Sample records for ion detection techniques

  1. Collection of ions

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Koster, James E.

    2001-01-01

    The apparatus and method provide an improved technique for detecting ions as the area from which ions are attracted to a detector is increased, consequently increasing the number of ions detected. This is achieved by providing the outer electrodes of the detector connected to the electrical potential, together with alternate intermediate electrodes. The other intermediate electrodes and preferably the housing are grounded. The technique renders such detection techniques more sensitive and gives them a lower threshold at which they can function.

  2. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms.

    PubMed

    Bansod, BabanKumar; Kumar, Tejinder; Thakur, Ritula; Rana, Shakshi; Singh, Inderbir

    2017-08-15

    Heavy metal ions are non-biodegradable and contaminate most of the natural resources occurring in the environment including water. Some of the heavy metals including Lead (Pb), Mercury (Hg), Arsenic (As), Chromium (Cr) and Cadmium (Cd) are considered to be highly toxic and hazardous to human health even at trace levels. This leads to the requirement of fast, accurate and reliable techniques for the detection of heavy metal ions. This review presents various electrochemical detection techniques for heavy metal ions those are user friendly, low cost, provides on-site and real time monitoring as compared to other spectroscopic and optical techniques. The categorization of different electrochemical techniques is done on the basis of different types of detection signals generated due to presence of heavy metal ions in the solution matrix like current, potential, conductivity, electrochemical impedance, and electrochemiluminescence. Also, the recent trends in electrochemical detection of heavy metal ions with various types of sensing platforms including metals, metal films, metal oxides, nanomaterials, carbon nano tubes, polymers, microspheres and biomaterials have been evoked. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Electrochemical detection of Hg (II) ions using EDTA-PANI/SWNTs nanocomposite modified SS electrode

    NASA Astrophysics Data System (ADS)

    Deshmukh, M. A.; Patil, H. K.; Shirsat, M. D.; Ramanavicius, A.

    2017-05-01

    Detection of Hg (II) ions using EDTA modified polyaniline (PANI) and single walled carbon nanotubes (SWNTs) nanocomposite (PANI/SWNTs) was performed electrochemically via cyclic voltammetry (CV) technique. Dodecyl benzene sulphonic next step, PANI/SWNTs nanocomposite was modified acid sodium salt (DBSA) was used as a surfactant during this synthesis to get uniform suspension SWNTs. In the by EDTA solution containing crosslinking agent 1-ethyl-3(3-(dimethylamino) propyl) - carbodiimide (EDC) utilizing dip coating technique. The sensitivity of EDTA modified PANI/SWNTs nanocomposite towards Hg (II) ions was investigated. Differential pulse voltammetry (DPV) technique was applied for the electrochemical detection of Hg (II) ions.

  4. Normal-inverse bimodule operation Hadamard transform ion mobility spectrometry.

    PubMed

    Hong, Yan; Huang, Chaoqun; Liu, Sheng; Xia, Lei; Shen, Chengyin; Chu, Yannan

    2018-10-31

    In order to suppress or eliminate the spurious peaks and improve signal-to-noise ratio (SNR) of Hadamard transform ion mobility spectrometry (HT-IMS), a normal-inverse bimodule operation Hadamard transform - ion mobility spectrometry (NIBOHT-IMS) technique was developed. In this novel technique, a normal and inverse pseudo random binary sequence (PRBS) was produced in sequential order by an ion gate controller and utilized to control the ion gate of IMS, and then the normal HT-IMS mobility spectrum and the inverse HT-IMS mobility spectrum were obtained. A NIBOHT-IMS mobility spectrum was gained by subtracting the inverse HT-IMS mobility spectrum from normal HT-IMS mobility spectrum. Experimental results demonstrate that the NIBOHT-IMS technique can significantly suppress or eliminate the spurious peaks, and enhance the SNR by measuring the reactant ions. Furthermore, the gas CHCl 3 and CH 2 Br 2 were measured for evaluating the capability of detecting real sample. The results show that the NIBOHT-IMS technique is able to eliminate the spurious peaks and improve the SNR notably not only for the detection of larger ion signals but also for the detection of small ion signals. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Relating to monitoring ion sources

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan

    2002-01-01

    The apparatus and method provide techniques for monitoring the position on alpha contamination in or on items or locations. The technique is particularly applicable to pipes, conduits and other locations to which access is difficult. The technique uses indirect monitoring of alpha emissions by detecting ions generated by the alpha emissions. The medium containing the ions is moved in a controlled manner frog in proximity with the item or location to the detecting unit and the signals achieved over time are used to generate alpha source position information.

  6. Fiber optic sensors for corrosion detection

    NASA Technical Reports Server (NTRS)

    Smith, Alphonso C.

    1993-01-01

    The development of fiber optic sensors for the detection of a variety of material parameters has grown tremendously over the past several years. Additionally, the potential for analytical applications of fiber optic sensors have become more widely used. New pH sensors have also been developed using fiber optic techniques to detect fluorescence characteristics from immobilized fluorogenic reagent chemicals. The primary purpose of this research was to investigate the feasibility of using fiber optic sensors to detect the presence of Al(sup 3+) ions made in the process of environmental corrosion of aluminum materials. The Al(sup 3+) ions plus a variety of other type of metal ions can be detected using analytical techniques along with fiber optic sensors.

  7. Field ion spectrometry: a new technology for cocaine and heroin detection

    NASA Astrophysics Data System (ADS)

    Carnahan, Byron L.; Day, Stephen; Kouznetsov, Viktor; Tarassov, Alexandre

    1997-02-01

    Field ion spectrometry, also known as transverse field compensation ion mobility spectrometry, is a new technique for trace gas analysis that can be applied to the detection of cocaine and heroin. Its principle is based on filtering ion species according to the functional dependence of their mobilities with electric field strength. Field ion spectrometry eliminates the gating electrodes needed in conventional IMS to pulse ions into the spectrometer; instead, ions are injected in to the spectrometer and reach the detector continuously, resulting in improved sensitivity. The technique enables analyses that are difficult with conventional constant field strength ion mobility spectrometers. We have shown that a filed ion spectrometer can selectively detect the vapors from cocaine and heroin emitted from both their base and hydrochloride forms. The estimated volumetric limits of detection are in the low pptv range, based on testing with standardized drug vapor generation systems. The spectrometer can detect cocaine base in the vapor phase, at concentrations well below its estimated 100 pptv vapor pressure equivalent at 20 degrees C. This paper describes the underlying principles of field ion spectrometry in relation to narcotic drug detection, and recent results obtained for cocaine and heroin. The work has been sponsored in part by the United States Advanced Research Projects Agency under contract DAAB10-95C-0004, for the DOD Counterdrug Technology Development Program.

  8. Application of Polypyrrole Multi-Walled Carbon Nanotube Composite Layer for Detection of Mercury, Lead and Iron Ions Using Surface Plasmon Resonance Technique

    PubMed Central

    Sadrolhosseini, Amir Reza; Noor, A. S. M.; Bahrami, Afarin; Lim, H. N.; Talib, Zainal Abidin; Mahdi, Mohd. Adzir

    2014-01-01

    Polypyrrole multi-walled carbon nanotube composite layers were used to modify the gold layer to measure heavy metal ions using the surface plasmon resonance technique. The new sensor was fabricated to detect trace amounts of mercury (Hg), lead (Pb), and iron (Fe) ions. In the present research, the sensitivity of a polypyrrole multi-walled carbon nanotube composite layer and a polypyrrole layer were compared. The application of polypyrrole multi-walled carbon nanotubes enhanced the sensitivity and accuracy of the sensor for detecting ions in an aqueous solution due to the binding of mercury, lead, and iron ions to the sensing layer. The Hg ion bonded to the sensing layer more strongly than did the Pb and Fe ions. The limitation of the sensor was calculated to be about 0.1 ppm, which produced an angle shift in the region of 0.3° to 0.6°. PMID:24733263

  9. Monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2004-11-23

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  10. A chemosensor for micro- to nano-molar detection of Ag+ and Hg2+ ions in pure aqueous media and its applications in cell imaging.

    PubMed

    Nandre, Jitendra P; Patil, Samadhan R; Sahoo, Suban K; Pradeep, Chullikkattil P; Churakov, Andrei; Yu, Fabiao; Chen, Lingxin; Redshaw, Carl; Patil, Ashok A; Patil, Umesh D

    2017-10-24

    The pyridine substituted thiourea derivative PTB-1 was synthesized and characterized by spectroscopic techniques as well as by single crystal X-ray crystallography. The metal ion sensing ability of PTB-1 was explored by various experimental (naked-eye, UV-Vis, fluorescence, mass spectrometry and 1 H NMR spectroscopy) and theoretical (B3LYP/6-31G**/LANL2DZ) methods. PTB-1 exhibited a highly selective naked-eye detectable color change from colorless to dark brown and UV-Vis spectral changes for the detection of Ag + with a detection limit of 3.67 μM in aqueous medium. The detection of Ag + ions was achieved by test paper strip and supported silica methods. In contrast, PTB-1 exhibited a 23-fold enhanced emission at 420 nm in the presence of Hg 2+ ions with a nano-molar detection limit of 0.69 nM. Finally, the sensor PTB-1 was applied successfully for the intracellular detection of Hg 2+ ions in a HepG2 liver cell line, which was monitored by the use of confocal imaging techniques.

  11. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques

    NASA Technical Reports Server (NTRS)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2002-01-01

    The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

  12. Negative-ion formation in the explosives RDX, PETN, and TNT by using the reversal electron attachment detection technique

    NASA Technical Reports Server (NTRS)

    Boumsellek, S.; Alajajian, S. H.; Chutjian, A.

    1992-01-01

    First results of a beam-beam, single-collision study of negative-ion mass spectra produced by attachment of zero-energy electrons to the molecules of the explosives RDX, PETN, and TNT are presented. The technique used is reversal electron attachment detection (READ) wherein the zero-energy electrons are produced by focusing an intense electron beam into a shaped electrostatic field which reverses the trajectory of electrons. The target beam is introduced at the reversal point, and attachment occurs because the electrons have essentially zero longitudinal and radial velocity. The READ technique is used to obtain the 'signature' of molecular ion formation and/or fragmentation for each explosive. Present data are compared with results from atmospheric-pressure ionization and negative-ion chemical ionization methods.

  13. Mass-dependent channel electron multiplier operation. [for ion detection

    NASA Technical Reports Server (NTRS)

    Fields, S. A.; Burch, J. L.; Oran, W. A.

    1977-01-01

    The absolute counting efficiency and pulse height distributions of a continuous-channel electron multiplier used in the detection of hydrogen, argon and xenon ions are assessed. The assessment technique, which involves the post-acceleration of 8-eV ion beams to energies from 100 to 4000 eV, provides information on counting efficiency versus post-acceleration voltage characteristics over a wide range of ion mass. The charge pulse height distributions for H2 (+), A (+) and Xe (+) were measured by operating the experimental apparatus in a marginally gain-saturated mode. It was found that gain saturation occurs at lower channel multiplier operating voltages for light ions such as H2 (+) than for the heavier ions A (+) and Xe (+), suggesting that the technique may be used to discriminate between these two classes of ions in electrostatic analyzers.

  14. Double-modulation spectroscopy of molecular ions - Eliminating the background in velocity-modulation spectroscopy

    NASA Technical Reports Server (NTRS)

    Lan, Guang; Tholl, Hans Dieter; Farley, John W.

    1991-01-01

    Velocity-modulation spectroscopy is an established technique for performing laser absorption spectroscopy of molecular ions in a discharge. However, such experiments are often plagued by a coherent background signal arising from emission from the discharge or from electronic pickup. Fluctuations in the background can obscure the desired signal. A simple technique using amplitude modulation of the laser and two lock-in amplifiers in series to detect the signal is demonstrated. The background and background fluctuations are thereby eliminated, facilitating the detection of molecular ions.

  15. Process for measuring degradation of sulfur hexafluoride in high voltage systems

    DOEpatents

    Sauers, Isidor

    1986-01-01

    This invention is a method of detecting the presence of toxic and corrosive by-products in high voltage systems produced by electrically induced degradation of SF.sub.6 insulating gas in the presence of certain impurities. It is an improvement over previous methods because it is extremely sensitive, detecting by-products present in parts per billion concentrations, and because the device employed is of a simple design and takes advantage of the by-products natural affinity for fluoride ions. The method employs an ion-molecule reaction cell in which negative ions of the by-products are produced by fluorine attachment. These ions are admitted to a negative ion mass spectrometer and identified by their spectra. This spectrometry technique is an improvement over conventional techniques because the negative ion peaks are strong and not obscured by a major ion spectra of the SF.sub.6 component as is the case in positive ion mass spectrometry.

  16. Process for measuring degradation of sulfur hexafluoride in high voltage systems

    DOEpatents

    Sauers, I.

    1985-04-23

    This invention is a method of detecting the presence of toxic and corrosive by-products in high voltage systems produced by electrically induced degradation of SF/sub 6/ insulating gas in the presence of certain impurities. It is an improvement over previous methods because it is extremely sensitive, detecting by-products present in parts per billion concentrations, and because the device employed is of a simple design and takes advantage of the by-products natural affinity for fluoride ions. The method employs an ion-molecule reaction cell in which negative ions of the by-products are produced by fluorine attachment. These ions are admitted to a negative ion mass spectrometer and identified by their spectra. This spectrometry technique is an improvement over conventional techniques because the negative ion peaks are strong and not obscured by a major ion spectra of the SF/sub 6/ component as is the case in positive ion mass spectrometry.

  17. A Combined Desorption Ionization by Charge Exchange (DICE) and Desorption Electrospray Ionization (DESI) Source for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chan, Chang-Ching; Bolgar, Mark S.; Miller, Scott A.; Attygalle, Athula B.

    2011-01-01

    A source that couples the desorption ionization by charge exchange (DICE) and desorption electrospray ionization (DESI) techniques together was demonstrated to broaden the range of compounds that can be analyzed in a single mass spectrometric experiment under ambient conditions. A tee union was used to mix the spray reagents into a partially immiscible blend before this mixture was passed through a conventional electrospray (ES) probe capillary. Using this technique, compounds that are ionized more efficiently by the DICE method and those that are ionized better with the DESI procedure could be analyzed simultaneously. For example, hydroquinone, which is not detected when subjected to DESI-MS in the positive-ion generation mode, or the sodium adduct of guaifenesin, which is not detected when examined by DICE-MS, could both be detected in one experiment when the two techniques were combined. The combined technique was able to generate the molecular ion, proton and metal adduct from the same compound. When coupled to a tandem mass spectrometer, the combined source enabled the generation of product ion spectra from the molecular ion and the [M + H]+ or [M + metal]+ ions of the same compound without the need to physically change the source from DICE to DESI. The ability to record CID spectra of both the molecular ion and adduct ions in a single mass spectrometric experiment adds a new dimension to the array of mass spectrometric methods available for structural studies.

  18. Non-destructive state detection for quantum logic spectroscopy of molecular ions.

    PubMed

    Wolf, Fabian; Wan, Yong; Heip, Jan C; Gebert, Florian; Shi, Chunyan; Schmidt, Piet O

    2016-02-25

    Precision laser spectroscopy of cold and trapped molecular ions is a powerful tool in fundamental physics--used, for example, in determining fundamental constants, testing for their possible variation in the laboratory, and searching for a possible electric dipole moment of the electron. However, the absence of cycling transitions in molecules poses a challenge for direct laser cooling of the ions, and for controlling and detecting their quantum states. Previously used state-detection techniques based on photodissociation or chemical reactions are destructive and therefore inefficient, restricting the achievable resolution in laser spectroscopy. Here, we experimentally demonstrate non-destructive detection of the quantum state of a single trapped molecular ion through its strong Coulomb coupling to a well controlled, co-trapped atomic ion. An algorithm based on a state-dependent optical dipole force changes the internal state of the atom according to the internal state of the molecule. We show that individual quantum states in the molecular ion can be distinguished by the strength of their coupling to the optical dipole force. We also observe quantum jumps (induced by black-body radiation) between rotational states of a single molecular ion. Using the detuning dependence of the state-detection signal, we implement a variant of quantum logic spectroscopy of a molecular resonance. Our state-detection technique is relevant to a wide range of molecular ions, and could be applied to state-controlled quantum chemistry and to spectroscopic investigations of molecules that serve as probes for interstellar clouds.

  19. Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

    DOE PAGES

    Lohn, Andrew J.; Doyle, Barney L.; Stein, Gregory J.; ...

    2014-04-03

    We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. Lastly, the technique is applied to tantalum oxide memristors but can be extended to a wide range of materialsmore » systems.« less

  20. Fabrication and characterization of a co-planar detector in diamond for low energy single ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, John Bishoy Sam; Pacheco, Jose L.; Aguirre, Brandon Adrian

    2016-08-09

    We demonstrate low energy single ion detection using a co-planar detector fabricated on a diamond substrate and characterized by ion beam induced charge collection. Histograms are taken with low fluence ion pulses illustrating quantized ion detection down to a single ion with a signal-to-noise ratio of approximately 10. We anticipate that this detection technique can serve as a basis to optimize the yield of single color centers in diamond. In conclusion, the ability to count ions into a diamond substrate is expected to reduce the uncertainty in the yield of color center formation by removing Poisson statistics from the implantationmore » process.« less

  1. Novel CE-MS technique for detection of high explosives using perfluorooctanoic acid as a MEKC and mass spectrometric complexation reagent.

    PubMed

    Brensinger, Karen; Rollman, Christopher; Copper, Christine; Genzman, Ashton; Rine, Jacqueline; Lurie, Ira; Moini, Mehdi

    2016-01-01

    To address the need for the forensic analysis of high explosives, a novel capillary electrophoresis mass spectrometry (CE-MS) technique has been developed for high resolution, sensitivity, and mass accuracy detection of these compounds. The technique uses perfluorooctanoic acid (PFOA) as both a micellar electrokinetic chromatography (MEKC) reagent for separation of neutral explosives and as the complexation reagent for mass spectrometric detection of PFOA-explosive complexes in the negative ion mode. High explosives that formed complexes with PFOA included RDX, HMX, tetryl, and PETN. Some nitroaromatics were detected as molecular ions. Detection limits in the high parts per billion range and linear calibration responses over two orders of magnitude were obtained. For proof of concept, the technique was applied to the quantitative analysis of high explosives in sand samples. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Laser desorption with corona discharge ion mobility spectrometry for direct surface detection of explosives.

    PubMed

    Sabo, M; Malásková, M; Matejčík, S

    2014-10-21

    We present a new highly sensitive technique for the detection of explosives directly from the surface using laser desorption-corona discharge-ion mobility spectrometry (LD-CD-IMS). We have developed LD based on laser diode modules (LDM) and the technique was tested using three different LDM (445, 532 and 665 nm). The explosives were detected directly from the surface without any further preparation. We discuss the mechanism of the LD and the limitations of this technique such as desorption time, transport time and desorption area. After the evaluation of experimental data, we estimated the potential limits of detection of this method to be 0.6 pg for TNT, 2.8 pg for RDX and 8.4 pg for PETN.

  3. Relating to ion detection

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2001-01-01

    The apparatus and method provide a technique for improving detection of alpha and/or beta emitting sources on items or in locations using indirect means. The emission forms generate ions in a medium surrounding the item or location and the medium is then moved to a detecting location where the ions are discharged to give a measure of the emission levels. To increase the level of ions generated and render the system particularly applicable for narrow pipes and other forms of conduits, the medium pressure is increased above atmospheric pressure. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

  4. A Sparsity-based Framework for Resolution Enhancement in Optical Fault Analysis of Integrated Circuits

    DTIC Science & Technology

    2015-01-01

    for IC fault detection . This section provides background information on inversion methods. Conventional inversion techniques and their shortcomings are...physical techniques, electron beam imaging/analysis, ion beam techniques, scanning probe techniques. Electrical tests are used to detect faults in 13 an...hand, there is also the second harmonic technique through which duty cycle degradation faults are detected by collecting the magnitude and the phase of

  5. Electrostatic monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2001-01-01

    The apparatus and method provide a technique for more simply measuring alpha and/or beta emissions arising from items or locations. The technique uses indirect monitoring of the emissions by detecting ions generated by the emissions, the ions being attracted electrostatically to electrodes for discharge of collection. The apparatus and method employ a chamber which is sealed around the item or location during monitoring with no air being drawn into or expelled from the chamber during the monitoring process. A simplified structure and operations arises as a result, but without impairing the efficiency and accuracy of the detection technique.

  6. Measuring masses of large biomolecules and bioparticles using mass spectrometric techniques.

    PubMed

    Peng, Wen-Ping; Chou, Szu-Wei; Patil, Avinash A

    2014-07-21

    Large biomolecules and bioparticles play a vital role in biology, chemistry, biomedical science and physics. Mass is a critical parameter for the characterization of large biomolecules and bioparticles. To achieve mass analysis, choosing a suitable ion source is the first step and the instruments for detecting ions, mass analyzers and detectors should also be considered. Abundant mass spectrometric techniques have been proposed to determine the masses of large biomolecules and bioparticles and these techniques can be divided into two categories. The first category measures the mass (or size) of intact particles, including single particle quadrupole ion trap mass spectrometry, cell mass spectrometry, charge detection mass spectrometry and differential mobility mass analysis; the second category aims to measure the mass and tandem mass of biomolecular ions, including quadrupole ion trap mass spectrometry, time-of-flight mass spectrometry, quadrupole orthogonal time-of-flight mass spectrometry and orbitrap mass spectrometry. Moreover, algorithms for the mass and stoichiometry assignment of electrospray mass spectra are developed to obtain accurate structure information and subunit combinations.

  7. Spin-dependent excitation of plasma modes in non-neutral ion plasmas

    NASA Astrophysics Data System (ADS)

    Sawyer, Brian C.; Britton, Joe W.; Bollinger, John J.

    2011-10-01

    We report on a new technique for exciting and sensitively detecting plasma modes in small, cold non-neutral ion plasmas. The technique uses an optical dipole force generated from laser beams to excite plasma modes. By making the force spin- dependent (i.e. depend on the internal state of the atomic ion) very small mode excitations (<100 nm) can be detected through spin-motion entanglement. Even when the optical dipole force is homogeneous throughout the plasma, short wavelength modes on the order of the interparticle spacing can in principle be excited and detected through the spin dependence of the force. We use this technique to study the drumhead modes of single plane triangular arrays of a few hundred Be+ ions. Spin-dependent mode excitation is interesting in this system because it provides a means of engineering an Ising interaction on a 2-D triangular lattice. For the case of an anti-ferromagnetic interaction, this system exhibits spin frustration on a scale that is at present computationally intractable. Work supported by the DARPA OLE program and NIST.

  8. The Formation and Thermochemical Properties of Multiligand Complexes

    DTIC Science & Technology

    1987-08-25

    SUBJECT TERMS (Continue on revers, if necessary and identify by block numoer) FIELD GROUP SUB-GROUP Ion-molecule reactions, clusters, multiligand...mercaptans, and phosphonates for which the results may be useful in the development of detection techniques that employ ion mobility analyzers or... field involve the use of ion mobility and mass spectrometers. Detection of a species by such instruments in an atmospheric environment requires that the

  9. Preliminary Tests of a Paul ion Trap as an Ion Source

    NASA Astrophysics Data System (ADS)

    Sadat Kiai, S. M.; Zirak, A. R.; Elahi, M.; Adlparvar, S.; Mortazavi, B. N.; Safarien, A.; Farhangi, S.; Sheibani, S.; Alhooie, S.; Khalaj, M. M. A.; Dabirzadeh, A. A.; Ruzbehani, M.; Zahedi, F.

    2010-10-01

    The paper reports on the design and construction of a Paul ion trap as an ion source by using an impact electron ionization technique. Ions are produced in the trap and confined for the specific time which is then extracted and detected by a Faraday cup. Especial electronic configurations are employed between the end caps, ring electrodes, electron gun and a negative voltage for the detector. This configuration allows a constant low level of pure ion source between the pulsed confined ion sources. The present experimental results are based on the production and confinement of Argon ions with good stability and repeatability, but in principle, the technique can be used for various Argon like ions.

  10. Atmospheric Pressure Chemical Ionization Sources Used in The Detection of Explosives by Ion Mobility Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waltman, Melanie J.

    2010-05-01

    Explosives detection is a necessary and wide spread field of research. From large shipping containers to airline luggage, numerous items are tested for explosives every day. In the area of trace explosives detection, ion mobility spectrometry (IMS) is the technique employed most often because it is a quick, simple, and accurate way to test many items in a short amount of time. Detection by IMS is based on the difference in drift times of product ions through the drift region of an IMS instrument. The product ions are created when the explosive compounds, introduced to the instrument, are chemically ionizedmore » through interactions with the reactant ions. The identity of the reactant ions determines the outcomes of the ionization process. This research investigated the reactant ions created by various ionization sources and looked into ways to manipulate the chemistry occurring in the sources.« less

  11. Evaluation of Ion Mobility-Mass Spectrometry for Comparative Analysis of Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Ferguson, Carly N.; Gucinski-Ruth, Ashley C.

    2016-05-01

    Analytical techniques capable of detecting changes in structure are necessary to monitor the quality of monoclonal antibody drug products. Ion mobility mass spectrometry offers an advanced mode of characterization of protein higher order structure. In this work, we evaluated the reproducibility of ion mobility mass spectrometry measurements and mobiligrams, as well as the suitability of this approach to differentiate between and/or characterize different monoclonal antibody drug products. Four mobiligram-derived metrics were identified to be reproducible across a multi-day window of analysis. These metrics were further applied to comparative studies of monoclonal antibody drug products representing different IgG subclasses, manufacturers, and lots. These comparisons resulted in some differences, based on the four metrics derived from ion mobility mass spectrometry mobiligrams. The use of collision-induced unfolding resulted in more observed differences. Use of summed charge state datasets and the analysis of metrics beyond drift time allowed for a more comprehensive comparative study between different monoclonal antibody drug products. Ion mobility mass spectrometry enabled detection of differences between monoclonal antibodies with the same target protein but different production techniques, as well as products with different targets. These differences were not always detectable by traditional collision cross section studies. Ion mobility mass spectrometry, and the added separation capability of collision-induced unfolding, was highly reproducible and remains a promising technique for advanced analytical characterization of protein therapeutics.

  12. Ranking Fragment Ions Based on Outlier Detection for Improved Label-Free Quantification in Data-Independent Acquisition LC-MS/MS

    PubMed Central

    Bilbao, Aivett; Zhang, Ying; Varesio, Emmanuel; Luban, Jeremy; Strambio-De-Castillia, Caterina; Lisacek, Frédérique; Hopfgartner, Gérard

    2016-01-01

    Data-independent acquisition LC-MS/MS techniques complement supervised methods for peptide quantification. However, due to the wide precursor isolation windows, these techniques are prone to interference at the fragment ion level, which in turn is detrimental for accurate quantification. The “non-outlier fragment ion” (NOFI) ranking algorithm has been developed to assign low priority to fragment ions affected by interference. By using the optimal subset of high priority fragment ions these interfered fragment ions are effectively excluded from quantification. NOFI represents each fragment ion as a vector of four dimensions related to chromatographic and MS fragmentation attributes and applies multivariate outlier detection techniques. Benchmarking conducted on a well-defined quantitative dataset (i.e. the SWATH Gold Standard), indicates that NOFI on average is able to accurately quantify 11-25% more peptides than the commonly used Top-N library intensity ranking method. The sum of the area of the Top3-5 NOFIs produces similar coefficients of variation as compared to the library intensity method but with more accurate quantification results. On a biologically relevant human dendritic cell digest dataset, NOFI properly assigns low priority ranks to 85% of annotated interferences, resulting in sensitivity values between 0.92 and 0.80 against 0.76 for the Spectronaut interference detection algorithm. PMID:26412574

  13. Measuring free metal ion concentrations in situ in natural waters using the Donnan Membrane Technique.

    PubMed

    Kalis, Erwin J J; Weng, Liping; Dousma, Freerk; Temminghoff, Erwin J M; Van Riemsdijk, Willem H

    2006-02-01

    Metal toxicity is not related to the total but rather to the free or labile metal ion concentration. One of the techniques that can be used to measure several free metal ion concentrations simultaneously is the Donnan Membrane Technique (DMT) in combination with the inductively coupled plasma-mass spectrometer (ICP-MS). However, free metal ion concentrations in natural waters are commonly below the detection limit of ICP-MS. We decreased the detection limit by making use of a ligand, and we developed a field DMT cell that can be applied in situ in natural waters. A kinetic approach can be used to calculate free metal ion concentrations when the equilibrium time becomes too large. The field DMT measured in situ in natural waters a free metal ion concentration ranging from 0.015% (Cu) to 13% (Zn) of a total metal concentration ranging from 0.06 nM (Cd) to 237 nM (Zn). The free metal ion concentrations were difficult to predict using an equilibrium speciation model, probably due to the uncertainty in the nature of the dissolved organic matter or the presence of other reactive colloids. It is shown that DMT can follow changes in the free metal ion concentration on times scales less than a day under certain conditions.

  14. Leidenfrost Phenomenon-assisted Thermal Desorption (LPTD) and Its Application to Open Ion Sources at Atmospheric Pressure Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Saha, Subhrakanti; Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo

    2013-03-01

    This work describes the development and application of a new thermal desorption technique that makes use of the Leidenfrost phenomenon in open ion sources at atmospheric pressure for direct mass spectrometric detection of ultratrace levels of illicit, therapeutic, and stimulant drugs, toxicants, and peptides (molecular weight above 1 kDa) in their unaltered state from complex real world samples without or with minor sample pretreatment. A low temperature dielectric barrier discharge ion source was used throughout the experiments and the analytical figures of merit of this technique were investigated. Further, this desorption technique coupled with other ionization sources such as electrospray ionization (ESI) and dc corona discharge atmospheric pressure chemical ionization (APCI) in open atmosphere was also investigated. The use of the high-resolution `Exactive Orbitrap' mass spectrometer provided unambiguous identification of trace levels of the targeted compounds from complex mixtures and background noise; the limits of detection for various small organic molecules and peptides treated with this technique were at the level of parts per trillion and 10-9 M, respectively. The high sensitivity of the present technique is attributed to the spontaneous enrichment of analyte molecules during the slow evaporation of the solvent, as well as to the sequential desorption of molecules from complex mixtures based on their volatilities. This newly developed desorption technique is simple and fast, while molecular ions are observed as the major ions.

  15. Direct Liquid Sampling for Corona Discharge Ion Mobility Spectrometry.

    PubMed

    Sabo, Martin; Malásková, Michaela; Harmathová, Olga; Hradski, Jasna; Masár, Marián; Radjenovic, Branislav; Matejčík, Štefan

    2015-07-21

    We present a new technique suitable for direct liquid sampling and analysis by ion mobility spectrometry (IMS). The technique is based on introduction of a droplet stream to the IMS reaction region. The technique was successfully used to detect explosives dissolved in methanol and oil as well as to analyze amino acids and dipeptides. One of the main advantages of this technique is its ability to analyze liquid samples without the requirement of any special solution.

  16. The Use of Neutron Analysis Techniques for Detecting The Concentration And Distribution of Chloride Ions in Archaeological Iron

    PubMed Central

    Watkinson, D; Rimmer, M; Kasztovszky, Z; Kis, Z; Maróti, B; Szentmiklósi, L

    2014-01-01

    Chloride (Cl) ions diffuse into iron objects during burial and drive corrosion after excavation. Located under corrosion layers, Cl is inaccessible to many analytical techniques. Neutron analysis offers non-destructive avenues for determining Cl content and distribution in objects. A pilot study used prompt gamma activation analysis (PGAA) and prompt gamma activation imaging (PGAI) to analyse the bulk concentration and longitudinal distribution of Cl in archaeological iron objects. This correlated with the object corrosion rate measured by oxygen consumption, and compared well with Cl measurement using a specific ion meter. High-Cl areas were linked with visible damage to the corrosion layers and attack of the iron core. Neutron techniques have significant advantages in the analysis of archaeological metals, including penetration depth and low detection limits. PMID:26028670

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Thomas B.

    The Particle-into-Liquid Sampler (PILS) is an aqueous-solution-based online technique for determining bulk chemical composition of ambient aerosol particles. As shown in Figure 1, the instrument consists of two units, briefly described below: 1. An aerosol extraction unit where particles are passed through a growth chamber saturated with water vapor, liquid droplets are grown, and the resulting liquid collected and transferred to the detection system. 2. The detection system that includes ion chromatographs (IC) or a total organic carbon detector (TOC). Ion chromatography is performed using two Metrohm ICs—one for positive ions and one for negative ions—with conductivity detectors. The TOCmore » is detected using a GE TOC analyzer. The instrument can be run in either the ion detection mode or the TOC mode.« less

  18. Negative electrospray ionization on porous supporting tips for mass spectrometric analysis: electrostatic charging effect on detection sensitivity and its application to explosive detection.

    PubMed

    Wong, Melody Yee-Man; Man, Sin-Heng; Che, Chi-Ming; Lau, Kai-Chung; Ng, Kwan-Ming

    2014-03-21

    The simplicity and easy manipulation of a porous substrate-based ESI-MS technique have been widely applied to the direct analysis of different types of samples in positive ion mode. However, the study and application of this technique in negative ion mode are sparse. A key challenge could be due to the ease of electrical discharge on supporting tips upon the application of negative voltage. The aim of this study is to investigate the effect of supporting materials, including polyester, polyethylene and wood, on the detection sensitivity of a porous substrate-based negative ESI-MS technique. By using nitrobenzene derivatives and nitrophenol derivatives as the target analytes, it was found that the hydrophobic materials (i.e., polyethylene and polyester) with a higher tendency to accumulate negative charge could enhance the detection sensitivity towards nitrobenzene derivatives via electron-capture ionization; whereas, compounds with electron affinities lower than the cut-off value (1.13 eV) were not detected. Nitrophenol derivatives with pKa smaller than 9.0 could be detected in the form of deprotonated ions; whereas polar materials (i.e., wood), which might undergo competitive deprotonation with the analytes, could suppress the detection sensitivity. With the investigation of the material effects on the detection sensitivity, the porous substrate-based negative ESI-MS method was developed and applied to the direct detection of two commonly encountered explosives in complex samples.

  19. Leidenfrost phenomenon-assisted thermal desorption (LPTD) and its application to open ion sources at atmospheric pressure mass spectrometry.

    PubMed

    Saha, Subhrakanti; Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo

    2013-03-01

    This work describes the development and application of a new thermal desorption technique that makes use of the Leidenfrost phenomenon in open ion sources at atmospheric pressure for direct mass spectrometric detection of ultratrace levels of illicit, therapeutic, and stimulant drugs, toxicants, and peptides (molecular weight above 1 kDa) in their unaltered state from complex real world samples without or with minor sample pretreatment. A low temperature dielectric barrier discharge ion source was used throughout the experiments and the analytical figures of merit of this technique were investigated. Further, this desorption technique coupled with other ionization sources such as electrospray ionization (ESI) and dc corona discharge atmospheric pressure chemical ionization (APCI) in open atmosphere was also investigated. The use of the high-resolution 'Exactive Orbitrap' mass spectrometer provided unambiguous identification of trace levels of the targeted compounds from complex mixtures and background noise; the limits of detection for various small organic molecules and peptides treated with this technique were at the level of parts per trillion and 10(-9) M, respectively. The high sensitivity of the present technique is attributed to the spontaneous enrichment of analyte molecules during the slow evaporation of the solvent, as well as to the sequential desorption of molecules from complex mixtures based on their volatilities. This newly developed desorption technique is simple and fast, while molecular ions are observed as the major ions.

  20. Detection, characterization and quantification of salicylic acid conjugates in plant extracts by ESI tandem mass spectrometric techniques.

    PubMed

    Pastor, Victoria; Vicent, Cristian; Cerezo, Miguel; Mauch-Mani, Brigitte; Dean, John; Flors, Victor

    2012-04-01

    An approach for the detection and characterization of SA derivatives in plant samples is presented based on liquid chromatography coupled to electrospray ionization (ESI) tandem mass spectrometric techniques. Precursor ion scan methods using an ESI triple quadrupole spectrometer for samples from plants challenged with the virulent Pseudomonas syringae pv tomato DC3000 allowed us to detect two potential SA derivatives. The criterion used to consider a potential SA derivative is based on the detection of analytes in the precursor ion scan chromatogram upon selecting m/z 137 and m/z 93 that correspond to the salicylate and its main product ion, respectively. Product ion spectra of the newly-detected analytes as well as accurate m/z determinations using an ESI Q-time-of-flight instrument were registered as means of characterization and strongly suggest that glucosylated forms of SA at the carboxylic and at the phenol functional groups are present in plant samples. The specific synthesis and subsequent chromatography of salicylic glucosyl ester (SGE) and glucosyl salicylate (SAG) standards confirmed the chemical identity of both peaks that were obtained applying different tandem mass spectrometric techniques and accurate m/z determinations. A multiple reaction monitoring method has been developed and applied to plant samples. The advantages of this LC-ESI-MS/MS methods with respect to the traditional analysis of glucosyl conjugates are also discussed. Preliminary results revealed that SA and the glucosyl conjugates are accumulated in Arabidopsis thaliana in a time dependent manner, accordingly to the up-regulation of SA-dependent defenses following P. syringae infection. This technique applied to plant hormones or fragment ions may be useful to obtain chemical family members of plant metabolites and help identify their contribution in the signaling of plant defenses. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  1. Single-ion adsorption and switching in carbon nanotubes

    DOE PAGES

    Bushmaker, Adam W.; Oklejas, Vanessa; Walker, Don; ...

    2016-01-25

    Single-ion detection has, for many years, been the domain of large devices such as the Geiger counter, and studies on interactions of ionized gasses with materials have been limited to large systems. To date, there have been no reports on single gaseous ion interaction with microelectronic devices, and single neutral atom detection techniques have shown only small, barely detectable responses. Here we report the observation of single gaseous ion adsorption on individual carbon nanotubes (CNTs), which, because of the severely restricted one-dimensional current path, experience discrete, quantized resistance increases of over two orders of magnitude. Only positive ions cause changes,more » by the mechanism of ion potentialinduced carrier depletion, which is supported by density functional and Landauer transport theory. Lastly, our observations reveal a new single-ion/CNT heterostructure with novel electronic properties, and demonstrate that as electronics are ultimately scaled towards the one-dimensional limit, atomic-scale effects become increasingly important.« less

  2. PECAN: Library Free Peptide Detection for Data-Independent Acquisition Tandem Mass Spectrometry Data

    PubMed Central

    Ting, Ying S.; Egertson, Jarrett D.; Bollinger, James G.; Searle, Brian C.; Payne, Samuel H.; Noble, William Stafford; MacCoss, Michael J.

    2017-01-01

    In mass spectrometry-based shogun proteomics, data-independent acquisition (DIA) is an emerging technique for unbiased and reproducible measurement of protein mixtures. Without targeting a specific precursor ion, DIA MS/MS spectra are often highly multiplexed, containing product ions from multiple co-fragmenting precursors. Thus, detecting peptides directly from DIA data is challenging; most DIA data analyses require spectral libraries. Here we present a new library-free, peptide-centric tool PECAN that detects peptides directly from DIA data. PECAN reports evidence of detection based on product ion scoring, enabling detection of low abundance analytes with poor precursor ion signal. We benchmarked PECAN with chromatographic peak picking accuracy and peptide detection capability. We further validated PECAN detection with data-dependent acquisition and targeted analyses. Last, we used PECAN to build a library from DIA data and to query sequence variants. Together, these results show that PECAN detects peptides robustly and accurately from DIA data without using a library. PMID:28783153

  3. Microfabricated ion trap array

    DOEpatents

    Blain, Matthew G [Albuquerque, NM; Fleming, James G [Albuquerque, NM

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  4. ERDA at the 9 MV Tandem and at the 3 MV Tandetron of IFIN-HH

    NASA Astrophysics Data System (ADS)

    Petrascu, H.; Petrascu, M.; Pantelica, D.; Negoita, F.; Ionescu, P.; Mihai, M. D.; Acsente, T.; Statescu, M.; Scafes, A. C.

    2017-09-01

    Recoil spectrometry using heavy ions proposed in 1976 by L'Ecuyer has evolved into a universal IBA technique. Few years later an experimental setup for simultaneous light and medium heavy element detection including a compact ΔE(gas)-Er(solid) telescope, was developed at the Tandem accelerator of IFIN-HH. To increase the resolution, an integrated preamplifier was mounted close to the ionization chamber. The calibration procedure for the telescope and the software for the quantitative evaluation of the data are briefly presented. Recently, a 3 MV Tandetron accelerator has been installed and commissioned at the IFIN-HH. Among several ion-beam techniques for detection and depth profiling of hydrogen isotopes, Elastic Recoil Detection Analysis (ERDA) technique using a low energy 4He beam, proposed by Doyle and Peercy, is particularly advantageous. By measuring simultaneously both the H or D recoiling at a forward angle and backscattered 4He ions, a rather complete characterization of the sample can be achieved. Selected results from our investigations, obtained using these facilities, are presented.

  5. Absolute ion detection efficiencies of microchannel plates and funnel microchannel plates for multi-coincidence detection

    NASA Astrophysics Data System (ADS)

    Fehre, K.; Trojanowskaja, D.; Gatzke, J.; Kunitski, M.; Trinter, F.; Zeller, S.; Schmidt, L. Ph. H.; Stohner, J.; Berger, R.; Czasch, A.; Jagutzki, O.; Jahnke, T.; Dörner, R.; Schöffler, M. S.

    2018-04-01

    Modern momentum imaging techniques allow for the investigation of complex molecules in the gas phase by detection of several fragment ions in coincidence. For these studies, it is of great importance that the single-particle detection efficiency ɛ is as high as possible, as the overall efficiency scales with ɛn, i.e., the power of the number of detected particles. Here we present measured absolute detection efficiencies for protons of several micro-channel plates (MCPs), including efficiency enhanced "funnel MCPs." Furthermore, the relative detection efficiency for two-, three-, four-, and five-body fragmentation of CHBrClF has been examined. The "funnel" MCPs exhibit an efficiency of approximately 90%, gaining a factor of 24 (as compared to "normal" MCPs) in the case of a five-fold ion coincidence detection.

  6. Development of a sensitive setup for laser spectroscopy studies of very exotic calcium isotopes

    NASA Astrophysics Data System (ADS)

    Garcia Ruiz, R. F.; Gorges, C.; Bissell, M.; Blaum, K.; Gins, W.; Heylen, H.; Koenig, K.; Kaufmann, S.; Kowalska, M.; Krämer, J.; Lievens, P.; Malbrunot-Ettenauer, S.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Yordanov, D. T.; Yang, X. F.

    2017-04-01

    An experimental setup for sensitive high-resolution measurements of hyperfine structure spectra of exotic calcium isotopes has been developed and commissioned at the COLLAPS beam line at ISOLDE, CERN. The technique is based on the radioactive detection of decaying isotopes after optical pumping and state selective neutralization (ROC) (Vermeeren et al 1992 Phys. Rev. Lett. 68 1679). The improvements and developments necessary to extend the applicability of the experimental technique to calcium isotopes produced at rates as low as few ions s-1 are discussed. Numerical calculations of laser-ion interaction and ion-beam simulations were explored to obtain the optimum performance of the experimental setup. Among the implemented features are a multi-step optical pumping region for sensitive measurements of isotopes with hyperfine splitting, a high-voltage platform for adequate control of low-energy ion beams and simultaneous β-detection of neutralized and remaining ions. The commissioning of the experimental setup, and the first online results on neutron-rich calcium isotopes are presented.

  7. A new technique for in situ measurement of the composition of neutral gas in interplanetary space

    NASA Technical Reports Server (NTRS)

    Gruntman, Michael A.

    1993-01-01

    Neutral atoms in interplanetary space play an important role in many processes relevant to the formation and evolution of the Solar System. An experimental approach is proposed for in situ atom detection based on the conversion of neutral atoms to negative ions at a specially prepared sensitive surface. Negative ions are subsequently analyzed and detected in an essentially noise-free mode. The use of the technique for in situ study of the composition of neutral interstellar atoms is considered. It is shown that interstellar H, D, and O atoms and possibly H2 molecules can be measured by the proposed technique. The experiment can be performed from a high-apogee Earth-orbiting satellite or from a deep space probe. Possible applications of the technique are discussed.

  8. Identification of the nitrogen-based blister agents bis(2-chloroethyl)methylamine (HN-2) and tris(2-chloroethyl)amine (HN-3) and their hydrolysis products on soil using ion trap secondary ion mass spectrometry.

    PubMed

    Gresham, G L; Groenewold, G S; Olson, J E

    2000-12-01

    The nitrogen blister agents HN-2 (bis(2-chloroethyl)methylamine) and HN-3 (tris(2-chloroethyl)amine) were directly analyzed on the surface of soil samples using ion trap secondary ion mass spectrometry (SIMS). In the presence of water, HN-1 (bis(2-choroethyl)ethylamine), HN-2 and HN-3 undergo hydrolysis to form N-ethyldiethanolamine, N-methyldiethanolamine and triethanolamine (TEA), respectively; these compounds can be readily detected as adsorbed species on soil particles. When soil samples spiked with HN-3 in alcohol were analyzed, 2-alkoxyethylamine derivatives were observed on the sample surfaces. This result shows that nitrogen blister agents will undergo condensation reactions with nucleophilic compounds and emphasizes the need for an analytical methodology capable of detecting a range of degradation and condensation products on environmental surfaces. The ability of ion trap SIMS to isolate and accumulate ions, and then perform tandem mass spectrometric analysis improves the detection of low-abundance surface contaminants and the selectivity of the technique. Utilizing these techniques, the limits of detection for HN-3 were studied as a function of surface coverage. It was found that HN-3 could be detected at a surface coverage of 0.01 monolayer, which corresponds to 20 ppm (mass/mass) for a soil having a surface area of 2.2 m(2) g(-1). TEA, the exhaustive hydrolysis product of HN-3, was detected at a surface coverage of 0.001 monolayer, which corresponds to 0.86 ppm. Copyright 2000 John Wiley & Sons, Ltd.

  9. The expanding universe of mass analyzer configurations for biological analysis.

    PubMed

    Calvete, Juan J

    2014-01-01

    Mass spectrometry (MS) is an analytical technique that measures the mass-to-charge ratio of electrically charged gas-phase particles. All mass spectrometers combine ion formation, mass analysis, and ion detection. Although mass analyzers can be regarded as sophisticated devices that manipulate ions in space and time, the rich diversity of possible ways to combine ion separation, focusing, and detection in dynamic mass spectrometers accounts for the large number of instrument designs. A historical perspective of the progress in mass spectrometry that since 1965 until today have contributed to position this technique as an indispensable tool for biological research has been recently addressed by a privileged witness of this golden age of MS (Gelpí J. Mass Spectrom 43:419-435, 2008; Gelpí J. Mass Spectrom 44:1137-1161, 2008). The aim of this chapter is to highlight the view that the operational principles of mass spectrometry can be understood by a simple mathematical language, and that an understanding of the basic concepts of mass spectrometry is necessary to take the most out of this versatile technique.

  10. A Simple, Cost-Effective Sensor for Detecting Lead Ions in Water Using Under-Potential Deposited Bismuth Sub-Layer with Differential Pulse Voltammetry (DPV)

    PubMed Central

    Dai, Yifan; Liu, Chung Chiun

    2017-01-01

    This research has developed a simple to use, cost effective sensor system for the detection of lead ions in tap water. An under-potential deposited bismuth sub-layer on a thin gold film based electrochemical sensor was designed, manufactured, and evaluated. Differential pulse voltammetry (DPV) measurement technique was employed in this detection. Tap water from the Cleveland, OH, USA regional water district was the test medium. Concentrations of lead ion in the range of 8 × 10−7 M to 5 × 10−4 M were evaluated, showing a good sensitivity over this concentration range. The calibration curve for the DPV measurements of lead ions in tap water showed excellent reproducibility with R2 value of 0.970. This DPV detection system required 3–6 min to complete the detection measurement. A longer measurement time of 6 min was used for the lower lead ion concentration. The selectivity of this lead ion sensor was very good, and Fe III, Cu II, Ni II, and Mg II at a concentration level of 5 × 10−4 M did not interfere with the lead ion measurement. PMID:28441356

  11. Detection of trace cobalt ions in in vivo plant cells using a voltammetric interlocking system.

    PubMed

    Ly, Suw Young; Shin, Myoung Ho; Lee, Chang Hyun; Lee, Jin Hui; Kim, Mi Sook; Ji, Sang Woo; Park, Dong Won

    2013-01-01

    This experiment was conducted to establish a system for detecting trace cobalt ions in water and plant tissues using a voltammetric in vivo sensor. Cyclic and stripping voltammetry was devised from hand-made, macro-type implantable three-electrode systems. The results reached micro and nano working ranges at 100 sec accumulation time. The statistical detection limit (S/N) was attained at 6.0 ng L(-1). For the in vivo application, direct assay of cobalt ions was carried out in Eichhornia crassipes (EC) deep tissue in real time with a preconcentration time of 100 s. Interfaced techniques can be interlocked with other control systems.

  12. Ion mobility spectrometry as a detector for molecular imprinted polymer separation and metronidazole determination in pharmaceutical and human serum samples.

    PubMed

    Jafari, M T; Rezaei, B; Zaker, B

    2009-05-01

    Application of ion mobility spectrometry (IMS) as the detection technique for a separation method based on molecular imprinted polymer (MIP) was investigated and evaluated for the first time. On the basis of the results obtained in this work, the MIP-IMS system can be used as a powerful technique for separation, preconcentration, and detection of the metronidazole drug in pharmaceutical and human serum samples. The method is exhaustively validated in terms of sensitivity, selectivity, recovery, reproducibility, and column capacity. The linear dynamic range of 0.05-70.00 microg/mL was obtained for the determination of metronidazole with IMS. The recovery of analyzed drug was calculated to be above 89%, and the relative standard deviation (RSD) was lower than 6% for all experiments. Various real samples were analyzed with the coupled techniques, and the results obtained revealed the efficient cleanup of the samples using MIP separation before the analysis by IMS as a detection technique.

  13. Laser desorption ionization mass spectrometry: Recent progress in matrix-free and label-assisted techniques.

    PubMed

    Mandal, Arundhoti; Singha, Monisha; Addy, Partha Sarathi; Basak, Amit

    2017-10-13

    The MALDI-based mass spectrometry, over the last three decades, has become an important analytical tool. It is a gentle ionization technique, usually applicable to detect and characterize analytes with high molecular weights like proteins and other macromolecules. The earlier difficulty of detection of analytes with low molecular weights like small organic molecules and metal ion complexes with this technique arose due to the cluster of peaks in the low molecular weight region generated from the matrix. To detect such molecules and metal ion complexes, a four-prong strategy has been developed. These include use of alternate matrix materials, employment of new surface materials that require no matrix, use of metabolites that directly absorb the laser light, and the laser-absorbing label-assisted LDI-MS (popularly known as LALDI-MS). This review will highlight the developments with all these strategies with a special emphasis on LALDI-MS. © 2017 Wiley Periodicals, Inc.

  14. Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan.

    PubMed

    Verma, Roli; Gupta, Banshi D

    2015-01-01

    Optical fibre surface plasmon resonance (SPR) based sensor for the detection of heavy metal ions in the drinking water is designed. Silver (Ag) metal and indium tin oxide (ITO) are used for the fabrication of the SPR probe which is further modified with the coating of pyrrole and chitosan composite. The sensor works on the wavelength interrogation technique and is capable of detecting trace amounts of Cd(2+), Pb(2+), and Hg(2+) heavy metal ions in contaminated water. Four types of sensing probes are fabricated and characterised for heavy metal ions out of these pyrrole/chitosan/ITO/Ag coated probe is found to be highly sensitive among all other probes. Further, the cadmium ions bind strongly to the sensing surface than other ions and due to this the sensor is highly sensitive for Cd(2+) ions. The sensor's performance is best for the low concentrations of heavy metal ions and its sensitivity decreases with the increasing concentration of heavy metal ions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Studies in search of selective detection of isomeric biogenic hexen-1-ols and hexanal by flowing afterglow tandem mass spectrometry using [H3O]+ and [NO]+ reagent ions.

    PubMed

    Dhooghe, Frederik; Vansintjan, Robbe; Schoon, Niels; Amelynck, Crist

    2012-08-30

    Plants emit a blend of oxygenated volatile C(6) compounds, known as green leaf volatiles (GLVs), in response to leaf tissue damage related to stress conditions. On-line chemical ionization mass spectrometry (CI-MS) techniques have often been used to study the dynamics of these emissions but they fail to selectively detect some important GLV compounds. A flowing afterglow tandem mass spectrometer (FA-TMS) was used to investigate the feasibility of selective on-line detection of isomeric hexen-1-ols and hexanal. Product ions at m/z 101 and 83 from chemical ionization (CI) of these compounds by [H(3)O](+), and product ions at m/z 100, 99, 83, 82 and 72 from CI by [NO](+), have been subjected to collision-induced dissociation (CID) in the collision cell of the TMS at center-of-mass energies ranging between 0 and 9 eV. CID of product ions at m/z 101 and 83 from CI of GLVs with [H(3)O](+) and of product ions at m/z 83, 82 and 72 from CI of GLVs with [NO](+) resulted in identical fragmentation patterns for all measured compounds, ruling out any selectivity. However, CID of product ions at m/z 100 and 99 from CI by [NO](+) led to CID product ions with abundances differing largely between the compounds, allowing the fast selective detection of 2-hexen-1-ols, 3-hexen-1-ols and hexanal with a chosen accuracy within a well-defined range of relative concentrations. This research illustrates that, in contrast to common CI-MS techniques, FA-TMS allows the selective detection of hexanal in a mixture of hexanal and hexen-1-ols with a chosen accuracy for a well-defined range of relative concentrations and represents a step forward in the search for selective detection of GLVs in CI-TMS. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Trying to detect gas-phase ions? Understanding Ion Mobility Spectrometry

    PubMed Central

    Cumeras, R.; Figueras, E.; Davis, C.E.; Baumbach, J.I.; Gràcia, I.

    2014-01-01

    Ion Mobility Spectrometry (IMS) is a widely used and ‘well-known’ technique of ion separation in gaseous phase based on the differences of ion mobilities under an electric field. This technique has received increased interest over the last several decades as evidenced by the pace and advances of new IMS devices available. In this review we explore the hyphenated techniques that are used with IMS, especially mass spectrometry as identification approach and multi-capillary column as pre-separation approach. Also, we will pay special attention to the key figures of merit of the ion mobility spectrum and how data is treated, and the influences of the experimental parameters in both a conventional drift time IMS (DTIMS) and a miniaturized IMS also known as high Field Asymmetric IMS (FAIMS) in the planar configuration. The current review article is preceded by a companion review article which details the current instrumentation and to the sections that configures both a conventional DTIMS and FAIMS devices. Those reviews will give the reader an insightful view of the main characteristics and aspects of the IMS technique. PMID:25465248

  17. An experiment on the dynamics of ion implantation and sputtering of surfaces

    NASA Astrophysics Data System (ADS)

    Wright, G. M.; Barnard, H. A.; Kesler, L. A.; Peterson, E. E.; Stahle, P. W.; Sullivan, R. M.; Whyte, D. G.; Woller, K. B.

    2014-02-01

    A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface.

  18. An experiment on the dynamics of ion implantation and sputtering of surfaces.

    PubMed

    Wright, G M; Barnard, H A; Kesler, L A; Peterson, E E; Stahle, P W; Sullivan, R M; Whyte, D G; Woller, K B

    2014-02-01

    A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface.

  19. A laser microsurgical method of cell wall removal allows detection of large-conductance ion channels in the guard cell plasma membrane

    NASA Technical Reports Server (NTRS)

    Miedema, H.; Henriksen, G. H.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Application of patch clamp techniques to higher-plant cells has been subject to the limitation that the requisite contact of the patch electrode with the cell membrane necessitates prior enzymatic removal of the plant cell wall. Because the wall is an integral component of plant cells, and because cell-wall-degrading enzymes can disrupt membrane properties, such enzymatic treatments may alter ion channel behavior. We compared ion channel activity in enzymatically isolated protoplasts of Vicia faba guard cells with that found in membranes exposed by a laser microsurgical technique in which only a tiny portion of the cell wall is removed while the rest of the cell remains intact within its tissue environment. "Laser-assisted" patch clamping reveals a new category of high-conductance (130 to 361 pS) ion channels not previously reported in patch clamp studies on plant plasma membranes. These data indicate that ion channels are present in plant membranes that are not detected by conventional patch clamp techniques involving the production of individual plant protoplasts isolated from their tissue environment by enzymatic digestion of the cell wall. Given the large conductances of the channels revealed by laser-assisted patch clamping, we hypothesize that these channels play a significant role in the regulation of ion content and electrical signalling in guard cells.

  20. Liquid crystal based optical platform for the detection of Pb2+ ions using NiFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zehra, Saman; Gul, Iftikhar Hussain; Hussain, Zakir

    2018-06-01

    A simple, sensitive, selective and real time detection protocol was developed for Pb2+ ions in water using liquid crystals (LCs). In this method, NiFe2O4 nanoparticles were synthesized using chemical co-precipitation method. Crystallite size, morphological, functional groups and magnetization studies were confirmed using X-ray diffraction, Scanning Electron Microscopy, and Fourier transform infrared spectroscopy techniques, respectively. The nanoparticles were mono dispersed with average particle size of 20 ± 2 nm. The surfactant stabilized magnetic nanoparticles were incubated in liquid crystal based sensor system for the detection of Pb+2 ions. The bright to dark transition of LC was observed through optical microscope. When this system was further immersed with a solution containing Pb2+ ions, it caused homeotropic to planar orientation of LC. This interaction is attributed to the presence of abundant hydroxyl groups in such as M-OH, Fe-OH on the surface of spinel ferrites nanoparticles. These groups interact with metal ions at aqueous interface, causing disruption in LCs orientation giving bright texture. This sensor showed higher selectivity towards Pb2+ ions. The detection limit was estimated to be 100 ppb. The cheap and effective protocol reported here should make promising development of LC based sensor for lead ion detection.

  1. Detection of trace heavy metal ions in water by nanostructured porous Si biosensors.

    PubMed

    Shtenberg, Giorgi; Massad-Ivanir, Naama; Segal, Ester

    2015-07-07

    A generic biosensing platform, based on nanostructured porous Si (PSi), Fabry-Pérot thin films, for label-free monitoring of heavy metal ions in aqueous solutions by enzymatic activity inhibition, is described. First, we show a general detection assay by immobilizing horseradish peroxidase (HRP) within the oxidized PSi nanostructure and monitor its catalytic activity in real time by reflective interferometric Fourier transform spectroscopy. Optical studies reveal the high specificity and sensitivity of the HRP-immobilized PSi towards three metal ions (Ag(+) > Pb(2+) > Cu(2+)), with a detection limit range of 60-120 ppb. Next, we demonstrate the concept of specific detection of Cu(2+) ions (as a model heavy metal) by immobilizing Laccase, a multi-copper oxidase, within the oxidized PSi. The resulting biosensor allows for specific detection and quantification of copper ions in real water samples by monitoring the Laccase relative activity. The optical biosensing results are found to be in excellent agreement with those obtained by the gold standard analytical technique (ICP-AES) for all water samples. The main advantage of the presented biosensing concept is the ability to detect heavy metal ions at environmentally relevant concentrations using a simple and portable experimental setup, while the specific biosensor design can be tailored by varying the enzyme type.

  2. The potential of organic (electrospray- and atmospheric pressure chemical ionisation) mass spectrometric techniques coupled to liquid-phase separation for speciation analysis.

    PubMed

    Rosenberg, Erwin

    2003-06-06

    The use of mass spectrometry based on atmospheric pressure ionisation techniques (atmospheric pressure chemical ionisation, APCI, and electrospray ionisation, ESI) for speciation analysis is reviewed with emphasis on the literature published in and after 1999. This report accounts for the increasing interest that atmospheric pressure ionisation techniques, and in particular ESI, have found in the past years for qualitative and quantitative speciation analysis. In contrast to element-selective detectors, organic mass spectrometric techniques provide information on the intact metal species which can be used for the identification of unknown species (particularly with MS-MS detection) or the confirmation of the actual presence of species in a given sample. Due to the complexity of real samples, it is inevitable in all but the simplest cases to couple atmospheric pressure MS detection to a separation technique. Separation in the liquid phase (capillary electrophoresis or liquid chromatography in reversed phase, ion chromatographic or size-exclusion mode) is particularly suitable since the available techniques cover a very wide range of analyte polarities and molecular mass. Moreover, derivatisation can normally be avoided in liquid-phase separation. Particularly in complex environmental or biological samples, separation in one dimension is not sufficient for obtaining adequate resolution for all relevant species. In this case, multi-dimensional separation, based on orthogonal separation techniques, has proven successful. ESI-MS is also often used in parallel with inductively coupled plasma MS detection. This review is structured in two parts. In the first, the fundamentals of atmospheric pressure ionisation techniques are briefly reviewed. The second part of the review discusses recent applications including redox species, use of ESI-MS for structural elucidation of metal complexes, characterisation and quantification of small organometallic species with relevance to environment, health and food. Particular attention is given to the characterisation of biomolecules and metalloproteins (metallothioneins and phytochelatins) and to the investigation of the interaction of metals and biomolecules. Particularly in the latter field, ESI-MS is the ideal technique due to the softness of the ionisation process which allows to assume that the detected gas-phase ions are a true representation of the ions or ion-biomolecule complexes prevalent in solution. It is particularly this field, important to biochemistry, physiology and medical chemistry, where we can expect significant developments also in the future.

  3. Pre-concentration technique for reduction in "Analytical instrument requirement and analysis"

    NASA Astrophysics Data System (ADS)

    Pal, Sangita; Singha, Mousumi; Meena, Sher Singh

    2018-04-01

    Availability of analytical instruments for a methodical detection of known and unknown effluents imposes a serious hindrance in qualification and quantification. Several analytical instruments such as Elemental analyzer, ICP-MS, ICP-AES, EDXRF, ion chromatography, Electro-analytical instruments which are not only expensive but also time consuming, required maintenance, damaged essential parts replacement which are of serious concern. Move over for field study and instant detection installation of these instruments are not convenient to each and every place. Therefore, technique such as pre-concentration of metal ions especially for lean stream elaborated and justified. Chelation/sequestration is the key of immobilization technique which is simple, user friendly, most effective, least expensive, time efficient; easy to carry (10g - 20g vial) to experimental field/site has been demonstrated.

  4. PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, Ying S.; Egertson, Jarrett D.; Bollinger, James G.

    Data-independent acquisition (DIA) is an emerging mass spectrometry (MS)-based technique for unbiased and reproducible measurement of protein mixtures. DIA tandem mass spectrometry spectra are often highly multiplexed, containing product ions from multiple cofragmenting precursors. Detecting peptides directly from DIA data is therefore challenging; most DIA data analyses require spectral libraries. Here we present PECECAN (http://pecan.maccosslab.org), a library-free, peptide-centric tool that robustly and accurately detects peptides directly from DIA data. PECECAN reports evidence of detection based on product ion scoring, which enables detection of low-abundance analytes with poor precursor ion signal. We demonstrate the chromatographic peak picking accuracy and peptide detectionmore » capability of PECECAN, and we further validate its detection with data-dependent acquisition and targeted analyses. Lastly, we used PECECAN to build a plasma proteome library from DIA data and to query known sequence variants.« less

  5. Soft Ionization of Saturated Hydrocarbons, Alcohols and Nonpolar Compounds by Negative-Ion Direct Analysis in Real-Time Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Cody, Robert B.; Dane, A. John

    2013-03-01

    Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2]‾•. No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.

  6. Soft ionization of saturated hydrocarbons, alcohols and nonpolar compounds by negative-ion direct analysis in real-time mass spectrometry.

    PubMed

    Cody, Robert B; Dane, A John

    2013-03-01

    Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2]‾(•). No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magallanes, L., E-mail: lorena.magallanes@med.uni-heidelberg.de; Rinaldi, I., E-mail: ilaria.rinaldi@med.uni-heidelberg.de; Brons, S., E-mail: stephan.brons@med.uni-heidelberg.de

    External beam radiotherapy techniques have the common aim to maximize the radiation dose to the target while sparing the surrounding healthy tissues. The inverted and finite depth-dose profile of ion beams (Bragg peak) allows for precise dose delivery and conformai dose distribution. Furthermore, increased radiobiological effectiveness of ions enhances the capability to battle radioresistant tumors. Ion beam therapy requires a precise determination of the ion range, which is particularly sensitive to range uncertainties. Therefore, novel imaging techniques are currently investigated as a tool to improve the quality of ion beam treatments. Approaches already clinically available or under development are basedmore » on the detection of secondary particles emitted as a result of nuclear reactions (e.g., positron-annihilation or prompt gammas, charged particles) or transmitted high energy primary ion beams. Transmission imaging techniques make use of the beams exiting the patient, which have higher initial energy and lower fluence than the therapeutic ones. At the Heidelberg Ion Beam Therapy Center, actively scanned energetic proton and carbon ion beams provide an ideal environment for the investigation of ion-based radiography and tomography. This contribution presents the rationale of ion beam therapy, focusing on the role of ion-based transmission imaging methods towards the reduction of range uncertainties and potential improvement of treatment planning.« less

  8. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.

    PubMed

    Swearingen, Kristian E; Moritz, Robert L

    2012-10-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve the detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, the authors review recent developments in LC-FAIMS-MS and its application to MS-based proteomics.

  9. Charged Particle Detection: Potential of Love Wave Acoustic Devices

    NASA Astrophysics Data System (ADS)

    Pedrick, Michael; Tittmann, Bernhard

    2006-03-01

    An investigation of the dependence of film density on group and phase velocities in a Love Wave Device shows potential for acoustic-based charged particle detection (CPD). Exposure of an ion sensitive photoresist to charged particles causes localized changes in density through either scission or cross-linking. A theoretical model was developed to study ion fluence effects on Love Wave sensitivity based on: ion energy, effective density changes, layer thickness and mode selection. The model is based on a Poly(Methyl Methacralate) (PMMA) film deposited on a Quartz substrate. The effect of Helium ion fluence on the properties of PMMA has previously been studied. These guidelines were used as an initial basis for the prediction of helium ion detection in a PMMA layer. Procedures for experimental characterization of ion effects on the material properties of PMMA are reviewed. Techniques for experimental validation of the predicted velocity shifts are discussed. A Love Wave Device for CPD could potentially provide a cost-effective alternative to semiconductor or photo-based counterparts. The potential for monitoring ion implantation effects on material properties is also discussed.

  10. Paul Trapping of Radioactive {sup 6}He{sup +} Ions and Direct Observation of Their {beta} Decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flechard, X.; Lienard, E.; Mery, A.

    2008-11-21

    We demonstrate that abundant quantities of short-lived {beta} unstable ions can be trapped in a novel transparent Paul trap and that their decay products can directly be detected in coincidence. Low energy {sup 6}He{sup +} (807 ms half-life) ions were extracted from the SPIRAL source at GANIL, then decelerated, cooled, and bunched by means of the buffer gas cooling technique. More than 10{sup 8} ions have been stored over a measuring period of six days, and about 10{sup 5} decay coincidences between the beta particles and the {sup 6}Li{sup ++} recoiling ions have been recorded. The technique can be extendedmore » to other short-lived species, opening new possibilities for trap assisted decay experiments.« less

  11. Precision Isotope Shift Measurements in Calcium Ions Using Quantum Logic Detection Schemes.

    PubMed

    Gebert, Florian; Wan, Yong; Wolf, Fabian; Angstmann, Christopher N; Berengut, Julian C; Schmidt, Piet O

    2015-07-31

    We demonstrate an efficient high-precision optical spectroscopy technique for single trapped ions with nonclosed transitions. In a double-shelving technique, the absorption of a single photon is first amplified to several phonons of a normal motional mode shared with a cotrapped cooling ion of a different species, before being further amplified to thousands of fluorescence photons emitted by the cooling ion using the standard electron shelving technique. We employ this extension of the photon recoil spectroscopy technique to perform the first high precision absolute frequency measurement of the 2D(3/2)→2P(1/2) transition in calcium, resulting in a transition frequency of f=346 000 234 867(96)  kHz. Furthermore, we determine the isotope shift of this transition and the 2S(1/2)→2P(1/2) transition for 42Ca+, 44Ca+, and 48Ca+ ions relative to 40Ca+ with an accuracy below 100 kHz. Improved field and mass shift constants of these transitions as well as changes in mean square nuclear charge radii are extracted from this high resolution data.

  12. Microfabricated cylindrical ion trap

    DOEpatents

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  13. Potential mapping with charged-particle beams

    NASA Technical Reports Server (NTRS)

    Robinson, J. W.; Tillery, D. G.

    1979-01-01

    Experimental methods of mapping the equipotential surfaces near some structure of interest rely on the detection of charged particles which have traversed the regions of interest and are detected remotely. One method is the measurement of ion energies for ions created at a point of interest and expelled from the region by the fields. The ion energy at the detector in eV corresponds to the potential where the ion was created. An ionizing beam forms the ions from background neutrals. The other method is to inject charged particles into the region of interest and to locate their exit points. A set of several trajectories becomes a data base for a systematic mapping technique. An iterative solution of a boundary value problem establishes concepts and limitations pertaining to the mapping problem.

  14. A new way to measure the composition of the interstellar gas surrounding the heliosphere

    NASA Technical Reports Server (NTRS)

    Gruntman, Michael A.

    1993-01-01

    The composition of neutral gas in the Local Interstellar Medium can be studied by direct, in situ measuring of interstellar neutral atoms penetrating into interplanetary space. A novel experimental approach for in situ atom detection, which has never been used earlier in space, is proposed. The technique is based on the conversion of neutral atoms to negative ions at a specially prepared sensitive surface. Negative ions are subsequently analyzed and detected in an essentially noise-free, multicoincidence mode. It is shown that interstellar hydrogen, deuterium, and oxygen atoms can be measured by the proposed technique. The experiment can be performed from a high-apogee Earth-orbiting satellite or from a deep space probe.

  15. Isolation and recovery of selected polybrominated diphenyl ethers from human serum and sheep serum: coupling reversed-phase solid-phase disk extraction and liquid-liquid extraction techniques with a capillary gas chromatographic electron capture negative ion mass spectrometric determinative technique.

    PubMed

    Loconto, Paul R; Isenga, David; O'Keefe, Michael; Knottnerus, Mark

    2008-01-01

    Polybrominated diphenyl ethers (PBDEs) are isolated and recovered with acceptable percent recoveries from human serum via liquid-liquid extraction and column chromatographic cleanup and fractionation with quantitation using capillary gas chromatography-mass spectrometry with electron capture negative ion and selected ion monitoring. PBDEs are found in unspiked serum. An alternative sample preparation approach is developed using sheep serum that utilizes a formic acid pre-treatment followed by reversed-phase solid-phase disk extraction and normal-phase solid-phase cleanup using acidified silica gel that yields>50% recoveries. When these percent recoveries are combined with a minimized phase ratio for human serum and very low instrument detection limits, method detection limits below 500 parts-per-trillion are realized.

