the plasma was observed. This effect was stronger in the 3He ICRF heating case than in the H majority heating experiments and it was verified that concentrations as high as ˜20% are necessary to observe significant ion heating in this case. The RF acceleration of the heated ions was modest in both cases, although a small fraction of the 3He ions reached about 260 keV in the second harmonic 3He heating experiments when 5 MW of ICRF power was applied. Considerable RF acceleration of deuterium beam ions was also observed in some discharges of the 3He heating experiments (where both the second and third harmonic ion cyclotron resonance layers of the D ions are inside the plasma) whilst it was practically absent in the majority hydrogen heating scenario. While hints of improved RF heating efficiency as a function of the plasma temperature and plasma dilution (with 4He) were confirmed in the H majority case, the 3He concentration was the main handle on the heating efficiency in the second harmonic 3He heating scenario.

  5. Preparation and in situ characterization of surfaces using soft landing in a Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Alvarez, Jormarie; Cooks, R Graham; Barlow, S E; Gaspar, Daniel J; Futrell, Jean H; Laskin, Julia

    2005-06-01

    Mass-selected peptide ions produced by electrospray ionization were deposited onto fluorinated self-assembled monolayer surfaces (FSAM) surfaces by soft landing using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially designed for studying interactions of large ions with surfaces. Analysis of the modified surface was performed in situ by combining 2-keV Cs+ secondary ion mass spectrometry with FT-ICR detection of the sputtered ions (FT-ICR-SIMS). Regardless of the initial charge state of the precursor ion, the SIMS mass spectra included singly protonated peptide ion, peptide fragment ions, and peaks characteristic of the surface in all cases. In some experiments, multiply protonated peptide ions and [M + Au]+ ions were also observed upon SIMS analysis of modified surfaces. For comparison with the in situ analysis of the modified surfaces, ex situ analysis of some of the modified surfaces was performed by 25-keV Ga+ time-of-flight-secondary ion mass spectrometry (TOF-SIMS). The ex situ analysis demonstrated that a significant number of soft-landed peptide ions remain charged on the surface even when exposed to air for several hours after deposition. Charge retention of soft-landed ions dramatically increases the ion yields obtained during SIMS analysis and enables very sensitive detection of deposited material at less than 1% of monolayer coverage. Accumulation of charged species on the surface undergoes saturation due to coulomb repulsion between charges at close to 30% coverage. We estimated that close to 1 ng of peptide could be deposited on the spot area of 4 mm2 of the FSAM surface without reaching saturation.

  6. Automated Gain Control and Internal Calibration With External Ion Accumulation Capillary liquid chromatography-electrospray ionization-fourier transform ion cyclotron resonance.

    SciTech Connect

    Belov, Mikhail E.; Zhang, Rui ); Strittmatter, Eric F. ); Prior, David C. ); Tang, Keqi ); Smith, Richard D. )

    2003-08-15

    When combined with capillary LC separations, Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FTICR MS) has increasingly been applied for advanced characterization of proteolytic digests. Incorporation of external (to the ICR cell) ion accumulation multipoles with FTICR for ion pre selection and accumulation has enhanced the dynamic range, sensitivity and duty cycle of measurements. However, the highly variable ion production rate from an LC separation can result in overfilling of the external trap, resulting in m/z discrimination and fragmentation of peptide ions. An excessive space charge trapped in the ICR cell causes significant shifts in the detected ion cyclotron frequencies, reducing the achievable mass measurement accuracy (MMA) for protein identification. To eliminate m/z discrimination in the external ion trap, further increase the duty cycle and improve MMA, we developed a capability for data-dependent adjustment of ion accumulation times in the course of an LC separation, referred to as Automated Gain Control (AGC), in combination with low kinetic energy gated ion trapping and internal calibration using a dual-channel electrodynamic ion funnel. The system was initially evaluated in the analysis of a 0.5 mg/mL tryptic digest of bovine serum albumin. The implementation of LC/ESI/AGC/FTICR with internal calibration gave rise to a {approx} 10-fold increase in the number of identified tryptic peptides within mass measurement accuracy of 2 ppm as compared to that detected during the conventional LC/FTICR run with a fixed ion accumulation time and external calibration.

  7. Scalings of Alfvén-cyclotron and ion Bernstein instabilities on temperature anisotropy of a ring-like velocity distribution in the inner magnetosphere

    DOE PAGES

    Min, Kyungguk; Liu, Kaijun; Gary, S. Peter

    2016-03-18

    Here, a ring-like proton velocity distribution with ∂fp(v⊥)/∂v⊥>0 and which is sufficiently anisotropic can excite two distinct types of growing modes in the inner magnetosphere: ion Bernstein instabilities with multiple ion cyclotron harmonics and quasi-perpendicular propagation and an Alfvén-cyclotron instability at frequencies below the proton cyclotron frequency and quasi-parallel propagation. Recent particle-in-cell simulations have demonstrated that even if the maximum linear growth rate of the latter instability is smaller than the corresponding growth of the former instability, the saturation levels of the fluctuating magnetic fields can be greater for the Alfvén-cyclotron instability than for the ion Bernstein instabilities. In thismore » study, linear dispersion theory and two-dimensional particle-in-cell simulations are used to examine scalings of the linear growth rate and saturation level of the two types of growing modes as functions of the temperature anisotropy T⊥/T|| for a general ring-like proton distribution with a fixed ring speed of 2vA, where vA is the Alfvén speed. For the proton distribution parameters chosen, the maximum linear theory growth rate of the Alfvén-cyclotron waves is smaller than that of the fastest-growing Bernstein mode for the wide range of anisotropies (1≤T⊥/T||≤7) considered here. Yet the corresponding particle-in-cell simulations yield a higher saturation level of the fluctuating magnetic fields for the Alfvén-cyclotron instability than for the Bernstein modes as long as inline image. Since fast magnetosonic waves with ion Bernstein instability properties observed in the magnetosphere are often not accompanied by electromagnetic ion cyclotron waves, the results of the present study indicate that the ring-like proton distributions responsible for the excitation of these fast magnetosonic waves should not be very anisotropic.« less

  8. Scalings of Alfvén-cyclotron and ion Bernstein instabilities on temperature anisotropy of a ring-like velocity distribution in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun; Gary, S. Peter

    2016-03-01

    A ring-like proton velocity distribution with ∂fp(v⊥)/∂v⊥>0 and which is sufficiently anisotropic can excite two distinct types of growing modes in the inner magnetosphere: ion Bernstein instabilities with multiple ion cyclotron harmonics and quasi-perpendicular propagation and an Alfvén-cyclotron instability at frequencies below the proton cyclotron frequency and quasi-parallel propagation. Recent particle-in-cell simulations have demonstrated that even if the maximum linear growth rate of the latter instability is smaller than the corresponding growth of the former instability, the saturation levels of the fluctuating magnetic fields can be greater for the Alfvén-cyclotron instability than for the ion Bernstein instabilities. In this study, linear dispersion theory and two-dimensional particle-in-cell simulations are used to examine scalings of the linear growth rate and saturation level of the two types of growing modes as functions of the temperature anisotropy T⊥/T|| for a general ring-like proton distribution with a fixed ring speed of 2vA, where vA is the Alfvén speed. For the proton distribution parameters chosen, the maximum linear theory growth rate of the Alfvén-cyclotron waves is smaller than that of the fastest-growing Bernstein mode for the wide range of anisotropies (1≤T⊥/T||≤7) considered here. Yet the corresponding particle-in-cell simulations yield a higher saturation level of the fluctuating magnetic fields for the Alfvén-cyclotron instability than for the Bernstein modes as long as T⊥/T|| ≳ 3. Since fast magnetosonic waves with ion Bernstein instability properties observed in the magnetosphere are often not accompanied by electromagnetic ion cyclotron waves, the results of the present study indicate that the ring-like proton distributions responsible for the excitation of these fast magnetosonic waves should not be very anisotropic.

  9. Fast ion induced shearing of 2D Alfvén eigenmodes measured by electron cyclotron emission imaging.

    PubMed

    Tobias, B J; Classen, I G J; Domier, C W; Heidbrink, W W; Luhmann, N C; Nazikian, R; Park, H K; Spong, D A; Van Zeeland, M A

    2011-02-18

    Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfvén eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the observations are found to be in excellent agreement with simulations using an ideal MHD code (NOVA), other characteristics distinctly reveal the influence of fast ions on the mode structures. These features are found to be well described by the nonperturbative hybrid MHD-gyrofluid model TAEFL.

  10. Aging effects on macadamia nut oil studied by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Proschogo, Nicholas W; Albertson, Peter L; Bursle, Johanna; McConchie, Cameron A; Turner, Athol G; Willett, Gary D

    2012-02-29

    High-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry is successfully used in the detailed molecular analysis of aged macadamia nut oils. The results are consistent with peroxide values, the current industry measure for rancidity, and provide detailed molecular information on the oxidative and hydrolytic degeneration of such oils. Mass analysis of macadamia oil samples stored for extended periods at 6 °C revealed that oils obtained by the cold press method are more susceptible to aging than those obtained using modified Soxhlet or accelerated solvent extraction methods.

  11. Ultra-wideband coaxial hybrid coupler for load resilient ion cyclotron range of frequency heating at fusion plasmas

    SciTech Connect

    Kim, H. J.; Bae, Y. S.; Yang, H. L.; Kwak, J.-G.; Wang, S. J.; Kim, B. K.; Choi, J. J.

    2012-06-25

    We designed a high power and ultra-wideband two-section 3 dB coaxial hybrid coupler for load resilient ion cyclotron range of frequency heating by configuring asymmetric impedance matching using a three-dimensional simulation code, hfss. By adjusting the characteristic impedances of main and coupled lines of the hybrid coupler, we realized that the bandwidth of the proposed circuit is not only wider than that of a conventional three-section coupler, but also that the bandwidth is almost twice as wide compared to the conventional two-section hybrid coupler while maintaining the identical overall size.

  12. Fast Ion Induced Shearing of 2D Alfvén Eigenmodes Measured by Electron Cyclotron Emission Imaging

    NASA Astrophysics Data System (ADS)

    Tobias, B. J.; Classen, I. G. J.; Domier, C. W.; Heidbrink, W. W.; Luhmann, N. C., Jr.; Nazikian, R.; Park, H. K.; Spong, D. A.; van Zeeland, M. A.

    2011-02-01

    Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfvén eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the observations are found to be in excellent agreement with simulations using an ideal MHD code (NOVA), other characteristics distinctly reveal the influence of fast ions on the mode structures. These features are found to be well described by the nonperturbative hybrid MHD-gyrofluid model TAEFL.

  13. Microwave electron cyclotron electron resonance (ECR) ion source with a large, uniformly distributed, axially symmetric, ECR plasma volume

    DOEpatents

    Alton, Gerald D.

    1996-01-01

    An electron cyclotron resonance (ECR) ion source includes a primary mirror coil disposed coaxially around a vacuum vessel in which a plasma is induced and introducing a solenoidal ECR-producing field throughout the length of the vacuum vessel. Radial plasma confinement is provided by a multi-cusp, multi-polar permanent magnet array disposed azimuthally around the vessel and within the primary mirror coil. Axial confinement is provided either by multi-cusp permanent magnets at the opposite axial ends of the vessel, or by secondary mirror coils disposed on opposite sides of the primary coil.

  14. The Backward Electrostatic Ion-Cyclotron Wave, Fast Wave Current Drive, and Far-Infrared Laser Scattering

    NASA Astrophysics Data System (ADS)

    Goree, John Arlin

    1985-12-01

    The first observations of several radio frequency wave phenomena in a magnetized plasma are presented. The backward branch of the electrostatic ion-cyclotron wave, which was previously described in reports of theoretical but not experimental work, was observed. This hot magnetized plasma mode propagates for frequencies above each harmonic of the ion-cyclotron frequency. A phased antenna structure, inserted into a neon plasma, excited the wave. An experimental dispersion relation produced from probe measurements of the mode agrees with the dispersion relation predicted using linear theory. Fast wave current drive in a toroidal plasma was observed for the first time. A loop antenna launched the fast Alfven wave in the range of high ion-cyclotron harmonics, (omega)/(OMEGA) = O(10). Signals from magnetic loop probes, Langmuir probes, and FIR laser scattering revealed the identity of the mode. Using a single antenna to launch the wave into a plasma containing a unidirectional electron beam, the circulating current increased according to the rf power applied. This increase in current occurs when the plasma is sufficiently dense to support fast wave propagation. Fast wave current drive may be a desirable method of sustaining the toroidal current in a fusion reactor. A fast wave antenna also excites slow wave resonance cones, i.e., lower-hybrid waves, as shown here for the first time. This process occurs in the same frequency range of high ion-cyclotron harmonics as fast wave current drive, and may represent an undesirable loss mechanism. A far-infrared laser scattering diagnostic was developed for detecting coherent radio frequency waves. In this system, an unusual detection method employing two lock-in amplifiers reduced noise from rf pickup and broadband noise. A criterion is presented for its use. A new type of cathode for producing plasmas, used in the fast wave experiment, consists of a lanthanum-hexaboride emissive element heated by a graphite resistor. Inserted

  15. Cyclotron production of [18F]fluoride ion and [18F]fluorine gas and their medical applications

    NASA Astrophysics Data System (ADS)

    VanBrocklin, H. F.; O'Neil, J. P.

    1997-02-01

    One of the newest low energy cyclotrons for the production of positron emitting isotopes has been sited at Lawrence Berkeley National Laboratory. This prototype CTI RDS-111, proton only, 11 MeV, negative ion machine is capable of producing GBq quantities of fluorine-18 for radiopharmaceutical applications. A CTI designed target changing system developed for this cyclotron can hold up to eight small targets. We have tested two small high pressure CTI silver body target designs for the production of [18F]fluoride ion and compared them to the CTI RDS-112 style low pressure target. The high pressure target can produce up to 100% more activity for a given time and beam current with improved saturation yields. A high pressure aluminum RDS-112 gas target has been used to produce [18F]F2. The fluoride ion produced from this machine has been used to label fluorodeoxyglucose to trace glucose metabolism in patients and the fluorine gas has been used to label fluoro-meta-tyrosine to image therapeutic response to gene therapy in Parkinsonian monkeys.

  16. Self-Consistent Model of Magnetospheric Electric Field, Ring Current, Plasmasphere, and Electromagnetic Ion Cyclotron Waves: Initial Results

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.; Ridley, A. J.

    2009-01-01

    Further development of our self-consistent model of interacting ring current (RC) ions and electromagnetic ion cyclotron (EMIC) waves is presented. This model incorporates large scale magnetosphere-ionosphere coupling and treats self-consistently not only EMIC waves and RC ions, but also the magnetospheric electric field, RC, and plasmasphere. Initial simulations indicate that the region beyond geostationary orbit should be included in the simulation of the magnetosphere-ionosphere coupling. Additionally, a self-consistent description, based on first principles, of the ionospheric conductance is required. These initial simulations further show that in order to model the EMIC wave distribution and wave spectral properties accurately, the plasmasphere should also be simulated self-consistently, since its fine structure requires as much care as that of the RC. Finally, an effect of the finite time needed to reestablish a new potential pattern throughout the ionosphere and to communicate between the ionosphere and the equatorial magnetosphere cannot be ignored.

  17. Profiles of ion beams and plasma parameters on a multi-frequencies microwaves large bore electron cyclotron resonance ion source with permanent magnets.

    PubMed

    Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yosuke; Nozaki, Dai; Sato, Fuminobu; Iida, Toshiyuki

    2012-02-01

    In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them in detail.

  18. Profiles of ion beams and plasma parameters on a multi-frequencies microwaves large bore electron cyclotron resonance ion source with permanent magnets

    SciTech Connect

    Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yosuke; Nozaki, Dai; Sato, Fuminobu; Iida, Toshiyuki

    2012-02-15

    In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them in detail.

  19. Parametric decays of electromagnetic ion cyclotron waves in a H{sup +}-He{sup +}-O{sup +} magnetosphericlike plasma

    SciTech Connect

    Gomberoff, L.; Gnavi, G.; Gratton, F.T.

    1995-09-01

    Parametric decays of large-amplitude electromagnetic ion cyclotron waves (EICW) due to a minor {Omicron}{sup +} ion component in the magnetosphere are studied. It is shown that the presence of {Omicron}{sup +} ions leads to a number of new wave couplings which in turn lead to new instabilities. Some coupling involve sound waves carried mainly by the {Omicron}{sup +} ions, and a sideband EICW which has a resonace at the {Omicron}{sup +} ion gyrofrequency. These are decay instabilities which can lead to {Omicron}{sup +} heating through Landau damping and/or resonance absorption. There is also a modulational instability involving two sideband EICW, one propagating forward and the other propagating backward relative to the external magnetic field. These waves can also transfer energy to the {Omicron}{sup +} ions through resonance absorption. The other branches of the dispersion relation, namely, the He{sup +} and proton branch, have additional decay instabilities due to the presence of a minor {Omicron}{sup +} ion component. It is also shown that in the fluid description, the decays to sound waves associated with the minority heavy ion species have growth rates comparable to, or even larger than, the decays to the acoustic branch corresponding to the majority proton species. 44 refs., 5 figs.

  20. Preparation and in situ Characterization of Surfaces Using Soft-Landing in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    SciTech Connect

    Alvarez, Jormarie; Cooks, Robert G.; Barlow, Stephan E.; Gaspar, Dan J.; Futrell, Jean H.; Laskin, Julia

    2005-06-01

    Mass-selected peptide ions produced by electrospray ionization were deposited onto fluorinated self-assembled monolayer surfaces (FSAM) surfaces by soft-landing using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially designed for studying interactions of large ions with surfaces. Analysis of the modified surface was performed in situ by combining 2 keV Cs+ secondary ion mass spectrometry with FT-ICR detection of the sputtered ions (FT-ICR-SIMS). Regardless of the initial charge state of the precursor ion, the SIMS mass spectra included singly-protonated peptide fragment ions and peaks characteristic of the surfaces in all cases. In some experiments multiply-protonated peptide ions and [M+Au]+ ions were also observed upon SIMS analysis of modified surfaces. For comparison with the in situ analysis of the modified surfaces, ex situ analysis of some of the modified surfaces was performed by 25 kV Ga+ time of flight ? secondary ion mass spectrometry (ToF-SIMS). The ex situ analysis demonstrated that a significant number of soft-landed peptide ions remain charged on the surface even when exposed to air for several hours after deposition. Charge retention of soft-landed ions dramatically increases the ion yields obtained during SIMS analysis very sensitive detection of deposited material at less than 1% of monolayer coverage. Accumulation of charged species on the surface undergoes saturation due to Coulomb repulsion between charges at close to 30% coverage. We estimated that close to 1 ng of peptide could be deposited on the spot area of 4 mm2 of the FSAM surface without reaching saturation.

  1. Ion cyclotron resonance frequency heating in JET during initial operations with the ITER-like wall

    SciTech Connect

    Jacquet, P. Monakhov, I.; Arnoux, G.; Brix, M.; Graham, M.; Meigs, A.; Sirinelli, A.; Colas, L.; Czarnecka, A.; Lerche, E.; Van-Eester, D.; Mayoral, M.-L.; Brezinsek, S.; Campergue, A.-L.; Klepper, C. C.; Milanesio, D.; and others

    2014-06-15

    In 2011/12, JET started operation with its new ITER-Like Wall (ILW) made of a tungsten (W) divertor and a beryllium (Be) main chamber wall. The impact of the new wall materials on the JET Ion Cyclotron Resonance Frequency (ICRF) operation is assessed and some important properties of JET plasmas heated with ICRF are highlighted. A ∼ 20% reduction of the antenna coupling resistance is observed with the ILW as compared with the JET carbon (JET-C) wall. Heat-fluxes on the protecting limiters close the antennas, quantified using Infra-Red thermography (maximum 4.5 MW/m{sup 2} in current drive phasing), are within the wall power load handling capabilities. A simple RF sheath rectification model using the antenna near-fields calculated with the TOPICA code can reproduce the heat-flux pattern around the antennas. ICRF heating results in larger tungsten and nickel (Ni) contents in the plasma and in a larger core radiation when compared to Neutral Beam Injection (NBI) heating. The location of the tungsten ICRF specific source could not be identified but some experimental observations indicate that main-chamber W components could be an important impurity source: for example, the divertor W influx deduced from spectroscopy is comparable when using RF or NBI at same power and comparable divertor conditions, and Be evaporation in the main chamber results in a strong reduction of the impurity level. In L-mode plasmas, the ICRF specific high-Z impurity content decreased when operating at higher plasma density and when increasing the hydrogen concentration from 5% to 15%. Despite the higher plasma bulk radiation, ICRF exhibited overall good plasma heating performance; the power is typically deposited at the plasma centre while the radiation is mainly from the outer part of the plasma bulk. Application of ICRF heating in H-mode plasmas has started, and the beneficial effect of ICRF central electron heating to prevent W accumulation in the plasma core has been observed.

  2. Short-time change of heavy-ion microbeams with different mass to charge ratios by scaling method for the JAEA AVF cyclotron

    NASA Astrophysics Data System (ADS)

    Kurashima, Satoshi; Okumura, Susumu; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Satoh, Takahiro; Kamiya, Tomihiro; Fukuda, Mitsuhiro; Yokota, Watalu

    2013-07-01

    The JAEA AVF cyclotron provides heavy-ion beams covering a wide range of linear-energy-transfers for microbeam formation. Two types of microbeam formation systems, one using a micro-aperture and the other focusing lenses, are installed on two vertical beam lines of the cyclotron. The average beam time for an experiment using the former system is usually less than 3 h, that is comparable to the time for cyclotron tuning. The time ratio between experiment and tuning determines the usage efficiency of the facility. In order to reduce the tuning time, a scaling method has been introduced to change the ion species with various mass to charge ratios (M/Q) in a shorter total time. The principle of the scaling method is to keep the magnetic rigidity of ion beams constant. This requirement is easily achieved by adjusting the extraction voltage of an ion source proportionally to the M/Q in the beam injection line. Although some cyclotron adjustments, other than the magnetic field strength at the extraction radius, are required, the tuning can be completed within 20 min, and no change is basically required in the beam transport line downstream of the cyclotron. Using the scaling method, 255 MeV 20Ne7+, 335 MeV 20Ne8+, and 440 MeV 40Ar13+ beams were extracted from the cyclotron in sequence after the usual tuning of a 220 MeV 12C5+. As a result, we have succeeded in changing the ion species of the heavy-ion microbeam within a total of 30 min.

  3. Effect of the minority concentration on ion cyclotron resonance heating in presence of the ITER-like wall in JET

    SciTech Connect

    Van Eester, D.; Lerche, E.; Crombé, K.; Jachmich, S.; Bobkov, V.; Maggi, C.; Neu, R.; Pütterich, T.; Czarnecka, A.; Coenen, J. W.; and others

    2014-02-12

    The most recent JET campaign has focused on characterizing operation with the 'ITER-like' wall. One of the questions that needed to be answered is whether the auxiliary heating methods do not lead to unacceptably high levels of impurity influx, preventing fusion-relevant operation. In view of its high single pass absorption, hydrogen minority fundamental cyclotron heating in a deuterium plasma was chosen as the reference wave heating scheme in the ion cyclotron domain of frequencies. The present paper discusses the plasma behavior as a function of the minority concentration X[H] in L-mode with up to 4MW of RF power. It was found that the tungsten concentration decreases by a factor of 4 when the minority concentration is increased from X[H] ≈ 5% to X[H] % 20% and that it remains at a similar level when X[H] is further increased to 30%; a monotonic decrease in Beryllium emission is simultaneously observed. The radiated power drops by a factor of 2 and reaches a minimum at X[H] ≈ 20%. It is discussed that poor single pass absorption at too high minority concentrations ultimately tailors the avoidance of the RF induced impurity influx. The edge density being different for different minority concentrations, it is argued that the impact ICRH has on the fate of heavy ions is not only a result of core (wave and transport) physics but also of edge dynamics and fueling.

  4. Effect of the minority concentration on ion cyclotron resonance heating in presence of the ITER-like wall in JET

    NASA Astrophysics Data System (ADS)

    Van Eester, D.; Lerche, E.; Jacquet, P.; Bobkov, V.; Czarnecka, A.; Coenen, J. W.; Colas, L.; Crombé, K.; Graham, M.; Jachmich, S.; Joffrin, E.; Klepper, C. C.; Kiptily, V.; Lehnen, M.; Maggi, C.; Marcotte, F.; Matthews, G.; Mayoral, M.-L.; Mc Cormick, K.; Monakhov, I.; Nave, M. F. F.; Neu, R.; Noble, C.; Ongena, J.; Pütterich, T.; Rimini, F.; Solano, E. R.; van Rooij, G.; JET-EFDA contributors

    2014-02-01

    The most recent JET campaign has focused on characterizing operation with the "ITER-like" wall. One of the questions that needed to be answered is whether the auxiliary heating methods do not lead to unacceptably high levels of impurity influx, preventing fusion-relevant operation. In view of its high single pass absorption, hydrogen minority fundamental cyclotron heating in a deuterium plasma was chosen as the reference wave heating scheme in the ion cyclotron domain of frequencies. The present paper discusses the plasma behavior as a function of the minority concentration X[H] in L-mode with up to 4MW of RF power. It was found that the tungsten concentration decreases by a factor of 4 when the minority concentration is increased from X[H] ≈ 5% to X[H] % 20% and that it remains at a similar level when X[H] is further increased to 30%; a monotonic decrease in Beryllium emission is simultaneously observed. The radiated power drops by a factor of 2 and reaches a minimum at X[H] ≈ 20%. It is discussed that poor single pass absorption at too high minority concentrations ultimately tailors the avoidance of the RF induced impurity influx. The edge density being different for different minority concentrations, it is argued that the impact ICRH has on the fate of heavy ions is not only a result of core (wave and transport) physics but also of edge dynamics and fueling.

  5. Observation of upper drift modes in radio frequency produced magnetized plasmas with frequency above ion cyclotron frequency

    SciTech Connect

    Ghosh, Abhijit; Saha, S. K.; Chowdhury, S.; Janaki, M. S.

    2015-12-15

    In a RF produced magnetized argon plasma expanding into a larger expansion chamber, electrostatic modes propagating azimuthally in the direction of the electron diamagnetic drift and frequency greater than the ion cyclotron frequency are observed. In the radial direction, the mode amplitude peaks at a location where the radial density gradient is maximum. The modes are detected at axial locations up to 16 cm away from the entrance aperture. For fixed values of the neutral pressure and magnetic field, the mode frequency is found to be independent of the location at which it is measured. The modes exhibit drift wave characteristics revealing a radial structure with the azimuthal mode number m = 1 at the lower radial locations (r ∼ 3.0 cm) while the m = 2 mode is located in the outer region. Theoretical modeling using a local dispersion relation based on the fluid equations predicts destabilization of the modes with frequency greater than the ion-cyclotron frequency by electron-neutral collisions and exhibiting other drift wave features.

  6. Status report on the design and construction of the Superconducting Source for Ions at the National Superconducting Cyclotron Laboratory/Michigan State University

    SciTech Connect

    Zavodszky, P.A.; Arend, B.; Cole, D.; DeKamp, J.; Machicoane, G.; Marti, F.; Miller, P.; Moskalik, J.; Ottarson, J.; Vincent, J.; Zeller, A.; Kazarinov, N.Yu.

    2006-03-15

    A status report of the design and fabrication of a new, fully superconducting electron cyclotron resonance ion source will be presented. The Superconducting Source for Ions (SuSI) first will operate at 18+14.5 GHz microwave frequencies. A short description of the magnet structure and the injection and extraction hardware will be presented. Several innovative solutions are described, which will allow maximum flexibility in tuning SuSI in order to match the acceptance of the coupled cyclotrons. Details of an ultrahigh temperature inductive oven construction are given as well as a description of the low-energy beam transport line.

  7. Ion cyclotron radio frequency systems and performance on the tandem mirror experiment-upgrade (TMX-U)

    SciTech Connect

    Moore, T.L.; Molvik, A.W.; Cummins, W.F.; Pedrotti, L.R.; Henderson, A.L.; Karsner, P.G.; Scofield, D.W.; Brooksby, C.A.

    1983-12-01

    High power ion cyclotron radio frequency (ICRF) systems are now gaining greater attention than before as prime driver ion heating systems. Lawrence Livermore National Laboratory (LLNL) has installed a 200 kW high frequency (HF) transmitter system on its Tandem Mirror Experiment-Upgrade (TMX-U). This paper describes the system, antenna, controls, and monitoring apparatus. The transmitter operates into a high Q antenna installed in the central cell region of the experiment. It incorporates a dual-port feedback system to automatically adjust the transmitter's output power and allow the maximum consistent with the plasma loading of the antenna. Special techniques have been used to measure, in real-time, the dynamically changing loading values presented by the plasma. From the measurements, the antenna impedance can be optimized for specified plasma density.

  8. Operating features of an ion-cyclotron-wave plasma apparatus running in the RF-sustained mode

    NASA Technical Reports Server (NTRS)

    Swett, C. C.

    1972-01-01

    An experimental study has been made of an ion-cyclotron-wave apparatus operated in the RF-sustained mode. This is a mode in which the Stix RF coil both propagates the waves and maintains the plasma. Problems associated with this method of operation are presented. Some factors that are important to the coupling of RF power are noted. In general, the wave-propagation and wave-damping data agree with theory. Some irregularities in wave fields are observed. Maximum ion temperature is 870 eV at a density of 5 times 10 to the 12th power per cubic centimeter and RF power of 90 kW. Coupling efficiency is 70 percent.

  9. Improvement of efficiency and temperature control of induction heating vapor source on electron cyclotron resonance ion source.