  16. Ultra High-Resolution Electrospray Ionization/Ion Mobility Spectrometer System for In-Situ Detection of Organic Compounds

    NASA Technical Reports Server (NTRS)

    Kanik, I.; Beegle, L. W.; Hill, H. H.

    2001-01-01

    The potential of the high-resolution Electrospray Ionization/Ion Mobility Spectrometry (ESI/IMS) technique as analytical separation tool in analyzing bio-molecular mixtures in the search for the chemical signatures of life is demonstrated. Additional information is contained in the original extended abstract.

  17. New SSMS Techniques for the Determination of Rhodium and Other Platinum- Group Elements in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Jochum, K. P.; Seufert, H. M.

    1995-09-01

    We have developed new spark source mass spectrometric (SSMS) techniques for simultaneous analysis of platinum-group elements (PGE) together with other trace elements in stony meteorites. We have measured elemental abundances of Rh, Ru, Os, Ir, Pt, Au in carbonaceous chondrites of different types including the two CI chondrites Orgueil and Ivuna. These data are relevant for the determination of solar-system abundances. Whereas the solar-system abundances of most PGE are well known, this is not the case for Rh, and no literature data exist for carbonaceous chondrites, mainly because of analytical difficulties. The SSMS techniques include new calibration procedures and the use of a recently developed multi-ion counting (MIC) system [1]. The mono-isotopic element Rh and the other PGE were determined by using internal standard elements (e.g., Nd, U) that were measured by isotope dilution in the same sample electrode material. The data were calibrated with certified standard solutions of PGE which were doped on trace-element poor rock samples. Ion abundances were measured using both the conventional photoplate detection and the ion-counting techniques. The new MIC technique that uses up to 20 small channeltrons for ion counting measurements has the advantage of improved precision, detection limits and analysis time compared to photoplate detection. Tab. 1 shows the Rh analyses for the meteorites Orgueil, Ivuna, Murchison, Allende and Karoonda obtained by conventional photoplate detection. These are the first Rh results for carbonaceous chondrites. The data for the two CI chondrites Orgueil and Ivuna are identical and agree within 4 % with the CI estimate of Anders and Grevesse [2] which was derived indirectly from analyses for H-chondrites. The PGE Os, Ir, Pt, Au and W, Re, Th, U concentrations were determined by both detection systems. Data obtained with the MIC system are more precise (about 4% for concentrations in the ppb range) compared to the photoplate detection system (about 10 - 15 %). Both data sets agree within error limits. Rhodium correlates well with Pt and other PGE indicating no significant fractionation between the different types of carbonaceous chondrites (Tab. 1). References: [1] Jochum K. P. et al. (1994) Fresenius J. Anal. Chem., 350, 642-644. [2] Anders E. and Grevesse N. (1989) GCA, 53, 197-214.

  18. An intelligent detection method for high-field asymmetric waveform ion mobility spectrometry.

    PubMed

    Li, Yue; Yu, Jianwen; Ruan, Zhiming; Chen, Chilai; Chen, Ran; Wang, Han; Liu, Youjiang; Wang, Xiaozhi; Li, Shan

    2018-04-01

    In conventional high-field asymmetric waveform ion mobility spectrometry signal acquisition, multi-cycle detection is time consuming and limits somewhat the technique's scope for rapid field detection. In this study, a novel intelligent detection approach has been developed in which a threshold was set on the relative error of α parameters, which can eliminate unnecessary time spent on detection. In this method, two full-spectrum scans were made in advance to obtain the estimated compensation voltage at different dispersion voltages, resulting in a narrowing down of the whole scan area to just the peak area(s) of interest. This intelligent detection method can reduce the detection time to 5-10% of that of the original full-spectrum scan in a single cycle.

  19. Silver(I) Ions Ultrasensitive Detection at Carbon Electrodes—Analysis of Waters, Tobacco Cells and Fish Tissues

    PubMed Central

    Krizkova, Sona; Krystofova, Olga; Trnkova, Libuse; Hubalek, Jaromir; Adam, Vojtech; Beklova, Miroslava; Horna, Ales; Havel, Ladislav; Kizek, Rene

    2009-01-01

    We used carbon paste electrodes and a standard potentiostat to detect silver ions. The detection limit (3 Signal/Noise ratio) was estimated as 0.5 μM. A standard electrochemical instrument microanalysis of silver(I) ions was suggested. As a working electrode a carbon tip (1 mL) or carbon pencil was used. Limits of detection estimated by dilution of a standard were 1 (carbon tip) or 10 nM (carbon pencil). Further we employed flow injection analysis coupled with carbon tip to detect silver(I) ions released in various beverages and mineral waters. During first, second and third week the amount of silver(I) ions releasing into water samples was under the detection limit of the technique used for their quantification. At the end of a thirteen weeks long experiment the content of silver(I) ions was several times higher compared to the beginning of release detected in the third week and was on the order of tens of nanomoles. In subsequent experiments the influence of silver(I) ions (0, 5 and 10 μM) on a plant model system (tobacco BY-2 cells) during a four-day exposition was investigated. Silver(I) ions were highly toxic to the cells, which was revealed by a double staining viability assay. Moreover we investigated the effect of silver(I) ions (0, 0.3, 0.6, 1.2 and 2.5 μM) on guppies (Poecilia reticulata). Content of Ag(I) increased with increasing time of the treatment and applied concentrations in fish tissues. It can be concluded that a carbon tip or carbon pencil coupled with a miniaturized potentiostat can be used for detection of silver(I) ions in environmental samples and thus represents a small, portable, low cost and easy-to-use instrument for such purposes. PMID:22399980

  20. Barium Qubit State Detection and Ba Ion-Photon Entanglement

    NASA Astrophysics Data System (ADS)

    Sosnova, Ksenia; Inlek, Ismail Volkan; Crocker, Clayton; Lichtman, Martin; Monroe, Christopher

    2016-05-01

    A modular ion-trap network is a promising framework for scalable quantum-computational devices. In this architecture, different ion-trap modules are connected via photonic buses while within one module ions interact locally via phonons. To eliminate cross-talk between photonic-link qubits and memory qubits, we use different atomic species for quantum information storage (171 Yb+) and intermodular communication (138 Ba+). Conventional deterministic Zeeman-qubit state detection schemes require additional stabilized narrow-linewidth lasers. Instead, we perform fast probabilistic state detection utilizing efficient detectors and high-NA lenses to detect emitted photons from circularly polarized 493 nm laser excitation. Our method is not susceptible to intensity and frequency noise, and we show single-shot detection efficiency of ~ 2%, meaning that we can discriminate between the two qubits states with 99% confidence after as little as 50 ms of averaging. Using this measurement technique, we report entanglement between a single 138 Ba+ ion and its emitted photon with 86% fidelity. This work is supported by the ARO with funding from the IARPA MQCO program, the DARPA Quiness program, the AFOSR MURI on Quantum Transduction, and the ARL Center for Distributed Quantum Information.

  1. Highly charged ion secondary ion mass spectroscopy

    DOEpatents

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  2. Determination of γ-hydroxybutyrate in human urine samples by ion exclusion and ion exchange two-dimensional chromatography system.

    PubMed

    Liu, Junwei; Deng, Zhifen; Zhu, Zuoyi; Wang, Yong; Wang, Guoqing; Sun, Yu-An; Zhu, Yan

    2017-12-15

    A two-dimensional ion chromatography system was developed for the determination of γ-hydroxybutyrate (GHB) in human urine samples. Ion exclusion chromatography was used in the first dimensional separation for elimination of urine matrices and detection of GHB above 10mgL -1 , ion exchange chromatography was used in the second dimensional separation via column-switching technique for detection of GHB above 0.08mgL -1 . Under the optimized chromatographic conditions, the ion exclusion and ion exchange chromatography separation system exhibited satisfactory repeatability (RSD<3.1%, n=6) and good linearity in the range of 50-1000mgL -1 and 0.5-100mgL -1 , respectively. By this method, concentrations of GHB in the selected human urine samples were detected in the range of 0-1.57mgL -1 . The urine sample containing 0.89mgL -1 GHB was selected to evaluate the accuracy; the spiked recoveries of GHB were 95.9-102.8%. The results showed that the two-dimensional ion chromatography system was convenient and practical for the determination of GHB in human urine samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Rapid, quantitative and sensitive immunochromatographic assay based on stripping voltammetric detection of a metal ion label

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Fang; Wang, Kaihua; Lin, Yuehe

    2005-10-10

    A novel, sensitive immunochromatographic electrochemical biosensor (IEB) which combines an immunochromatographic strip technique with an electrochemical detection technique is demonstrated. The IEB takes advantages of the speed and low-cost of the conventional immunochromatographic test kits and high-sensitivity of stripping voltammetry. Bismuth ions (Bi3+) have been coupled with the antibody through the bifunctional chelating agent diethylenetriamine pentaacetic acid (DTPA). After immunoreactions, Bi3+ was released and quantified by anodic stripping voltammetry at a built-in single-use screen-printed electrode. As an example for the applications of such novel device, the detection of human chorionic gonadotronphin (HCG) in a specimen was performed. This biosensor providesmore » a more user-friendly, rapid, clinically accurate, and less expensive immunoassay for such analysis in specimens than currently available test kits.« less

  4. Mass spectrometry and inhomogeneous ion optics

    NASA Technical Reports Server (NTRS)

    White, F. A.

    1973-01-01

    Work done in several areas to advance the state of the art of magnetic mass spectrometers is described. The calculations and data necessary for the design of inhomogeneous field mass spectrometers, and the calculation of ion trajectories through such fields are presented. The development and testing of solid state ion detection devices providing the capability of counting single ions is discussed. New techniques in the preparation and operation of thermal-ionization ion sources are described. Data obtained on the concentrations of copper in rainfall and uranium in air samples using the improved thermal ionization techniques are presented. The design of a closed system static mass spectrometer for isotopic analyses is discussed. A summary of instrumental aspects of a four-stage mass spectrometer comprising two electrostatic and two 90 deg. magnetic lenses with a 122-cm radius used to study the interaction of ions with solids is presented.

  5. Time-resolved ion imaging at free-electron lasers using TimepixCam.

    PubMed

    Fisher-Levine, Merlin; Boll, Rebecca; Ziaee, Farzaneh; Bomme, Cédric; Erk, Benjamin; Rompotis, Dimitrios; Marchenko, Tatiana; Nomerotski, Andrei; Rolles, Daniel

    2018-03-01

    The application of a novel fast optical-imaging camera, TimepixCam, to molecular photoionization experiments using the velocity-map imaging technique at a free-electron laser is described. TimepixCam is a 256 × 256 pixel CMOS camera that is able to detect and time-stamp ion hits with 20 ns timing resolution, thus making it possible to record ion momentum images for all fragment ions simultaneously and avoiding the need to gate the detector on a single fragment. This allows the recording of significantly more data within a given amount of beam time and is particularly useful for pump-probe experiments, where drifts, for example, in the timing and pulse energy of the free-electron laser, severely limit the comparability of pump-probe scans for different fragments taken consecutively. In principle, this also allows ion-ion covariance or coincidence techniques to be applied to determine angular correlations between fragments.

  6. A new tritium monitor design based on plasma source ion implantation technique

    NASA Astrophysics Data System (ADS)

    Nassar, Rafat Mohammad

    Tritium is an important isotope of hydrogen. The availability of tritium in our environment is manifest through both natural and artificial sources. Consequently, the requirement for tritium handling and usage will continue to increase in the future. An important future contributor is nuclear fusion power plants and facilities. Essential safety regulations and procedures require effective monitoring and measurements of tritium concentrations in workplaces. The unique characteristics of tritium impose an important role on the criteria for its detection and measurement. As tritium decays by the emission of soft beta particles, maximum 18 keV, it cannot be readily detected by commonly used detectors. Specially built monitors are required. Additional complications occur due to the presence of other radioactive isotopes or ambient radiation fields and because of the high diffusivity of tritium. When it is in oxidized form it is 25000 times more hazardous biologically than when in elemental form. Therefore, contamination of the monitor is expected and compound specific monitors are important. A summary is given of the various well known methods of detecting tritium-in-air. This covers the direct as well as the indirect measuring techniques, although each has been continually improved and further developed, nevertheless, each has its own limitations. Ionization chambers cannot discriminate against airborne P emitters. Proportional counters have a narrow operating range, 3-4 decades, and have poor performance in relatively high humid environments and require a dry counting gas. Liquid scintillation counters are sensitive, but inspection of the sample is slow and they produce chemical liquid waste. A new way to improve the sensitivity of detecting tritium with plastic scintillators has been developed. The technique is based on a non-line-of-sight implantation of tritium ions into a 20 mum plastic scintillator using a plasma source ion implantation (PSII) technique, This type of source is different, superior to the line-of-sight implantation and requires no additional beam handling. It is capable of implanting ion species in a broad beam configuration into the entire surface of a target. The technique requires a special ion source with special characteristics of the type obtained from a surfatron plasma source. This ion source has a large high ion density plasma with minimum contamination and produces ions of low temperature. It was constructed to ionize the sampled air and to produce a plasma over a wide range of pressure, 4-0.1 mTorr. A plasma source ion implantation cell was designed and constructed using mathematical modeling with personal computer, to optimize the essential variables of the design and to estimate the implantation rate under different operation conditions. Also, a high voltage pulse modulator was designed and constructed to produce a series of 10 musec pulses (up to 2 MHz) with a maximum magnitude of -60 kV. The developed device was capable of ionizing air samples and implanting the resulting ions into a plastic scintillator. Two different methods to enhance the collection and deposition of the tritium ions, have been proposed and assessed. A movable prototype device for monitoring environmental tritium in air has been designed and constructed. Although this prototype was not fully tested, the primary calculations have shown that measurable concentrations of tritium ions can be collected from an air sample, with tritium activity ranging from 0.3 Bq/cm3 down to 0.03 mBq/cm3, in a short time, to the order of seconds, on-line. This sensitivity fulfills the requirement for environmental monitoring.

  7. Real-time explosive particle detection using a cyclone particle concentrator.

    PubMed

    Hashimoto, Yuichiro; Nagano, Hisashi; Takada, Yasuaki; Kashima, Hideo; Sugaya, Masakazu; Terada, Koichi; Sakairi, Minoru

    2014-06-30

    There is a need for more rapid methods for the detection of explosive particles. We have developed a novel real-time analysis technique for explosive particles that uses a cyclone particle concentrator. This technique can analyze sample surfaces for the presence of particles from explosives such as TNT and RDX within 3 s, which is much faster than is possible by conventional methods. Particles are detached from the sample surface with air jet pulses, and then introduced into a cyclone particle concentrator with a high pumping speed of about 80 L/min. A vaporizer placed at the bottom of the cyclone particle concentrator immediately converts the particles into a vapor. The vapor is then ionized in the atmospheric pressure chemical ionization (APCI) source of a linear ion trap mass spectrometer. An online connection between the vaporizer and a mass spectrometer enables high-speed detection within a few seconds, compared with the conventional off-line heating method that takes more than 10 s to raise the temperature of a sample filter unit. Since the configuration enriched the number density of explosive particles by about 80 times compared with that without the concentrator, a sub-ng amount of TNT particles on a surface was detectable. The detection limit of our technique is comparable with that of an explosives trace detector using ion mobility spectrometry. The technique will be beneficial for trace detection in security applications, because it detects explosive particles on the surface more speedily than conventional methods. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Solid-contact potentiometric polymer membrane microelectrodes for the detection of silver ions at the femtomole level

    PubMed Central

    Rubinova, Nastassia; Chumbimuni-Torres, Karin; Bakker, Eric

    2010-01-01

    In recent years, ion-selective electrodes based on polymer membranes have been shown to exhibit detection limits that are often in the nanomolar concentration range, and thus drastically lower than traditionally accepted. Since potentiometry is less dependent on scaling laws that other established analytical techniques, their performance in confined sample volumes is explored here. Solid-contact silver-selective microelectrodes, with a sodium-selective microelectrode as a reference, were inserted into a micropipette tip used as a 50-μl sample. The observed potential stabilities, reproducibilities and detection limits were attractive and largely matched that for large 100-ml samples. This should pave the way for further experiments to detecting ultra-small total ion concentrations by potentiometry, especially when used as a transducer after an amplification step in bioanalysis. PMID:20543910

  9. Silicon chip integrated photonic sensors for biological and chemical sensing

    NASA Astrophysics Data System (ADS)

    Chakravarty, Swapnajit; Zou, Yi; Yan, Hai; Tang, Naimei; Chen, Ray T.

    2016-03-01

    We experimentally demonstrate applications of photonic crystal waveguide based devices for on-chip optical absorption spectroscopy for the detection of chemical warfare simulant, triethylphosphate as well as applications with photonic crystal microcavity devices in the detection of biomarkers for pancreatic cancer in patient serum and cadmium metal ions in heavy metal pollution sensing. At mid-infrared wavelengths, we experimentally demonstrate the higher sensitivity of photonic crystal based structures compared to other nanophotonic devices such as strip and slot waveguides with detection down to 10ppm triethylphosphate. We also detected 5ppb (parts per billion) of cadmium metal ions in water at near-infrared wavelengths using established techniques for the detection of specific probe-target biomarker conjugation chemistries.

  10. Ruthenium Nanoparticles Mediated Electrocatalytic Reduction of UO22+ Ions for Its Rapid and Sensitive Detection in Natural Waters.

    PubMed

    Gupta, Ruma; Sundararajan, Mahesh; Gamare, Jayashree S

    2017-08-01

    Reduction of UO 2 2+ ions to U 4+ ions is difficult due to involvement of two axially bonded oxygen atoms, and often requires a catalyst to lower the activation barrier. The noble metal nanoparticles (NPs) exhibit high electrocatalytic activity, and could be employed for the sensitive and rapid quantifications of U0 2 2+ ions in the aqueous matrix. Therefore, the Pd, Ru, and Rh NPs decorated glassy carbon electrode were examined for their efficacy toward electrocatalytic reduction of UO 2 2+ ions and observed that Ru NPs mediate efficiently the electro-reduction of UO 2 2+ ions. The mechanism of the electroreduction of UO 2 2+ by the RuNPs/GC was studied using density functional theory calculations which pointed different approach of 5f metal ions electroreduction unlike 4p metal ions such as As(III). RuNP decorated on the glassy carbon would be hydrated, which in turn assist to adsorb the uranyl sulfates through hydrogen bonding thus facilitated electro-reduction. Differential pulse voltammetric (DPV) technique, was used for rapid and sensitive quantification of UO 2 2+ ions. The RuNPs/GC based DPV technique could be used to determine the concentration of uranyl in a few minutes with a detection limit of 1.95 ppb. The RuNPs/GC based DPV was evaluated for its analytical performance using seawater as well lake water and groundwater spiked with known amounts of UO 2 2+ .

  11. Evidence of Multi-Component Ion Exchange in Dolomite Formation during Low Salinity Waterflooding

    NASA Astrophysics Data System (ADS)

    Srisuriyachai, Falan; Meekangwal, Suthida

    2017-12-01

    Low salinity waterflooding is a technique performed in many oil reservoirs around the globe. The technique is simply implemented by injecting water with very low ionic activity compared to formation water into an injection well. The injected water will increase reservoir pressure that is compulsory to drive oil moving toward production well. More than just maintaining reservoir pressure as obtained from conventional waterflooding, low salinity water creates shifting of surface condition, resulting in additional amount of liberated oil. Nevertheless, exact oil recovery mechanisms are still discussed. Among these proposed mechanisms, Multi-component Ion Exchange (MIE) together with wettability alteration is believed to be a major mechanism leading to higher oil recovery compared to conventional waterflooding. In this study, detection of calcium and magnesium ions which are Potential Determining Ions (PDI) for carbonate reservoirs are detected during the coreflood experiment. Dolomite rock sample is used to represent carbonate formation and detection of previously mentioned ions is performed by complexometric titration of the effluents. From the study, it is observed that during conventional waterflooding and low salinity waterflooding at low temperature of 30 degrees Celsius, calcium and magnesium ions in the produced water is increased compared to the amount of these ions in the injected water. This incremental of ions can be explained by the dissolution of calcium and magnesium from dolomite which is chemically composed of calcium magnesium carbonate. At this temperature, the portion of calcium ion is always less than magnesium ion even though the amount of calcium ion is higher than magnesium ion in injected water. However, at higher temperatures which are 50 and 70 degrees Celsius, ratio of calcium and magnesium ions in injected and produced water is reversed. Disappearance of magnesium ion in the effluent is more obvious especially at 70 degrees Celsius and by low salinity waterflooding. This can be explained that at lower temperature, calcium ion disappears to form of calcium carboxylate complex with oil and at higher temperature, magnesium ion disappears as magnesium can start to form magnesium carboxylate complex with oil and hence, the amount of both calcium and magnesium ions is decreased compared to lower temperature. In dolomite reservoir, since both calcium ions and magnesium ions are provided from dissolution mechanism, the benefit from multi-component ion exchange will occur at high temperature as both calcium and magnesium ions will be consumed for oil recovery mechanism.

  12. Using corona discharge-ion mobility spectrometry for detection of 2,4,6-Trichloroanisole.

    PubMed

    Lichvanová, Zuzana; Ilbeigi, Vahideh; Sabo, Martin; Tabrizchi, Mahmoud; Matejčík, Stefan

    2014-09-01

    In this work possible application of the corona discharge-ion mobility spectrometer (CD-IMS) for detection of 2,4,6-Trichloroanisole (TCA) has been investigated. We applied CD-IMS interfaced with orthogonal acceleration time of flight mass spectrometer (CD-IMS-oaTOF) to study the ion processes within the CD-IMS technique. The CD-IMS instrument was operated in two modes, (i) standard and (ii) reverse flow modes resulting in different chemical ionisation schemes by NO3(-)(HNO3)n (n=0,1,2) and O2(-)(H2O)n (n=0,1,2), respectively. The O2(-)(H2O)n ionisation was associated with formation of Cl(-) and (TCA-CH3)(-) ions from TCA. The NO3(-)(HNO3)n ionisation, resulted in formation of NO3(-)(HNO3)(TCA-Cl) adduct ions. Limit of detection (LOD) for TCA was determined in gas (100 ppb) and solid phases (150 ng). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Distance-of-Flight Mass Spectrometry: What, Why, and How?

    NASA Astrophysics Data System (ADS)

    Dennis, Elise A.; Gundlach-Graham, Alexander W.; Ray, Steven J.; Enke, Christie G.; Hieftje, Gary M.

    2016-11-01

    Distance-of-flight mass spectrometry (DOFMS) separates ions of different mass-to-charge ( m/ z) by the distance they travel in a given time after acceleration. Like time-of-flight mass spectrometry (TOFMS), separation and mass assignment are based on ion velocity. However, DOFMS is not a variant of TOFMS; different methods of ion focusing and detection are used. In DOFMS, ions are driven orthogonally, at the detection time, onto an array of detectors parallel to the flight path. Through the independent detection of each m/ z, DOFMS can provide both wider dynamic range and increased throughput for m/ z of interest compared with conventional TOFMS. The iso-mass focusing and detection of ions is achieved by constant-momentum acceleration (CMA) and a linear-field ion mirror. Improved energy focus (including turn-around) is achieved in DOFMS, but the initial spatial dispersion of ions remains unchanged upon detection. Therefore, the point-source nature of surface ionization techniques could put them at an advantage for DOFMS. To date, three types of position-sensitive detectors have been used for DOFMS: a microchannel plate with a phosphorescent screen, a focal plane camera, and an IonCCD array; advances in detector technology will likely improve DOFMS figures-of-merit. In addition, the combination of CMA with TOF detection has provided improved resolution and duty factor over a narrow m/ z range (compared with conventional, single-pass TOFMS). The unique characteristics of DOFMS can enable the intact collection of large biomolecules, clusters, and organisms. DOFMS might also play a key role in achieving the long-sought goal of simultaneous MS/MS.

  14. Determination of hexabromocyclododecane by flowing atmospheric pressure afterglow mass spectrometry.

    PubMed

    Smoluch, Marek; Silberring, Jerzy; Reszke, Edward; Kuc, Joanna; Grochowalski, Adam

    2014-10-01

    The first application of a flowing atmospheric-pressure afterglow ion source for mass spectrometry (FAPA-MS) for the chemical characterization and determination of hexabromocyclododecane (HBCD) is presented. The samples of technical HBCD and expanded polystyrene foam (EPS) containing HBCD as a flame retardant were prepared by dissolving the appropriate solids in dichloromethane. The ionization of HBCD was achieved with a prototype FAPA source. The ions were detected in the negative-ion mode. The ions corresponding to a deprotonated HBCD species (m/z 640.7) as well as chlorine (m/z 676.8), nitrite (m/z 687.8) and nitric (m/z 703.8) adducts were observed in the spectra. The observed isotope pattern is characteristic for a compound containing six bromine atoms. This technique is an effective approach to detect HBCD, which is efficiently ionized in a liquid phase, resulting in high detection efficiency and sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) for Mass Spectrometry-Based Proteomics

    PubMed Central

    Swearingen, Kristian E.; Moritz, Robert L.

    2013-01-01

    SUMMARY High field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, we review recent developments in LC-FAIMS-MS and its application to MS-based proteomics. PMID:23194268

  16. Chromatographic Techniques for Rare Earth Elements Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Beibei; He, Man; Zhang, Huashan; Jiang, Zucheng; Hu, Bin

    2017-04-01

    The present capability of rare earth element (REE) analysis has been achieved by the development of two instrumental techniques. The efficiency of spectroscopic methods was extraordinarily improved for the detection and determination of REE traces in various materials. On the other hand, the determination of REEs very often depends on the preconcentration and separation of REEs, and chromatographic techniques are very powerful tools for the separation of REEs. By coupling with sensitive detectors, many ambitious analytical tasks can be fulfilled. Liquid chromatography is the most widely used technique. Different combinations of stationary phases and mobile phases could be used in ion exchange chromatography, ion chromatography, ion-pair reverse-phase chromatography and some other techniques. The application of gas chromatography is limited because only volatile compounds of REEs can be separated. Thin-layer and paper chromatography are techniques that cannot be directly coupled with suitable detectors, which limit their applications. For special demands, separations can be performed by capillary electrophoresis, which has very high separation efficiency.

  17. Single molecule fluorescence imaging as a technique for barium tagging in neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Jones, B. J. P.; McDonald, A. D.; Nygren, D. R.

    2016-12-01

    Background rejection is key to success for future neutrinoless double beta decay experiments. To achieve sensitivity to effective Majorana lifetimes of ~ 1028 years, backgrounds must be controlled to better than 0.1 count per ton per year, beyond the reach of any present technology. In this paper we propose a new method to identify the birth of the barium daughter ion in the neutrinoless double beta decay of 136Xe. The method adapts Single Molecule Fluorescent Imaging, a technique from biochemistry research with demonstrated single ion sensitivity. We explore possible SMFI dyes suitable for the problem of barium ion detection in high pressure xenon gas, and develop a fiber-coupled sensing system with which we can detect the presence of bulk Ba++ ions remotely. We show that our sensor produces signal-to-background ratios as high as 85 in response to Ba++ ions when operated in aqueous solution. We then describe the next stage of this R&D program, which will be to demonstrate chelation and fluorescence in xenon gas. If a successful barium ion tag can be developed using SMFI adapted for high pressure xenon gas detectors, the first essentially zero background, ton-scale neutrinoless double beta decay technology could be realized.

  18. Ion mobility spectrometer using frequency-domain separation

    DOEpatents

    Martin, Stephen J.; Butler, Michael A.; Frye, Gregory C.; Schubert, W. Kent

    1998-01-01

    An apparatus and method is provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine).

  19. Analysis of Poly-β-Hydroxybutyrate in Rhizobium japonicum Bacteroids by Ion-Exclusion High-Pressure Liquid Chromatography and UV Detection †

    PubMed Central

    Karr, Dale B.; Waters, James K.; Emerich, David W.

    1983-01-01

    Ion-exclusion high-pressure liquid chromatography (HPLC) was used to measure poly-β-hydroxybutyrate (PHB) in Rhizobium japonicum bacteroids. The products in the acid digest of PHB-containing material were fractionated by HPLC on Aminex HPX-87H ion-exclusion resin for organic acid analysis. Crotonic acid formed from PHB during acid digestion was detected by its intense absorbance at 210 nm. The Aminex-HPLC method provides a rapid and simple chromatographic technique for routine analysis of organic acids. Results of PHB analysis by Aminex-HPLC were confirmed by gas chromatography and spectrophotometric analysis. PMID:16346443

  20. Ion funnel augmented Mars atmospheric pressure photoionization mass spectrometry for in situ detection of organic molecules.

    PubMed

    Johnson, Paul V; Hodyss, Robert; Beauchamp, J L

    2014-11-01

    Laser desorption is an attractive technique for in situ sampling of organics on Mars given its relative simplicity. We demonstrate that under simulated Martian conditions (~2.5 Torr CO(2)) laser desorption of neutral species (e.g., polycyclic aromatic hydrocarbons), followed by ionization with a simple ultraviolet light source such as a discharge lamp, offers an effective means of sampling organics for detection and identification with a mass spectrometer. An electrodynamic ion funnel is employed to provide efficient ion collection in the ambient Martian environment. This experimental methodology enables in situ sampling of Martian organics with minimal complexity and maximum flexibility.

  1. Negative-ion formation in the explosives RDX, PETN, and TNT using the Reversal Electron Attachment Detection (READ) technique

    NASA Technical Reports Server (NTRS)

    Chutijian, Ara; Boumsellek, S.; Alajajian, S. H.

    1992-01-01

    In the search for high sensitivity and direct atmospheric sampling of trace species, techniques have been developed such as atmospheric-sampling, glow-discharge ionization (ASGDI), corona discharge, atmospheric pressure ionization (API), electron-capture detection (ECD), and negative-ion chemical ionization (NICI) that are capable of detecting parts-per-billion to parts-per-trillion concentrations of trace species. These techniques are based on positive- or negative-ion formation via charge-transfer to the target, or electron capture under multiple-collision conditions in a Maxwellian distribution of electron energies at the source temperature. One drawback of the high-pressure, corona- or glow-discharge devices is that they are susceptible to interferences either through indistinguishable product masses, or through undesired ion-molecule reactions. The ASGDI technique is relatively immune from such interferences, since at target concentrations of less than 1 ppm the majority of negative ions arises via electron capture rather than through ion-molecule chemistry. A drawback of the conventional ECD, and possibly of the ASGDI, is that they exhibit vanishingly small densities of electrons with energies in the range 0-10 millielectron volts (meV), as can be seen from a typical Maxwellian electron energy distribution function at T = 300 K. Slowing the electrons to these subthermal (less than 10 meV) energies is crucial, since the cross section for attachment of several large classes of molecules is known to increase to values larger than 10(exp -12) sq cm at near-zero electron energies. In the limit of zero energy these cross sections are predicted to diverge as epsilon(exp -1/2), where epsilon is the electron energy. In order to provide a better 'match' between the electron energy distribution function and attachment cross section, a new concept of attachment in an electrostatic mirror was developed. In this scheme, electrons are brought to a momentary halt by reversing their direction with electrostatic fields. At this turning point the electrons have zero or near-zero energy. A beam of target molecules is introduced, and the resultant negative ions extracted. This basic idea has been recently improved to allow for better reversal geometry, higher electron currents, lower backgrounds, and increased negative-ion extraction efficiency. We present herein application of the so-called reversal electron attachment detector (READ) to the study of negative-ion formation in the explosives molecules RDX, PETN, and TNT under single-collision conditions.

  2. Correlated ion and neutral time of flight technique combined with velocity map imaging: Quantitative measurements for dissociation processes in excited molecular nano-systems

    NASA Astrophysics Data System (ADS)

    Berthias, F.; Feketeová, L.; Della Negra, R.; Dupasquier, T.; Fillol, R.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Märk, T. D.

    2018-01-01

    The combination of the Dispositif d'Irradiation d'Agrégats Moléculaire with the correlated ion and neutral time of flight-velocity map imaging technique provides a new way to explore processes occurring subsequent to the excitation of charged nano-systems. The present contribution describes in detail the methods developed for the quantitative measurement of branching ratios and cross sections for collision-induced dissociation processes of water cluster nano-systems. These methods are based on measurements of the detection efficiency of neutral fragments produced in these dissociation reactions. Moreover, measured detection efficiencies are used here to extract the number of neutral fragments produced for a given charged fragment.

  3. Ultrasensitive detection of target analyte-induced aggregation of gold nanoparticles using laser-induced nanoparticle Rayleigh scattering.

    PubMed

    Lin, Jia-Hui; Tseng, Wei-Lung

    2015-01-01

    Detection of salt- and analyte-induced aggregation of gold nanoparticles (AuNPs) mostly relies on costly and bulky analytical instruments. To response this drawback, a portable, miniaturized, sensitive, and cost-effective detection technique is urgently required for rapid field detection and monitoring of target analyte via the use of AuNP-based sensor. This study combined a miniaturized spectrometer with a 532-nm laser to develop a laser-induced Rayleigh scattering technique, allowing the sensitive and selective detection of Rayleigh scattering from the aggregated AuNPs. Three AuNP-based sensing systems, including salt-, thiol- and metal ion-induced aggregation of the AuNPs, were performed to examine the sensitivity of laser-induced Rayleigh scattering technique. Salt-, thiol-, and metal ion-promoted NP aggregation were exemplified by the use of aptamer-adsorbed, fluorosurfactant-stabilized, and gallic acid-capped AuNPs for probing K(+), S-adenosylhomocysteine hydrolase-induced hydrolysis of S-adenosylhomocysteine, and Pb(2+), in sequence. Compared to the reported methods for monitoring the aggregated AuNPs, the proposed system provided distinct advantages of sensitivity. Laser-induced Rayleigh scattering technique was improved to be convenient, cheap, and portable by replacing a diode laser and a miniaturized spectrometer with a laser pointer and a smart-phone. Using this smart-phone-based detection platform, we can determine whether or not the Pb(2+) concentration exceed the maximum allowable level of Pb(2+) in drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. G-quadruplexes as sensing probes.

    PubMed

    Ruttkay-Nedecky, Branislav; Kudr, Jiri; Nejdl, Lukas; Maskova, Darina; Kizek, Rene; Adam, Vojtech

    2013-11-28

    Guanine-rich sequences of DNA are able to create tetrastranded structures known as G-quadruplexes; they are formed by the stacking of planar G-quartets composed of four guanines paired by Hoogsteen hydrogen bonding. G-quadruplexes act as ligands for metal ions and aptamers for various molecules. Interestingly, the G-quadruplexes form a complex with anionic porphyrin hemin and exhibit peroxidase-like activity. This review focuses on overview of sensing techniques based on G-quadruplex complexes with anionic porphyrins for detection of various analytes, including metal ions such as K+, Ca2+, Ag+, Hg2+, Cu2+, Pb2+, Sr2+, organic molecules, nucleic acids, and proteins. Principles of G-quadruplex-based detection methods involve DNA conformational change caused by the presence of analyte which leads to a decrease or an increase in peroxidase activity, fluorescence, or electrochemical signal of the used probe. The advantages of various detection techniques are also discussed.

  5. Nuclear Microprobe using Elastic Recoil Detection (ERD) for Hydrogen Profiling in High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Berger, Pascal; Sayir, Ali; Berger, Marie-Helene

    2004-01-01

    The interaction between hydrogen and various high temperature protonic conductors (HTPC) has not been clearly understood due to poor densification and unreacted secondary phases. the melt-processing technique is used in producing fully dense simple SrCe(0.9)Y (0.10) O(3-delta) and complex Sr3Ca(1+x)Nb(2+x)O(9-delta) perovskites that can not be achieved by solid-state sintering. the possibilities of ion beam analysis have been investigated to quantify hydrogen distribution in HTPC perovskites subjected to water heat treatment. Nuclear microprobe technique is based on the interactions of a focused ion beam of MeV light ions (H-1, H-2, He-3, He-4,.) with the sample to be analyzed to determine local elemental concentrations at the cubic micrometer scale, the elastic recoil detection analysis technique (ERDA) has been carried out using He-4(+) microbeams and detecting the resulting recoil protons. Mappings of longitudinal sections of water treated SrCeO3 and Sr(Ca(1/3)Nb(2/3))O3 perovskites have been achieved, the water treatment strongly alters the surface of simple SrCe(0.9)Y(0.10)O(3-delta) perovskite. From Rutherford Back Scattering measurements (RBS), both Ce depletion and surface re-deposition is evidenced. the ERDA investigations on water treated Sr3Ca(1+x)Nb(2+x)O(9-delta) perovskite did not exhibit any spatial difference for the hydrogen incorporation from the surface to the centre. the amount of hydrogen incorporation for Sr3Ca(1+x)Nb(2+x)O(9-delta) was low and required further development of two less conventional techniques, ERDA in forward geometry and forward elastic diffusion H-1(p,p) H-1 with coincidence detection.

  6. Fast detection of narcotics by single photon ionization mass spectrometry and laser ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Laudien, Robert; Schultze, Rainer; Wieser, Jochen

    2010-10-01

    In this contribution two analytical devices for the fast detection of security-relevant substances like narcotics and explosives are presented. One system is based on an ion trap mass spectrometer (ITMS) with single photon ionization (SPI). This soft ionization technique, unlike electron impact ionization (EI), reduces unwanted fragment ions in the mass spectra allowing the clear determination of characteristic (usually molecular) ions. Their enrichment in the ion trap and identification by tandem MS investigations (MS/MS) enables the detection of the target substances in complex matrices at low concentrations without time-consuming sample preparation. For SPI an electron beam pumped excimer light source of own fabrication (E-Lux) is used. The SPI-ITMS system was characterized by the analytical study of different drugs like cannabis, heroin, cocaine, amphetamines, and some precursors. Additionally, it was successfully tested on-site in a closed illegal drug laboratory, where low quantities of MDMA could be directly detected in samples from floors, walls and lab equipments. The second analytical system is based on an ion mobility (IM) spectrometer with resonant multiphoton ionization (REMPI). With the frequency quadrupled Nd:YAG laser (266 nm), used for ionization, a selective and sensitive detection of aromatic compounds is possible. By application of suited aromatic dopants, in addition, also non-aromatic polar compounds are accessible by ion molecule reactions like proton transfer or complex formation. Selected drug precursors could be successfully detected with this device as well, qualifying it to a lower-priced alternative or useful supplement of the SPI-ITMS system for security analysis.

  7. Ion mobility spectrometer using frequency-domain separation

    DOEpatents

    Martin, S.J.; Butler, M.A.; Frye, G.C.; Schubert, W.K.

    1998-08-04

    An apparatus and method are provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine). 6 figs.

  8. Ion Monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2003-11-18

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  9. Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.

    1998-06-01

    As for Fourier transform infrared (FT-IR) interferometry and nuclear magnetic resonance (NMR) spectroscopy, the introduction of pulsed Fourier transform techniques revolutionized ion cyclotron resonance mass spectrometry: increased speed (factor of 10,000), increased sensitivity (factor of 100), increased mass resolution (factor of 10,000-an improvement not shared by the introduction of FT techniques to IR or NMR spectroscopy), increased mass range (factor of 500), and automated operation. FT-ICR mass spectrometry is the most versatile technique for unscrambling and quantifying ion-molecule reaction kinetics and equilibria in the absence of solvent (i.e., the gas phase). In addition, FT-ICR MS has the following analytically important features: speed (~1 second per spectrum); ultrahigh mass resolution and ultrahigh mass accuracy for analysis of mixtures and polymers; attomole sensitivity; MSn with one spectrometer, including two-dimensional FT/FT-ICR/MS; positive and/or negative ions; multiple ion sources (especially MALDI and electrospray); biomolecular molecular weight and sequencing; LC/MS; and single-molecule detection up to 108 Dalton. Here, some basic features and recent developments of FT-ICR mass spectrometry are reviewed, with applications ranging from crude oil to molecular biology.

  10. UV spectroscopy determination of aqueous lead and copper ions in water

    NASA Astrophysics Data System (ADS)

    Tan, C. H.; Moo, Y. C.; Mat Jafri, M. Z.; Lim, H. S.

    2014-05-01

    Lead (Pb2+) and copper (Cu2+) ions are very common pollutants in water which have dangerous potential causing serious disease and health problems to human. The aim of this paper is to determine lead and copper ions in aqueous solution using direct UV detection without chemical reagent waste. This technique allow the determination of lead and copper ions from range 0.2 mg/L to 10 mg/L using UV wavelength from 205 nm to 225 nm. The method was successfully applied to synthetic sample with high performance.

  11. Detection of chlorinated and brominated byproducts of drinking water disinfection using electrospray ionization-high-field asymmetric waveform ion mobility spectrometry-mass spectrometry.

    PubMed

    Ells, B; Barnett, D A; Froese, K; Purves, R W; Hrudey, S; Guevremont, R

    1999-10-15

    The lower limit of detection for low molecular weight polar and ionic analytes using electrospray ionization-mass spectrometry (ESI-MS) is often severely compromised by an intense background that obscures ions of trace components in solution. Recently, a new technique, referred to as high-field asymmetric waveform ion mobility spectrometry (FAIMS), has been shown to separate gas-phase ions at atmospheric pressure and room temperature. A FAIMS instrument is an ion filter that may be tuned, by control of electrical voltages, to continuously transmit selected ions from a complex mixture. This capability offers significant advantages when FAIMS is coupled with ESI, a source that generates a wide variety of ions, including solvent clusters and salt adducts. In this report, the tandem arrangement of ESI-FAIMS-MS is used for the analysis of haloacetic acids, a class of disinfection byproducts regulated by the US EPA. FAIMS is shown to effectively discriminate against background ions resulting from the electrospray of tap water solutions containing the haloacetic acids. Consequently, mass spectra are simplified, the selectivity of the method is improved, and the limits of detection are lowered compared with conventional ESI-MS. The detection limits of ESI-FAIMS-MS for six haloacetic acids ranged between 0.5 and 4 ng/mL in 9:1 methanol/tap water (5 and 40 ng/mL in the original tap water samples) with no preconcentration, derivatization, or chromatographic separation prior to analysis.

  12. Linear excitation and detection in Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Grosshans, Peter B.; Chen, Ruidan; Limbach, Patrick A.; Marshall, Alan G.

    1994-11-01

    We present the first Fourier transform ion cyclotron resonance (FT-ICR) ion trap designed to produce both a linear spatial variation of the excitation electric potential field and a linear response of the detection circuit to the motion of the confined ions. With this trap, the magnitude of the detected signal at a given ion cyclotron frequency varies linearly with both the number of ions of given mass-to-charge ratio and also with the magnitude-mode excitation signal at the ion cyclotron orbital frequency; the proportionality constant is mass independent. Interestingly, this linearization may be achieved with any ion trap geometry. The excitation/detection design consists of an array of capacitively coupled electrodes which provide a voltage-divider network that produces a nearly spatially homogeneous excitation electric field throughout the linearized trap; resistive coupling to the electrodes isolates the a.c. excitation (or detection) circuit from the d.c. (trapping) potential. The design is based on analytical expressions for the potential associated with each electrode, from which we are able to compute the deviation from linearity for a trap with a finite number of elements. Based on direct experimental comparisons to an unmodified cubic trap, the linearized trap demonstrates the following performance advantages at the cost of some additional mechanical complexity: (a) signal response linearly proportional to excitation electric field amplitude; (b) vastly reduced axial excitation/ejection for significantly improved ion relative abundance accuracy; (c) elimination of harmonics and sidebands of the fundamental frequencies of ion motion. As a result, FT-ICR mass spectra are now more reproducible. Moreover, the linearized trap should facilitate the characterization of other fundamental aspects of ion behavior in an ICR ion trap, e.g. effects of space charge, non-quadrupolar electrostatic trapping field, etc. Furthermore, this novel design should improve significantly the precision of ion relative abundance and mass accuracy measurements, while removing spectral artifacts of the detection process. We discuss future modifications that linearize the spatial variation of the electrostatic trapping electric field as well, thereby completing the linearization of the entire FT-ICR mass spectrometric techniques. Suggested FT-ICR mass spectrometric applications for the linearized trap are discussed.

  13. Using a portable ion mobility spectrometer to screen dietary supplements for sibutramine.

    PubMed

    Dunn, Jamie D; Gryniewicz-Ruzicka, Connie M; Kauffman, John F; Westenberger, Benjamin J; Buhse, Lucinda F

    2011-02-20

    In response to recent incidents of undeclared sibutramine, an appetite suppressant found in dietary supplements, we developed a method to detect sibutramine using hand-held ion mobility spectrometers with an analysis time of 15 s. Ion mobility spectrometry is a high-throughput and sensitive technique that has been used for illicit drug, explosive, volatile organic compound and chemical warfare detection. We evaluated a hand-held ion mobility spectrometer as a tool for the analysis of supplement extracts containing sibutramine. The overall instrumental limit of detection of five portable ion mobility spectrometers was 2 ng of sibutramine HCl. When sample extractions containing 30 ng/μl or greater of sibutramine were analyzed, saturation of the ionization chamber of the spectrometer occurred and the instrument required more than three cleaning cycles to remove the drug. Hence, supplement samples suspected of containing sibutramine should be prepared at concentrations of 2-20 ng/μl. To obtain this target concentration range for products containing unknown amounts of sibutramine, we provided a simple sample preparation procedure, allowing the U.S. Food and Drug Administration or other agencies to screen products using the portable ion mobility spectrometer. Published by Elsevier B.V.

  14. Miniaturized low-cost ion mobility spectrometer for fast detection of chemical warfare agents.

    PubMed

    Zimmermann, Stefan; Barth, Sebastian; Baether, Wolfgang K M; Ringer, Joachim

    2008-09-01

    Ion mobility spectrometry (IMS) is a well-known method for detecting hazardous compounds in air. Typical applications are the detection of chemical warfare agents, highly toxic industrial compounds, explosives, and drugs of abuse. Detection limits in the low part per billion range, fast response times, and simple instrumentation make this technique more and more popular. In particular, there is an increasing demand for miniaturized low-cost IMS for hand-held devices and air monitoring of public areas by sensor networks. In this paper, we present a miniaturized aspiration condenser type ion mobility spectrometer for fast detection of chemical warfare agents. The device is easy to manufacture and allows single substance identification down to low part per billion-level concentrations within seconds. The improved separation power results from ion focusing by means of geometric constraints and fluid dynamics. A simple pattern recognition algorithm is used for the identification of trained substances in air. The device was tested at the German Armed Forces Scientific Institute for Protection Technologies-NBC-Protection. Different chemical warfare agents, such as sarin, tabun, soman, US-VX, sulfur mustard, nitrogen mustard, and lewisite were tested. The results are presented here.

  15. Automated software-guided identification of new buspirone metabolites using capillary LC coupled to ion trap and TOF mass spectrometry.

    PubMed

    Fandiño, Anabel S; Nägele, Edgar; Perkins, Patrick D

    2006-02-01

    The identification and structure elucidation of drug metabolites is one of the main objectives in in vitro ADME studies. Typical modern methodologies involve incubation of the drug with subcellular fractions to simulate metabolism followed by LC-MS/MS or LC-MS(n) analysis and chemometric approaches for the extraction of the metabolites. The objective of this work was the software-guided identification and structure elucidation of major and minor buspirone metabolites using capillary LC as a separation technique and ion trap MS(n) as well as electrospray ionization orthogonal acceleration time-of-flight (ESI oaTOF) mass spectrometry as detection techniques. Buspirone mainly underwent hydroxylation, dihydroxylation and N-oxidation in S9 fractions in the presence of phase I co-factors and the corresponding glucuronides were detected in the presence of phase II co-factors. The use of automated ion trap MS/MS data-dependent acquisition combined with a chemometric tool allowed the detection of five small chromatographic peaks of unexpected metabolites that co-eluted with the larger chromatographic peaks of expected metabolites. Using automatic assignment of ion trap MS/MS fragments as well as accurate mass measurements from an ESI oaTOF mass spectrometer, possible structures were postulated for these metabolites that were previously not reported in the literature. Copyright 2006 John Wiley & Sons, Ltd.

  16. Development of analytically capable time-of-flight mass spectrometer with continuous ion introduction

    NASA Astrophysics Data System (ADS)

    Hárs, György; Dobos, Gábor

    2010-03-01

    The present article describes the results and findings explored in the course of the development of the analytically capable prototype of continuous time-of-flight (CTOF) mass spectrometer. Currently marketed pulsed TOF (PTOF) instruments use ion introduction with a 10 ns or so pulse width, followed by a waiting period roughly 100 μs. Accordingly, the sample is under excitation in 10-4 part of the total measuring time. This very low duty cycle severely limits the sensitivity of the PTOF method. A possible approach to deal with this problem is to use linear sinusoidal dual modulation technique (CTOF) as described in this article. This way the sensitivity of the method is increased, due to the 50% duty cycle of the excitation. All other types of TOF spectrometer use secondary electron multiplier (SEM) for detection, which unfortunately discriminates in amplification in favor of the lighter ions. This discrimination effect is especially undesirable in a mass spectrometric method, which targets high mass range. In CTOF method, SEM is replaced with Faraday cup detector, thus eliminating the mass discrimination effect. Omitting SEM is made possible by the high ion intensity and the very slow ion detection with some hundred hertz detection bandwidth. The electrometer electronics of the Faraday cup detector operates with amplification 1010 V/A. The primary ion beam is highly monoenergetic due to the construction of the ion gun, which made possible to omit any electrostatic mirror configuration for bunching the ions. The measurement is controlled by a personal computer and the intelligent signal generator Type Tabor WW 2571, which uses the direct digital synthesis technique for making arbitrary wave forms. The data are collected by a Labjack interface board, and the fast Fourier transformation is performed by the software. Noble gas mixture has been used to test the analytical capabilities of the prototype setup. Measurement presented proves the results of the mathematical calculations as well as the future potentiality for use in chemical analysis of gaseous mixtures.

  17. The PCC assay can be used to predict radiosensitivity in biopsy cultures irradiated with different types of radiation.

    PubMed

    Suzuki, Masao; Tsuruoka, Chizuru; Nakano, Takashi; Ohno, Tatsuya; Furusawa, Yoshiya; Okayasu, Ryuichi

    2006-12-01

    The aim of this study was to identify potential biomarkers for radiosensitivity using the relationship between cell killing and the yield of excess chromatin fragments detected with the premature chromosome condensation (PCC) technique. This method was applied to primary cultured cells obtained from biopsies from patients. Six primary culture biopsies were obtained from 6 patients with carcinoma of the cervix before starting radiotherapy. The cultures were irradiated with two different LET carbon-ion beams (LET = 13 keV/microm, 77.1+/-2.8 keV/microm) and 200 kV X-rays. The carbon-ion beams were produced by Heavy Ion Medical Accelerator in Chiba (HIMAC). PCC was performed using the polyethylene glycol-mediated cell fusion technique. The yield of excess chromatin fragments were measured by counting the number of unrejoined chromatin fragments detected with the PCC technique after a 24-h post-irradiation incubation period. Obtained results indicated that cultures which were more sensitive to killing were also more susceptible to the induction of excess chromatin fragments. Furthermore there was a good correlation between cell killing and excess chromatin fragments among the 6 cell cultures examined. There is also evidence that the induction of excess chromatin fragments increased with increasing LET as well as cell-killing effect in the same cell culture. The data reported here support the idea that the yield of excess chromatin fragments detected with the PCC technique might be useful for predicting the radiosensitivity of cells contained in tumor tissue, and to predict responses to different radiation types.

  18. Coupled optical resonance laser locking.

    PubMed

    Burd, S C; du Toit, P J W; Uys, H

    2014-10-20

    We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to coupled transitions of ions in the same spectroscopic sample, by detecting only the absorption of the UV laser. Separate signals for locking the different lasers are obtained by modulating each laser at a different frequency and using lock-in detection of a single photodiode signal. Experimentally, we simultaneously lock a 369 nm and a 935 nm laser to the (2)S(1/2) → (2)(P(1/2) and (2)D(3/2) → (3)D([3/2]1/2) transitions, respectively, of Yb(+) ions generated in a hollow cathode discharge lamp. Stabilized lasers at these frequencies are required for cooling and trapping Yb(+) ions, used in quantum information and in high precision metrology experiments. This technique should be readily applicable to other ion and neutral atom systems requiring multiple stabilized lasers.

  19. Analysis of human serum proteins by liquid phase isoelectric focusing and matrix-assisted laser desorption/ionization-mass spectrometry.

    PubMed

    Wang, Michael Z; Howard, Brandon; Campa, Michael J; Patz, Edward F; Fitzgerald, Michael C

    2003-09-01

    Direct matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of human serum yielded ion signals from only a fraction of the total number of peptides and proteins expected to be in the sample. We increased the number of peptide and protein ion signals observed in the MALDI-TOF mass spectra analysis of human serum by using a prefractionation protocol based on liquid phase isoelectric focusing electrophoresis. This pre-fractionation technique facilitated the MALDI-TOF MS detection of as many as 262 different peptide and protein ion signals from human serum. The results obtained from three replicate fractionation experiments on the same serum sample indicated that 148 different peptide and protein ion signals were reproducibly detected using our isoelectric focusing and MALDI-TOF MS protocol.

  20. Investigating ion channel conformational changes using voltage clamp fluorometry.

    PubMed

    Talwar, Sahil; Lynch, Joseph W

    2015-11-01

    Ion channels are membrane proteins whose functions are governed by conformational changes. The widespread distribution of ion channels, coupled with their involvement in most physiological and pathological processes and their importance as therapeutic targets, renders the elucidation of these conformational mechanisms highly compelling from a drug discovery perspective. Thanks to recent advances in structural biology techniques, we now have high-resolution static molecular structures for members of the major ion channel families. However, major questions remain to be resolved about the conformational states that ion channels adopt during activation, drug modulation and desensitization. Patch-clamp electrophysiology has long been used to define ion channel conformational states based on functional criteria. It achieves this by monitoring conformational changes at the channel gate and cannot detect conformational changes occurring in regions distant from the gate. Voltage clamp fluorometry involves labelling cysteines introduced into domains of interest with environmentally sensitive fluorophores and inferring structural rearrangements from voltage or ligand-induced fluorescence changes. Ion channel currents are monitored simultaneously to verify the conformational status. By defining real time conformational changes in domains distant from the gate, this technique provides unexpected new insights into ion channel structure and function. This review aims to summarise the methodology and highlight recent innovative applications of this powerful technique. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. New gas phase inorganic ion cluster species and their atmospheric implications

    NASA Technical Reports Server (NTRS)

    Maerk, T. D.; Peterson, K. I.; Castleman, A. W., Jr.

    1980-01-01

    Recent experimental laboratory observations, with high-pressure mass spectroscopy, have revealed the existence of previously unreported species involving water clustered to sodium dimer ions, and alkali metal hydroxides clustered to alkali metal ions. The important implications of these results concerning the existence of such species are here discussed, as well as how from a practical aspect they confirm the stability of certain cluster species proposed by Ferguson (1978) to explain masses recently detected at upper altitudes using mass spectrometric techniques.

  2. Fractionation and proteomic analysis of the Walterinnesia aegyptia snake venom using OFFGEL and MALDI-TOF-MS techniques.

    PubMed

    Abd El Aziz, Tarek Mohamed; Bourgoin-Voillard, Sandrine; Combemale, Stéphanie; Beroud, Rémy; Fadl, Mahmoud; Seve, Michel; De Waard, Michel

    2015-10-01

    Animal venoms are complex mixtures of more than 100 different compounds, including peptides, proteins, and nonprotein compounds such as lipids, carbohydrates, and metal ions. In addition, the existing compounds show a wide range of molecular weights and concentrations within these venoms, making separation and purification procedures quite tedious. Here, we analyzed for the first time by MS the advantages of using the OFFGEL technique in the separation of the venom components of the Egyptian Elapidae Walterinnesia aegyptia snake compared to two classical methods of separation, SEC and RP-HPLC. We demonstrate that OFFGEL separates venom components over a larger scale of fractions, preserve respectable resolution with regard to the presence of a given compound in adjacent fractions and allows the identification of a greater number of ions by MS (102 over 134 total ions). We also conclude that applying several separating techniques (SEC and RP-HPLC in addition to OFFGEL) provides complementary results in terms of ion detection (21 more for SEC and 22 more with RP-HPLC). As a result, we provide a complete list of 134 ions present in the venom of W. aegyptia by using all these techniques combined. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Label-free histamine detection with nanofluidic diodes through metal ion displacement mechanism.

    PubMed

    Ali, Mubarak; Ramirez, Patricio; Duznovic, Ivana; Nasir, Saima; Mafe, Salvador; Ensinger, Wolfgang

    2017-02-01

    We design and characterize a nanofluidic device for the label-free specific detection of histamine neurotransmitter based on a metal ion displacement mechanism. The sensor consists of an asymmetric polymer nanopore fabricated via ion track-etching technique. The nanopore sensor surface having metal-nitrilotriacetic (NTA-Ni 2+ ) chelates is obtained by covalent coupling of native carboxylic acid groups with N α ,N α -bis(carboxymethyl)-l-lysine (BCML), followed by exposure to Ni 2+ ion solution. The BCML immobilization and subsequent Ni 2+ ion complexation with NTA moieties change the surface charge concentration, which has a significant impact on the current-voltage (I-V) curve after chemical modification of the nanopore. The sensing mechanism is based on the displacement of the metal ion from the NTA-Ni 2+ chelates. When the modified pore is exposed to histamine solution, the Ni 2+ ion in NTA-Ni 2+ chelate recognizes histamine through a metal ion coordination displacement process and formation of stable Ni-histamine complexes, leading to the regeneration of metal-free NTA groups on the pore surface, as shown in the current-voltage characteristics. Nanomolar concentrations of the histamine in the working electrolyte can be detected. On the contrary, other neurotransmitters such as glycine, serotonin, gamma-aminobutyric acid, and dopamine do not provoke significant changes in the nanopore electronic signal due to their inability to displace the metal ion and form a stable complex with Ni 2+ ion. The nanofluidic sensor exhibits high sensitivity, specificity and reusability towards histamine detection and can then be used to monitor the concentration of biological important neurotransmitters. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Neutrinoless double beta decay with 82SeF6 and direct ion imaging

    NASA Astrophysics Data System (ADS)

    Nygren, D. R.; Jones, B. J. P.; López-March, N.; Mei, Y.; Psihas, F.; Renner, J.

    2018-03-01

    We present a new neutrinoless double beta decay concept: the high pressure selenium hexafluoride gas time projection chamber. A promising new detection technique is outlined which combines techniques pioneered in high pressure xenon gas, such as topological discrimination, with the high Q-value afforded by the double beta decay isotope 82Se. The lack of free electrons in SeF6 mandates the use of an ion TPC. The microphysics of ion production and drift, which have many nuances, are explored. Background estimates are presented, suggesting that such a detector may achieve background indices of better than 1 count per ton per year in the region of interest at the 100 kg scale, and still better at the ton-scale.

  5. Measurement of drug facilitated sexual assault agents in simulated sweat by ion mobility spectrometry.

    PubMed

    Demoranville, Leonard T; Verkouteren, Jennifer R

    2013-03-15

    Ion mobility spectrometry has found widespread use for the detection of explosives and illicit drugs. The technique offers rapid results with high sensitivity and little sample preparation. As such, it is well suited for field deployed screening settings. Here the response of ion mobility spectrometers for three drug-facilitated sexual assault (DFSA) agents - flunitrazepam, ketamine, and MDMA - and related metabolites has been studied in the presence of a simulated sweat. While all three DFSA agents present certain challenges for qualitative identification, IMS can provide useful information to guide the early treatment and investigation of sexual assault cases. Used as a presumptive test, the identification of DFSA agents would later require confirmatory analysis by other techniques. Published by Elsevier B.V.

  6. Evaluation of C60 secondary ion mass spectrometry for the chemical analysis and imaging of fingerprints.

    PubMed

    Sisco, Edward; Demoranville, Leonard T; Gillen, Greg

    2013-09-10

    The feasibility of using C60(+) cluster primary ion bombardment secondary ion mass spectrometry (C60(+) SIMS) for the analysis of the chemical composition of fingerprints is evaluated. It was found that C60(+) SIMS could be used to detect and image the spatial localization of a number of sebaceous and eccrine components in fingerprints. These analyses were also found to not be hindered by the use of common latent print powder development techniques. Finally, the ability to monitor the depth distribution of fingerprint constituents was found to be possible - a capability which has not been shown using other chemical imaging techniques. This paper illustrates a number of strengths and potential weaknesses of C60(+) SIMS as an additional or complimentary technique for the chemical analysis of fingerprints. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Inorganic-organic Ag-rhodamine 6G hybrid nanorods: "turn on" fluorescent sensors for highly selective detection of Pb2+ ions in aqueous solution.

    PubMed

    Tyagi, A K; Ramkumar, Jayshree; Jayakumar, O D

    2012-02-07

    Lead metal ions are of great concern and the monitoring of their concentration in the environment has become extremely important. In the present study, a new inorganic-organic hybrid assay of Ag nanorods (AgNR)-Rhodamine 6G (R6G) was developed for the sensitive and selective determination of Pb(2+) ions in aqueous solutions. To the best of our knowledge there is almost no literature on the use of silver nanorod sensors for determination of lead ions in aqueous solutions. The sensor is developed by the coating of R6G on the surface of AgNRs. The sensing is based on the photoluminescence of R6G. The sensor was rapid as the measurements were carried out within 3 min of addition of the test solution to the AgNR-R6G hybrid. Moreover, the system showed excellent stability at tested concentration levels of Pb(2+) ions. The naked eye detection of the colour was possible with 1 mg L(-1) of Pb(2+) ions. The present method has a detection limit of 50 μg L(-1) of Pb(2+) (for a signal/noise (S/N) ratio > 3). The selectivity toward Pb(2+) ions against other metal ions was improved using chelating agents. The proposed method was validated by analysis using different techniques.

  8. Laser-Induced Breakdown Spectroscopy: A Review of Applied Explosive Detection

    DTIC Science & Technology

    2013-09-01

    Based Techniques ..........................................................................................7 2.5 Ion Mobility and Mass Spectrometry...proximal trace detection. We show that the algorithms for material identification could be improved by including the critical signatures (e.g., C2...IMS), desorption electrospray ionization (DESI), laser electrospray mass spectrometry (LEMS), emerging efforts like antibody/antigen-based efforts

  9. Quinone-based stable isotope probing for assessment of 13C substrate-utilizing bacteria

    NASA Astrophysics Data System (ADS)

    Kunihiro, Tadao; Katayama, Arata; Demachi, Toyoko; Veuger, Bart; Boschker, Henricus T. S.; van Oevelen, Dick

    2015-04-01

    In this study, we attempted to establish quinone-stable-isotope probing (SIP) technique to link substrate-utilizing bacterial group to chemotaxonomic group in bacterial community. To identify metabolically active bacterial group in various environments, SIP techniques combined with biomarkers have been widely utilized as an attractive method for environmental study. Quantitative approaches of the SIP technique have unique advantage to assess substrate-incorporation into bacteria. As a most major quantitative approach, SIP technique based on phospholipid-derived fatty acids (PLFA) have been applied to simultaneously assess substrate-incorporation rate into bacteria and microbial community structure. This approach is powerful to estimate the incorporation rate because of the high sensitivity due to the detection by a gas chromatograph-combustion interface-isotope ratio mass spectrometer (GC-c-IRMS). However, its phylogenetic resolution is limited by specificity of a compound-specific marker. We focused on respiratory quinone as a biomarker. Our previous study found a good correlation between concentrations of bacteria-specific PLFAs and quinones over several orders of magnitude in various marine sediments, and the quinone method has a higher resolution (bacterial phylum level) for resolving differences in bacterial community composition more than that of bacterial PLFA. Therefore, respiratory quinones are potentially good biomarkers for quantitative approaches of the SIP technique. The LC-APCI-MS method as molecular-mass based detection method for quinone was developed and provides useful structural information for identifying quinone molecular species in environmental samples. LC-MS/MS on hybrid triple quadrupole/linear ion trap, which enables to simultaneously identify and quantify compounds in a single analysis, can detect high molecular compounds with their isotope ions. Use of LC-MS/MS allows us to develop quinone-SIP based on molecular mass differences due to 13C abundance in the quinone. In this study, we verified carbon stable isotope of quinone compared with bulk carbon stable isotope of bacterial culture. Results indicated a good correlation between carbon stable isotope of quinone compared with bulk carbon stable isotope. However, our measurement conditions for detection of quinone isotope-ions incurred underestimation of 13C abundance in the quinone. The quinone-SIP technique needs further optimization for measurement conditions of LC-MS/MS.

  10. Desorption Mass Spectrometry for Nonvolatile Compounds Using an Ultrasonic Cutter

    NASA Astrophysics Data System (ADS)

    Habib, Ahsan; Ninomiya, Satoshi; Chen, Lee Chuin; Usmanov, Dilshadbek T.; Hiraoka, Kenzo

    2014-07-01

    In this work, desorption of nonvolatile analytes induced by friction was studied. The nonvolatile compounds deposited on the perfluoroalkoxy substrate were gently touched by an ultrasonic cutter oscillating with a frequency of 40 kHz. The desorbed molecules were ionized by a dielectric barrier discharge (DBD) ion source. Efficient desorption of samples such as drugs, pharmaceuticals, amino acids, and explosives was observed. The limits of detection for these compounds were about 1 ng. Many compounds were detected in their protonated forms without undergoing significant fragmentation. When the DBD was off, no ions for the neutral samples could be detected, meaning that only desorption along with little ionization took place by the present technique.

  11. Desorption mass spectrometry for nonvolatile compounds using an ultrasonic cutter.

    PubMed

    Habib, Ahsan; Ninomiya, Satoshi; Chen, Lee Chuin; Usmanov, Dilshadbek T; Hiraoka, Kenzo

    2014-07-01

    In this work, desorption of nonvolatile analytes induced by friction was studied. The nonvolatile compounds deposited on the perfluoroalkoxy substrate were gently touched by an ultrasonic cutter oscillating with a frequency of 40 kHz. The desorbed molecules were ionized by a dielectric barrier discharge (DBD) ion source. Efficient desorption of samples such as drugs, pharmaceuticals, amino acids, and explosives was observed. The limits of detection for these compounds were about 1 ng. Many compounds were detected in their protonated forms without undergoing significant fragmentation. When the DBD was off, no ions for the neutral samples could be detected, meaning that only desorption along with little ionization took place by the present technique.

  12. Molecular wake shield gas analyzer

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1980-01-01

    Techniques for measuring and characterizing the ultrahigh vacuum in the wake of an orbiting spacecraft are studied. A high sensitivity mass spectrometer that contains a double mass analyzer consisting of an open source miniature magnetic sector field neutral gas analyzer and an identical ion analyzer is proposed. These are configured to detect and identify gas and ion species of hydrogen, helium, nitrogen, oxygen, nitric oxide, and carbon dioxide and any other gas or ion species in the 1 to 46 amu mass range. This range covers the normal atmospheric constituents. The sensitivity of the instrument is sufficient to measure ambient gases and ion with a particle density of the order of one per cc. A chemical pump, or getter, is mounted near the entrance aperture of the neutral gas analyzer which integrates the absorption of ambient gases for a selectable period of time for subsequent release and analysis. The sensitivity is realizable for all but rare gases using this technique.

  13. Time-resolved ion imaging at free-electron lasers using TimepixCam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher-Levine, Merlin; Boll, Rebecca; Ziaee, Farzaneh

    In this paper, the application of a novel fast optical-imaging camera, TimepixCam, to molecular photoionization experiments using the velocity-map imaging technique at a free-electron laser is described. TimepixCam is a 256 × 256 pixel CMOS camera that is able to detect and time-stamp ion hits with 20 ns timing resolution, thus making it possible to record ion momentum images for all fragment ions simultaneously and avoiding the need to gate the detector on a single fragment. This allows the recording of significantly more data within a given amount of beam time and is particularly useful for pump–probe experiments, where drifts,more » for example, in the timing and pulse energy of the free-electron laser, severely limit the comparability of pump–probe scans for different fragments taken consecutively. Finally, in principle, this also allows ion–ion covariance or coincidence techniques to be applied to determine angular correlations between fragments.« less

  14. Time-resolved ion imaging at free-electron lasers using TimepixCam

    DOE PAGES

    Fisher-Levine, Merlin; Boll, Rebecca; Ziaee, Farzaneh; ...

    2018-02-20

    In this paper, the application of a novel fast optical-imaging camera, TimepixCam, to molecular photoionization experiments using the velocity-map imaging technique at a free-electron laser is described. TimepixCam is a 256 × 256 pixel CMOS camera that is able to detect and time-stamp ion hits with 20 ns timing resolution, thus making it possible to record ion momentum images for all fragment ions simultaneously and avoiding the need to gate the detector on a single fragment. This allows the recording of significantly more data within a given amount of beam time and is particularly useful for pump–probe experiments, where drifts,more » for example, in the timing and pulse energy of the free-electron laser, severely limit the comparability of pump–probe scans for different fragments taken consecutively. Finally, in principle, this also allows ion–ion covariance or coincidence techniques to be applied to determine angular correlations between fragments.« less

  15. Carbon Contamination During Ion Irradiation - Accurate Detection and Characterization of its Effect on Microstructure of Ferritic/Martensitic Steels

    DOE PAGES

    Wang, Jing; Toloczko, Mychailo B.; Kruska, Karen; ...

    2017-11-17

    Accelerator-based ion beam irradiation techniques have been used to study radiation effects in materials for decades. Although carbon contamination induced by ion beams in target materials is a well-known issue in some material systems, it has not been fully characterized nor quantified for studies in ferritic/martensitic (F/M) steels that are candidate materials for applications such as core structural components in advanced nuclear reactors. It is an especially important issue for this class of material because of the strong effect of carbon level on precipitate formation. In this paper, the ability to quantify carbon contamination using three common techniques, namely time-of-flightmore » secondary ion mass spectroscopy (ToF-SIMS), atom probe tomography (APT), and transmission electron microscopy (TEM) is compared. Their effectiveness and shortcomings in determining carbon contamination are presented and discussed. The corresponding microstructural changes related to carbon contamination in ion irradiated F/M steels are also presented and briefly discussed.« less

  16. Ion channels in artificial bolaamphiphile membranes deposited on sensor chips: optical detection in an ion-channel-based biosensor

    NASA Astrophysics Data System (ADS)

    Schalkhammer, Thomas G. M.; Weiss-Wichert, Christof; Smetazko, Michaela M.; Valina-Saba, Miriam

    1997-06-01

    Signal amplification using labels should be replaced by a technique monitoring the biochemical binding event directly. The use of a ligand coupled to an artificial gated membrane ion channel is a new promising strategy. Binding of protein- or DNA/RNA-analytes at ligand modified peptide channels results in an on/off-response of the channel current due to channel closure or distortion. The sensor consists of stable transmembrane channels with a ligand bound covalently at the peptide channel entrance, a sensor chip with a photostructurized hydrophobic polymer frame, a hydrophilic ion conducting membrane support, a lipid membrane incorporating the engineered ion channels, and a current amplifier or a sensitive fluorescence monitor. Detection of channel opening or closure can ether be obtained by directly monitoring membrane conductivity or a transient change of pH or ion concentration within the membrane compartment. This change can be induced by electrochemical or optical means and its decay is directly correlated to the permeability of the membrane. The ion concentration in the sub membrane compartment was monitored by incorporation of fluorescent indicator dyes. To obtain the stable sensor membrane the lipid layer had to be attached on a support and the floating of the second lipid membrane on top of the first one had to be prevented. Both problems do not occur using our new circular C44-C76 bolaamphiphilic lipids consisting of a long hydrophobic core region and two hydrophilic heads. Use of maleic ester-head groups enabled us to easily modify the lipids with amines, thioles, alcohols, phosphates, boronic acid as well as fluorescent dyes. The properties of these membranes were studied using LB and fluorescence techniques. Based on this detection principle miniaturized sensor chips with significantly enhanced sensitivity and large multi analyte arrays are under construction.