    PubMed

    Takenaka, T; Kiriyama, R; Muramatsu, M; Kitagawa, A; Uchida, T; Kurisu, Y; Nozaki, D; Yano, K; Yoshida, Y; Sato, F; Kato, Y; Iida, T

    2012-02-01

    An electron cyclotron resonance ion source (ECRIS) is used to generate multicharged ions for many kinds of the fields. We have developed an evaporator by using induction heating method that can generate pure vapor from solid state materials in ECRIS. We develop the new matching and protecting circuit by which we can precisely control the temperature of the induction heating evaporator. We can control the temperature within ±15 °C around 1400 °C under the operation pressure about 10(-4) Pa. We are able to use this evaporator for experiment of synthesizing process to need pure vapor under enough low pressure, e.g., experiment of generation of endohedral Fe-fullerene at the ECRIS.

  10. Study of toroidal flow generation by ion cyclotron range of frequency minority heating in the Alcator C-Mod plasma

    NASA Astrophysics Data System (ADS)

    Murakami, S.; Itoh, K.; Zheng, L. J.; Van Dam, J. W.; Bonoli, P.; Rice, J. E.; Fiore, C. L.; Gao, C.; Fukuyama, A.

    2016-01-01

    The averaged toroidal flow of energetic minority ions during ICRF (ion cyclotron range of frequencies) heating is investigated in the Alcator C-Mod plasma by applying the GNET code, which can solve the drift kinetic equation with complicated orbits of accelerated energetic particles. It is found that a co-directional toroidal flow of the minority ions is generated in the region outside of the resonance location, and that the toroidal velocity reaches more than 40% of the central ion thermal velocity (Vtor ˜ 300 km/s with PICRF ˜ 2 MW). When we shift the resonance location to the outside of |r /a |˜0.5 , the toroidal flow immediately inside of the resonance location is reduced to 0 or changes to the opposite direction, and the toroidal velocity shear is enhanced at r/a ˜ 0.5. A radial diffusion equation for toroidal flow is solved by assuming a torque profile for the minority ion mean flow, and good agreements with experimental radial toroidal flow profiles are obtained. This suggests that the ICRF driven minority ion flow is related to the experimentally observed toroidal rotation during ICRF heating in the Alcator C-Mod plasma.

  11. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  12. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    SciTech Connect

    Toivanen, V. Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M.

    2016-02-15

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  13. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    NASA Astrophysics Data System (ADS)

    Toivanen, V.; Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M.

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  14. [The effect of combined magnetic fields, adjusted to ion-cyclotron resonance for Ca ions, on intensity of division in planaria].

    PubMed

    Novikov, V V; Sheĭman, I M

    2012-01-01

    The combination of a constant (42 mkT1) and parallel to it a changing magnetic field on a frequency of 32 Hz (it corresponds to cyclotron frequency for Ca2+ ions) is shown to have a changing magnetic field amplitude-dependent effect on intensity of division in planaria. A stimulating effect has been observed at the magnitude of a changing component equal to 100 nT, but the amount of division significantly decreased at 250 nT and no impact of the magnetic field was registered at 500 nT1.

  15. Operation of Lanzhou all permanent electron cyclotron resonance ion source No. 2 on 320 kV platform with highly charged ions

    NASA Astrophysics Data System (ADS)

    Lu, W.; Li, J. Y.; Kang, L.; Liu, H. P.; Li, H.; Li, J. D.; Sun, L. T.; Ma, X. W.

    2014-02-01

    The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36 000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No. 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H+, 40Ar8+, 129Xe30+, 209Bi33+, etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.

  16. Operation of Lanzhou all permanent electron cyclotron resonance ion source No. 2 on 320 kV platform with highly charged ions.

    PubMed

    Lu, W; Li, J Y; Kang, L; Liu, H P; Li, H; Li, J D; Sun, L T; Ma, X W

    2014-02-01

    The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36,000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No. 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H(+), (40)Ar(8+), (129)Xe(30+), (209)Bi(33+), etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.

  17. Regulation of ion drifts and anisotropies by parametrically unstable finite-amplitude Alfvén-cyclotron waves in the fast solar wind

    SciTech Connect

    Maneva, Y. G.; Araneda, J. A.; Marsch, E.

    2014-03-10

    We study the preferential heating and differential acceleration of minor ions by dissipation of ion-acoustic waves (IAWs) generated by parametric instabilities of a finite-amplitude monochromatic Alfvén-cyclotron pump wave. We consider the associated kinetic effects of Landau damping and nonlinear pitch-angle scattering of protons and α particles in the tenuous plasma of coronal holes and the fast solar wind. Various data collected by Wind spacecraft show signatures for a local transverse heating of the minor ions, presumably by Alfvén-cyclotron wave dissipation, and an unexpected parallel heating by a so far unknown mechanism. Here, we present the results from a set of 1.5 dimensional hybrid simulations in search for a plausible explanation for the observed field-aligned kinetic features in the fast solar wind minor ions. We investigate the origin and regulation of ion relative drifts and temperature anisotropies in low plasma β, fast solar wind conditions. Depending on their initial drifts, both ion species can heat up not only transversely through cyclotron resonance and non-resonant wave-particle interactions, but also strongly in the parallel direction by Landau damping of the daughter IAWs. We discuss the dependence of the relative ion drifts and temperature anisotropies on the plasma β of the individual species and we describe the effect of the pump wave amplitude on the ion heating and acceleration.

  18. Amplitude-frequency characteristics of ion-cyclotron and whistler-mode waves from Van Allen Probes data

    NASA Astrophysics Data System (ADS)

    Lyubchich, A. A.; Demekhov, A. G.; Titova, E. E.; Yahnin, A. G.

    2017-01-01

    Using two-hour (from 2300 UT January 25, 2013 to 0100 UT January 26, 2013) measurement data from Van Allen Probes on fluxes of energetic particles, cold plasma density, and magnetic field magnitude, we have calculated the local growth rate of electromagnetic ion-cyclotron and whistler-mode waves for field-aligned propagation. The results of these calculations have been compared with wave spectra observed by the same Van Allen Probe spacecraft. The time intervals when the calculated wave increments are sufficiently large, and the frequency ranges corresponding to the enhancement peak agree with the frequency-time characteristics of observed electromagnetic waves. We have analyzed the influence of variations in the density and ionic composition of cold plasma, fluxes of energetic particles, and their pitch-angle distribution on the wave generation. The ducted propagation of waves plays an important role in their generation during the given event. The chorus VLF emissions observed in this event cannot be explained by kinetic cyclotron instability, and their generation requires much sharper changes ("steps") for velocity distributions than those measured by energetic particle detectors on Van Allen Probes satellites.

  19. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    SciTech Connect

    Mascali, David Castro, Giuseppe; Celona, Luigi; Neri, Lorenzo; Gammino, Santo; Biri, Sándor; Rácz, Richárd; Pálinkás, József; Romano, Francesco Paolo; Torrisi, Giuseppe

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  20. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    NASA Astrophysics Data System (ADS)

    Mascali, David; Castro, Giuseppe; Biri, Sándor; Rácz, Richárd; Pálinkás, József; Caliri, Claudia; Celona, Luigi; Neri, Lorenzo; Romano, Francesco Paolo; Torrisi, Giuseppe; Gammino, Santo

    2016-02-01

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed "on-line" during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  1. High-power microwave transmission systems for electron-cyclotron-resonance plasma heating

    SciTech Connect

    Vernon, R.J.

    1991-08-01

    This progress report is for the sixth year of a grant from the US Department of Energy for the design, development, and fabrication of ECRH transmission and mode conversion systems to transport microwave power from a gyrotron to a magnetically confined plasma. The design and low-power testing of new and improved components for such systems and development of underlying theory is the focus of this project. Devising and improving component testing and diagnostic techniques is also an important part of this effort. The development of possible designs for sections of gyrotrons themselves, such as tapers or Vlasov-type launchers, in support of the Varian gyrotron development program is also considered when appropriate. We also provide support to other groups working on ECR heating of magnetically confined plasmas such as the groups at General Atomics, the University of Texas at Austin, and Lawrence Livermore National Laboratory. During the last year, we designed and had fabricated a two-dimensional Vlasov antenna system for a 110 GHz TE{sub 15,2} mode gyrotron for possible use at General Atomics. The system included the launcher section, a visor, main reflector, and focusing reflector. Programs to generate the tool-path profiles to cut the General Atomics'' Vlasov components on a milling machine were developed. We have also developed state-of-the art theory and programs for three-dimensional whispering-gallery-mode Vlasov antenna systems. A design for a 110 GHz TE{sub 01}-TE{sub 15,2} mode converter system for cold testing WGM Vlasov antenna systems was developed and is currently being fabricated also.

  2. All-magnetic extraction for cyclotron beam reacceleration

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-07-22

    An isochronous cyclotron can be modified to provide an initial electron stripping stage, a complete acceleration of the stripped ions through the cyclotron to a first energy state, means for returning the ions to an intermediate cyclotron orbit through a second stripping stage, further acceleration of the now higher energy stripped ions through the cyclotron to their final energy, and final extraction of the ions from the cyclotron. (auth)

  3. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap

    SciTech Connect

    Nikolaev, A. G.; Savkin, K. P.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu.; Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A.

    2012-02-15

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent ''minimum-B'' structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap - axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 {mu}s) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  4. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    PubMed

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  5. Spatially resolved charge-state and current-density distributions at the extraction of an electron cyclotron resonance ion source

    SciTech Connect

    Panitzsch, Lauri; Peleikis, Thies; Stalder, Michael; Wimmer-Schweingruber, Robert F.

    2011-09-15

    In this paper we present our measurements of charge-state and current-density distributions performed in very close vicinity (15 mm) of the extraction of our hexapole geometry electron cyclotron resonance ion source. We achieved a relatively high spatial resolution reducing the aperture of our 3D-movable extraction (puller) electrode to a diameter of only 0.5 mm. Thus, we are able to limit the source of the extracted ion beam to a very small region of the plasma electrode's hole (O = 4 mm) and therefore to a very small region of the neutral plasma sheath. The information about the charge-state distribution and the current density in the plane of the plasma electrode at each particular position is conserved in the ion beam. We determined the total current density distribution at a fixed coaxial distance of only 15 mm to the plasma electrode by remotely moving the small-aperture puller electrode which contained a dedicated Faraday cup (FC) across the aperture of the plasma electrode. In a second measurement we removed the FC and recorded m/q-spectra for the different positions using a sector magnet. From our results we can deduce that different ion charge-states can be grouped into bloated triangles of different sizes and same orientation at the extraction with the current density peaking at centre. This confirms observations from other groups based on simulations and emittance measurements. We present our measurements in detail and discuss possible systematic errors.

  6. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trapa)

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. G.; Savkin, K. P.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu.; Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A.

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap - axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  7. Operational experience with the Argonne National Laboratory Californium Rare Ion Breeder Upgrade facility and electron cyclotron resonance charge breeder

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Clark, J.; Levand, A.; Palchan, T.; Pardo, R.; Savard, G.; Scott, R.

    2014-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory Argonne Tandem Linac Accelerator System (ATLAS) facility provides low-energy and accelerated neutron-rich radioactive beams to address key nuclear physics and astrophysics questions. A 350 mCi 252Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The ECR charge breeder has achieved stable beam charge breeding efficiencies of 10.1% for 23Na7+, 17.9% for 39K10+, 15.6% for 84Kr17+, and 12.4% for 133Cs27+. For the radioactive beams, a charge breeding efficiency of 11.7% has been achieved for 143Cs27+ and 14.7% for 143Ba27+. The typical breeding times are 10 ms/charge state, but the source can be tuned such that this value increases to 100 ms/charge state with the best breeding efficiency corresponding to the longest breeding times—the variation of efficiencies with breeding time will be discussed. Efforts have been made to characterize and reduce the background contaminants present in the ion beam through judicious choice of q/m combinations. Methods of background reduction are being investigated based upon plasma chamber cleaning and vacuum practices.

  8. Operational experience with the Argonne National Laboratory Californium Rare Ion Breeder Upgrade facility and electron cyclotron resonance charge breeder.

    PubMed

    Vondrasek, R; Clark, J; Levand, A; Palchan, T; Pardo, R; Savard, G; Scott, R

    2014-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory Argonne Tandem Linac Accelerator System (ATLAS) facility provides low-energy and accelerated neutron-rich radioactive beams to address key nuclear physics and astrophysics questions. A 350 mCi (252)Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The ECR charge breeder has achieved stable beam charge breeding efficiencies of 10.1% for (23)Na(7+), 17.9% for (39)K(10+), 15.6% for (84)Kr(17+), and 12.4% for (133)Cs(27+). For the radioactive beams, a charge breeding efficiency of 11.7% has been achieved for (143)Cs(27+) and 14.7% for (143)Ba(27+). The typical breeding times are 10 ms/charge state, but the source can be tuned such that this value increases to 100 ms/charge state with the best breeding efficiency corresponding to the longest breeding times-the variation of efficiencies with breeding time will be discussed. Efforts have been made to characterize and reduce the background contaminants present in the ion beam through judicious choice of q/m combinations. Methods of background reduction are being investigated based upon plasma chamber cleaning and vacuum practices.

  9. Boosting Sensitivity in Liquid Chromatography-Fourier Transform Ion Cyclotron Resonance-Tandem Mass Spectrometry for Product Ion Analysis of Monoterpene Indole Alkaloids.

    PubMed

    Nakabayashi, Ryo; Tsugawa, Hiroshi; Kitajima, Mariko; Takayama, Hiromitsu; Saito, Kazuki

    2015-01-01

    In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS) is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography-Fourier transform ion cyclotron resonance-tandem mass spectrometry analysis (MS/MS boost analysis). To verify the MS/MS boost analysis, both quercetin and uniformly labeled (13)C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs). The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine) and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline) identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis.

  10. Boosting Sensitivity in Liquid Chromatography–Fourier Transform Ion Cyclotron Resonance–Tandem Mass Spectrometry for Product Ion Analysis of Monoterpene Indole Alkaloids

    PubMed Central

    Nakabayashi, Ryo; Tsugawa, Hiroshi; Kitajima, Mariko; Takayama, Hiromitsu; Saito, Kazuki

    2015-01-01

    In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS) is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography–Fourier transform ion cyclotron resonance–tandem mass spectrometry analysis (MS/MS boost analysis). To verify the MS/MS boost analysis, both quercetin and uniformly labeled 13C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs). The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine) and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline) identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis. PMID:26734034

  11. Isotope exchange experiments on TEXTOR and TORE SUPRA using Ion Cyclotron Wall Conditioning and Glow Discharge Conditioning

    NASA Astrophysics Data System (ADS)

    Wauters, T.; Douai, D.; Lyssoivan, A.; Philipps, V.; Brémond, S.; Freisinger, M.; Kreter, A.; Lombard, G.; Marchuk, O.; Mollard, P.; Paul, M. K.; Pegourié, B.; Reimer, H.; Sergienko, G.; Tsitrone, E.; Vervier, M.; Van Wassenhove, G.; Wünderlich, D.; Van Schoor, M.; Van Oost, G.

    2011-08-01

    This contribution reports on isotope exchange studies with both Ion Cyclotron Wall Conditioning (ICWC) and Glow Discharge Conditioning (GDC) in TEXTOR and TORE SUPRA. The discharges have been carried out in H2, D2 (ICWC and GDC) and He/H2 mixtures (ICWC). The higher reionization probability in ICWC compared to GDC, following from the 3 to 4 orders of magnitude higher electron density, leads to a lower pumping efficiency of wall desorbed species. GDC has in this analysis (5-10) times higher removal rates of wall desorbed species than ICWC, although the wall release rate is 10 times higher in ICWC. Also the measured high retention during ICWC can be understood as an effect of the high reionization probability. The use of short RF pulses (∼1 s) followed by a larger pumping time significantly improves the ratio of implanted over recovered particles, without severely lowering the total amount of removed particles.

  12. Electrostatic ion-cyclotron instability caused by a nonuniform electric field perpendicular to the external magnetic field

    NASA Technical Reports Server (NTRS)

    Ganguli, G.; Lee, Y. C.; Palmadesso, P.

    1985-01-01

    A new mechanism that can destablize kinetic ion-cyclotron waves in the presence of a nonuniform electric field perpendicular to the uniform ambient magnetic field is given. In the absence of the electric field, the mode energy is positive, while in the presence of a uniform electric field the mode energy could be negative. However, when the electric field is nonuniform, it is possible for a finite region to be of negative wave energy surrounded by regions of positive wave energy. A nonlocal wave packet couples the two regions so that a flow of energy from the region of negative wave energy to the region of positive wave energy will cause the mode to grow. This gives rise to the instability.

  13. Superconducting magnet performance for 28 GHz electron cyclotron resonance ion source developed at the Korea Basic Science Institute

    SciTech Connect

    Park, Jin Yong; Choi, Seyong; Lee, Byoung-Seob; Yoon, Jang-Hee; Ok, Jung-Woo; Shin, Chang Seouk; Won, Mi-Sook; Kim, Byoung Chul; Ahn, Jung Keun

    2014-02-15

    A superconducting magnet for use in an electron cyclotron resonance ion source was developed at the Korea Basic Science Institute. The superconducting magnet is comprised of three solenoids and a hexapole magnet. According to the design value, the solenoid magnets can generate a mirror field, resulting in axial magnetic fields of 3.6 T at the injection area and 2.2 T at the extraction region. A radial field strength of 2.1 T can also be achieved by hexapole magnet on the plasma chamber wall. NbTi superconducting wire was used in the winding process following appropriate techniques for magnet structure. The final assembly of the each magnet involved it being vertically inserted into the cryostat to cool down the temperature using liquid helium. The performance of each solenoid and hexapole magnet was separately verified experimentally. The construction of the superconducting coil, the entire magnet assembly for performance testing and experimental results are reported herein.

  14. Electromagnetic Ion Cyclotron Waves in the High Altitude Cusp: Polar Observations

    NASA Technical Reports Server (NTRS)

    Le, Guan; Blanco-Cano, X.; Russell, C. T.; Zhou, X.-W.; Mozer, F.; Trattner, K. J.; Fuselier, S. A.; Anderson, B. J.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    High-resolution magnetic field data from the Polar Magnetic Field Experiment (MFE) show that narrow band waves at frequencies approximately 0.2 to 3 Hz are a permanent feature in the vicinity of the polar cusp. The waves have been found in the magnetosphere adjacent to the cusp (both poleward and equatorward of the cusp) and in the cusp itself. The occurrence of waves is coincident with depression of magnetic field strength associated with enhanced plasma density, indicating the entry of magnetosheath plasma into the cusp region. The wave frequencies are generally scaled by the local proton cyclotron frequency, and vary between 0.2 and 1.7 times local proton cyclotron frequency. This suggests that the waves are generated in the cusp region by the precipitating magnetosheath plasma. The properties of the waves are highly variable. The waves exhibit both lefthanded and right-handed polarization in the spacecraft frame. The propagation angles vary from nearly parallel to nearly perpendicular to the magnetic field. We find no correlation among wave frequency, propagation angle and polarization. Combined magnetic field and electric field data for the waves indicate that the energy flux of the waves is guided by the background magnetic field and points downward toward the ionosphere.

  15. Experimental validation of single pass ion cyclotron resonance absorption in a high speed flowing plasma applied to the variable specific impulse magnetoplasma rocket (VASIMR)

    NASA Astrophysics Data System (ADS)

    Davis, Christopher Nelson

    The topic of this thesis is the experimental characterization and analysis of single pass ion cyclotron resonance heating as applied to acceleration of ions for electric propulsion. The experimental work was done on the VX-10 experiment of the VASIMR (Variable Specific Impulse Magnetoplasma Rocket) concept. In ion cyclotron resonance heating (ICRH) a RF wave is launched into a magnetized plasma where it then accelerates the ions by increasing their rotational speed around the magnetic field lines. The electric field vector of the right hand component of the wave will rotate around the field lines with a frequency oRF in the same direction as the ion's cyclotron motion about the field lines. Consequently, when oRF ≈ oci (where oci is the ion's cyclotron frequency) the force from the electric field of the wave on the ions will result in a continuous rotational energy gain. The perpendicular velocity of the ions generated by ICRH is then converted into axial velocity by the decreasing gradient of the axial magnetic field at the exhaust of the propulsion system from conservation of the magnet moment. This increase in axial velocity is predicted to cause a decrease in density due to conservation of current in the plasma. In order to characterize this density drop during ion cyclotron heating, a single channel interferometer system was developed and implemented on the VX-10. Interferometer density measurements were taken at three different locations on the VX-10 experiment upstream and downstream of the ion acceleration zone. Measurements were made of the density drop in both Helium and Deuterium plasma discharges during ICRH under a variety of operating conditions including magnetic field profile, gas flow rate and ICRH power pulse timing, and ICRH power. A clear measurement of a density drop was observed downstream of the ion resonance zone characteristic of ion acceleration and measurement of little change in density upstream of the resonance zone where no

  16. Dependence of ion beam current on position of mobile plate tuner in multi-frequencies microwaves electron cyclotron resonance ion source

    SciTech Connect

    Kurisu, Yosuke; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-02-15

    We are constructing a tandem-type electron cyclotron resonance ion source (ECRIS). The first stage of this can supply 2.45 GHz and 11-13 GHz microwaves to plasma chamber individually and simultaneously. We optimize the beam current I{sub FC} by the mobile plate tuner. The I{sub FC} is affected by the position of the mobile plate tuner in the chamber as like a circular cavity resonator. We aim to clarify the relation between the I{sub FC} and the ion saturation current in the ECRIS against the position of the mobile plate tuner. We obtained the result that the variation of the plasma density contributes largely to the variation of the I{sub FC} when we change the position of the mobile plate tuner.

  17. Dependence of ion beam current on position of mobile plate tuner in multi-frequencies microwaves electron cyclotron resonance ion source.

    PubMed

    Kurisu, Yosuke; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-02-01

    We are constructing a tandem-type electron cyclotron resonance ion source (ECRIS). The first stage of this can supply 2.45 GHz and 11-13 GHz microwaves to plasma chamber individually and simultaneously. We optimize the beam current I(FC) by the mobile plate tuner. The I(FC) is affected by the position of the mobile plate tuner in the chamber as like a circular cavity resonator. We aim to clarify the relation between the I(FC) and the ion saturation current in the ECRIS against the position of the mobile plate tuner. We obtained the result that the variation of the plasma density contributes largely to the variation of the I(FC) when we change the position of the mobile plate tuner.

  18. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    PubMed

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future.

  19. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source

    SciTech Connect

    Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.; Ropponen, T.; Ropponen, J.; Koivisto, H.; Gammino, S.

    2008-03-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for NUclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet, adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different from that for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper, we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates depending on various ion source parameters, such as confinement fields, minimum B-field, rf power, and heating frequency.

  20. Structure characterization of polyaromatic hydrocarbons in Arabian mix vacuum residue by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Miyabayashi, Keiko; Naito, Yasuhide; Tsujimoto, Kazuo; Miyake, Mikio

    2004-06-01

    Molecular formulas of constituents in vacuum residue were characterized by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Evaluation of electrospray ionization (ESI) ability for hydrocarbons by using model compounds indicates that aromatic compounds having more than two fused rings without functional group are detectable as molecular ions, while that basic nitrogen-containing compounds produce protonated ions in the ESI solvent of methanol/chloroform. Thus, even peaks appear for both hydrocarbons and nitrogen-containing compounds in methanol/chloroform. Although basic nitrogen compound detected selectively in mixture of equal molar concentration of hydrocarbons, hydrocarbon could be observed almost the same intensity when the concentration of nitrogen compounds was adjusted as low as that of Arabian mix vacuum residue (AM-VR: N 0.4 wt.%). When ESI solvent of methanol/chloroform/trifluoroacetic acid (TFA) was used, protonated hydrocarbons produced predominantly as odd peaks. Thus, it was revealed that peaks originating from nitrogen-containing compounds and hydrocarbons can be clearly distinguished by changing composition of ESI solvents. In application to AM-VR, protonated nitrogen-containing compounds ([CnH2n+ZN + H]+ and [CnH2n+ZNS + H]+; even masses) were observed selectively in methanol/chloroform, and both protonated nitrogen-containing compounds and protonated or sodium-cationized hydrocarbons ([M + H]+ or [M + Na]+; odd masses) were observed simultaneously in the solvent composition of methanol/chloroform/TFA.

  1. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics

    SciTech Connect

    Lu, W.; Xiong, B.; Guo, S. Q.; Cao, R.; Ruan, L.; Zhang, X. Z.; Sun, L. T.; Feng, Y. C.; Ma, B. H.; Zhao, H. W.

    2014-02-15

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0–1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.

  2. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics.

    PubMed

    Lu, W; Xiong, B; Zhang, X Z; Sun, L T; Feng, Y C; Ma, B H; Guo, S Q; Cao, R; Ruan, L; Zhao, H W

    2014-02-01

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0-1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.

  3. Ion cyclotron resonance heating (ICRH) start-up antenna for the mirror fusion test facility (MFTF-B)

    SciTech Connect

    McCarville, T.M.; Romesser, T.E.

    1985-10-02

    The purpose of the ICRH start-up antenna on MFTF-B is to heat the plasma and control the ion distribution as the density increases during start-up. The antenna, consisting of two center fed half turn loops phased 180/sup 0/ apart, has been designed for 1 MW of input power, with a goal of coupling 400 kW into the ions. To vary the heating frequency relative to the local ion cyclotron frequency, the antenna is tunable over a range from 7.5 to 12.5 MHz. The thermal requirements common to low duty cycle ICRH antennas are especially severe for the MFTF-B antenna. The stress requirements are also unique, deriving from the possibility of seismic activity or JxB forces if the magnets unexpectedly quench. Considerable attention has been paid to contact control at high current bolt-up joints, and arranging geometries so as to minimize the possibility of voltage breakdown.

  4. Scalings of Alfvén-cyclotron and ion Bernstein instabilities on temperature anisotropy of a ring-like velocity distribution in the inner magnetosphere

    SciTech Connect

    Min, Kyungguk; Liu, Kaijun; Gary, S. Peter

    2016-03-18

    Here, a ring-like proton velocity distribution with ∂fp(v)/∂v>0 and which is sufficiently anisotropic can excite two distinct types of growing modes in the inner magnetosphere: ion Bernstein instabilities with multiple ion cyclotron harmonics and quasi-perpendicular propagation and an Alfvén-cyclotron instability at frequencies below the proton cyclotron frequency and quasi-parallel propagation. Recent particle-in-cell simulations have demonstrated that even if the maximum linear growth rate of the latter instability is smaller than the corresponding growth of the former instability, the saturation levels of the fluctuating magnetic fields can be greater for the Alfvén-cyclotron instability than for the ion Bernstein instabilities. In this study, linear dispersion theory and two-dimensional particle-in-cell simulations are used to examine scalings of the linear growth rate and saturation level of the two types of growing modes as functions of the temperature anisotropy T/T|| for a general ring-like proton distribution with a fixed ring speed of 2vA, where vA is the Alfvén speed. For the proton distribution parameters chosen, the maximum linear theory growth rate of the Alfvén-cyclotron waves is smaller than that of the fastest-growing Bernstein mode for the wide range of anisotropies (1≤T/T||≤7) considered here. Yet the corresponding particle-in-cell simulations yield a higher saturation level of the fluctuating magnetic fields for the Alfvén-cyclotron instability than for the Bernstein modes as long as inline image. Since fast magnetosonic waves with ion Bernstein instability properties observed in the magnetosphere are often not accompanied by electromagnetic ion cyclotron waves, the results of the present study indicate that the ring-like proton distributions responsible for the excitation of these fast magnetosonic waves should not be very

  5. Ion-optical studies for improved ion transmission in multistage isotope-ratio mass spectrometers

    SciTech Connect

    Stoffels, J.J. ); Laue, H.J. )

    1991-10-01

    Theoretical and experimental ion-optical studies of multistage isotope-ratio mass spectrometers were conducted to determine what improvement in ion transmission efficiency might be attainable through design changes. The computer program GIOS (General Ion Optical Systems) was used to perform theoretical calculations of focusing properties and ion transmission efficiency. Actual transmission through multiple-sector instruments was determined from measurements of the ion beam vertical profile at the focus of each stage. For existing mass spectrometers with tandem magnets of normal geometry, our studies determined a feasible design change that significantly increases ion transmission through the analyzer. The use of a cylindrical einzel lens or an electrostatic quadrupole lens near the focal point between the magnets provides vertical focusing of the ion beam to achieve the improved transmission. We also established a new mass spectrometer design that give 100% transmission through tandem magnetic analyzers and through a third-stage electrostatic analyzer without the use of an intermediate focusing lens. Non-normal magnetic field boundaries provide ion beam focusing in the vertical plant to achieve this complete transmission. 19 refs., 27 figs., 3 tabs.

  6. Characterization of Polyolefin Pyrolysis Species Produced Under Ambient Conditions by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Farenc, Mathilde; Witt, Matthias; Craven, Kirsten; Barrère-Mangote, Caroline; Afonso, Carlos; Giusti, Pierre

    2017-03-01

    Polyolefins such as polyethylene (PE) and polypropylene (PP) are often characterized from their pyrolysis products by Py-MS. Nowadays the development of plasma-based direct probe atmospheric pressure sources allow the direct analysis of these polymers. These sources operate at atmospheric pressure, which implies a limited control of the ionization conditions. It was shown that side reactions could occur with species present in air, such as O2, which may lead to the formation of oxidized compounds. In this work, ion mobility-mass spectrometry (IM-MS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR) were used for the exhaustive characterization of the PP and PE pyrolysis ions produced using plasma-based atmospheric pressure ion sources. Both PP and PE yielded distributions of pyrolysis products presenting different amounts of unsaturation but also different numbers of oxygen atoms. In addition, the ions produced from PP presented a lower collision cross-section (CCS) than those produced from PE. In the same way, both PP and PE present repeated patterns separated by 14 m/z in the bidimensional drift time versus m/z plots. Within these plots, several trend lines can be evidenced, which are specific of each polymer investigated. Differences were observed between isotactic and atactic samples concerning the pyrolysis profile relative abundance and collision cross-section.