  17. Trace detection of perchlorate in industrial-grade emulsion explosive with portable surface-enhanced Raman spectroscopy.

    PubMed

    Nuntawong, N; Eiamchai, P; Limwichean, S; Wong-ek, B; Horprathum, M; Patthanasettakul, V; Leelapojanaporn, A; Nakngoenthong, S; Chindaudom, P

    2013-12-10

    Recent analyses by ion-exchange chromatography (IC) showed that, beside nitrate, the majority of the industrial-grade emulsion explosives, extensively used by most separatists in the southern Thailand insurgency, contained small traces of perchlorate anions. In demand for the faster, reliable, and simple detection methods, the portable detection of nitrate and perchlorate became the great interest for the forensic and field-investigators. This work proposed a unique method to detect the trace amount of perchlorate in seven industrial-grade emulsion explosives under the field tests. We utilized the combination of the portable Raman spectroscope, the developed surfaced-enhanced Raman substrates, and the sample preparation procedures. The portable Raman spectroscope with a laser diode of 785 nm for excitation and a thermoelectric-cooled CCD spectrometer for detection was commercially available. The SERS substrates, with uniformly distributed nanostructured silver nanorods, were fabricated by the DC magnetron sputtering system, based on the oblique-angle deposition technique. The sample preparation procedures were proposed based on (1) pentane extraction technique and (2) combustion technique, prior to being dissolved in the purified water. In comparison to the ion chromatography and the conventional Raman measurements, our proposed methods successfully demonstrated the highly sensitive detectability of the minimal trace amount of perchlorate from five of the explosives with minimal operating time. This work was therefore highly practical to the development for the forensic analyses of the post-blast explosive residues under the field-investigations. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Coupling corona discharge for ambient extractive ionization mass spectrometry.

    PubMed

    Hu, Bin; Zhang, Xinglei; Li, Ming; Peng, Xuejiao; Han, Jing; Yang, Shuiping; Ouyang, Yongzhong; Chen, Huanwen

    2011-12-07

    Unlike the extractive electrospray ionization (EESI) technique described elsewhere, a corona discharge instead of electrospray ionization has been utilized to charge a neutral solvent spray under ambient conditions for the generation of highly charged microdroplets, which impact a neutral sample plume for the extractive ionization of the analytes in raw samples without any sample pretreatment. Using the positive ion mode, molecular radical cations were easily generated for the detection of non-polar compounds (e.g., benzene, cyclohexane, etc.), while protonated molecular ions of polar compounds (e.g., acetonitrile, acetic ether) were readily produced for the detection. By dispensing the matrix in a relatively large space, this method tolerates highly complex matrices. For a given sample such as lily fragrances, more compounds were detected by the method established here than the EESI technique. An acceptable relative standard deviation (RSD 8.9%, n = 11) was obtained for the direct measurement of explosives (10 ppb) in waste water samples. The experimental data demonstrate that this method could simultaneously detect both polar and non-polar analytes with high sensitivity, showing promising applications for the rapid detection of a wide variety of compounds present in complex matrices.

  19. Application of the MIDAS approach for analysis of lysine acetylation sites.

    PubMed

    Evans, Caroline A; Griffiths, John R; Unwin, Richard D; Whetton, Anthony D; Corfe, Bernard M

    2013-01-01

    Multiple Reaction Monitoring Initiated Detection and Sequencing (MIDAS™) is a mass spectrometry-based technique for the detection and characterization of specific post-translational modifications (Unwin et al. 4:1134-1144, 2005), for example acetylated lysine residues (Griffiths et al. 18:1423-1428, 2007). The MIDAS™ technique has application for discovery and analysis of acetylation sites. It is a hypothesis-driven approach that requires a priori knowledge of the primary sequence of the target protein and a proteolytic digest of this protein. MIDAS essentially performs a targeted search for the presence of modified, for example acetylated, peptides. The detection is based on the combination of the predicted molecular weight (measured as mass-charge ratio) of the acetylated proteolytic peptide and a diagnostic fragment (product ion of m/z 126.1), which is generated by specific fragmentation of acetylated peptides during collision induced dissociation performed in tandem mass spectrometry (MS) analysis. Sequence information is subsequently obtained which enables acetylation site assignment. The technique of MIDAS was later trademarked by ABSciex for targeted protein analysis where an MRM scan is combined with full MS/MS product ion scan to enable sequence confirmation.

  20. High sensitivity field asymmetric ion mobility spectrometer

    NASA Astrophysics Data System (ADS)

    Chavarria, Mario A.; Matheoud, Alessandro V.; Marmillod, Philippe; Liu, Youjiang; Kong, Deyi; Brugger, Jürgen; Boero, Giovanni

    2017-03-01

    A high sensitivity field asymmetric ion mobility spectrometer (FAIMS) was designed, fabricated, and tested. The main components of the system are a 10.6 eV UV photoionization source, an ion filter driven by a high voltage/high frequency n-MOS inverter circuit, and a low noise ion detector. The ion filter electronics are capable to generate square waveforms with peak-to-peak voltages up to 1000 V at frequencies up to 1 MHz with adjustable duty cycles. The ion detector current amplifier has a gain up to 1012 V/A with an effective equivalent input noise level down to about 1 fA/Hz1/2 during operation with the ion filter at the maximum voltage and frequency. The FAIMS system was characterized by detecting different standard chemical compounds. Additionally, we investigated the use of a synchronous modulation/demodulation technique to improve the signal-to-noise ratio in FAIMS measurements. In particular, we implemented the modulation of the compensation voltage with the synchronous demodulation of the ion current. The analysis of the measurements at low concentration levels led to an extrapolated limit of detection for acetone of 10 ppt with an averaging time of 1 s.

  1. Monitoring ion-channel function in real time through quantum decoherence

    PubMed Central

    Hall, Liam T.; Hill, Charles D.; Cole, Jared H.; Städler, Brigitte; Caruso, Frank; Mulvaney, Paul; Wrachtrup, Jörg; Hollenberg, Lloyd C. L.

    2010-01-01

    In drug discovery, there is a clear and urgent need for detection of cell-membrane ion-channel operation with wide-field capability. Existing techniques are generally invasive or require specialized nanostructures. We show that quantum nanotechnology could provide a solution. The nitrogen-vacancy (NV) center in nanodiamond is of great interest as a single-atom quantum probe for nanoscale processes. However, until now nothing was known about the quantum behavior of a NV probe in a complex biological environment. We explore the quantum dynamics of a NV probe in proximity to the ion channel, lipid bilayer, and surrounding aqueous environment. Our theoretical results indicate that real-time detection of ion-channel operation at millisecond resolution is possible by directly monitoring the quantum decoherence of the NV probe. With the potential to scan and scale up to an array-based system, this conclusion may have wide-ranging implications for nanoscale biology and drug discovery. PMID:20937908

  2. Monitoring ion-channel function in real time through quantum decoherence.

    PubMed

    Hall, Liam T; Hill, Charles D; Cole, Jared H; Städler, Brigitte; Caruso, Frank; Mulvaney, Paul; Wrachtrup, Jörg; Hollenberg, Lloyd C L

    2010-11-02

    In drug discovery, there is a clear and urgent need for detection of cell-membrane ion-channel operation with wide-field capability. Existing techniques are generally invasive or require specialized nanostructures. We show that quantum nanotechnology could provide a solution. The nitrogen-vacancy (NV) center in nanodiamond is of great interest as a single-atom quantum probe for nanoscale processes. However, until now nothing was known about the quantum behavior of a NV probe in a complex biological environment. We explore the quantum dynamics of a NV probe in proximity to the ion channel, lipid bilayer, and surrounding aqueous environment. Our theoretical results indicate that real-time detection of ion-channel operation at millisecond resolution is possible by directly monitoring the quantum decoherence of the NV probe. With the potential to scan and scale up to an array-based system, this conclusion may have wide-ranging implications for nanoscale biology and drug discovery.

  3. A novel EIS field effect structures coated with TESUD-PPy-PVC-dibromoaza[7]helicene matrix for potassium ions detection.

    PubMed

    Tounsi, Moncef; Ben Braiek, Mourad; Barhoumi, Houcine; Baraket, Abdoullatif; Lee, Michael; Zine, Nadia; Maaref, Abderrazak; Errachid, Abdelhamid

    2016-04-01

    In this work, we describe the development of new Aza[7]helicene-containing PVC-based membranes for the K(+) ions quantification. Here, silicon nitride-based structures (Si-p/SiO2/Si3N4) were developed and the surface was activated, functionalized with an aldehyde-silane (11-(Triethoxysilyl)undecanal (TESUD)), functionalized with polypyrrole (PPy), and coated with the polyvinylchloride (PVC)-membrane containing the Aza[7]helicene as ionophore. All stages of functionalization process have been thoroughly studied by contact angle measurements (CAMs) and atomic force microscopy (AFM). The developed ion-selective electrode (ISE) was then applied using electrochemical impedance spectroscopy (EIS) for the detection of potassium ions. A linear range was observed between 1.0 × 10(-8) M to 1.0 × 10(-3) M and a detection limit of 1.0 × 10(-8) M was observed. The EIS results have showed a good sensitivity to potassium ion using this novel technique. The target helicene exhibited good solubility and excellent thermal stability with a high decomposition temperature (Td > 300 °C) and it indicates that helicene may be a promising material as ionophore for ion-selective electrodes (ISEs) elaboration. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A Novel Computational Method to Reduce Leaky Reaction in DNA Strand Displacement.

    PubMed

    Li, Xin; Wang, Xun; Song, Tao; Lu, Wei; Chen, Zhihua; Shi, Xiaolong

    2015-01-01

    DNA strand displacement technique is widely used in DNA programming, DNA biosensors, and gene analysis. In DNA strand displacement, leaky reactions can cause DNA signals decay and detecting DNA signals fails. The mostly used method to avoid leakage is cleaning up after upstream leaky reactions, and it remains a challenge to develop reliable DNA strand displacement technique with low leakage. In this work, we address the challenge by experimentally evaluating the basic factors, including reaction time, ratio of reactants, and ion concentration to the leakage in DNA strand displacement. Specifically, fluorescent probes and a hairpin structure reporting DNA strand are designed to detect the output of DNA strand displacement, and thus can evaluate the leakage of DNA strand displacement reactions with different reaction time, ratios of reactants, and ion concentrations. From the obtained data, mathematical models for evaluating leakage are achieved by curve derivation. As a result, it is obtained that long time incubation, high concentration of fuel strand, and inappropriate amount of ion concentration can weaken leaky reactions. This contributes to a method to set proper reaction conditions to reduce leakage in DNA strand displacement.

  5. On-site Rapid Detection of Trace Non-volatile Inorganic Explosives by Stand-alone Ion Mobility Spectrometry via Acid-enhanced Evaporization

    PubMed Central

    Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang

    2014-01-01

    New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones. PMID:25318960

  6. DNA-based Nanoconstructs for the Detection of Ions and Biomolecules with Related Raman/SERS Signature Studies

    NASA Astrophysics Data System (ADS)

    Brenneman, Kimber L.

    The utilization of DNA aptamers and semiconductor quantum dots (QDs) for the detection of ions and biomolecules was investigated. In recent years, there have been many studies based on the use of DNA and RNA aptamers, which are single stranded oligonucleotides capable of binding to biomolecules, other molecules, and ions. In many of these cases, the conformational changes of these DNA and RNA aptamers are suitable to use fluorescence resonant energy transfer (FRET) or nanometal surface energy transfer (NSET) techniques to detect such analytes. Coupled with this growth in such uses of aptamers, there has been an expanded use of semiconductor quantum dots as brighter, longer-lasting alternatives to fluorescent dyes in labeling and detection techniques of interest in biomedicine and environmental monitoring. Thrombin binding aptamer (TBA) and a zinc aptamer were used to detect mercury, lead, zinc, and cadmium. These probes were tested in a liquid assay as well as on a filter paper coupon. Biomolecules were also studied and detected using surface-enhanced Raman spectroscopy (SERS), including DNA aptamers and C-reactive protein (CRP). Raman spectroscopy is a useful tool for sensor development, label-free detection, and has the potential for remote sensing. Raman spectra provide information on the vibrational modes or phonons, between and within molecules. Therefore, unique spectral fingerprints for single molecules can be obtained. SERS is accomplished through the use of substrates with nanometer scale geometries made of metals with many free electrons, such as silver, gold, or copper. In this research silver SERS substrates were used to study the SERS signature of biomolecules that typically produce very weak Raman signals.

  7. An intercomparison of five ammonia measurement techniques

    NASA Technical Reports Server (NTRS)

    Williams, E. J.; Sandholm, S. T.; Bradshaw, J. D.; Schendel, J. S.; Langford, A. O.; Quinn, P. K.; Lebel, P. J.; Vay, S. A.; Roberts, P. D.; Norton, R. B.

    1992-01-01

    Results obtained from five techniques for measuring gas-phase ammonia at low concentration in the atmosphere are compared. These methods are: (1) a photofragmentation/laser-induced fluorescence (PF/LIF) instrument; (2) a molybdenum oxide annular denuder sampling/chemiluminescence detection technique; (3) a tungsten oxide denuder sampling/chemiluminescence detection system; (4) a citric-acid-coated denuder sampling/ion chromatographic analysis (CAD/IC) method; and (5) an oxalic-acid-coated filter pack sampling/colorimetric analysis method. It was found that two of the techniques, the PF/LIF and the CAD/IC methods, measured approximately 90 percent of the calculated ammonia added in the spiking tests and agreed very well with each other in the ambient measurements.

  8. Experimental Study of Proton Acceleration from Ultra Intense Laser Matter Interactions

    NASA Astrophysics Data System (ADS)

    Paudel, Yadab Kumar

    This dissertation describes proton and ion acceleration measurements from high intensity (˜ 1019 Wcm-2) laser interactions with thin foil targets. Protons and ions accelerated from the back surface of a target driven by a high intensity laser are detected using solid-state nuclear track detector CR39. A simple digital imaging technique, with an adjustable halogen light source shined on CR39 and use of a digital camera with suitable f-number and exposure time, is used to detect particles tracks. This new technique improves the quality 2D image with vivid track patterns in CR39. Our technique allows us to quickly record and sort CR39 pieces for further analysis. This is followed by detailed quantitative information on the protons and ions. Protons and multicharged ions generated from high-intensity laser interactions with thin foil targets have been studied with a 100 TW laser system. Protons/ions with energies up to 10 MeV are accelerated either from the front or the rear surface of the target material. We have observed for the first time a self-radiograph of the target with a glass stalk holding the target itself in the stacked radiochromic films (RCF) placed behind the target. The self-radiography indicates that the fast ions accelerated backward, in a direction opposite to the laser propagation, are turning around in strong magnetic fields. This unique result is a signature of long-living (ns time scale) magnetic fields in the expanding plasma, which are important in energy transport during the intense laser irradiation and have never been considered in the previous studies. The magnetic fields induced by the main pulse near the absorption point expand rapidly with the backward accelerated protons in the pre-formed plasma. The protons are rotated by these magnetic fields and they are recorded in the RCF, making the self-radiography. Angular profiles of protons and multicharged ions accelerated from the target rear surface have been studied with the subpicosecond laser pulse produced by the 100 TW laser system. The protons/ions beam features recorded on CR39 show the hollow beam structure at the center of the beam pattern. This hollow structure in the proton/ion beam pattern associates to the electron transport inside the solid target, which affects the target's rear-surface emission or the electrostatic profile on the target rear-surface. The proton/ion beam filamentation has been seen clearly outside the hollow beam pattern in the CR39 images processed by the new digital imaging technique.

  9. EUV emission spectra in collisions of highly charged tantalum ions with nitrogen and oxygen molecules

    NASA Astrophysics Data System (ADS)

    Tanuma, Hajime; Numadate, Naoki; Uchikura, Yoshiyuki; Shimada, Kento; Akutsu, Takuto; Long, Elaine; O'Sullivan, Gerry

    2017-10-01

    We have performed ion beam collision experiments using multiply charged tantalum ions and observed EUV (extreme ultra-violet) emission spectra in collisions of ions with molecular targets, N2 and O2. Broad UTAs (un-resolved transition arrays) from multiply charged Ta ions were observed, and the mean wavelengths of the UTAs shifted and became shorter at higher charge statea of Ta ions. These UTAs may be attributed to the 4f-5d and 4f-5g transitions. Not only the UTA emission from incident ions, but also the sharp emission lines from multiply charged fragment atomic ions were observed. Production of temporary highly charged molecular ions, their kinetic energy and fragmentation processes have been investigated with coincident detection technique. However, the observation of emission from the fragments might be for the first time. The formation mechanisms of the multiply charged fragment atomic ions from target molecules are discussed.

  10. Beta-Delayed Neutron Spectroscopy with Trapped Fission Products

    NASA Astrophysics Data System (ADS)

    Czeszumska, A.; Scielzo, N. D.; Norman, E. B.; Savard, G.; Aprahamian, A.; Burkey, M.; Caldwell, S. A.; Chiara, C. J.; Clark, J. A.; Harker, J.; Marley, S. T.; Morgan, G.; Orford, R.; Padgett, S.; Perez Galvan, A.; Segel, R. E.; Sharma, K. S.; Siegl, K.; Strauss, S.; Yee, R. M.

    2014-09-01

    Characterizing β-delayed neutron emission (βn) is of importance in reactor safety modeling, understanding of r-process nucleosynthesis, and nuclear structure studies. A newly developed technique enables a reliable measurement of βn branching ratios and neutron energy spectra without directly detecting neutrons. Ions of interest are loaded into a Paul trap surrounded by an array of radiation detectors. Upon decay, recoiling daughter nuclei and emitted particles emerge from the center of the trap with minimal scattering. The neutron energy is then determined from the time-of-flight, and hence momentum, of the recoiling ions. I will explain the details of the technique, and present the results from the most recent experimental campaign at the CARIBU facility at Argonne National Laboratory. Characterizing β-delayed neutron emission (βn) is of importance in reactor safety modeling, understanding of r-process nucleosynthesis, and nuclear structure studies. A newly developed technique enables a reliable measurement of βn branching ratios and neutron energy spectra without directly detecting neutrons. Ions of interest are loaded into a Paul trap surrounded by an array of radiation detectors. Upon decay, recoiling daughter nuclei and emitted particles emerge from the center of the trap with minimal scattering. The neutron energy is then determined from the time-of-flight, and hence momentum, of the recoiling ions. I will explain the details of the technique, and present the results from the most recent experimental campaign at the CARIBU facility at Argonne National Laboratory. This work was supported under contracts DE-NA0000979 (NSSC), DE-AC52-07NA27344 (LLNL), DE-AC02-06CH11357 (ANL), DE-FG02-94ER40834 (U. Maryland), DE-FG02-98ER41086 (Northwestern U.), NSERC, Canada, under Application No. 216974, and DHS.

  11. Detection and identification of immobilized low-volatility organophosphates by desorption ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hagan, Nathan A.; Cornish, Timothy J.; Pilato, Robert S.; van Houten, Kelly A.; Antoine, Miquel D.; Lippa, Timothy P.; Becknell, Alan F.; Demirev, Plamen A.

    2008-12-01

    Two desorption ionization mass spectrometry (MS) techniques - ultraviolet laser desorption/ionization (LDI) and desorption electrospray ionization (DESI) - have been used to detect and identify low-volatility organophosphates when deposited on surfaces or loaded into the pore volume of porous inorganic or polymeric organic powders. The insecticides malathion and dicrotophos were chosen for this study as simulants of low vapor pressure chemical warfare agents which are inherently difficult to detect directly by traditional methods. Both liquid and powdered forms of either insecticide were readily detected by LDI or DESI MS. LDI MS was performed on a miniaturized home-built time-of-flight (TOF) mass spectrometer and a commercial TOF/TOF instrument. For DESI MS, a home-built ion source was interfaced to a commercial quadrupole ion trap. In LDI, intact molecular ion signatures could be acquired by using an appropriate cationizing agent and powder additive in positive ion mode. Tandem MS was used to confirm the identity of each analyte based on the observed characteristic fragmentation pattern. In DESI, less than 100 pg of the liquid insecticides spotted on clean surfaces were detected, while detection limits for the powder-loaded preparations were lower than 1 [mu]g. The effects of sample surface, salt additives, nanoparticle admixtures, and analyte solubility on the LDI and DESI MS sensitivity have been investigated as well.

  12. Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection.

    PubMed

    Yang, Jijin; Ferranti, David C; Stern, Lewis A; Sanford, Colin A; Huang, Jason; Ren, Zheng; Qin, Lu-Chang; Hall, Adam R

    2011-07-15

    We report the formation of solid-state nanopores using a scanning helium ion microscope. The fabrication process offers the advantage of high sample throughput along with fine control over nanopore dimensions, producing single pores with diameters below 4 nm. Electronic noise associated with ion transport through the resultant pores is found to be comparable with levels measured on devices made with the established technique of transmission electron microscope milling. We demonstrate the utility of our nanopores for biomolecular analysis by measuring the passage of double-strand DNA.

  13. Analysis of antioxidants in insulation cladding of copper wire: a comparison of different mass spectrometric techniques (ESI-IT, MALDI-RTOF and RTOF-SIMS).

    PubMed

    Schnöller, Johannes; Pittenauer, Ernst; Hutter, Herbert; Allmaier, Günter

    2009-12-01

    Commercial copper wire and its polymer insulation cladding was investigated for the presence of three synthetic antioxidants (ADK STAB AO412S, Irganox 1010 and Irganox MD 1024) by three different mass spectrometric techniques including electrospray ionization-ion trap-mass spectrometry (ESI-IT-MS), matrix-assisted laser desorption/ionization reflectron time-of-flight (TOF) mass spectrometry (MALDI-RTOF-MS) and reflectron TOF secondary ion mass spectrometry (RTOF-SIMS). The samples were analyzed either directly without any treatment (RTOF-SIMS) or after a simple liquid/liquid extraction step (ESI-IT-MS, MALDI-RTOF-MS and RTOF-SIMS). Direct analysis of the copper wire itself or of the insulation cladding by RTOF-SIMS allowed the detection of at least two of the three antioxidants but at rather low sensitivity as molecular radical cations and with fairly strong fragmentation (due to the highly energetic ion beam of the primary ion gun). ESI-IT- and MALDI-RTOF-MS-generated abundant protonated and/or cationized molecules (ammoniated or sodiated) from the liquid/liquid extract. Only ESI-IT-MS allowed simultaneous detection of all three analytes in the extract of insulation claddings. The latter two so-called 'soft' desorption/ionization techniques exhibited intense fragmentation only by applying low-energy collision-induced dissociation (CID) tandem MS on a multistage ion trap-instrument and high-energy CID on a tandem TOF-instrument (TOF/RTOF), respectively. Strong differences in the fragmentation behavior of the three analytes could be observed between the different CID spectra obtained from either the IT-instrument (collision energy in the very low eV range) or the TOF/RTOF-instrument (collision energy 20 keV), but both delivered important structural information. Copyright 2009 John Wiley & Sons, Ltd.

  14. Polyhydric polymer-functionalized fluorescent probe with enhanced aqueous solubility and specific ion recognition: A test strips-based fluorimetric strategy for the rapid and visual detection of Fe3+ ions.

    PubMed

    Duan, Zhiqiang; Zhang, Chunxian; Qiao, Yuchun; Liu, Fengjuan; Wang, Deyan; Wu, Mengfan; Wang, Ke; Lv, Xiaoxia; Kong, Xiangmu; Wang, Hua

    2017-08-01

    A polyhydric polymer-functionalized probe with enhanced aqueous solubility was designed initially by coupling 1-pyrenecarboxyaldehyde (Pyr) onto poly(vinyl alcohol) (PVA) via the one-step condensation reaction. Polyhydric PVA polymer chains could facilitate the Pyr fluorophore with largely improved aqueous solubility and especially strong cyan fluorescence. Importantly, the fluorescence of the PVA-Pyr probes could thereby be quenched specifically by Fe 3+ ions through the strong PVA-Fe 3+ interaction triggering the polymeric probe aggregation. Furthermore, a test strips-based fluorimetric method was developed with the stable and uniform probe distribution by taking advantage of the unique film-forming ability and the depression capacity of "coffee-stain" effects of PVA matrix. The as-developed test strips could allow for the rapid and visual detections of Fe 3+ ions simply by a dipping way, showing a linear concentration range of 5.00-300μM, with the detection limit of 0.73μM. Moreover, the proposed method was applied to the evaluation of Fe 3+ ions in natural water samples, showing the analysis performances better or comparable to those of current detection techniques. This test strips-based fluorimetric strategy promises the extensive applications for the rapid on-site monitoring of Fe 3+ ions in environmental water and the outdoor finding of the potential iron mines. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Investigation of the refractive index repeatability for tantalum pentoxide coatings, prepared by physical vapor film deposition techniques.

    PubMed

    Stenzel, O; Wilbrandt, S; Wolf, J; Schürmann, M; Kaiser, N; Ristau, D; Ehlers, H; Carstens, F; Schippel, S; Mechold, L; Rauhut, R; Kennedy, M; Bischoff, M; Nowitzki, T; Zöller, A; Hagedorn, H; Reus, H; Hegemann, T; Starke, K; Harhausen, J; Foest, R; Schumacher, J

    2017-02-01

    Random effects in the repeatability of refractive index and absorption edge position of tantalum pentoxide layers prepared by plasma-ion-assisted electron-beam evaporation, ion beam sputtering, and magnetron sputtering are investigated and quantified. Standard deviations in refractive index between 4*10-4 and 4*10-3 have been obtained. Here, lowest standard deviations in refractive index close to our detection threshold could be achieved by both ion beam sputtering and plasma-ion-assisted deposition. In relation to the corresponding mean values, the standard deviations in band-edge position and refractive index are of similar order.

  16. Electrochemical study of the anticancer drug daunorubicin at a water/oil interface: drug lipophilicity and quantification.

    PubMed

    Ribeiro, José A; Silva, F; Pereira, Carlos M

    2013-02-05

    In this work, the ion transfer mechanism of the anticancer drug daunorubicin (DNR) at a liquid/liquid interface has been studied for the first time. This study was carried out using electrochemical techniques, namely cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The lipophilicity of DNR was investigated at the water/1,6-dichlorohexane (DCH) interface, and the results obtained were presented in the form of an ionic partition diagram. The partition coefficients of both neutral and ionic forms of the drug were determined. The analytical parameter for the detection of DNR was also investigated in this work. An electrochemical DNR sensor is proposed by means of simple ion transfer at the water/DCH interface, using DPV as the quantification technique. Experimental conditions for the analytical determination of DNR were established, and a detection limit of 0.80 μM was obtained.

  17. Rapid assessment of human amylin aggregation and its inhibition by copper(II) ions by laser ablation electrospray ionization mass spectrometry with ion mobility separation

    DOE PAGES

    Li, Hang; Ha, Emmeline; Donaldson, Robert P.; ...

    2015-09-09

    Native electrospray ionization (ESI) mass spectrometry (MS) is often used to monitor noncovalent complex formation between peptides and ligands. The relatively low throughput of this technique, however, is not compatible with extensive screening. Laser ablation electrospray ionization (LAESI) MS combined with ion mobility separation (IMS) can analyze complex formation and provide conformation information within a matter of seconds. Islet amyloid polypeptide (IAPP) or amylin, a 37-amino acid residue peptide, is produced in pancreatic beta-cells through proteolytic cleavage of its prohormone. Both amylin and its precursor can aggregate and produce toxic oligomers and fibrils leading to cell death in the pancreasmore » that can eventually contribute to the development of type 2 diabetes mellitus. The inhibitory effect of the copper(II) ion on amylin aggregation has been recently discovered, but details of the interaction remain unknown. Finding other more physiologically tolerated approaches requires large scale screening of potential inhibitors. In this paper, we demonstrate that LAESI-IMS-MS can reveal the binding stoichiometry, copper oxidation state, and the dissociation constant of human amylin–copper(II) complex. The conformations of hIAPP in the presence of copper(II) ions were also analyzed by IMS, and preferential association between the β-hairpin amylin monomer and the metal ion was found. The copper(II) ion exhibited strong association with the —HSSNN– residues of the amylin. In the absence of copper(II), amylin dimers were detected with collision cross sections consistent with monomers of β-hairpin conformation. When copper(II) was present in the solution, no dimers were detected. Thus, the copper(II) ions disrupt the association pathway to the formation of β-sheet rich amylin fibrils. Using LAESI-IMS-MS for the assessment of amylin–copper(II) interactions demonstrates the utility of this technique for the high-throughput screening of potential inhibitors of amylin oligomerization and fibril formation. Finally and more generally, this rapid technique opens the door for high-throughput screening of potential inhibitors of amyloid protein aggregation.« less

  18. Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry

    PubMed Central

    Farmer, D. K.; Matsunaga, A.; Docherty, K. S.; Surratt, J. D.; Seinfeld, J. H.; Ziemann, P. J.; Jimenez, J. L.

    2010-01-01

    Organonitrates (ON) are important products of gas-phase oxidation of volatile organic compounds in the troposphere; some models predict, and laboratory studies show, the formation of large, multifunctional ON with vapor pressures low enough to partition to the particle phase. Organosulfates (OS) have also been recently detected in secondary organic aerosol. Despite their potential importance, ON and OS remain a nearly unexplored aspect of atmospheric chemistry because few studies have quantified particulate ON or OS in ambient air. We report the response of a high-resolution time-of-flight aerosol mass spectrometer (AMS) to aerosol ON and OS standards and mixtures. We quantify the potentially substantial underestimation of organic aerosol O/C, commonly used as a metric for aging, and N/C. Most of the ON-nitrogen appears as ions in the AMS, which are typically dominated by inorganic nitrate. Minor organonitrogen ions are observed although their identity and intensity vary between standards. We evaluate the potential for using fragment ratios, organonitrogen ions, ions, the ammonium balance of the nominally inorganic ions, and comparison to ion-chromatography instruments to constrain the concentrations of ON for ambient datasets, and apply these techniques to a field study in Riverside, CA. OS manifests as separate organic and sulfate components in the AMS with minimal organosulfur fragments and little difference in fragmentation from inorganic sulfate. The low thermal stability of ON and OS likely causes similar detection difficulties for other aerosol mass spectrometers using vaporization and/or ionization techniques with similar or larger energy, which has likely led to an underappreciation of these species. PMID:20194777

  19. NBIT Program Phase I (2007-2010). Part 1, Chapters 1 Through 4

    DTIC Science & Technology

    2009-08-27

    2 schematically shows the sample prepared before hydrothermal synthesis . The thin layer of Zn was convered to ZnO nanowires during hydrothermal ... Nanoparticle -Based Magnetically Amplified Surface Plasmon Resonance (Mag-SPR) Techniques; Jinwoo Cheon (Yonsei University, Korea) and A. Paul...Ion; Chapter 3 ? Ultra-Sensitive Biological Detection via Nanoparticle -Based Magnetically Amplified Surface Plasmon Resonance (Mag-SPR) Techniques

  20. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges.

    PubMed

    Patel, Dhavalkumar Narendrabhai; Li, Lin; Kee, Chee-Leong; Ge, Xiaowei; Low, Min-Yong; Koh, Hwee-Ling

    2014-01-01

    The popularity of phosphodiesterase type 5 (PDE-5) enzyme inhibitors for the treatment of erectile dysfunction has led to the increase in prevalence of illicit sexual performance enhancement products. PDE-5 inhibitors, namely sildenafil, tadalafil and vardenafil, and their unapproved designer analogues are being increasingly used as adulterants in the herbal products and health supplements marketed for sexual performance enhancement. To date, more than 50 unapproved analogues of prescription PDE-5 inhibitors were found as adulterants in the literature. To avoid detection of such adulteration by standard screening protocols, the perpetrators of such illegal products are investing time and resources to synthesize exotic analogues and devise novel means for adulteration. A comprehensive review of conventional and advance analytical techniques to detect and characterize the adulterants is presented. The rapid identification and structural elucidation of unknown analogues as adulterants is greatly enhanced by the wide myriad of analytical techniques employed, including high performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), liquid chromatography mass-spectrometry (LC-MS), nuclear magnetic resonance (NMR) spectroscopy, vibrational spectroscopy, liquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry (LC-FT-ICR-MS), liquid chromatograph-hybrid triple quadrupole linear ion trap mass spectrometer with information dependent acquisition, ultra high performance liquid chromatography-time of flight-mass spectrometry (UHPLC-TOF-MS), ion mobility spectroscopy (IMS) and immunoassay methods. The many challenges in detecting and characterizing such adulterants, and the need for concerted effort to curb adulteration in order to safe guard public safety and interest are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Ion-Molecule Reaction Dynamics

    NASA Astrophysics Data System (ADS)

    Meyer, Jennifer; Wester, Roland

    2017-05-01

    We review the recent advances in the investigation of the dynamics of ion-molecule reactions. During the past decade, the combination of single-collision experiments in crossed ion and neutral beams with the velocity map ion imaging detection technique has enabled a wealth of studies on ion-molecule reactions. These methods, in combination with chemical dynamics simulations, have uncovered new and unexpected reaction mechanisms, such as the roundabout mechanism and the subtle influence of the leaving group in anion-molecule nucleophilic substitution reactions. For this important class of reactions, as well as for many fundamental cation-molecule reactions, the information obtained with crossed-beam imaging is discussed. The first steps toward understanding micro-solvation of ion-molecule reaction dynamics are presented. We conclude with the presentation of several interesting directions for future research.

  2. Monitoring Ion Track Formation Using In Situ RBS/c, ToF-ERDA, and HR-PIXE

    NASA Astrophysics Data System (ADS)

    Karlušić, Marko; Fazinić, Stjepko; Siketić, Zdravko; Tadić, Tonči; Cosic, Donny; Božičević-Mihalić, Iva; Zamboni, Ivana; Jakšić, Milko; Schleberger, Marika

    2017-09-01

    The aim of this work is to investigate feasibility of the ion beam analysis techniques for monitoring swift heavy ion track formation. First, use of the in situ Rutherford backscattering spectroscopy in channeling mode to observe damage build-up in quartz SiO2 after MeV heavy ion irradiation is demonstrated. Second, new results of the in situ grazing incidence time-of-flight elastic recoil detection analysis used for monitoring the surface elemental composition during ion tracks formation in various materials are presented. Ion tracks were found on SrTiO3, quartz SiO2, a-SiO2 and muscovite mica surfaces by atomic force microscopy, but in contrast to our previous studies on GaN and TiO2, surface stoichiometry remained unchanged.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hang; Ha, Emmeline; Donaldson, Robert P.

    Native electrospray ionization (ESI) mass spectrometry (MS) is often used to monitor noncovalent complex formation between peptides and ligands. The relatively low throughput of this technique, however, is not compatible with extensive screening. Laser ablation electrospray ionization (LAESI) MS combined with ion mobility separation (IMS) can analyze complex formation and provide conformation information within a matter of seconds. Islet amyloid polypeptide (IAPP) or amylin, a 37-amino acid residue peptide, is produced in pancreatic beta-cells through proteolytic cleavage of its prohormone. Both amylin and its precursor can aggregate and produce toxic oligomers and fibrils leading to cell death in the pancreasmore » that can eventually contribute to the development of type 2 diabetes mellitus. The inhibitory effect of the copper(II) ion on amylin aggregation has been recently discovered, but details of the interaction remain unknown. Finding other more physiologically tolerated approaches requires large scale screening of potential inhibitors. In this paper, we demonstrate that LAESI-IMS-MS can reveal the binding stoichiometry, copper oxidation state, and the dissociation constant of human amylin–copper(II) complex. The conformations of hIAPP in the presence of copper(II) ions were also analyzed by IMS, and preferential association between the β-hairpin amylin monomer and the metal ion was found. The copper(II) ion exhibited strong association with the —HSSNN– residues of the amylin. In the absence of copper(II), amylin dimers were detected with collision cross sections consistent with monomers of β-hairpin conformation. When copper(II) was present in the solution, no dimers were detected. Thus, the copper(II) ions disrupt the association pathway to the formation of β-sheet rich amylin fibrils. Using LAESI-IMS-MS for the assessment of amylin–copper(II) interactions demonstrates the utility of this technique for the high-throughput screening of potential inhibitors of amylin oligomerization and fibril formation. Finally and more generally, this rapid technique opens the door for high-throughput screening of potential inhibitors of amyloid protein aggregation.« less

  4. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy

    NASA Astrophysics Data System (ADS)

    Wirtz, T.; Philipp, P.; Audinot, J.-N.; Dowsett, D.; Eswara, S.

    2015-10-01

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM).

  5. Ion spectrometric detection technologies for ultra-traces of explosives: a review.

    PubMed

    Mäkinen, Marko; Nousiainen, Marjaana; Sillanpää, Mika

    2011-01-01

    In recent years, explosive materials have been widely employed for various military applications and civilian conflicts; their use for hostile purposes has increased considerably. The detection of different kind of explosive agents has become crucially important for protection of human lives, infrastructures, and properties. Moreover, both the environmental aspects such as the risk of soil and water contamination and health risks related to the release of explosive particles need to be taken into account. For these reasons, there is a growing need to develop analyzing methods which are faster and more sensitive for detecting explosives. The detection techniques of the explosive materials should ideally serve fast real-time analysis in high accuracy and resolution from a minimal quantity of explosive without involving complicated sample preparation. The performance of the in-field analysis of extremely hazardous material has to be user-friendly and safe for operators. The two closely related ion spectrometric methods used in explosive analyses include mass spectrometry (MS) and ion mobility spectrometry (IMS). The four requirements-speed, selectivity, sensitivity, and sampling-are fulfilled with both of these methods. Copyright © 2011 Wiley Periodicals, Inc.

  6. Improved Ambient Pressure Pyroelectric Ion Source

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Kim, Hugh I.; Kanik, Isik; Ryu, Ernest K.; Beckett, Brett

    2011-01-01

    The detection of volatile vapors of unknown species in a complex field environment is required in many different applications. Mass spectroscopic techniques require subsystems including an ionization unit and sample transport mechanism. All of these subsystems must have low mass, small volume, low power, and be rugged. A volatile molecular detector, an ambient pressure pyroelectric ion source (APPIS) that met these requirements, was recently reported by Caltech researchers to be used in in situ environments.

  7. Investigations of negative and positive cesium ion species

    NASA Technical Reports Server (NTRS)

    Chanin, L. M.

    1978-01-01

    A direct test is provided of the hypothesis of negative ion creation at the anode or collector of a diode operating under conditions simulating a cesium thermionic converter. The experimental technique involves using direct ion sampling through the collector electrode with mass analysis using a quadrupole mass analyzer. Similar measurements are undertaken on positive ions extracted through the emitter electrode. Measurements were made on a variety of gases including pure cesium, helium-cesium mixtures and cesium-hydrogen as well as cesium-xenon mixtures. The gas additive was used primarily to aid in understanding the negative ion formation processes. Measurements were conducted using emitter (cathode) temperatures up to about 1000 F. The major negative ion identified through the collector was Cs(-) with minor negative ion peaks tentatively identified as H(-), H2(-), H3(-), He(-) and a mass 66. Positive ions detected were believed to be Cs(+), Cs2(+) and Cs3(+).

  8. An Ultra-Trace Analysis Technique for SF6 Using Gas Chromatography with Negative Ion Chemical Ionization Mass Spectrometry.

    PubMed

    Jong, Edmund C; Macek, Paul V; Perera, Inoka E; Luxbacher, Kray D; McNair, Harold M

    2015-07-01

    Sulfur hexafluoride (SF6) is widely used as a tracer gas because of its detectability at low concentrations. This attribute of SF6 allows the quantification of both small-scale flows, such as leakage, and large-scale flows, such as atmospheric currents. SF6's high detection sensitivity also facilitates greater usage efficiency and lower operating cost for tracer deployments by reducing quantity requirements. The detectability of SF6 is produced by its high molecular electronegativity. This property provides a high potential for negative ion formation through electron capture thus naturally translating to selective detection using negative ion chemical ionization mass spectrometry (NCI-MS). This paper investigates the potential of using gas chromatography (GC) with NCI-MS for the detection of SF6. The experimental parameters for an ultra-trace SF6 detection method utilizing minimal customizations of the analytical instrument are detailed. A method for the detection of parts per trillion (ppt) level concentrations of SF6 for the purpose of underground ventilation tracer gas analysis was successfully developed in this study. The method utilized a Shimadzu gas chromatography with negative ion chemical ionization mass spectrometry system equipped with an Agilent J&W HP-porous layer open tubular column coated with an alumina oxide (Al2O3) S column. The method detection limit (MDL) analysis as defined by the Environmental Protection Agency of the tracer data showed the method MDL to be 5.2 ppt. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion.

    PubMed

    Zainudin, Afiq Azri; Fen, Yap Wing; Yusof, Nor Azah; Al-Rekabi, Sura Hmoud; Mahdi, Mohd Adzir; Omar, Nur Alia Sheh

    2018-02-15

    In this study, the combination of novel valinomycin doped chitosan-graphene oxide (C-GO-V) thin film and surface plasmon resonance (SPR) system for potassium ion (K + ) detection has been developed. The novel C-GO-V thin film was deposited on the gold surface using spin coating technique. The system was used to monitor SPR signal for K + in solution with and without C-GO-V thin film. The K + can be detected by measuring the SPR signal when C-GO-V thin film is exposed to K + in solution. The sensor produces a linear response for K + ion up to 100ppm with sensitivity and detection limit of 0.00948°ppm -1 and 0.001ppm, respectively. These results indicate that the C-GO-V film is high potential as a sensor element for K + that has been proved by the SPR measurement. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Highly selective visual monitoring of hazardous fluoride ion in aqueous media using thiobarbituric-capped gold nanoparticles.

    PubMed

    Boken, Jyoti; Thatai, Sheenam; Khurana, Parul; Prasad, Surendra; Kumar, Dinesh

    2015-01-01

    The rapid, selective and sensitive measurement and monitoring of hazardous materials as analytes are the central themes in the development of any successful analytical technique. With this aim, we have synthesized the thiobarbituric-capped gold nanoparticles (TBA-capped Au NPs) involving chemical reduction of HAuCl4 using 2-thiobarbituric acid (TBA) as a reducing and capping agent. The morphology of the TBA-capped Au NPs was confirmed using transmission electron microscope images. For the first time this article reports that the developed TAB-capped Au NPs displays selective, ultrafast and sensitive colorimetric detection of fluoride ion in aqueous samples. The detection of fluoride ion was confirmed by the disappearance of the localized surface plasmon resonance (LSPR) band at 554 nm using UV-vis spectroscopy. The interaction of F(-) with TBA-capped Au NPs in aqueous solution has also been confirmed by Raman and FTIR spectroscopy. One of the most exciting accomplishments is the visual detection limit for fluoride ion has been found to be 10 mM at commonly acceptable water pH range 7-8. The whole detection procedure takes not more than 40s with excellent selectivity providing sample throughput of more than 60 per hour. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. One-pot synthesis of Fe3O4@Chitosan-pSDCalix hybrid nanomaterial for the detection and removal of Hg2+ ion from aqueous media

    NASA Astrophysics Data System (ADS)

    Bhatti, Asif Ali; Oguz, Mehmet; Yilmaz, Mustafa

    2018-03-01

    New one pot mesoporous hybrid material containing iron nanoparticles fabricated with chitosan and p-sulfonato dansyl calix[4]arene composite (Fe3O4@Chitosan-pSDCalix) has been susccessfully synthesized. These mesoporous fluorescence iron nanoparticles were applied for the detection and removal of environmentally toxic Hg2+ ion from aqueous media. Different techniques were applied to confirm the preparation of Fe3O4@Chitosan-pSDCalix such as HRTEM, TGA/DTA, FTIR and XRD. Synthesized nanoparticles have average size of 17 nm with pore size of 0.19 nm as revealed from HRTEM images. Fluorescence study follow the photoinduced electron transfer process after addition of Hg2+ in the solution with decrease in intensity. Confocal microscope images were also acquired to confirm the presence of Hg2+ on nanoparticles. Adsorption study suggests that the removal of Hg2+ from aqueous media follows Langmuir adsorption isotherm. These studies suggest the synthesized Fe3O4@Chitosan-pSDCalix is an efficient hybrid material for the detection and removal of Hg2+ ion from aqueous media, and that it can also be used in biomolecules for the detection of toxic metal ions.

  12. Detection of mercury (II) ions in water by polyelectrolyte-gold nanoparticles coated long period fiber grating sensor

    NASA Astrophysics Data System (ADS)

    Tan, Shin-Yinn; Lee, Sheng-Chyan; Okazaki, Takuya; Kuramitz, Hideki; Abd-Rahman, Faidz

    2018-07-01

    This paper presents mercury (II) ions detection based on long period fiber grating (LPFG) sensor written on a single mode optical fiber by electrical arc induced technique that is suitable to be used for long term monitoring purpose. In the work, the LPFG was coated with both polyelectrolyte (PE) layers to enhance its sensitivity as well as a layer of gold nanoparticles (AuNP) for reaction to the mercury (II) ions. Experiments were conducted using double-pass configurations with mercury (II) ions concentrations varied between 0.5 ppm to 10 ppm. The results showed that the resonance wavelength of the PE-AuNP coated LPFG notch shifted to the longer wavelength, with a total shift of 1.34 nm and transmission power increment of 1.74 dBm over a period of 5 h. The results were then compared with uncoated as well as PE-only coated LPFGs, where no significant changes in resonance wavelength and transmission power were observed for these LPFGs. A novel PE-AuNP coated LPFG sensor that is suitable to be used for in-situ, long term and remote monitoring has been successfully demonstrated and tested for the detection of mercury (II) ions in water.

  13. Some Rare Earth Elements Analysis by Microwave Plasma Torch Coupled with the Linear Ion Trap Mass Spectrometry

    PubMed Central

    Xiong, Xiaohong; Jiang, Tao; Qi, Wenhao; Zuo, Jun; Yang, Meiling; Fei, Qiang; Xiao, Saijin; Yu, Aimin; Zhu, Zhiqiang; Chen, Huanwen

    2015-01-01

    A sensitive mass spectrometric analysis method based on the microwave plasma technique is developed for the fast detection of trace rare earth elements (REEs) in aqueous solution. The plasma was produced from a microwave plasma torch (MPT) under atmospheric pressure and was used as ambient ion source of a linear ion trap mass spectrometer (LTQ). Water samples were directly pneumatically nebulized to flow into the plasma through the central tube of MPT. For some REEs, the generated composite ions were detected in both positive and negative ion modes and further characterized in tandem mass spectrometry. Under the optimized conditions, the limit of detection (LOD) was at the level 0.1 ng/mL using MS2 procedure in negative mode. A single REE analysis can be completed within 2~3 minutes with the relative standard deviation ranging between 2.4% and 21.2% (six repeated measurements) for the 5 experimental runs. Moreover, the recovery rates of these REEs are between the range of 97.6%–122.1%. Two real samples have also been analyzed, including well and orange juice. These experimental data demonstrated that this method is a useful tool for the field analysis of REEs in water and can be used as an alternative supplement of ICP-MS. PMID:26421013

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gundlach-Graham, Alexander W.; Dennis, Elise; Ray, Steven J.

    Here we describe the first combination of a Distance-of-Flight Mass Spectrometry (DOFMS) instrument and an inductively coupled plasma (ICP) ion source. DOFMS is a velocity-based MS technique in which ions of a range of mass-to-charge (m/z) values are detected simultaneously along the length of a spatially selective detector. As a relative of time-of-flight (TOF) MS, DOFMS leverages benefits fromboth TOFMS and spatially dispersive MS. The simultaneous detection of groups of m/z values improves dynamic range by spreading ion signal across many detector elements and reduces correlated noise by signal ratioing. To ascertain the performance characteristics of the ICP-DOFMS instrument, wemore » have employed a microchannel-plate/phosphor detection assembly with a scientific CCD to capture images of the phosphor plate. With this simple (and commercially available) detection scheme, elemental detection limits from 2–30 ng L*1 and a linear dynamic range of 5 orders of magnitude (10–106 ng L1) have been demonstrated. Additionally, a competitive isotope-ratio precision of 0.1% RSD has been achieved with only a 6 s signal integration period. In addition to first figures of merit, this paper outlines technical considerations for the design of the ICP-DOFMS.« less

  15. Enhancing image contrast of carbon nanotubes on cellular background using helium ion microscope by varying helium ion fluence.

    PubMed

    Dykas, M M; Poddar, K; Yoong, S L; Viswanathan, V; Mathew, S; Patra, A; Saha, S; Pastorin, G; Venkatesan, T

    2018-01-01

    Carbon nanotubes (CNTs) have become an important nano entity for biomedical applications. Conventional methods of their imaging, often cannot be applied in biological samples due to an inadequate spatial resolution or poor contrast between the CNTs and the biological sample. Here we report a unique and effective detection method, which uses differences in conductivities of carbon nanotubes and HeLa cells. The technique involves the use of a helium ion microscope to image the sample with the surface charging artefacts created by the He + and neutralised by electron flood gun. This enables us to obtain a few nanometre resolution images of CNTs in HeLa Cells with high contrast, which was achieved by tailoring the He + fluence. Charging artefacts can be efficiently removed for conductive CNTs by a low amount of electrons, the fluence of which is not adequate to discharge the cell surface, resulting in high image contrast. Thus, this technique enables rapid detection of any conducting nano structures on insulating cellular background even in large fields of view and fine spatial resolution. The technique demonstrated has wider applications for researchers seeking enhanced contrast and high-resolution imaging of any conducting entity in a biological matrix - a commonly encountered issue of importance in drug delivery, tissue engineering and toxicological studies. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  16. Ion mobility spectrometry for food quality and safety.

    PubMed

    Vautz, W; Zimmermann, D; Hartmann, M; Baumbach, J I; Nolte, J; Jung, J

    2006-11-01

    Ion mobility spectrometry is known to be a fast and sensitive technique for the detection of trace substances, and it is increasingly in demand not only for protection against explosives and chemical warfare agents, but also for new applications in medical diagnosis or process control. Generally, a gas phase sample is ionized by help of ultraviolet light, ss-radiation or partial discharges. The ions move in a weak electrical field towards a detector. During their drift they collide with a drift gas flowing in the opposite direction and, therefore, are slowed down depending on their size, shape and charge. As a result, different ions reach the detector at different drift times, which are characteristic for the ions considered. The number of ions reaching the detector are a measure of the concentration of the analyte. The method enables the identification and quantification of analytes with high sensitivity (ng l(-1) range). The selectivity can even be increased - as necessary for the analyses of complex mixtures - using pre-separation techniques such as gas chromatography or multi-capillary columns. No pre-concentration of the sample is necessary. Those characteristics of the method are preserved even in air with up to a 100% relative humidity rate. The suitability of the method for application in the field of food quality and safety - including storage, process and quality control as well as the characterization of food stuffs - was investigated in recent years for a number of representative examples, which are summarized in the following, including new studies as well: (1) the detection of metabolites from bacteria for the identification and control of their growth; (2) process control in food production - beer fermentation being an example; (3) the detection of the metabolites of mould for process control during cheese production, for quality control of raw materials or for the control of storage conditions; (4) the quality control of packaging materials during the production of polymeric materials; and (5) the characterization of products - wine being an example. The challenges of such applications were operation in humid air, fast on-line analyses of complex mixtures, high sensitivity - detection limits have to be, for example, in the range of the odour limits - and, in some cases, the necessity of mobile instrumentation. It can be shown that ion mobility spectrometry is optimally capable of fulfilling those challenges for many applications.

  17. A review on creatinine measurement techniques.

    PubMed

    Mohabbati-Kalejahi, Elham; Azimirad, Vahid; Bahrami, Manouchehr; Ganbari, Ahmad

    2012-08-15

    This paper reviews the entire recent global tendency for creatinine measurement. Creatinine biosensors involve complex relationships between biology and micro-mechatronics to which the blood is subjected. Comparison between new and old methods shows that new techniques (e.g. Molecular Imprinted Polymers based algorithms) are better than old methods (e.g. Elisa) in terms of stability and linear range. All methods and their details for serum, plasma, urine and blood samples are surveyed. They are categorized into five main algorithms: optical, electrochemical, impedometrical, Ion Selective Field-Effect Transistor (ISFET) based technique and chromatography. Response time, detection limit, linear range and selectivity of reported sensors are discussed. Potentiometric measurement technique has the lowest response time of 4-10 s and the lowest detection limit of 0.28 nmol L(-1) belongs to chromatographic technique. Comparison between various techniques of measurements indicates that the best selectivity belongs to MIP based and chromatographic techniques. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Operando analysis of lithium profiles in Li-ion batteries using nuclear microanalysis

    NASA Astrophysics Data System (ADS)

    Surblé, S.; Paireau, C.; Martin, J.-F.; Tarnopolskiy, V.; Gauthier, M.; Khodja, H.; Daniel, L.; Patoux, S.

    2018-07-01

    A wide variety of analytical methods are used for studying the behavior of lithium-ion batteries and particularly the lithium ion distribution in the electrodes. However, the development of in situ/operando techniques proved powerful to understand the mechanisms responsible for the lithium trapping and then the aging phenomenon. Herein, we report the design of an electrochemical cell to profile operando lithium concentration in LiFePO4 electrodes using Ion Beam Analysis techniques. The specificity of the cell resides in its ability to not only provide qualitative information about the elements present but above all to measure quantitatively their content in the electrode at different states of charge of the battery. The nuclear methods give direct information about the degradation of the electrolyte and particularly reveal inhomogeneous distributions of lithium and fluorine along the entire thickness of the electrode. Higher concentrations of fluorine is detected near the electrode/electrolyte interface while a depletion of lithium is observed near the current collector at high states of charge.

  19. Optical Waveguide Lightmode Spectroscopic Techniques for Investigating Membrane-Bound Ion Channel Activities

    PubMed Central

    Székács, Inna; Kaszás, Nóra; Gróf, Pál; Erdélyi, Katalin; Szendrő, István; Mihalik, Balázs; Pataki, Ágnes; Antoni, Ferenc A.; Madarász, Emilia

    2013-01-01

    Optical waveguide lightmode spectroscopic (OWLS) techniques were probed for monitoring ion permeation through channels incorporated into artificial lipid environment. A novel sensor set-up was developed by depositing liposomes or cell-derived membrane fragments onto hydrophilic polytetrafluoroethylene (PTFE) membrane. The fibrous material of PTFE membrane could entrap lipoid vesicles and the water-filled pores provided environment for the hydrophilic domains of lipid-embedded proteins. The sensor surface was kept clean from the lipid holder PTFE membrane by a water- and ion-permeable polyethylene terephthalate (PET) mesh. The sensor set-up was tested with egg yolk lecithin liposomes containing gramicidin ion channels and with cell-derived membrane fragments enriched in GABA-gated anion channels. The method allowed monitoring the move of Na+ and organic cations through gramicidin channels and detecting the Cl–-channel functions of the (α5β2γ2) GABAA receptor in the presence or absence of GABA and the competitive GABA-blocker bicuculline. PMID:24339925

  20. Penicillamine-modified sensor for the voltammetric determination of Cd(II) and Pb(II) ions in natural samples.

    PubMed

    Pérez-Ràfols, Clara; Serrano, Núria; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel

    2015-11-01

    A new penicillamine-GCE was developed based on the immobilization of d-penicillamine on aryl diazonium salt monolayers anchored to the glassy carbon electrode (GCE) surface and it was applied for the first time to the simultaneous determination of Cd(II) and Pb(II) ions by stripping voltammetric techniques. The detection and quantification limits at levels of µg L(-1) suggest that the penicillamine-GCE could be fully suitable for the determination of the considered ions in natural samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Laser Induced Breakdown Spectroscopy of Glass and Crystal Samples

    NASA Astrophysics Data System (ADS)

    Sharma, Prakash; Sandoval, Alejandra; Carter, Michael; Kumar, Akshaya

    2015-03-01

    Different types of quartz crystals and rare earth ions doped glasses have been identified using the laser induced breakdown spectroscopy (LIBS) technique. LIBS is a real time technique, can be used to identify samples in solid, liquid and gas phases. The advantage of LIBS technique is that no sample preparation is required and laser causes extremely minimal damage to the sample surface. The LIBS spectrum of silicate glasses, prepared by sol-gel method and doped with different concentration of rare earth ions, has been recorded. The limit of detection of rare earth ions in glass samples has been calculated. Total 10 spectrums of each sample were recorded and then averaged to get a final spectrum. The ocean optics LIBS2500 plus spectrometer along with a Q- switched Nd: YAG laser (Quantel, Big Sky) were used to record the LIBS spectrum. This spectrometer can analyze the sample in the spectral range of 200 nm to 980 nm. The spectrum was processed by OOILIBS-plus (v1.0) software. This study has application in the industry where different crystals can be easily identified before they go for shaping and polishing. Also, concentration of rare earth ions in glass can be monitored in real time for quality control.

  2. ANALYSIS OF HYDROPONIC FERTILIZER MATRIXES FOR PERCHLORATE: COMPARISON OF ANALYTICAL TECHNIQUES

    EPA Science Inventory

    Seven retail hydroponic nitrate fertilizer products, two liquid and five solid, were comparatively analyzed for the perchlorate anion (ClO4-) by ion chromatography (IC) with suppressed conductivity detection, complexation electrospray ionization mass spectrometry (cESI-MS), norma...

  3. Giga-ohm seals on intracellular membranes: a technique for studying intracellular ion channels in intact cells.

    PubMed

    Jonas, E A; Knox, R J; Kaczmarek, L K

    1997-07-01

    A method is outlined for obtaining giga-ohm seals on intracellular membranes in intact cells. The technique employs a variant of the patch-clamp technique: a concentric electrode arrangement protects an inner patch pipette during penetration of the plasma membrane, after which a seal can be formed on an internal organelle membrane. Using this technique, successful recordings can be obtained with the same frequency as with conventional patch clamping. To localize the position of the pipette within cells, lipophilic fluorescent dyes are included in the pipette solution. These dyes stain the membrane of internal organelles during seal formation and can then be visualized by video-enhanced or confocal imaging. The method can detect channels activated by inositol trisphosphate, as well as other types of intracellular membrane ion channel activity, and should facilitate studies of internal membranes in intact neurons and other cell types.

  4. Using ICP-OES and SEM-EDX in biosorption studies

    PubMed Central

    Chojnacka, Katarzyna; Marycz, Krzysztof

    2010-01-01

    We have compared the analytical results obtained by inductively coupled plasma optical emission spectroscopy (ICP-OES) and by scanning electron microscopy with an energy dispersive X-ray analytical system (SEM-EDX) in order to explore the mechanism of metal ions biosorption by biomass using two independent methods. The marine macroalga Enteromorpha sp. was enriched with Cu(II), Mn(II), Zn(II), and Co(II) ions via biosorption, and the biosorption capacity of alga determined from the solution and biomass composition before and after biosorption process was compared. The first technique was used to analyze the composition of the natural and metal-loaded biomass, and additionally the composition of the solution before and after biosorption. The second technique was used to obtain a picture of the surface of natural and metal ion-loaded macroalgae, to map the elements on the cell wall of dry biomass, and to determine their concentration before and after biosorption. ICP-OES showed a better precision and lower detection limit than EDX, but SEM-EDX gave more information regarding the sample composition of Enteromorpha sp. Both techniques confirmed that biosorption is a surface phenomenon, in which alkali and alkaline earth metal ions were exchanged by metal ions from aqueous solution. Figure The advantages and disadvantages of ICP-OES and SEM-EDX techniques Electronic supplementary material The online version of this article (doi:10.1007/s00604-010-0468-0) contains supplementary material, which is available to authorized users. PMID:21423317

  5. Using ICP-OES and SEM-EDX in biosorption studies.

    PubMed

    Michalak, Izabela; Chojnacka, Katarzyna; Marycz, Krzysztof

    2011-02-01

    We have compared the analytical results obtained by inductively coupled plasma optical emission spectroscopy (ICP-OES) and by scanning electron microscopy with an energy dispersive X-ray analytical system (SEM-EDX) in order to explore the mechanism of metal ions biosorption by biomass using two independent methods. The marine macroalga Enteromorpha sp. was enriched with Cu(II), Mn(II), Zn(II), and Co(II) ions via biosorption, and the biosorption capacity of alga determined from the solution and biomass composition before and after biosorption process was compared. The first technique was used to analyze the composition of the natural and metal-loaded biomass, and additionally the composition of the solution before and after biosorption. The second technique was used to obtain a picture of the surface of natural and metal ion-loaded macroalgae, to map the elements on the cell wall of dry biomass, and to determine their concentration before and after biosorption. ICP-OES showed a better precision and lower detection limit than EDX, but SEM-EDX gave more information regarding the sample composition of Enteromorpha sp. Both techniques confirmed that biosorption is a surface phenomenon, in which alkali and alkaline earth metal ions were exchanged by metal ions from aqueous solution.FigureThe advantages and disadvantages of ICP-OES and SEM-EDX techniques ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00604-010-0468-0) contains supplementary material, which is available to authorized users.

  6. Two in one: making electron and ion measurements using a single MCP in future top hat instruments.

    NASA Astrophysics Data System (ADS)

    Bedington, Robert; Saito, Yoshifumi

    To allow for the reduced use of spacecraft resources in future missions, we are developing techniques to enable both electrons and ions to be measured in a single top hat instrument. Top hat energy analyser instruments typically analyse charged particles from a few eV to a few tens keV. They consist of an electrostatic, energy-analyser section and a detector. MCPs (micro-channel plates) are the most commonly used detectors, because of their high sensitivity and strong heritage in space instrumentation. To detect the lowest energies of charged particles, a pre-accelerating bias potential is applied to the front surface of the MCP, however this voltage cannot be altered quickly without drastically affecting the detector response. Any instrument that detects both electrons and ions, will therefore typically use two detectors (with fixed voltages)—one for electrons, one for ions, and will often use two separate energy analysers. Significant resource savings are available however if just a single MCP can be used. This can be achieved by having incoming ions (and optionally incoming electrons also) impact a secondary electron emitting material, and thus release secondary electrons to be detected by a positively biased (electron-detecting) MCP. Unlike MCPs, the electrostatic, energy-analyser sections are able to have their voltages cycled extremely rapidly, so that they can be made to sample electrons and then ions in quick succession with minimal design changes required. Two secondary electron conversion methods are being investigated: ultra-thin carbon foils, and dynodes. Using carbon foils in front of the MCPs, incoming ions can be detected by the secondary electrons they release, while incoming electrons pass straight through them. Using dynodes all incoming particles can be converted to secondary electrons before detection. The challenges include finding materials with uniform electron emission responses for the desired energies and particles, managing electric fields and scattered primary electrons. Experiments pertaining to this research will be discussed. These investigations are being pursued as prototype developments for the SCOPE mission for use on the EISA (Electron & Ion Spectrum Analyzer) instrument.

  7. Quasi-simultaneous Measurements of Ionic Currents by Vibrating Probe and pH Distribution by Ion-selective Microelectrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, H.S.; Lamaka, S.V.; Taryba, M.

    2011-01-01

    This work reports a new methodology to measure quasi-simultaneously the local electric fields and the distribution of specific ions in a solution via selective microelectrodes. The field produced by the net electric current was detected using the scanning vibrating electrode technique (SVET) with quasi-simultaneous measurements of pH with an ion-selective microelectrode (pH-SME). The measurements were performed in a validation cell providing a 48 ?m diameter Pt wire cross section as a source of electric current. A time lag between acquiring each current density and pH data-point was 1.5 s due to the response time of pH-SME. The quasi-simultaneous SVET-pH measurementsmore » that correlate electrochemical oxidation-reduction processes with acid-base chemical equilibria are reported for the first time. No cross-talk between the vibrating microelectrode and the ion-selective microelectrode could be detected under given experimental conditions.« less

  8. Postage stamp-sized array sensor for the sensitive screening test of heavy-metal ions.

    PubMed

    Zhang, Yu; Li, Xiao; Li, Hui; Song, Ming; Feng, Liang; Guan, Yafeng

    2014-10-07

    The sensitive determination of heavy-metal ions has been widely investigated in recent years due to their threat to the environment and to human health. Among various analytical detection techniques, inexpensive colorimetric testing papers/strips play a very important role. The limitation, however, is also clear: the sensitivity is usually low and the selectivity is poor. In this work, we have developed a postage stamp-sized array sensor composed of nine commercially available heterocyclic azo indicators. Combining filtration-based enrichment with an array of technologies-based pattern-recognition, we have obtained the discrimination capability for seven heavy-metal ions (Hg(2+), Pb(2+), Ag(+), Ni(2+), Cu(2+), Zn(2+), and Co(2+)) at their Chinese wastewater discharge standard concentrations. The allowable detection level of Hg(2+) was down to 0.05 mg L(-1). The heavy-metal ions screening test was readily achieved using a standard chemometric approach. And the array sensor applied well in real water samples.

  9. A Novel Computational Method to Reduce Leaky Reaction in DNA Strand Displacement

    PubMed Central

    Li, Xin; Wang, Xun; Song, Tao; Lu, Wei; Chen, Zhihua; Shi, Xiaolong

    2015-01-01

    DNA strand displacement technique is widely used in DNA programming, DNA biosensors, and gene analysis. In DNA strand displacement, leaky reactions can cause DNA signals decay and detecting DNA signals fails. The mostly used method to avoid leakage is cleaning up after upstream leaky reactions, and it remains a challenge to develop reliable DNA strand displacement technique with low leakage. In this work, we address the challenge by experimentally evaluating the basic factors, including reaction time, ratio of reactants, and ion concentration to the leakage in DNA strand displacement. Specifically, fluorescent probes and a hairpin structure reporting DNA strand are designed to detect the output of DNA strand displacement, and thus can evaluate the leakage of DNA strand displacement reactions with different reaction time, ratios of reactants, and ion concentrations. From the obtained data, mathematical models for evaluating leakage are achieved by curve derivation. As a result, it is obtained that long time incubation, high concentration of fuel strand, and inappropriate amount of ion concentration can weaken leaky reactions. This contributes to a method to set proper reaction conditions to reduce leakage in DNA strand displacement. PMID:26491602

  10. Ion-imprinted nanoparticles for the concurrent estimation of Pb(II) and Cu(II) ions over a two channel surface plasmon resonance-based fiber optic platform

    NASA Astrophysics Data System (ADS)

    Shrivastav, Anand Mohan; Gupta, Banshi D.

    2018-01-01

    We report the design, fabrication, and characterization of an optical fiber sensor based on the surface plasmon resonance (SPR) technique for the simultaneous determination of lead (Pb) and copper (Cu) metal ions in aqueous samples. Two cascade channels over a single optical fiber are fabricated by removing cladding from two well-separated regions of the fiber. SPR working as a transducing mechanism for the sensor is realized by coating thin films of copper and silver over unclad cores of channel I and channel II, respectively. Ion-imprinted nanoparticles for both ions are separately synthesized and coated over the metal-coated unclad cores of the fiber as the recognition layers for sensor fabrication. A first channel having layer of Pb(II) ion-imprinted nanoparticles detects Pb(II) ions and a second channel having layer of Cu(II) ion-imprinted nanoparticles are used for the detection of Cu(II) ions. Both channels are characterized using the wavelength interrogation method. The sensor operates in the range between 0 to 1000 μg/L and 0 to 1000 mg/L for Pb(II) and Cu(II) ions, respectively. These ranges cover water resources and the human body for these ions. The sensitivities of channel I and channel II are found to be 8.19×104 nm/(μg/L) and 4.07×105 nm/(mg/L) near the lowest concentration of Pb(II) and Cu(II) ions, respectively. The sensor can detect concentrations of Pb(II) and Cu(II) ions as low as 4.06 × 10-12 g/L and 8.18 × 10-10 g/L, respectively, which are the least among the reported values in the literature. Further, the probe is simple, cost effective, highly selective, and applicable for online monitoring and remote sensing.

  11. A Cr(VI) selective probe based on a quinoline-amide calix[4]arene

    NASA Astrophysics Data System (ADS)

    Ferreira, Juliane F.; Bagatin, Izilda A.

    2018-01-01

    A new quinoline-amide calix[4]arene 3-receptor for detection of hazardous anions and cations have been synthesized. The 3-receptor was examined for its sensing properties towards several different anions (Cr2O72 -, SCN-, F-, Cl-, NO3-) and metal ions (Hg2+, Cd2+, Ag+) by UV-vis and fluorescence spectroscopies. It was detected that the 3-receptor has only sensing ability for Cr2O72 - and Hg2+ ions, resulting in the association constants higher for Cr2O72 - than to the Hg2+ ions. High selectivity towards Cr2O72 - were also observed by fluorescence measurement among other ions (F-, Cl-, SCN-, Hg2+, Cd2+, Ag+) with a low limit of detection (7.36 × 10-6 mol dm-3). Proton NMR anion-binding investigations revealed a strong interaction of Cr2O72 - anion with NH and CH groups of the receptor, showing that the combination with hydrogen-bonds donor groups strengthened the anion receptor association. Furthermore, remarkable association constants for dichromate anion obtained by all techniques strongly suggest the 3-receptor as a selective Cr(VI) sensor.

  12. Gas chromatography/ion mobility spectrometry as a hyphenated technique for improved explosives detection and analysis

    NASA Technical Reports Server (NTRS)

    Mercado, AL; Marsden, Paul

    1995-01-01

    Ion Mobility Spectrometry (IMS) is currently being successfully applied to the problem of on-line trace detection of plastic and other explosives in airports and other facilities. The methods of sample retrieval primarily consist of batch sampling for particulate residue on a filter card for introduction into the IMS. The sample is desorbed into the IMS using air as the carrier and negative ions of the explosives are detected, some as an adduct with a reagent ion such as Cl(-). Based on studies and tests conducted by different airport authorities, this method seems to work well for low vapor pressure explosives such as RDX and PETN, as well as TNT that are highly adsorptive and can be found in nanogram quantities on contaminated surfaces. Recently, the changing terrorist threat and the adoption of new marking agents for plastic explosives has meant that the sample introduction and analysis capabilities of the IMS must be enhanced in order to keep up with other detector developments. The IMS has sufficient analytical resolution for a few threat compounds but the IMS Plasmogram becomes increasingly more difficult to interpret when the sample mixture gets more complex.