  7. Characterization of Polyolefin Pyrolysis Species Produced Under Ambient Conditions by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Farenc, Mathilde; Witt, Matthias; Craven, Kirsten; Barrère-Mangote, Caroline; Afonso, Carlos; Giusti, Pierre

    2017-01-01

    Polyolefins such as polyethylene (PE) and polypropylene (PP) are often characterized from their pyrolysis products by Py-MS. Nowadays the development of plasma-based direct probe atmospheric pressure sources allow the direct analysis of these polymers. These sources operate at atmospheric pressure, which implies a limited control of the ionization conditions. It was shown that side reactions could occur with species present in air, such as O2, which may lead to the formation of oxidized compounds. In this work, ion mobility-mass spectrometry (IM-MS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR) were used for the exhaustive characterization of the PP and PE pyrolysis ions produced using plasma-based atmospheric pressure ion sources. Both PP and PE yielded distributions of pyrolysis products presenting different amounts of unsaturation but also different numbers of oxygen atoms. In addition, the ions produced from PP presented a lower collision cross-section (CCS) than those produced from PE. In the same way, both PP and PE present repeated patterns separated by 14 m/z in the bidimensional drift time versus m/z plots. Within these plots, several trend lines can be evidenced, which are specific of each polymer investigated. Differences were observed between isotactic and atactic samples concerning the pyrolysis profile relative abundance and collision cross-section.

  8. Concurrent in situ ion irradiation transmission electron microscope

    DOE PAGES

    Hattar, K.; Bufford, D. C.; Buller, D. L.

    2014-08-29

    An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8–30 keV) during high-energy heavy ion irradiation (0.8–48 MeV). In addition, initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities.

  9. ELECTRON HEATING BY THE ION CYCLOTRON INSTABILITY IN COLLISIONLESS ACCRETION FLOWS. II. ELECTRON HEATING EFFICIENCY AS A FUNCTION OF FLOW CONDITIONS

    SciTech Connect

    Sironi, Lorenzo

    2015-02-20

    In the innermost regions of low-luminosity accretion flows, including Sgr A* at the center of our Galaxy, the frequency of Coulomb collisions is so low that the plasma has two temperatures, with the ions substantially hotter than the electrons. This paradigm assumes that Coulomb collisions are the only channel for transferring the ion energy to the electrons. In this work, the second of a series, we assess the efficiency of electron heating by ion velocity-space instabilities in collisionless accretion flows. The instabilities are seeded by the pressure anisotropy induced by magnetic field amplification, coupled to the adiabatic invariance of the particle magnetic moments. Using two-dimensional particle-in-cell (PIC) simulations, we showed in Paper I that if the electron-to-ion temperature ratio is T {sub 0e}/T {sub 0i} ≲ 0.2, the ion cyclotron instability is the dominant mode for ion betas β{sub 0i} ∼ 5-30 (here, β{sub 0i} is the ratio of ion thermal pressure to magnetic pressure), as appropriate for the midplane of low-luminosity accretion flows. In this work, we employ analytical theory and one-dimensional PIC simulations (with the box aligned with the fastest-growing wave vector of the ion cyclotron mode) to fully characterize how the electron heating efficiency during the growth of the ion cyclotron instability depends on the electron-to-proton temperature ratio, the plasma beta, the Alfvén speed, the amplification rate of the mean field (in units of the ion Larmor frequency), and the proton-to-electron mass ratio. Our findings can be incorporated as a physically grounded subgrid model into global fluid simulations of low-luminosity accretion flows, thus helping to assess the validity of the two-temperature assumption.

  10. I. Effects of Perturbations on Ion Motion in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. I. First Principles Investigation of Hyperfine Properties in Zinc Chalcogenides and Spinels.

    NASA Astrophysics Data System (ADS)

    Mitchell, Dale Wesley

    I. Many FT-ICR systems are approximately described by the so-called quadrupole approximation; the dynamics of a single ion in a constant magnetic field and a quadratic electrostatic potential. The quadrupole approximation is considered the unperturbed problem while all other forces are treated as perturbations to this motion. Averaging methods are employed to study the effects of electrostatic and excitation field inhomogeneities on ion motion in a cubic ICR cell. A theory of ion motion based on averaging methods in a cubic ICR cell is presented for differential sinusoidal excitation that explains the observed stability, orders of magnitude and resonance positions for excitation frequencies away from the cyclotron frequency. FT-ICR double resonance experiments are used to test the theoretical predictions. For excitation frequencies near the cyclotron frequency, a previously unknown and simple expression is derived for the phase synchronization process in ICR which relates how the cyclotron radius and phase depend on the initial conditions. Finally, Lie transform perturbation theory and averaging methods are used to derive frequency shifts and mode amplitudes to all three fundamental ICR modes for the true electrostatic cubic cell potential. These analytical results give good agreement with numerical results. II. All electron Hartree-Fock cluster calculations are carried out to derive electron densities, electric field gradients and electronic structures in zinc chalcogenides, zinc fluoride and oxide spinels in order to theoretically interpret the available hyperfine interactions data. The theoretical densities at the zinc nucleus are combined with experimental isomer shifts to estimate a value for the mean square nuclear charge radius for the Mossbauer transition in ^{67}Zn of Delta< r^2 > = {+(13.9} +/- 1.4)times10 ^{-3} fm^2. For ZnO (wurtzite) and ZnF_2, the electric field gradient tensors are calculated at all nuclei and compared with the available data

  11. Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP)

    SciTech Connect

    Sun, L. Feng, Y. C.; Zhang, W. H.; Zhang, X. Z.; Cao, Y.; Wu, W.; Yang, T. J.; Zhao, B.; Zhao, H. W.; Ma, L. Z.; Xia, J. W.; Lu, W.; Zhao, Y. Y.; Xie, D.

    2014-02-15

    Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R and D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe{sup 27+}, 236 eμA Xe{sup 30+}, and 64 eμA Xe{sup 35+}. Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi{sup 30+} and 202 eμA U{sup 33+} have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.

  12. Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP)

    NASA Astrophysics Data System (ADS)

    Sun, L.; Lu, W.; Feng, Y. C.; Zhang, W. H.; Zhang, X. Z.; Cao, Y.; Zhao, Y. Y.; Wu, W.; Yang, T. J.; Zhao, B.; Zhao, H. W.; Ma, L. Z.; Xia, J. W.; Xie, D.

    2014-02-01

    Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R&D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe27+, 236 eμA Xe30+, and 64 eμA Xe35+. Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi30+ and 202 eμA U33+ have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.

  13. Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP).

    PubMed

    Sun, L; Lu, W; Feng, Y C; Zhang, W H; Zhang, X Z; Cao, Y; Zhao, Y Y; Wu, W; Yang, T J; Zhao, B; Zhao, H W; Ma, L Z; Xia, J W; Xie, D

    2014-02-01

    Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R&D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe(27+), 236 eμA Xe(30+), and 64 eμA Xe(35+). Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi(30+) and 202 eμA U(33+) have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.

  14. Evaluation and optimization of electron capture dissociation efficiency in fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    McFarland, Melinda A; Chalmers, Michael J; Quinn, John P; Hendrickson, Christopher L; Marshall, Alan G

    2005-07-01

    Electron capture dissociation (ECD) efficiency has typically been lower than for other dissociation techniques. Here we characterize experimental factors that limit ECD and seek to improve its efficiency. Efficiency of precursor to product ion conversion was measured for a range of peptide (approximately 15% efficiency) and protein (approximately 33% efficiency) ions of differing sizes and charge states. Conversion of precursor ions to products depends on electron irradiation period and maximizes at approximately 5-30 ms. The optimal irradiation period scales inversely with charge state. We demonstrate that reflection of electrons through the ICR cell is more efficient and robust than a single pass, because electrons can cool to the optimal energy for capture, which allows for a wide range of initial electron energy. Further, efficient ECD with reflected electrons requires only a short (approximately 500 micros) irradiation period followed by an appropriate delay for cooling and interaction. Reflection of the electron beam results in electrons trapped in or near the ICR cell and thus requires a brief (approximately 50 micros) purge for successful mass spectral acquisition. Further electron irradiation of refractory precursor ions did not result in further dissociation. Possibly the ion cloud and electron beam are misaligned radially, or the electron beam diameter may be smaller than that of the ion cloud such that remaining precursor ions do not overlap with the electron beam. Several ion manipulation techniques and use of a large, movable dispenser cathode reduce the possibility that misalignment of the ion and electron beams limits ECD efficiency.

  15. On-Line Desalting of Crude Oil in the Source Region of a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Chanthamontri, C. Ken; Stopford, Andrew P.; Snowdon, Ryan W.; Oldenburg, Thomas B. P.; Larter, Stephen R.

    2014-08-01

    The presence of dissolved metal ions in waters associated with crude oils has many negative implications for the transport, processing, and refining of petroleum. In addition, mass spectrometric analysis of sodium containing crude oil samples suffers from ionization suppression, unwanted adduct formation, and an increase in the complexity of data analysis. Here, we describe a method for the reduction/elimination of these adverse effects by modification of the source region gas-inlet system of a 12 T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Several acids were examined as part of this study, with the most suitable for on-line desalting found to have both high vapor pressure and low pKa; 12.1 M HCl showed the strongest desalting effect for crude oil samples with a sodium removal index (SRI) of 88%-100% ± 7% for the NaOS compound class. In comparison, a SRI of only 38% ± 9% was observed for a H2O/toluene solution-phase extraction of Oil 1. These results clearly demonstrate the increased efficacy of pseudo-vapor phase desalting with the additional advantages that initial sample solution conditions are preserved and no sample preparation is required prior to analysis.

  16. Monte Carlo simulation to evaluate the contamination in an energy modulated carbon ion beam for hadron therapy delivered by cyclotron

    NASA Astrophysics Data System (ADS)

    Morone, M. Cristina; Calabretta, Luciano; Cuttone, Giacomo; Fiorini, Francesca

    2008-11-01

    Protons and carbon ion beams for hadron therapy can be delivered by cyclotrons with a fixed energy. In order to treat patients, an energy degrader along the beam line will be used to match the particle range with the target depth. Fragmentation reactions of carbon ions inside the degrader material could introduce a small amount of unwanted contaminants to the beam, giving additional dose to the patient out of the target volume. A simulation study using the FLUKA Monte Carlo code has been carried out by considering three different materials as the degrader. Two situations have been studied: a realistic one, lowering the carbon beam energy from 300 MeV/n to 220 MeV/n, corresponding to a range of 10 cm in water, and the worst possible case, lowering the carbon energy to 50 MeV/n, corresponding to the millimeter range. The main component of the contaminant is represented by alpha particles and protons, with a typical momentum after the degrader greater than that of the primary beam, and can be eliminated by the action of a momentum analyzing system and slits, and by a second thin absorber. The residual component of fragments reaching the patient is negligible with respect to the fragment quantity generated by the primary beam inside the patient before arriving at the end of the target volume.

  17. Induction heating pure vapor source of high temperature melting point materials on electron cyclotron resonance ion source.

    PubMed

    Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu; Sato, Fuminobu; Iida, Toshiyuki

    2010-02-01

    Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10(-4)-10(-3) Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.

  18. Effects of suprathermal electrons on the proton temperature anisotropy in space plasmas: Electromagnetic ion-cyclotron instability

    NASA Astrophysics Data System (ADS)

    Shaaban, S. M.; Lazar, M.; Poedts, S.; Elhanbaly, A.

    2016-06-01

    In collision-poor plasmas from space, e.g., the solar wind and planetary magnetospheres, the kinetic anisotropy of the plasma particles is expected to be regulated by the kinetic instabilities. Driven by an excess of ion (proton) temperature perpendicular to the magnetic field (T_{perp}>T_{allel}), the electromagnetic ion-cyclotron (EMIC) instability is fast enough to constrain the proton anisotropy, but the observations do not conform to the instability thresholds predicted by the standard theory for bi-Maxwellian models of the plasma particles. This paper presents an extended investigation of the EMIC instability in the presence of suprathermal electrons which are ubiquitous in these environments. The analysis is based on the kinetic (Vlasov-Maxwell) theory assuming that both species, protons and electrons, may be anisotropic, and the EMIC unstable solutions are derived numerically providing an accurate description for conditions typically encountered in space plasmas. The effects of suprathermal populations are triggered by the electron anisotropy and the temperature contrast between electrons and protons. For certain conditions the anisotropy thresholds exceed the limits of the proton anisotropy measured in the solar wind considerably restraining the unstable regimes of the EMIC modes.

  19. High intensity beams from electron cyclotron resonance ion sources: A study of efficient extraction and transport system (invited)

    NASA Astrophysics Data System (ADS)

    Gammino, S.; Ciavola, G.; Celona, L.; Andò, L.; Passarello, S.; Zhang, X. Zh.; Spädtke, P.; Winkler, M.

    2004-05-01

    A study of the design of extraction and transport system for high intensity beams that will be produced by the next generation electron cyclotron resonance ion source (ECRIS) was carried out in the frame of a European collaboration devoted to the definition of the main parameters of third generation ECRIS. High intensity production tests carried out in the previous years at INFN-LNS have shown evidence for the need to review the main concepts of the beam analysis and transport when high currents of low energy highly charged ions are extracted from the source. The transport of such low energy beams becomes critical as soon as the total current exceeds a few mA. The study reported here is based on the calculated parameters for the GyroSERSE source and the computer simulations have been carried out to obtain low emittance beams. The design of the extraction system was carried out by means of the KOBRA (three dimensional) code. The study of the beam line has been carried out with the codes GIOS, GICO, and TRANSPORT by taking into account both the phase space growth due to space charge and to the aberrations inside the magnets. The description of some different beam line options will be also given.

  20. Clarification of pathway-specific inhibition by Fourier transform ion cyclotron resonance/mass spectrometry-based metabolic phenotyping studies.

    PubMed

    Oikawa, Akira; Nakamura, Yukiko; Ogura, Tomonori; Kimura, Atsuko; Suzuki, Hideyuki; Sakurai, Nozomu; Shinbo, Yoko; Shibata, Daisuke; Kanaya, Shigehiko; Ohta, Daisaku

    2006-10-01

    We have developed a metabolic profiling scheme based on direct-infusion Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). The scheme consists of: (1) reproducible data collection under optimized FT-ICR/MS analytical conditions; (2) automatic mass-error correction and multivariate analyses for metabolome characterization using a newly developed metabolomics tool (DMASS software); (3) identification of marker metabolite candidates by searching a species-metabolite relationship database, KNApSAcK; and (4) structural analyses by an MS/MS method. The scheme was applied to metabolic phenotyping of Arabidopsis (Arabidopsis thaliana) seedlings treated with different herbicidal chemical classes for pathway-specific inhibitions. Arabidopsis extracts were directly infused into an electrospray ionization source on an FT-ICR/MS system. Acquired metabolomics data were comprised of mass-to-charge ratio values with ion intensity information subjected to principal component analysis, and metabolic phenotypes from the herbicide treatments were clearly differentiated from those of the herbicide-free treatment. From each herbicide treatment, candidate metabolites representing such metabolic phenotypes were found through the KNApSAcK database search. The database search and MS/MS analyses suggested dose-dependent accumulation patterns of specific metabolites including several flavonoid glycosides. The metabolic phenotyping scheme on the basis of FT-ICR/MS coupled with the DMASS program is discussed as a general tool for high throughput metabolic phenotyping studies.

  1. Lower hybrid frequency range waves generated by ion polarization drift due to electromagnetic ion cyclotron waves: Analysis of an event observed by the Van Allen Probe B

    NASA Astrophysics Data System (ADS)

    Khazanov, G. V.; Boardsen, S.; Krivorutsky, E. N.; Engebretson, M. J.; Sibeck, D.; Chen, S.; Breneman, A.

    2017-01-01

    We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of 0.86. We assume that the correlation is the result of LHFR wave generation by the ions' polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth rates, their frequency distribution, and the frequency dependence of the ratio of the LHFR wave power spectral density (PSD) parallel and perpendicular to the ambient magnetic field to the total PSD were found. These characteristics of the growth rates were compared with the corresponding characteristics of the observed LHFR activity. Reasonable agreement between these features and the strong correlation between EMIC and LHFR energy densities support the assumption that the LHFR wave generation can be caused by the ions' polarization drift in the electric field of an EMIC wave.

  2. Dosimetry in radiobiological studies with the heavy ion beam of the Warsaw cyclotron

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, U.; Banaś, D.; Braziewicz, J.; Czub, J.; Jaskóła, M.; Korman, A.; Kruszewski, M.; Lankoff, A.; Lisowska, H.; Malinowska, A.; Stępkowski, T.; Szefliński, Z.; Wojewódzka, M.

    2015-12-01

    The aim of this study was to verify various dosimetry methods in the irradiation of biological materials with a 12C ion beam at the Heavy Ion Laboratory of the University of Warsaw. To this end the number of ions hitting the cell nucleus, calculated on the basis of the Si-detector system used in the set-up, was compared with the number of ion tracks counted in irradiated Solid State Nuclear Track Detectors and with the number of ion tracks detected in irradiated Chinese Hamster Ovary cells processed for the γ-H2AX assay. Tests results were self-consistent and confirmed that the system serves its dosimetric purpose.

  3. High electronegativity multi-dipolar electron cyclotron resonance plasma source for etching by negative ions

    NASA Astrophysics Data System (ADS)

    Stamate, E.; Draghici, M.

    2012-04-01

    A large area plasma source based on 12 multi-dipolar ECR plasma cells arranged in a 3 × 4 matrix configuration was built and optimized for silicon etching by negative ions. The density ratio of negative ions to electrons has exceeded 300 in Ar/SF6 gas mixture when a magnetic filter was used to reduce the electron temperature to about 1.2 eV. Mass spectrometry and electrostatic probe were used for plasma diagnostics. The new source is free of density jumps and instabilities and shows a very good stability for plasma potential, and the dominant negative ion species is F-. The magnetic field in plasma volume is negligible and there is no contamination by filaments. The etching rate by negative ions measured in Ar/SF6/O2 mixtures was almost similar with that by positive ions reaching 700 nm/min.

  4. Lower Hybrid Oscillations in Multicomponent Space Plasmas Subjected to Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.; Moore, T. E.; Liemohn, M. W.; Horwitz, J. L.

    1997-01-01

    It is found that in multicomponent plasmas subjected to Alfven or fast magnetosonic waves, such as are observed in regions of the outer plasmasphere and ring current-plasmapause overlap, lower hybrid oscillations are generated. The addition of a minor heavy ion component to a proton-electron plasma significantly lowers the low-frequency electric wave amplitude needed for lower hybrid wave excitation. It is found that the lower hybrid wave energy density level is determined by the nonlinear process of induced scattering by ions and electrons; hydrogen ions in the region of resonant velocities are accelerated; and nonresonant particles are weakly heated due to the induced scattering. For a given example, the light resonant ions have an energy gain factor of 20, leading to the development of a high-energy tail in the H(+) distribution function due to low-frequency waves.

  5. Operation of the CAPRICE electron cyclotron resonance ion source applying frequency tuning and double frequency heating.

    PubMed

    Maimone, F; Tinschert, K; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P

    2012-02-01

    The properties of the electromagnetic waves heating the electrons of the ECR ion sources (ECRIS) plasma affect the features of the extracted ion beams such as the emittance, the shape, and the current, in particular for higher charge states. The electron heating methods such as the frequency tuning effect and the double frequency heating are widely used for enhancing the performances of ECRIS or even for the routine operation during the beam production. In order to better investigate these effects the CAPRICE ECRIS has been operated using these techniques. The ion beam properties for highly charged ions have been measured with beam diagnostic tools. The reason of the observed variations of this performance can be related to the different electromagnetic field patterns, which are changing inside the plasma chamber when the frequency is varying.

  6. Observation of ion cyclotron range of frequencies mode conversion plasma flow drive on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Rice, J. E.; Wukitch, S. J.; Greenwald, M. J.; Hubbard, A. E.; Ince-Cushman, A.; Lin, L.; Marmar, E. S.; Porkolab, M.; Reinke, M. L.; Tsujii, N.; Wright, J. C.; Alcator C-Mod Team

    2009-05-01

    At modest H3e levels (n3He/ne˜8%-12%), in relatively low density D(H3e) plasmas, n¯e≤1.3×1020 m-3, heated with 50 MHz rf power at Bt0˜5.1 T, strong (up to 90 km/s) toroidal rotation (Vϕ) in the cocurrent direction has been observed by high-resolution x-ray spectroscopy on Alcator C-Mod. The change in central Vϕ scales with the applied rf power (≤30 km s-1 MW-1), and is generally at least a factor of 2 higher than the empirically determined intrinsic plasma rotation scaling. The rotation in the inner plasma (r /a≤0.3) responds to the rf power more quickly than that of the outer region (r /a≥0.7), and the rotation profile is broadly peaked for r /a≤0.5. Localized poloidal rotation (0.3≤r/a≤0.6) in the ion diamagnetic drift direction (˜2 km/s at 3 MW) is also observed, and similarly increases with rf power. Changing the toroidal phase of the antenna does not affect the rotation direction, and it only weakly affects the rotation magnitude. The mode converted ion cyclotron wave (MC ICW) has been detected by a phase contrast imaging system and the MC process is confirmed by two-dimensional full wave TORIC simulations. The simulations also show that the MC ICW is strongly damped on H3e ions in the vicinity of the MC layer, approximately on the same flux surfaces where the rf driven flow is observed. The flow shear in our experiment is marginally sufficient for plasma confinement enhancement based on the comparison of the E ×B shearing rate and gyrokinetic linear stability analysis.

  7. Effect of magnetic field inhomogeneity on ion cyclotron motion coherence at high magnetic field.

    PubMed

    Vladimirov, Gleb; Kostyukevich, Yury; Hendrickson, Christopher L; Blakney, Greg T; Nikolaev, Eugene

    2015-01-01

    A three-dimensional code based on the particle-in-cell algorithm modified to account for the inhomogeneity of the magnetic field was applied to determine the effect of Z(1), Z(2), Z(3), Z(4), X, Y, ZX, ZY, XZ(2) YZ(2), XY and X(2)-Y(2) components of an orthogonal magnetic field expansion on ion motion during detection in an FT-ICR cell. Simulations were performed for magnetic field strengths of 4.7, 7, 14.5 and 21 Tesla, including experimentally determined magnetic field spatial distributions for existing 4.7 T and 14.5 T magnets. The effect of magnetic field inhomogeneity on ion cloud stabilization ("ion condensation") at high numbers of ions was investigated by direct simulations of individual ion trajectories. Z(1), Z(2), Z(3) and Z(4) components have the largest effect (especially Z(1)) on ion cloud stability. Higher magnetic field strength and lower m/z demand higher relative magnetic field homogeneity to maintain cloud coherence for a fixed time period. The dependence of mass resolving power upper limit on Z(1) inhomogeneity is evaluated for different magnetic fields and m/z. The results serve to set the homogeneity requirements for various orthogonal magnetic field components (shims) for future FT-ICR magnet design.

  8. A hybrid electron cyclotron resonance metal ion source with integrated sputter magnetron for the production of an intense Al⁺ ion beam.

    PubMed

    Weichsel, T; Hartung, U; Kopte, T; Zschornack, G; Kreller, M; Philipp, A

    2015-09-01

    A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology-a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al(+) ion current with a density of 167 μA/cm(2) is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 10(9) cm(-3) to 6 × 10(10) cm(-3) and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge.

  9. The significance of monoisotopic and carbon-13 isobars for the identification of a 19-component dodecapeptide library by positive ion electrospray Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Ramjit, H G; Kruppa, G H; Spier, J P; Ross, C W; Garsky, V M

    2000-01-01

    Harnessing the ultra high resolution capabilities of Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and positive ion electrospray, we have demonstrated the significance and utility of cumulative mass defect high resolution mass separation stable isotope distribution, exact mass measurement and elemental formula as a means of simultaneously identifying 19 components of the dodecapeptide library Ac-ANKISYQS[X]STE-NH(2). With an instrument resolution of 275 000 (average), isobaric multiplets attributed to monoisotopic and carbon-13 components of peptides: Ac approximately SLS approximately NH(2); Ac approximately SNS approximately NH(2); Ac approximately SOS approximately NH(2); Ac approximately SDS approximately NH(2); within the mass window of 1380-1385 Da, and Ac approximately SQS approximately NH(2); Ac approximately SKS approximately NH(2); Ac approximately SES approximately NH(2); Ac approximately SMS approximately NH(2), within the mass window 1395-1400 Da, were mass resolved, accurately mass measured and identified from the computed molecular formulas. This experimental procedure enabled the separation of monoisotopic and carbon-13 isobars yielding enhanced selectivity and specificity and serves to illustrate the significance of monoisotopic and carbon-13 isobars in final product analysis. Chromatographic separation (HPLC) was of limited utility except for monitoring the overall extent of reaction and apparent product distribution. Positive ion electrospray-FTICR-MS and fast atom bombardment (FAB) MS were used to assess final product quality and apparent component distribution.

  10. Electron transfer dissociation in the hexapole collision cell of a hybrid quadrupole-hexapole Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Kaplan, Desmond A; Hartmer, Ralf; Speir, J Paul; Stoermer, Carsten; Gumerov, Dmitry; Easterling, Michael L; Brekenfeld, Andreas; Kim, Taeman; Laukien, Frank; Park, Melvin A

    2008-01-01

    Electron transfer dissociation (ETD) of proteins is demonstrated in a hybrid quadrupole-hexapole Fourier transform ion cyclotron resonance mass spectrometer (Qh-FTICRMS). Analyte ions are selected in the mass analyzing quadrupole, accumulated in the hexapole linear ion trap, reacted with fluoranthene reagent anions, and then analyzed via an FTICR mass analyzer. The hexapole trap allows for a broad fragment ion mass range and a high ion storage capacity. Using a 3 T FTICRMS, resolutions of 60 000 were achieved with mass accuracies averaging below 1.4 ppm. The high resolution, high mass accuracy ETD spectra provided by FTICR obviates the need for proton transfer reaction (PTR) charge state reduction of ETD product ions when analyzing proteins or large peptides. This is demonstrated with the ETD of ubiquitin and apomyoglobin yielding sequence coverages of 37 and 20%, respectively. We believe this represents the first reported successful combination of ETD and a FTICRMS.

  11. Utilizing artificial neural networks in MATLAB to achieve parts-per-billion mass measurement accuracy with a fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Williams, D Keith; Kovach, Alexander L; Muddiman, David C; Hanck, Kenneth W

    2009-07-01

    Fourier transform ion cyclotron resonance mass spectrometry has the ability to realize exceptional mass measurement accuracy (MMA); MMA is one of the most significant attributes of mass spectrometric measurements as it affords extraordinary molecular specificity. However, due to space-charge effects, the achievable MMA significantly depends on the total number of ions trapped in the ICR cell for a particular measurement, as well as relative ion abundance of a given species. Artificial neural network calibration in conjunction with automatic gain control (AGC) is utilized in these experiments to formally account for the differences in total ion population in the ICR cell between the external calibration spectra and experimental spectra. In addition, artificial neural network calibration is used to account for both differences in total ion population in the ICR cell as well as relative ion abundance of a given species, which also affords mean MMA values at the parts-per-billion level.

  12. Anomalous momentum and energy transfer rates for electrostatic ion-cyclotron turbulence in downward auroral-current regions of the Earth's magnetosphere. III

    SciTech Connect

    Jasperse, John R.; Basu, Bamandas; Lund, Eric J.; Grossbard, Neil

    2010-06-15

    Recently, a new multimoment fluid theory was developed for inhomogeneous, nonuniformly magnetized plasma in the guiding-center and gyrotropic approximation that includes the effect of electrostatic, turbulent, wave-particle interactions (see Jasperse et al. [Phys. Plasmas 13, 072903 (2006); ibid.13, 112902 (2006)]). In the present paper, which is intended as a sequel, it is concluded from FAST satellite data that the electrostatic ion-cyclotron turbulence that appears is due to the operation of an electron, bump-on-tail-driven ion-cyclotron instability for downward currents in the long-range potential region of the Earth's magnetosphere. Approximate closed-form expressions for the anomalous momentum and energy transfer rates for the ion-cyclotron turbulence are obtained. The turbulent, inhomogeneous, nonuniformly magnetized, multimoment fluid theory given above, in the limit of a turbulent, homogeneous, uniformly magnetized, quasisteady plasma, yields the well-known formula for the anomalous resistivity given by Gary and Paul [Phys. Rev. Lett. 26, 1097 (1971)] and Tange and Ichimaru [J. Phys. Soc. Jpn. 36, 1437 (1974)].

  13. Retarding field energy analyser ion current calibration and transmission

    NASA Astrophysics Data System (ADS)

    Denieffe, K.; Mahony, C. M. O.; Maguire, P. D.; Gahan, D.; Hopkins, M. B.

    2011-02-01

    Accurate measurement of ion current density and ion energy distributions (IEDs) is often critical for plasma processes in both industrial and research settings. Retarding field energy analysers (RFEAs) have been used to measure IEDs because they are considered accurate, relatively simple and cost effective. However, their usage for critical measurement of ion current density is less common due to difficulties in estimating the proportion of incident ion current reaching the current collector through the RFEA retarding grids. In this paper an RFEA has been calibrated to measure ion current density from an ion beam at pressures ranging from 0.5 to 50.0 mTorr. A unique method is presented where the currents generated at each of the retarding grids and the RFEA upper face are measured separately, allowing the reduction in ion current to be monitored and accounted for at each stage of ion transit to the collector. From these I-V measurements a physical model is described. Subsequently, a mathematical description is extracted which includes parameters to account for grid transmissions, upper face secondary electron emission and collisionality. Pressure-dependent calibration factors can be calculated from least mean square best fits of the collector current to the model allowing quantitative measurement of ion current density.

  14. Comment on "Mode Conversion of Waves In The Ion-Cyclotron Frequency Range in Magnetospheric Plasmas"

    SciTech Connect

    Kim, Eun; Johnson, J. R.