  13. A Cr(VI) selective probe based on a quinoline-amide calix[4]arene.

    PubMed

    Ferreira, Juliane F; Bagatin, Izilda A

    2018-01-15

    A new quinoline-amide calix[4]arene 3-receptor for detection of hazardous anions and cations have been synthesized. The 3-receptor was examined for its sensing properties towards several different anions (Cr 2 O 7 2- , SCN - , F - , Cl - , NO 3 - ) and metal ions (Hg 2+ , Cd 2+ , Ag + ) by UV-vis and fluorescence spectroscopies. It was detected that the 3-receptor has only sensing ability for Cr 2 O 7 2- and Hg 2+ ions, resulting in the association constants higher for Cr 2 O 7 2- than to the Hg 2+ ions. High selectivity towards Cr 2 O 7 2- were also observed by fluorescence measurement among other ions (F - , Cl - , SCN - , Hg 2+ , Cd 2+ , Ag + ) with a low limit of detection (7.36×10 -6 moldm -3 ). Proton NMR anion-binding investigations revealed a strong interaction of Cr 2 O 7 2- anion with NH and CH groups of the receptor, showing that the combination with hydrogen-bonds donor groups strengthened the anion receptor association. Furthermore, remarkable association constants for dichromate anion obtained by all techniques strongly suggest the 3-receptor as a selective Cr(VI) sensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Measuring Transmission Efficiencies Of Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Srivastava, Santosh K.

    1989-01-01

    Coincidence counts yield absolute efficiencies. System measures mass-dependent transmission efficiencies of mass spectrometers, using coincidence-counting techniques reminiscent of those used for many years in calibration of detectors for subatomic particles. Coincidences between detected ions and electrons producing them counted during operation of mass spectrometer. Under certain assumptions regarding inelastic scattering of electrons, electron/ion-coincidence count is direct measure of transmission efficiency of spectrometer. When fully developed, system compact, portable, and used routinely to calibrate mass spectrometers.

  15. Residual chromatin breaks as biodosimetry for cell killing by carbon ions.

    PubMed

    Suzuki, M; Kase, Y; Nakano, T; Kanai, T; Ando, K

    1998-01-01

    We have studied the relationship between cell killing and the induction of residual chromatin breaks on various human cell lines and primary cultured cells obtained by biopsy from patients irradiated with either X-rays or heavy-ion beams to identify potential bio-marker of radiosensitivity for radiation-induced cell killing. The carbon-ion beams were accelerated with the Heavy Ion Medical Accelerator in Chiba (HIMAC). Six primary cultures obtained by biopsy from 6 patients with carcinoma of the cervix were irradiated with two different mono-LET beams (LET = 13 keV/micrometer, 76 keV/micrometer) and 200kV X rays. Residual chromatin breaks were measured by counting the number of non-rejoining chromatin fragments detected by the premature chromosome condensation (PCC) technique after a 24 hour post-irradiation incubation period. The induction rate of residual chromatin breaks per cell per Gy was the highest for 76 keV/micrometer beams on all of the cells. Our results indicated that cell which was more sensitive to the cell killing was similarly more susceptible to induction of residual chromatin breaks. Furthermore there is a good correlation between these two end points in various cell lines and primary cultured cells. This suggests that the detection of residual chromatin breaks by the PCC technique may be useful as a predictive assay of tumor response to cancer radiotherapy.

  16. Residual chromatin breaks as biodosimetry for cell killing by carbon ions

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Kase, Y.; Nakano, T.; Kanai, T.; Ando, K.

    1998-11-01

    We have studied the relationship between cell killing and the induction of residual chromatin breaks on various human cell lines and primary cultured cells obtained by biopsy from patients irradiated with either X-rays or heavy-ion beams to identify potential bio-marker of radiosensitivity for radiation-induced cell killing. The carbon-ion beams were accelerated with the Heavy Ion Medical Accelerator in Chiba (HIMAC). Six primary cultures obtained by biopsy from 6 patients with carcinoma of the cervix were irradiated with two different mono-LET beams (LET = 13 keV/μm, 76 keV/μm) and 200kV X rays. Residual chromatin breaks were measured by counting the number of non-rejoining chromatin fragments detected by the premature chromosome condensation (PCC) technique after a 24 hour post-irradiation incubation period. The induction rate of residual chromatin breaks per cell per Gy was the highest for 76 keV/μm beams on all of the cells. Our results indicated that cell which was more sensitive to the cell killing was similarly more susceptible to induction of residual chromatin breaks. Furthermore there is a good correlation between these two end points in various cell lines and primary cultured cells. This suggests that the detection of residual chromatin breaks by the PCC technique may be useful as a predictive assay of tumor response to cancer radiotherapy.

  17. Application of ion chromatography in clinical studies and pharmaceutical industry.

    PubMed

    Michalski, Rajmund

    2014-01-01

    Ion chromatography is a well-established regulatory method for analyzing anions and cations in environmental, food and many other samples. It offers an enormous range of possibilities for selecting stationary and mobile phases. Additionally, it usually helps to solve various separation problems, particularly when it is combined with different detection techniques. Ion chromatography can also be used to determine many ions and substances in clinical and pharmaceutical samples. It provides: availability of high capacity stationary phases and sensitive detectors; simple sample preparation; avoidance of hazardous chemicals; decreased sample volumes; flexible reaction options on a changing sample matrix to be analyzed; or the option to operate a fully-automated system. This paper provides a short review of the ion chromatography applications for determining different inorganic and organic substances in clinical and pharmaceutical samples.

  18. Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry.

    PubMed

    Farmer, D K; Matsunaga, A; Docherty, K S; Surratt, J D; Seinfeld, J H; Ziemann, P J; Jimenez, J L

    2010-04-13

    Organonitrates (ON) are important products of gas-phase oxidation of volatile organic compounds in the troposphere; some models predict, and laboratory studies show, the formation of large, multifunctional ON with vapor pressures low enough to partition to the particle phase. Organosulfates (OS) have also been recently detected in secondary organic aerosol. Despite their potential importance, ON and OS remain a nearly unexplored aspect of atmospheric chemistry because few studies have quantified particulate ON or OS in ambient air. We report the response of a high-resolution time-of-flight aerosol mass spectrometer (AMS) to aerosol ON and OS standards and mixtures. We quantify the potentially substantial underestimation of organic aerosol O/C, commonly used as a metric for aging, and N/C. Most of the ON-nitrogen appears as NO(x)+ ions in the AMS, which are typically dominated by inorganic nitrate. Minor organonitrogen ions are observed although their identity and intensity vary between standards. We evaluate the potential for using NO(x)+ fragment ratios, organonitrogen ions, HNO(3)+ ions, the ammonium balance of the nominally inorganic ions, and comparison to ion-chromatography instruments to constrain the concentrations of ON for ambient datasets, and apply these techniques to a field study in Riverside, CA. OS manifests as separate organic and sulfate components in the AMS with minimal organosulfur fragments and little difference in fragmentation from inorganic sulfate. The low thermal stability of ON and OS likely causes similar detection difficulties for other aerosol mass spectrometers using vaporization and/or ionization techniques with similar or larger energy, which has likely led to an underappreciation of these species.

  19. Determination of trace level bromate and perchlorate in drinking water by ion chromatography with an evaporative preconcentration technique.

    PubMed

    Liu, Yongjian; Mou, Shifen; Heberling, Shawn

    2002-05-17

    A simple sample preconcentration technique employing microwave-based evaporation for the determination of trace level bromate and perchlorate in drinking water with ion chromatography is presented. With a hydrophilic anion-exchange column and a sodium hydroxide eluent in linear gradient, bromate and perchlorate can be determined in one injection within 35 min. Prior to ion chromatographic analysis, the drinking water sample was treated with an OnGuard-Ag cartridge to remove the superfluous chloride and concentrated 20-fold using a PTFE beaker in a domestic microwave oven for 15 min. The recoveries of the anions ranged from 94.6% for NO2- to 105.2% for F-. The detection limits for bromate, perchlorate, iodate and chlorate were 0.1, 0.2, 0.1 and 0.2 microg/l, respectively. The developed method is applicable for the quantitation of bromate and perchlorate in drinking water samples.

  20. Perchlorate as an emerging contaminant in soil, water and food.

    PubMed

    Kumarathilaka, Prasanna; Oze, Christopher; Indraratne, S P; Vithanage, Meththika

    2016-05-01

    Perchlorate ( [Formula: see text] ) is a strong oxidizer and has gained significant attention due to its reactivity, occurrence, and persistence in surface water, groundwater, soil and food. Stable isotope techniques (i.e., ((18)O/(16)O and (17)O/(16)O) and (37)Cl/(35)Cl) facilitate the differentiation of naturally occurring perchlorate from anthropogenic perchlorate. At high enough concentrations, perchlorate can inhibit proper function of the thyroid gland. Dietary reference dose (RfD) for perchlorate exposure from both food and water is set at 0.7 μg kg(-1) body weight/day which translates to a drinking water level of 24.5 μg L(-1). Chromatographic techniques (i.e., ion chromatography and liquid chromatography mass spectrometry) can be successfully used to detect trace level of perchlorate in environmental samples. Perchlorate can be effectively removed by wide variety of remediation techniques such as bio-reduction, chemical reduction, adsorption, membrane filtration, ion exchange and electro-reduction. Bio-reduction is appropriate for large scale treatment plants whereas ion exchange is suitable for removing trace level of perchlorate in aqueous medium. The environmental occurrence of perchlorate, toxicity, analytical techniques, removal technologies are presented. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Development and characterization of semiconductor ion detectors for plasma diagnostics in the range over 0.3 keV

    NASA Astrophysics Data System (ADS)

    Cho, T.; Sakamoto, Y.; Hirata, M.; Kohagura, J.; Makino, K.; Kanke, S.; Takahashi, K.; Okamura, T.; Nakashima, Y.; Yatsu, K.; Tamano, T.; Miyoshi, S.

    1997-01-01

    For the purpose of plasma-ion-energy analyses in a wide-energy range from a few hundred eV to hundreds of keV, upgraded semiconductor detectors are newly fabricated and characterized using a test-ion-beam line from 0.3 to 12 keV. In particular, the detectable lowest-ion energy is drastically improved at least down to 0.3 keV; this energy is one to two orders-of-magnitude better than those for commercially available Si-surface-barrier diodes employed for previous plasma-ion diagnostics. A signal-to-noise ratio of two to three orders-of-magnitude better than that for usual metal-collector detectors is demonstrated for the compact-sized semiconductor along with the availability of the use under conditions of a good vacuum and a strong-magnetic field. Such characteristics are achieved due to the improving methods of the optimization of the thicknesses of a Si dead layer and a SiO2 layer, as well as the nitrogen-doping technique near the depletion layer along with minimizing impurity concentrations in Si. Such an upgraded capability of an extremely low-energy-ion detection with the low-noise characteristics enlarges research regimes of plasma-ion behavior using semiconductor detectors not only in the divertor regions of tokamaks but in wider spectra of open-field plasma devices including tandem mirrors. An application of the semiconductor ion detector for plasma-ion diagnostics is demonstrated in a specially designed ion-spectrometer structure.

  2. MALDI versus ESI: The Impact of the Ion Source on Peptide Identification.

    PubMed

    Nadler, Wiebke Maria; Waidelich, Dietmar; Kerner, Alexander; Hanke, Sabrina; Berg, Regina; Trumpp, Andreas; Rösli, Christoph

    2017-03-03

    For mass spectrometry-based proteomic analyses, electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) are the commonly used ionization techniques. To investigate the influence of the ion source on peptide detection in large-scale proteomics, an optimized GeLC/MS workflow was developed and applied either with ESI/MS or with MALDI/MS for the proteomic analysis of different human cell lines of pancreatic origin. Statistical analysis of the resulting data set with more than 72 000 peptides emphasized the complementary character of the two methods, as the percentage of peptides identified with both approaches was as low as 39%. Significant differences between the resulting peptide sets were observed with respect to amino acid composition, charge-related parameters, hydrophobicity, and modifications of the detected peptides and could be linked to factors governing the respective ion yields in ESI and MALDI.

  3. Ultrasound-assisted analyte extraction for the determination of sulfate and elemental sulfur in zinc sulfide by different liquid chromatography techniques.

    PubMed

    Dash, K; Thangavel, S; Krishnamurthy, N V; Rao, S V; Karunasagar, D; Arunachalam, J

    2005-04-01

    The speciation and determination of sulfate (SO4(2-)) and elemental sulfur (S degree) in zinc sulfide (ZnS) using ion-chromatography (IC) and reversed-phase liquid chromatography (RPLC) respectively is described. Three sample pretreatment approaches were employed with the aim of determining sulfate: (i) conventional water extraction of the analyte; (ii) solid-liquid aqueous extraction with an ultrasonic probe; and (iii) elimination of the zinc sulfide matrix via ion-exchange dissolution (IED). The separation of sulfate was carried out by an anion-exchange column (IonPac AS17), followed by suppressed conductivity detection. Elemental sulfur was extracted ultrasonically from the acid treated sample solution into chloroform and separated on a reversed phase HPLC column equipped with a diode array detector (DAD) at 264 nm. The achievable solid detection limits for sulfate and sulfur were 35 and 10 microg g(-1) respectively.

  4. A novel route to recognizing quaternary ammonium cations using electrospray mass spectrometry.

    PubMed

    Shackman, Holly M; Ding, Wei; Bolgar, Mark S

    2015-01-01

    Characterizing and elucidating structures is a commonplace and necessary activity in the pharmaceutical industry with mass spectrometry and NMR being the primary tools for analysis. Although many functional groups are readily identifiable, quaternary ammonium cations have proven to be difficult to unequivocally identify using these techniques. Due to the lack of an N-H bond, quaternary ammonium groups can only be detected in the (1)H NMR spectra by weak signals generated from long-range (14)N-H coupling, which by themselves are inconclusive evidence of a quaternary ammonium functional group. Due to their low intensity, these signals are frequently not detected. Additionally, ions cannot be differentiated in a mass spectrum as an M(+) or [M + H](+) ion without prior knowledge of the compound's structure. In order to utilize mass spectrometry as a tool for determining this functionality, ion cluster formation of quaternary ammonium cations and non-quaternary amines was studied using electrospray ionization. Several mobile phase modifiers were compared; however, the addition of small amounts of trifluoroacetic acid proved superior in producing characteristic and intense [M +2TFA](-) clusters for compounds containing quaternary ammonium cations when using negative electrospray. By fragmenting this characteristic ion using CID, nearly all compounds studied could be unambiguously identified as containing a quaternary ammonium cation or a non-quaternary amine attributable to the presence (non-quaternary amine) or absence (quaternary ammonium cation) of the resulting [2TFA + H](-) ion in the product spectra. This method of analysis provides a rapid, novel, and reliable technique for indicating the presence of quaternary ammonium cations in order to aid in structural elucidation.

  5. Sensor-actuator system for dynamic chloride ion determination.

    PubMed

    de Graaf, Derk Balthazar; Abbas, Yawar; Gerrit Bomer, Johan; Olthuis, Wouter; van den Berg, Albert

    2015-08-12

    Chloride is a crucial anion for various analytical applications from biological to environmental applications. In order to measure the chloride ion concentration, a measurement system is needed which can detect this concentration for prolonged times reliably. Chronopotentiometry is a technique which does not need a long term stable reference electrode and is therefore very suitable for prolonged ion concentration measurements. As the used electrode might be fouled by reaction products, this work focuses on a chronopotentiometric approach with a separated sensing electrode (sensor) and actuating electrode (actuator). Both actuation and sensor electrode are made of Ag/AgCl. A constant current is applied to the actuator and will start the reaction between Ag and Cl-, while the resulting Cl- ion concentration change is observed through the sensor, which is placed close to the actuator. The time it takes to locally deplete the Cl- ions is called transition time. Experiments were performed to verify the feasibility of this approach. The performed experiments show that the sensor detects the local concentration changes resulting from the current applied to the actuator. A linear relation between the Cl- ion concentration and the square root of the transition time was observed, just as was predicted by theory. The calibration curves for different chips showed that both a larger sensor and a larger distance between sensor and actuator resulted in a larger time delay between the transition time detected at the actuator and the sensor. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Dehydrated Carbon Coupled with Laser-Induced Breakdown Spectrometry (LIBS) for the Determination of Heavy Metals in Solutions.

    PubMed

    Niu, Guanghui; Shi, Qi; Xu, Mingjun; Lai, Hongjun; Lin, Qingyu; Liu, Kunping; Duan, Yixiang

    2015-10-01

    In this article, a novel and alternative method of laser-induced breakdown spectroscopy (LIBS) analysis for liquid sample is proposed, which involves the removal of metal ions from a liquid to a solid substrate using a cost-efficient adsorbent, dehydrated carbon, obtained using a dehydration reaction. Using this new technique, researchers can detect trace metal ions in solutions qualitatively and quantitatively, and the drawbacks of performing liquid analysis using LIBS can be avoided because the analysis is performed on a solid surface. To achieve better performance using this technique, we considered parameters potentially influencing both adsorption performance and LIBS analysis. The calibration curves were evaluated, and the limits of detection obtained for Cu(2+), Pb(2+), and Cr(3+) were 0.77, 0.065, and 0.46 mg/L, respectively, which are better than those in the previous studies. In addition, compared to other absorbents, the adsorbent used in this technique is much cheaper in cost, easier to obtain, and has fewer or no other elements other than C, H, and O that could result in spectral interference during analysis. We also used the recommended method to analyze spiked samples, obtaining satisfactory results. Thus, this new technique is helpful and promising for use in wastewater analysis and management.

  7. Highly sensitive determination of iron (III) ion based on phenanthroline probe: Surface-enhanced Raman spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Ma, Ning; Park, Yeonju; Jin, Sila; Hwang, Hoon; Jiang, Dayu; Jung, Young Mee

    2018-05-01

    In this paper, we introduced Raman spectroscopy techniques that were based on the traditional Fe3 + determination method with phenanthroline as a probe. Interestingly, surface-enhanced Raman spectroscopy (SERS)-based approach exhibited excellent sensitivities to phenanthroline. Different detection mechanisms were observed for the RR and SERS techniques, in which the RR intensity increased with increasing Fe3 + concentration due to the observation of the RR effect of the phenanthroline-Fe2 + complex, whereas the SERS intensity increased with decreasing Fe3 + concentration due to the observation of the SERS effect of the uncomplexed phenanthroline. More importantly, the determination sensitivity was substantially improved in the presence of a SERS-active substrate, giving a detection limit as low as 0.001 μg/mL, which is 20 times lower than the limit of the UV-vis and RR methods. Furthermore, the proposed SERS method was free from other ions interference and can be used quality and sensitivity for the determination of the city tap water.

  8. Coincidence and covariance data acquisition in photoelectron and -ion spectroscopy. I. Formal theory

    NASA Astrophysics Data System (ADS)

    Mikosch, Jochen; Patchkovskii, Serguei

    2013-10-01

    We derive a formal theory of noisy Poisson processes with multiple outcomes. We obtain simple, compact expressions for the probability distribution function of arbitrarily complex composite events and its moments. We illustrate the utility of the theory by analyzing properties of coincidence and covariance photoelectron-photoion detection involving single-ionization events. The results and techniques introduced in this work are directly applicable to more general coincidence and covariance experiments, including multiple ionization and multiple-ion fragmentation pathways.

  9. Monitoring Ion Implantation Energy Using Non-contact Characterization Methods

    NASA Astrophysics Data System (ADS)

    Tallian, M.; Pap, A.; Mocsar, K.; Somogyi, A.; Nadudvari, Gy.; Kosztka, D.; Pavelka, T.

    2011-01-01

    State-of-the-art ultra-shallow junctions are produced using extremely low ion implant energies, down to the range of 1-3 keV. This can be achieved by a variety of production techniques; however there is a significant risk that the actual implantation energy differs from the desired value. To detect this, sensitive measurement methods need to be utilized. Experiments show that both Photomodulated Reflection measurements before anneal and Junction Photovoltage-based sheet resistance measurements after anneal are suitable for this purpose.

  10. Compositional analysis and depth profiling of thin film CrO{sub 2} by heavy ion ERDA and standard RBS: a comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khamlich, S., E-mail: skhamlich@gmail.com; Department of Chemistry, Tshwane University of Technology, Private Bag X 680, Pretoria, 0001; The African Laser Centre, CSIR campus, P.O. Box 395, Pretoria

    2012-08-15

    Chromium dioxide (CrO{sub 2}) thin film has generated considerable interest in applied research due to the wide variety of its technological applications. It has been extensively investigated in recent years, attracting the attention of researchers working on spintronic heterostructures and in the magnetic recording industry. However, its synthesis is usually a difficult task due to its metastable nature and various synthesis techniques are being investigated. In this work a polycrystalline thin film of CrO{sub 2} was prepared by electron beam vaporization of Cr{sub 2}O{sub 3} onto a Si substrate. The polycrystalline structure was confirmed through XRD analysis. The stoichiometry andmore » elemental depth distribution of the deposited film were measured by ion beam nuclear analytical techniques heavy ion elastic recoil detection analysis (ERDA) and Rutherford backscattering spectrometry (RBS), which both have relative advantage over non-nuclear spectrometries in that they can readily provide quantitative information about the concentration and distribution of different atomic species in a layer. Moreover, the analysis carried out highlights the importance of complementary usage of the two techniques to obtain a more complete description of elemental content and depth distribution in thin films. - Graphical abstract: Heavy ion elastic recoil detection analysis (ERDA) and Rutherford backscattering spectrometry (RBS) both have relative advantage over non-nuclear spectrometries in that they can readily provide quantitative information about the concentration and distribution of different atomic species in a layer. Highlights: Black-Right-Pointing-Pointer Thin films of CrO{sub 2} have been grown by e-beam evaporation of Cr{sub 2}O{sub 3} target in vacuum. Black-Right-Pointing-Pointer The composition was determined by heavy ion-ERDA and RBS. Black-Right-Pointing-Pointer HI-ERDA and RBS provided information on the light and heavy elements, respectively.« less

  11. Ceramic Electron Multiplier

    DOE PAGES

    Comby, G.

    1996-10-01

    The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)

  12. Condensation nucleation light scattering detection with ion chromatography for direct determination of glyphosate and its metabolite in water.

    PubMed

    You, Jing; Koropchak, John A

    2003-03-14

    An ion chromatography-condensation nucleation light scattering detection (IC-CNLSD) method was successfully used to directly analyze glyphosate, a polar pesticide, and aminomethylphosaphonic acid, the major metabolite of glyphosate, in water without need of pre-treatment or derivatization. CNLSD gave a LOD of 53 ng/ml for glyphosate, which is much lower than the maximum contaminant level of 700 ng/ml for drinking water issued by the US Environmental Protection Agency. Spiked analytes in different matrixes were tested. A diluted commercial herbicide containing glyphosate was also evaluated. Compared to other reported methods, the IC-CNLSD method has no need of sample derivatization, pre-concentration, and mobile phase conductivity suppression. It is simple, fast and inexpensive. IC-CNLSD is an ideal direct detection technique for such pesticides without chromophores or fluorophores.

  13. Green Synthesis of Silver Nanoparticles Stabilized with Mussel-Inspired Protein and Colorimetric Sensing of Lead(II) and Copper(II) Ions

    PubMed Central

    Cheon, Ja Young; Park, Won Ho

    2016-01-01

    This articles reports a simple and green method for preparing uniform silver nanoparticles (AgNPs), for which self-polymerized 3,4-dihydroxy-l-phenylalanine (polyDOPA) is used as the reducing and stabilizing agent in aqueous media. The AgNPs functionalized by polyDOPA were analyzed by UV–Vis spectroscopy, high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), Raman spectrophotometry, and X-ray diffraction (XRD) techniques. The results revealed that the polyDOPA-AgNPs with diameters of 25 nm were well dispersed due to the polyDOPA. It was noted that the polyDOPA-AgNPs showed selectivity for Pb2+ and Cu2+ detection with the detection limits for the two ions as low as 9.4 × 10−5 and 8.1 × 10−5 μM, respectively. Therefore, the polyDOPA-AgNPs can be applied to both Pb2+ and Cu2+ detection in real water samples. The proposed method will be useful for colorimetric detection of heavy metal ions in aqueous media. PMID:27916894

  14. Continuous Wave Ring-Down Spectroscopy for Velocity Distribution Measurements in Plasma

    NASA Astrophysics Data System (ADS)

    McCarren, Dustin W.

    Cavity Ring-Down Spectroscopy CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique. When combined with a continuous wavelength (CW) diode laser that has a sufficiently narrow line width, the Doppler broadened absorption line, i.e., the velocity distribution functions (VDFs) of the absorbing species, can be measured. Measurements of VDFs can be made using established techniques such as laser induced fluorescence (LIF). However, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density and that the excitation scheme fluoresces at an easily detectable wavelength. This usually limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. Also, as a direct absorption technique, CW-CRDS measurements only need to be concerned with the species' absorption wavelength and provide an absolute measure of the line integrated initial state density. Presented in this work are measurements of argon ion and neutral VDFs in a helicon plasma using CW-CRDS and LIF.

  15. Metal imaging in neurodegenerative diseases

    PubMed Central

    Bourassa, Megan W.

    2014-01-01

    Metal ions are known to play an important role in many neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and prion diseases. In these diseases, aberrant metal binding or improper regulation of redox active metal ions can induce oxidative stress by producing cytotoxic reactive oxygen species (ROS). Altered metal homeostasis is also frequently seen in the diseased state. As a result, the imaging of metals in intact biological cells and tissues has been very important for understanding the role of metals in neurodegenerative diseases. A wide range of imaging techniques have been utilized, including X-ray fluorescence microscopy (XFM), particle induced X-ray emission (PIXE), energy dispersive X-ray spectroscopy (EDS), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS), all of which allow for the imaging of metals in biological specimens with high spatial resolution and detection sensitivity. These techniques represent unique tools for advancing the understanding of the disease mechanisms and for identifying possible targets for developing treatments. In this review, we will highlight the advances in neurodegenerative disease research facilitated by metal imaging techniques. PMID:22797194

  16. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging.

    PubMed

    McDonald, A D; Jones, B J P; Nygren, D R; Adams, C; Álvarez, V; Azevedo, C D R; Benlloch-Rodríguez, J M; Borges, F I G M; Botas, A; Cárcel, S; Carrión, J V; Cebrián, S; Conde, C A N; Díaz, J; Diesburg, M; Escada, J; Esteve, R; Felkai, R; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Goldschmidt, A; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Guenette, R; Hafidi, K; Hauptman, J; Henriques, C A O; Hernandez, A I; Hernando Morata, J A; Herrero, V; Johnston, S; Labarga, L; Laing, A; Lebrun, P; Liubarsky, I; López-March, N; Losada, M; Martín-Albo, J; Martínez-Lema, G; Martínez, A; Monrabal, F; Monteiro, C M B; Mora, F J; Moutinho, L M; Muñoz Vidal, J; Musti, M; Nebot-Guinot, M; Novella, P; Palmeiro, B; Para, A; Pérez, J; Querol, M; Repond, J; Renner, J; Riordan, S; Ripoll, L; Rodríguez, J; Rogers, L; Santos, F P; Dos Santos, J M F; Simón, A; Sofka, C; Sorel, M; Stiegler, T; Toledo, J F; Torrent, J; Tsamalaidze, Z; Veloso, J F C A; Webb, R; White, J T; Yahlali, N

    2018-03-30

    A new method to tag the barium daughter in the double-beta decay of ^{136}Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba^{++}) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (∼2  nm), and detected with a statistical significance of 12.9σ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  17. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.; NEXT Collaboration

    2018-03-01

    A new method to tag the barium daughter in the double-beta decay of Xe 136 is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba++ ) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (˜2 nm ), and detected with a statistical significance of 12.9 σ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  18. Identification of Isomeric N-Glycan Structures by Mass Spectrometry with 157 nm Laser-Induced Photofragmentation

    PubMed Central

    Devakumar, Arugadoss; Mechref, Yehia; Kang, Pilsoo; Novotny, Milos V.; Reilly, James P.

    2008-01-01

    Characterization of structural isomers has become increasingly important and extremely challenging in glycobiology. This communication demonstrates the capability of ion-trap mass spectrometry in conjunction with 157 nm photofragmentation to identify different structural isomers of permethylated N-glycans derived from ovalbumin without chromatographic separation. The results are compared with CID experiments. Photodissociation generates extensive cross-ring fragment ions as well as diagnostic glycosidic product ions that are not usually observed in CID MS/MS experiments. The detection of these product ions aids in characterizing indigenous glycan isomers. The ion-trap facilitates MSn experiments on the diagnostic glycosidic fragments and cross-ring product ions generated through photofragmentation, thus allowing unambiguous assignment of all of the isomeric structures associated with the model glycoprotein utilized in this study. Photofragmentation is demonstrated to be a powerful technique for the structural characterization of glycans. PMID:18487060

  19. Status and outlook of CHIP-TRAP: The Central Michigan University high precision Penning trap

    NASA Astrophysics Data System (ADS)

    Redshaw, M.; Bryce, R. A.; Hawks, P.; Gamage, N. D.; Hunt, C.; Kandegedara, R. M. E. B.; Ratnayake, I. S.; Sharp, L.

    2016-06-01

    At Central Michigan University we are developing a high-precision Penning trap mass spectrometer (CHIP-TRAP) that will focus on measurements with long-lived radioactive isotopes. CHIP-TRAP will consist of a pair of hyperbolic precision-measurement Penning traps, and a cylindrical capture/filter trap in a 12 T magnetic field. Ions will be produced by external ion sources, including a laser ablation source, and transported to the capture trap at low energies enabling ions of a given m / q ratio to be selected via their time-of-flight. In the capture trap, contaminant ions will be removed with a mass-selective rf dipole excitation and the ion of interest will be transported to the measurement traps. A phase-sensitive image charge detection technique will be used for simultaneous cyclotron frequency measurements on single ions in the two precision traps, resulting in a reduction in statistical uncertainty due to magnetic field fluctuations.

  20. A review on prognostics and health monitoring of Li-ion battery

    NASA Astrophysics Data System (ADS)

    Zhang, Jingliang; Lee, Jay

    2011-08-01

    The functionality and reliability of Li-ion batteries as major energy storage devices have received more and more attention from a wide spectrum of stakeholders, including federal/state policymakers, business leaders, technical researchers, environmental groups and the general public. Failures of Li-ion battery not only result in serious inconvenience and enormous replacement/repair costs, but also risk catastrophic consequences such as explosion due to overheating and short circuiting. In order to prevent severe failures from occurring, and to optimize Li-ion battery maintenance schedules, breakthroughs in prognostics and health monitoring of Li-ion batteries, with an emphasis on fault detection, correction and remaining-useful-life prediction, must be achieved. This paper reviews various aspects of recent research and developments in Li-ion battery prognostics and health monitoring, and summarizes the techniques, algorithms and models used for state-of-charge (SOC) estimation, current/voltage estimation, capacity estimation and remaining-useful-life (RUL) prediction.

  1. Study and optimization of key parameters of a laser ablation ion mobility spectrometer

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Li, Jianan; Tang, Binchao; Shi, Yuan; Yu, Quan; Qian, Xiang; Wang, Xiaohao

    2016-11-01

    Ion Mobility Spectrometry (IMS), having an advantage in real-time and on-line detection, is an atmospheric pressure detecting technique. LA-IMS (Laser Ablation Ion Mobility Spectrometry) uses Nd-YAG laser as ionization source, whose energy is high enough to ionize metal. In this work, we tested the signal in different electric field intensity by a home-made ion mobility spectrometer, using silicon wafers the sample. The transportation of metal ions was match with the formula: Td = d/K • 1/E, when the electric field intensity is greater than 350v/cm. The relationship between signal intensity and collection angle (the angle between drift tube and the surface of the sample) was studied. With the increasing of the collection angle, signal intensity had a significant increase; while the variation of incident angle of the laser had no significant influence. The signal intensity had a 140% increase when the collection angle varied from 0 to 45 degree, while the angle between the drift tube and incident laser beam keeping the same as 90 degree. The position of ion gate in LA-IMS(Laser Ablation Ion Mobility Spectrometry) is different from the traditional ones for the kinetic energy of the ions is too big, if the distance between ion gate and sampling points less than 2.5cm the ion gate will not work, the ions could go through ion gate when it closed. The SNR had been improved by define the signal when the ion gate is closed as background signal, the signal noise including shock wave and electrical field perturbation produced during the interaction between laser beam and samples is eliminated when the signal that the ion gate opened minus the background signal.

  2. Preparation of Co3O4 conical nanotube and its application in calcium ion biosensor

    NASA Astrophysics Data System (ADS)

    Yuan, Hongwen; Ma, Chi; Geng, Junlong; Zhang, Liqiang; Cui, Hai; Liu, Cunzhi

    2018-02-01

    Calcium ion (Ca2+) is an important ion involved in body life activities, and its content detection in biomedical field owns great significance. In this study, we fabricated Co3O4 conical nanotube on F-doped tin oxide (FTO) substrate for detecting Ca2+. Co3O4 is fabricated through a hydrothermal method and demonstrates a regular hexagon structure, with a length of 5-10 μm and wall thickness of 30 nm. The structure and morphology of Co3O4 were characterized by X-ray diffraction (XRD), scanning electron microscope, and transmission electron microscopy, respectively. In addition, then, we used electrochemical technique to characterize the Ca2+ concentration in the simulated body fluid. The detection of Ca2+ is originated from the electrochemical reaction of hydrogen peroxide using Co3O4 as a catalyst, in which Ca2+ plays a significant role for accelerating the decomposition of hydrogen peroxide catalytic performance. By monitoring the electron transfer signals changes during the electrochemical reaction, we can quickly quantify the Ca2+ concentrations. It is found that this Ca2+ sensor owns a wide detection range (0.1-1.1 mM), a low detection limit (3.767 μM), and good anti-interference ability.

  3. Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography.

    PubMed

    Yamamoto, Kazuo; Iriyama, Yasutoshi; Hirayama, Tsukasa

    2017-02-08

    All-solid-state Li-ion batteries having incombustible solid electrolytes are promising energy storage devices because they have significant advantages in terms of safety, lifetime and energy density. Electrochemical reactions, namely, Li-ion insertion/extraction reactions, commonly occur around the nanometer-scale interfaces between the electrodes and solid electrolytes. Thus, transmission electron microscopy (TEM) is an appropriate technique to directly observe such reactions, providing important information for understanding the fundamental solid-state electrochemistry and improving battery performance. In this review, we introduce two types of TEM techniques for operando observations of battery reactions, spatially resolved electron energy-loss spectroscopy in a TEM mode for direct detection of the Li concentration profiles and electron holography for observing the electric potential changes due to Li-ion insertion/extraction reactions. We visually show how Li-ion insertion/extractions affect the crystal structures, electronic structures, and local electric potential during the charge-discharge processes in these batteries. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Status of the project TRAPSENSOR: Performance of the laser-desorption ion source

    NASA Astrophysics Data System (ADS)

    Cornejo, J. M.; Lorenzo, A.; Renisch, D.; Block, M.; Düllmann, Ch. E.; Rodríguez, D.

    2013-12-01

    Penning traps provide mass measurements on atomic nuclei with the highest accuracy and sensitivity. Depending on the experiment and on the physics goal, a relative mass uncertainty varying from 10-7 to below 10-11 is required. Regarding sensitivity, the use of only one ion for the measurement is crucial, either to perform mass measurements on superheavy elements (SHE), or to reach δm/m≈10-11 in order to contribute to the direct determination of the mass of the electron-antineutrino with accurate mass measurements on specific nuclei. This has motivated the development of a new technique called Quantum Sensor based on a laser-cooled ion stored in a Penning trap, to perform mass measurements using fluorescence photons instead of electronic detection. The device is currently under development at the University of Granada (Spain) within the project TRAPSENSOR. We describe the physics which motivates the construction of this device, the expected performance of the Quantum Sensor compared to that from existing techniques, and briefly present the main components of the project. As a specific aspect of the project, the performance of the laser-desorption ion source utilized to produce calcium, rhenium and osmium ions at different kinetic energies is presented.

  5. Complementary use of ion beam elastic backscattering and recoil detection analysis for the precise determination of the composition of thin films made of light elements

    NASA Astrophysics Data System (ADS)

    Climent-Font, A.; Cervera, M.; Hernández, M. J.; Muñoz-Martín, A.; Piqueras, J.

    2008-04-01

    Rutherford backscattering spectrometry (RBS) is a well known powerful technique to obtain depth profiles of the constituent elements in a thin film deposited on a substrate made of lighter elements. In its standard use the probing beam is typically 2 MeV He. Its capabilities to obtain precise composition profiles are severely diminished when the overlaying film is made of elements lighter than the substrate. In this situation the analysis of the energy of the recoiled element from the sample in the elastic scattering event, the ERDA technique may be advantageous. For the detection of light elements it is also possible to use beams at specific energies producing elastic resonances with these light elements to be analyzed, with a much higher scattering cross sections than the Rutherford values. This technique may be called non-RBS. In this work we report on the complementary use of ERDA with a 30 MeV Cl beam and non-RBS with 1756 keV H ions to characterize thin films made of boron, carbon and nitrogen (BCN) deposited on Si substrates.

  6. Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution.

    PubMed

    Chen, Jinlong; Zheng, Aifang; Gao, Yingchun; He, Chiyang; Wu, Genhua; Chen, Youcun; Kai, Xiaoming; Zhu, Changqing

    2008-03-01

    Strong luminescence CdS quantum dots (QDs) have been prepared and modified with l-cysteine by a facile seeds-assistant technique in water. They are water-soluble and highly stable in aqueous solution. CdS QDs evaluated as a luminescence probe for heavy and transition metal (HTM) ions in aqueous solution was systematically studied. Five HTM ions such as silver(I) ion, copper(II) ion, mercury(II) ion, cobalt(II) ion, and nickel(II) ion significantly influence the photophysics of the emission from the functionalized CdS QDs. Experiment results showed that the fluorescence emission from CdS QDs was enhanced significantly by silver ion without any spectral shift, while several other bivalent HTM ions, such as Hg(2+), Cu(2+), Co(2+), and Ni(2+), exhibited effective optical quenching effect on QDs. Moreover, an obvious red-shift of emission band was observed in the quenching of CdS QDs for Hg(2+) and Cu(2+) ions. Under the optimal conditions, the response was linearly proportional to the concentration of Ag(+) ion ranging from 1.25 x 10(-7) to 5.0 x 10(-6)molL(-1) with a detection limit of 2.0 x 10(-8)molL(-1). The concentration dependence of the quenching effect on functionalized QDs for the other four HTM ions could be well described by typical Stern-Volmer equation, with the linear response of CdS QDs emission proportional to the concentration ranging from 1.50 x 10(-8) to 7.50 x 10(-7)molL(-1) for Hg(2+) ion, 3.0 x 10(-7) to 1.0 x 10(-5)molL(-1) for Ni(2+) ion, 4.59 x 10(-8) to 2.295 x 10(-6)molL(-1) for Cu(2+) ion, and 1.20 x 10(-7) to 6.0 x 10(-6)molL(-1) Co(2+) ion, respectively. Based on the distinct optical properties of CdS QDs system with the five HTM ions, and the relatively wide linear range and rapid response to HTM ions, CdS QDs can be developed as a potential identified luminescence probe for familiar HTM ions detection in aqueous solution.

  7. Single Molecule Sensing by Nanopores and Nanopore Devices

    PubMed Central

    Gu, Li-Qun; Shim, Ji Wook

    2010-01-01

    Molecular-scale pore structures, called nanopores, can be assembled by protein ion channels through genetic engineering or be artificially fabricated on solid substrates using fashion nanotechnology. When target molecules interact with the functionalized lumen of a nanopore, they characteristically block the ion pathway. The resulting conductance changes allow for identification of single molecules and quantification of target species in the mixture. In this review, we first overview nanopore-based sensory techniques that have been created for the detection of myriad biomedical targets, from metal ions, drug compounds, and cellular second messengers to proteins and DNA. Then we introduce our recent discoveries in nanopore single molecule detection: (1) using the protein nanopore to study folding/unfolding of the G-quadruplex aptamer; (2) creating a portable and durable biochip that is integrated with a single-protein pore sensor (this chip is compared with recently developed protein pore sensors based on stabilized bilayers on glass nanopore membranes and droplet interface bilayer); and (3) creating a glass nanopore-terminated probe for single-molecule DNA detection, chiral enantiomer discrimination, and identification of the bioterrorist agent ricin with an aptamer-encoded nanopore. PMID:20174694

  8. Imaging free zinc levels in vivo - what can be learned?

    PubMed

    De Leon-Rodriguez, Luis; Lubag, Angelo Josue M; Sherry, A Dean

    2012-12-01

    Our ever-expanding knowledge about the role of zinc in biology includes its role in redox modulation, immune response, neurotransmission, reproduction, diabetes, cancer, and Alzheimers disease is galvanizing interest in detecting and monitoring the various forms of Zn(II) in biological systems. This paper reviews reported strategies for detecting and tracking of labile or "free" unchelated Zn(II) in tissues. While different bound structural forms of Zn(II) have been identified and studied in vitro by multiple techniques, very few molecular imaging methods have successfully tracked the ion in vivo. A number of MRI and optical strategies have now been reported for detection of free Zn(II) in cells and tissues but only a few have been applied successfully in vivo. A recent report of a MRI sensor for in vivo tracking of Zn(II) released from pancreatic β-cells during insulin secretion exemplifies the promise of rational design of new Zn(II) sensors for tracking this biologically important ion in vivo. Such studies promise to provide new insights into zinc trafficking in vivo and the critical role of this ion in many human diseases.

  9. High resolution Li depth profiling of solid state Li ion battery by TERD technique with high energy light ions

    NASA Astrophysics Data System (ADS)

    Morita, K.; Tsuchiya, B.; Ohnishi, J.; Yamamoto, T.; Iriyama, Y.; Tsuchida, H.; Majima, T.; Suzuki, K.

    2018-07-01

    Li depth profiles in Au/Si/LiPON/LCO/Au (LCO = LiCoO2, LiPON = Li3.3PO3.8N0.2) thin films battery under charging condition, prepared on self-supporting Al substrate, have been in situ measured by means of transmission elastic recoil detection (TERD) and Rutherford backscattering spectroscopy (RBS) techniques not only with 5.4 MeV He2+ ion beam without absorber, but also 9 MeV O4+ ion beam with Al absorber. In experiments with 5.4 MeV He2+, well-resolved step-wise TERD spectra have been observed, from which thickness and Li composition of constituent films of the battery are directly estimated. The Li transport from LCO to Si films through LiPON as well as return-back of Li from Si to LCO films and Li leakage into the Al substrate out of the battery system by over-charging under charging condition have been observed in the experiments both 5.4 MeV He2+ and 9 MeV O4+. The latter result indicates that these techniques are applicable to testing degradation of the battery performance by repetition of charging and discharging. Both results are compared in details with each other.

  10. A gated Thomson parabola spectrometer for improved ion and neutral atom measurements in intense laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Tata, Sheroy; Mondal, Angana; Sarkar, Soubhik; Lad, Amit D.; Krishnamurthy, M.

    2017-08-01

    Ions of high energy and high charge are accelerated from compact intense laser produced plasmas and are routinely analysed either by time of flight or Thomson parabola spectrometry. At the highest intensities where ion energies can be substantially large, both these techniques have limitations. Strong electromagnetic pulse noise jeopardises the arrival time measurement, and a bright central spot in the Thomson parabola spectrometer affects the signal to noise ratio of ion traces that approach close to the central spot. We present a gated Thomson parabola spectrometer that addresses these issues and provides an elegant method to improvise ion spectrometry. In addition, we demonstrate that this method provides the ability to detect and measure high energy neutral atoms that are invariably present in most intense laser plasma acceleration experiments.

  11. A gated Thomson parabola spectrometer for improved ion and neutral atom measurements in intense laser produced plasmas.

    PubMed

    Tata, Sheroy; Mondal, Angana; Sarkar, Soubhik; Lad, Amit D; Krishnamurthy, M

    2017-08-01

    Ions of high energy and high charge are accelerated from compact intense laser produced plasmas and are routinely analysed either by time of flight or Thomson parabola spectrometry. At the highest intensities where ion energies can be substantially large, both these techniques have limitations. Strong electromagnetic pulse noise jeopardises the arrival time measurement, and a bright central spot in the Thomson parabola spectrometer affects the signal to noise ratio of ion traces that approach close to the central spot. We present a gated Thomson parabola spectrometer that addresses these issues and provides an elegant method to improvise ion spectrometry. In addition, we demonstrate that this method provides the ability to detect and measure high energy neutral atoms that are invariably present in most intense laser plasma acceleration experiments.

  12. Useful ion yields for Cameca IMS 3f and 6f SIMS: Limits on quantitative analysis

    USGS Publications Warehouse

    Hervig, R.L.; Mazdab, F.K.; Williams, Pat; Guan, Y.; Huss, G.R.; Leshin, L.A.

    2006-01-01

    The useful yields (ions detected/atom sputtered) of major and trace elements in NIST 610 glass were measured by secondary ion mass spectrometry (SIMS) using Cameca IMS 3f and 6f instruments. Useful yields of positive ions at maximum transmission range from 10-4 to 0.2 and are negatively correlated with ionization potential. We quantified the decrease in useful yields when applying energy filtering or high mass resolution techniques to remove molecular interferences. The useful yields of selected negative ions (O, S, Au) in magnetite and pyrite were also determined. These data allow the analyst to determine if a particular analysis (trace element contents or isotopic ratio) can be achieved, given the amount of sample available and the conditions of the analysis. ?? 2005 Elsevier B.V. All rights reserved.

  13. Exponential isothermal amplification of nucleic acids and amplified assays for proteins, cells, and enzyme activities.

    PubMed

    Reid, Michael S; Le, X Chris; Zhang, Hongquan

    2018-04-27

    Isothermal exponential amplification techniques, such as strand-displacement amplification (SDA), rolling circle amplification (RCA), loop-mediated isothermal amplification (LAMP), nucleic acid sequence-based amplification (NASBA), helicase-dependent amplification (HDA), and recombinase polymerase amplification (RPA), have great potential for on-site, point-of-care, and in-situ assay applications. These amplification techniques eliminate the need for temperature cycling required for polymerase chain reaction (PCR) while achieving comparable amplification yield. We highlight here recent advances in exponential amplification reaction (EXPAR) for the detection of nucleic acids, proteins, enzyme activities, cells, and metal ions. We discuss design strategies, enzyme reactions, detection techniques, and key features. Incorporation of fluorescence, colorimetric, chemiluminescence, Raman, and electrochemical approaches enables highly sensitive detection of a variety of targets. Remaining issues, such as undesirable background amplification resulting from non-specific template interactions, must be addressed to further improve isothermal and exponential amplification techniques. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Breath analysis using external cavity diode lasers: a review

    NASA Astrophysics Data System (ADS)

    Bayrakli, Ismail

    2017-04-01

    Most techniques that are used for diagnosis and therapy of diseases are invasive. Reliable noninvasive methods are always needed for the comfort of patients. Owing to its noninvasiveness, ease of use, and easy repeatability, exhaled breath analysis is a very good candidate for this purpose. Breath analysis can be performed using different techniques, such as gas chromatography mass spectrometry (MS), proton transfer reaction-MS, and selected ion flow tube-MS. However, these devices are bulky and require complicated procedures for sample collection and preconcentration. Therefore, these are not practical for routine applications in hospitals. Laser-based techniques with small size, robustness, low cost, low response time, accuracy, precision, high sensitivity, selectivity, low detection limit, real-time, and point-of-care detection have a great potential for routine use in hospitals. In this review paper, the recent advances in the fields of external cavity lasers and breath analysis for detection of diseases are presented.

  15. Development of a Time-tagged Neutron Source for SNM Detection

    DOE PAGES

    Ji, Qing; Ludewigt, Bernhard; Wallig, Joe; ...

    2015-06-18

    Associated particle imaging (API) is a powerful technique for special nuclear material (SNM) detection and characterization of fissile material configurations. A sealed-tube neutron generator has been under development by Lawrence Berkeley National Laboratory to reduce the beam spot size on the neutron production target to 1 mm in diameter for a several-fold increase in directional resolution and simultaneously increases the maximum attainable neutron flux. A permanent magnet 2.45 GHz microwave-driven ion source has been adopted in this time-tagged neutron source. This type of ion source provides a high plasma density that allows the use of a sub-millimeter aperture for themore » extraction of a sufficient ion beam current and lets us achieve a much reduced beam spot size on target without employing active focusing. The design of this API generator uses a custom-made radial high voltage insulator to minimize source to neutron production target distance and to provide for a simple ion source cooling arrangement. Preliminary experimental results showed that more than 100 µA of deuterium ions have been extracted, and the beam diameter on the neutron production target is around 1 mm.« less

  16. On- and off-line monitoring of ion beam treatment

    NASA Astrophysics Data System (ADS)

    Parodi, Katia

    2016-02-01

    Ion beam therapy is an emerging modality for high precision radiation treatment of cancer. In comparison to conventional radiation sources (photons, electrons), ion beams feature major dosimetric advantages due to their finite range with a localized dose deposition maximum, the Bragg peak, which can be selectively adjusted in depth. However, due to several sources of treatment uncertainties, full exploitation of these dosimetric advantages in clinical practice would require the possibility to visualize the stopping position of the ions in vivo, ideally in real-time. To this aim, different imaging methods have been proposed and investigated, either pre-clinically or even clinically, based on the detection of prompt or delayed radiation following nuclear interaction of the beam with the irradiated tissue. However, the chosen or ad-hoc developed instrumentation has often relied on technologies originally conceived for different applications, thus compromising on the achievable performances for the sake of cost-effectiveness. This contribution will review major examples of used instrumentation and related performances, identifying the most promising detector developments for next generation devices especially dedicated to on-line monitoring of ion beam treatment. Moreover, it will propose an original combination of different techniques in a hybrid detection scheme, aiming to make the most of complementary imaging methods and open new perspectives of image guidance for improved precision of ion beam therapy.

  17. In situ mass analysis of particles by surface ionization mass spectrometry

    NASA Technical Reports Server (NTRS)

    Lassiter, W. S.; Moen, A. L.

    1974-01-01

    A qualitative study of the application of surface ionization and mass spectrometry to the in situ detection and constituent analysis of atmospheric particles was conducted. The technique consists of mass analysis of ions formed as a result of impingement of a stream of particles on a hot filament where, it is presumed, surface ionization takes place. Laboratory air particles containing K, Ca, and possibly hydrocarbons were detected. Other known particles such as Al2O3, Pb(NO3)2, and Cr2O3 were analyzed by detecting the respective metal atoms making up the particles. In some cases, mass numbers indicative of compounds making up the particles were detected showing surface ionization of particles sometimes leads to chemical analysis as well as to elemental analysis. Individual particles were detected, and it was shown that the technique is sensitive to Al2O3 particles with a mass of a few nanograms.

  18. Laboratory technology and cosmochemistry

    PubMed Central

    Zinner, Ernst K.; Moynier, Frederic; Stroud, Rhonda M.

    2011-01-01

    Recent developments in analytical instrumentation have led to revolutionary discoveries in cosmochemistry. Instrumental advances have been made along two lines: (i) increase in spatial resolution and sensitivity of detection, allowing for the study of increasingly smaller samples, and (ii) increase in the precision of isotopic analysis that allows more precise dating, the study of isotopic heterogeneity in the Solar System, and other studies. A variety of instrumental techniques are discussed, and important examples of discoveries are listed. Instrumental techniques and instruments include the ion microprobe, laser ablation gas MS, Auger EM, resonance ionization MS, accelerator MS, transmission EM, focused ion-beam microscopy, atom probe tomography, X-ray absorption near-edge structure/electron loss near-edge spectroscopy, Raman microprobe, NMR spectroscopy, and inductively coupled plasma MS. PMID:21498689

  19. Dissociative Recombination of Molecular Ions for Astrochemistry

    NASA Astrophysics Data System (ADS)

    Novotny, Oldrich; Becker, A.; Buhr, H.; Fleischmann, Andreas; Gamer, Lisa; Geppert, W.; Krantz, C.; Kreckel, H.; Schwalm, D.; Spruck, K.; Wolf, A.; Savin, Daniel Wolf

    2014-06-01

    Dissociative recombination (DR) of molecular ions is a key chemical process in the cold interstellar medium (ISM). DR affects the composition, charge state, and energy balance of such environments. Astrochemical models of the ISM require reliable total DR cross sections as well as knowledge of the chemical composition of the neutral DR products. We have systematically measured DR for many astrophysically relevant molecular ions utilizing the TSR storage ring at the Max-Planck-Institute for Nuclear Physics (MPIK) in Heidelberg, Germany. We used the merged ion-electron beam technique combined with an energy- and position-sensitive imaging detector and are able to study DR down to plasma temperatures as low as 10 K. The DR count rate is used to obtain an absolute merged beams DR rate coefficient from which we can derive a thermal rate coefficient needed for plasma models. Additionally we determine the masses of the DR products by measuring their kinetic energy in the laboratory reference frame. This allows us to assign particular DR fragmentation channels and to obtain their branching ratios. All this information is particularly important for understanding DR of heteronuclear polyatomic ions. We will present DR results for several ions recently investigated at TSR. A new Cryogenic Storage Ring (CSR) is currently being commissioned at MPIK. With the chamber cooled down to ~10 K and a base pressure better than 10-13 mbar, this setup will allow internal cooling of the stored ions down to their rotational ground states, thus opening a new era in DR experiments. New technological challenges arise due to the ultracold, ultra-high vacuum environment of the CSR and thus the detection techniques used at TSR cannot be easily transferred to CSR. We will present new approaches for DR fragment detection in cryogenic environment. This work is supported in part by NASA and the NSF.

  20. Efficient synthesis of highly fluorescent carbon dots by microreactor method and their application in Fe3+ ion detection.

    PubMed

    Rao, Longshi; Tang, Yong; Li, Zongtao; Ding, Xinrui; Liang, Guanwei; Lu, Hanguang; Yan, Caiman; Tang, Kairui; Yu, Binhai

    2017-12-01

    Rapidly obtaining strong photoluminescence (PL) of carbon dots with high stability is crucial in all practical applications of carbon dots, such as cell imaging and biological detection. In this study, we proposed a rapid, continuous carbon dots synthesis technique by using a microreactor method. By taking advantage of the microreactor, we were able to rapidly synthesized CDs at a large scale in less than 5min, and a high quantum yield of 60.1% was achieved. This method is faster and more efficient than most of the previously reported methods. To explore the relationship between the microreactor structure and CDs PL properties, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were carried out. The results show the surface functional groups and element contents influence the PL emission. Subsequent ion detection experiments indicated that CDs are very suitable for use as nanoprobes for Fe 3+ ion detection, and the lowest detection limit for Fe 3+ is 0.239μM, which is superior to many other research studies. This rapid and simple synthesis method will not only aid the development of the quantum dots industrialization but also provide a powerful and portable tool for the rapid and continuous online synthesis of quantum dots supporting their application in cell imaging and safety detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Analysis of ecstasy in oral fluid by ion mobility spectrometry and infrared spectroscopy after liquid-liquid extraction.

    PubMed

    Armenta, Sergio; Garrigues, Salvador; de la Guardia, Miguel; Brassier, Judit; Alcalà, Manel; Blanco, Marcelo

    2015-03-06

    We developed and evaluated two different strategies for determining abuse drugs based on (i) the analysis of saliva by ion mobility spectrometry (IMS) after thermal desorption and (ii) the joint use of IMS and infrared (IR) spectroscopy after liquid-liquid microextraction (LLME) to enable the sensitivity-enhanced detection and double confirmation of ecstasy (MDMA) abuse. Both strategies proved effective for the intended purpose. Analysing saliva by IMS after thermal desorption, which provides a limit of detection (LOD) of 160μgL(-1), requires adding 0.2M acetic acid to the sample and using the truncated negative second derivative of the ion mobility spectrum. The joint use of IMS and IR spectroscopy after LLME provides an LOD of 11μgL(-1) with the former technique and 800μgL(-1) with the latter, in addition to a limit of confirmation (LOC) of 1.5mgL(-1). Using IMS after thermal desorption simplifies the operational procedure, and using it jointly with IR spectroscopy after LLME allows double confirmation of MDMA abuse with two techniques based on different principles (viz., IMS drift times and IR spectra). Also, it affords on-site analyses, albeit at a lower throughput. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Optimization and Comparison of ESI and APCI LC-MS/MS Methods: A Case Study of Irgarol 1051, Diuron, and their Degradation Products in Environmental Samples

    NASA Astrophysics Data System (ADS)

    Maragou, Niki C.; Thomaidis, Nikolaos S.; Koupparis, Michael A.

    2011-10-01

    A systematic and detailed optimization strategy for the development of atmospheric pressure ionization (API) LC-MS/MS methods for the determination of Irgarol 1051, Diuron, and their degradation products (M1, DCPMU, DCPU, and DCA) in water, sediment, and mussel is described. Experimental design was applied for the optimization of the ion sources parameters. Comparison of ESI and APCI was performed in positive- and negative-ion mode, and the effect of the mobile phase on ionization was studied for both techniques. Special attention was drawn to the ionization of DCA, which presents particular difficulty in API techniques. Satisfactory ionization of this small molecule is achieved only with ESI positive-ion mode using acetonitrile in the mobile phase; the instrumental detection limit is 0.11 ng/mL. Signal suppression was qualitatively estimated by using purified and non-purified samples. The sample preparation for sediments and mussels is direct and simple, comprising only solvent extraction. Mean recoveries ranged from 71% to 110%, and the corresponding (%) RSDs ranged between 4.1 and 14%. The method limits of detection ranged between 0.6 and 3.5 ng/g for sediment and mussel and from 1.3 to 1.8 ng/L for sea water. The method was applied to sea water, marine sediment, and mussels, which were obtained from marinas in Attiki, Greece. Ion ratio confirmation was used for the identification of the compounds.

  3. [Determination of acetanilide herbicide residues in tea by gas chromatography-mass spectrometry with two different ionization techniques].

    PubMed

    Shen, Weijian; Xu, Jinzhong; Yang, Wenquan; Shen, Chongyu; Zhao, Zengyun; Ding, Tao; Wu, Bin

    2007-09-01

    An analytical method of solid phase extraction-gas chromatography-mass spectrometry with two different ionization techniques was established for simultaneous determination of 12 acetanilide herbicide residues in tea-leaves. Herbicides were extracted from tea-leaf samples with ethyl acetate. The extract was cleaned-up on an active carbon SPE column connected to a Florisil SPE column. Analytical screening was determined by the technique of gas chromatography (GC)-mass spectrometry (MS) in the selected ion monitoring (SIM) mode with either electron impact ionization (EI) or negative chemical ionization (NCI). It is reliable and stable that the recoveries of all herbicides were in the range from 50% to 110% at three spiked levels, 10 microg/kg, 20 microg/kg and 40 microg/kg, and the relative standard deviations (RSDs) were no more than 10.9%. The two different ionization techniques are complementary as more ion fragmentation information can be obtained from the EI mode while more molecular ion information from the NCI mode. By comparison of the two techniques, the selectivity of NCI-SIM was much better than that of EI-SIM method. The sensitivities of the both techniques were high, the limit of quantitative (LOQ) for each herbicide was no more than 2.0 microg/kg, and the limit of detection (LOD) with NCI-SIM technique was much lower than that of EI-SIM when analyzing herbicides with several halogen atoms in the molecule.

  4. Photonic band edge assisted spontaneous emission enhancement from all Er3+ 1-D photonic band gap structure

    NASA Astrophysics Data System (ADS)

    Chiasera, A.; Meroni, C.; Varas, S.; Valligatla, S.; Scotognella, F.; Boucher, Y. G.; Lukowiak, A.; Zur, L.; Righini, G. C.; Ferrari, M.

    2018-06-01

    All Er3+ doped dielectric 1-D Photonic Band Gap Structure was fabricated by rf-sputtering technique. The structure was constituted by of twenty pairs of SiO2/TiO2 alternated layers doped with Er3+ ions. The scanning electron microscopy was used to check the morphology of the structure. Transmission measurements put in evidence the stop band in the range 1500 nm-1950 nm. The photoluminescence measurements were obtained by optically exciting the sample and detecting the emitted light in the 1.5 μm region at different detection angles. Luminescence spectra and luminescence decay curves put in evidence that the presence of the stop band modify the emission features of the Er3+ ions.

  5. A dipole-assisted solid-phase extraction microchip combined with inductively coupled plasma-mass spectrometry for online determination of trace heavy metals in natural water.

    PubMed

    Shih, Tsung-Ting; Hsu, I-Hsiang; Chen, Shun-Niang; Chen, Ping-Hung; Deng, Ming-Jay; Chen, Yu; Lin, Yang-Wei; Sun, Yuh-Chang

    2015-01-21

    We employed a polymeric material, poly(methyl methacrylate) (PMMA), for fabricating a microdevice and then implanted the chlorine (Cl)-containing solid-phase extraction (SPE) functionality into the PMMA chip to develop an innovative on-chip dipole-assisted SPE technique. Instead of the ion-ion interactions utilized in on-chip SPE techniques, the dipole-ion interactions between the highly electronegative C-Cl moieties in the channel interior and the positively charged metal ions were employed to facilitate the on-chip SPE procedures. Furthermore, to avoid labor-intensive manual manipulation, a programmable valve manifold was designed as an interface combining the dipole-assisted SPE microchip and inductively coupled plasma-mass spectrometry (ICP-MS) to achieve the fully automated operation. Under the optimized operation conditions for the established system, the detection limits for each analyte ion were obtained based on three times the standard deviation of seven measurements of the blank eluent solution. The limits ranged from 3.48 to 20.68 ng L(-1), suggesting that this technique appears uniquely suited for determining the levels of heavy metal ions in natural water. Indeed, a series of validation procedures demonstrated that the developed method could be satisfactorily applied to the determination of trace heavy metals in natural water. Remarkably, the developed device was durable enough to be reused more than 160 times without any loss in its analytical performance. To the best of our knowledge, this is the first study reporting on the combination of a dipole-assisted SPE microchip and elemental analysis instrument for the online determination of trace heavy metal ions.

  6. Testing technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    This bulletin from Sandia National Laboratories presents current research highlights in testing technology. Ion microscopy offers new nondestructive testing technique that detects high resolution invisible defects. An inexpensive thin-film gauge checks detonators on centrifuge. Laser trackers ride the range and track helicopters at low-level flights that could not be detected by radar. Radiation transport software predicts electron/photon effects via cascade simulation. Acoustic research in noise abatement will lead to quieter travelling for Bay Area Rapid Transport (BART) commuters.

  7. New dehydropyrrolizidine alkaloids isolated from a Crotalaria and two Cryptantha species

    USDA-ARS?s Scientific Manuscript database

    The advent of HPLC-esi(+)MS and MS/MS techniques for detection of potential DHPAs, and their N-oxides, within complex plant secondary metabolite mixtures is based upon a recognition of characteristic mass fragment ions derived from the even-mass, protonated molecules (Colegate et al. 2005). This rea...

  8. Monitoring Ion Track Formation Using In Situ RBS/c, ToF-ERDA, and HR-PIXE.

    PubMed

    Karlušić, Marko; Fazinić, Stjepko; Siketić, Zdravko; Tadić, Tonči; Cosic, Donny Domagoj; Božičević-Mihalić, Iva; Zamboni, Ivana; Jakšić, Milko; Schleberger, Marika

    2017-09-06

    The aim of this work is to investigate the feasibility of ion beam analysis techniques for monitoring swift heavy ion track formation. First, the use of the in situ Rutherford backscattering spectrometry in channeling mode to observe damage build-up in quartz SiO₂ after MeV heavy ion irradiation is demonstrated. Second, new results of the in situ grazing incidence time-of-flight elastic recoil detection analysis used for monitoring the surface elemental composition during ion tracks formation in various materials are presented. Ion tracks were found on SrTiO₃, quartz SiO₂, a-SiO₂, and muscovite mica surfaces by atomic force microscopy, but in contrast to our previous studies on GaN and TiO₂, surface stoichiometry remained unchanged. Third, the usability of high resolution particle induced X-ray spectroscopy for observation of electronic dynamics during early stages of ion track formation is shown.

  9. Monitoring Ion Track Formation Using In Situ RBS/c, ToF-ERDA, and HR-PIXE

    PubMed Central

    Karlušić, Marko; Fazinić, Stjepko; Siketić, Zdravko; Tadić, Tonči; Cosic, Donny Domagoj; Božičević-Mihalić, Iva; Zamboni, Ivana; Jakšić, Milko; Schleberger, Marika

    2017-01-01

    The aim of this work is to investigate the feasibility of ion beam analysis techniques for monitoring swift heavy ion track formation. First, the use of the in situ Rutherford backscattering spectrometry in channeling mode to observe damage build-up in quartz SiO2 after MeV heavy ion irradiation is demonstrated. Second, new results of the in situ grazing incidence time-of-flight elastic recoil detection analysis used for monitoring the surface elemental composition during ion tracks formation in various materials are presented. Ion tracks were found on SrTiO3, quartz SiO2, a-SiO2, and muscovite mica surfaces by atomic force microscopy, but in contrast to our previous studies on GaN and TiO2, surface stoichiometry remained unchanged. Third, the usability of high resolution particle induced X-ray spectroscopy for observation of electronic dynamics during early stages of ion track formation is shown. PMID:28878186

  10. Mass spectrometry of acoustically levitated droplets.

    PubMed

    Westphall, Michael S; Jorabchi, Kaveh; Smith, Lloyd M

    2008-08-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air-droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-microL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing charge recombination after ion desorption.

  11. Mass Spectrometry of Acoustically Levitated Droplets

    PubMed Central

    Westphall, Michael S.; Jorabchi, Kaveh; Smith, Lloyd M.

    2008-01-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air–droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-μL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing chargere combination after ion desorption. PMID:18582090

  12. Preparation and coherent manipulation of pure quantum states of a single molecular ion

    NASA Astrophysics Data System (ADS)

    Chou, Chin-Wen; Kurz, Christoph; Hume, David B.; Plessow, Philipp N.; Leibrandt, David R.; Leibfried, Dietrich

    2017-05-01

    Laser cooling and trapping of atoms and atomic ions has led to advances including the observation of exotic phases of matter, the development of precision sensors and state-of-the-art atomic clocks. The same level of control in molecules could also lead to important developments such as controlled chemical reactions and sensitive probes of fundamental theories, but the vibrational and rotational degrees of freedom in molecules pose a challenge for controlling their quantum mechanical states. Here we use quantum-logic spectroscopy, which maps quantum information between two ion species, to prepare and non-destructively detect quantum mechanical states in molecular ions. We develop a general technique for optical pumping and preparation of the molecule into a pure initial state. This enables us to observe high-resolution spectra in a single ion (CaH+) and coherent phenomena such as Rabi flopping and Ramsey fringes. The protocol requires a single, far-off-resonant laser that is not specific to the molecule, so many other molecular ions, including polyatomic species, could be treated using the same methods in the same apparatus by changing the molecular source. Combined with the long interrogation times afforded by ion traps, a broad range of molecular ions could be studied with unprecedented control and precision. Our technique thus represents a critical step towards applications such as precision molecular spectroscopy, stringent tests of fundamental physics, quantum computing and precision control of molecular dynamics.

  13. Preparation and coherent manipulation of pure quantum states of a single molecular ion.

    PubMed

    Chou, Chin-Wen; Kurz, Christoph; Hume, David B; Plessow, Philipp N; Leibrandt, David R; Leibfried, Dietrich

    2017-05-10

    Laser cooling and trapping of atoms and atomic ions has led to advances including the observation of exotic phases of matter, the development of precision sensors and state-of-the-art atomic clocks. The same level of control in molecules could also lead to important developments such as controlled chemical reactions and sensitive probes of fundamental theories, but the vibrational and rotational degrees of freedom in molecules pose a challenge for controlling their quantum mechanical states. Here we use quantum-logic spectroscopy, which maps quantum information between two ion species, to prepare and non-destructively detect quantum mechanical states in molecular ions. We develop a general technique for optical pumping and preparation of the molecule into a pure initial state. This enables us to observe high-resolution spectra in a single ion (CaH + ) and coherent phenomena such as Rabi flopping and Ramsey fringes. The protocol requires a single, far-off-resonant laser that is not specific to the molecule, so many other molecular ions, including polyatomic species, could be treated using the same methods in the same apparatus by changing the molecular source. Combined with the long interrogation times afforded by ion traps, a broad range of molecular ions could be studied with unprecedented control and precision. Our technique thus represents a critical step towards applications such as precision molecular spectroscopy, stringent tests of fundamental physics, quantum computing and precision control of molecular dynamics.

  14. The effect of ion-exchange purification on the determination of plutonium at the New Brunswick Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, W.G.; Spaletto, M.I.; Lewis, K.

    The method of plutonium (Pu) determination at the Brunswick Laboratory (NBL) consists of a combination of ion-exchange purification followed by controlled-potential coulometric analysis (IE/CPC). The present report's purpose is to quantify any detectable Pu loss occurring in the ion-exchange (IE) purification step which would cause a negative bias in the NBL method for Pu analysis. The magnitude of any such loss would be contained within the reproducibility (0.05%) of the IE/CPC method which utilizes a state-of-the-art autocoulometer developed at NBL. When the NBL IE/CPC method is used for Pu analysis, any loss in ion-exchange purification (<0.05%) is confounded with themore » repeatability of the ion-exchange and the precision of the CPC analysis technique (<0.05%). Consequently, to detect a bias in the IE/CPC method due to the IE alone using the IE/CPC method itself requires that many randomized analyses on a single material be performed over time and that statistical analysis of the data be performed. The initial approach described in this report to quantify any IE loss was an independent method, Isotope Dilution Mass Spectrometry; however, the number of analyses performed was insufficient to assign a statistically significant value to the IE loss (<0.02% of 10 mg samples of Pu). The second method used for quantifying any IE loss of Pu was multiple ion exchanges of the same Pu aliquant; the small number of analyses possible per individual IE together with the column-to-column variability over multiple ion exchanges prevented statistical detection of any loss of <0.05%. 12 refs.« less

  15. Measurement of secondary particle production induced by particle therapy ion beams impinging on a PMMA target

    NASA Astrophysics Data System (ADS)

    Toppi, M.; Battistoni, G.; Bellini, F.; Collamati, F.; De Lucia, E.; Durante, M.; Faccini, R.; Frallicciardi, P. M.; Marafini, M.; Mattei, I.; Morganti, S.; Muraro, S.; Paramatti, R.; Patera, V.; Pinci, D.; Piersanti, L.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Senzacqua, M.; Solfaroli Camillocci, E.; Traini, G.; Voena, C.

    2016-05-01

    Particle therapy is a technique that uses accelerated charged ions for cancer treatment and combines a high irradiation precision with a high biological effectiveness in killing tumor cells [1]. Informations about the secondary particles emitted in the interaction of an ion beam with the patient during a treatment can be of great interest in order to monitor the dose deposition. For this purpose an experiment at the HIT (Heidelberg Ion-Beam Therapy Center) beam facility has been performed in order to measure fluxes and emission profiles of secondary particles produced in the interaction of therapeutic beams with a PMMA target. In this contribution some preliminary results about the emission profiles and the energy spectra of the detected secondaries will be presented.

  16. Time-resolved pulsed hydrogen/deuterium exchange mass spectrometry probes gaseous proteins structural kinetics.

    PubMed

    Rajabi, Khadijeh

    2015-01-01

    A pulsed hydrogen/deuterium exchange (HDX) method has been developed for rapid monitoring of the exchange kinetics of protein ions with D2O a few milliseconds after electrospray ionization (ESI). The stepwise gradual evolution of HDX of multiply charged protein ions was monitored using the pulsed HDX mass spectrometry technique. Upon introducing a very short pulse of D2O (in the μs to ms time scale) into the linear ion trap (LIT) of a time-of-flight (TOF) mass spectrometer, bimodal distributions were detected for the ions of cytochrome c and ubiquitin. Mechanistic details of HDX reactions for ubiquitin and cytochrome c in the gas phase were uncovered and the structural transitions were followed by analyzing the kinetics of HDX.

  17. Colorimetric anion sensors based on positional effect of nitro group for recognition of biologically relevant anions in organic and aqueous medium, insight real-life application and DFT studies

    NASA Astrophysics Data System (ADS)

    Singh, Archana; Sahoo, Suban K.; Trivedi, Darshak R.

    2018-01-01

    A new six colorimetric receptors A1-A6 were designed and synthesized, characterized by typical common spectroscopic techniques like FT-IR, UV-Visible, 1H NMR, 13C NMR and ESI-MS. The receptor A1 and A2 exhibit a significant naked-eye response towards F- and AcO- ions in DMSO. Due to presences of the NO2 group at para and ortho position with extended π-conjugation of naphthyl group carrying sbnd OH as a binding site. Compared to receptor A2, A1 is extremely capable of detecting F- and AcO- ions present in the form of sodium salts in an aqueous medium. This is owed to the occurrence of sbnd NO2 group at para position induced in increasing the acidity of sbnd OH proton. Consequently, it easily gets deprotonated in aqueous media. The detection limit of receptor A1 was turned out to be 0.40 and 0.35 ppm for F- and AcO- ions which is beneath WHO permission level (1.0 ppm). Receptor A1 shows a solitary property of solvatochromism in different aprotic solvents in presence of AcO- ion. Receptor A1 depicts high selectivity towards AcO- ion in DMSO: HEPES buffer (9:1, v/v). Receptor A1 proved itself for real life application by detecting anion in solution and solid state. The binding mechanism of receptor A1 with AcO- and F- ions was monitored from 1HNMR titration and DFT study.

  18. Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Ballenthin, J. O.; Baumgardner, J. L.; Bhatt, A.; Boyd, I. D.; Burt, J. M.; Caton, R. G.; Coster, A.; Erickson, P. J.; Huba, J. D.; hide

    2013-01-01

    On-orbit firings of both liquid and solid rocket motors provide localized disturbances to the plasma in the upper atmosphere. Large amounts of energy are deposited to ionosphere in the form of expanding exhaust vapors which change the composition and flow velocity. Charge exchange between the neutral exhaust molecules and the background ions (mainly O+) yields energetic ion beams. The rapidly moving pickup ions excite plasma instabilities and yield optical emissions after dissociative recombination with ambient electrons. Line-of-sight techniques for remote measurements rocket burn effects include direct observation of plume optical emissions with ground and satellite cameras, and plume scatter with UHF and higher frequency radars. Long range detection with HF radars is possible if the burns occur in the dense part of the ionosphere. The exhaust vapors initiate plasma turbulence in the ionosphere that can scatter HF radar waves launched from ground transmitters. Solid rocket motors provide particulates that become charged in the ionosphere and may excite dusty plasma instabilities. Hypersonic exhaust flow impacting the ionospheric plasma launches a low-frequency, electromagnetic pulse that is detectable using satellites with electric field booms. If the exhaust cloud itself passes over a satellite, in situ detectors measure increased ion-acoustic wave turbulence, enhanced neutral and plasma densities, elevated ion temperatures, and magnetic field perturbations. All of these techniques can be used for long range observations of plumes in the ionosphere. To demonstrate such long range measurements, several experiments were conducted by the Naval Research Laboratory including the Charged Aerosol Release Experiment, the Shuttle Ionospheric Modification with Pulsed Localized Exhaust experiments, and the Shuttle Exhaust Ionospheric Turbulence Experiments.

  19. Laser ablation-miniature mass spectrometer for elemental and isotopic analysis of rocks.

    PubMed

    Sinha, M P; Neidholdt, E L; Hurowitz, J; Sturhahn, W; Beard, B; Hecht, M H

    2011-09-01

    A laser ablation-miniature mass spectrometer (LA-MMS) for the chemical and isotopic measurement of rocks and minerals is described. In the LA-MMS method, neutral atoms ablated by a pulsed laser are led into an electron impact ionization source, where they are ionized by a 70 eV electron beam. This results in a secondary ion pulse typically 10-100 μs wide, compared to the original 5-10 ns laser pulse duration. Ions of different masses are then spatially dispersed along the focal plane of the magnetic sector of the miniature mass spectrometer (MMS) and measured in parallel by a modified CCD array detector capable of detecting ions directly. Compared to conventional scanning techniques, simultaneous measurement of the ion pulse along the focal plane effectively offers a 100% duty cycle over a wide mass range. LA-MMS offers a more quantitative assessment of elemental composition than techniques that detect ions directly generated by the ablation process because the latter can be strongly influenced by matrix effects that vary with the structure and geometry of the surface, the wavelength of the laser beam, and the not well characterized ionization efficiencies of the elements in the process. The above problems attendant to the direct ion analysis has been minimized in the LA-MMS by analyzing the ablated neutral species after their post-ionization by electron impaction. These neutral species are much more abundant than the directly ablated ions in the ablated vapor plume and are, therefore, expected to be characteristic of the chemical composition of the solid. Also, the electron impact ionization of elements is well studied and their ionization cross sections are known and easy to find in databases. Currently, the LA-MMS limit of detection is 0.4 wt.%. Here we describe LA-MMS elemental composition measurements of various minerals including microcline, lepidolite, anorthoclase, and USGS BCR-2G samples. The measurements of high precision isotopic ratios including (41)K/(39)K (0.077 ± 0.004) and (29)Si/(28)Si (0.052 ± 0.006) in these minerals by LA-MMS are also described. The LA-MMS has been developed as a prototype instrument system for space applications for geochemical and geochronological measurements on the surface of extraterrestrial bodies. © 2011 American Institute of Physics

  20. Faradaic AC Electrokinetic Flow and Particle Traps

    NASA Astrophysics Data System (ADS)

    Ben, Yuxing; Chang, Hsueh-Chia

    2004-11-01

    Faradaic reaction at higher voltages can produce co-ion polarization at AC electrodes instead of counter-ion polarization due to capacitive charging from the bulk. The Faradaic co-ion polarization also does not screen the external field and hence can produce large net electro-kinetic flows at frequencies lower than the inverse RC time of the double layer. Due to the opposite polarization of capacitve and Faradaic charging, we can reverse the direction of AC flows on electrodes by changing the voltage and frequency. Particles and bacteria are trapped and then dispersed at stagnation lines, at locations predicted by our theory, by using these two flows sequentially. This technique offers a good way to concentrate and detect bacteria.

  1. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

    DOE PAGES

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; ...

    2018-03-26

    A new method to tag the barium daughter in the double beta decay ofmore » $$^{136}$$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$$^{++}$$) resolution at a transparent scanning surface has been demonstrated. A single-step photo-bleach confirms the single ion interpretation. Individual ions are localized with super-resolution ($$\\sim$$2~nm), and detected with a statistical significance of 12.9~$$\\sigma$$ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.« less

  2. Emerging battery research in Indonesia: The role of nuclear applications

    NASA Astrophysics Data System (ADS)

    Kartini, E.

    2015-12-01

    Development of lithium ion batteries will play an important role in achieving innovative sustainable energy. To reduce the production cost of such batteries, the Indonesian government has instituted a strategy to use local resources. Therefore, this technology is now part of the National Industrial Strategic Plan. One of the most important scientific challenges is to improve performance of lithium batteries. Neutron scattering is a very important technique to investigate crystal structure of electrode materials. The unique properties of neutrons, which allow detection of light elements such as lithium ions, are indispensable. The utilization of neutron scattering facilities at the Indonesian National Nuclear Energy Agency will provide significant contributions to the development of improved lithium ion battery technologies.

  3. Qualitative metabolome analysis of human cerebrospinal fluid by 13C-/12C-isotope dansylation labeling combined with liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Guo, Kevin; Bamforth, Fiona; Li, Liang

    2011-02-01

    Metabolome analysis of human cerebrospinal fluid (CSF) is challenging because of low abundance of metabolites present in a small volume of sample. We describe and apply a sensitive isotope labeling LC-MS technique for qualitative analysis of the CSF metabolome. After a CSF sample is divided into two aliquots, they are labeled by (13)C-dansyl and (12)C-dansyl chloride, respectively. The differentially labeled aliquots are then mixed and subjected to LC-MS using Fourier-transform ion cyclotron resonance mass spectrometry (FTICR MS). Dansylation offers significant improvement in the performance of chromatography separation and detection sensitivity. Moreover, peaks detected in the mass spectra can be readily analyzed for ion pair recognition and database search based on accurate mass and/or retention time information. It is shown that about 14,000 features can be detected in a 25-min LC-FTICR MS run of a dansyl-labeled CSF sample, from which about 500 metabolites can be profiled. Results from four CSF samples are compared to gauge the detectability of metabolites by this method. About 261 metabolites are commonly detected in replicate runs of four samples. In total, 1132 unique metabolite ion pairs are detected and 347 pairs (31%) matched with at least one metabolite in the Human Metabolome Database. We also report a dansylation library of 220 standard compounds and, using this library, about 85 metabolites can be positively identified. Among them, 21 metabolites have never been reported to be associated with CSF. These results illustrate that the dansylation LC-FTICR MS method can be used to analyze the CSF metabolome in a more comprehensive manner. © American Society for Mass Spectrometry, 2011

  4. Qualitative Metabolome Analysis of Human Cerebrospinal Fluid by 13C-/12C-Isotope Dansylation Labeling Combined with Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Guo, Kevin; Bamforth, Fiona; Li, Liang

    2011-02-01

    Metabolome analysis of human cerebrospinal fluid (CSF) is challenging because of low abundance of metabolites present in a small volume of sample. We describe and apply a sensitive isotope labeling LC-MS technique for qualitative analysis of the CSF metabolome. After a CSF sample is divided into two aliquots, they are labeled by 13C-dansyl and 12C-dansyl chloride, respectively. The differentially labeled aliquots are then mixed and subjected to LC-MS using Fourier-transform ion cyclotron resonance mass spectrometry (FTICR MS). Dansylation offers significant improvement in the performance of chromatography separation and detection sensitivity. Moreover, peaks detected in the mass spectra can be readily analyzed for ion pair recognition and database search based on accurate mass and/or retention time information. It is shown that about 14,000 features can be detected in a 25-min LC-FTICR MS run of a dansyl-labeled CSF sample, from which about 500 metabolites can be profiled. Results from four CSF samples are compared to gauge the detectability of metabolites by this method. About 261 metabolites are commonly detected in replicate runs of four samples. In total, 1132 unique metabolite ion pairs are detected and 347 pairs (31%) matched with at least one metabolite in the Human Metabolome Database. We also report a dansylation library of 220 standard compounds and, using this library, about 85 metabolites can be positively identified. Among them, 21 metabolites have never been reported to be associated with CSF. These results illustrate that the dansylation LC-FTICR MS method can be used to analyze the CSF metabolome in a more comprehensive manner.

  5. Arsenic detection in water: YPO{sub 4}:Eu{sup 3+} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Debasish; Luwang, Meitram Niraj, E-mail: mn.luwang@ncl.res.in; Academy of Scientific and Innovative Research

    This work reports on the novel technique of detection of arsenic in aqueous solution utilising the luminescence properties of lanthanide doped nanomaterials. Eu{sup 3+} (5%) doped YPO{sub 4}nanorodswere utilised for the said experiment. Co-precipitation method was used for the synthesis of the materials and characterised them with different instrumental techniques like X-ray diffraction (XRD), Infra-red (IR), UV-absorption, scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence studies. This nanoparticle can adsorb both arsenic and arsenious acids. We studied the effect of arsenic adsorption on the luminescence behaviour of the nanoparticles. Arsenic acid enhanced the luminescencemore » intensity whereas arsenious acid quenched the luminescence. This luminescence enhancement or quenching is related with arsenic concentration. This relation of luminescence property with concentration of arsenic can be used to detect arsenic in industrial waste. - Graphical abstract: Novel technique of detection of Arsenic ion in aqueous solution utilising the luminescence properties of lanthanide doped nanomaterials. Potential application for detection of arsenic in drinking and industrial waste water. - Highlights: • Novel technique of detection of Arsenic in aqueous solution by YPO{sub 4}:Eu{sup 3+} nanomaterials. • The effect of arsenic adsorption on the luminescence behaviour of the nanoparticles was studied. • Arsenic acid enhance whereas arsenious acid quenches the luminescence intensity. • This technique can be used to detect arsenic in industrial waste.« less

  6. CsI-Silicon Particle detector for Heavy ions Orbiting in Storage rings (CsISiPHOS)

    NASA Astrophysics Data System (ADS)

    Najafi, M. A.; Dillmann, I.; Bosch, F.; Faestermann, T.; Gao, B.; Gernhäuser, R.; Kozhuharov, C.; Litvinov, S. A.; Litvinov, Yu. A.; Maier, L.; Nolden, F.; Popp, U.; Sanjari, M. S.; Spillmann, U.; Steck, M.; Stöhlker, T.; Weick, H.

    2016-11-01

    A heavy-ion detector was developed for decay studies in the Experimental Storage Ring (ESR) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. This detector serves as a prototype for the in-pocket particle detectors for future experiments with the Collector Ring (CR) at FAIR (Facility for Antiproton and Ion Research). The detector includes a stack of six silicon pad sensors, a double-sided silicon strip detector (DSSD), and a CsI(Tl) scintillation detector. It was used successfully in a recent experiment for the detection of the β+-decay of highly charged 142Pm60+ ions. Based on the ΔE / E technique for particle identification and an energy resolution of 0.9% for ΔE and 0.5% for E (Full Width at Half Maximum (FWHM)), the detector is well-suited to distinguish neighbouring isobars in the region of interest.

  7. Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion.

    PubMed

    Dutta, Soumen; Ray, Chaiti; Sarkar, Sougata; Pradhan, Mukul; Negishi, Yuichi; Pal, Tarasankar

    2013-09-11

    Herein, a simple wet-chemical pathway has been demonstrated for the synthesis of silver nanoparticle conjugated reduced graphene oxide nanosheets where dimethylformamide (DMF) is judiciously employed as an efficient reducing agent. Altogether, DMF reduces both silver nitrate (AgNO3) and graphene oxide (GO) in the reaction mixture. Additionally, the presence of polyvinylpyrolidone (PVP) assists the nanophasic growth and homogeneous distribution of the plasmonic nanoparticle Ag(0). Reduction of graphene oxide and the presence of aggregated Ag NPs on reduced graphene oxide (rGO) nanosheets are confirmed from various spectroscopic techniques. Finally, the composite material has been exploited as an intriguing platform for surface enhanced Raman scattering (SERS) based selective detection of uranyl (UO2(2+)) ion. The limit of detection has been achieved to be as low as 10 nM. Here the normal Raman spectral (NRS) band of uranyl acetate (UAc) at 838 cm(-1) shifts to 714 and 730 cm(-1) as SERS bands for pH 5.0 and 12.0, respectively. This distinguished Raman shift of the symmetric stretching mode for UO2(2+) ion is indicative of pronounced charge transfer (CT) effect. This CT effect even supports the higher sensitivity of the protocol toward UO2(2+) over other tested oxo-ions. It is anticipated that rGO nanosheets furnish a convenient compartment to favor the interaction between Ag NPs and UO2(2+) ion through proximity induced adsorption even at low concentration.

  8. Fast Orthogonal Separation by Superposition of Time of Flight and Field Asymmetric Ion Mobility Spectrometry.

    PubMed

    Bohnhorst, Alexander; Kirk, Ansgar T; Berger, Marc; Zimmermann, Stefan

    2018-01-16

    Ion mobility spectrometry is a powerful and low-cost technique for the identification of chemical warfare agents, toxic chemicals, or explosives in air. Drift tube ion mobility spectrometers (DT-IMS) separate ions by the absolute value of their low field ion mobility, while field asymmetric ion mobility spectrometers (FAIMS) separate them by the change of their ion mobility at high fields. However, using one of these devices alone, some common and harmless substances show the same response as the hazardous target substances. In order to increase the selectivity, orthogonal data are required. Thus, in this work, we present for the first time an ambient pressure ion mobility spectrometer which is able to separate ions both by their differential and low field mobility, providing additional information for selectivity enhancement. This novel field asymmetric time of flight ion mobility spectrometer (FAT-IMS) allows high repetition rates and reaches limits of detection in the low ppb range common for DT-IMS. The device consists of a compact 44 mm drift tube with a tritium ionization source and a resolving power of 70. An increased separation of four substances with similar low field ion mobility is shown: phosgene (K 0 = 2.33 cm 2 /(V s)), 1,1,2-trichlorethane (K 0 = 2.31 cm 2 /(V s)), chlorine (K 0 = 2.24 cm 2 /(V s)), and nitrogen dioxide (K 0 = 2.25 cm 2 /(V s)). Furthermore, the behavior and limits of detection for acetonitrile, dimethyl methylphosphonate, diisopropyl methyl phosphonate in positive polarity and carbon dioxide, sulfur dioxide, hydrochloric acid, cyanogen chloride, and hydrogen cyanide in negative polarity are investigated.

  9. Techniques for the measurements of the line of sight velocity of high altitude Barium clouds

    NASA Technical Reports Server (NTRS)

    Mende, S. B.

    1981-01-01

    It is demonstrated that for maximizing the scientific output of future ion cloud release experiments a new type of instrument is required which will measure the line of sight velocity of the ion cloud by the Doppler Technique. A simple instrument was constructed using a 5 cm diameter solid Fabry-Perot etalon coupled to a low light level integrating television camera. It was demonstrated that the system has both the sensitivity and spectral resolution for the detection of ion clouds and the measurement of their line of sight Doppler velocity. The tests consisted of (1) a field experiment using a rocket barium cloud release to check the sensitivity, (2) laboratory experiments to show the spectral resolving capabilities of the system. The instrument was found to be operational if the source was brighter than about 1 kilorayleigh and it had a wavelength resolution much better than .2A which corresponds to about 12 km/sec or an acceleration potential of 100 volts.

  10. High-pressure ion source combined with an in-axis ion trap mass spectrometer. 1. Instrumentation and applications

    PubMed

    Mathurin; Faye; Brunot; Tabet; Wells; Fuche

    2000-10-15

    A new combination of a dual EI/CI ion source with a quadrupole ion trap mass spectrometer has been realized in order to efficiently produce negative ions in the reaction cell. Analysis of volatile compounds was performed under negative ion chemical ionization (NICI) during a reaction period where selected reactant negative ions, previously produced in the external ion source, were allowed to interact with molecules, introduced by hyphenated techniques such as gas chromatography. The O2*-, CH3O-, and Cl- reactant ions were used in this study to ensure specific ion/molecule interactions such as proton transfer, nucleophilic displacement, or charge exchange processes, respectively leading to even-electron species, i.e., deprotonated [M - H]- molecules, diagnostic [M - R]- ions, or odd-electron M*- molecular species. The reaction orientation depends on the thermochemistry of reactions within kinetic controls. First analytical results are presented here for the trace-level detection of several contaminants under NICI/Cl- conditions. Phosphorus-containing compounds (malathion, ethyl parathion, and methyl parathion as representative for pesticides) and nitro-containing compounds (2,4,6-trinitrotoluene for explosive material) have been chosen in order to explore the analytical ability of this promising instrumental coupling.

  11. Electrochemical hydrogen sulfide biosensors.

    PubMed

    Xu, Tailin; Scafa, Nikki; Xu, Li-Ping; Zhou, Shufeng; Abdullah Al-Ghanem, Khalid; Mahboob, Shahid; Fugetsu, Bunshi; Zhang, Xueji

    2016-02-21

    The measurement of sulfide, especially hydrogen sulfide, has held the attention of the analytical community due to its unique physiological and pathophysiological roles in biological systems. Electrochemical detection offers a rapid, highly sensitive, affordable, simple, and real-time technique to measure hydrogen sulfide concentration, which has been a well-documented and reliable method. This review details up-to-date research on the electrochemical detection of hydrogen sulfide (ion selective electrodes, polarographic hydrogen sulfide sensors, etc.) in biological samples for potential therapeutic use.

  12. True ion pick (TIPick): a denoising and peak picking algorithm to extract ion signals from liquid chromatography/mass spectrometry data.

    PubMed

    Ho, Tsung-Jung; Kuo, Ching-Hua; Wang, San-Yuan; Chen, Guan-Yuan; Tseng, Yufeng J

    2013-02-01

    Liquid Chromatography-Time of Flight Mass Spectrometry has become an important technique for toxicological screening and metabolomics. We describe TIPick a novel algorithm that accurately and sensitively detects target compounds in biological samples. TIPick comprises two main steps: background subtraction and peak picking. By subtracting a blank chromatogram, TIPick eliminates chemical signals of blank injections and reduces false positive results. TIPick detects peaks by calculating the S(CC(INI)) values of extracted ion chromatograms (EICs) without considering peak shapes, and it is able to detect tailing and fronting peaks. TIPick also uses duplicate injections to enhance the signals of the peaks and thus improve the peak detection power. Commonly seen split peaks caused by either saturation of the mass spectrometer detector or a mathematical background subtraction algorithm can be resolved by adjusting the mass error tolerance of the EICs and by comparing the EICs before and after background subtraction. The performance of TIPick was tested in a data set containing 297 standard mixtures; the recall, precision and F-score were 0.99, 0.97 and 0.98, respectively. TIPick was successfully used to construct and analyze the NTU MetaCore metabolomics chemical standards library, and it was applied for toxicological screening and metabolomics studies. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Development of a novel low-flow ion source/sampling cone geometry for inductively coupled plasma mass spectrometry and application in hyphenated techniques

    NASA Astrophysics Data System (ADS)

    Pfeifer, Thorben; Janzen, Rasmus; Steingrobe, Tobias; Sperling, Michael; Franze, Bastian; Engelhard, Carsten; Buscher, Wolfgang

    2012-10-01

    A novel ion source/sampling cone device for inductively coupled plasma mass spectrometry (ICP-MS) especially operated in the hyphenated mode as a detection system coupled with different separation modules is presented. Its technical setup is described in detail. Its main feature is the very low total argon consumption of less than 1.5 L min- 1, leading to significant reduction of operational costs especially when time-consuming speciation analysis is performed. The figures of merit of the new system with respect to sensitivity, detection power, long-term stability and working range were explored. Despite the profound differences of argon consumption of the new system in comparison to the conventional ICP-MS system, many of the characteristic features of the conventional ICP-MS could be maintained to a great extent. To demonstrate the ion source's capabilities, it was used as an element-selective detector for gas (GC) and high performance liquid chromatography (HPLC) where organic compounds of mercury and cobalt, respectively, were separated and detected with the new low-flow ICP-MS detection system. The corresponding chromatograms are shown. The applicability for trace element analysis has been validated with the certified reference material NIST 1643e.

  14. Aqueous phase oligomerization of α,β-unsaturated carbonyls and acids investigated using ion mobility spectrometry coupled to mass spectrometry (IMS-MS)

    NASA Astrophysics Data System (ADS)

    Renard, Pascal; Tlili, Sabrine; Ravier, Sylvain; Quivet, Etienne; Monod, Anne

    2016-04-01

    One of the current essential issues to unravel our ability to forecast future climate change and air quality, implies a better understanding of natural processes leading to secondary organic aerosol (SOA) formation, and in particular the formation and fate of oligomers. The difficulty in characterizing macromolecules is to discern between large oxygenated molecules from series of oligomers containing repeated small monomers of diverse structures. In the present study, taking advantage from previously established radical vinyl oligomerization of methyl vinylketone (MVK) in the aqueous phase, where relatively simple oligomers containing up to 14 monomers were observed, we have investigated the same reactivity on several other unsaturated water soluble organic compounds (UWSOCs) and on a few mixtures of these precursor compounds. The technique used to characterize the formed oligomers was a traveling wave ion mobility spectrometry coupled to a hybrid quadrupole - time of flight mass spectrometer (IMS-MS) fitted with an electrospray source and ultra-high performance liquid chromatography (UPLC). The technique allows for an additional separation, especially for large ions, containing long carbon chains. We have shown the efficiency of the IMS-mass spectrometry technique to detect oligomers derived from MVK photooxidation in the aqueous phase. The results were then compared to other oligomers, derived from ten other individual biogenic UWSOCs. The technique allowed distinguishing between different oligomers arising from different precursors. It also clearly showed that compounds bearing a non-conjugated unsaturation did not provide oligomerization. Finally, it was shown that the IMS-mass spectrometry technique, applied to mixtures of unsaturated conjugated precursors, exhibited the ability of these precursors to co-oligomerize, i.e. forming only one complex oligomer system bearing monomers of different structures. The results are discussed in terms of atmospheric implications for the detection of oligomers in complex chamber and/or field samples.

  15. Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide

    PubMed Central

    Kudr, Jiri; Richtera, Lukas; Nejdl, Lukas; Xhaxhiu, Kledi; Vitek, Petr; Rutkay-Nedecky, Branislav; Hynek, David; Kopel, Pavel; Adam, Vojtech; Kizek, Rene

    2016-01-01

    Increasing urbanization and industrialization lead to the release of metals into the biosphere, which has become a serious issue for public health. In this paper, the direct electrochemical reduction of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from 0 to −1.5 V. The modification was optimized and properties of electrodes were determined using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection limit 5 ng·mL−1 was obtained. PMID:28787832

  16. Fast quantitative detection of cocaine in beverages using nanoextractive electrospray ionization tandem mass spectrometry.

    PubMed

    Hu, Bin; Peng, Xuejiao; Yang, Shuiping; Gu, Haiwei; Chen, Huanwen; Huan, Yanfu; Zhang, Tingting; Qiao, Xiaolin

    2010-02-01

    Without any sample pretreatment, effervescent beverage fluids were manually sprayed into the primary ion plume created by using a nanoelectrospray ionization source for direct ionization, and the analyte ions of interest were guided into an ion trap mass spectrometer for tandem mass analysis. Functional ingredients (e.g., vitamins, taurine, and caffeine, etc.) and spiked impurity (e.g., cocaine) in various beverages, such as Red Bull energy drink, Coco-cola, and Pepsi samples were rapidly identified within 1.5 s. The limit of detection was found to be 7-15 fg (S/N = 3) for cocaine in different samples using the characteristic fragment (m/z 150) observed in the MS(3) experiments. Typical relative standard deviation and recovery of this method were 6.9%-8.6% and 104%-108% for direct analysis of three actual samples, showing that nanoextractive electrospray ionization tandem mass spectrometry is a useful technique for fast screening cocaine presence in beverages. 2010. Published by Elsevier Inc.

  17. An apparatus for immersing trapped ions into an ultracold gas of neutral atoms

    NASA Astrophysics Data System (ADS)

    Schmid, Stefan; Härter, Arne; Frisch, Albert; Hoinka, Sascha; Denschlag, Johannes Hecker

    2012-05-01

    We describe a hybrid vacuum system in which a single ion or a well-defined small number of trapped ions (in our case Ba+ or Rb+) can be immersed into a cloud of ultracold neutral atoms (in our case Rb). This apparatus allows for the study of collisions and interactions between atoms and ions in the ultracold regime. Our setup is a combination of a Bose-Einstein condensation apparatus and a linear Paul trap. The main design feature of the apparatus is to first separate the production locations for the ion and the ultracold atoms and then to bring the two species together. This scheme has advantages in terms of stability and available access to the region where the atom-ion collision experiments are carried out. The ion and the atoms are brought together using a moving one-dimensional optical lattice transport which vertically lifts the atomic sample over a distance of 30 cm from its production chamber into the center of the Paul trap in another chamber. We present techniques to detect and control the relative position between the ion and the atom cloud.

  18. Use of ion chromatography for monitoring microbial spoilage in the fruit juice industry.

    PubMed

    Trifirò, A; Saccani, G; Gherardi, S; Vicini, E; Spotti, E; Previdi, M P; Ndagijimana, M; Cavalli, S; Reschiotto, C

    1997-05-16

    Fruit juices and purees are defined as fermentable, but unfermented, products obtained by mechanical processing of fresh fruits. The presence of undesired metabolites derived from microbial growth can arise from the use of unsuitable fruit or from defects in the production line or subsequent contamination. This involves a loss in the overall quality that cannot be resolved by thermal treatment following the start of fermentation. With these considerations, together with microbiological control, the analysis of different metabolites, which can be considered as microbial growth markers, such as alcohols (i.e. ethanol, etc.), acids (i.e. acetic, fumaric, lactic, etc.) is fundamental in order to achieve a better evaluation of product quality. Enzymatic determination and other single-component analytical techniques are often used for the determination of these metabolites. When the microbial spoilage is not well known, this results in a long and cumbersome procedure. A versatile technique that is capable of determining many metabolites in one analysis could be helpful in improving routine quality control. For this purpose, an ion chromatographic technique, such as ion exclusion, for separation, and diode array spectrophotometry and conductivity, for detection, were evaluated. Both different industrial samples and inoculated samples were analyzed.

  19. Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review.

    PubMed

    Pesavento, Maria; Alberti, Giancarla; Biesuz, Raffaela

    2009-01-12

    Different experimental approaches have been suggested in the last few decades to determine metal species in complex matrices of unknown composition as environmental waters. The methods are mainly focused on the determination of single species or groups of species. The more recent developments in trace elements speciation are reviewed focusing on methods for labile and free metal determination. Electrochemical procedures with low detection limit as anodic stripping voltammetry (ASV) and the competing ligand exchange with adsorption cathodic stripping voltammetry (CLE-AdCSV) have been widely employed in metal distribution studies in natural waters. Other electrochemical methods such as stripping chronopotentiometry and AGNES seem to be promising to evaluate the free metal concentration at the low levels of environmental samples. Separation techniques based on ion exchange (IE) and complexing resins (CR), and micro separation methods as the Donnan membrane technique (DMT), diffusive gradients in thin-film gels (DGT) and the permeation liquid membrane (PLM), are among the non-electrochemical methods largely used in this field and reviewed in the text. Under appropriate conditions such techniques make possible the evaluation of free metal ion concentration.

  20. Single-ion quantum lock-in amplifier.

    PubMed

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Keselman, Anna; Ozeri, Roee

    2011-05-05

    Quantum metrology uses tools from quantum information science to improve measurement signal-to-noise ratios. The challenge is to increase sensitivity while reducing susceptibility to noise, tasks that are often in conflict. Lock-in measurement is a detection scheme designed to overcome this difficulty by spectrally separating signal from noise. Here we report on the implementation of a quantum analogue to the classical lock-in amplifier. All the lock-in operations--modulation, detection and mixing--are performed through the application of non-commuting quantum operators to the electronic spin state of a single, trapped Sr(+) ion. We significantly increase its sensitivity to external fields while extending phase coherence by three orders of magnitude, to more than one second. Using this technique, we measure frequency shifts with a sensitivity of 0.42 Hz Hz(-1/2) (corresponding to a magnetic field measurement sensitivity of 15 pT Hz(-1/2)), obtaining an uncertainty of less than 10 mHz (350 fT) after 3,720 seconds of averaging. These sensitivities are limited by quantum projection noise and improve on other single-spin probe technologies by two orders of magnitude. Our reported sensitivity is sufficient for the measurement of parity non-conservation, as well as the detection of the magnetic field of a single electronic spin one micrometre from an ion detector with nanometre resolution. As a first application, we perform light shift spectroscopy of a narrow optical quadrupole transition. Finally, we emphasize that the quantum lock-in technique is generic and can potentially enhance the sensitivity of any quantum sensor. ©2011 Macmillan Publishers Limited. All rights reserved

  1. POWERFUL NEW TOOLS FOR ANALYZING ENVIRONMENTAL CONTAMINATION: MASS PEAK PROFILING FROM SELECTED-ION RECORDING DATA AND A PROFILE GENERATION MODEL

    EPA Science Inventory

    Capillary gas chromatography with mass spectrometric detection is the most commonly used technique for analyzing samples from Superfund sites. While the U.S. EPA has developed target lists of compounds for which library mass spectra are available on most mass spectrometer data s...

  2. Use of an ion mobility spectrometer for detecting uranium compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLain, Derek R.; Steeb, Jennifer L.; Smith, Nicholas A.

    The safeguards community currently lacks a method to rapidly determine the chemical form of radioactive and non-radioactive compounds in real time during inspection activities. Chemical speciation identification can provide important information on both the types of materials that are collected during environmental sampling and can inform inspectors as to where to focus efforts during inspections or complementary access visits. Ion Mobility Spectrometry (IMS) is an established field technique for the detection of explosives, narcotics, and other organic compounds. More recently, electrospray ionization (ESI) has been used to introduce inorganic compounds to IMS instruments for analysis. These techniques have shown themore » ability to supply chemical information about the compounds being analyzed. Although these laboratory based instruments use a liquid-based injection system, there is evidence in the literature of unaltered and intact pharmaceutical tablets being volatilized and ionized in open atmosphere using heat and a Ni-63 source. Lastly, this work determined that a commercial-off-the-shelf (COTS) IMS could be used for the identification of solid uranium compounds directly after sampling using a COTS sample swipe.« less

  3. Use of an ion mobility spectrometer for detecting uranium compounds

    DOE PAGES

    McLain, Derek R.; Steeb, Jennifer L.; Smith, Nicholas A.

    2018-03-09

    The safeguards community currently lacks a method to rapidly determine the chemical form of radioactive and non-radioactive compounds in real time during inspection activities. Chemical speciation identification can provide important information on both the types of materials that are collected during environmental sampling and can inform inspectors as to where to focus efforts during inspections or complementary access visits. Ion Mobility Spectrometry (IMS) is an established field technique for the detection of explosives, narcotics, and other organic compounds. More recently, electrospray ionization (ESI) has been used to introduce inorganic compounds to IMS instruments for analysis. These techniques have shown themore » ability to supply chemical information about the compounds being analyzed. Although these laboratory based instruments use a liquid-based injection system, there is evidence in the literature of unaltered and intact pharmaceutical tablets being volatilized and ionized in open atmosphere using heat and a Ni-63 source. Lastly, this work determined that a commercial-off-the-shelf (COTS) IMS could be used for the identification of solid uranium compounds directly after sampling using a COTS sample swipe.« less

  4. [Determination of lead in edible salt with solid-phase extraction and GFAAS].

    PubMed

    Zhao, Xin; Zhou, Shuang; Ma, Lan; Yang, Dajin

    2013-01-01

    Establishing a method for determination of lead in salt with solid-phase extraction and GFAAS. Salt sample was diluted to a certain volume directly with ammonium acetate, then the sample solution was filtered through the solid phase extraction column which has been pre-activated. Lead ions were retained, and the sodium chloride matrix was removed. After elution, the collected lead ions was determined by graphite furnace atomic absorption spectrometry in 257.4 nm. This method can be used effectively to wipe off the sodium chloride in matrix. The limit of detection was 0.7 microg/kg and the limit of quantification was 2 microg/kg. Solid phase extraction technique can be used effectively to reduce the interference in matrix and improves the accuracy and reproducibility of detection.

  5. Analysis and modification of blue sapphires from Rwanda by ion beam techniques

    NASA Astrophysics Data System (ADS)

    Bootkul, D.; Chaiwai, C.; Tippawan, U.; Wanthanachaisaeng, B.; Intarasiri, S.

    2015-12-01

    Blue sapphire is categorised in a corundum (Al2O3) group. The gems of this group are always amazed by their beauties and thus having high value. In this study, blue sapphires from Rwanda, recently came to Thai gemstone industry, are chosen for investigations. On one hand, we have applied Particle Induced X-ray Emission (PIXE), which is a highly sensitive and precise analytical technique that can be used to identify and quantify trace elements, for chemical analysis of the sapphires. Here we have found that the major element of blue sapphires from Rwanda is Al with trace elements such as Fe, Ti, Cr, Ga and Mg as are commonly found in normal blue sapphire. On the other hand, we have applied low and medium ion implantations for color improvement of the sapphire. It seems that a high amount of energy transferring during cascade collisions have altered the gems properties. We have clearly seen that the blue color of the sapphires have been intensified after nitrogen ion bombardment. In addition, the gems were also having more transparent and luster. The UV-Vis-NIR measurement detected the modification of their absorption properties, implying of the blue color increasing. Here the mechanism of these modifications is postulated and reported. In any point of view, the bombardment by using nitrogen ion beam is a promising technique for quality improvement of the blue sapphire from Rwanda.

  6. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    NASA Astrophysics Data System (ADS)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  7. 8-aminoquinoline functionalized silica nanoparticles: a fluorescent nanosensor for detection of divalent zinc in aqueous and in yeast cell suspension.

    PubMed

    Rastogi, Shiva K; Pal, Parul; Aston, D Eric; Bitterwolf, Thomas E; Branen, A Larry

    2011-05-01

    Zinc is one of the most important transition metal of physiological importance, existing primarily as a divalent cation. A number of sensors have been developed for Zn(II) detection. Here, we present a novel fluorescent nanosensor for Zn(II) detection using a derivative of 8-aminoquinoline (N-(quinolin-8-yl)-2-(3 (triethoxysilyl)propylamino)acetamide (QTEPA) grafted on silica nanoparticles (SiNPs). These functionalized SiNPs were used to demonstrate specific detection of Zn(II) in tris-HCl buffer (pH 7.22), in yeast cell (Saccharomyces cerevisiae) suspension, and in tap water. The silane QTEPA, SiNPs and final product were characterized using solution and solid state nuclear magnetic resonance, Fourier transform infrared, ultraviolet-visible absorption spectroscopy, transmission electron microscopy, elemental analysis, thermogravimetric techniques, and fluorescence spectroscopy. The nanosensor shows almost 2.8-fold fluorescence emission enhancement and about 55 nm red-shift upon excitation with 330 ± 5 nm wavelength in presence of 1 μM Zn(II) ions in tris-HCl (pH 7.22). The presence of other metal ions has no observable effect on the sensitivity and selectivity of nanosensor. This sensor selectively detects Zn(II) ions with submicromolar detection to a limit of 0.1 μM. The sensor shows good applicability in the determination of Zn(II) in tris-HCl buffer and yeast cell environment. Further, it shows enhancement in fluorescence intensity in tap water samples.

  8. Partially Ionized Beam Deposition of Silicon-Dioxide and Aluminum Thin Films - Defects Generation.

    NASA Astrophysics Data System (ADS)

    Wong, Justin Wai-Chow

    1987-09-01

    Detect formation in SiO_2 and Al thin films and interfaces were studied using a partially ionized beam (PIB) deposition technique. The evaporated species (the deposition material) were partially ionized to give an ion/atom ratio of <=q0.1% and the substrate was biased at 0-5kV during the deposition. The results suggest that due to the ion bombardment, stoichiometric SiO_2 films can be deposited at a low substrate temperature (~300 ^circC) and low oxygen pressure (<=q10^{-4} Torr). Such deposition cannot be achieved using conventional evaporation-deposition techniques. However, traps and mobile ions were observed in the oxide and local melt-down was observed when a sufficiently high electric field was applied to the film. For the PIB Al deposition on the Si substrate, stable Al/Si Schottky contact was formed when the substrate bias was <=q1kV. For a substrate bias of 2.5kV, the capacitance of the Al/Si interface increased dramatically. A model of self-ion implantation with a p-n junction created by the Al^+ ion implantation was proposed and tested to explain the increase of the interface capacitance. Several deep level states at the Al/Si interface were observed using Deep Level Transient Spectroscopy (DLTS) technique when the film was deposited at a bias of 3kV. The PIB Al films deposited on the Si substrate showed unusually strong electromigration resistance under high current density operation. This phenomenon was explained by the highly oriented microstructure of the Al films created by the self-ion bombardment during deposition. These findings show that PIB has potential applications in a number of areas, including low temperature thin film deposition, and epitaxial growth of thin films in the microelectronics thin film industry.

  9. Nondestructive atomic compositional analysis of BeMgZnO quaternary alloys using ion beam analytical techniques

    NASA Astrophysics Data System (ADS)

    Zolnai, Z.; Toporkov, M.; Volk, J.; Demchenko, D. O.; Okur, S.; Szabó, Z.; Özgür, Ü.; Morkoç, H.; Avrutin, V.; Kótai, E.

    2015-02-01

    The atomic composition with less than 1-2 atom% uncertainty was measured in ternary BeZnO and quaternary BeMgZnO alloys using a combination of nondestructive Rutherford backscattering spectrometry with 1 MeV He+ analyzing ion beam and non-Rutherford elastic backscattering experiments with 2.53 MeV energy protons. An enhancement factor of 60 in the cross-section of Be for protons has been achieved to monitor Be atomic concentrations. Usually the quantitative analysis of BeZnO and BeMgZnO systems is challenging due to difficulties with appropriate experimental tools for the detection of the light Be element with satisfactory accuracy. As it is shown, our applied ion beam technique, supported with the detailed simulation of ion stopping, backscattering, and detection processes allows of quantitative depth profiling and compositional analysis of wurtzite BeZnO/ZnO/sapphire and BeMgZnO/ZnO/sapphire layer structures with low uncertainty for both Be and Mg. In addition, the excitonic bandgaps of the layers were deduced from optical transmittance measurements. To augment the measured compositions and bandgaps of BeO and MgO co-alloyed ZnO layers, hybrid density functional bandgap calculations were performed with varying the Be and Mg contents. The theoretical vs. experimental bandgaps show linear correlation in the entire bandgap range studied from 3.26 eV to 4.62 eV. The analytical method employed should help facilitate bandgap engineering for potential applications, such as solar blind UV photodetectors and heterostructures for UV emitters and intersubband devices.

  10. Analyzing slowly exchanging protein conformations by ion mobility mass spectrometry: study of the dynamic equilibrium of prolyl oligopeptidase.

    PubMed

    López, Abraham; Vilaseca, Marta; Madurga, Sergio; Varese, Monica; Tarragó, Teresa; Giralt, Ernest

    2016-07-01

    Ion mobility mass spectrometry (IMMS) is a biophysical technique that allows the separation of isobaric species on the basis of their size and shape. The high separation capacity, sensitivity and relatively fast time scale measurements confer IMMS great potential for the study of proteins in slow (µs-ms) conformational equilibrium in solution. However, the use of this technique for examining dynamic proteins is still not generalized. One of the major limitations is the instability of protein ions in the gas phase, which raises the question as to what extent the structures detected reflect those in solution. Here, we addressed this issue by analyzing the conformational landscape of prolyl oligopeptidase (POP) - a model of a large dynamic enzyme in the µs-ms range - by native IMMS and compared the results obtained in the gas phase with those obtained in solution. In order to interpret the experimental results, we used theoretical simulations. In addition, the stability of POP gaseous ions was explored by charge reduction and collision-induced unfolding experiments. Our experiments disclosed two species of POP in the gas phase, which correlated well with the open and closed conformations in equilibrium in solution; moreover, a gas-phase collapsed form of POP was also detected. Therefore, our findings not only support the potential of IMMS for the study of multiple co-existing conformations of large proteins in slow dynamic equilibrium in solution but also stress the need for careful data analysis to avoid artifacts. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Strain detection in crystalline heterostructures using bidimensional blocking patterns of channelled particles

    NASA Astrophysics Data System (ADS)

    Redondo-Cubero, A.; David-Bosne, E.; Wahl, U.; Miranda, P.; da Silva, M. R.; Correia, J. G.; Lorenz, K.

    2018-03-01

    Strain is a critical parameter affecting the growth and the performance of many semiconductor systems but, at the same time, the accurate determination of strain profiles in heterostructures can be challenging, especially at the nanoscale. Ion channelling/blocking is a powerful technique for the detection of the strain state of thin films, normally carried out through angular scans with conventional particle detectors. Here we report the novel application of position sensitive detectors for the evaluation of the strain in a series of AlInN/GaN heterostructures with different compositions and thicknesses. The tetragonal strain is varied from compressive to tensile and analysed through bidimensional blocking patterns. The results demonstrate that strain can be correctly quantified when compared to Monte Carlo channelling simulations, which are essential because of the presence of ion steering effects at the interface between the layer and the substrate. Despite this physical limitation caused by ion steering, our results show that full bidimensional patterns can be applied to detect fingerprints and enhance the accuracy for most critical cases, in which the angular shift associated to the lattice distortion is below the critical angle for channelling.

  12. Optimized approach for Ion Proton RNA sequencing reveals details of RNA splicing and editing features of the transcriptome.

    PubMed

    Brown, Roger B; Madrid, Nathaniel J; Suzuki, Hideaki; Ness, Scott A

    2017-01-01

    RNA-sequencing (RNA-seq) has become the standard method for unbiased analysis of gene expression but also provides access to more complex transcriptome features, including alternative RNA splicing, RNA editing, and even detection of fusion transcripts formed through chromosomal translocations. However, differences in library methods can adversely affect the ability to recover these different types of transcriptome data. For example, some methods have bias for one end of transcripts or rely on low-efficiency steps that limit the complexity of the resulting library, making detection of rare transcripts less likely. We tested several commonly used methods of RNA-seq library preparation and found vast differences in the detection of advanced transcriptome features, such as alternatively spliced isoforms and RNA editing sites. By comparing several different protocols available for the Ion Proton sequencer and by utilizing detailed bioinformatics analysis tools, we were able to develop an optimized random primer based RNA-seq technique that is reliable at uncovering rare transcript isoforms and RNA editing features, as well as fusion reads from oncogenic chromosome rearrangements. The combination of optimized libraries and rapid Ion Proton sequencing provides a powerful platform for the transcriptome analysis of research and clinical samples.

  13. Analysis of Listeria using exogenous volatile organic compound metabolites and their detection by static headspace-multi-capillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS).

    PubMed

    Taylor, Carl; Lough, Fraser; Stanforth, Stephen P; Schwalbe, Edward C; Fowlis, Ian A; Dean, John R

    2017-07-01

    Listeria monocytogenes is a Gram-positive bacterium and an opportunistic food-borne pathogen which poses significant risk to the immune-compromised and pregnant due to the increased likelihood of acquiring infection and potential transmission of infection to the unborn child. Conventional methods of analysis suffer from either long turn-around times or lack the ability to discriminate between Listeria spp. reliably. This paper investigates an alternative method of detecting Listeria spp. using two novel enzyme substrates that liberate exogenous volatile organic compounds in the presence of α-mannosidase and D-alanyl aminopeptidase. The discriminating capabilities of this approach for identifying L. monocytogenes from other species of Listeria are investigated. The liberated volatile organic compounds (VOCs) are detected using an automated analytical technique based on static headspace-multi-capillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS). The results obtained by SHS-MCC-GC-IMS are compared with those obtained by the more conventional analytical technique of headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results found that it was possible to differentiate between L. monocytogenes and L. ivanovii, based on their VOC response from α-mannosidase activity.

  14. Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration

    PubMed Central

    Hall, Adam B.; Coy, Stephen L.; Kafle, Amol; Glick, James; Nazarov, Erkinjon

    2013-01-01

    A miniature, planar, differential ion mobility spectrometer (DMS) was interfaced to an LCQ classic ion trap to conduct selective ion filtration prior to mass analysis in order to extend the dynamic range of the trap. Space charge effects are known to limit the functional ion storage capacity of ion trap mass analyzers and this, in turn, can affect the quality of the mass spectral data generated. This problem is further exacerbated in the analysis of mixtures where the indiscriminate introduction of matrix ions results in premature trap saturation with non-targeted species, thereby reducing the number of parent ions that may be used to conduct MS/MS experiments for quantitation or other diagnostic studies. We show that conducting differential mobility-based separations prior to mass analysis allows the isolation of targeted analytes from electrosprayed mixtures preventing the indiscriminate introduction of matrix ions and premature trap saturation with analytically unrelated species. Coupling these two analytical techniques is shown to enhance the detection of a targeted drug metabolite from a biological matrix. In its capacity as a selective ion filter, the DMS can improve the analytical performance of analyzers such as quadrupole (3-D or linear) and ion cyclotron resonance (FT-ICR) ion traps that depend on ion accumulation. PMID:23797861

  15. Electrophoretic studies of polygalacturonate oligomers and their interactions with metal ions.

    PubMed

    Wiedmer, S K; Cassely, A; Hong, M; Novotny, M V; Riekkola, M L

    2000-09-01

    Polygalacturonic acid, a linear homopolysaccharide, was investigated by capillary electrophoresis (CE) using linear polyacrylamide-coated capillaries and laser-induced fluorescence (LIF) detection. A successful separation of its fluorescently labeled oligomers was achieved through sieving in polyacrylamide entangled matrices. The reaction conditions for the derivatization of polygalacturonic acid were optimized. In studying the interactions between polygalacturonic acid and various metal ions, the end-label, free-solution electrophoretic (ELFSE) technique, developed earlier in our laboratory (Sudor, J., Novotny, M. V., Anal. Chem. 1995, 67, 4205-4209) was found preferable to the sieving method. ELFSE is fast and convenient in that no polymer solutions are needed for the separation. The investigation showed that for the moderately large oligomers, the strongest binding occurred with calcium and cadmium ions, while the smallest interaction was observed with magnesium ions.

  16. Motional studies of one and two laser-cooled trapped ions for electric-field sensing applications

    NASA Astrophysics Data System (ADS)

    Domínguez, F.; Gutiérrez, M. J.; Arrazola, I.; Berrocal, J.; Cornejo, J. M.; Del Pozo, J. J.; Rica, R. A.; Schmidt, S.; Solano, E.; Rodríguez, D.

    2018-03-01

    We have studied the dynamics of one and two laser-cooled trapped ?Ca? ions by applying electric fields of different nature along the axial direction of the trap, namely, driving the motion with a harmonic dipolar field, or with white noise. These two types of driving induce distinct motional states of the axial modes: a coherent oscillation with the dipolar field, or an enhanced Brownian motion due to an additional contribution to the heating rate from the electric noise. In both scenarios, the sensitivity of an isolated ion and a laser-cooled two-ion crystal has been evaluated and compared. The analysis and understanding of this dynamics is important towards the implementation of a novel Penning trap mass-spectroscopy technique based on optical detection, aiming at improving precision and sensitivity.

  17. Fundamentals of ambient metastable-induced chemical ionization mass spectrometry and atmospheric pressure ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Harris, Glenn A.

    Molecular ionization is owed much of its development from the early implementation of electron ionization (EI). Although dramatically increasing the library of compounds discovered, an inherent problem with EI was the low abundance of molecular ions detected due to high fragmentation leading to the difficult task of the correct chemical identification after mass spectrometry (MS). These problems stimulated the research into new ionization methods which sought to "soften" the ionization process. In the late 1980s the advancements of ionization techniques was thought to have reached its pinnacle with both electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). Both ionization techniques allowed for "soft" ionization of large molecular weight and/or labile compounds for intact characterization by MS. Albeit pervasive, neither ESI nor MALDI can be viewed as "magic bullet" ionization techniques. Both techniques require sample preparation which often included native sample destruction, and operation of these techniques took place in sealed enclosures and often, reduced pressure conditions. New open-air ionization techniques termed "ambient MS" enable direct analysis of samples of various physical states, sizes and shapes. One particular technique named Direct Analysis In Real Time (DART) has been steadily growing as one of the ambient tools of choice to ionize small molecular weight (< 1000 Da) molecules with a wide range of polarities. Although there is a large list of reported applications using DART as an ionization source, there have not been many studies investigating the fundamental properties of DART desorption and ionization mechanisms. The work presented in this thesis is aimed to provide in depth findings on the physicochemical phenomena during open-air DART desorption and ionization MS and current application developments. A review of recent ambient plasma-based desorption/ionization techniques for analytical MS is presented in Chapter 1. Chapter 2 presents the first investigations into the atmospheric pressure ion transport phenomena during DART analysis. Chapter 3 provides a comparison on the internal energy deposition processes during DART and pneumatically assisted-ESI. Chapter 4 investigates the complex spatially-dependent sampling sensitivity, dynamic range and ion suppression effects present in most DART experiments. New implementations and applications with DART are shown in Chapters 5 and 6. In Chapter 5, DART is coupled to multiplexed drift tube ion mobility spectrometry as a potential fieldable platform for the detection of toxic industrial chemicals and chemical warfare agents simulants. In Chapter 6, transmission-mode DART is shown to be an effective method for reproducible sampling from materials which allow for gas to flow through it. Also, Chapter 6 provides a description of a MS imaging platform coupling infrared laser ablation and DART-like phenomena. Finally, in Chapter 7 I will provide perspective on the work completed with DART and the tasks and goals that future studies should focus on.

  18. Dynamics of paramagnetic agents by off-resonance rotating frame technique in the presence of magnetization transfer effect

    NASA Astrophysics Data System (ADS)

    Zhang, Huiming; Xie, Yang

    2007-02-01

    The simple method for measuring the rotational correlation time of paramagnetic ion chelates via off-resonance rotating frame technique is challenged in vivo by the magnetization transfer effect. A theoretical model for the spin relaxation of water protons in the presence of paramagnetic ion chelates and magnetization transfer effect is described. This model considers the competitive relaxations of water protons by the paramagnetic relaxation pathway and the magnetization transfer pathway. The influence of magnetization transfer on the total residual z-magnetization has been quantitatively evaluated in the context of the magnetization map and various difference magnetization profiles for the macromolecule conjugated Gd-DTPA in cross-linked protein gels. The numerical simulations and experimental validations confirm that the rotational correlation time for the paramagnetic ion chelates can be measured even in the presence of strong magnetization transfer. This spin relaxation model also provides novel approaches to enhance the detection sensitivity for paramagnetic labeling by suppressing the spin relaxations caused by the magnetization transfer. The inclusion of the magnetization transfer effect allows us to use the magnetization map as a simulation tool to design efficient paramagnetic labeling targeting at specific tissues, to design experiments running at low RF power depositions, and to optimize the sensitivity for detecting paramagnetic labeling. Thus, the presented method will be a very useful tool for the in vivo applications such as molecular imaging via paramagnetic labeling.

  19. Collision-induced dissociation of protonated water clusters

    NASA Astrophysics Data System (ADS)

    Berthias, F.; Buridon, V.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Dinh, P. M.; Reinhard, P.-G.; Suraud, E.; Märk, T. D.

    2014-06-01

    Collision-induced dissociation (CID) has been studied for protonated water clusters H+(H2O)n, with n = 2-8, colliding with argon atoms at a laboratory energy of 8 keV. The experimental data have been taken with an apparatus (Device for Irradiation of Molecular Clusters, `Dispositif d'Irradiation d'Agrégats Moléculaire,' DIAM) that has been recently constructed at the Institut de Physique Nucléaire de Lyon. It includes an event-by-event mass spectrometry detection technique, COINTOF (correlated ion and neutral fragment time of flight). The latter device allows, for each collision event, to detect and identify in a correlated manner all produced neutral and charged fragments. For all the studied cluster ions, it has allowed us to identify branching ratios for the loss of i = 1 to i = n water molecules, leading to fragment ions ranging from H+(H2O)i=n-1 all the way down to the production of protons. Using a corresponding calibration technique we determine total charged fragment production cross sections for incident protonated water clusters H+(H2O)n, with n = 2-7. Observed trends for branching ratios and cross sections, and a comparison with earlier data on measured attenuation cross sections for water clusters colliding with other noble gases (He and Xe), give insight into the underlying dissociation mechanisms.

  20. Fetal electrocardiograph

    NASA Astrophysics Data System (ADS)

    Rios, Heriberto; Andrade, Armando; Puente, Ernestina; Lizana, Pablo R.; Mendoza, Diego

    2002-11-01

    The high intra-uterine death rate is due to failure in appropriately diagnosing some problems in the cardiobreathing system of the fetus during pregnancy. The electrocardiograph is one apparatus which might detect problems at an early stage. With electrodes located near the womb and uterus, in a way similar to the normal technique, the detection of so-called biopotential differences, caused by concentrations of ions, can be achieved. The fetal electrocardiograph is based on an ultrasound technique aimed at detecting intrauterine problems in pregnant women, because it is a noninvasive technique due to the very low level of ultrasound power used. With this system, the following tests can be done: Heart movements from the ninth week onwards; Rapid and safe diagnosis of intrauterine fetal death; Location and size of the placenta. The construction of the fetal electrocardiograph requires instrument level components directly mounted on the printed circuit board, in order to avoid stray capacitance in the cabling which prevents the detection of the E.C.G. activity. The low cost of the system makes it affordable to low budget institutions; in contrast, available commercial systems are priced in U.S. Dollars. (To be presented in Spanish.)

  1. In Situ Geochemical Analysis and Age Dating of Rocks Using Laser Ablation-Miniature Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P.; Hecht, Michael H.; Hurowitz, Joel A.

    2012-01-01

    A miniaturized instrument for performing chemical and isotopic analysis of rocks has been developed. The rock sample is ablated by a laser and the neutral species produced are analyzed using the JPL-invented miniature mass spectrometer. The direct sampling of neutral ablated material and the simultaneous measurement of all the elemental and isotopic species are the novelties of this method. In this laser ablation-miniature mass spectrometer (LA-MMS) method, the ablated neutral atoms are led into the electron impact ionization source of the MMS, where they are ionized by a 70-eV electron beam. This results in a secondary ion pulse typically 10-100 microsecond wide, compared to the original 5-10-nanosecond laser pulse duration. Ions of different masses are then spatially dispersed along the focal plane of the magnetic sector of the miniature mass spectrometer and measured in parallel by a modified CCD (charge-coupled device) array detector capable of detecting ions directly. Compared to conventional scanning techniques, simultaneous measurement of the ion pulse along the focal plane effectively offers a 100% duty cycle over a wide mass range. LAMMS offers a more quantitative assessment of elemental composition than techniques that detect laser-ionized species produced directly in the ablation process because the latter can be strongly influenced by matrix effects that vary with the structure and geometry of the surface, the laser beam, and the ionization energies of the elements. The measurement of high-precision isotopic ratios and elemental composition of different rock minerals by LAMMS method has been demonstrated. The LA-MMS can be applied for the absolute age determination of rocks. There is no such instrument available presently in a miniaturized version that can be used for NASA space missions. Work is in progress in the laboratory for geochronology of rocks using LA-MMS that is based on K-Ar radiogenic dating technique.

  2. Development of a plug-type IMS-MS instrument and its applications in resolving problems existing in in-situ detection of illicit drugs and explosives by IMS.

    PubMed

    Du, Zhenxia; Sun, Tangqiang; Zhao, Jianan; Wang, Di; Zhang, Zhongxia; Yu, Wenlian

    2018-07-01

    Ion mobility spectrometry (IMS) which acts as a rapid analysis technique is widely used in the field detection of illicit drugs and explosives. Due to limited separation abilities of the pint-sized IMS challenges and problems still exist regarding high false positive and false negative responses due to the interference of the matrix. In addition, the gas-phase ion chemistry and special phenomena in the IMS spectra, such one substance showing two peaks, were not identified unambiguously. In order to explain or resolve these questions, in this paper, an ion mobility spectrometry was coupled to a mass spectrometry (IMS-MS). A commercial IMS is embedded in a custom-built ion chamber shell was attached to the mass spectrometer. The faraday plate of IMS was fabricated with a hole for the ions to passing through to the mass spectrometer. The ion transmission efficiency of IMS-MS was optimized by optimizing the various parameters, especially the distance between the faraday plate and the cone of mass spectrum. This design keeps the integrity of the two original instruments and the mass spectrometry still works with multimode ionization source (i.e., IMS-MS, ESI-MS, APCI-MS modes). The illicit drugs and explosive samples were analyzed by the IMS-MS with 63 Ni source. The results showed that the IMS-MS is of high sensitivity. The ionization mechanism of the illicit drug and explosive samples with 63 Ni source were systematically studied. In addition, the interferent which interfered the detection of cocaine was identified as dibutyl phthalate (DBP) by this platform. The reason why the acetone solution of amphetamine showed two peaks was explained. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Rapid identification and desorption mechanisms of nitrogen-based explosives by ambient micro-fabricated glow discharge plasma desorption/ionization (MFGDP) mass spectrometry.

    PubMed

    Tian, CaiYan; Yin, JinWei; Zhao, ZhongJun; Zhang, Yinchenxi; Duan, YiXiang

    2017-05-15

    A novel technique of micro-fabricated glow discharge plasma desorption/ionization mass spectrometry was investigated for the first time in negative ion mode in this study. Negative ion micro-fabricated glow discharge plasma desorption/ionization mass spectrometry (NI-MFGDP-MS) was successfully applied to identify trace explosives in open air. Six explosives and explosives-related compounds were directly analyzed in seconds with this ion source. The ions of [M-H] - were predominant for 2-methyl-1,3,5-trinitrobenzene (trinitrotoluene, TNT) and 2,4,6-trinitrophenol (picric acid), and [M+NO 3 ] - were dominant ions for 1,3,5-trinitro-perhydro-1,3,5-triazine (cyclonite, RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (octogen, HMX), 1,2,3-trinitroxypropane (nitroglycerin, NG), and pentaerythritol tetranitrate (PETN). The limits of detection (LOD) were from 87.5pgmm -2 to 0.4 fg mm -2 and the relative standard deviation (RSD) ranged between 5.8% and 16.8% for the explosives involved in this study. The reliability of NI-MFGDP-MS was characterized by the analysis of a picric acid-RDX-PETN mixture and a mixture of RDX-pond water. NI-MFGDP-MS and ESI-MS were compared with these explosives and along with collision induced dissociation (CID) experiments. The results showed that electron capture, proton abstraction reaction, nucleophilic attack, ion-molecule attachment, decomposition and anion attachment took place during the NI-MFGDP-MS measurement. These findings provide a guideline and a supplement to the chemical libraries for rapid and accurate detection of explosives. The method shows great potential for fast, in situ, on-line and high throughput detection of explosives in the field of antiterrorism. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Colorimetric anion sensors based on positional effect of nitro group for recognition of biologically relevant anions in organic and aqueous medium, insight real-life application and DFT studies.

    PubMed

    Singh, Archana; Sahoo, Suban K; Trivedi, Darshak R

    2018-01-05

    A new six colorimetric receptors A1-A6 were designed and synthesized, characterized by typical common spectroscopic techniques like FT-IR, UV-Visible, 1 H NMR, 13 C NMR and ESI-MS. The receptor A1 and A2 exhibit a significant naked-eye response towards F - and AcO - ions in DMSO. Due to presences of the NO 2 group at para and ortho position with extended π-conjugation of naphthyl group carrying OH as a binding site. Compared to receptor A2, A1 is extremely capable of detecting F - and AcO - ions present in the form of sodium salts in an aqueous medium. This is owed to the occurrence of NO 2 group at para position induced in increasing the acidity of OH proton. Consequently, it easily gets deprotonated in aqueous media. The detection limit of receptor A1 was turned out to be 0.40 and 0.35ppm for F - and AcO - ions which is beneath WHO permission level (1.0ppm). Receptor A1 shows a solitary property of solvatochromism in different aprotic solvents in presence of AcO - ion. Receptor A1 depicts high selectivity towards AcO - ion in DMSO: HEPES buffer (9:1, v/v). Receptor A1 proved itself for real life application by detecting anion in solution and solid state. The binding mechanism of receptor A1 with AcO - and F - ions was monitored from 1 HNMR titration and DFT study. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Cavity-Enhanced Spectroscopy of Molecular Ions in the Mid-Infrared with Up-Conversion Detection and Brewster-Plate Spoilers

    NASA Astrophysics Data System (ADS)

    Markus, Charles R.; McCollum, Jefferson E.; Hodges, James Neil; Perry, Adam J.; McCall, Benjamin J.

    2017-06-01

    Molecular ions are challenging to study with conventional spectroscopic methods. Laboratory discharges produce ions in trace quantities which can be obscured by the abundant neutral molecules present. The technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy (NICE-OHVMS) overcomes these challenges by combining the ion-neutral discrimination of velocity modulation spectroscopy with the sensitivity of Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectroscopy (NICE-OHMS), and has been able to determine transition frequencies of molecular ions in the mid-infrared (mid-IR) with sub-MHz uncertainties when calibrated with an optical frequency comb. However, the extent of these studies was limited by the presence of fringes due to parasitic etalons and the speed and noise characteristics of mid-IR detectors. Recently, we have overcome these limitations by implementing up-conversion detection and dithered optics. We performed up-conversion using periodically poled lithium niobate to convert light from the mid-IR to the visible to be within the coverage of sensitive and fast silicon detectors while maintaining our heterodyne and velocity modulation signals. The parasitic etalons were removed by rapidly rotating CaF_2 windows with galvanometers, which is known as a Brewster-plate spoiler, which averaged out the fringes in detection. Together, these improved the sensitivity by more than an order of magnitude and have enabled extended spectroscopic surveys of molecular ions in the mid-IR. J. N. Hodges, A. J. Perry, P. A. Jenkins II, B. M. Siller, and B. J. McCall, J. Chem. Phys. (2013), 139, 164201. C. R. Webster, J. Opt. Soc. Am. B (1985), 2, 1464. C. R. Markus, A. J. Perry, J. N. Hodges, and B. J. McCall, Opt. Express (2017), 25, 3709-3721.

  6. Enhancement in sample collection for the detection of MDMA using a novel planar SPME (PSPME) device coupled to ion mobility spectrometry (IMS).

    PubMed

    Gura, Sigalit; Guerra-Diaz, Patricia; Lai, Hanh; Almirall, José R

    2009-07-01

    Trace detection of illicit drugs challenges the scientific community to develop improved sensitivity and selectivity in sampling and detection techniques. Ion mobility spectrometry (IMS) is one of the prominent trace detectors for illicit drugs and explosives, mostly due to its portability, high sensitivity and fast analysis. Current sampling methods for IMS rely on wiping suspected surfaces or withdrawing air through filters to collect particulates. These methods depend greatly on the particulates being bound onto surfaces or having sufficient vapour pressure to be airborne. Many of these compounds are not readily available in the headspace due to their low vapour pressure. This research presents a novel SPME device for enhanced air sampling and shows the use of optimized IMS by genetic algorithms to target volatile markers and/or odour signatures of illicit substances. The sampling method was based on unique static samplers, planar substrates coated with sol-gel polydimethyl siloxane (PDMS) nanoparticles, also known as planar solid-phase microextraction (PSPME). Due to its surface chemistry, high surface area and capacity, PSPME provides significant increases in sensitivity over conventional fibre SPME. The results show a 50-400 times increase in the detection capacity for piperonal, the odour signature of 3,4-methylenedioxymethamphetamine (MDMA). The PSPME-IMS technique was able to detect 600 ng of piperonal in a 30 s extraction from a quart-sized can containing 5 MDMA tablets, while detection using fibre SPME-IMS was not attainable. In a blind study of six cases suspected to contain varying amounts of MDMA in the tablets, PSPME-IMS successfully detected five positive cases and also produced no false positives or false negatives. One positive case had minimal amounts of MDMA resulting in a false negative response for fibre SPME-IMS.

  7. Ruthenium trisbipyridine as a candidate for gas-phase spectroscopic studies in a Fourier transform mass spectrometer

    DOE PAGES

    Scott, Jill R.; Ham, Jason E.; Durham, Bill; ...

    2004-01-01

    Metal polypyridines are excellent candidates for gas-phase optical experiments where their intrinsic properties can be studied without complications due to the presence of solvent. The fluorescence lifetimes of [Ru(bpy) 3 ] 1+ trapped in an optical detection cell within a Fourier transform mass spectrometer were obtained using matrix-assisted laser desorption/ionization to generate the ions with either 2,5-dihydroxybenzoic acid (DHB) or sinapinic acid (SA) as matrix. All transients acquired, whether using DHB or SA for ion generation, were best described as approximately exponential decays. The rate constant for transients derived using DHB as matrix was 4×10 7 s −1 , whilemore » the rate constant using SA was 1×10 7 s −1 . Some suggestions of multiple exponential decay were evident although limited by the quality of the signals. Photodissociation experiments revealed that [Ru(bpy) 3 ] 1+ generated using DHB can decompose to [Ru(bpy) 2 ] 1+ , whereas ions generated using SA showed no decomposition. Comparison of the mass spectra with the fluorescence lifetimes illustrates the promise of incorporating optical detection with trapped ion mass spectrometry techniques.« less

  8. Emerging battery research in Indonesia: The role of nuclear applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kartini, E.

    2015-12-31

    Development of lithium ion batteries will play an important role in achieving innovative sustainable energy. To reduce the production cost of such batteries, the Indonesian government has instituted a strategy to use local resources. Therefore, this technology is now part of the National Industrial Strategic Plan. One of the most important scientific challenges is to improve performance of lithium batteries. Neutron scattering is a very important technique to investigate crystal structure of electrode materials. The unique properties of neutrons, which allow detection of light elements such as lithium ions, are indispensable. The utilization of neutron scattering facilities at the Indonesianmore » National Nuclear Energy Agency will provide significant contributions to the development of improved lithium ion battery technologies.« less

  9. Electrochemical Detectors in HPLC and Ion Chromatography.

    PubMed

    Horvai, George; Pungor, ErnÕ

    1989-01-01

    Back in 1952, the renowned Polish electrochemist Wiktor Kemula introduced chromato-polarography, 1 i.e., polaro-graphic detection for liquid chromatography. This technique continued to develop slowly until the early 1970s (for a review see Reference 2) when modem high-performance liquid chromatography (HPLC) emerged. This new, highly efficient chromatographc method could only be. used with detectors ensuring low dispersion. It was not easy to modify the dropping mercury electrode cells to satisfy this requirement. However, at the same time, electroanalytical chemists, who already had much experience in using carbon-based electrodes for oxidative detection in flow analysis, put forward the idea of oxidative amperometric detection in liquid chromatography. 3,4 In this technique, solid or quasi-solid (paste) electrodes were used and this made possible the construction of miniaturized cells with just a few microliter volume.

  10. Progress in the biosensing techniques for trace-level heavy metals.

    PubMed

    Mehta, Jyotsana; Bhardwaj, Sanjeev K; Bhardwaj, Neha; Paul, A K; Kumar, Pawan; Kim, Ki-Hyun; Deep, Akash

    2016-01-01

    Diverse classes of sensors have been developed over the past few decades for on-site detections of heavy metals. Most of these sensor systems have exploited optical, electrochemical, piezoelectric, ion-selective (electrode), and electrochemical measurement techniques. As such, numerous efforts have been made to explore the role of biosensors in the detection of heavy metals based on well-known interactions between heavy metals and biomolecules (e.g. proteins, peptides, enzymes, antibodies, whole cells, and nucleic acids). In this review, we cover the recent progress made on different types of biosensors for the detection of heavy metals. Our major focus was examining the use of biomolecules for constructing these biosensors. The discussion is extended further to cover the biosensors' performance along with challenges and opportunities for practical utilization. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Dissociation of dicyclohexyl phthalate molecule induced by low-energy electron impact

    NASA Astrophysics Data System (ADS)

    Lacko, Michal; Papp, Peter; Matejčík, Štefan

    2018-06-01

    Experimental investigation of electron ionization (EI) of and electron attachment (EA) onto dicyclohexyl phthalate (DCHP) was carried out using a crossed electron and molecular beam technique. Formation of positive and negative ions by EI and EA with the corresponding dissociation processes was studied and discussed. Due to a low ion yield of the parent positive ion, we were not able to estimate the ionization energy of DCHP. However, we estimated the appearance energies for the protonated phthalate anhydride (m/z 149) to be 10.5 eV and other significant ionic fragments of m/z 249 [DCHP—(R—2H)]+, m/z 167 [DCHP—(2R—3H)]+, and m/z 83 [C6H11]+. The reaction mechanisms of the dissociative ionization process were discussed. In the case of negative ions, we estimated the relative cross sections for a transient negative ion (TNI) and for several detected ions. At low electron energies (close to 0 eV), the TNI of DCHP molecules was the dominant ion, with products of dissociative EA dominating in broad resonances at 7.5 and 8.5 eV.