    2014-02-01

    Recently, Kazakov and Fulop [1] studied mode conversion (MC) at the ion-ion hybrid (IIH) resonance in planetary magnetospheric plasmas by simplifying the dispersion relation of the fast wave (FW) modes to describe a cutoff-resonance (CR) pair near the IIH resonance, which can be reduced to a Budden problem. They suggested that when the IIH resonance frequency (ωS) approaches the crossover frequency (ωcr), and the parallel wavenumber (k∥) is close to the critical wavenumber k* ∥(ωS = ωcr), MC can be efficient for arbitrary heavy ion density ratios. In this Comment, we argue that (a) the FW dispersion relation cannot be simplified to the CR pair especially near ωcr because in many parameter regimes there is a cutoff-resonance-cutoff (CRC) triplet that completely changes the wave absorption; and (b) the maximum MC efficiency does not always occur near k∥ ≈ k*∥∥.

  15. Optimization of electron-cyclotron-resonance charge-breeder ions : Final CRADA Report.

    SciTech Connect

    Pardo, R.; Physics; Far-Tech, Inc.

    2009-10-09

    Measurements of 1+ beam properties and associated performance of ECR Charge Breeder source determined by total efficiency measurement and charge state distributions from the ECR Charge Breeder. These results were communicated to Far-Tech personnel who used them to benchmark the newly developed programs that model ion capture and charge breeding in the ECR Charge Breeder Source. Providing the basic data described above and in the discussion below to Far-Tech allowed them to improve and refine their calculational tools for ECR ion sources. These new tools will be offered for sale to industry and will also provide important guidance to other research labs developing Charge Breeding ion sources for radioactive beam physics research.

  16. Vacuum Ultraviolet Photodissociation and Fourier Transform–Ion Cyclotron Resonance (FT-ICR) Mass Spectrometry: Revisited

    SciTech Connect

    Shaw, Jared B.; Robinson, Errol W.; Pasa-Tolic, Ljiljana

    2016-02-16

    We revisited the implementation of UVPD within the ICR cell of a FT-ICR mass spectrometer. UVPD performance characteristics were examined in the context of recent developments in the understanding of UVPD and in-cell tandem mass spectrometry. Efficient UVPD and photo-ECD of a model peptide and small protein within the ICR cell of a FT-ICR mass spectrometer are accomplished through appropriate modulation of laser pulse timing relative to ion magnetron motion and the potential applied to an ion optical element that photons impinge on. It is shown that UVPD yields efficient and extensive fragmentation resulting in excellent sequence coverage for model peptide and protein cations.

  17. Weathering trend characterization of medium-molecular weight polycyclic aromatic disulfur heterocycles by Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Hegazi, Abdelrahman H; Fathalla, Eiman M; Andersson, Jan T

    2014-09-01

    Different weathering factors act to change petroleum composition once it is spilled into the environment. n-Alkanes, biomarkers, low-molecular weight polyaromatic hydrocarbons and sulfur heterocycles compositional changing in the environment have been extensively studied by different researchers and many parameters have been used for oil source identification and monitoring of weathering and biological degradation processes. In this work, we studied the fate of medium-molecular weight polycyclic aromatic disulfur heterocycles (PAS2Hs), up to ca. 900Da, of artificially weathered Flotta North Sea crude oil by ultra high-resolution Fourier transform ion cyclotron resonance mass spectrometry. It was found that PAS2Hs in studied crude oil having double bond equivalents (DBE) from 5 to 8 with a mass range from ca 316 to 582Da were less influenced even after six months artificial weathering experiment. However, compounds having DBEs 12, 11 and 10 were depleted after two, four and six months weathering, respectively. In addition, DBE 9 series was more susceptible to weathering than those of DBE 7 and 8.

  18. Van Allen Probes observations of cross-scale coupling between electromagnetic ion cyclotron waves and higher-frequency wave modes

    NASA Astrophysics Data System (ADS)

    Colpitts, C. A.; Cattell, C. A.; Engebretson, M.; Broughton, M.; Tian, S.; Wygant, J.; Breneman, A.; Thaller, S.

    2016-11-01

    We present observations of higher-frequency ( 50-2500 Hz, 0.1-0.7 fce) wave modes modulated at the frequency of colocated lower frequency (0.5-2 Hz, on the order of fci) waves. These observations come from the Van Allen Probes Electric Field and Waves instrument's burst mode data and represent the first observations of coupling between waves in these frequency ranges. The higher-frequency wave modes, typically whistler mode hiss and chorus or magnetosonic waves, last for a few to a few tens of seconds but are in some cases observed repeatedly over several hours. The higher-frequency waves are observed to be unmodulated before and after the presence of the electromagnetic ion cyclotron (EMIC) waves, but when the EMIC waves are present, the amplitude of the higher-frequency waves drops to the instrument noise level once every EMIC wave cycle. Such modulation could significantly impact wave-particle interactions such as acceleration and pitch angle scattering, which are crucial in the formation and depletion of the radiation belts. We present one case study with broadband, high-frequency waves observed to be modulated by EMIC waves repeatedly over a 2 h time span on both spacecraft. Finally, we show two additional case studies where other high-frequency wave modes exhibit similar modulation.

  19. A mode converter to generate a Gaussian-like mode for injection into the VENUS electron cyclotron resonance ion source

    SciTech Connect

    Lyneis, C. Benitez, J.; Hodgkinson, A.; Strohmeier, M.; Todd, D.; Plaum, B.; Thuillier, T.

    2014-02-15

    A number of superconducting electron cyclotron resonance (ECR) ion sources use gyrotrons at either 24 or 28 GHz for ECR heating. In these systems, the microwave power is launched into the plasma using the TE{sub 01} circular waveguide mode. This is fundamentally different and may be less efficient than the typical rectangular, linearly polarized TE{sub 10} mode used for launching waves at lower frequencies. To improve the 28 GHz microwave coupling in VENUS, a TE{sub 01}-HE{sub 11} mode conversion system has been built to test launching HE{sub 11} microwave power into the plasma chamber. The HE{sub 11} mode is a quasi-Gaussian, linearly polarized mode, which should couple strongly to the plasma electrons. The mode conversion is done in two steps. First, a 0.66 m long “snake” converts the TE{sub 01} mode to the TE{sub 11} mode. Second, a corrugated circular waveguide excites the HE{sub 11} mode, which is launched directly into the plasma chamber. The design concept draws on the development of similar devices used in tokamaks and stellerators. The first tests of the new coupling system are described below.

  20. Energetic particle-driven compressional Alfvén eigenmodes and prospects for ion cyclotron emission studies in fusion plasmas

    SciTech Connect

    Gorelenkov, N. N.

    2016-10-01

    As a fundamental plasma oscillation the compressional Alfvén waves (CAW) are interesting for plasma scientists both academically and in applications for fusion plasmas. They are believed to be responsible for the ion cyclotron emission (ICE) observed in many tokamaks. The theory of CAW and ICE was significantly advanced at the end of 20th century in particular motivated by first DT experiments on TFTR and subsequent JET DT experimental studies. More recently, ICE theory was advanced by ST (or spherical torus) experiments with the detailed theoretical and experimental studies of the properties of each instability signal. There the instability responsible for ICE signals previously indistinguishable in high aspect ratio tokamaks became the subjects of experimental studies. We discuss further the prospects of ICE theory and its applications for future burning plasma (BP) experiments such as the ITER tokamak-reactor prototype being build in France where neutrons and gamma rays escaping the plasma create extremely challenging conditions for fusion alpha particle diagnostics.a

  1. Energetic particle-driven compressional Alfvén eigenmodes and prospects for ion cyclotron emission studies in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Gorelenkov, N. N.

    2016-10-01

    As a fundamental plasma oscillation the compressional Alfvén waves (CAWs) are interesting for plasma scientists both academically and in applications for fusion plasmas. They are believed to be responsible for the ion cyclotron emission (ICE) observed in many tokamaks. The theory of CAW and ICE was significantly advanced at the end of 20th century in particular motivated by first DT experiments on TFTR and subsequent JET DT experimental studies. More recently, ICE theory was advanced by ST (or spherical torus) experiments with the detailed theoretical and experimental studies of the properties of each instability signal. There the instability responsible for ICE signals previously indistinguishable in high aspect ratio tokamaks became the subjects of experimental studies. We discuss further the prospects of ICE theory and its applications for future burning plasma experiments such as the ITER tokamak-reactor prototype being build in France where neutrons and gamma rays escaping the plasma create extremely challenging conditions for fusion alpha particle diagnostics. This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  2. Energetic particle-driven compressional Alfvén eigenmodes and prospects for ion cyclotron emission studies in fusion plasmas

    DOE PAGES

    Gorelenkov, N. N.

    2016-10-01

    As a fundamental plasma oscillation the compressional Alfvén waves (CAW) are interesting for plasma scientists both academically and in applications for fusion plasmas. They are believed to be responsible for the ion cyclotron emission (ICE) observed in many tokamaks. The theory of CAW and ICE was significantly advanced at the end of 20th century in particular motivated by first DT experiments on TFTR and subsequent JET DT experimental studies. More recently, ICE theory was advanced by ST (or spherical torus) experiments with the detailed theoretical and experimental studies of the properties of each instability signal. There the instability responsible formore » ICE signals previously indistinguishable in high aspect ratio tokamaks became the subjects of experimental studies. We discuss further the prospects of ICE theory and its applications for future burning plasma (BP) experiments such as the ITER tokamak-reactor prototype being build in France where neutrons and gamma rays escaping the plasma create extremely challenging conditions for fusion alpha particle diagnostics.a« less

  3. Top-Down Analysis of Highly Post-Translationally Modified Peptides by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Guerrero, Andres; Lerno, Larry; Barile, Daniela; Lebrilla, Carlito B.

    2015-03-01

    Bovine κ-caseinoglycomacropeptide (GMP) is a highly modified peptide from κ-casein produced during the cheese making process. The chemical nature of GMP makes analysis by traditional proteomic approaches difficult, as the peptide bears a strong net negative charge and a variety of post-translational modifications. In this work, we describe the use of electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) for the top-down analysis of GMP. The method allows the simultaneous detection of different GMP forms that result from the combination of amino acid genetic variations and post-translational modifications, specifically phosphorylation and O-glycosylation. The different GMP forms were identified by high resolution mass spectrometry in both negative and positive mode and confirmation was achieved by tandem MS. The results showed the predominance of two genetic variants of GMP that occur as either mono- or bi-phosphorylated species. Additionally, these four forms can be modified with up to two O-glycans generally sialylated. The results demonstrate the presence of glycosylated, bi-phosphorylated forms of GMP never described before.

  4. An antibiotic linked to peptides and proteins is released by electron capture dissociation fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Fagerquist, Clifton K; Hudgins, Robert R; Emmett, Mark R; Håkansson, Kristina; Marshall, Alan G

    2003-04-01

    Desfuroylceftiofur (DFC) is a bioactive beta-lactam antibiotic metabolite that has a free thiol group. Previous experiments have shown release of DFC from plasma extracts after addition of a disulfide reducing agent, suggesting that DFC may be bound to plasma and tissue proteins through disulfide bonds. We have reacted DFC with [Arg(8)]-vasopressin (which has one disulfide bond) and bovine insulin (which has three disulfide bonds) and analyzed the reaction products by use of electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry (ECD FT-ICR MS), which has previously shown preferential cleavage of disulfide bonds. We observe cleavage of DFC from vasopressin and insulin during ECD, suggesting that DFC is indeed bound to peptides and proteins through disulfide bonds. Specifically, we observed dissociative loss of one, as well as two, DFC species during ECD of [vasopressin + 2(DFC-H) + 2H](2+) from a single electron capture event. Loss of two DFCs could arise from either consecutive or simultaneous loss, but in any case implies a gas phase disulfide exchange step. ECD of [insulin + DFC + 4H](4+) shows preferential dissociative loss of DFC. Combined with HPLC, ECD FT-ICR-MS may be an efficient screening method for detection of drug-biomolecule binding.

  5. Efficient denoising algorithms for large experimental datasets and their applications in Fourier transform ion cyclotron resonance mass spectrometry

    PubMed Central

    Chiron, Lionel; van Agthoven, Maria A.; Kieffer, Bruno; Rolando, Christian; Delsuc, Marc-André

    2014-01-01

    Modern scientific research produces datasets of increasing size and complexity that require dedicated numerical methods to be processed. In many cases, the analysis of spectroscopic data involves the denoising of raw data before any further processing. Current efficient denoising algorithms require the singular value decomposition of a matrix with a size that scales up as the square of the data length, preventing their use on very large datasets. Taking advantage of recent progress on random projection and probabilistic algorithms, we developed a simple and efficient method for the denoising of very large datasets. Based on the QR decomposition of a matrix randomly sampled from the data, this approach allows a gain of nearly three orders of magnitude in processing time compared with classical singular value decomposition denoising. This procedure, called urQRd (uncoiled random QR denoising), strongly reduces the computer memory footprint and allows the denoising algorithm to be applied to virtually unlimited data size. The efficiency of these numerical tools is demonstrated on experimental data from high-resolution broadband Fourier transform ion cyclotron resonance mass spectrometry, which has applications in proteomics and metabolomics. We show that robust denoising is achieved in 2D spectra whose interpretation is severely impaired by scintillation noise. These denoising procedures can be adapted to many other data analysis domains where the size and/or the processing time are crucial. PMID:24390542

  6. Sawtooth control in JET with ITER relevant low field side resonance ion cyclotron resonance heating and ITER-like wall

    NASA Astrophysics Data System (ADS)

    Graves, J. P.; Lennholm, M.; Chapman, I. T.; Lerche, E.; Reich, M.; Alper, B.; Bobkov, V.; Dumont, R.; Faustin, J. M.; Jacquet, P.; Jaulmes, F.; Johnson, T.; Keeling, D. L.; Liu, Yueqiang; Nicolas, T.; Tholerus, S.; Blackman, T.; Carvalho, I. S.; Coelho, R.; Van Eester, D.; Felton, R.; Goniche, M.; Kiptily, V.; Monakhov, I.; Nave, M. F. F.; Perez von Thun, C.; Sabot, R.; Sozzi, C.; Tsalas, M.

    2015-01-01

    New experiments at JET with the ITER-like wall show for the first time that ITER-relevant low field side resonance first harmonic ion cyclotron resonance heating (ICRH) can be used to control sawteeth that have been initially lengthened by fast particles. In contrast to previous (Graves et al 2012 Nat. Commun. 3 624) high field side resonance sawtooth control experiments undertaken at JET, it is found that the sawteeth of L-mode plasmas can be controlled with less accurate alignment between the resonance layer and the sawtooth inversion radius. This advantage, as well as the discovery that sawteeth can be shortened with various antenna phasings, including dipole, indicates that ICRH is a particularly effective and versatile tool that can be used in future fusion machines for controlling sawteeth. Without sawtooth control, neoclassical tearing modes (NTMs) and locked modes were triggered at very low normalised beta. High power H-mode experiments show the extent to which ICRH can be tuned to control sawteeth and NTMs while simultaneously providing effective electron heating with improved flushing of high Z core impurities. Dedicated ICRH simulations using SELFO, SCENIC and EVE, including wide drift orbit effects, explain why sawtooth control is effective with various antenna phasings and show that the sawtooth control mechanism cannot be explained by enhancement of the magnetic shear. Hybrid kinetic-magnetohydrodynamic stability calculations using MISHKA and HAGIS unravel the optimal sawtooth control regimes in these ITER relevant plasma conditions.