  12. Ion Trapping with Fast-Response Ion-Selective Microelectrodes Enhances Detection of Extracellular Ion Channel Gradients

    PubMed Central

    Messerli, Mark A.; Collis, Leon P.; Smith, Peter J.S.

    2009-01-01

    Previously, functional mapping of channels has been achieved by measuring the passage of net charge and of specific ions with electrophysiological and intracellular fluorescence imaging techniques. However, functional mapping of ion channels using extracellular ion-selective microelectrodes has distinct advantages over the former methods. We have developed this method through measurement of extracellular K+ gradients caused by efflux through Ca2+-activated K+ channels expressed in Chinese hamster ovary cells. We report that electrodes constructed with short columns of a mechanically stable K+-selective liquid membrane respond quickly and measure changes in local [K+] consistent with a diffusion model. When used in close proximity to the plasma membrane (<4 μm), the ISMs pose a barrier to simple diffusion, creating an ion trap. The ion trap amplifies the local change in [K+] without dramatically changing the rise or fall time of the [K+] profile. Measurement of extracellular K+ gradients from activated rSlo channels shows that rapid events, 10–55 ms, can be characterized. This method provides a noninvasive means for functional mapping of channel location and density as well as for characterizing the properties of ion channels in the plasma membrane. PMID:19217875

  13. Ultrasensitive and selective detection of mercury (II) in serum based on the gold film sensor using a laser scanning confocal imaging-surface plasmon resonance system in real time

    NASA Astrophysics Data System (ADS)

    Liu, Sha; Zhang, Hongyan; Liu, Weimin; Wang, Pengfei

    2015-10-01

    Hg2+ ions are one of the most toxic heavy metal ion pollutants, and are caustic and carcinogenic materials with high cellular toxicity. The Hg2+ ions can accumulate in the human body through the food chain and cause serious and permanent damage to the brain with both acute and chronic toxicity. According to the US Environment Protection Agency (EPA) guidelines, Hg2+ ions must be at concentrations below 1 ng/ml (10 nM) in drinking water. If the Hg2+ ions are higher than 2.5 ng/ml in serum, that will bring mercury poisoning. The traditional testing for Hg2+ ions includes atomic absorption, atomic fluorescence, and inductively coupled plasma mass spectrometry. These methods are usually coupled with gas chromatography, high-performance liquid chromatography, and capillary electrophoresis. However, these instrument-based techniques are rather complicated, time-consuming, costly, and unsuitable for online and portable use. An ultrasensitive and selective detection of mercury (II) in serum was investigated using a laser scanning confocal imaging-surface plasmon resonance system (LSCI-SPR). The detection limit was as low as 0.01 ng/ml for Hg2+ ions in fetal calf serum and that is lower than that was required Hg2+ ions must be at concentrations below 1 ng/ml by the US Environment Protection Agency (EPA) guidelines. This sensor was designed on a T-rich, single-stranded DNA (ssDNA)-modified gold film, which can be individually manipulated using specific T-Hg2+-T complex formation. The quenching intensity of the fluorescence images for rhodamine-labeled ssDNA fitted well with the changes in SPR. The changes varied with the Hg2+ ion concentration, which is unaffected by the presence of other metal ions. A good liner relation was got with the coefficients of 0.9116 in 30% fetal calf serums with the linear part over a range of 0.01 ng/ml to10 ng/ml.

  14. Tracing the signatures of heavy ions in the plasma environment of 67P/Churyumov-Gerasimenko: Ion Composition Analyzer (ICA) observations

    NASA Astrophysics Data System (ADS)

    Nicolaou, G.; Yamauchi, M.; Wieser, M.; Nilsson, H.; Behar, E.; Stenberg Wieser, G.

    2016-12-01

    The Ion Composition Analyzer (ICA) on board ROSETTA is a part of the Rosetta Plasma Consortium (RPC). It is designed to measure the 3-D velocity distribution function of the plasma ions in the environment of the comet 67P/Churyumov-Gerasimenko. Besides the solar wind plasma ions, ICA detected the heavy ions of cometary origin at both low energy (< 100 eV) and at the keV range. So far, ICA distinguished ions of water origin but in principle it should be able to detect CO2+. However, we have not yet succeeded to separate CO2+ ions from O+ or H2O+ ion, mainly due to non-uniform sensitivity and noise level at different mass-channels//azimuthal-sectors, and high cross talk. In May 2016, when ROSETTA was relatively close to the comet (between 6 and 20 km), we observe a second plasma ion population in a higher energy per charge range ( 60-200 eV/q) than the water group ions at 30- 50eV/q. To examine whether this secondary population is still the water group or other ions, such as CO2+, we cleaned the raw data by correcting the non-uniform sensitivity assuming that the noise level should be uniform over different channels. After such a simple cleaning we already found that the mass peak at low energy and that for higher-energy are occasionally similar but in some cases are quite different. Furthermore, we investigate few cases where the low-energy mass peak seems to consist of different Gaussian slopes, indicating that this peak could be composed of two mass peaks. In this presentation we show our techniques we follow to process the data, and we show how we identify the secondary ion component from the May 2016 data.

  15. Improving quantitative gas chromatography-electron ionization mass spectrometry results using a modified ion source: demonstration for a pharmaceutical application.

    PubMed

    D'Autry, Ward; Wolfs, Kris; Hoogmartens, Jos; Adams, Erwin; Van Schepdael, Ann

    2011-07-01

    Gas chromatography-mass spectrometry is a well established analytical technique. However, mass spectrometers with electron ionization sources may suffer from signal drifts, hereby negatively influencing quantitative performance. To demonstrate this phenomenon for a real application, a static headspace-gas chromatography method in combination with electron ionization-quadrupole mass spectrometry was optimized for the determination of residual dichloromethane in coronary stent coatings. Validating the method, the quantitative performance of an original stainless steel ion source was compared to that of a modified ion source. Ion source modification included the application of a gold coating on the repeller and exit plate. Several validation aspects such as limit of detection, limit of quantification, linearity and precision were evaluated using both ion sources. It was found that, as expected, the stainless steel ion source suffered from signal drift. As a consequence, non-linearity and high RSD values for repeated analyses were obtained. An additional experiment was performed to check whether an internal standard compound would lead to better results. It was found that the signal drift patterns of the analyte and internal standard were different, consequently leading to high RSD values for the response factor. With the modified ion source however, a more stable signal was observed resulting in acceptable linearity and precision. Moreover, it was also found that sensitivity improved compared to the stainless steel ion source. Finally, the optimized method with the modified ion source was applied to determine residual dichloromethane in the coating of coronary stents. The solvent was detected but found to be below the limit of quantification. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Cell killing and chromatid damage in primary human bronchial epithelial cells irradiated with accelerated 56Fe ions

    NASA Technical Reports Server (NTRS)

    Suzuki, M.; Piao, C.; Hall, E. J.; Hei, T. K.

    2001-01-01

    We examined cell killing and chromatid damage in primary human bronchial epithelial cells irradiated with high-energy 56Fe ions. Cells were irradiated with graded doses of 56Fe ions (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at Brookhaven National Laboratory. The survival curves for cells plated 1 h after irradiation (immediate plating) showed little or no shoulder. However, the survival curves for cells plated 24 h after irradiation (delayed plating) had a small initial shoulder. The RBE for 56Fe ions compared to 137Cs gamma rays was 1.99 for immediate plating and 2.73 for delayed plating at the D10. The repair ratio (delayed plating/immediate plating) was 1.67 for 137Cs gamma rays and 1.22 for 56Fe ions. The dose-response curves for initially measured and residual chromatid fragments detected by the Calyculin A-mediated premature chromosome condensation technique showed a linear response. The results indicated that the induction frequency for initially measured fragments was the same for 137Cs gamma rays and 56Fe ions. On the other hand, approximately 85% of the fragments induced by 137Cs gamma rays had rejoined after 24 h of postirradiation incubation; the corresponding amount for 56Fe ions was 37%. Furthermore, the frequency of chromatid exchanges induced by gamma rays measured 24 h after irradiation was higher than that induced by 56Fe ions. No difference in the amount of chromatid damage induced by the two types of radiations was detected when assayed 1 h after irradiation. The results suggest that high-energy 56Fe ions induce a higher frequency of complex, unrepairable damage at both the cellular and chromosomal levels than 137Cs gamma rays in the target cells for radiation-induced lung cancers.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.

    A new method to tag the barium daughter in the double beta decay ofmore » $$^{136}$$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$$^{++}$$) resolution at a transparent scanning surface has been demonstrated. A single-step photo-bleach confirms the single ion interpretation. Individual ions are localized with super-resolution ($$\\sim$$2~nm), and detected with a statistical significance of 12.9~$$\\sigma$$ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.« less

  18. Improving Alpha Spectrometry Energy Resolution by Ion Implantation with ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dion, Michael P.; Liezers, Martin; Farmer, Orville T.

    2015-01-01

    We report results of a novel technique using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) as a method of source preparation for alpha spectrometry. This method produced thin, contaminant free 241Am samples which yielded extraordinary energy resolution which appear to be at the lower limit of the detection technology used in this research.

  19. High Speed Intact Protein Characterization Using 4X Frequency Multiplication, Ion Trap Harmonization, and 21 Tesla FTICR-MS.

    PubMed

    Shaw, Jared B; Gorshkov, Mikhail V; Wu, Qinghao; Paša-Tolić, Ljiljana

    2018-05-01

    Mass spectrometric characterization of large biomolecules, such as intact proteins, requires the specificity afforded by ultrahigh resolution mass measurements performed at both the intact mass and product ion levels. Although the performance of time-of-flight mass analyzers is steadily increasing, the choice of mass analyzer for large biomolecules (e.g., proteins >50 kDa) is generally limited to the Fourier transform family of mass analyzers such as Orbitrap and ion cyclotron resonance (FTICR-MS), with the latter providing unmatched mass resolving power and measurement accuracy. Yet, protein analyses using FTMS are largely hindered by the low acquisition rates of spectra with ultrahigh resolving power. Frequency multiple detection schemes enable FTICR-MS to overcome this fundamental barrier and achieve resolving powers and acquisition speeds 4× greater than the limits imposed by magnetic field strength. Here we expand upon earlier work on the implementation of this technique for biomolecular characterization. We report the coupling of 21T FTICR-MS, 4X frequency multiplication, ion trapping field harmonization technology, and spectral data processing methods to achieve unprecedented acquisition rates and resolving power in mass spectrometry of large intact proteins. Isotopically resolved spectra of multiply charged ubiquitin ions were acquired using detection periods as short as 12 ms. Large proteins such as apo-transferrin (MW = 78 kDa) and monoclonal antibody (MW = 150 kDa) were isotopically resolved with detection periods of 384 and 768 ms, respectively. These results illustrate the future capability of accurate characterization of large proteins on time scales compatible with online separations.

  20. Sensitive ionization of non-volatile analytes using protein solutions as spray liquid in desorption electrospray ionization mass spectrometry.

    PubMed

    Zhu, Zhiqiang; Han, Jing; Zhang, Yan; Zhou, Yafei; Xu, Ning; Zhang, Bo; Gu, Haiwei; Chen, Huanwen

    2012-12-15

    Desorption electrospray ionization (DESI) is the most popular ambient ionization technique for direct analysis of complex samples without sample pretreatment. However, for many applications, especially for trace analysis, it is of interest to improve the sensitivity of DESI-mass spectrometry (MS). In traditional DESI-MS, a mixture of methanol/water/acetic acid is usually used to generate the primary ions. In this article, dilute protein solutions were electrosprayed in the DESI method to create multiply charged primary ions for the desorption ionization of trace analytes on various surfaces (e.g., filter paper, glass, Al-foil) without any sample pretreatment. The analyte ions were then detected and structurally characterized using a LTQ XL mass spectrometer. Compared with the methanol/water/acetic acid (49:49:2, v/v/v) solution, protein solutions significantly increased the signal levels of non-volatile compounds such as benzoic acid, TNT, o-toluidine, peptide and insulin in either positive or negative ion detection mode. For all the analytes tested, the limits of detection (LODs) were reduced to about half of the original values which were obtained using traditional DESI. The results showed that the signal enhancement is highly correlated with the molecular weight of the proteins and the selected solid surfaces. The proposed DESI method is a universal strategy for rapid and sensitive detection of trace amounts of strongly bound and/or non-volatile analytes, including explosives, peptides, and proteins. The results indicate that the sensitivity of DESI can be further improved by selecting larger proteins and appropriate solid surfaces. Copyright © 2012 John Wiley & Sons, Ltd.

  1. First evidence of tyre debris characterization at the nanoscale by focused ion beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milani, M.; Pucillo, F.P.; Ballerini, M.

    2004-07-15

    In this paper, we present a novel technique for the nanoscale characterization of the outer and inner structure of tyre debris. Tyre debris is produced by the normal wear of tyres. In previous studies, the microcharacterization and identification were performed by analytical electron microscopy. This study is a development of the characterization of surface and microstructure of tyre debris. For the first time, tyre debris was analysed by focused ion beam (FIB), a technique with 2- to 5-nm resolution that does not require any sample preparation. We studied tyre debris produced in the laboratory. We made electron and ionic imagingmore » of the surface of the material, and after a ionic cut, we studied the internal microstructure of the same sample. The tyre debris was analysed by FIB without any sample preparations unlike the case of scanning and transmission electron microscopy (SEM and TEM). Useful information was derived to improve detection and monitoring techniques of pollution by tyre degradation processes.« less

  2. Controlled atmosphere annealing of ion implanted gallium arsenide. Final report 1 Jul 76-30 Nov 79

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, C.L.; Eu, V.; Feng, M.

    1980-08-01

    Controlled atmosphere techniques were developed as an alternative to dielectric encapsulation for the high temperature anneal of ion implanted layers in GaAs. Two approaches: (1) the controlled atmosphere technique (CAT), and (2) the melt controlled ambient technique (MCAT) have been investigated. Using the CAT procedure, which involves annealing in flowing hydrogen with an arsenic overpressure, annealing without detectable surface erosion, has been performed at temperatures as high as 950 C, with or without encapsulants. Impurity diffusion, damage recovery, and electrical activity were investigated as a function of anneal parameters. Range studies of technologically important impurities such as S, Si, Se,more » Be and Mg were carried out. For the first time the role of the encapsulant on implanted profile degradation and the importance of Cr redistribution during the anneal cycle were determined. An improved CAT anneal system capable of production quantity throughput was developed and is in current use for device processing.« less

  3. Detecting subtle hydrochemical anomalies with multivariate statistics: an example from homogeneous groundwaters in the Great Artesian Basin, Australia

    NASA Astrophysics Data System (ADS)

    O'Shea, Bethany; Jankowski, Jerzy

    2006-12-01

    The major ion composition of Great Artesian Basin groundwater in the lower Namoi River valley is relatively homogeneous in chemical composition. Traditional graphical techniques have been combined with multivariate statistical methods to determine whether subtle differences in the chemical composition of these waters can be delineated. Hierarchical cluster analysis and principal components analysis were successful in delineating minor variations within the groundwaters of the study area that were not visually identified in the graphical techniques applied. Hydrochemical interpretation allowed geochemical processes to be identified in each statistically defined water type and illustrated how these groundwaters differ from one another. Three main geochemical processes were identified in the groundwaters: ion exchange, precipitation, and mixing between waters from different sources. Both statistical methods delineated an anomalous sample suspected of being influenced by magmatic CO2 input. The use of statistical methods to complement traditional graphical techniques for waters appearing homogeneous is emphasized for all investigations of this type. Copyright

  4. Detection and clearing of trapped ions in the high current Cornell photoinjector

    DOE PAGES

    Full, S.; Bartnik, A.; Bazarov, I. V.; ...

    2016-03-03

    Here, we have recently performed experiments to test the effectiveness of three ion-clearing strategies in the Cornell high intensity photoinjector: DC clearing electrodes, bunch gaps, and beam shaking. The photoinjector reaches a new regime of linac beam parameters where high continuous wave beam currents lead to ion trapping. Therefore ion mitigation strategies must be evaluated for this machine and other similar future high current linacs. We have developed several techniques to directly measure the residual trapped ions. Our two primary indicators of successful clearing are the amount of ion current removed by a DC clearing electrode, and the absence ofmore » bremsstrahlung radiation generated by beam-ion interactions. Measurements were taken for an electron beam with an energy of 5 MeV and continuous wave beam currents in the range of 1–20 mA. Several theoretical models have been developed to explain our data. Using them, we are able to estimate the clearing electrode voltage required for maximum ion clearing, the creation and clearing rates of the ions while employing bunch gaps, and the sinusoidal shaking frequency necessary for clearing via beam shaking. In all cases, we achieve a maximum ion clearing of at least 70% or higher, and in some cases our data is consistent with full ion clearing.« less

  5. Label-free SERS study of galvanic replacement reaction on silver nanorod surface and its application to detect trace mercury ion

    PubMed Central

    Wang, Yaohui; Wen, Guiqing; Ye, Lingling; Liang, Aihui; Jiang, Zhiliang

    2016-01-01

    It is significant to explore a rapid and highly sensitive galvanic replacement reaction (GRR) surface enhanced Raman scattering (SERS) method for detection of trace mercury ions. This article was reported a new GRR SERS analytical platform for detecting Hg(II) with label-free molecular probe Victoria blue B (VBB). In HAc-NaCl-silver nanorod (AgNR) substrate, the molecular probe VBB exhibited a strong SERS peak at 1609 cm−1. Upon addition of Hg(II), the GRR occurred between the AgNR and Hg(II), and formed a weak SERS activity of Hg2Cl2 that deposited on the AgNR surfaces to decrease the SERS intensity at 1609 cm−1. The decreased SERS intensity was linear to Hg(II) concentration in the range of 1.25–125 nmol/L, with a detection limit of 0.2 nmol/L. The GRR was studied by SERS, transmission electron microscopy and other techniques, and the GRR mechanism was discussed. PMID:26792071

  6. Proanthocyanidin screening by LC-ESI-MS of Portuguese red wines made with teinturier grapes.

    PubMed

    Teixeira, Natércia; Azevedo, Joana; Mateus, Nuno; de Freitas, Victor

    2016-01-01

    Proanthocyanidins (PAs) are one of the most important polyphenolic compounds in wine. Among PAs, prodelphinidin (PD) dimers and trimers have not been widely detected in wines due to the lack of available commercial standards and the difficulty to detect and isolate them from natural sources. LC-ESI-MS (liquid chromatography-electrospray ionization-mass spectrometry) with the right chromatographic conditions has proven to be a powerful tool for PAs detection and identification in complex samples. This technique has been applied to an exhaustive study of PA composition of two Portuguese red wines made with teinturier grapes, especially for the identification of PD dimers and trimers. Tandem mass spectrometry (MS/MS) with ion trap provided additional information about the structures of these compounds through the fragmentation patterns of the pseudomolecular ions. A LC-ESI-MS method was optimized and 41 different compounds were found. Among them are included 8 PD dimers and 13 PD trimers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. 'Naked-eye' detection of biologically important anions in aqueous media by colorimetric receptor and its real life applications

    NASA Astrophysics Data System (ADS)

    Singh, Archana; Trivedi, Darshak R.

    2017-05-01

    A colorimetric receptor R 2-[(2-Hydroxy-naphthalen-1-ylmethylene)-hydrazonomethyl]-quinolin-8-ol has been designed and synthesized with good yield and characterized by the standard spectroscopic techniques such as FT-IR, UV-Visible, 1H NMR, 13C NMR and ESI-MS. The receptor R showed naked-eye detection and spectral change in the presence of F-, AcO- and H2PO4- over other anions. Interestingly, receptor R displaying high selective recognition towards F-, AcO- ion with a drastic color change from pale yellow to red in dry DMSO solvent and orange in mixed solvent DMSO/H2O (9:1, v/v). The behavior of receptor R towards F-, AcO- ion was investigated using UV-Vis and 1H NMR experiment. The detailed 1H NMR experiment result revealed that the receptor R is forming the hydrogen bonding between imine nitrogen and phenolic sbnd OH proton towards anions. The receptor R is able to detect sodium salts of flouride (NaF) and acetate (NaAcO) in aqueous medium and it exhibited dramatic color change from pale yellow to red. The receptor R demonstrated itself to be useful for real life application by detecting flouride and acetate ion in sea-water and commercially available product such as toothpaste, mouthwash and vinegar solution.

  8. Development of an ion time-of-flight spectrometer for neutron depth profiling

    NASA Astrophysics Data System (ADS)

    Cetiner, Mustafa Sacit

    Ion time-of-flight spectrometry techniques are investigated for applicability to neutron depth profiling. Time-of-flight techniques are used extensively in a wide range of scientific and technological applications including energy and mass spectroscopy. Neutron depth profiling is a near-surface analysis technique that gives concentration distribution versus depth for certain technologically important light elements. The technique uses thermal or sub-thermal neutrons to initiate (n, p) or (n, alpha) reactions. Concentration versus depth distribution is obtained by the transformation of the energy spectrum into depth distribution by using stopping force tables of the projectiles in the substrate, and by converting the number of counts into concentration using a standard sample of known dose value. Conventionally, neutron depth profiling measurements are based on charged particle spectrometry, which employs semiconductor detectors such as a surface barrier detector (SBD) and the associated electronics. Measurements with semiconductor detectors are affected by a number of broadening mechanisms, which result from the interactions between the projectile ion and the detector material as well as fluctuations in the signal generation process. These are inherent features of the detection mechanism that involve the semiconductor detectors and cannot be avoided. Ion time-of-flight spectrometry offers highly precise measurement capabilities, particularly for slow particles. For high-energy low-mass particles, measurement resolution tends to degrade with all other parameters fixed. The threshold for more precise ion energy measurements with respect to conventional techniques, such as direct energy measurement by a surface barrier detector, is directly related to the design and operating parameters of the device. Time-of-flight spectrometry involves correlated detection of two signals by a coincidence unit. In ion time-of-flight spectroscopy, the ion generates the primary input signal. Without loss of generality, the secondary signal is obtained by the passage of the ion through a thin carbon foil, which produces ion-induced secondary electron emission (IISEE). The time-of-flight spectrometer physically acts as an ion/electron separator. The electrons that enter the active volume of the spectrometer are transported onto the microchannel plate detector to generate the secondary signal. The electron optics can be designed in variety of ways depending on the nature of the measurement and physical requirements. Two ion time-of-flight spectrometer designs are introduced: the parallel electric and magnetic (PEM) field spectrometer and the cross electric and magnetic (CEM) field spectrometer. The CEM field spectrometers have been extensively used in a wide range of applications where precise mass differentiation is required. The PEM field spectrometers have lately found interest in mass spectroscopy applications. The application of the PEM field spectrometer for energy measurements is a novel approach. The PEM field spectrometer used in the measurements employs axial electric and magnetic fields along the nominal direction of the incident ion. The secondary electrons are created by a thin carbon foil on the entrance disk and transported on the microchannel plate that faces the carbon foil. The initial angular distribution of the secondary electrons has virtually no effect on the transport time of the secondary electrons from the surface of the carbon foil to the electron microchannel plate detector. Therefore, the PEM field spectrometer can offer high-resolution energy measurement for relatively lower electric fields. The measurements with the PEM field spectrometer were made with the Tandem linear particle accelerator at the IBM T. J. Watson Research Center at Yorktown Heights, NY. The CEM field spectrometer developed for the thesis employs axial electric field along the nominal direction of the ion, and has perpendicular magnetic field. As the electric field accelerates and then decelerates the emitted secondary electron beam, the magnetic field steers the beam away from the source and focuses it onto the electron microchannel plate detector. The initial momentum distribution of the electron beam is observed to have profound effect on the electron transport time. Hence, the CEM field spectrometer measurements suffer more from spectral broadening at similar operating parameters. The CEM field spectrometer measurements were obtained with a 210Po alpha source at the Penn State Radiation Science and Engineering Center, University Park, PA. Although the PEM field spectrometer suffers less from electron transport time dispersion, the CEM field spectrometer is more suited for application to neutron depth profiling. The multiple small-diameter apertures used in the PEM field configuration considerably reduces the geometric efficiency of the spectrometer. Most of the neutron depth profiling measurements, where isotropic emission of charged particles is observed, have relatively low count rates; hence, high detection efficiency is essential.

  9. Quantitative detection of RO2 radicals and other products from cyclohexene ozonolysis with ammonium-CI3-TOF and acetate-CI-API-TOF

    NASA Astrophysics Data System (ADS)

    Hansel, A.; Scholz, W.; Mentler, B.; Fischer, L.; Berndt, T.

    2017-12-01

    The performance of the novel ammonium-CI3-TOF utilizing NH4+ adduct ion chemistry to measure quantitatively first generation oxidized product molecules (OMs) as well as highly oxidized organic molecules (HOMs) was investigated for the first time. The gas-phase ozonolysis of cyclohexene served as a test system in order to evaluate the capability of the detection systems. Experiments have been carried out in the TROPOS free-jet flow system at close to atmospheric conditions. Product ion signals were simultaneously observed by the ammonium-CI3-TOF and the acetate-CI-API-TOF. Both instruments are in remarkable good agreement within a factor of two for HOMs. For OMs not containing an OOH group the acetate technique can considerably underestimate OM concentrations by 2-3 orders of magnitude. First steps of cyclohexene ozonolysis generate ten different (m/z product peaks) main products comprising 92% of observed OMs. The remaining 8% are distributed over several (m/z peaks) minor products that can be attributed to HOMs, predominately to highly oxidized RO2 radicals. Summing up, observed ammonium-CI3-TOF products yield 4.9 x 109 molecules cm-³ in excellent agreement with the amount of reacted cyclohexene of 5.0 x 109 molecules cm-³ for reactant concentrations of [O3] = 2.25 x 1012 molecules cm-³ and [cyclohexene] = 2.0 x 1012 molecules cm-³ and a reaction time of 7.9 s. NH4+ adduct ion chemistry based CIMS techniques offer a unique opportunity for complete detection of the whole product distribution, and consequently, for a much better understanding of atmospheric oxidation processes.

  10. Optical thermometry based on green upconversion emission in Er3+/Yb3+ codoped BaGdF5 glass ceramics

    NASA Astrophysics Data System (ADS)

    Wu, Ting; Zhao, Shilong; Lei, Ruoshan; Huang, Lihui; Xu, Shiqing

    2018-02-01

    Er3+/Yb3+ codoped BaGdF5 glass ceramics have been prepared and used to develop a portable all-fiber temperature sensor based on fluorescence intensity ratio technique. XRD and TEM results affirm the generation of BaGdF5 nanocrystals in the borosilicate glass. Eu3+ ions are used as spectral probe to investigate external environment around rare earth (RE) ions. Intense green upconversion emissions from Er3+ ions are detected in the BaGdF5 glass ceramics and their intensity are enhanced about three orders of magnitude after heat treatment, which is attributed to the enrichment of RE ions in the BaGdF5 phase. Based on green upconversion emission from Er3+ ions, the temperature sensing property of the portable all-fiber temperature sensor is studied. The maximum absolute sensitivity is 15.5 × 10-4 K-1 at 567 K and the relative sensitivity is 1.28% K-1 at 298 K, respectively.

  11. Specific formation of negative ions from leucine and isoleucine molecules

    NASA Astrophysics Data System (ADS)

    Papp, Peter; Shchukin, Pavel; Matejčík, Štefan

    2010-01-01

    Dissociative electron attachment (DEA) to gas phase leucine (Leu) and isoleucine (Ile) molecules was studied using experimental and quantum-chemical methods. The relative partial cross sections for DEA have been measured using crossed electron/molecular beams technique. Supporting ab initio calculations of the structure, energies of neutral molecules, fragments, and negative ions have been carried out at G3MP2 and B3LYP levels in order to interpret the experimental data. Leu and Ile exhibit several common features. The negative ionic fragments from both molecules are formed in the electron energy range from 0 to approximately 14 eV via three resonances (1.2, 5.5, and 8 eV). The relative partial cross sections for DEA Leu and Ile are very similar. The dominant negative ions formed were closed shell negative ions (M-H)- (m/z=130) formed preferentially via low electron energy resonance of 1.23 eV. Additional negative ions with m/z=115, 114, 113, 112, 84, 82, 74, 45, 26, and 17 have been detected.

  12. Immobilization and detection of platelet-derived extracellular vesicles on functionalized silicon substrate: cytometric and spectrometric approach.

    PubMed

    Gajos, Katarzyna; Kamińska, Agnieszka; Awsiuk, Kamil; Bajor, Adrianna; Gruszczyński, Krzysztof; Pawlak, Anna; Żądło, Andrzej; Kowalik, Artur; Budkowski, Andrzej; Stępień, Ewa

    2017-02-01

    Among the various biomarkers that are used to diagnose or monitor disease, extracellular vesicles (EVs) represent one of the most promising targets in the development of new therapeutic strategies and the application of new diagnostic methods. The detection of circulating platelet-derived microvesicles (PMVs) is a considerable challenge for laboratory diagnostics, especially in the preliminary phase of a disease. In this study, we present a multistep approach to immobilizing and detecting PMVs in biological samples (microvesicles generated from activated platelets and human platelet-poor plasma) on functionalized silicon substrate. We describe the application of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and spectroscopic ellipsometry methods to the detection of immobilized PMVs in the context of a novel imaging flow cytometry (ISX) technique and atomic force microscopy (AFM). This novel approach allowed us to confirm the presence of the abundant microvesicle phospholipids phosphatidylserine (PS) and phosphatidylethanolamine (PE) on a surface with immobilized PMVs. Phosphatidylcholine groups (C 5 H 12 N + ; C 5 H 15 PNO 4 + ) were also detected. Moreover, we were able to show that ellipsometry permitted the immobilization of PMVs on a functionalized surface to be evaluated. The sensitivity of the ISX technique depends on the size and refractive index of the analyzed microvesicles. Graphical abstract Human platelets activated with thrombin (in concentration 1IU/mL) generate population of PMVs (platelet derived microvesicles), which can be detected and enumerated with fluorescent-label method (imaging cytometry). Alternatively, PMVs can be immobilized on the modified silicon substrate which is functionalized with a specific IgM murine monoclonal antibody against human glycoprotein IIb/IIIa complex (PAC-1). Immobilized PMVs can be subjected to label-free analyses by means ellipsometry, atomic force microscopy (AFM) and time-of-flight secondary ion mass spectrometry (TOF-SIMS).

  13. Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of graphene.

    PubMed

    Michałowski, Paweł Piotr; Pasternak, Iwona; Ciepielewski, Paweł; Guinea, Francisco; Strupiński, Włodek

    2018-07-27

    Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp 2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 10 14 atoms cm -2 ) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.

  14. Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of graphene

    NASA Astrophysics Data System (ADS)

    Piotr Michałowski, Paweł; Pasternak, Iwona; Ciepielewski, Paweł; Guinea, Francisco; Strupiński, Włodek

    2018-07-01

    Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 1014 atoms cm‑2) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.

  15. What can in situ ion chromatography offer for Mars exploration?

    PubMed

    Shelor, C Phillip; Dasgupta, Purnendu K; Aubrey, Andrew; Davila, Alfonso F; Lee, Michael C; McKay, Christopher P; Liu, Yan; Noell, Aaron C

    2014-07-01

    The successes of the Mars exploration program have led to our unprecedented knowledge of the geological, mineralogical, and elemental composition of the martian surface. To date, however, only one mission, the Phoenix lander, has specifically set out to determine the soluble chemistry of the martian surface. The surprising results, including the detection of perchlorate, demonstrated both the importance of performing soluble ion measurements and the need for improved instrumentation to unambiguously identify all the species present. Ion chromatography (IC) is the state-of-the-art technique for soluble ion analysis on Earth and would therefore be the ideal instrument to send to Mars. A flight IC system must necessarily be small, lightweight, low-power, and have low eluent consumption. We demonstrate here a breadboard system that addresses these issues by using capillary IC at low flow rates with an optimized eluent generator and suppressor. A mix of 12 ions known or plausible for the martian soil, including 4 (oxy)chlorine species, has been separated at flow rates ranging from 1 to 10 μL/min, requiring as little as 200 psi at 1.0 μL/min. This allowed the use of pneumatic displacement pumping from a pressurized aluminum eluent reservoir and the elimination of the high-pressure pump entirely (the single heaviest and most energy-intensive component). All ions could be separated and detected effectively from 0.5 to 100 μM, even when millimolar concentrations of perchlorate were present in the same mixtures.

  16. Detection and Spatial Mapping of Mercury Contamination in Water Samples Using a Smart-Phone

    PubMed Central

    2014-01-01

    Detection of environmental contamination such as trace-level toxic heavy metal ions mostly relies on bulky and costly analytical instruments. However, a considerable global need exists for portable, rapid, specific, sensitive, and cost-effective detection techniques that can be used in resource-limited and field settings. Here we introduce a smart-phone-based hand-held platform that allows the quantification of mercury(II) ions in water samples with parts per billion (ppb) level of sensitivity. For this task, we created an integrated opto-mechanical attachment to the built-in camera module of a smart-phone to digitally quantify mercury concentration using a plasmonic gold nanoparticle (Au NP) and aptamer based colorimetric transmission assay that is implemented in disposable test tubes. With this smart-phone attachment that weighs <40 g, we quantified mercury(II) ion concentration in water samples by using a two-color ratiometric method employing light-emitting diodes (LEDs) at 523 and 625 nm, where a custom-developed smart application was utilized to process each acquired transmission image on the same phone to achieve a limit of detection of ∼3.5 ppb. Using this smart-phone-based detection platform, we generated a mercury contamination map by measuring water samples at over 50 locations in California (USA), taken from city tap water sources, rivers, lakes, and beaches. With its cost-effective design, field-portability, and wireless data connectivity, this sensitive and specific heavy metal detection platform running on cellphones could be rather useful for distributed sensing, tracking, and sharing of water contamination information as a function of both space and time. PMID:24437470

  17. High pressure effects in high-field asymmetric waveform ion mobility spectrometry.

    PubMed

    Wang, Yonghuan; Wang, Xiaozhi; Li, Lingfen; Chen, Chilai; Xu, Tianbai; Wang, Tao; Luo, Jikui

    2016-08-30

    High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) is an analytical technique based on the principle of non-linear electric field dependence of coefficient of mobility of ions for separation that was originally conceived in the Soviet Union in the early 1980s. Being well developed over the past decades, FAIMS has become an efficient method for the separation and characterization of gas-phase ions at ambient pressure, often in air, to detect trace amounts of chemical species including explosives, toxic chemicals, chemical warfare agents and other compounds. However the resolution of FAIMS and ion separation capability need to be improved for more applications of the technique. The effects of above-ambient pressure varying from 1 to 3 atm on peak position, resolving power, peak width, and peak intensity are investigated theoretically and experimentally using micro-fabricated planar FAIMS in purified air. Peak positions, varying with pressure in a way as a function of dispersion voltage, could be simplified by expressing both compensation and dispersion fields in Townsend units for E/N, the ratio of electric field intensity (E) to the gas number density (N). It is demonstrated that ion Townsend-scale peak positions remain unchanged for a range of pressures investigated, implying that the higher the pressure is, stronger compensation and separation fields are needed within limits of air breakdown field. Increase in pressure is found to separate ions that could not be distinguished in ambient pressure, which could be interpreted as the differentials of ions' peak compensation voltage expanded wider than the dilation of peak widths leading to resolving power enhancement with pressure. Increase in pressure can also result in an increase in peak intensity. Copyright © 2016 John Wiley & Sons, Ltd.

  18. A label-free and portable graphene FET aptasensor for children blood lead detection

    NASA Astrophysics Data System (ADS)

    Wang, Chenyu; Cui, Xinyi; Li, Ying; Li, Hongbo; Huang, Lei; Bi, Jun; Luo, Jun; Ma, Lena Q.; Zhou, Wei; Cao, Yi; Wang, Baigeng; Miao, Feng

    2016-02-01

    Lead is a cumulative toxicant, which can induce severe health issues, especially in children’s case due to their immature nervous system. While realizing large-scale monitoring of children blood lead remains challenging by utilizing traditional methods, it is highly desirable to search for alternative techniques or novel sensing materials. Here we report a label-free and portable aptasensor based on graphene field effect transistor (FET) for effective children blood lead detection. With standard solutions of different Pb2+ concentrations, we obtained a dose-response curve and a detection limitation below 37.5 ng/L, which is three orders lower than the safe blood lead level (100 μg/L). The devices also showed excellent selectivity over other metal cations such as, Na+, K+, Mg2+, and Ca2+, suggesting the capability of working in a complex sample matrix. We further successfully demonstrated the detection of Pb2+ ions in real blood samples from children by using our aptasensors, and explored their potential applications for quantification. Our results underscore such graphene FET aptasensors for future applications on fast detection of heavy metal ions for health monitoring and disease diagnostics.

  19. In Vitro Investigation of the Effect of Oral Bacteria in the Surface Oxidation of Dental Implants.

    PubMed

    Sridhar, Sathyanarayanan; Wilson, Thomas G; Palmer, Kelli L; Valderrama, Pilar; Mathew, Mathew T; Prasad, Shalini; Jacobs, Michael; Gindri, Izabelle M; Rodrigues, Danieli C

    2015-10-01

    Bacteria are major contributors to the rising number of dental implant failures. Inflammation secondary to bacterial colonization and bacterial biofilm is a major etiological factor associated with early and late implant failure (peri-implantitis). Even though there is a strong association between bacteria and bacterial biofilm and failure of dental implants, their effect on the surface of implants is yet not clear. To develop and establish an in vitro testing methodology to investigate the effect of early planktonic bacterial colonization on the surface of dental implants for a period of 60 days. Commercial dental implants were immersed in bacterial (Streptococcus mutans in brain-heart infusion broth) and control (broth only) media. Immersion testing was performed for a period of 60 days. During testing, optical density and pH of immersion media were monitored. The implant surface was surveyed with different microscopy techniques post-immersion. Metal ion release in solution was detected with an electrochemical impedance spectroscopy sensor platform called metal ion electrochemical biosensor (MIEB). Bacteria grew in the implant-containing medium and provided a sustained acidic environment. Implants immersed in bacterial culture displayed various corrosion features, including surface discoloration, deformation of rough and smooth interfaces, pitting attack, and severe surface rusting. The surface features were confirmed by microscopic techniques, and metal particle generation was detected by the MIEB. Implant surface oxidation occurred in bacteria-containing medium even at early stages of immersion (2 days). The incremental corrosion resulted in dissolution of metal ions and debris into the testing solution. Dissolution of metal ions and particles in the oral environment can trigger or contribute to the development of peri-implantitis at later stages. © 2015 Wiley Periodicals, Inc.

  20. Laser ablation inductively coupled plasma mass spectrometry for direct isotope ratio measurements on solid samples

    NASA Astrophysics Data System (ADS)

    Pickhardt, Carola; Dietze, Hans-Joachim; Becker, J. Sabine

    2005-04-01

    Isotope ratio measurements have been increasingly used in quite different application fields, e.g., for the investigation of isotope variation in nature, in geoscience (geochemistry and geochronology), in cosmochemistry and planetary science, in environmental science, e.g., in environmental monitoring, or by the application of the isotope dilution technique for quantification purposes using stable or radioactive high-enriched isotope tracers. Due to its high sensitivity, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is today a challenging mass spectrometric technique for the direct determination of precise and accurate isotope ratios in solid samples. In comparison to laser ablation quadrupole ICP-MS (LA-ICP-QMS), laser ablation coupled to a double-focusing sector field ICP-MS (LA-ICP-SFMS) with single ion detection offers a significant improvement of sensitivity at low mass resolution, whereby isotope ratios can be measured with a precision to 0.1% relative standard deviation (R.S.D.). In LA-ICP-SFMS, many disturbing isobaric interferences of analyte and molecular ions can be separated at the required mass resolution (e.g., 40Ar16O+ and 56Fe+ for iron isotope ratio measurements). The precision on isotope ratio measurements was improved by one order of magnitude via the simultaneous detection of mass-separated ion currents of isotopes using multiple ion collectors in LA-ICP-MS (LA-MC-ICP-MS). The paper discusses the state of the art, the challenges and limits in isotope ratio measurements by LA-ICP-MS using different instrumentations at the trace and ultratrace level in different fields of application as in environmental and biological research, geochemistry and geochronology with respect to their precision and accuracy.

  1. Ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Inventor); Clay, D. R.; Goldstein, B. E.; Goldstein, R.

    1984-01-01

    An ion mass spectrometer is described which detects and indicates the characteristics of ions received over a wide angle, and which indicates the mass to charge ratio, the energy, and the direction of each detected ion. The spectrometer includes a magnetic analyzer having a sector magnet that passes ions received over a wide angle, and an electrostatic analyzer positioned to receive ions passing through the magnetic analyzer. The electrostatic analyzer includes a two dimensional ion sensor at one wall of the analyzer chamber, that senses not only the lengthwise position of the detected ion to indicate its mass to charge ratio, but also detects the ion position along the width of the chamber to indicate the direction in which the ion was traveling.

  2. Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer

    PubMed Central

    Zhang, Yintang; Xu, Maotian; Wang, Yanju; Toledo, Freddy; Zhou, Feimeng

    2007-01-01

    The use of a flow-injection surface plasmon resonance (FI-SPR) spectrometer equipped with a bicell detector or a position-sensitive device for determining coordination of heavy metal ions (Cd2+ and Hg2+) by surface-confined apo-metallothionein (apo-MT) molecules is described. To facilitate the formation of a compact MT adsorbate layer with a uniform surface orientation, MT molecules were attached onto a preformed alkanethiol self-assembled monolayer. The method resorts to the generation of apo-MT at the surface by treating the MT-covered sensor chip with glycine–HCl and the measurement of the apo-MT conformation changes upon metal ion incorporation. Domain-specific metal ion binding processes by the apo-MT molecules were observed. Competitive replacement of one metal ion by another can be monitored in real time by FI-SPR. The tandem use of an immobilization scheme for forming a sub-monolayer of MT molecules at the sensor surface and the highly sensitive FI-SPR instrument affords a low concentration detection level. The detection level for Cd2+ (0.1 μM or 15 ppb) compares favorably with similar studies and the methodology complements to other well-established sensitive analytical techniques. The extent of metal incorporation by apo-MT molecules was also determined. PMID:18493298

  3. Gas cluster ion beam for the characterization of organic materials in submarine basalts as Mars analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sano, Naoko, E-mail: naoko.sano@ncl.ac.uk; Barlow, Anders J.; Cumpson, Peter J.

    The solar system contains large quantities of organic compounds that can form complex molecular structures. The processing of organic compounds by biological systems leads to molecules with distinctive structural characteristics; thus, the detection and characterization of organic materials could lead to a high degree of confidence in the existence of extra-terrestrial life. Given the nature of the surface of most planetary bodies in the solar system, evidence of life is more likely to be found in the subsurface where conditions are more hospitable. Basalt is a common rock throughout the solar system and the primary rock type on Mars andmore » Earth. Basalt is therefore a rock type that subsurface life might exploit and as such a suitable material for the study of methods required to detect and analyze organic material in rock. Telluric basalts from Earth represent an analog for extra-terrestrial rocks where the indigenous organic matter could be analyzed for molecular biosignatures. This study focuses on organic matter in the basalt with the use of surface analysis techniques utilizing Ar gas cluster ion beams (GCIB); time of flight secondary ion mass spectrometry (ToF-SIMS), and x-ray photoelectron spectroscopy (XPS), to characterize organic molecules. Tetramethylammonium hydroxide (TMAH) thermochemolysis was also used to support the data obtained using the surface analysis techniques. The authors demonstrate that organic molecules were found to be heterogeneously distributed within rock textures. A positive correlation was observed to exist between the presence of microtubule textures in the basalt and the organic compounds detected. From the results herein, the authors propose that ToF-SIMS with an Ar GCIB is effective at detecting organic materials in such geological samples, and ToF-SIMS combined with XPS and TMAH thermochemolysis may be a useful approach in the study of extra-terrestrial organic material and life.« less

  4. Depth profiling of inks in authentic and counterfeit banknotes by electrospray laser desorption ionization/mass spectrometry.

    PubMed

    Kao, Yi-Ying; Cheng, Sy-Chyi; Cheng, Chu-Nian; Shiea, Jentaie

    2016-01-01

    Electrospray laser desorption ionization is an ambient ionization technique that generates neutrals via laser desorption and ionizes those neutrals in an electrospray plume and was utilized to characterize inks in different layers of copy paper and banknotes of various currencies. Depth profiling of inks was performed on overlapping color bands on copy paper by repeatedly scanning the line with a pulsed laser beam operated at a fixed energy. The molecules in the ink on a banknote were desorbed by irradiating the banknote surface with a laser beam operated at different energies, with results indicating that different ions were detected at different depths. The analysis of authentic $US100, $100 RMB and $1000 NTD banknotes indicated that ions detected in 'color-shifting' and 'typography' regions were significantly different. Additionally, the abundances of some ions dramatically changed with the depth of the aforementioned regions. This approach was used to distinguish authentic $1000 NTD banknotes from counterfeits. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  5. A new method for differentiating adducts of common drinking water DBPs from higher molecular weight DBPs in electrospray ionization-mass spectrometry analysis.

    PubMed

    Zhai, Hongyan; Zhang, Xiangru

    2009-05-01

    With the presence of bromide in source waters, numerous brominated disinfection byproducts (DBPs) are formed during chlorination. Many of them are polar/highly polar DBPs and thus hard to be detected by gas chromatography mass spectrometry. Electrospray ionization triple quadrupole mass spectrometry (ESI-MS/MS) is reported to be an effective method in finding polar brominated DBPs by setting precursor ion scans of m/z 79 and 81. But as a soft ionization technique, ESI could form adducts of common DBPs, which may complicate ESI-MS/MS spectra and hinder the efforts in finding new brominated DBPs. In this paper, a new method was developed for differentiating adducts of common DBPs from higher molecular weight DBPs. This method was based on the ESI-MS/MS precursor ion scans of the fragments that correspond to the molecular ions of common DBPs. Adducts of common DBPs were selectively detected in the ESI-MS/MS spectra of a simulated drinking water sample. Moreover, the structures of several new brominated DBPs in the sample were tentatively proposed.

  6. Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana.

    PubMed

    Kazama, Yusuke; Hirano, Tomonari; Saito, Hiroyuki; Liu, Yang; Ohbu, Sumie; Hayashi, Yoriko; Abe, Tomoko

    2011-11-15

    Heavy-ion mutagenesis is recognised as a powerful technology to generate new mutants, especially in higher plants. Heavy-ion beams show high linear energy transfer (LET) and thus more effectively induce DNA double-strand breaks than other mutagenic techniques. Previously, we determined the most effective heavy-ion LET (LETmax: 30.0 keV μm(-1)) for Arabidopsis mutagenesis by analysing the effect of LET on mutation induction. However, the molecular structure of mutated DNA induced by heavy ions with LETmax remains unclear. Knowledge of the structure of mutated DNA will contribute to the effective exploitation of heavy-ion beam mutagenesis. Dry Arabidopsis thaliana seeds were irradiated with carbon (C) ions with LETmax at a dose of 400 Gy and with LET of 22.5 keV μm(-1) at doses of 250 Gy or 450 Gy. The effects on mutation frequency and alteration of DNA structure were compared. To characterise the structure of mutated DNA, we screened the well-characterised mutants elongated hypocotyls (hy) and glabrous (gl) and identified mutated DNA among the resulting mutants by high-resolution melting curve, PCR and sequencing analyses. The mutation frequency induced by C ions with LETmax was two-fold higher than that with 22.5 keV μm(-1) and similar to the mutation frequency previously induced by ethyl methane sulfonate. We identified the structure of 22 mutated DNAs. Over 80% of the mutations caused by C ions with both LETs were base substitutions or deletions/insertions of less than 100 bp. The other mutations involved large rearrangements. The C ions with LETmax showed high mutation efficiency and predominantly induced base substitutions or small deletions/insertions, most of which were null mutations. These small alterations can be determined by single-nucleotide polymorphism (SNP) detection systems. Therefore, C ions with LETmax might be useful as a highly efficient reverse genetic system in conjunction with SNP detection systems, and will be beneficial for forward genetics and plant breeding.

  7. Impact desolvation of electrosprayed microdroplets--a new ionization method for mass spectrometry of large biomolecules.

    PubMed

    Aksyonov, S A; Williams, P

    2001-01-01

    Impact desolvation of electrosprayed microdroplets (IDEM) is a new method for producing gas-phase ions of large biomolecules. Analytes are dissolved in an electrolyte solution which is electrosprayed in vacuum, producing highly charged micron and sub-micron sized droplets (microdroplets). These microdroplets are accelerated through potential differences approximately 5 - 10 kV to velocities of several km/s and allowed to impact a target surface. The energetic impacts vaporize the droplets and release desolvated gas-phase ions of the analyte molecules. Oligonucleotides (2- to 12-mer) and peptides (bradykinin, neurotensin) yield singly and doubly charged molecular ions with no detectable fragmentation. Because the extent of multiple charging is significantly less than in atmospheric pressure electrospray ionization, and the method produces ions largely free of adducts from solutions of high ionic strength, IDEM has some promise as a method for coupling to liquid chromatographic techniques and for mixture analysis. Ions are produced in vacuum at a flat equipotential surface, potentially allowing efficient ion extraction. Copyright 2001 John Wiley & Sons, Ltd.

  8. Metabolomic profiling of prostate cancer by matrix assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry imaging using Matrix Coating Assisted by an Electric Field (MCAEF).

    PubMed

    Wang, Xiaodong; Han, Jun; Hardie, Darryl B; Yang, Juncong; Pan, Jingxi; Borchers, Christoph H

    2017-07-01

    In this work, we combined the use of two MALDI matrices (quercetin and 9-aminoacridine), a recently developed new matrix coating technique - matrix coating assisted by an electric field (MCAEF), and matrix-assisted laser desorption/ionization - Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICRMS) to detect and image endogenous compounds in the cancerous and non-cancerous regions of three human prostate cancer (stage II) tissue specimens. After three rounds of imaging data acquisitions (i.e., quercetin for positive and negative ion detection and 9-aminoacridine for negative ion detection), and metabolite identification, a total of 1091 metabolites including 1032 lipids and 59 other metabolites were routinely detected and successfully localized. Of these compounds, 250 and 217 were only detected in either the cancerous or the non-cancerous regions respectively, although we cannot rule out the presence of these metabolites at concentrations below the detection limit. In addition, 152 of the other 624 metabolites showed differential distributions (p<0.05, t-test) between the two regions of the tissues. Further studies on a larger number of clinical specimens will need to be carried out to confirm this large number of apparently cancer-related metabolites. The successful determination of the spatial locations and abundances of these endogenous biomolecules indicated significant metabolism abnormalities - e.g., increased energy charge and under-expression of neutral acyl glycerides, in the prostate cancer samples. To our knowledge, this work has resulted in MALDI-MS imaging of the largest group of metabolites in prostate cancer thus far and demonstrated the importance of using complementary matrices for comprehensive metabolomic imaging by MALDI-MS. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Plant height revertants of Dominant Semidwarf mutant rice created by low-energy ion irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Binmei; Wu, Yuejin; Xu, Xue; Song, M.; Zhao, M.; Fu, X. D.

    2008-04-01

    Dominant Semidwarf mutant rice (Sdd) was obtained from its wild type (WT) by irradiation with a low-energy ion beam. Six tall revertants of Sdd were induced by irradiation. The revertants restored the plant height to that of WT plants. Investigation of the agronomic character and genetic analysis indicate that the revertants are similar to WT plants with putative different inherited mutations. The revertants were checked for DNA differences using the simple sequence repeat technique. Among 408 such primers used, only 2 primers detected mutation sites in the revertants, which provided the molecular evidence for the revertants induced from Sdd. This study indicates that ion irradiation may be used as a mutagen to create revertants for plant architecture studies and could be a new application.

  10. A B-TOF mass spectrometer for the analysis of ions with extreme high start-up energies.

    PubMed

    Lezius, M

    2002-03-01

    Weak magnetic deflection is combined with two acceleration stage time-of-flight mass spectrometry and subsequent position-sensitive ion detection. The experimental method, called B-TOF mass spectrometry, is described with respect to its theoretical background and some experimental results. It is demonstrated that the technique has distinct advantages over other approaches, with special respect to the identification and analysis of very highly energetic ions with an initially large energy broadening (up to 1 MeV) and with high charge states (up to 30+). Similar energetic targets are a common case in intense laser-matter interaction processes found during laser ablation, laser-cluster and laser-molecule interaction and fast particle and x-ray generation from laser-heated plasma. Copyright 2002 John Wiley & Sons, Ltd.

  11. Direct Sensing of Total Acidity by Chronopotentiometric Flash Titrations at Polymer Membrane Ion-Selective Electrodes

    PubMed Central

    Gemene, Kebede L.; Bakker, Eric

    2008-01-01

    Polymer membrane ion-selective electrodes containing lipophilic ionophores are traditionally interrogated by zero current potentiometry, which, ideally, gives information on the sample activity of ionic species. It is shown here that a discrete cathodic current pulse across an H+-selective polymeric membrane doped with the ionophore ETH 5294 may be used for the chronopotentiometric detection of pH in well buffered samples. However, a reduction in the buffer capacity leads to large deviations from the expected Nernstian response slope. This is explained by the local depletion of hydrogen ions at the sample-membrane interface as a result of the galvanostatically imposed ion flux in direction of the membrane. This depletion is found to be a function of the total acidity of the sample and can be directly monitored chronopotentiometrically in a flash titration experiment. The subsequent application of a baseline potential pulse reverses the extraction process of the current pulse, allowing one to interrogate the sample with minimal perturbation. In one protocol, total acidity is found to be proportional to the magnitude of applied current at the flash titration endpoint. More conveniently, the square root of the flash titration endpoint time observed at a fixed applied current is a linear function of the total acid concentration. This suggests that it is possible to perform rapid localized pH titrations at ion-selective electrodes without the need for volumetric titrimetry. The technique is explored here for acetic acid, MES and citric acid with promising results. Polymeric membrane electrodes on the basis of poly(vinyl chloride) plasticized with o-nitrophenyloctylether in a 1:2 mass ratio may be used for the detection of acids of up to ca. 1 mM concentration, with flash titration times on the order of a few seconds. Possible limitations of the technique are discussed, including variations of the acid diffusion coefficients and influence of electrical migration. PMID:18370399

  12. Expectation Maximization and its Application in Modeling, Segmentation and Anomaly Detection

    DTIC Science & Technology

    2008-05-01

    ocomplNc <la!a rrot>lcm,. ",., i’lCOll\\l>lc,c,ICSS of Ihc dala mayan "" IIuc lu missing dala. (J,,,,,,.,ed di,nibu!ions . elc . 0"" such c • ..- is a...Estimation Techniques in Computer Huiyan, Z., Yongfeng, C., Wen, Y. SAR Image Segmentation Using MPM Constrained Stochastic Relaxation. Civil Engineering

  13. Utilization of Negative Ion ESI-MS and Tandem Mass Spectrometry to Detect and Confirm the NADH-Boric Acid Complex

    ERIC Educational Resources Information Center

    Kim, Danny H.; Eckhert, Curtis D.; Faull, Kym F.

    2011-01-01

    Mass spectrometry (MS) is a powerful analytical technique that is now widely used in the chemical, physical, engineering, and life sciences, with rapidly growing applications in many areas including clinical, forensic, pharmaceutical, and environmental fields. The increase in use of MS in both academic and industrial settings for research and…

  14. Detection of the barium daughter in 136Xe -->136Ba + 2e- by in situ single-molecule fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Nygren, David

    2015-10-01

    To proceed toward effective ``discovery class'' ton-scale detectors in the search for neutrino-less double beta decay, a robust technique for rejection of all radioactivity-induced backgrounds is urgently needed. An efficient technique for detection of the barium daughter in the decay 136Xe -->136Ba + 2e- would provide a long-sought pathway toward this goal. Single-molecule fluorescent imaging appears to offer a new way to detect the barium daughter atom, which emerges naturally in an ionized state in pure xenon. A doubly charged barium ion can initiate a chelation process with a non-fluorescent precursor molecule, leading to a highly fluorescent complex. Repeated photo-excitation of the complex can reveal both presence and location of a single ionized atom with high precision and selectivity. Detection within the active volume of a xenon gas Time Projection Chamber operating at high pressure would be automatic, and with a capability for redundant confirmation.

  15. Single-indicator-based Multidimensional Sensing: Detection and Identification of Heavy Metal Ions and Understanding the Foundations from Experiment to Simulation

    PubMed Central

    Leng, Yumin; Qian, Sihua; Wang, Yuhui; Lu, Cheng; Ji, Xiaoxu; Lu, Zhiwen; Lin, Hengwei

    2016-01-01

    Multidimensional sensing offers advantages in accuracy, diversity and capability for the simultaneous detection and discrimination of multiple analytes, however, the previous reports usually require complicated synthesis/fabrication process and/or need a variety of techniques (or instruments) to acquire signals. Therefore, to take full advantages of this concept, simple designs are highly desirable. Herein, a novel concept is conceived to construct multidimensional sensing platforms based on a single indicator that has capability of showing diverse color/fluorescence responses with the addition of different analytes. Through extracting hidden information from these responses, such as red, green and blue (RGB) alterations, a triple-channel-based multidimensional sensing platform could consequently be fabricated, and the RGB alterations are further applicable to standard statistical methods. As a proof-of-concept study, a triple-channel sensing platform is fabricated solely using dithizone with assistance of cetyltrimethylammonium bromide (CTAB) for hyperchromicity and sensitization, which demonstrates superior capabilities in detection and identification of ten common heavy metal ions at their standard concentrations of wastewater-discharge of China. Moreover, this sensing platform exhibits promising applications in semi-quantitative and even quantitative analysis individuals of these heavy metal ions with high sensitivity as well. Finally, density functional theory calculations are performed to reveal the foundations for this analysis. PMID:27146105

  16. Thermal runaway detection of cylindrical 18650 lithium-ion battery under quasi-static loading conditions

    NASA Astrophysics Data System (ADS)

    Sheikh, Muhammad; Elmarakbi, Ahmed; Elkady, Mustafa

    2017-12-01

    This paper focuses on state of charge (SOC) dependent mechanical failure analysis of 18650 lithium-ion battery to detect signs of thermal runaway. Quasi-static loading conditions are used with four test protocols (Rod, Circular punch, three-point bend and flat plate) to analyse the propagation of mechanical failures and failure induced temperature changes. Finite element analysis (FEA) is used to model single battery cell with the concentric layered formation which represents a complete cell. The numerical simulation model is designed with solid element formation where stell casing and all layers followed the same formation, and fine mesh is used for all layers. Experimental work is also performed to analyse deformation of 18650 lithium-ion cell. The numerical simulation model is validated with experimental results. Deformation of cell mimics thermal runaway and various thermal runaway detection strategies are employed in this work including, force-displacement, voltage-temperature, stress-strain, SOC dependency and separator failure. Results show that cell can undergo severe conditions even with no fracture or rupture, these conditions may slow to develop but they can lead to catastrophic failures. The numerical simulation technique is proved to be useful in predicting initial battery failures, and results are in good correlation with the experimental results.

  17. Ion plating technique improves thin film deposition

    NASA Technical Reports Server (NTRS)

    Mattox, D. M.

    1968-01-01

    Ion plating technique keeps the substrate surface clean until the film is deposited, allows extensive diffusion and chemical reaction, and joins insoluble or incompatible materials. The technique involves the deposition of ions on the substrate surface while it is being bombarded with inert gas ions.

  18. In-treatment tests for the monitoring of proton and carbon-ion therapy with a large area PET system at CNAO

    NASA Astrophysics Data System (ADS)

    Rosso, V.; Battistoni, G.; Belcari, N.; Camarlinghi, N.; Ciocca, M.; Collini, F.; Ferretti, S.; Kraan, A. C.; Lucenò, S.; Molinelli, S.; Pullia, M.; Sportelli, G.; Zaccaro, E.; Del Guerra, A.

    2016-07-01

    One of the most promising new radiotherapy techniques makes use of charged particles like protons and carbon ions, rather than photons. At present, there are more than 50 particle therapy centers operating worldwide, and many new centers are being constructed. Positron Emission Tomography (PET) is considered a well-established non-invasive technique to monitor range and delivered dose in patients treated with particle therapy. Nuclear interactions of the charged hadrons with the patient tissue lead to the production of β+ emitting isotopes (mainly 15O and 11C), that decay with a short lifetime producing a positron. The two 511 keV annihilation photons can be detected with a PET detector. In-beam PET is particularly interesting because it could allow monitoring the ions range also during dose delivery. A large area dual head PET prototype was built and tested. The system is based on an upgraded version of the previously developed DoPET prototype. Each head covers now 15×15 cm2 and is composed by 9 (3×3) independent modules. Each module consists of a 23×23 LYSO crystal matrix (2 mm pitch) coupled to H8500 PMT and is readout by custom front-end and a FPGA based data acquisition electronics. Data taken at the CNAO treatment facility in Pavia with proton and carbon beams impinging on heterogeneous phantoms demonstrate the DoPET capability to detect the presence of a small air cavity in the phantom.

  19. Aggregation induced emission enhancement (AIEE) characteristics of quinoline based compound - A versatile fluorescent probe for pH, Fe(III) ion, BSA binding and optical cell imaging

    NASA Astrophysics Data System (ADS)

    Manikandan, Irulappan; Chang, Chien-Huei; Chen, Chia-Ling; Sathish, Veerasamy; Li, Wen-Shan; Malathi, Mahalingam

    2017-07-01

    Novel benzimidazoquinoline derivative (AVT) was synthesized through a substitution reaction and characterized by various spectral techniques. Analyzing the optical properties of AVT under absorption and emission spectral studies in different environments exclusively with respect to solvents and pH, intriguing characteristics viz. aggregation induced emission enhancement (AIEE) in the THF solvent and 'On-Off' pH sensing were found at neutral pH. Sensing nature of AVT with diverse metal ions and bovine serum albumin (BSA) was also studied. Among the metal ions, Fe3 + ion alone tunes the fluorescence intensity of AVT probe in aqueous medium from ;turn-on; to ;turn-off; through ligand (probe) to metal charge transfer (LMCT) mechanism. The probe AVT in aqueous medium interacts strongly with BSA due to Fluorescence Resonance Energy Transfer (FRET) and the conformational change in BSA was further analyzed using synchronous fluorescence techniques. Docking study of AVT with BSA reveals that the active site of binding is tryptophan residue which is also supported by the experimental results. Interestingly, fluorescent AVT probe in cells was examined through cellular imaging studies using BT-549 and MDA-MB-231 cells. Thus, the single molecule probe based detection of multiple species and stimuli were described.

  20. Measurement of the line-of-sight velocity of high-altitude barium clouds A technique

    NASA Technical Reports Server (NTRS)

    Mende, S. B.; Harris, S. E.

    1982-01-01

    It is demonstrated that for maximizing the scientific output of future ionospheric and magnetospheric ion cloud release experiments a new type of instrument is required which will measure the line-of-sight velocity of the ion cloud by the Doppler technique. A simple instrument was constructed using a 5-cm diam solid Fabry-Perot etalon coupled to a low-light-level integrating TV camera. It was demonstrated that the system has both the sensitivity and spectral resolution for detection of ion clouds and measurement of their line-of-sight Doppler velocity. The tests consisted of (1) a field experiment using a rocket barium cloud release to check sensitivity, and (2) laboratory experiments to show the spectral resolving capabilities of the system. The instrument was found to be operational if the source was brighter than approximately 1 kR, and it had a wavelength resolution much better than 0.2 A, which corresponds to approximately 12 km/sec or in the case of barium ion an acceleration potential of 100 V. The instrument is rugged and, therefore, simple to use in field experiments or on flight instruments. The sensitivity limit of the instrument can be increased by increasing the size of the etalon.

  1. The stopping power and energy straggling of light ions in graphene oxide foils

    NASA Astrophysics Data System (ADS)

    Mikšová, R.; Macková, A.; Malinský, P.; Sofer, Z.

    2017-09-01

    Energy-loss and straggling experiments were performed using 2-4 MeV 1H+ and 7.4-9.0 MeV 4He2+ ions in graphene oxide foils by the transmission technique. The thickness of the graphene oxide foils was determined using a detailed image analysis of a graphene oxide cut, which was used to refine the graphene oxide density. The density was determined by the standard technique of micro-balance weighing. The stoichiometry of the graphene oxide foils before the irradiation was determined by Rutherford backscattering spectrometry (RBS) and elastic recoil detection analysis (ERDA) using 2 and 2.5 MeV 4He+. The measured energy stopping powers for hydrogen and helium ions in graphene oxide were compared with the predictions obtained from the SRIM-2013 code. The energy straggling was compared with that calculated using Bohr's, Bethe-Livingston and Yang predictions. The results show that the stopping power of graphene oxide foils irradiated by both ion species decreases with increasing energies, the differences between the measured and predicted values being below 3.8%. The energy straggling determined in our experiment is higher than Bohr's and Bethe-Livingston predicted values; the predictions by Yang are in better agreement with our experiment.

  2. Ag-ZnO nanostructure for ANTA explosive molecule detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaik, Ummar Pasha; Sangani, L. D. Varma; Gaur, Anshu

    2016-05-23

    Ag/ZnO nanostructure for surface enhanced Raman scattering application in the detection of ANTA explosive molecule is demonstrated. A highly rough ZnO microstructure was achieved by rapid thermal annealing of metallic Zn film. Different thickness Ag nanostructures are decorated over these ZnO microstructures by ion beam sputtering technique. Surface enhanced Raman spectroscopic studies carried out over Ag/ZnO substrates have shown three orders higher enhancement compared to bare Ag nanostructure deposited on the same substrate. The reasons behind such huge enhancement are discussed based on the morphology of the sample.

  3. Technique for detecting liquid metal leaks

    DOEpatents

    Bauerle, James E.

    1979-01-01

    In a system employing flowing liquid metal as a heat transfer medium in contact with tubular members containing a working fluid, i.e., steam, liquid metal leaks through the wall of the tubular member are detected by dislodging the liquid metal compounds forming in the tubular member at the leak locations and subsequently transporting the dislodged compound in the form of an aerosol to a detector responsive to the liquid metal compound. In the application to a sodium cooled tubular member, the detector would consist of a sodium responsive device, such as a sodium ion detector.

  4. Ion Mobility Mass Spectrometry Analysis of Isomeric Disaccharide Precursor, Product and Cluster Ions

    PubMed Central

    Li, Hongli; Bendiak, Brad; Siems, William F.; Gang, David R.; Hill, Herbert H.

    2015-01-01

    RATIONALE Carbohydrates are highly variable in structure owing to differences in their anomeric configurations, monomer stereochemistry, inter-residue linkage positions and general branching features. The separation of carbohydrate isomers poses a great challenge for current analytical techniques. METHODS The isomeric heterogeneity of disaccharide ions and monosaccharideglycolaldehyde product ions evaluated using electrospray traveling wave ion mobility mass spectrometry (Synapt G2 high definition mass spectrometer) in both positive and negative ion modes investigation. RESULTS The separation of isomeric disaccharide ions was observed but not fully achieved based on their mobility profiles. The mobilities of isomeric product ions, the monosaccharide-glycolaldehydes, derived from different disaccharide isomers were measured. Multiple mobility peaks were observed for both monosaccharide-glycolaldehyde cations and anions, indicating that there was more than one structural configuration in the gas phase as verified by NMR in solution. More importantly, the mobility patterns for isomeric monosaccharide-glycolaldehyde product ions were different, which enabled partial characterization of their respective disaccharide ions. Abundant disaccharide cluster ions were also observed. The Results showed that a majority of isomeric cluster ions had different drift times and, moreover, more than one mobility peak was detected for a number of specific cluster ions. CONCLUSIONS It is demonstrated that ion mobility mass spectrometry is an advantageous method to assess the isomeric heterogeneity of carbohydrate compounds. It is capable of differentiating different types of carbohydrate ions having identical m/z values as well as multiple structural configurations of single compounds. PMID:24591031

  5. Comparison of hydrogen and deuterium adsorption on Pd(100).

    PubMed

    Gladys, M J; Kambali, I; Karolewski, M A; Soon, A; Stampfl, C; O'Connor, D J

    2010-01-14

    Low energy ion recoil spectroscopy is a powerful technique for the determination of adsorbate position on metal surfaces. In this study, this technique is employed to compare the adsorption sites of hydrogen and deuterium on Pd(100) by detection of either H or D recoil ions produced by Ne(+) bombardment. Comparisons of experimental and Kalypso simulated azimuthal yield distributions show that, at room temperature, both hydrogen isotopes are adsorbed in the fourfold hollow site of Pd(100), however, at different heights above the surface (H-0.20 A and D-0.25 A). The adsorbates remain in the hollow site at all temperatures up to 383 K even though they move up to 0.40-0.45 A above the surface. Density functional theory calculations show a similar coverage dependent adsorption height for both H and D and confirm a real difference between the H and D adsorption heights based on zero point energies.

  6. Resonance ultrasonic vibrations in Cz-Si wafers as a possible diagnostic technique in ion implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Z. Y.; Ostapenko, S.; Anundson, R.; Tvinnereim, M.; Belyaev, A.; Anthony, M.

    2001-07-01

    The semiconductor industry does not have effective metrology for well implants. The ability to measure such deep level implants will become increasingly important as we progress along the technology road map. This work explores the possibility of using the acoustic whistle effect on ion implanted silicon wafers. The technique detects the elastic stress and defects in silicon wafers by measuring the sub-harmonic f/2 resonant vibrations on a wafer induced via backside contact to create standing waves, which are measured by a non-contact ultrasonic probe. Preliminary data demonstrates that it is sensitive to implant damage, and there is a direct correlation between this sub-harmonic acoustic mode and some of the implant and anneal conditions. This work presents the results of a feasibility study to assess and quantify the correspondent whistle effect to implant damage, residual damage after annealing and intrinsic defects.

  7. Balloon-borne photoionization mass spectrometer for measurement of stratospheric gases

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Maier, E. J. R.

    1978-01-01

    A balloon-borne photoionization mass spectrometer used to measure stratospheric trace gases is described. Ions are created with photons from high-intensity krypton discharge lamps and a quadrupole mass analyzer is employed for ion identification. Differential pumping is achieved with liquid helium cryopumping. To insure measurement of unperturbed stratospheric air, the entire system is contained in a sealed gondola and the atmospheric sample is taken some distance away during descent. The photoionization technique allows the detection of a low ionization potential constituent, such as nitric oxide, at less than a part in one billion in the presence of the major atmospheric gases and their isotopes. Operation of the mass spectrometer system was demonstrated during a daytime flight from Palestine, Texas on 26 April 1977. The sensitivity achieved and the unique selectivity afforded by this technique offer a capability for trace constituent measurement not possible with the more conventional electron impact ionization approach.

  8. Application of ion chemistry and the SIFT technique to the quantitative analysis of trace gases in air and on breath

    NASA Astrophysics Data System (ADS)

    Smith, David; Španěl, Patrik

    Our major objective in this paper is to describe a new method we have developed for the analysis of trace gases at partial pressures down to the ppb level in atmospheric air, with special emphasis on the detection and quantification of trace gases on human breath. It involves the use of our selected ion flow tube (Sift) technique which we previously developed and used extensively for the study of gas phase ionic reactions occurring in ionized media such as the terrestrial atmosphere and interstellar gas clouds. Before discussing this analytical technique we describe the results of our very recent Sift and flowing afterglow (FA) studies of the reactions of the H3O+ and OH- ions, of their hydrates H3O+(H2O)1,2,3 and OH- (H2O)1,2, and of NO+ and O2+, with several hydrocarbons and oxygen-bearing organic molecules, studies that are very relevant to our trace gas analytical studies. Then follows a detailed discussion of the application of our Sift technique to trace gas analysis, after which we present some results obtained for the analyses of laboratory air, the breath of a healthy non-smoking person, the breath of a person who regularly smokes cigarettes, the complex vapours emitted by banana and onion, and the molecules present in a butane/air flame. We show how the quantitative analysis of breath can be achieved from only a single exhalation and in real time (the time response of the instrument is only about 20 ms). We also show how the time variation of breath gases over long time periods can be followed, using the decay of ethanol on the breath after the ingestion of distilled liquor as an example, yet simultaneously following several other trace gases including acetone and isoprene which are very easily detected on the breath of all individuals because of their relatively high partial pressures (typically 100 to 1000 ppb). The breath of a smoker is richer in complex molecules, some nitrogen containing organics apparently being very evident at the 5 to 50 ppb level. These results and those for banana and onion vapours and butane/air flame forcibly demonstrate the value and the scope of our Sift ion chemistry approach to the analysis of very complex gas mixtures, and that this method is accurately quantitative if the appropriate ion chemistry is properly understood.

  9. Plasma-laser ion discrimination by TOF technique applied to coupled SiC detectors.

    NASA Astrophysics Data System (ADS)

    Cavallaro, Salvatore

    2018-01-01

    The rate estimation of nuclear reactions induced in high intensity laser-target interaction (≥1016 W/cm2), is strongly depending on the neutron detection efficiency and ion charge discrimination, according to particles involved in exit open-channels. Ion discrimination is basically performed by means of analysis of pits observed on track detector, which is critically dependent on calibration and/or fast TOF devices based on SiC and diamond detectors. Last setup is used to determine the ion energy and to obtain a rough estimation of yields. However, for each TOF interval, the dependence of yield from the energy deposited in the detector sensitive region, introduces a distortion in the ion spectra. Moreover, if two ion species are present in the same spectrum, the discrimination of their contribution is not attainable. In this paper a new method is described which allows to discriminate the contribution of two ion species in the wide energy range of nuclear reactions induced in laser-target interactions. The method is based on charge response of two TOF-SiC detectors, of suitable thicknesses, placed in adjacent positions. In presence of two ion species, the response of the detectors, associated with different energy losses, can determine the ion specific contribution to each TOF interval.

  10. Absolute prompt-gamma yield measurements for ion beam therapy monitoring

    NASA Astrophysics Data System (ADS)

    Pinto, M.; Bajard, M.; Brons, S.; Chevallier, M.; Dauvergne, D.; Dedes, G.; De Rydt, M.; Freud, N.; Krimmer, J.; La Tessa, C.; Létang, J. M.; Parodi, K.; Pleskač, R.; Prieels, D.; Ray, C.; Rinaldi, I.; Roellinghoff, F.; Schardt, D.; Testa, E.; Testa, M.

    2015-01-01

    Prompt-gamma emission detection is a promising technique for hadrontherapy monitoring purposes. In this regard, obtaining prompt-gamma yields that can be used to develop monitoring systems based on this principle is of utmost importance since any camera design must cope with the available signal. Herein, a comprehensive study of the data from ten single-slit experiments is presented, five consisting in the irradiation of either PMMA or water targets with lower and higher energy carbon ions, and another five experiments using PMMA targets and proton beams. Analysis techniques such as background subtraction methods, geometrical normalization, and systematic uncertainty estimation were applied to the data in order to obtain absolute prompt-gamma yields in units of prompt-gamma counts per incident ion, unit of field of view, and unit of solid angle. At the entrance of a PMMA target, where the contribution of secondary nuclear reactions is negligible, prompt-gamma counts per incident ion, per millimetre and per steradian equal to (124 ± 0.7stat ± 30sys) × 10-6 for 95 MeV u-1 carbon ions, (79 ± 2stat ± 23sys) × 10-6 for 310 MeV u-1 carbon ions, and (16 ± 0.07stat ± 1sys) × 10-6 for 160 MeV protons were found for prompt gammas with energies higher than 1 MeV. This shows a factor 5 between the yields of two different ions species with the same range in water (160 MeV protons and 310 MeV u-1 carbon ions). The target composition was also found to influence the prompt-gamma yield since, for 300/310 MeV u-1 carbon ions, a 42% greater yield ((112 ± 1stat ± 22sys) × 10-6 counts ion-1 mm-1 sr-1) was obtained with a water target compared to a PMMA one.

  11. A search for energetic ion directivity in large solar flares

    NASA Astrophysics Data System (ADS)

    Vestrand, W. Thomas

    One of the key observational questions for solar flare physics is: What is the number, the energy spectrum, and the angular distribution of flare accelerated ions? The standard method for deriving ion spectral shape employs the ratio of influences observed on the 4-7 MeV band to the narrow neutron capture line at 2.223 MeV. The 4-7 MeV band is dominated by the principal nuclear de-excitation lines from C-12 and O-16 which are generated in the low chromosphere by the direct excitation or spallation of nuclei by energetic ions. In contrast, the narrow 2.223 MeV line is produced by the capture of thermal neutrons on protons in the photosphere. These capture neutrons are generated by energetic ion interactions and thermalized by scattering in the solar atmosphere. In a series of papers, Ramaty, Lingenfelter, and their collaborators have calculated the expected ratio of fluence in the 4-7 MeV band to the 2.223 MeV line for a wide range of energetic ion spectral shapes (see, e.g. Hua and Lingenfelter 1987). Another technique for deriving ion spectral shapes and angular distributions uses the relative strength of the Compton tail associated with the 2.223 MeV neutron capture line (Vestrand 1988, 1990). This technique can independently constrain both the angular and the energy distribution of the energetic parent ions. The combination of this tail/line strength diagnostic with the line/(4-7) MeV fluence ratio can allow one to constrain both properties of the energetic ion distributions. The primary objective of our Solar Maximum Mission (SMM) guest investigator program was to study measurements of neutron capture line emission and prompt nuclear de-excitation for large flares detected by the Solar Maximum Mission/ Gamma-Ray Spectrometer (SMM/GRS) and to use these established line diagnostics to study the properties of flare accelerated ions.

  12. NASA Tech Briefs, November 2006

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics include: Simulator for Testing Spacecraft Separation Devices; Apparatus for Hot Impact Testing of Material Specimens; Instrument for Aircraft-Icing and Cloud-Physics Measurements; Advances in Measurement of Skin Friction in Airflow; Improved Apparatus for Testing Monoball Bearings; High-Speed Laser Scanner Maps a Surface in Three Dimensions; Electro-Optical Imaging Fourier-Transform Spectrometer; Infrared Instrument for Detecting Hydrogen Fires; Modified Coaxial Probe Feeds for Layered Antennas; Detecting Negative Obstacles by Use of Radar; Cryogenic Pound Circuits for Cryogenic Sapphire Oscillators; PixelLearn; New Software for Predicting Charging of Spacecraft; Conversion Between Osculating and Mean Orbital Elements; Generating a 2D Representation of a Complex Data Structure; Making Activated Carbon by Wet Pressurized Pyrolysis; Composite Solid Electrolyte Containing Li+- Conducting Fibers; Electrically Conductive Anodized Aluminum Surfaces; Rapid-Chill Cryogenic Coaxial Direct-Acting Solenoid Valve; Variable-Tension-Cord Suspension/Vibration- Isolation System; Techniques for Connecting Superconducting Thin Films; Versatile Friction Stir Welding/Friction Plug Welding System; Thermal Spore Exposure Vessels; Enumerating Spore-Forming Bacteria Airborne with Particles; Miniature Oxidizer Ionizer for a Fuel Cell; Miniature Ion-Array Spectrometer; Promoted-Combustion Chamber with Induction Heating Coil; Miniature Ion-Mobility Spectrometer; Mixed-Salt/Ester Electrolytes for Low-Temperature Li+ Cells; Miniature Free-Space Electrostatic Ion Thrusters; Miniature Bipolar Electrostatic Ion Thruster; Holographic Plossl Retroreflectors; Miniature Electrostatic Ion Thruster With Magnet; Using Apex To Construct CPM-GOMS Models; Sequence Detection for PPM Optical Communication With ISI; Algorithm for Rapid Searching Among Star-Catalog Entries; Expectation-Based Control of Noise and Chaos; Radio Heating of Lunar Soil to Release Gases; Using Electrostriction to Manipulate Ullage in Microgravity; Equations for Scoring Rules When Data Are Missing; Insulating Material for Next-Generation Spacecraft; and Pseudorandom Switching for Adding Radar to the AFF Sensor.

  13. Comprehensive RNA-Seq Expression Analysis of Sensory Ganglia with a Focus on Ion Channels and GPCRs in Trigeminal Ganglia

    PubMed Central

    Manteniotis, Stavros; Lehmann, Ramona; Flegel, Caroline; Vogel, Felix; Hofreuter, Adrian; Schreiner, Benjamin S. P.; Altmüller, Janine; Becker, Christian; Schöbel, Nicole; Hatt, Hanns; Gisselmann, Günter

    2013-01-01

    The specific functions of sensory systems depend on the tissue-specific expression of genes that code for molecular sensor proteins that are necessary for stimulus detection and membrane signaling. Using the Next Generation Sequencing technique (RNA-Seq), we analyzed the complete transcriptome of the trigeminal ganglia (TG) and dorsal root ganglia (DRG) of adult mice. Focusing on genes with an expression level higher than 1 FPKM (fragments per kilobase of transcript per million mapped reads), we detected the expression of 12984 genes in the TG and 13195 in the DRG. To analyze the specific gene expression patterns of the peripheral neuronal tissues, we compared their gene expression profiles with that of the liver, brain, olfactory epithelium, and skeletal muscle. The transcriptome data of the TG and DRG were scanned for virtually all known G-protein-coupled receptors (GPCRs) as well as for ion channels. The expression profile was ranked with regard to the level and specificity for the TG. In total, we detected 106 non-olfactory GPCRs and 33 ion channels that had not been previously described as expressed in the TG. To validate the RNA-Seq data, in situ hybridization experiments were performed for several of the newly detected transcripts. To identify differences in expression profiles between the sensory ganglia, the RNA-Seq data of the TG and DRG were compared. Among the differentially expressed genes (> 1 FPKM), 65 and 117 were expressed at least 10-fold higher in the TG and DRG, respectively. Our transcriptome analysis allows a comprehensive overview of all ion channels and G protein-coupled receptors that are expressed in trigeminal ganglia and provides additional approaches for the investigation of trigeminal sensing as well as for the physiological and pathophysiological mechanisms of pain. PMID:24260241

  14. Ion-selective detection by plasticized poly(vinyl chloride) membrane in glass nanopipette with alternating voltage modulation.

    PubMed

    Deng, Xiao Long; Takami, Tomohide; Son, Jong Wan; Kang, Eun Ji; Kawai, Tomoji; Park, Bae Ho

    2013-08-01

    An alternating current (AC) voltage modulation was applied to ion-selective observations with plasticized poly(vinyl chloride) membranes in glass nanopipettes. The liquid confronting the membranes in the nanopipettes, the conditioning process, and AC voltage modulation play important roles in the ion-selective detection. In the AC detection system developed by us, where distilled water was used as the liquid within the nanopipettes, potassium ions were selectively detected in the sample solution of sodium and potassium ions because sodium ions were captured at the membrane containing bis(12-crown-4) ionophores, before the saturation of the ionophores. The membrane lost the selectivity after the saturation. On using sodium chloride as the liquid within the nanopipette, the membrane selectively detected potassium and sodium ions before and after the saturation of ionophores, respectively. The ion-selective detection of our system can be explained by the ion extraction-diffusion-dissolution mechanism through the bis(12-crown-4) ionophores with AC voltage modulation.

  15. Colorimetric detection of hydrogen peroxide by dioxido-vanadium(V) complex containing hydrazone ligand: synthesis and crystal structure

    NASA Astrophysics Data System (ADS)

    Kurbah, Sunshine D.; Syiemlieh, Ibanphylla; Lal, Ram A.

    2018-03-01

    Dioxido-vanadium(V) complex has been synthesized in good yield, the complex was characterized by IR, UV-visible and 1H NMR spectroscopy. Single crystal X-ray crystallography techniques were used to assign the structure of the complex. Complex crystallized with monoclinic P21/c space group with cell parameters a (Å) = 39.516(5), b (Å) = 6.2571(11), c (Å) = 17.424(2), α (°) = 90, β (°) = 102.668(12) and γ (°) = 90. The hydrazone ligand is coordinate to metal ion in tridentate fashion through -ONO- donor atoms forming a distorted square pyramidal geometry around the metal ion.

  16. Spatial and Time Coincidence Detection of the Decay Chain of Short-Lived Radioactive Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granja, Carlos; Jakubek, Jan; Platkevic, Michal

    The quantum counting position sensitive pixel detector Timepix with per-pixel energy and time resolution enables to detect radioactive ions and register the consecutive decay chain by simultaneous position-and time-correlation. This spatial and timing coincidence technique in the same sensor is demonstrated by the registration of the decay chain {sup 8}He{yields}{sup {beta} 8}Li and {sup 8}Li{yields}{sup {beta}-} {sup 8}Be{yields}{alpha}+{alpha} and by the measurement of the {beta} decay half-lives. Radioactive ions, selectively obtained from the Lohengrin fission fragment spectrometer installed at the High Flux Reactor of the ILL Grenoble, are delivered to the Timepix silicon sensor where decays of the implanted ionsmore » and daughter nuclei are registered and visualized. We measure decay lifetimes in the range {>=}{mu}s with precision limited just by counting statistics.« less

  17. Time-of-flight SIMS/MSRI reflectron mass analyzer and method

    DOEpatents

    Smentkowski, Vincent S.; Gruen, Dieter M.; Krauss, Alan R.; Schultz, J. Albert; Holecek, John C.

    1999-12-28

    A method and apparatus for analyzing the surface characteristics of a sample by Secondary Ion Mass Spectroscopy (SIMS) and Mass Spectroscopy of Recoiled Ions (MSRI) is provided. The method includes detecting back scattered primary ions, low energy ejected species, and high energy ejected species by ion beam surface analysis techniques comprising positioning a ToF SIMS/MSRI mass analyzer at a predetermined angle .theta., where .theta. is the angle between the horizontal axis of the mass analyzer and the undeflected primary ion beam line, and applying a specific voltage to the back ring of the analyzer. Preferably, .theta. is less than or equal to about 120.degree. and, more preferably, equal to 74.degree.. For positive ion analysis, the extractor, lens, and front ring of the reflectron are set at negative high voltages (-HV). The back ring of the reflectron is set at greater than about +700V for MSRI measurements and between the range of about +15 V and about +50V for SIMS measurements. The method further comprises inverting the polarity of the potentials applied to the extractor, lens, front ring, and back ring to obtain negative ion SIMS and/or MSRI data.

  18. Recent developments in the Thomson Parabola Spectrometer diagnostic for laser-driven multi-species ion sources

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Gwynne, D.; Doria, D.; Ahmed, H.; Carroll, D. C.; Clarke, R. J.; Neely, D.; Scott, G. G.; Borghesi, M.; Kar, S.

    2016-10-01

    Ongoing developments in laser-driven ion acceleration warrant appropriate modifications to the standard Thomson Parabola Spectrometer (TPS) arrangement in order to match the diagnostic requirements associated to the particular and distinctive properties of laser-accelerated beams. Here we present an overview of recent developments by our group of the TPS diagnostic aimed to enhance the capability of diagnosing multi-species high-energy ion beams. In order to facilitate discrimination between ions with same Z/A, a recursive differential filtering technique was implemented at the TPS detector in order to allow only one of the overlapping ion species to reach the detector, across the entire energy range detectable by the TPS. In order to mitigate the issue of overlapping ion traces towards the higher energy part of the spectrum, an extended, trapezoidal electric plates design was envisaged, followed by its experimental demonstration. The design allows achieving high energy-resolution at high energies without sacrificing the lower energy part of the spectrum. Finally, a novel multi-pinhole TPS design is discussed, that would allow angularly resolved, complete spectral characterization of the high-energy, multi-species ion beams.

  19. Potentiometric Zinc Ion Sensor Based on Honeycomb-Like NiO Nanostructures

    PubMed Central

    Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Khan, Yaqoob; Khan, Azam; Nur, Omer; Willander, Magnus

    2012-01-01

    In this study honeycomb-like NiO nanostructures were grown on nickel foam by a simple hydrothermal growth method. The NiO nanostructures were characterized by field emission electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The characterized NiO nanostructures were uniform, dense and polycrystalline in the crystal phase. In addition to this, the NiO nanostructures were used in the development of a zinc ion sensor electrode by functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed zinc ion sensor electrode has shown a good linear potentiometric response for a wide range of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of 36 mV/decade. The detection limit of the present zinc ion sensor was found to be 0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc ion sensor electrode has also shown good reproducibility, repeatability, storage stability and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was also used as indicator electrode in potentiometric titrations and it has demonstrated an acceptable stoichiometric relationship for the determination of zinc ion in unknown samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion in various industrial, clinical and other real samples. PMID:23202217

  20. Elucidating the Complex Lineshapes Resulting from the Highly Sensitive, Ion Selective, Technique Nice-Ohvms

    NASA Astrophysics Data System (ADS)

    Hodges, James N.; Siller, Brian; McCall, Benjamin J.

    2015-06-01

    The technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy, or NICE-OHVMS, has been used to great effect to precisely and accurately measure a variety of molecular ion transitions from species such as H_3^+, CH_5^+, HeH^+, and HCO^+, achieving MHz or in some cases sub-MHz uncertainty. It is a powerful technique, but a complete theoretical understanding of the complex NICE-OHVMS lineshape is needed to fully unlock its potential. NICE-OHVMS is the direct result of the combination of the highly sensitive spectroscopic technique Noise Immune Cavity Enhanced Optical Heterodyne Molecular Spectroscopy(NICE-OHMS) with Velocity Modulation Spectroscopy(VMS), applying the most sensitive optical detection method with ion species selectivity. The theoretical underpinnings of NICE-OHMS lineshapes are well established, as are those of VMS. This presentation is the logical extension of those two preceding bodies of work. Simulations of NICE-OHVMS lineshapes under a variety of conditions and fits of experimental data to the model are presented. The significance and accuracy of the various inferred parameters, along with the prospect of using them to extract additional information from observed transitions, are discussed. J.~N. Hodges, et al. J. Chem. Phys. (2013), 139, 164201. A.~J. Perry, et al. J. Chem. Phys. (2014), 141, 101101. K.~N. Crabtree, et al. Chem. Phys. Lett. (2012), 551, 1-6. F.~M. Schmidt, et al. J. Opt. Soc. Amer. A (2008), 24, 1392--1405. J.~W. Farley, J. Chem. Phys. (1991), 95, 5590--5602.

  1. Detection and mapping of illicit drugs and their metabolites in fingermarks by MALDI MS and compatibility with forensic techniques

    NASA Astrophysics Data System (ADS)

    Groeneveld, G.; de Puit, M.; Bleay, S.; Bradshaw, R.; Francese, S.

    2015-06-01

    Despite the proven capabilities of Matrix Assisted Laser Desorption Ionisation Mass Spectrometry (MALDI MS) in laboratory settings, research is still needed to integrate this technique into current forensic fingerprinting practice. Optimised protocols enabling the compatible application of MALDI to developed fingermarks will allow additional intelligence to be gathered around a suspect’s lifestyle and activities prior to the deposition of their fingermarks while committing a crime. The detection and mapping of illicit drugs and metabolites in latent fingermarks would provide intelligence that is beneficial for both police investigations and court cases. This study investigated MALDI MS detection and mapping capabilities for a large range of drugs of abuse and their metabolites in fingermarks; the detection and mapping of a mixture of these drugs in marks, with and without prior development with cyanoacrylate fuming or Vacuum Metal Deposition, was also examined. Our findings indicate the versatility of MALDI technology and its ability to retrieve chemical intelligence either by detecting the compounds investigated or by using their ion signals to reconstruct 2D maps of fingermark ridge details.

  2. Metal cation detection in positive ion mode electrospray ionization mass spectrometry using a tetracationic salt as a gas-phase ion-pairing agent: evaluation of the effect of chelating agents on detection sensitivity.

    PubMed

    Xu, Chengdong; Dodbiba, Edra; Padivitage, Nilusha L T; Breitbach, Zachary S; Armstrong, Daniel W

    2012-12-30

    The detection of metal cations continues to be essential in many scientific and industrial areas of interest. The most common electrospray ionization mass spectrometry (ESI-MS) approach involves chelating the metal ions and detecting the organometallic complex in the negative ion mode. However, it is well known that negative ion mode ESI-MS is generally less sensitive than the positive ion mode. To achieve greater sensitivity, it is necessary to examine the feasibility of detecting the chelated metal cations in positive ion mode ESI-MS. Since highly solvated native metal cations have relatively low ionization efficiency in ESI-MS, and can be difficult to detect in the positive ion mode, a tetracationic ion-pairing agent was added to form a complex with the negatively charged metal chelate. The use of the ion-pairing agent leads to the generation of an overall positively charged complex, which can be detected at higher m/z values in the positive ion mode by electrospray ionization linear quadrupole ion trap mass spectrometry. Thirteen chelating agents with diverse structures were evaluated in this study. The nature of the chelating agent played as important a role as was previously determined for cationic pairing agents. The detection limits of six metal cations reached sub-picogram levels and significant improvements were observed when compared to negative ion mode detection where the metal-chelates were monitored without adding the ion-pairing reagent (IPR). Also, selective reaction monitoring (SRM) analyses were performed on the ternary complexes, which improved detection limits by one to three orders of magnitude. With this method it was possible to analyze the metal cations in the positive ion mode ESI-MS with the advantage of speed, sensitivity and selectivity. The optimum solution pH for this type of analysis is 5-7. Tandem mass spectrometry (MS/MS) further increases the sensitivity. Speciation is straightforward making this a broadly useful approach for the analysis of metal ions. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Development of a New Time-Resolved Laser-Induced Fluorescence Technique

    NASA Astrophysics Data System (ADS)

    Durot, Christopher; Gallimore, Alec

    2012-10-01

    We are developing a time-resolved laser-induced fluorescence (LIF) technique to interrogate the ion velocity distribution function (VDF) of EP thruster plumes down to the microsecond time scale. Better measurements of dynamic plasma processes will lead to improvements in simulation and prediction of thruster operation and erosion. We present the development of the new technique and results of initial tests. Signal-to-noise ratio (SNR) is often a challenge for LIF studies, and it is only more challenging for time-resolved measurements since a lock-in amplifier cannot be used with a long time constant. The new system uses laser modulation on the order of MHz, which enables the use of electronic filtering and phase-sensitive detection to improve SNR while preserving time-resolved information. Statistical averaging over many cycles to further improve SNR is done in the frequency domain. This technique can have significant advantages, including (1) larger spatial maps enabled by shorter data acquisition time and (2) the ability to average data without creating a phase reference by modifying the thruster operating condition with a periodic cutoff in discharge current, which can modify the ion velocity distribution.

  4. Infrared radiative decay dynamics from the γ 1u (3P2), H 1u (3P1), and 1u (1D2) ion-pair states of I2 observed by a perturbation facilitated optical-optical double resonance technique

    NASA Astrophysics Data System (ADS)

    Hoshino, Shoma; Araki, Mitsunori; Nakano, Yukio; Ishiwata, Takashi; Tsukiyama, Koichi

    2016-01-01

    We report the spectroscopic and temporal analyses on the amplified spontaneous emission (ASE) from the single rovibrational levels of the Ω = 1u ion-pair series, γ 1u (3P2), H 1u (3P1), and 1u (1D2), of I2 by using a perturbation facilitated optical-optical double resonance technique through the c 1 Π g ˜ B 3 Π ( 0u + ) hyperfine mixed valence state as the intermediate state. The ASE detected in the infrared region was assigned to the parallel transitions from the Ω = 1u ion-pair states down to the nearby Ω = 1g ion-pair states. The subsequent ultraviolet (UV) fluorescence from the Ω = 1g states was also observed and the relative vibrational populations in the Ω = 1g states were derived through the Franck-Condon simulation of the intensity pattern of the vibrational progression. In the temporal profiles of the UV fluorescence, an obvious delay in the onset of the fluorescence was recognized after the excitation laser pulse. These results revealed that ASE is a dominant energy relaxation process between the Ω = 1u and 1g ion-pair states of I2. Finally, the lifetimes of the relevant ion-pair states were evaluated by temporal analyses of the UV fluorescence. The propensity was found which was the longer lifetime in the upper level of the ASE transitions tends to give intense ASE.

  5. Indirect ultraviolet detection of alkaline earth metal ions using an imidazolium ionic liquid as an ultraviolet absorption reagent in ion chromatography.

    PubMed

    Liu, Yong-Qiang; Yu, Hong

    2017-04-01

    A convenient and versatile method was developed for the separation and detection of alkaline earth metal ions by ion chromatography with indirect UV detection. The chromatographic separation of Mg 2+ , Ca 2+ , and Sr 2+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid as the mobile phase, in which the imidazolium ionic liquid acted as an UV-absorption reagent. The effects of imidazolium ionic liquids, detection wavelength, acids in the mobile phase, and column temperature on the retention of Mg 2+ , Ca 2+ , and Sr 2+ were investigated. The main factors influencing the separation and detection were the background UV absorption reagent and the concentration of hydrogen ion in ion chromatography with indirect UV detection. The successful separation and detection of Mg 2+ , Ca 2+ , and Sr 2+ within 14 min were achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.06, 0.12, and 0.23 mg/L, respectively. A new separation and detection method of alkaline earth metal ions by ion chromatography with indirect UV detection was developed, and the application range of ionic liquids was expanded. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Frequency-scanning MALDI linear ion trap mass spectrometer for large biomolecular ion detection.

    PubMed

    Lu, I-Chung; Lin, Jung Lee; Lai, Szu-Hsueh; Chen, Chung-Hsuan

    2011-11-01

    This study presents the first report on the development of a matrix-assisted laser desorption ionization (MALDI) linear ion trap mass spectrometer for large biomolecular ion detection by frequency scan. We designed, installed, and tested this radio frequency (RF) scan linear ion trap mass spectrometer and its associated electronics to dramatically extend the mass region to be detected. The RF circuit can be adjusted from 300 to 10 kHz with a set of operation amplifiers. To trap the ions produced by MALDI, a high pressure of helium buffer gas was employed to quench extra kinetic energy of the heavy ions produced by MALDI. The successful detection of the singly charged secretory immunoglobulin A ions indicates that the detectable mass-to-charge ratio (m/z) of this system can reach ~385 000 or beyond.

  7. Mass Spectral Investigations on Toxins. 7. Detection and Accurate Quantitation of Picogram Quantities of Macrocyclic Trichothecenes in Brazilian Plant Samples by Direct Chemical Ionization-Mass Spectrometer/Mass Spectrometer Techniques

    DTIC Science & Technology

    1987-09-01

    trichothecenes are naturally occurring di. and triesters of unsubstituted and substituted verrucarols. 1 -" The diesters are termed as roridins, satratoxins, and...Satratoxins produced M- ions very efficiently despite the nature of the CI reagent gases.’ 6 The protonated molecules of satratoxins formed under these

  8. Study of a comet rendezvous mission. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Appendices to the comet Encke rendezvous mission consider relative positions of comet, earth and sun; viewing condition for Encke; detection of Taurid meteor streams; ephemeris of comet Encke; microwave and optical techniques in rendezvous mission; approach instruments; electrostatic equilibrium of ion engine spacecraft; comet flyby data for rendezvous spacecraft assembly; observations of P/Encke extracted from a compilation; and summary of technical innovations.

  9. Inorganic trace analysis by mass spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine; Dietze, Hans-Joachim

    1998-10-01

    Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g -1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of high-purity materials and environmental samples) is used in order to improve the detection limits of trace elements. Furthermore, the determination of chemical elements in the trace and ultratrace concentration range is often difficult and can be disturbed through mass interferences of analyte ions by molecular ions at the same nominal mass. By applying double-focusing sector field mass spectrometry at the required mass resolution—by the mass spectrometric separation of molecular ions from the analyte ions—it is often possible to overcome these interference problems. Commercial instrumental equipment, the capability (detection limits, accuracy, precision) and the analytical application fields of mass spectrometric methods for the determination of trace and ultratrace elements and for surface analysis are discussed.

  10. Barium Tagging n Solid Xenon for nEXO Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Walton, Tim; Chambers, Chris; Craycraft, Adam; Fairbank, William; nEXO Collaboration

    2015-04-01

    nEXO is a next-generation experiment designed to search for neutrinoless double beta decay of the isotope Xe136 in a liquid xenon time projection chamber. Positive observation of this decay would determine the nature of the neutrino to be a Majorana particle. Since the daughter of this decay is barium (Ba136), detecting the presence of Ba136 at a decay site (called ``barium tagging'') would provide strong rejection of backgrounds in the search for this decay. This would involve detecting a single barium ion from within a macroscopic volume of liquid xenon. This technique may be available for a second phase of the nEXO detector and sensitivity beyond the inverted hierarchy to neutrino oscillations. Several methods of barium tagging are being explored by the nEXO collaboration, but here we present a method of trapping the barium ion/atom (it may neutralize) in solid xenon (SXe) at the end of a cold probe, and then detecting the ion/atom by its fluorescence in the SXe. Our group at CSU has been studying the fluorescence of Ba in SXe by laser excitation, in order to ultimately detect a single Ba +/Ba in a SXe sample. We present studies of fluorescence signals, as well as recent results on imaging small numbers of Ba atoms in SXe, in a focused laser region. This work is supported by grants from the National Science Foundation and the Department of Energy.

  11. A simple and selective colorimetric mercury (II) sensing system based on chitosan stabilized gold nanoparticles and 2,6-pyridinedicarboxylic acid.

    PubMed

    Tian, Kun; Siegel, Gene; Tiwari, Ashutosh

    2017-02-01

    The development of simple and cost-effective methods for the detection and treatment of Hg 2+ in the environment is an important area of research due to the serious health risk that Hg 2+ poses to humans. Colorimetric sensing based on the induced aggregation of nanoparticles is of great interest since it offers a low cost, simple, and relatively rapid procedure, making it perfect for on-site analysis. Herein we report the development of a simple colorimetric sensor for the selective detection and estimation of mercury ions in water, based on chitosan stabilized gold nanoparticles (AuNPs) and 2,6-pyridinedicarboxylic acid (PDA). In the presence of Hg 2+ , PDA induces the aggregation of AuNPs, causing the solution to change colors varying from red to blue, depending on the concentration of Hg 2+ . The formation of aggregated AuNPs in the presence of Hg 2+ was confirmed using transmission electron microscopy (TEM) and UV-Vis spectroscopy. The method exhibits linearity in the range of 300nM to 5μM and shows excellent selectivity towards Hg 2+ among seventeen different metal ions and was successfully applied for the detection of Hg 2+ in spiked river water samples. The developed technique is simple and superior to the existing techniques in that it allows detection of Hg 2+ using the naked eye and simple and rapid colorimetric analysis, which eliminates the need for sophisticated instruments and sample preparation methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Ion trace detection algorithm to extract pure ion chromatograms to improve untargeted peak detection quality for liquid chromatography/time-of-flight mass spectrometry-based metabolomics data.

    PubMed

    Wang, San-Yuan; Kuo, Ching-Hua; Tseng, Yufeng J

    2015-03-03

    Able to detect known and unknown metabolites, untargeted metabolomics has shown great potential in identifying novel biomarkers. However, elucidating all possible liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS) ion signals in a complex biological sample remains challenging since many ions are not the products of metabolites. Methods of reducing ions not related to metabolites or simply directly detecting metabolite related (pure) ions are important. In this work, we describe PITracer, a novel algorithm that accurately detects the pure ions of a LC/TOF-MS profile to extract pure ion chromatograms and detect chromatographic peaks. PITracer estimates the relative mass difference tolerance of ions and calibrates the mass over charge (m/z) values for peak detection algorithms with an additional option to further mass correction with respect to a user-specified metabolite. PITracer was evaluated using two data sets containing 373 human metabolite standards, including 5 saturated standards considered to be split peaks resultant from huge m/z fluctuation, and 12 urine samples spiked with 50 forensic drugs of varying concentrations. Analysis of these data sets show that PITracer correctly outperformed existing state-of-art algorithm and extracted the pure ion chromatograms of the 5 saturated standards without generating split peaks and detected the forensic drugs with high recall, precision, and F-score and small mass error.

  13. High-temperature solid-phase microextraction procedure for the detection of drugs by gas chromatography-mass spectrometry.

    PubMed

    Staerk, U; Külpmann, W R

    2000-08-18

    High-temperature headspace solid-phase microextraction (SPME) with simultaneous ("in situ") derivatisation (acetylation or silylation) is a new sample preparation technique for the screening of illicit drugs in urine and for the confirmation analysis in serum by GC-MS. After extraction of urine with a small portion of an organic solvent mixture (e.g., 2 ml of hexane-ethyl acetate) at pH 9, the organic layer is separated and evaporated to dryness in a small headspace vial. A SPME-fiber (e.g., polyacrylate) doped with acetic anhydride-pyridine (for acetylation) is exposed to the vapour phase for 10 min at 200 degrees C in a blockheater. The SPME fiber is then injected into the GC-MS for thermal desorption and analysis. After addition of perchloric acid and extraction with n-hexane to remove lipids, the serum can be analysed after adjusting to pH 9 as described for urine. Very clean extracts are obtained. The various drugs investigated could be detected and identified in urine by the total ion current technique at the following concentrations: amphetamines (200 microg/l), barbiturates (500 microg/l), benzodiazepines (100 microg/l), benzoylecgonine (150 microg/l), methadone (100 microg/l) and opiates (200 microg/l). In serum all drugs could be detected by the selected ion monitoring technique within their therapeutic range. As compared to liquid-liquid extraction only small amounts of organic solvent are needed and larger amounts of the pertinent analytes could be transferred to the GC column. In contrast to solid-phase extraction (SPE), the SPME-fiber is reusable several times (as there is no contamination by endogenous compounds). The method is time-saving and can be mechanised by the use of a dedicated autosampler.

  14. MRM screening/biomarker discovery with linear ion trap MS: a library of human cancer-specific peptides.

    PubMed

    Yang, Xu; Lazar, Iulia M

    2009-03-27

    The discovery of novel protein biomarkers is essential in the clinical setting to enable early disease diagnosis and increase survivability rates. To facilitate differential expression analysis and biomarker discovery, a variety of tandem mass spectrometry (MS/MS)-based protein profiling techniques have been developed. For achieving sensitive detection and accurate quantitation, targeted MS screening approaches, such as multiple reaction monitoring (MRM), have been implemented. MCF-7 breast cancer protein cellular extracts were analyzed by 2D-strong cation exchange (SCX)/reversed phase liquid chromatography (RPLC) separations interfaced to linear ion trap MS detection. MS data were interpreted with the Sequest-based Bioworks software (Thermo Electron). In-house developed Perl-scripts were used to calculate the spectral counts and the representative fragment ions for each peptide. In this work, we report on the generation of a library of 9,677 peptides (p < 0.001), representing approximately 1,572 proteins from human breast cancer cells, that can be used for MRM/MS-based biomarker screening studies. For each protein, the library provides the number and sequence of detectable peptides, the charge state, the spectral count, the molecular weight, the parameters that characterize the quality of the tandem mass spectrum (p-value, DeltaM, Xcorr, DeltaCn, Sp, no. of matching a, b, y ions in the spectrum), the retention time, and the top 10 most intense product ions that correspond to a given peptide. Only proteins identified by at least two spectral counts are listed. The experimental distribution of protein frequencies, as a function of molecular weight, closely matched the theoretical distribution of proteins in the human proteome, as provided in the SwissProt database. The amino acid sequence coverage of the identified proteins ranged from 0.04% to 98.3%. The highest-abundance proteins in the cellular extract had a molecular weight (MW)<50,000. Preliminary experiments have demonstrated that putative biomarkers, that are not detectable by conventional data dependent MS acquisition methods in complex un-fractionated samples, can be reliable identified with the information provided in this library. Based on the spectral count, the quality of a tandem mass spectrum and the m/z values for a parent peptide and its most abundant daughter ions, MRM conditions can be selected to enable the detection of target peptides and proteins.

  15. MRM screening/biomarker discovery with linear ion trap MS: a library of human cancer-specific peptides

    PubMed Central

    2009-01-01

    Background The discovery of novel protein biomarkers is essential in the clinical setting to enable early disease diagnosis and increase survivability rates. To facilitate differential expression analysis and biomarker discovery, a variety of tandem mass spectrometry (MS/MS)-based protein profiling techniques have been developed. For achieving sensitive detection and accurate quantitation, targeted MS screening approaches, such as multiple reaction monitoring (MRM), have been implemented. Methods MCF-7 breast cancer protein cellular extracts were analyzed by 2D-strong cation exchange (SCX)/reversed phase liquid chromatography (RPLC) separations interfaced to linear ion trap MS detection. MS data were interpreted with the Sequest-based Bioworks software (Thermo Electron). In-house developed Perl-scripts were used to calculate the spectral counts and the representative fragment ions for each peptide. Results In this work, we report on the generation of a library of 9,677 peptides (p < 0.001), representing ~1,572 proteins from human breast cancer cells, that can be used for MRM/MS-based biomarker screening studies. For each protein, the library provides the number and sequence of detectable peptides, the charge state, the spectral count, the molecular weight, the parameters that characterize the quality of the tandem mass spectrum (p-value, DeltaM, Xcorr, DeltaCn, Sp, no. of matching a, b, y ions in the spectrum), the retention time, and the top 10 most intense product ions that correspond to a given peptide. Only proteins identified by at least two spectral counts are listed. The experimental distribution of protein frequencies, as a function of molecular weight, closely matched the theoretical distribution of proteins in the human proteome, as provided in the SwissProt database. The amino acid sequence coverage of the identified proteins ranged from 0.04% to 98.3%. The highest-abundance proteins in the cellular extract had a molecular weight (MW)<50,000. Conclusion Preliminary experiments have demonstrated that putative biomarkers, that are not detectable by conventional data dependent MS acquisition methods in complex un-fractionated samples, can be reliable identified with the information provided in this library. Based on the spectral count, the quality of a tandem mass spectrum and the m/z values for a parent peptide and its most abundant daughter ions, MRM conditions can be selected to enable the detection of target peptides and proteins. PMID:19327145

  16. Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of copper ions in environmental water samples.

    PubMed

    Roushani, Mahmoud; Abbasi, Shahryar; Khani, Hossein

    2015-04-01

    Novel Cu(II) ion-imprinted polymers (Cu-IIP) nanoparticles were prepared by using Cu(II) ion-thiosemicarbazide complex as the template molecule and methacrylic acid, ethylene glycol dimethacrylate (EGDMA), and 2,2'azobisisobutyronitrile (AIBN) as the functional monomer, cross-linker, and the radical initiator, respectively. The synthesized polymer nanoparticles were characterized by using infrared spectroscopy (IR), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopic (SEM) techniques. Some parameters such as pH, weight of the polymer, adsorption time, elution time, eluent type, and eluent volume which affect the extraction efficiency of the polymer were studied. In the proposed method, the maximum sorbent capacity of the ion-imprinted polymer was calculated to be 38.8 mg g(-1). The preconcentration factor, relative standard deviation, and limit of detection of the method were found to be 80, 1.7%, and 0.003 μg mL(-1), respectively. The prepared ion-imprinted polymer nanoparticles have an increased selectivity toward Cu(II) ions over a range of competing metal ions with the same charge and similar ionic radius. The method was applied to the determination of ultra trace levels of Cu2+ in environmental water samples with satisfactory results.

  17. Time of Flight based diagnostics for high energy laser driven ion beams

    NASA Astrophysics Data System (ADS)

    Scuderi, V.; Milluzzo, G.; Alejo, A.; Amico, A. G.; Booth, N.; Cirrone, G. A. P.; Doria, D.; Green, J.; Kar, S.; Larosa, G.; Leanza, R.; Margarone, D.; McKenna, P.; Padda, H.; Petringa, G.; Pipek, J.; Romagnani, L.; Romano, F.; Schillaci, F.; Borghesi, M.; Cuttone, G.; Korn, G.

    2017-03-01

    Nowadays the innovative high power laser-based ion acceleration technique is one of the most interesting challenges in particle acceleration field, showing attractive characteristics for future multidisciplinary applications, including medical ones. Nevertheless, peculiarities of optically accelerated ion beams make mandatory the development of proper transport, selection and diagnostics devices in order to deliver stable and controlled ion beams for multidisciplinary applications. This is the main purpose of the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) beamline that will be realized and installed within 2018 at the ELI-Beamlines research center in the Czech Republic, where laser driven high energy ions, up to 60 MeV/n, will be available for users. In particular, a crucial role will be played by the on-line diagnostics system, recently developed in collaboration with INFN-LNS (Italy), consisting of TOF detectors, placed along the beamline (at different detection distances) to provide online monitoring of key characteristics of delivered beams, such as energy, fluence and ion species. In this contribution an overview on the ELIMAIA available ion diagnostics will be briefly given along with the preliminary results obtained during a test performed with high energy laser-driven proton beams accelerated at the VULCAN PW-laser available at RAL facility (U.K.).

  18. Adsorption of Cd2+ ions on plant mediated SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Haq, Sirajul; Rehman, Wajid; Waseem, Muhammad; Shahid, Muhammad; Mahfooz-ur-Rehman; Hussain Shah, Khizar; Nawaz, Mohsan

    2016-10-01

    Plant mediated SnO2 nanoparticles were synthesized by using SnCl4.5H2O as a precursor material. The nanoparticles were then characterized for BET surface area measurements, energy dispersive x-rays (EDX), scanning electron microscopy (SEM), UV-vis diffuse reflectance (DRS) spectra and x-rays diffraction (XRD) analysis. The successful synthesis of SnO2 nanoparticles was confirmed by EDX analysis. The particle sizes were in the range 19-27 nm whereas the crystallite size computed from XRD measurement was found to be 19.9 nm. Batch adsorption technique was employed for the removal of Cd2+ ions from aqueous solution. The sorption studies of Cd2+ ions were performed at pHs 4 and 6. The equilibrium concentration of Cd2+ ions was determined by atomic absorption spectrometer (flame mode). The uptake of Cd2+ ions was affected by initial concentration, pH and temperature of the electrolytic solution. It was observed that the adsorption of Cd2+ ions enhanced with increase in the initial concentration of Cd2+ ions whereas a decrease in the percent adsorption was detected. From the thermodynamic parameters, the adsorption process was found spontaneous and endothermic in nature. The n values confirmed 2:1 exchange mechanism between surface protons and Cd2+ ions.

  19. Simulation of a model nanopore sensor: Ion competition underlies device behavior.

    PubMed

    Mádai, Eszter; Valiskó, Mónika; Dallos, András; Boda, Dezső

    2017-12-28

    We study a model nanopore sensor with which a very low concentration of analyte molecules can be detected on the basis of the selective binding of the analyte molecules to the binding sites on the pore wall. The bound analyte ions partially replace the current-carrier cations in a thermodynamic competition. This competition depends both on the properties of the nanopore and the concentrations of the competing ions (through their chemical potentials). The output signal given by the device is the current reduction caused by the presence of the analyte ions. The concentration of the analyte ions can be determined through calibration curves. We model the binding site with the square-well potential and the electrolyte as charged hard spheres in an implicit background solvent. We study the system with a hybrid method in which we compute the ion flux with the Nernst-Planck (NP) equation coupled with the Local Equilibrium Monte Carlo (LEMC) simulation technique. The resulting NP+LEMC method is able to handle both strong ionic correlations inside the pore (including finite size of ions) and bulk concentrations as low as micromolar. We analyze the effect of bulk ion concentrations, pore parameters, binding site parameters, electrolyte properties, and voltage on the behavior of the device.

  20. Simulation of a model nanopore sensor: Ion competition underlies device behavior

    NASA Astrophysics Data System (ADS)

    Mádai, Eszter; Valiskó, Mónika; Dallos, András; Boda, Dezső

    2017-12-01

    We study a model nanopore sensor with which a very low concentration of analyte molecules can be detected on the basis of the selective binding of the analyte molecules to the binding sites on the pore wall. The bound analyte ions partially replace the current-carrier cations in a thermodynamic competition. This competition depends both on the properties of the nanopore and the concentrations of the competing ions (through their chemical potentials). The output signal given by the device is the current reduction caused by the presence of the analyte ions. The concentration of the analyte ions can be determined through calibration curves. We model the binding site with the square-well potential and the electrolyte as charged hard spheres in an implicit background solvent. We study the system with a hybrid method in which we compute the ion flux with the Nernst-Planck (NP) equation coupled with the Local Equilibrium Monte Carlo (LEMC) simulation technique. The resulting NP+LEMC method is able to handle both strong ionic correlations inside the pore (including finite size of ions) and bulk concentrations as low as micromolar. We analyze the effect of bulk ion concentrations, pore parameters, binding site parameters, electrolyte properties, and voltage on the behavior of the device.

  1. Studying ion exchange in solution and at biological membranes by FCS.

    PubMed

    Widengren, Jerker

    2013-01-01

    By FCS, a wide range of processes can be studied, covering time ranges from subnanoseconds to seconds. In principle, any process at equilibrium conditions can be measured, which reflects itself by a change in the detected fluorescence intensity. In this review, it is described how FCS and variants thereof can be used to monitor ion exchange, in solution and along biological membranes. Analyzing fluorescence fluctuations of ion-sensitive fluorophores by FCS offers selective advantages over other techniques for measuring local ion concentrations, and, in particular, for studying exchange kinetics of ions on a very local scale. This opens for several areas of application. The FCS approach was used to investigate fundamental aspects of proton exchange at and along biological membranes. The protonation relaxation rate, as measured by FCS for a pH-sensitive dye, can also provide information about local accessibility/interaction of a particular labeling site and conformational states of biomolecules, in a similar fashion as in a fluorescence quenching experiment. The same FCS concept can also be applied to ion exchange studies using other ion-sensitive fluorophores, and by use of dyes sensitive to other ambient conditions the concept can be extended also beyond ion exchange studies. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Field-driven ion migration against dead-stop collisional braking

    NASA Astrophysics Data System (ADS)

    Grzesik, J. A.

    1988-02-01

    The steady-state migration of ions, driven by a uniform electric field against full-stop collisions, is investigated in some detail. The required phase-space distribution is obtained very easily from Boltzmann's equation together with explicit recognition of energy conservation and population balance for the stagnant ion pool. We go on to decompose this aggregate solution into ion tiers classified by the number of background impacts previously endured. Such a decomposition permits us to detect the presence of Poisson statistics (as to collision number) lurking within the composite, thermalized Maxwellian, and likewise also a multiple-scattering hierarchy having the maiden, first-flight distribution for its natural kernel. Scattering-sequence accounting, in particular, allows a quantitative (even though unwieldy) distinction to be made between ions of varying residence times. A model of this sort is motivated by the technique of ion implantation through sample immersion within a plasma at higher electric potential. Numerical consequences of the solution obtained here reveal that both ion density and average kinetic energy relax to their terminal values within just a few mean free-path lengths. Such modest scaling of plasma-sheath extent evidently carries a beneficial implication for the technological ease with which surface properties (such as metal corrosion resistance and hardness) remain open to improvement via ion bombardment.

  3. Experimental quantum simulations of many-body physics with trapped ions.

    PubMed

    Schneider, Ch; Porras, Diego; Schaetz, Tobias

    2012-02-01

    Direct experimental access to some of the most intriguing quantum phenomena is not granted due to the lack of precise control of the relevant parameters in their naturally intricate environment. Their simulation on conventional computers is impossible, since quantum behaviour arising with superposition states or entanglement is not efficiently translatable into the classical language. However, one could gain deeper insight into complex quantum dynamics by experimentally simulating the quantum behaviour of interest in another quantum system, where the relevant parameters and interactions can be controlled and robust effects detected sufficiently well. Systems of trapped ions provide unique control of both the internal (electronic) and external (motional) degrees of freedom. The mutual Coulomb interaction between the ions allows for large interaction strengths at comparatively large mutual ion distances enabling individual control and readout. Systems of trapped ions therefore exhibit a prominent system in several physical disciplines, for example, quantum information processing or metrology. Here, we will give an overview of different trapping techniques of ions as well as implementations for coherent manipulation of their quantum states and discuss the related theoretical basics. We then report on the experimental and theoretical progress in simulating quantum many-body physics with trapped ions and present current approaches for scaling up to more ions and more-dimensional systems.

  4. Application of Ni-63 photo and corona discharge ionization for the analysis of chemical warfare agents and toxic wastes

    NASA Technical Reports Server (NTRS)

    Stach, J.; Adler, J.; Brodacki, M.; Doring, H.-R.

    1995-01-01

    Over the past decade, advances in instrumental design and refinements in the understanding of ion molecule reactions at atmospheric pressure enabled the application of Ion Mobility Spectrometry (IMS) as a simple inexpensive and sensitive analytical method for the detection of organic trace compounds. Positive and negative gas-phase ions for ion mobility spectrometry have been produced by a variety of methods, including photo-ionization, laser multi photon ionization, surface ionization, corona discharge ionization. The most common ion source used in ion mobility spectrometry is a radioactive Ni-63 foil which is favored due to simplicity, stability, convenience, and high selectivity. If reactant ions like (H2O(n)H)(+) or (H2O(n)O2)(-) dominate in the reaction region, nearly all kinds of compounds with a given proton or electron affinity; are ionized. However, the radioactivity of the Ni-63 foil is one disadvantage of this ion source that stimulates the development and application of other ionization techniques. In this paper, we report analyses of old chemical warfare agents and toxic wastes using Bruker RAID ion mobility spectrometers. Due to the modular construction of the measuring cell, the spectrometers can be equipped with different ion sources. The combined use of Ni-63, photo- and corona discharge ionization allows the identification of different classes of chemical compounds and yields in most cases comparable results.

  5. Secondary Ion Mass Spectrometry Imaging of Tissues, Cells, and Microbial Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderton, Christopher R.; Gamble, Lara J.

    2016-03-01

    Mass spectrometry imaging (MSI) techniques are increasingly being utilized within many biological fields, including medicine, pathology, microbial ecology, and more. Of the MSI methods available, secondary ion mass spectrometry (SIMS) offers the highest lateral resolution of any technique. Moreover, SIMS versatility in the number of different operating modes and types of mass spectrometers available has made it an increasing popular method for bio-related measurements. Here, we discuss SIMS ability to image tissues, single cells, and microbes with a particular emphasis on the types chemical and spatial information that can be ascertained by the different types of SIMS instruments and methods.more » The recently developed Fourier transform ion cyclotron resonance (FTICR) SIMS located at PNNL is capable of generating molecular maps of tissues with an unprecedented mass resolving power and mass accuracy, with respect to SIMS measurements. ToF-SIMS can generate chemical maps, where detection of small molecules and fragments can be acquired with an order of magnitude better lateral resolution than the FTICR-SIMS. Furthermore, many of commercially available ToF-SIMS instruments are capable of depth profiling measurements, offering the ability to attain three-dimensional information of one’s sample. The NanoSIMS instrument offers the highest lateral resolution of any MSI method available. In practice, NanoSIMS regularly achieves sub-100 nm resolution of atomic and diatomic secondary ions within biological samples. The strengths of the different SIMS methods are more and more being leveraged in both multimodal-imaging endeavors that use complementary MSI techniques as well with optical, fluorescence, and force microscopy methods.« less

  6. Comparison of two novel in-syringe dispersive liquid-liquid microextraction techniques for the determination of iodide in water samples using spectrophotometry.

    PubMed

    Kaykhaii, Massoud; Sargazi, Mona

    2014-01-01

    Two new, rapid methodologies have been developed and applied successfully for the determination of trace levels of iodide in real water samples. Both techniques are based on a combination of in-syringe dispersive liquid-liquid microextraction (IS-DLLME) and micro-volume UV-Vis spectrophotometry. In the first technique, iodide is oxidized with nitrous acid to the colorless anion of ICl2(-) at high concentration of hydrochloric acid. Rhodamine B is added and by means of one step IS-DLLME, the ion-pair formed was extracted into toluene and measured spectrophotometrically. Acetone is used as dispersive solvent. The second method is based on the IS-DLLME microextraction of iodide as iodide/1, 10-phenanthroline-iron((II)) chelate cation ion-pair (colored) into nitrobenzene. Methanol was selected as dispersive solvent. Optimal conditions for iodide extraction were determined for both approaches. Methods are compared in terms of analytical parameters such as precision, accuracy, speed and limit of detection. Both methods were successfully applied to determining iodide in tap and river water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Linear electronic field time-of-flight ion mass spectrometers

    DOEpatents

    Funsten, Herbert O.

    2010-08-24

    Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent atomic ions and emits secondary electrons; an electrode which produces secondary electrons upon contact with a constituent atomic ion in second drift region; a stop detector comprising a first ion detection region and a second ion detection region; and a timing means connected to the pulsed ionization source, to the first ion detection region, and to the second ion detection region.

  8. Paired-ion chromatography and high performance liquid chromatography of labetalol in feeds.

    PubMed

    Townley, E R; Ross, B

    1980-11-01

    A high performance liquid chromatographic (HPLC) method using reverse phase paired-ion chromatography and ultraviolet detection at 280 nm has been developed to determine labetalol, an alpha and beta adrenoceptor blocking agent, in Purina No. 5001 rodent chow. The method is simple and rapid, and demonstrates a separation technique applicable to other acidic and basic drugs. It requires only extraction of the drug with methanol--water--acetic acid (66 + 33 + 1) and separation of insoluble material by filtration before HPLC. Labetalol, is chromatographically separated from soluble feed components by means of a microBondapak C18 column and methanol--water--acetic acid (66 + 33 + 1) mobile phase, 0.005M with respect to sodium dioctylsulfosuccinate paired-ion reagent. Average recovery is 98.7% with a relative standard deviation of +/- 2.3% for the equipment described.

  9. Collision induced unfolding of isolated proteins in the gas phase: past, present, and future.

    PubMed

    Dixit, Sugyan M; Polasky, Daniel A; Ruotolo, Brandon T

    2018-02-01

    Rapidly characterizing the three-dimensional structures of proteins and the multimeric machines they form remains one of the great challenges facing modern biological and medical sciences. Ion mobility-mass spectrometry based techniques are playing an expanding role in characterizing these functional complexes, especially in drug discovery and development workflows. Despite this expansion, ion mobility-mass spectrometry faces many challenges, especially in the context of detecting small differences in protein tertiary structure that bear functional consequences. Collision induced unfolding is an ion mobility-mass spectrometry method that enables the rapid differentiation of subtly-different protein isoforms based on their unfolding patterns and stabilities. In this review, we summarize the modern implementation of such gas-phase unfolding experiments and provide an overview of recent developments in both methods and applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Determination of ammonium in a buddingtonite sample by ion-chromatography

    USGS Publications Warehouse

    Klock, P.R.; Lamothe, P.J.

    1986-01-01

    An ion-chromatographic method for the direct determination of ammonium, potassium, and sodium in geologic materials is described. Samples are decomposed with a mixture of hydrofluoric and hydrochloric acids in a sealed polycarbonate bottle heated in a microwave oven. The ion-chromatograph separates the cations and determines them by conductivity measurement. The ammonium concentrations thus determined have been verified by use of an ammonia-specific electrode. A total of 32 analyses of ammonium salts by both techniques showed an average error of -4%, with a relative standard deviation (RSD) of 6%. The ammonium concentrations found in a buddingtonite sample had an RSD of 2.2% and their mean agreed with that obtained by the Kjeldahl method. By use of the prescribed dilution of the sample, detection limits of 0.1% can be achieved for all three cations. ?? 1986.

  11. Copper Sensing in Alkaline Electrolyte Using Anodic Stripping Voltammetry by Means of a Lead Mediator

    DOE PAGES

    Duay, Jonathon; Ortiz-Santiago, Joed E.; Lambert, Timothy N.

    2017-10-05

    Anodic stripping voltammetry (ASV) is an analysis technique that permits the selective and quantitative analysis of metal ion species in solution. It is most commonly applied in neutral to acidic electrolyte largely due to inherent metal ion solubility. Bismuth (Bi) is a common film used for ASV due to its good sensitivity, overall stability and insensitivity to O2. ASV, utilizing a Bi film, along with cadmium (Cd) and lead (Pb) as the plating mediators, has recently been adapted to determine zinc (Zn) concentrations in highly alkaline environments (30 % NaOH or 35 % M KOH). Successful analysis of Zn inmore » alkaline relies on the ability of the hydroxide to form soluble metal anion species, such as Bi(OH) 4 – and Zn(OH) 4 2–. Here, we look to extend this technique to detect and quantify copper (Cu) ions in these highly basic electrolytes. However, in general, the use of ASV to detect and quantify Cu ion concentrations is notoriously difficult as the Cu stripping peak potential overlays with that of Bi from the common Bi film electrode. Here, an ASV method for determining Cu concentration in alkaline solutions is developed utilizing Pb as a deposition mediator. As such, it was found that when analyzing Cu solutions in the presence of Pb, the stripping voltammetry curves present separate and defined Cu stripping peaks. Different analyzes were made to find the best stripping voltammetry performance conditions. As such, an accumulation time of 5 minutes, an accumulation potential of ≤–1.45 V vs. Hg/HgO, and a concentration of 35 wt% KOH were determined to be the conditions that presented the best ASV results. Utilizing these conditions, calibration curves in the presence of 5.0 ppm Pb showed the best linear stripping signal correlation with an r-squared value of 0.991 and a limit of detection (LOD) of 0.67 ppm. Lastly, these results give way to evaluating Cu concentrations using ASV in aqueous alkaline solutions.« less

  12. Sensitive screening of abused drugs in dried blood samples using ultra-high-performance liquid chromatography-ion booster-quadrupole time-of-flight mass spectrometry.

    PubMed

    Chepyala, Divyabharathi; Tsai, I-Lin; Liao, Hsiao-Wei; Chen, Guan-Yuan; Chao, Hsi-Chun; Kuo, Ching-Hua

    2017-03-31

    An increased rate of drug abuse is a major social problem worldwide. The dried blood spot (DBS) sampling technique offers many advantages over using urine or whole blood sampling techniques. This study developed a simple and efficient ultra-high-performance liquid chromatography-ion booster-quadrupole time-of-flight mass spectrometry (UHPLC-IB-QTOF-MS) method for the analysis of abused drugs and their metabolites using DBS. Fifty-seven compounds covering the most commonly abused drugs, including amphetamines, opioids, cocaine, benzodiazepines, barbiturates, and many other new and emerging abused drugs, were selected as the target analytes of this study. An 80% acetonitrile solvent with a 5-min extraction by Geno grinder was used for sample extraction. A Poroshell column was used to provide efficient separation, and under optimal conditions, the analytical times were 15 and 5min in positive and negative ionization modes, respectively. Ionization parameters of both electrospray ionization source and ion booster (IB) source containing an extra heated zone were optimized to achieve the best ionization efficiency of the investigated abused drugs. In spite of their structural diversity, most of the abused drugs showed an enhanced mass response with the high temperature ionization from an extra heated zone of IB source. Compared to electrospray ionization, the ion booster (IB) greatly improved the detection sensitivity for 86% of the analytes by 1.5-14-fold and allowed the developed method to detect trace amounts of compounds on the DBS cards. The validation results showed that the coefficients of variation of intra-day and inter-day precision in terms of the signal intensity were lower than 19.65%. The extraction recovery of all analytes was between 67.21 and 115.14%. The limits of detection of all analytes were between 0.2 and 35.7ngmL -1 . The stability study indicated that 7% of compounds showed poor stability (below 50%) on the DBS cards after 6 months of storage at room temperature and -80°C. The reported method provides a new direction for abused drug screening using DBS. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Copper Sensing in Alkaline Electrolyte Using Anodic Stripping Voltammetry by Means of a Lead Mediator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duay, Jonathon; Ortiz-Santiago, Joed E.; Lambert, Timothy N.

    Anodic stripping voltammetry (ASV) is an analysis technique that permits the selective and quantitative analysis of metal ion species in solution. It is most commonly applied in neutral to acidic electrolyte largely due to inherent metal ion solubility. Bismuth (Bi) is a common film used for ASV due to its good sensitivity, overall stability and insensitivity to O2. ASV, utilizing a Bi film, along with cadmium (Cd) and lead (Pb) as the plating mediators, has recently been adapted to determine zinc (Zn) concentrations in highly alkaline environments (30 % NaOH or 35 % M KOH). Successful analysis of Zn inmore » alkaline relies on the ability of the hydroxide to form soluble metal anion species, such as Bi(OH) 4 – and Zn(OH) 4 2–. Here, we look to extend this technique to detect and quantify copper (Cu) ions in these highly basic electrolytes. However, in general, the use of ASV to detect and quantify Cu ion concentrations is notoriously difficult as the Cu stripping peak potential overlays with that of Bi from the common Bi film electrode. Here, an ASV method for determining Cu concentration in alkaline solutions is developed utilizing Pb as a deposition mediator. As such, it was found that when analyzing Cu solutions in the presence of Pb, the stripping voltammetry curves present separate and defined Cu stripping peaks. Different analyzes were made to find the best stripping voltammetry performance conditions. As such, an accumulation time of 5 minutes, an accumulation potential of ≤–1.45 V vs. Hg/HgO, and a concentration of 35 wt% KOH were determined to be the conditions that presented the best ASV results. Utilizing these conditions, calibration curves in the presence of 5.0 ppm Pb showed the best linear stripping signal correlation with an r-squared value of 0.991 and a limit of detection (LOD) of 0.67 ppm. Lastly, these results give way to evaluating Cu concentrations using ASV in aqueous alkaline solutions.« less

  14. Capturing the radical ion-pair intermediate in DNA guanine oxidation

    PubMed Central

    Jie, Jialong; Liu, Kunhui; Wu, Lidan; Zhao, Hongmei; Song, Di; Su, Hongmei

    2017-01-01

    Although the radical ion pair has been frequently invoked as a key intermediate in DNA oxidative damage reactions and photoinduced electron transfer processes, the unambiguous detection and characterization of this species remain formidable and unresolved due to its extremely unstable nature and low concentration. We use the strategy that, at cryogenic temperatures, the transient species could be sufficiently stabilized to be detectable spectroscopically. By coupling the two techniques (the cryogenic stabilization and the time-resolved laser flash photolysis spectroscopy) together, we are able to capture the ion-pair transient G+•⋯Cl− in the chlorine radical–initiated DNA guanine (G) oxidation reaction, and provide direct evidence to ascertain the intricate type of addition/charge separation mechanism underlying guanine oxidation. The unique spectral signature of the radical ion-pair G+•⋯Cl− is identified, revealing a markedly intense absorption feature peaking at 570 nm that is distinctive from G+• alone. Moreover, the ion-pair spectrum is found to be highly sensitive to the protonation equilibria within guanine-cytosine base pair (G:C), which splits into two resolved bands at 480 and 610 nm as the acidic proton transfers along the central hydrogen bond from G+• to C. We thus use this exquisite sensitivity to track the intrabase-pair proton transfer dynamics in the double-stranded DNA oligonucleotides, which is of critical importance for the description of the proton-coupled charge transfer mechanisms in DNA. PMID:28630924

  15. Tuning of gold nanoclusters sensing applications with bovine serum albumin and bromelain for detection of Hg2+ ion and lambda-cyhalothrin via fluorescence turn-off and on mechanisms.

    PubMed

    Bhamore, Jigna R; Jha, Sanjay; Basu, Hirakendu; Singhal, Rakesh Kumar; Murthy, Z V P; Kailasa, Suresh Kumar

    2018-04-01

    Herein, fluorescent gold nanoclusters (Au NCs) were obtained by one-pot synthetic method using bovine serum albumin (BSA) and bromelain as templates. As-synthesized fluorescent Au NCs were stable and showed bright red fluorescence under UV lamp at 365 nm. The fluorescent Au NCs exhibit the emission intensity at 648 nm when excited at 498 nm. Various techniques were used such as spectroscopy (UV-visible, fluorescence, and Fourier-transform infrared), high-resolution transmission electron microscopy, and dynamic light scattering for the characterization of fluorescent Au NCs. The values of I 0 /I at 648 nm are proportional to the concentrations of Hg 2+ ion in the range from 0.00075 to 5.0 μM and of lambda-cyhalothrin in the range from 0.01 to 10 μM with detection limits of 0.0003 and 0.0075 μM for Hg 2+ ion and lambda-cyhalothrin, respectively. The practical application of the probe was successfully demonstrated by analyzing Hg 2+ ion and lambda-cyhalothrin in water samples. In addition, Au NCs used as probes for imaging of Simplicillium fungal cells. These results indicated that the as-synthesized Au NCs have proven to be promising fluorescent material for the sensing of Hg 2+ ion and lambda-cyhalothrin in environmental and for imaging of microorganism cells in biomedical applications.

  16. Enhanced direct ambient analysis by differential mobility-filtered desorption electrospray ionization-mass spectrometry.

    PubMed

    Galhena, Asiri S; Harris, Glenn A; Kwasnik, Mark; Fernández, Facundo M

    2010-11-15

    Desorption electrospray ionization (DESI) is rapidly becoming established as one of the most powerful ionization techniques allowing direct surface analysis by mass spectrometry (MS) in the ambient environment. DESI provides a significant number of unique analytical capabilities for a broad range of applications, both quantitative and qualitative in nature including biological tissue imaging, pharmaceutical quality control, in vivo analysis, proteomics, metabolomics, forensics, and explosives detection. Despite its growing adoption as a powerful high throughput analysis tool, DESI-MS analysis at trace levels often suffers from background chemical interferences generated during the electrospray ionization processes. In order to improve sensitivity and selectivity, a differential mobility (DM) ion separation cell was successfully interfaced to a custom-built DESI ion source. This new hybrid platform can be operated in two modes: the "DM-off" mode for standard DESI analysis and "DM-on mode" where DESI-generated ions are detected after discrimination by the differential mobility cell. The performance of the DESI-DM-MS platform was tested with several samples typically amenable to DESI analysis, including counterfeit pharmaceuticals and binary mixtures of isobaric chemicals of importance in the pharmaceutical and food industries. In the DM-on mode, DESI-MS signal-to-noise ratios were improved by 70-190% when compared to the DM-off mode. Also, the addition of the DM cell enabled selective in-source ion activation of specific DESI-generated precursor ions, providing tandem MS-like spectra in a single stage mass spectrometer.

  17. Analysis of model Titan atmospheric components using ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Kojiro, D. R.; Cohen, M. J.; Wernlund, R. F.; Stimac, R. M.; Humphry, D. E.; Takeuchi, N.

    1991-01-01

    The Gas Chromatograph-Ion Mobility Spectrometer (GC-IMS) was proposed as an analytical technique for the analysis of Titan's atmosphere during the Cassini Mission. The IMS is an atmospheric pressure, chemical detector that produces an identifying spectrum of each chemical species measured. When the IMS is combined with a GC as a GC-IMS, the GC is used to separate the sample into its individual components, or perhaps small groups of components. The IMS is then used to detect, quantify, and identify each sample component. Conventional IMS detection and identification of sample components depends upon a source of energetic radiation, such as beta radiation, which ionizes the atmospheric pressure host gas. This primary ionization initiates a sequence of ion-molecule reactions leading to the formation of sufficiently energetic positive or negative ions, which in turn ionize most constituents in the sample. In conventional IMS, this reaction sequence is dominated by the water cluster ion. However, many of the light hydrocarbons expected in Titan's atmosphere cannot be analyzed by IMS using this mechanism at the concentrations expected. Research at NASA Ames and PCP Inc., has demonstrated IMS analysis of expected Titan atmospheric components, including saturated aliphatic hydrocarbons, using two alternate sample ionizations mechanisms. The sensitivity of the IMS to hydrocarbons such as propane and butane was increased by several orders of magnitude. Both ultra dry (waterless) IMS sample ionization and metastable ionization were successfully used to analyze a model Titan atmospheric gas mixture.

  18. Capillary ion chromatography with on-column focusing for ultra-trace analysis of methanesulfonate and inorganic anions in limited volume Antarctic ice core samples.

    PubMed

    Rodriguez, Estrella Sanz; Poynter, Sam; Curran, Mark; Haddad, Paul R; Shellie, Robert A; Nesterenko, Pavel N; Paull, Brett

    2015-08-28

    Preservation of ionic species within Antarctic ice yields a unique proxy record of the Earth's climate history. Studies have been focused until now on two proxies: the ionic components of sea salt aerosol and methanesulfonic acid. Measurement of the all of the major ionic species in ice core samples is typically carried out by ion chromatography. Former methods, whilst providing suitable detection limits, have been based upon off-column preconcentration techniques, requiring larger sample volumes, with potential for sample contamination and/or carryover. Here, a new capillary ion chromatography based analytical method has been developed for quantitative analysis of limited volume Antarctic ice core samples. The developed analytical protocol applies capillary ion chromatography (with suppressed conductivity detection) and direct on-column sample injection and focusing, thus eliminating the requirement for off-column sample preconcentration. This limits the total sample volume needed to 300μL per analysis, allowing for triplicate sample analysis with <1mL of sample. This new approach provides a reliable and robust analytical method for the simultaneous determination of organic and inorganic anions, including fluoride, methanesulfonate, chloride, sulfate and nitrate anions. Application to composite ice-core samples is demonstrated, with coupling of the capillary ion chromatograph to high resolution mass spectrometry used to confirm the presence and purity of the observed methanesulfonate peak. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Thermoelectrically cooled water trap

    DOEpatents

    Micheels, Ronald H [Concord, MA

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  20. Measurement of stable isotopic enrichment and concentration of long-chain fatty acyl-carnitines in tissue by HPLC-MS.