  7. Vacuum compatible sample positioning device for matrix assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging

    PubMed Central

    Aizikov, Konstantin; Smith, Donald F.; Chargin, David A.; Ivanov, Sergei; Lin, Tzu-Yung; Heeren, Ron M. A.; O’Connor, Peter B.

    2011-01-01

    The high mass accuracy and resolving power of Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS) make them ideal mass detectors for mass spectrometry imaging (MSI), promising to provide unmatched molecular resolution capabilities. The intrinsic low tolerance of FT-ICR MS to RF interference, however, along with typically vertical positioning of the sample, and MSI acquisition speed requirements present numerous engineering challenges in creating robotics capable of achieving the spatial resolution to match. This work discusses a two-dimensional positioning stage designed to address these issues. The stage is capable of operating in ∼1 × 10–8 mbar vacuum. The range of motion is set to 100 mm × 100 mm to accommodate large samples, while the positioning accuracy is demonstrated to be less than 0.4 micron in both directions under vertical load over the entire range. This device was integrated into three different matrix assisted laser desorption/ionization (MALDI) FT-ICR instruments and showed no detectable RF noise. The “oversampling” MALDI-MSI experiments, under which the sample is completely ablated at each position, followed by the target movement of the distance smaller than the laser beam, conducted on the custom-built 7T FT-ICR MS demonstrate the stability and positional accuracy of the stage robotics which delivers high spatial resolution mass spectral images at a fraction of the laser spot diameter. PMID:21639522

  8. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer.

    PubMed

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D; Wolff, Jeremy J; Somogyi, Árpád; Pedder, Randall E; Quintyn, Royston S; Morrison, Lindsay J; Easterling, Michael L; Paša-Tolić, Ljiljana; Wysocki, Vicki H

    2017-01-03

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on noncovalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.

  9. KINETIC EVOLUTION OF CORONAL HOLE PROTONS BY IMBALANCED ION-CYCLOTRON WAVES: IMPLICATIONS FOR MEASUREMENTS BY SOLAR PROBE PLUS

    SciTech Connect

    Isenberg, Philip A.; Vasquez, Bernard J.

    2015-08-01

    We extend the kinetic guiding-center model of collisionless coronal hole protons presented in Isenberg and Vasquez to consider driving by imbalanced spectra of obliquely propagating ion-cyclotron waves. These waves are assumed to be a small by-product of the imbalanced turbulent cascade to high perpendicular wavenumber, and their total intensity is taken to be 1% of the total fluctuation energy. We also extend the kinetic solutions for the proton distribution function in the resulting fast solar wind to heliocentric distances of 20 solar radii, which will be attainable by the Solar Probe Plus spacecraft. We consider three ratios of outward-propagating to inward-propagating resonant intensities: 1, 4, and 9. The self-consistent bulk flow speed reaches fast solar wind values in all cases, and these speeds are basically independent of the intensity ratio. The steady-state proton distribution is highly organized into nested constant-density shells by the resonant wave-particle interaction. The radial evolution of this kinetic distribution as the coronal hole plasma flows outward is understood as a competition between the inward- and outward-directed large-scale forces, causing an effective circulation of particles through the (v{sub ∥}, v{sub ⊥}) phase space and a characteristic asymmetric shape to the distribution. These asymmetries are substantial and persist to the outer limit of the model computation, where they should be observable by the Solar Probe Plus instruments.

  10. Electron Heating by the Ion Cyclotron Instability in Collisionless Accretion Flows. I. Compression-driven Instabilities and the Electron Heating Mechanism

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo; Narayan, Ramesh

    2015-02-01

    In systems accreting well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the plasma in the innermost regions of the disk is believed to be collisionless and have two temperatures, with the ions substantially hotter than the electrons. However, whether a collisionless faster-than-Coulomb energy transfer mechanism exists in two-temperature accretion flows is still an open question. We study the physics of electron heating during the growth of ion velocity-space instabilities by means of multidimensional, fully kinetic, particle-in-cell (PIC) simulations. A background large-scale compression—embedded in a novel form of the PIC equations—continuously amplifies the field. This constantly drives a pressure anisotropy P > P ∥ because of the adiabatic invariance of the particle magnetic moments. We find that, for ion plasma beta values β0i ~ 5-30 appropriate for the midplane of low-luminosity accretion flows (here, β0i is the ratio of ion thermal pressure to magnetic pressure), mirror modes dominate if the electron-to-proton temperature ratio is T 0e /T 0i >~ 0.2, whereas for T 0e /T 0i <~ 0.2 the ion cyclotron instability triggers the growth of strong Alfvén-like waves, which pitch-angle scatter the ions to maintain marginal stability. We develop an analytical model of electron heating during the growth of the ion cyclotron instability, which we validate with PIC simulations. We find that for cold electrons (β0e <~ 2 me /mi , where β0e is the ratio of electron thermal pressure to magnetic pressure), the electron energy gain is controlled by the magnitude of the E-cross-B velocity induced by the ion cyclotron waves. This term is independent of the initial electron temperature, so it provides a solid energy floor even for electrons starting with extremely low temperatures. On the other hand, the electron energy gain for β0e >~ 2 me /mi —governed by the conservation of the particle magnetic moment in the growing fields of

  11. ELECTRON HEATING BY THE ION CYCLOTRON INSTABILITY IN COLLISIONLESS ACCRETION FLOWS. I. COMPRESSION-DRIVEN INSTABILITIES AND THE ELECTRON HEATING MECHANISM

    SciTech Connect

    Sironi, Lorenzo; Narayan, Ramesh E-mail: rnarayan@cfa.harvard.edu

    2015-02-20

    In systems accreting well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the plasma in the innermost regions of the disk is believed to be collisionless and have two temperatures, with the ions substantially hotter than the electrons. However, whether a collisionless faster-than-Coulomb energy transfer mechanism exists in two-temperature accretion flows is still an open question. We study the physics of electron heating during the growth of ion velocity-space instabilities by means of multidimensional, fully kinetic, particle-in-cell (PIC) simulations. A background large-scale compression—embedded in a novel form of the PIC equations—continuously amplifies the field. This constantly drives a pressure anisotropy P > P {sub ∥} because of the adiabatic invariance of the particle magnetic moments. We find that, for ion plasma beta values β{sub 0i} ∼ 5-30 appropriate for the midplane of low-luminosity accretion flows (here, β{sub 0i} is the ratio of ion thermal pressure to magnetic pressure), mirror modes dominate if the electron-to-proton temperature ratio is T {sub 0e}/T {sub 0i} ≳ 0.2, whereas for T {sub 0e}/T {sub 0i} ≲ 0.2 the ion cyclotron instability triggers the growth of strong Alfvén-like waves, which pitch-angle scatter the ions to maintain marginal stability. We develop an analytical model of electron heating during the growth of the ion cyclotron instability, which we validate with PIC simulations. We find that for cold electrons (β{sub 0e} ≲ 2 m{sub e} /m{sub i} , where β{sub 0e} is the ratio of electron thermal pressure to magnetic pressure), the electron energy gain is controlled by the magnitude of the E-cross-B velocity induced by the ion cyclotron waves. This term is independent of the initial electron temperature, so it provides a solid energy floor even for electrons starting with extremely low temperatures. On the other hand, the electron energy gain for β{sub 0e} ≳ 2 m{sub e} /m{sub i}

  12. Optimization of a charge-state analyzer for electron cyclotron resonance ion source beams.

    PubMed

    Saminathan, S; Beijers, J P M; Kremers, H R; Mironov, V; Mulder, J; Brandenburg, S

    2012-07-01

    A detailed experimental and simulation study of the extraction of a 24 keV He(+) beam from an ECR ion source and the subsequent beam transport through an analyzing magnet is presented. We find that such a slow ion beam is very sensitive to space-charge forces, but also that the neutralization of the beam's space charge by secondary electrons is virtually complete for beam currents up to at least 0.5 mA. The beam emittance directly behind the extraction system is 65 π mm mrad and is determined by the fact that the ion beam is extracted in the strong magnetic fringe field of the ion source. The relatively large emittance of the beam and its non-paraxiality lead, in combination with a relatively small magnet gap, to significant beam losses and a five-fold increase of the effective beam emittance during its transport through the analyzing magnet. The calculated beam profile and phase-space distributions in the image plane of the analyzing magnet agree well with measurements. The kinematic and magnet aberrations have been studied using the calculated second-order transfer map of the analyzing magnet, with which we can reproduce the phase-space distributions of the ion beam behind the analyzing magnet. Using the transfer map and trajectory calculations we have worked out an aberration compensation scheme based on the addition of compensating hexapole components to the main dipole field by modifying the shape of the poles. The simulations predict that by compensating the kinematic and geometric aberrations in this way and enlarging the pole gap the overall beam transport efficiency can be increased from 16% to 45%.

  13. Kinetic Models of Fast Solar Wind Driven by Imbalanced Ion Cyclotron Dissipation - What Will Solar Probe See?

    NASA Astrophysics Data System (ADS)

    Isenberg, P. A.; Vasquez, B. J.

    2012-12-01

    In previous work (e.g. Isenberg & Vasquez, ApJ, 731, 88, 2011), we have shown that resonant dissipation of a turbulently maintained power-law spectrum of ion cyclotron waves can produce a reasonable fast solar wind flow. Kinetic modeling of this ion heating in the expanding collisionless coronal hole must also take into account the effects of gravity, charge-separation electric field, mirror force, inertial force in the accelerating plasma, and ponderomotive Alfvén wave pressure. The combined action of all these processes leads to a characteristic evolution of the proton distribution function, some aspects of which may be independent of the actual mechanism for the perpendicular heating. Our previous model used resonant wave intensities that were "balanced" in that we took the power in outward-propagating waves and sunward-propagating waves to be equal. We also were limited by computational considerations to heliocentric radial positions < 6 Rs. Here, we consider imbalanced cases where the outward-propagating intensities of resonant waves are larger than the sunward intensities, as would be expected from reflection models of turbulent evolution in the solar atmosphere. We also extend our computations to beyond the Alfvenic critical point, into the radial range to be explored by Solar Probe Plus. We will present model results for the solar wind speeds and temperatures as functions of heliocentric radius for various ratios of sunward-to-outward wave intensities. We will also show detailed shapes of the proton distribution function and discuss their radial evolution with particular emphasis on the region accessible to the planned Solar Probe Plus mission.

  14. Effect of Spatial Density Variation and O+ Concentration on the Growth and Evolution of Electromagnetic Ion Cyclotron Waves

    NASA Astrophysics Data System (ADS)

    Denton, R. E.; Jordanova, V.; Fraser, B. J.

    2014-12-01

    We simulate electromagnetic ion cyclotron (EMIC) waves, which were observed during June 9, 2001 by Geostationary Operational Environmental Satellite (GOES) spacecraft. First we use a ring current simulation with a plasmasphere model to model the particle populations that give rise to the instability. Then, using two different models for the cold ion composition, we do a full scale hybrid code simulation in dipole coordinates of the EMIC waves on a meridional plane at MLT = 18 and at 1900 UT within a range of L shell from L = 4.9 to 6.7. While an exact comparison between observed and simulated spectra is not possible here, we do find significant similarities between the two, at least in certain regions. We simulate the EMIC wave growth and evolution within three regions, the plasmasphere (or plasmaspheric plume), the plasmapause, and the low density plasmatrough outside the plasmapause. We find that the plasmapause is not a preferred region for EMIC wave growth, though waves can grow in that region. There is a preference for EMIC waves to be driven in the He+ band (frequencies between the O+ and He+ gyrofrequencies) within the plasmasphere, although they can also grow in the plasmatrough. If present, H+ band waves are more likely to grow in the plasmatrough. This fact, plus L dependence of the frequency and possible time evolution toward lower frequency waves can be explained by a simple model. Large O+ concentration limits the frequency range of or even totally quenches EMIC waves. This is more likely to occur in the plasmatrough at solar maximum. Such large O+ concentration significantly affects the H+ cutoff frequency, and hence the width in frequency of the stop band above the He+ gyrofrequency. EMIC wave surfaces predicted by cold plasma theory may not be valid.

  15. Non-Lorentzian ion cyclotron resonance line shapes arising from velocity-dependent ion-neutral collision frequencies

    NASA Technical Reports Server (NTRS)

    Whealton, J. H.; Mason, E. A.

    1973-01-01

    An asymptotic solution of the Boltzmann equation is developed for ICR absorption, without restrictions on the ion-neutral collision frequency or mass ratio. Velocity dependence of the collision frequency causes deviations from Lorentzian line shape.

  16. Self-induced longitudinal current in the perpendicular ion cyclotron heating in a tokamak

    NASA Astrophysics Data System (ADS)

    Gott, Yu. V.; Yurchenko, E. I.

    2016-11-01

    In this paper, we give an estimation of the longitudinal current in a tokamak due to high-energy minority ions obtained by perpendicular ICR heating. To illustrate this current, which is known as the banana-drift current, we give an estimation of this effect in an ITER-like tokamak. It is shown that by changing the number of accelerated minority ions, by selecting the position and energy of the resonant layer in which they are accelerated, it is possible to completely replace the noninductive current driven by other methods (for example, with RF power and high-energy neutrals beams). Thus, it is shown that the self-induced currents (bootstrap, asymmetry, and banana-drift currents) driving by continuous HF sources can provide steady-state operation of a fusion reactor.

  17. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System.

    PubMed

    Vondrasek, R; Kondrashev, S; Pardo, R; Scott, R; Zinkann, G P

    2010-02-01

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci (252)Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into (85)Rb(17+) and 2.9% into (133)Cs(20+).

  18. Advanced light ion source extraction system for a new electron cyclotron resonance ion source geometry at Saclay.

    PubMed

    Delferrière, O; Gobin, R; Harrault, F; Nyckees, S; Sauce, Y; Tuske, O

    2012-02-01

    One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.

  19. Advanced light ion source extraction system for a new electron cyclotron resonance ion source geometry at Saclaya)

    NASA Astrophysics Data System (ADS)

    Delferrière, O.; Gobin, R.; Harrault, F.; Nyckees, S.; Sauce, Y.; Tuske, O.

    2012-02-01

    One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.

  20. Ion Cyclotron Waves Observed at Galileo's Io Encounter: Implications for Neutral Cloud Distribution

    NASA Astrophysics Data System (ADS)

    Warnecke, J.; Walker, R. J.; Russell, C. T.; Kivelson, M. G.; Khurana, K. K.

    1996-09-01

    At Galileo's Io encounter on December 7, 1995, the magnetic field experiment detected large-amplitude, highly coherent waves near the SO(+_2) and SO(+) gyro-frequencies. On the inbound leg of the flyby, these waves were detected starting about 18 RIO from Io. Their power spectral density decreased as 1/r(3) . On the outbound leg, the waves decayed more rapidly. The waves are believed to be caused by the ionization and pickup of particles originating from Io by the corotating magnetospheric plasma. The presence of wave power near the molecular ion gyro-frequencies reveals that neutral molecules survive intact over a surprisingly large range of distances from Io.