    PubMed

    Sun, Dayong; Cree, Melanie G; Zhang, Xiao-Jun; Bøersheim, Elisabet; Wolfe, Robert R

    2006-02-01

    We have developed a new method for the simultaneous measurements of stable isotopic tracer enrichments and concentrations of individual long-chain fatty acyl-carnitines in muscle tissue using ion-pairing high-performance liquid chromatography-electrospray ionization quadrupole mass spectrometry in the selected ion monitoring (SIM) mode. Long-chain fatty acyl-carnitines were extracted from frozen muscle tissue samples by acetonitrile/methanol. Baseline separation was achieved by reverse-phase HPLC in the presence of the volatile ion-pairing reagent heptafluorobutyric acid. The SIM capability of a single quadrupole mass analyzer allows further separation of the ions of interest from the sample matrixes, providing very clean total and selected ion chromatograms that can be used to calculate the stable isotopic tracer enrichment and concentration of long-chain fatty acyl-carnitines in a single analysis. The combination of these two separation techniques greatly simplifies the sample preparation procedure and increases the detection sensitivity. Applying this protocol to biological muscle samples proves it to be a very sensitive, accurate, and precise analytical tool.

  1. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes

    PubMed Central

    Frolova, Sheyda R.; Gaiko, Olga; Tsvelaya, Valeriya A.; Pimenov, Oleg Y.; Agladze, Konstantin I.

    2016-01-01

    The ability of azobenzene trimethylammonium bromide (azoTAB) to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav), calcium (ICav), and potassium (IKv) currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+) and calcium (Ca2+) currents and potentiation of net potassium (K+) currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential. PMID:27015602

  2. An integrated semiconductor device enabling non-optical genome sequencing.

    PubMed

    Rothberg, Jonathan M; Hinz, Wolfgang; Rearick, Todd M; Schultz, Jonathan; Mileski, William; Davey, Mel; Leamon, John H; Johnson, Kim; Milgrew, Mark J; Edwards, Matthew; Hoon, Jeremy; Simons, Jan F; Marran, David; Myers, Jason W; Davidson, John F; Branting, Annika; Nobile, John R; Puc, Bernard P; Light, David; Clark, Travis A; Huber, Martin; Branciforte, Jeffrey T; Stoner, Isaac B; Cawley, Simon E; Lyons, Michael; Fu, Yutao; Homer, Nils; Sedova, Marina; Miao, Xin; Reed, Brian; Sabina, Jeffrey; Feierstein, Erika; Schorn, Michelle; Alanjary, Mohammad; Dimalanta, Eileen; Dressman, Devin; Kasinskas, Rachel; Sokolsky, Tanya; Fidanza, Jacqueline A; Namsaraev, Eugeni; McKernan, Kevin J; Williams, Alan; Roth, G Thomas; Bustillo, James

    2011-07-20

    The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.

  3. Development and validation of an universal interface for compound-specific stable isotope analysis of chlorine (37Cl/35Cl) by GC-high-temperature conversion (HTC)-MS/IRMS.

    PubMed

    Renpenning, Julian; Hitzfeld, Kristina L; Gilevska, Tetyana; Nijenhuis, Ivonne; Gehre, Matthias; Richnow, Hans-Hermann

    2015-03-03

    A universal application of compound-specific isotope analysis of chlorine was thus far limited by the availability of suitable analysis techniques. In this study, gas chromatography in combination with a high-temperature conversion interface (GC-HTC), converting organic chlorine in the presence of H2 to gaseous HCl, was coupled to a dual-detection system, combining an ion trap mass spectrometer (MS) and isotope-ratio mass spectrometer (IRMS). The combination of the MS/IRMS detection enabled a detailed characterization, optimization, and online monitoring of the high-temperature conversion process via ion trap MS as well as a simultaneous chlorine isotope analysis by the IRMS. Using GC-HTC-MS/IRMS, chlorine isotope analysis at optimized conversion conditions resulted in very accurate isotope values (δ(37)Cl(SMOC)) for measured reference material with known isotope composition, including chlorinated ethylene, chloromethane, hexachlorocyclohexane, and trichloroacetic acids methyl ester. Respective detection limits were determined to be <15 nmol Cl on column with achieved precision of <0.3‰.

  4. MALDI, AP/MALDI and ESI techniques for the MS detection of amyloid [beta]-peptides

    NASA Astrophysics Data System (ADS)

    Grasso, Giuseppe; Mineo, Placido; Rizzarelli, Enrico; Spoto, Giuseppe

    2009-04-01

    Amyloid [beta]-peptides (A[beta]s) are involved in several neuropathological conditions such as Alzheimer's disease and considerable experimental evidences have emerged indicating that different proteases play a major role in regulating the accumulation of A[beta]s in the brain. Particularly, insulin-degrading enzyme (IDE) has been shown to degrade A[beta]s at different cleavage sites, but the experimental results reported in the literature and obtained by mass spectrometry methods are somehow fragmentary. The detection of A[beta]s is often complicated by solubility issues, oxidation artifacts and spontaneous aggregation/cleavage and, in order to rationalize the different reported results, we analyzed A[beta]s solutions by three different MS approaches: matrix assisted laser desorption ionization-time of flight (MALDI-TOF), atmospheric pressure (AP) MALDI ion trap and electrospray ionization (ESI) ion trap. Differences in the obtained results are discussed and ESI is chosen as the most suitable MS method for A[beta]s detection. Finally, cleavage sites produced by interaction of A[beta]s with IDE are identified, two of which had never been reported in the literature.

  5. Approaches for the Analysis of Chlorinated Lipids

    PubMed Central

    Wang, Wen-yi; Albert, Carolyn J.; Ford, David A.

    2013-01-01

    Leukocytes are key cellular mediators of human diseases through their role in inflammation. Identifying unique molecules produced by leukocytes may provide new biomarkers and mechanistic insights into the role of leukocytes in disease. Chlorinated lipids are generated as a result of myeloperoxidase-containing leukocyte-derived hypochlorous acid targeting the vinyl ether bond of plasmalogens. The initial product of this reaction is α-chlorofatty aldehyde. α -Chlorofatty aldehyde is both oxidized to α-chlorofatty acid and reduced to α-chlorofatty alcohol by cellular metabolism. This review focuses on the separation techniques and quantitative analysis for these chlorinated lipids. For α-chlorofatty acid the negative charge of carboxylic acids is exploited to detect the chlorinated lipid species of these acids by electrospray ionization mass spectrometry in the negative ion mode. In contrast, α-chlorofatty aldehyde and α-chlorofatty alcohol are converted to pentafluorobenzyl oxime and pentafluorobenzoyl ester derivatives, which are detected by negative ion-chemical ionization mass spectrometry. These two detection methods coupled with the use of stable isotope internal standards and either liquid chromatography or gas chromatography provide highly sensitive analytical approaches to measure these novel lipids. PMID:24056259

  6. Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection

    NASA Astrophysics Data System (ADS)

    Deng, Yunsheng; Huang, Qimeng; Zhao, Yue; Zhou, Daming; Ying, Cuifeng; Wang, Deqiang

    2017-01-01

    We report a scalable method to fabricate high-quality graphene nanopores for biomolecule detection using a helium ion microscope (HIM). HIM milling shows promising capabilities for precisely controlling the size and shape, and may allow for the potential production of nanopores at wafer scale. Nanopores could be fabricated at different sizes ranging from 5 to 30 nm in diameter in few minutes. Compared with the current solid-state nanopore fabrication techniques, e.g. transmission electron microscopy, HIM is fast. Furthermore, we investigated the exposure-time dependence of graphene nanopore formation: the rate of pore expansion did not follow a simple linear relationship with exposure time, but a fast expansion rate at short exposure time and a slow rate at long exposure time. In addition, we performed biomolecule detection with our patterned graphene nanopore. The ionic current signals induced by 20-base single-stranded DNA homopolymers could be used as a basis for homopolymer differentiation. However, the charge interaction of homopolymer chains with graphene nanopores, and the conformations of homopolymer chains need to be further considered to improve the accuracy of discrimination.

  7. Development of a compact laser-based single photon ionization time-of-flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Tonokura, Kenichi; Kanno, Nozomu; Yamamoto, Yukio; Yamada, Hiroyuki

    2010-02-01

    We have developed a compact, laser-based, single photon ionization time-of-flight mass spectrometer (SPI-TOF-MS) for on-line monitoring of trace organic species. To obtain the mass spectrum, we use a nearly fragmentation-free SPI technique with 10.5 eV (118 nm) vacuum ultraviolet laser pulses generated by frequency tripling of the third harmonic of an Nd:YAG laser. The instrument can be operated in a linear TOF-MS mode or a reflectron TOF-MS mode in the coaxial design. We designed ion optics to optimize detection sensitivity and mass resolution. For data acquisition, the instrument is controlled using LabVIEW control software. The total power requirement for the vacuum unit, control electronics unit, ion optics, and detection system is approximately 100 W. We achieve a detection limit of parts per billion by volume (ppbv) for on-line trace analysis of several organic compounds. A mass resolution of 800 at about 100 amu is obtained for reflectron TOF-MS mode in a 0.35 m long instrument. The application of on-line monitoring of diesel engine exhaust was demonstrated.

  8. Molecular recognition of emerald ash borer infestation using leaf spray mass spectrometry.

    PubMed

    Falcone, Caitlin E; Cooks, R Graham

    2016-06-15

    The introduction of the emerald ash borer (Agrilus planipennis) (EAB) from Asia to Michigan, USA, in the 1990s caused the widespread death of ash trees in two Canadian provinces and 24 US states. The three current methods for the detection of emerald ash borer infestation, visual surveys, tree girdling and artificial traps, can be unreliable, and there is clearly a need for a rapid, dependable technique for the detection of emerald ash borer infestation. Leaf spray, an ambient ionization method for mass spectrometry (MS), gives direct chemical information on a leaf sample by applying a high voltage to a naturally or artificially sharply pointed leaf piece causing ions to be generated directly from the leaf tip for MS analysis. Leaflets from 23 healthy and EAB-infested ash trees were analyzed by leaf spray mass spectrometry in an attempt to distinguish healthy and EAB-infested ash trees. In negative ion mode, healthy ash trees showed an increased abundance of ions m/z 455.5, 471.5 and 487.5, and ash trees infested with the EAB displayed an increased abundance of ions m/z 181 and 217. The identities of the chemical discriminators ursolic acid and oleanolic acid in healthy ash trees, and six-carbon sugar alcohols in infested ash trees, were determined by tandem mass spectrometry and confirmed with standards. This preliminary study suggests that leaf spray mass spectrometry of ash tree leaflets provides a potential tool for the early detection of ash tree infestation by the emerald ash borer. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Final Report - Advanced Ion Trap Mass Spectrometry Program - Oak Ridge National Laboratory - Sandia National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitten, W.B.

    This report covers the three main projects that collectively comprised the Advanced Ion Trap Mass Spectrometry Program. Chapter 1 describes the direct interrogation of individual particles by laser desorption within the ion trap mass spectrometer analyzer. The goals were (1) to develop an ''intelligent trigger'' capable of distinguishing particles of biological origin from those of nonbiological origin in the background and interferent particles and (2) to explore the capability for individual particle identification. Direct interrogation of particles by laser ablation and ion trap mass spectrometry was shown to have good promise for discriminating between particles of biological origin and thosemore » of nonbiological origin, although detailed protocols and operating conditions were not worked out. A library of more than 20,000 spectra of various types of biological particles has been assembled. Methods based on multivariate analysis and on neural networks were used to discriminate between particles of biological origin and those of nonbiological origin. It was possible to discriminate between at least some species of bacteria if mass spectra of several hundred similar particles were obtained. Chapter 2 addresses the development of a new ion trap mass analyzer geometry that offers the potential for a significant increase in ion storage capacity for a given set of analyzer operating conditions. This geometry may lead to the development of smaller, lower-power field-portable ion trap mass spectrometers while retaining laboratory-scale analytical performance. A novel ion trap mass spectrometer based on toroidal ion storage geometry has been developed. The analyzer geometry is based on the edge rotation of a quadrupolar ion trap cross section into the shape of a torus. Initial performance of this device was poor, however, due to the significant contribution of nonlinear fields introduced by the rotation of the symmetric ion-trapping geometry. These nonlinear resonances contributed to poor mass resolution and sensitivity and to erratic ion ejection behavior. To correct for these nonlinear effects, the geometry of the toroid ion trap analyzer has been modified to create an asymmetric torus, as first suggested by computer simulations that predicted significantly improved performance and unit mass resolution for this geometry. A reduced-sized version (one-fifth scale) has been fabricated but was not tested within the scope of this project. Chapter 3 describes groundbreaking progress toward the use of ion-ion chemistry to control the charge state of ions formed by the electrospray ionization process, which in turn enables precision analysis of whole proteins. In addition, this technique may offer the unique possibility of a priori identification of unknown biological material when employed with existing proteomics and genomic databases. Ion-ion chemistry within the ion trap was used to reduce the ions in highly charged states to states of +1 and +2 charges. Reduction in charge greatly simplifies identification of molecular weights of fragments from large biological molecules. This technique enables the analysis of whole proteins as biomarkers for the detection and identification of all three classes of biological weapons (bacteria, toxins, and viruses). In addition to methods development, tests were carried out with samples of tap water, local creek water, and soil (local red clay) spiked with melittin (bee venom), cholera toxin, and virus MS2. All three analytes were identified in tap water and soil; however, all three were problematic for detection in creek water at concentrations of 1 nM. More development of methods is needed.« less

  10. Rapid detection of cocaine, benzoylecgonine and methylecgonine in fingerprints using surface mass spectrometry.

    PubMed

    Bailey, Melanie J; Bradshaw, Robert; Francese, Simona; Salter, Tara L; Costa, Catia; Ismail, Mahado; P Webb, Roger; Bosman, Ingrid; Wolff, Kim; de Puit, Marcel

    2015-09-21

    Latent fingerprints provide a potential route to the secure, high throughput and non-invasive detection of drugs of abuse. In this study we show for the first time that the excreted metabolites of drugs of abuse can be detected in fingerprints using ambient mass spectrometry. Fingerprints and oral fluid were taken from patients attending a drug and alcohol treatment service. Gas chromatography mass spectrometry (GC-MS) was used to test the oral fluid of patients for the presence of cocaine and benzoylecgonine. The corresponding fingerprints were analysed using Desorption Electrospray Ionization (DESI) which operates under ambient conditions and Ion Mobility Tandem Mass Spectrometry Matrix Assisted Laser Desorption Ionization (MALDI-IMS-MS/MS) and Secondary Ion Mass Spectrometry (SIMS). The detection of cocaine, benzoylecgonine (BZE) and methylecgonine (EME) in latent fingerprints using both DESI and MALDI showed good correlation with oral fluid testing. The sensitivity of SIMS was found to be insufficient for this application. These results provide exciting opportunities for the use of fingerprints as a new sampling medium for secure, non-invasive drug detection. The mass spectrometry techniques used here offer a high level of selectivity and consume only a small area of a single fingerprint, allowing repeat and high throughput analyses of a single sample.

  11. Comparison of Three Plasma Sources for Ambient Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    McKay, Kirsty; Salter, Tara L.; Bowfield, Andrew; Walsh, James L.; Gilmore, Ian S.; Bradley, James W.

    2014-09-01

    Plasma-based desorption/ionization sources are an important ionization technique for ambient surface analysis mass spectrometry. In this paper, we compare and contrast three competing plasma based desorption/ionization sources: a radio-frequency (rf) plasma needle, a dielectric barrier plasma jet, and a low-temperature plasma probe. The ambient composition of the three sources and their effectiveness at analyzing a range of pharmaceuticals and polymers were assessed. Results show that the background mass spectrum of each source was dominated by air species, with the rf needle producing a richer ion spectrum consisting mainly of ionized water clusters. It was also seen that each source produced different ion fragments of the analytes under investigation: this is thought to be due to different substrate heating, different ion transport mechanisms, and different electric field orientations. The rf needle was found to fragment the analytes least and as a result it was able to detect larger polymer ions than the other sources.

  12. Comparison of three plasma sources for ambient desorption/ionization mass spectrometry.

    PubMed

    McKay, Kirsty; Salter, Tara L; Bowfield, Andrew; Walsh, James L; Gilmore, Ian S; Bradley, James W

    2014-09-01

    Plasma-based desorption/ionization sources are an important ionization technique for ambient surface analysis mass spectrometry. In this paper, we compare and contrast three competing plasma based desorption/ionization sources: a radio-frequency (rf) plasma needle, a dielectric barrier plasma jet, and a low-temperature plasma probe. The ambient composition of the three sources and their effectiveness at analyzing a range of pharmaceuticals and polymers were assessed. Results show that the background mass spectrum of each source was dominated by air species, with the rf needle producing a richer ion spectrum consisting mainly of ionized water clusters. It was also seen that each source produced different ion fragments of the analytes under investigation: this is thought to be due to different substrate heating, different ion transport mechanisms, and different electric field orientations. The rf needle was found to fragment the analytes least and as a result it was able to detect larger polymer ions than the other sources.

  13. Trapped atomic ions for quantum-limited metrology

    NASA Astrophysics Data System (ADS)

    Wineland, David

    2017-04-01

    Laser-beam-manipulated trapped ions are a candidate for large-scale quantum information processing and quantum simulation but the basic techniques used can also be applied to quantum-limited metrology and sensing. Some examples being explored at NIST are: 1) As charged harmonic oscillators, trapped ions can be used to sense electric fields; this can be used to characterize the electrode-surface-based noisy electric fields that compromise logic-gate fidelities and may eventually be used as a tool in surface science. 2) Since typical qubit logic gates depend on state-dependent forces, we can adapt the gate dynamics to sensitively detect additional forces. 3) We can use extensions of Bell inequality measurements to further restrict the degree of local realism possessed by Bell states. 4) We also briefly describe experiments for creation of Bell states using Hilbert space engineering. This work is a joint effort including the Ion-Storage group, the Quantum processing group, and the Computing and Communications Theory group at NIST, Boulder. Supported by IARPA, ONR, and the NIST Quantum Information Program.

  14. Measurement of fast minority /sub 3/He/sup + +/ energy distribution during ICRF heating

    DOEpatents

    Post, D.E. Jr.; Grisham, L.R.; Medley, S.S.

    A method and means for measuring the fast /sub 3/He/sup + +/ distribution during /sub 3/He/sup + +/ minority Ion Cyclotron Resonance Frequency (ICRF) heating is disclosed. The present invention involves the use of 10 to 100 keV beams of neutral helium atoms to neutralize the fast /sub 3/He/sup + +/ ions in a heated plasma by double charge exchange (/sub 3/He/sup + +/ + /sub 4/He/sup 0/ ..-->.. /sub 3/He/sup 0/ + /sub 4/He/sup + +/). The neutralized fast /sub 3/He/sup 0/ atoms then escape from the hot plasma confined by a magnetic field and are detected by conventional neutral particle analyzing means. This technique permits the effectiveness of the coupling of the ion cyclotron waves to the /sub 3/He/sup + +/ minority ions to be accurately measured. The present invention is particularly adapted for use in evaluating the effectiveness of the intermediate coupling between the RF heating and the /sub 3/He/sup + +/ in an energetic toroidal plasma.

  15. A comparative review of optical surface contamination assessment techniques

    NASA Technical Reports Server (NTRS)

    Heaney, James B.

    1987-01-01

    This paper will review the relative sensitivities and practicalities of the common surface analytical methods that are used to detect and identify unwelcome adsorbants on optical surfaces. The compared methods include visual inspection, simple reflectometry and transmissiometry, ellipsometry, infrared absorption and attenuated total reflectance spectroscopy (ATR), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), and mass accretion determined by quartz crystal microbalance (QCM). The discussion is biased toward those methods that apply optical thin film analytical techniques to spacecraft optical contamination problems. Examples are cited from both ground based and in-orbit experiments.

  16. Towards the differentiation of non-treated and treated corundum minerals by ion-beam-induced luminescence and other complementary techniques.

    PubMed

    Calvo del Castillo, H; Deprez, N; Dupuis, T; Mathis, F; Deneckere, A; Vandenabeele, P; Calderón, T; Strivay, D

    2009-06-01

    Differentiation of treated and non-treated gemstones is a chief concern for major jewellery import companies. Low-quality corundum specimens coming from Asia appear to be often treated with heat, BeO or flux in order to enhance their properties as precious minerals. A set of corundum samples, rubies and sapphires from different origins, both treated and non-treated has been analysed at the Centre Européen d'Archéométrie, with ion-beam-induced luminescence (IBIL) and other complementary techniques such as Raman, proton-induced X-ray emission (PIXE), and proton-induced gamma-ray emission (PIGE). IBIL, also known as ionoluminescence, has been used before to detect impurities or defects inside synthetic materials and natural minerals; its use for the discrimination of gemstone simulants or synthetic analogues has been elsewhere discussed (Cavenago-Bignami Moneta, Gemología, Tomo I Piedras preciosas, perlas, corales, marfil. Ediciones Omega, Barcelona, 1991). PIXE has been frequently applied in the archaeometric field for material characterisation and provenance studies of minerals (Hughes, Ruby & sapphire. RWH Publishing, Fallbrook, 1997; Calvo del Castillo et al., Anal Bioanal Chem 387:869-878, 2007; Calligaro et al., NIM-B 189:320-327, 2002) and PIGE complements the elemental analysis by detecting light elements in these materials such as-and lighter than-sodium that cannot be identified with the PIXE technique (Sanchez et al., NIM-B 130:682-686, 1997; Emmett et al., Gems Gemology 39:84-135, 2003). The micro-Raman technique has also been used complementarily to ion beam analysis techniques for mineral characterisation (Novak et al., Appl Surf Sci 231-232:917-920, 2004). The aim of this study is to provide new means for systematic analysis of corundum gemstone-quality mineral, alternative to the traditional gemmologic methods; for this purpose, a Spanish jewellery import company supplied us with a number of natural corundum samples coming from different places (part of them treated as explained above). The PIXE elemental concentrations of the samples showed large quantities of calcium and lead in some cases that can be linked to treatment with fluxes or lead oxide. The plot of the chromium and iron concentration grouped the samples in various aggregates that corresponded to the different types of corundum analysed. Micro-Raman complemented the PIXE analysis corroborating the presence of lead oxides but the use of the PIGE technique was not successful for the detection of beryllium due to the low cross section of the nuclear reaction chosen for its identification. IBIL was capable of distinguishing between treated and non-treated samples of the same type based on the luminescent features of the materials.

  17. A highly selective and fast-response fluorescent probe based on Cd-MOF for the visual detection of Al3+ ion and quantitative detection of Fe3+ ion

    NASA Astrophysics Data System (ADS)

    Lv, Rui; Chen, Zhihengyu; Fu, Xin; Yang, Boyi; Li, Hui; Su, Jian; Gu, Wen; Liu, Xin

    2018-03-01

    A new luminescent Cd(II)-based metal-organic framework, [Cd(PAM)(4-bpdb)1.5]·DMF (Cd-MOF, PAM = 4,4‧-methylenebis(3-hydroxy-2-naphthalene-carboxylic acid) and 4-bpdb = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene) was successfully synthesized by solvothermal synthesis method. The Cd-MOF reveals excellent luminescence property which can selectively detect Al3+ and Fe3+ ions among other interfering metal ions. The detection limit is 0.56 μM for Al3+ ion in aqueous solutions, and it is obvious lower than the maximum standard of Al3+ ion in drinking water of 7.41 μM which is defined by the WHO. More importantly, the Cd-MOF shows an obvious luminescent color change from yellow to blue under the UV lamp irradiation at 365 nm with the dropping of Al3+ ion, which can make it apply to the visual detection. And, the detection based on the test paper was explored for the first time. In addition, the Cd-MOF can also be used for quantitative detecting Fe3+ ion, and the LOD for Fe3+ ion can be as low as 0.3 μM which is lower than most reported MOFs. It is worth noting that Fe3+ and Al3+ ions can not interfere with each other. These properties make it become an excellent luminescence sensor for the detection of Al3+ and Fe3+ ions.

  18. Method and apparatus for time dispersive spectroscopy

    DOEpatents

    Tarver, III, Edward E.; Siems, William F.

    2003-06-17

    Methods and apparatus are described for time dispersive spectroscopy. In particular, a modulated flow of ionized molecules of a sample are introduced into a drift region of an ion spectrometer. The ions are subsequently detected by an ion detector to produce an ion detection signal. The ion detection signal can be modulated to obtain a signal useful in assaying the chemical constituents of the sample.

  19. Advanced Sensor Technologies for Next-Generation Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, S H; Chien, H T; Gopalsami, N

    2002-01-30

    This report summarizes the development of automobile emissions sensors at Argonne National Laboratory. Three types of sensor technologies, i.e., ultrasound, microwave, and ion-mobility spectrometry (IMS), were evaluated for engine-out emissions monitoring. Two acoustic sensor technologies, i.e., surface acoustic wave and flexural plate wave, were evaluated for detection of hydrocarbons. The microwave technique involves a cavity design and measures the shifts in resonance frequency that are a result of the presence of trace organic compounds. The IMS technique was chosen for further development into a practical emissions sensor. An IMS sensor with a radioactive {sup 63}Ni ion source was initially developedmore » and applied to measurement of hydrocarbons and NO{sub x} emissions. For practical applications, corona and spark discharge ion sources were later developed and applied to NO{sub x} emission measurement. The concentrations of NO{sub 2} in dry nitrogen and in a typical exhaust gas mixture are presented. The sensor response to moisture was evaluated, and a cooling method to control the moisture content in the gas stream was examined. Results show that the moisture effect can be reduced by using a thermoelectric cold plate. The design and performance of a laboratory prototype sensor are described.« less

  20. Nitrogen implantation with a scanning electron microscope.

    PubMed

    Becker, S; Raatz, N; Jankuhn, St; John, R; Meijer, J

    2018-01-08

    Established techniques for ion implantation rely on technically advanced and costly machines like particle accelerators that only few research groups possess. We report here about a new and surprisingly simple ion implantation method that is based upon a widespread laboratory instrument: The scanning electron microscope. We show that it can be utilized to ionize atoms and molecules from the restgas by collisions with electrons of the beam and subsequently accelerate and implant them into an insulating sample by the effect of a potential building up at the sample surface. Our method is demonstrated by the implantation of nitrogen ions into diamond and their subsequent conversion to nitrogen vacancy centres which can be easily measured by fluorescence confocal microscopy. To provide evidence that the observed centres are truly generated in the way we describe, we supplied a 98% isotopically enriched 15 N gas to the chamber, whose natural abundance is very low. By employing the method of optically detected magnetic resonance, we were thus able to verify that the investigated centres are actually created from the 15 N isotopes. We also show that this method is compatible with lithography techniques using e-beam resist, as demonstrated by the implantation of lines using PMMA.

  1. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries

    PubMed Central

    Hofmann, Andreas; Kaufmann, Christoph; Müller, Marcus; Hanemann, Thomas

    2015-01-01

    In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE) and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte–separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4–400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3–38.1 mN∙m−1. It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations. PMID:26343636

  2. Imaging of Endogenous Metabolites of Plant Leaves by Mass Spectrometry Based on Laser Activated Electron Tunneling.

    PubMed

    Huang, Lulu; Tang, Xuemei; Zhang, Wenyang; Jiang, Ruowei; Chen, Disong; Zhang, Juan; Zhong, Hongying

    2016-04-07

    A new mass spectrometric imaging approach based on laser activated electron tunneling (LAET) was described and applied to analysis of endogenous metabolites of plant leaves. LAET is an electron-directed soft ionization technique. Compressed thin films of semiconductor nanoparticles of bismuth cobalt zinc oxide were placed on the sample plate for proof-of-principle demonstration because they can not only absorb ultraviolet laser but also have high electron mobility. Upon laser irradiation, electrons are excited from valence bands to conduction bands. With appropriate kinetic energies, photoexcited electrons can tunnel away from the barrier and eventually be captured by charge deficient atoms present in neutral molecules. Resultant unpaired electron subsequently initiates specific chemical bond cleavage and generates ions that can be detected in negative ion mode of the mass spectrometer. LAET avoids the co-crystallization process of routinely used organic matrix materials with analyzes in MALDI (matrix assisted-laser desorption ionization) analysis. Thus uneven distribution of crystals with different sizes and shapes as well as background peaks in the low mass range resulting from matrix molecules is eliminated. Advantages of LAET imaging technique include not only improved spatial resolution but also photoelectron capture dissociation which produces predictable fragment ions.

  3. UltraSensitive Mycotoxin Detection by STING Sensors

    PubMed Central

    Actis, Paolo; Jejelowo, Olufisayo; Pourmand, Nader

    2010-01-01

    Signal Transduction by Ion Nano Gating (STING) technology is a label-free biosensor capable of identifying DNA and proteins. Based on a functionalized quartz nanopipette, the STING sensor includes specific recognition elements for analyte discrimination based on size, shape and charge density. A key feature of this technology is that it doesn't require any nanofabrication facility; each nanopipette can be easily, reproducibly, and inexpensively fabricated and tailored at the bench, thus reducing the cost and the turnaround time. Here, we show that STING sensors are capable of the ultrasensitive detection of HT-2 toxin with a detection limit of 100 fg/ml and compare the STING capabilities with respect to conventional sandwich assay techniques. PMID:20829024

  4. Advantage of spatial map ion imaging in the study of large molecule photodissociation

    NASA Astrophysics Data System (ADS)

    Lee, Chin; Lin, Yen-Cheng; Lee, Shih-Huang; Lee, Yin-Yu; Tseng, Chien-Ming; Lee, Yuan-Tseh; Ni, Chi-Kung

    2017-07-01

    The original ion imaging technique has low velocity resolution, and currently, photodissociation is mostly investigated using velocity map ion imaging. However, separating signals from the background (resulting from undissociated excited parent molecules) is difficult when velocity map ion imaging is used for the photodissociation of large molecules (number of atoms ≥ 10). In this study, we used the photodissociation of phenol at the S1 band origin as an example to demonstrate how our multimass ion imaging technique, based on modified spatial map ion imaging, can overcome this difficulty. The photofragment translational energy distribution obtained when multimass ion imaging was used differed considerably from that obtained when velocity map ion imaging and Rydberg atom tagging were used. We used conventional translational spectroscopy as a second method to further confirm the experimental results, and we conclude that data should be interpreted carefully when velocity map ion imaging or Rydberg atom tagging is used in the photodissociation of large molecules. Finally, we propose a modified velocity map ion imaging technique without the disadvantages of the current velocity map ion imaging technique.

  5. Method for the production of atomic ion species from plasma ion sources

    DOEpatents

    Spence, David; Lykke, Keith

    1998-01-01

    A technique to enhance the yield of atomic ion species (H.sup.+, D.sup.+, O.sup.+, N.sup.+, etc.) from plasma ion sources. The technique involves the addition of catalyzing agents to the ion discharge. Effective catalysts include H.sub.2 O, D.sub.2 O, O.sub.2, and SF.sub.6, among others, with the most effective being water (H.sub.2 O) and deuterated water (D.sub.2 O). This technique has been developed at Argonne National Laboratory, where microwave generated plasmas have produced ion beams comprised of close to 100% purity protons (H.sup.+) and close to 100% purity deuterons (D.sup.+). The technique also increases the total yield of protons and deuterons by converting unwanted ion species, namely, H.sub.2.sup.+,H.sub.3.sup.+ and D.sub.2.sup.+, D.sub.3.sup.+, into the desired ion species, H.sup.+ and D.sup.+, respectively.

  6. Method for the production of atomic ion species from plasma ion sources

    DOEpatents

    Spence, D.; Lykke, K.

    1998-08-04

    A technique to enhance the yield of atomic ion species (H{sup +}, D{sup +}, O{sup +}, N{sup +}, etc.) from plasma ion sources. The technique involves the addition of catalyzing agents to the ion discharge. Effective catalysts include H{sub 2}O, D{sub 2}O, O{sub 2}, and SF{sub 6}, among others, with the most effective being water (H{sub 2}O) and deuterated water (D{sub 2}O). This technique has been developed at Argonne National Laboratory, where microwave generated plasmas have produced ion beams comprised of close to 100% purity protons (H{sup +}) and close to 100% purity deuterons (D{sup +}). The technique also increases the total yield of protons and deuterons by converting unwanted ion species, namely, H{sub 2}{sup +}, H{sub 3}{sup +} and D{sub 2}{sup +}, D{sub 3}{sup +}, into the desired ion species, H{sup +} and D{sup +}, respectively. 4 figs.

  7. Ion creation, ion focusing, ion/molecule reactions, ion separation, and ion detection in the open air in a small plastic device.

    PubMed

    Baird, Zane; Wei, Pu; Cooks, R Graham

    2015-02-07

    A method is presented in which ions are generated and manipulated in the ambient environment using polymeric electrodes produced with a consumer-grade 3D printer. The ability to focus, separate, react, and detect ions in the ambient environment is demonstrated and the data agree well with simulated ion behaviour.

  8. Characterization of inclusion complexes of organic ions with hydrophilic hosts by ion transfer voltammetry with solvent polymeric membranes.

    PubMed

    Olmos, José Manuel; Laborda, Eduardo; Ortuño, Joaquín Ángel; Molina, Ángela

    2017-03-01

    The quantitative characterization of inclusion complexes formed in aqueous phase between organic ions and hydrophilic hosts by ion-transfer voltammetry with solvent polymeric membrane ion sensors is studied, both in a theoretical and experimental way. Simple analytical solutions are presented for the determination of the binding constant of the complex from the variation with the host concentration of the electrochemical signal. These solutions are valid for any voltammetric technique and for solvent polymeric membrane ion sensors comprising one polarisable interface (1PI) and also, for the first time, two polarisable interfaces (2PIs). Suitable experimental conditions and data analysis procedures are discussed and applied to the study of the interactions of a common ionic liquid cation (1-octyl-3-metyl-imidazolium) and an ionisable drug (clomipramine) with two hydrophilic cyclodextrins: α-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin. The experimental study is performed via square wave voltammetry with 2PIs and 1PI solvent polymeric membranes and in both cases the electrochemical experiments enable the detection of inclusion complexes and the determination of the corresponding binding constant. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Recent Selected Ion Flow Tube (SIFT) Studies Concerning the Formation of Amino Acids in the Gas Phase

    NASA Technical Reports Server (NTRS)

    Jackson, Douglas M.; Adams, Nigel G.; Babcock, Lucia M.

    2006-01-01

    Recently the simplest amino acid, glycine, has been detected in interstellar clouds, ISC, although this has since been contested. In order to substantiate either of these claims, plausible routes to amino acids need to be investigated. For gas phase synthesis, the SIFT technique has been employed to study simple amino acids via ion-molecule reactions of several ions of interstellar interest with methylamine, ethylamine, formic acid, acetic acid, and methyl formate. Carboxylic acid type ions were considered in the reactions involving the amines. In reactions where the carboxylic acid and methyl formate neutrals were studied, the reactant ions were primarily amine ion fragments. It was observed that the amines and acids preferentially fragment or accept a proton whenever energetically possible. NH3(+), however, uniquely reacted with the neutrals via atom abstraction to form NH4(+). These studies yielded a body of data relevant to astrochemistry, supplementing the available literature. However, the search for gas phase routes to amino acids using conventional molecules has been frustrated. Our most recent research investigates the fragmentation patterns of several amino acids and several possible routes have been suggested for future study.

  10. Detection method for dissociation of multiple-charged ions

    DOEpatents

    Smith, Richard D.; Udseth, Harold R.; Rockwood, Alan L.

    1991-01-01

    Dissociations of multiple-charged ions are detected and analyzed by charge-separation tandem mass spectrometry. Analyte molecules are ionized to form multiple-charged parent ions. A particular charge parent ion state is selected in a first-stage mass spectrometer and its mass-to-charge ratio (M/Z) is detected to determine its mass and charge. The selected parent ions are then dissociated, each into a plurality of fragments including a set of daughter ions each having a mass of at least one molecular weight and a charge of at least one. Sets of daughter ions resulting from the dissociation of one parent ion (sibling ions) vary in number but typically include two to four ions, one or more multiply-charged. A second stage mass spectrometer detects mass-to-charge ratio (m/z) of the daughter ions and a temporal or temporo-spatial relationship among them. This relationship is used to correlate the daughter ions to determine which (m/z) ratios belong to a set of sibling ions. Values of mass and charge of each of the sibling ions are determined simultaneously from their respective (m/z) ratios such that the sibling ion charges are integers and sum to the parent ion charge.

  11. High-resolution observations of core and suprathermal ions in the auroral ionosphere: Techniques and results from the GEODESIC sounding rocket

    NASA Astrophysics Data System (ADS)

    Burchill, Johnathan Kerr

    Low-energy (Ek ˜ 10-1--10 1 eV) ions comprise the bulk of Earth's ionosphere, and represent the initial stages of ion heating and outflow from Earth's auroral regions. The suprathermal ion imager (SII) is a fast (˜93 images/sec), compact, two-dimensional ion energy (0 < Ek < 20 eV) and direction-of-arrival analyzer designed to observe the energy distributions of these ions in detail, with emphasis on exploring small-scale (˜10--100 m) structure in the ionosphere. The SII was flown into an auroral substorm on the GEODESIC sounding rocket from Poker Flat, Alaska, on 26 February 2000. The technical element of this thesis deals with the development of a computer model of the SII, and techniques for extracting and interpreting physical quantities from the SII observations. Laboratory and in-flight calibrations demonstrate that the analyzer imaging capability departs from the ideal model. Nevertheless, the SII represents a technological step forward, and has yielded new scientific results. The scientific element of this thesis focuses on simultaneous observations of ion energy distributions and low-frequency plasma waves in the topside (500--1000 km) auroral ionosphere. GEODESIC encountered three types of plasma wave which have previously been associated with ion heating. However, heated ions were only observed in association with localized density depletions and wave enhancements known as lower-hybrid solitary structures (LHSS). Approximately 90% of the LHSS ion number density is comprised of the ambient isotropic sub-eV core population. The remaining 10% corresponds to transverse acceleration of ions (TAI) to within 5° transverse to the geomagnetic field and to mean energies up to 5--10 eV, consistent with previous findings. Contrary to previously published observations, the GEODESIC TAI is consistent with localized bulk heating of some of the ambient core. Ion heating was not observed in association with large-scale (>1 km) broadband extremely low frequency (BB ELF) wave enhancements. Similarly, no ion heating was detected in the presence of large amplitude, short perpendicular wavelength Alfven waves. Differences between low-frequency ion flow fluctuations and convection drift fluctuations can be explained only partially by ion polarization drift physics.

  12. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    NASA Astrophysics Data System (ADS)

    Paliwal, Ayushi; Sharma, Savita; Tomar, Monika; Singh, Fouran; Gupta, Vinay

    2016-07-01

    Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO3 (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol-gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au9+ ions at a fluence of 1 × 1012 ions cm-2. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  13. Effect of thenardite on the direct detection of aromatic amino acids: implications for the search for life in the solar system

    NASA Astrophysics Data System (ADS)

    Doc Richardson, C.; Hinman, Nancy W.; Scott, Jill R.

    2009-10-01

    With the discovery of Na-sulphate minerals on Mars and Europa, recent studies using these minerals have focused on their ability to assist in the detection of bio/organic signatures. This study further investigates the ability of thenardite (Na2SO4) to effectively facilitate the ionization and identification of aromatic amino acids (phenylalanine, tyrosine and tryptophan) using a technique called geomatrix-assisted laser desorption/ionization in conjunction with a Fourier transform ion cyclotron resonance mass spectrometry. This technique is based on the ability of a mineral host to facilitate desorption and ionization of bio/organic molecules for detection. Spectra obtained from each aromatic amino acid alone and in combination with thenardite show differences in ionization mechanism and fragmentation patterns. These differences are due to chemical and structural differences between the aromatic side chains of their respective amino acid. Tyrosine and tryptophan when combined with thenardite were observed to undergo cation-attachment ([M+Na]+), due to the high alkali ion affinity of their aromatic side chains. In addition, substitution of the carboxyl group hydrogen by sodium led to formation of [M-H+Na]Na+ peaks. In contrast, phenylalanine mixed with thenardite showed no evidence of Na+ attachment. Understanding how co-deposition of amino acids with thenardite can affect the observed mass spectra is important for future exploration missions that are likely to use laser desorption mass spectrometry to search for bio/organic compounds in extraterrestrial environments.

  14. Mapping of explosive contamination using GC/chemiluminescence and ion mobility spectrometry techniques

    NASA Astrophysics Data System (ADS)

    Miller, Carla J.; Glenn, D. F.; Hartenstein, Steven D.; Hallowell, Susan F.

    1998-12-01

    Recent efforts at the Idaho National Engineering and Environmental Laboratory (INEEL) have included mapping explosive contamination resulting from manufacturing and carrying improvised explosive devices (IEDs). Two types of trace detection equipment were used to determine levels of contamination from designated sampling areas. A total of twenty IEDs were constructed: ten using TNT and ten using C-4. Two test scenarios were used. The first scenario tracked the activities of a manufacturer who straps the device onto an independent courier. The courier then performed a series of activities to simulate waiting in an airport. The second scenario tracked the activities of a manufacturer who also served as the courier. A sample set for each test consisted of thirty samples from various locations on each IED manufacturer, thirty from each IED courier, twenty-five from the manufacturing area, and twenty-five from the courier area. Pre-samples and post-samples were collected for analysis with each detection technique. Samples analyzed by gc/chemiluminescence were taken by swiping a teflon- coated sampling swipe across the surface of the sampling area to pick up any explosive particles. Samples analyzed by ion mobility spectrometry (IMS) were taken from the clothing of the manufacturer and courier by vacuuming the surface and collecting particulates on a fiberglass filter. Samples for IMS analysis from the manufacturing and courier rooms were taken by wiping a cotton sampling swipe across the surface area. Currently, building IEDs and monitoring the explosive contamination is being directed toward detection with portal monitors.

  15. Comparison of secondary ion intensity enhancement from polymers on silicon and silver substrates by using Au-TOF-SIMS

    NASA Astrophysics Data System (ADS)

    Kudo, M.; Aimoto, K.; Sunagawa, Y.; Kato, N.; Aoyagi, S.; Iida, S.; Sanada, N.

    2008-12-01

    The usefulness of the usage of cluster primary ion source together with an Ag substrate and detection of Ag cationized molecular ions was studied from the standpoint to realize high sensitivity TOF-SIMS analysis of organic materials. Although secondary ions from polymer thin films on a Si substrate can be detected in a higher sensitivity with Au 3+ cluster primary ion compared with Ga + ion bombardment, it was clearly observed that the secondary ion intensities from samples on an Ag substrate showed quite a different tendency from that on Si. When monoatomic primary ions, e.g., Au + and Ga +, were used for the measurement of the sample on an Ag substrate, [M+Ag] + ions (M corresponds to polyethylene glycol molecule) were detected in a high sensitivity. On the contrary, when Au 3+ was used, no intensity enhancement of [M+Ag] + ions was observed. The acceleration energy dependence of the detected secondary ions implies the different ionization mechanisms on the different substrates.

  16. Ion pair-based dispersive liquid-liquid microextraction followed by high performance liquid chromatography as a new method for determining five folate derivatives in foodstuffs.

    PubMed

    Nojavan, Yones; Kamankesh, Marzieh; Shahraz, Farzaneh; Hashemi, Maryam; Mohammadi, Abdorreza

    2015-05-01

    A novel technique for simultaneous determination of five folate derivatives in various food matrices was developed by ion pair-based dispersive liquid-liquid microextraction (IP-DLLME) combined with high-performance liquid chromatography (HPLC). In the proposed method, N-methyl-N,N-dioctyloctan-1-ammonium chloride (aliquat-336) was used as an ion-pair reagent. Effective variables of microextraction process were optimized. Under optimum conditions, the method yielded a linear calibration curve ranging from 1-200 ng g(-1) with correlation coefficients (r(2)) higher than 0.98. The relative standard deviation for the seven analyses was 5.2-7.4%. Enrichment factors for the five folates ranged between 108-135. Limits of detection were 2-4.1 ng g(-1). A comparison of this method with other methods described that the new proposed method is rapid and accurate, and gives very good enrichment factors and detection limits for determining five folate derivatives. The newly developed method was successfully applied for the determination of five folate derivatives in wheat flour, egg yolk and orange juice samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Hyperpolarized 89Y NMR spectroscopic detection of yttrium ion and DOTA macrocyclic ligand complexation: pH dependence and Y-DOTA intermediates

    NASA Astrophysics Data System (ADS)

    Ferguson, Sarah; Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Kovacs, Zoltan; Lumata, Lloyd

    Dissolution dynamic nuclear polarization (DNP) is a rapidly emerging physics technique used to enhance the signal strength in nuclear magnetic resonance (NMR) and imaging (MRI) experiments for nuclear spins such as yttrium-89 by >10,000-fold. One of the most common and stable MRI contrast agents used in the clinic is Gd-DOTA. In this work, we have investigated the binding of the yttrium and DOTA ligand as a model for complexation of Gd ion and DOTA ligand. The macrocyclic ligand DOTA is special because its complexation with lanthanide ions such as Gd3+ or Y3+ is highly pH dependent. Using this physics technology, we have tracked the complexation kinetics of hyperpolarized Y-triflate and DOTA ligand in real-time and detected the Y-DOTA intermediates. Different kinds of buffers were used (lactate, acetate, citrate, oxalate) and the pseudo-first order complexation kinetic calculations will be discussed. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  18. Water cluster fragmentation probed by pickup experiments

    NASA Astrophysics Data System (ADS)

    Huang, Chuanfu; Kresin, Vitaly V.; Pysanenko, Andriy; Fárník, Michal

    2016-09-01

    Electron ionization is a common tool for the mass spectrometry of atomic and molecular clusters. Any cluster can be ionized efficiently by sufficiently energetic electrons, but concomitant fragmentation can seriously obstruct the goal of size-resolved detection. We present a new general method to assess the original neutral population of the cluster beam. Clusters undergo a sticking collision with a molecule from a crossed beam, and the velocities of neat and doped cluster ion peaks are measured and compared. By making use of longitudinal momentum conservation, one can reconstruct the sizes of the neutral precursors. Here this method is applied to H2O and D2O clusters in the detected ion size range of 3-10. It is found that water clusters do fragment significantly upon electron impact: the deduced neutral precursor size is ˜3-5 times larger than the observed cluster ions. This conclusion agrees with beam size characterization by another experimental technique: photoionization after Na-doping. Abundant post-ionization fragmentation of water clusters must therefore be an important factor in the interpretation of experimental data; interestingly, there is at present no detailed microscopic understanding of the underlying fragmentation dynamics.

  19. Petroleomics by Direct Analysis in Real Time-Mass Spectrometry.

    PubMed

    Romão, Wanderson; Tose, Lilian V; Vaz, Boniek G; Sama, Sara G; Lobinski, Ryszard; Giusti, Pierre; Carrier, Hervé; Bouyssiere, Brice

    2016-01-01

    The analysis of crude oil and its fractions by applying ambient ionization techniques remains underexplored in mass spectrometry (MS). Direct analysis in real time (DART) in the positive-ion mode was coupled to a linear quadrupole ion trap Orbitrap mass spectrometer (LTQ Orbitrap) to analyze crude oil, paraffin samples, and porphyrin standard compounds. The ionization parameters of DART-MS were optimized for crude oil analysis. DART-MS rendered the optimum conditions of the operation using paper as the substrate, T = 400°C, helium as the carrier gas, and a sample concentration ≥6 mg mL(-1). In the crude oils analysis, the DART(+)-Orbitrap mass spectra detected the typical N, NO, and O-containing compounds. In the paraffin samples, oxidized hydrocarbon species (Ox classes, where x = 1-4) with double-bond equivalent of 1-4 were detected, and their structures and connectivity were confirmed by collision-induced dissociation (CID) experiments. DART(+)-MS has identified the porphyrin standard compounds as [M + H](+) ions of m/z 615.2502 and 680.1763, where M = C44H30N4 and C44H28N4OV, respectively, based on the formula assignment and by phenyl losses observed on CID experiments.

  20. A microcantilever-based silver ion sensor using DNA-functionalized gold nanoparticles as a mass amplifier

    NASA Astrophysics Data System (ADS)

    You, Juneseok; Song, Yeongjin; Park, Chanho; Jang, Kuewhan; Na, Sungsoo

    2017-06-01

    Silver ions have been used to sterilize many products, however, it has recently been demonstrated that silver ions can be toxic. This toxicity has been studied over many years with the lethal concentration at 10 μM. Silver ions can accumulate through the food chain, causing serious health problems in many species. Hence, there is a need for a commercially available silver ion sensor, with high detection sensitivity. In this work, we develop an ultra-sensitive silver ion sensor platform, using cytosine based DNA and gold nanoparticles as the mass amplifier. We achieve a lower detection limit for silver ions of 10 pM; this detection limit is one million times lower than the toxic concentration. Using our sensor platform we examine highly selective characteristics of other typical ions in water from natural sources. Furthermore, our sensor platform is able to detect silver ions in a real practical sample of commercially available drinking water. Our sensor platform, which we have termed a ‘MAIS’ (mass amplifier ion sensor), with a simple detection procedure, high sensitivity, selectivity and real practical applicability has shown potential as an early toxicity assessment of silver ions in the environment.

  1. Surface aspects of pitting and stress corrosion cracking

    NASA Technical Reports Server (NTRS)

    Truhan, J. S., Jr.; Hehemann, R. F.

    1977-01-01

    The pitting and stress corrosion cracking of a stable austenitic stainless steel in aqueous chloride environments were investigated using a secondary ion mass spectrometer as the primary experimental technique. The surface concentration of hydrogen, oxygen, the hydroxide, and chloride ion, magnesium or sodium, chromium and nickel were measured as a function of potential in both aqueous sodium chloride and magnesium chloride environments at room temperature and boiling temperatures. It was found that, under anodic conditions, a sharp increase in the chloride concentration was observed to occur for all environmental conditions. The increase may be associated with the formation of an iron chloride complex. Higher localized chloride concentrations at pits and cracks were also detected with an electron microprobe.

  2. Two-Photon Scanning Photochemical Microscopy: Mapping Ligand-Gated Ion Channel Distributions

    NASA Astrophysics Data System (ADS)

    Denk, Winfried

    1994-07-01

    The locations and densities of ionotropic membrane receptors, which are responsible for receiving synaptic transmission throughout the nervous system, are of prime importance in understanding the function of neural circuits. It is shown that the highly localized liberation of "caged" neurotransmitters by two-photon absorption-mediated photoactivation can be used in conjunction with recording the induced whole-cell current to determine the distribution of ligand-gated ion channels. The technique is potentially sensitive enough to detect individual channels with diffraction-limited spatial resolution. Images of the distribution of nicotinic acetylcholine receptors on cultured BC3H1 cells were obtained using a photoactivatable precursor of the nicotinic agonist carbamoylcholine.

  3. IEC-Based Neutron Generator for Security Inspection System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Linchun; Miley, George H.

    2002-07-01

    Large nuclear reactors are widely employed for electricity power generation, but small nuclear radiation sources can also be used for a variety of industrial/government applications. In this paper we will discuss the use of a small neutron source based on Inertial Electrostatic Confinement (IEC) of accelerated deuterium ions. There is an urgent need of highly effective detection systems for explosives, especially in airports. While current airport inspection systems are strongly based on X-ray technique, neutron activation including Thermal Neutron Analysis (TNA) and Fast Neutron Analysis (FNA) is powerful in detecting certain types of explosives in luggage and in cargoes. Basicmore » elements present in the explosives can be measured through the (n, n'?) reaction initiated by fast neutrons. Combined with a time-of-flight technique, a complete imaging of key elements, hence of the explosive materials, is obtained. Among the various neutron source generators, the IEC is an ideal candidate to meet the neutron activation analysis requirements. Compared with other accelerators and radioisotopes such as {sup 252}Cf, the IEC is simpler, can be switched on or off, and can reliably produce neutrons with minimum maintenance. Theoretical and experimental studies of a spherical IEC have been conducted at the University of Illinois. In a spherical IEC device, 2.54-MeV neutrons of {approx}10{sup 8} n/s via DD reactions over recent years or 14-MeV neutrons of {approx}2x10{sup 10} n/s via DT reactions can be obtained using an ion gun injection technique. The possibility of the cylindrical IEC in pulsed operation mode combining with pulsed FNA method would also be discussed. In this paper we examine the possibility of using an alternative cylindrical IEC configuration. Such a device was studied earlier at the University of Illinois and it provides a very convenient geometry for security inspection. However, to calculate the neutron yield precisely with this configuration, an understanding of the potential wall trapping and acceleration of ions is needed. The theory engaged is an extension of original analytic study by R.L. Hirsh on the potential well structure in a spherical IEC device, i.e. roughly a 'line' source of neutrons from a cylindrical IEC is a 'point' source from the spherical geometry. Thus our present study focuses on the cylindrical IEC for its convenient application in an FNA detecting system. The conceptual design and physics of ion trapping and re-circulation in a cylindrical IEC intended for neutron-based inspection system will be presented. (authors)« less

  4. Mentha-Stabilized Silver Nanoparticles for High-Performance Colorimetric Detection of Al(III) in Aqueous Systems.

    PubMed

    Sharma, Rekha; Dhillon, Ankita; Kumar, Dinesh

    2018-03-26

    The present paper reports a facile and selective colorimetric method for the detection of potential environmental and health hazardous metal ions using green synthesized silver nanoparticles (AgNPs). Here the organic functional groups present in the plant extract (Mentha arvensis) are used as reductants and stabilizers in the synthesis of AgNPs. They also provide a suitable binding site to the (Al(III)) analyte in the detection mechanism. The leaf extract of Mentha arvensis was used to synthesize AgNPs at room-temperature and at 80 °C. The AgNPs synthesized at 80 °C exhibit excellent selective colorimetric detection of Al(III). The as-synthesized AgNPs have been characterized, and the synthesis, stabilization of NPs and detection mechanism has also been illustrated by using UV-vis, XPS, FTIR, TEM, EDX, SEM, AAS, and TGA analytical tools and techniques. The selectivity of detection probe was supported by the reaction between probe and metal ions followed first-order kinetics having the highest value of the regression coefficient (R 2  = 0.99) for Al(III) and the analysis of thermodynamic parameters. The prepared sensor showed a lower limit of detection (LOD) of 1 nM (S/N = 3.2) in real water samples. The proposed method can be successfully utilized for the detection of Al(III) from both drinking and real water samples at the nanomolar level.

  5. System OptimizatIon of the Glow Discharge Optical Spectroscopy Technique Used for Impurity Profiling of ION Implanted Gallium Arsenide.

    DTIC Science & Technology

    1980-12-01

    AFIT/GEO/EE/80D-1 I -’ SYSTEM OPTIMIZATION OF THE GLOW DISCHARGE OPTICAL SPECTROSCOPY TECHNIQUE USED FOR IMPURITY PROFILING OF ION IMPLANTED GALLIUM ...EE/80D-1 (\\) SYSTEM OPTIMIZATION OF THE GLOW DISCHARGE OPTICAL SPECTROSCOPY TECHNIQUE USED FOR IMPURITY PROFILING OF ION IMPLANTED GALLIUM ARSENIDE...semiconductors, specifically annealed and unan- nealed ion implanted gallium arsenide (GaAs). Methods to improve the sensitivity of the GDOS system have

  6. Diagnosis and Treatment of Fetal Arrhythmia

    PubMed Central

    Wacker-Gussmann, Annette; Strasburger, Janette F.; Cuneo, Bettina F.; Wakai, Ronald T.

    2014-01-01

    Detection and careful stratification of fetal heart rate (FHR) is extremely important in all pregnancies. The most lethal cardiac rhythm disturbances occur during apparently normal pregnancies where FHR and rhythmare regular and within normal or low-normal ranges. These hidden depolarization and repolarization abnormalities, associated with genetic ion channelopathies cannot be detected by echocardiography, and may be responsible for up to 10% of unexplained fetal demise, prompting a need for newer and better fetal diagnostic techniques. Other manifest fetal arrhythmias such as premature beats, tachycardia, and bradycardia are commonly recognized. Heart rhythm diagnosis in obstetrical practice is usually made by M-mode and pulsed Doppler fetal echocardiography, but not all fetal cardiac time intervals are captured by echocardiographic methods. This article reviews different types of fetal arrhythmias, their presentation and treatment strategies, and gives an overview of the present and future diagnostic techniques. PMID:24858320

  7. Nanosensors based on functionalized nanoparticles and surface enhanced raman scattering

    DOEpatents

    Talley, Chad E.; Huser, Thomas R.; Hollars, Christopher W.; Lane, Stephen M.; Satcher, Jr., Joe H.; Hart, Bradley R.; Laurence, Ted A.

    2007-11-27

    Surface-Enhanced Raman Spectroscopy (SERS) is a vibrational spectroscopic technique that utilizes metal surfaces to provide enhanced signals of several orders of magnitude. When molecules of interest are attached to designed metal nanoparticles, a SERS signal is attainable with single molecule detection limits. This provides an ultrasensitive means of detecting the presence of molecules. By using selective chemistries, metal nanoparticles can be functionalized to provide a unique signal upon analyte binding. Moreover, by using measurement techniques, such as, ratiometric received SERS spectra, such metal nanoparticles can be used to monitor dynamic processes in addition to static binding events. Accordingly, such nanoparticles can be used as nanosensors for a wide range of chemicals in fluid, gaseous and solid form, environmental sensors for pH, ion concentration, temperature, etc., and biological sensors for proteins, DNA, RNA, etc.

  8. Fabrication of a highly sensitive penicillin sensor based on charge transfer techniques.

    PubMed

    Lee, Seung-Ro; Rahman, M M; Sawada, Kazuaki; Ishida, Makoto

    2009-03-15

    A highly sensitive penicillin biosensor based on a charge-transfer technique (CTTPS) has been fabricated and demonstrated in this paper. CTTPS comprised a charge accumulation technique for penicilloic acid and H(+) ions perception system. With the proposed CTTPS, it is possible to amplify the sensing signals without external amplifier by using the charge accumulation cycles. The fabricated CTTPS exhibits excellent performance for penicillin detection and exhibit a high-sensitivity (47.852 mV/mM), high signal-to-noise ratio (SNR), large span (1445 mV), wide linear range (0-25 mM), fast response time (<3s), and very good reproducibility. A very lower detection limit of about 0.01 mM was observed from the proposed sensor. Under optimum conditions, the proposed CTTPS outstripped the performance of the widely used ISFET penicillin sensor and exhibited almost eight times greater sensitivity as compared to ISFET (6.56 mV/mM). The sensor system is implemented for the measurement of the penicillin concentration in penicillin fermentation broth.

  9. Tabletop Femtosecond VUV Photoionization and PEPICO Detection of Microreactor Pyrolysis Products.

    PubMed

    Couch, David E; Buckingham, Grant T; Baraban, Joshua H; Porterfield, Jessica P; Wooldridge, Laura A; Ellison, G Barney; Kapteyn, Henry C; Murnane, Margaret M; Peters, William K

    2017-07-20

    We report the combination of tabletop vacuum ultraviolet photoionization with photoion-photoelectron coincidence spectroscopy for sensitive, isomer-specific detection of nascent products from a pyrolysis microreactor. Results on several molecules demonstrate two essential capabilities that are very straightforward to implement: the ability to differentiate isomers and the ability to distinguish thermal products from dissociative ionization. Here, vacuum ultraviolet light is derived from a commercial tabletop femtosecond laser system, allowing data to be collected at 10 kHz; this high repetition rate is critical for coincidence techniques. The photoion-photoelectron coincidence spectrometer uses the momentum of the ion to identify dissociative ionization events and coincidence techniques to provide a photoelectron spectrum specific to each mass, which is used to distinguish different isomers. We have used this spectrometer to detect the pyrolysis products that result from the thermal cracking of acetaldehyde, cyclohexene, and 2-butanol. The photoion-photoelectron spectrometer can detect and identify organic radicals and reactive intermediates that result from pyrolysis. Direct comparison of laboratory and synchrotron data illustrates the advantages and potential of this approach.

  10. Detection of trace organics in Mars analog samples containing perchlorate by laser desorption/ionization mass spectrometry.

    PubMed

    Li, Xiang; Danell, Ryan M; Brinckerhoff, William B; Pinnick, Veronica T; van Amerom, Friso; Arevalo, Ricardo D; Getty, Stephanie A; Mahaffy, Paul R; Steininger, Harald; Goesmann, Fred

    2015-02-01

    Evidence from recent Mars missions indicates the presence of perchlorate salts up to 1 wt % level in the near-surface materials. Mixed perchlorates and other oxychlorine species may complicate the detection of organic molecules in bulk martian samples when using pyrolysis techniques. To address this analytical challenge, we report here results of laboratory measurements with laser desorption mass spectrometry, including analyses performed on both commercial and Mars Organic Molecule Analyzer (MOMA) breadboard instruments. We demonstrate that the detection of nonvolatile organics in selected spiked mineral-matrix materials by laser desorption/ionization (LDI) mass spectrometry is not inhibited by the presence of up to 1 wt % perchlorate salt. The organics in the sample are not significantly degraded or combusted in the LDI process, and the parent molecular ion is retained in the mass spectrum. The LDI technique provides distinct potential benefits for the detection of organics in situ on the martian surface and has the potential to aid in the search for signs of life on Mars.

  11. Explosive detection using a novel dielectric barrier discharge ionisation source for mass spectrometry.

    PubMed

    Fletcher, Carl; Sleeman, Richard; Luke, John; Luke, Peter; Bradley, James W

    2018-03-01

    The detection of explosives is of great importance, as is the need for sensitive, reliable techniques that require little or no sample preparation and short run times for high throughput analysis. In this work, a novel ionisation source is presented based on a dielectric barrier discharge (DBD). This not only affects desorption and ionisation but also forms an ionic wind, providing mass transportation of ions towards the mass spectrometer. Furthermore, the design incorporates 2 asymmetric alumina sheets, each containing 3 DBDs, so that a large surface area can be analysed. The DBD operates in ambient air, overcoming the limitation of other plasma-based techniques which typically analyse smaller surface areas and require solvents or gases. A range of explosives across 4 different functional groups was analysed using the DBD with low limits of detection for cyclotrimethylene trinitramine (RDX) (100 pg), pentaerythritol trinitrate (PETN) (100 pg), hexamethylene triperoxide diamide (HMTD) (1 ng), and trinitrotoluene (TNT) (5 ng). Detection was achieved without any sample preparation or the addition of reagents to facilitate adduct formation. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Association reactions at low pressure. 5: The CH3(+)/HCN system. A final word?

    NASA Technical Reports Server (NTRS)

    Anicich, Vincent G.; Sen, Atish D.; Huntress, Wesley, Jr.; McEwan, Murray J.

    1995-01-01

    The reaction of the methyl cation with hydrogen cyanide is revisited. We have confidence that we have resolved a long standing apparent contradiction of experimental results. A literature history is presented along with one new experiment and a re-examination of an old experiment. In this present work it is shown that all of the previous studies had made consistent observations. Yet, each of the previous studies failed to observe all of the information present. The methyl cation does react with HCN by radiative association, a fact which had been in doubt. The product ions formed in the two-body and three-body processes react differently with HCN. The collisionally stabilized association product formed by a three-body mechanism, does not react with HCN and is readily detected in the experiments. The radiatively stabilized association product, formed by a slow two-body reaction, is not detected because it reacts with HCN by a fast proton transfer reaction forming the protonated HCN ion. Previous studies either 'lost' this product in the extremely large protonated HCN signal that is always present when HCN is used, or discounted it for various reasons. We have been able to show by ion cyclotron resonance (ICR) techniques (both FT-ICR and tandem ICR-dempster-ICR) that the radiative association product does react with the HCN to form the protonated HCN ion.

  13. Effective Ion Mobility Peak Width as a New Isomeric Descriptor for the Untargeted Analysis of Complex Mixtures Using Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Farenc, Mathilde; Paupy, Benoit; Marceau, Sabrina; Riches, Eleanor; Afonso, Carlos; Giusti, Pierre

    2017-07-01

    Ion mobility coupled with mass spectrometry was proven to be an efficient way to characterize complex mixtures such as petroleum samples. However, the identification of isomeric species is difficult owing to the molecular complexity of petroleum and no availability of standard molecules. This paper proposes a new simple indicator to estimate the isomeric content of highly complex mixtures. This indicator is based on the full width at half maximum (FWHM) of the extracted ion mobility peak measured in millisecond or square angstrom that is corrected for instrumental factors such as ion diffusion. This value can be easily obtained without precisely identifying the number of isomeric species under the ion mobility peaks. Considering the Boduszynski model, the ion mobility profile for a particular elemental composition is expected to be a continuum of various isomeric species. The drift time-dependent fragmentation profile was studied and confirmed this hypothesis, a continuous evolution of the fragmentation profile showing that the larger alkyl chain species were detected at higher drift time values. This new indicator was proven to be a fast and efficient method to compare vacuum gas oils for which no difference was found using other analytical techniques.

  14. Acquisition of electrical signals using commercial electronic components for detection system of Lead ion in distilled water

    NASA Astrophysics Data System (ADS)

    Pujiyanto; Yasin, M.; Rusydi, F.

    2018-03-01

    Development of lead ion detection systems is expected to have an advantage in terms of simplicity of the device and easy for concentration analysis of a lead ion with very high performance. One important part of lead ion detection systems are electrical signal acquisition parts. The electrical signal acquisition part uses the main electronic components: non inverting op-amplifier, instrumentation amplifier, multiplier circuit and logarithmic amplifier. Here will be shown the performance of lead ion detection systems when the existing electrical signal processors use commercial electronic components. The results that can be drawn from this experimental were the lead ion sensor that has been developed can be used to detect lead ions with a sensitivity of 10.48 mV/ppm with the linearity 97.11% and had a measurement range of 0.1 ppm to 80 ppm.

  15. Analysis of nanoliter samples of electrolytes using a flow-through microfluorometer.

    PubMed

    Zhelyaskov, V R; Liu, S; Broderick, M P

    2000-04-01

    Several techniques have been developed to study the transport properties of nanoliter samples of renal tubule segments, such as continuous flow colorimetry and continuous fluorometry. We have extended the capability of the NANOFLO, a flow-through microfluorometer, designed for measurement of carbon dioxide, urea, ammonia, glucose, lactate, etc., to analyze sodium, calcium and chloride ions, using three commercially available fluorescent indicators for intracellular and extracellular measurements. The selection of fluorescent indicator for each electrolyte was dependent on the optimal match of the dissociation constant and the analyte concentration range of interest. Using Fluo-3 dye we achieved a detection limit for Ca2+ of 0.1 pmol and selectivity over Mg2+ of between 7:1 to 10:1. Using sodium green dye we achieved detection limit for Na+ of 12 pmol and a selectivity over K+ of 40:1. The detection limit for Cl- using lucigenin dye was 10 pmol. This technique can be readily adapted for the measurement of other physiologically important ultralow volume.

  16. Selective and sensitive optical chemosensor for detection of Ag(I) ions based on 2(4-hydroxy pent-3-en-2-ylideneamine) phenol in aqueous samples

    NASA Astrophysics Data System (ADS)

    Mirzaei, Mohammad; Saeed, Jaber

    2011-11-01

    A selective and sensitive chemosensor, based on the 2(4-hydroxy pent-3-en-2-ylideneamine) phenol (HPYAP) as chromophore, has been developed for colorimetric and visual detection of Ag(I) ions. HPYAP shows a considerable chromogenic behavior toward Ag(I) ions by changing the color of the solution from pale-yellow to very chromatic-yellow, which can be easily detected with the naked-eye. The chemosensor exhibited selective absorbance enhancement to Ag(I) ions in water samples over other metal ions at 438 nm, with a linear range of 0.4-500 μM ( r2 = 0.999) and a limit of detection 0.07 μM of Ag(I) ions with UV-vis spectrophotometer detection. The relative standard deviation (RSD) for 100 μM Ag(I) ions was 2.05% ( n = 7). The proposed method was applied for the determination Ag(I) ions in water and waste water samples.

  17. Development of neutron/gamma generators and a polymer semiconductor detector for homeland security applications

    NASA Astrophysics Data System (ADS)

    King, Michael Joseph

    Instrumentation development is essential to the advancement and success of homeland security systems. Active interrogation techniques that scan luggage and cargo containers for shielded special nuclear materials or explosives hold great potential in halting further terrorist attacks. The development of more economical, compact and efficient source and radiation detection devices will facilitate scanning of all containers and luggage while maintaining high-throughput and low-false alarms Innovative ion sources were developed for two novel, specialized neutron generating devices and initial generator tests were performed. In addition, a low-energy acceleration gamma generator was developed and its performance characterized. Finally, an organic semiconductor was investigated for direct fast neutron detection. A main part of the thesis work was the development of ion sources, crucial components of the neutron/gamma generator development. The use of an externally-driven radio-frequency antenna allows the ion source to generate high beam currents with high, mono-atomic species fractions while maintaining low operating pressures, advantageous parameters for neutron generators. A dual "S" shaped induction antenna was developed to satisfy the high current and large extraction area requirements of the high-intensity neutron generator. The dual antenna arrangement generated a suitable current density of 28 mA/cm2 at practical RF power levels. The stringent requirements of the Pulsed Fast Neutron Transmission Spectroscopy neutron generator necessitated the development of a specialized ten window ion source of toroidal shape with a narrow neutron production target at its center. An innovative ten antenna arrangement with parallel capacitors was developed for driving the multi-antenna arrangement and uniform coupling of RF power to all ten antennas was achieved. To address the desire for low-impact, low-radiation dose active interrogation systems, research was performed on mono-energetic gamma generators that operate at low-acceleration energies and leverage neutron generator technologies. The dissertation focused on the experimental characterization of the generator performance and involved MCNPX simulations to evaluate and analyze the experimental results. The emission of the 11.7 MeV gamma-rays was observed to be slightly anisotropic and the gamma yield was measured to be 2.0*105 gamma/s-mA. The lanthanum hexaboride target suffered beam damage from a high power density beam; however, this may be overcome by sweeping the beam across a larger target area. The efficient detection of fast neutrons is vital to active interrogation techniques for the detection of both SNM and explosives. Novel organic semiconductors are air-stable, low-cost materials that demonstrate direct electronic particle detection. As part of the development of a pi-conjugated organic polymer for fast neutron detection, charge generation and collection properties were investigated. By devising a dual, thin-film detector test arrangement, charge collection was measured for high energy protons traversing the dual detector arrangement that allowed the creation of variable track lengths by tilting the detector. The results demonstrated that an increase in track length resulted in a decreased signal collection. This can be understood by assuming charge carrier transport along the track instead of along the field lines, which was made possible by the filling of traps. However, this charge collection mechanism may be insufficient to generate a useful signal. This dissertation has explored the viability of a new generation of radiation sources and detectors, where the newly developed ion source technologies and prototype generators will further enhance the capabilities of existing threat detection systems and promote the development of cutting-edge detection technologies.

  18. Quartz crystal microbalance sensor using ionophore for ammonium ion detection.

    PubMed

    Kosaki, Yasuhiro; Takano, Kosuke; Citterio, Daniel; Suzuki, Koji; Shiratori, Seimei

    2012-01-01

    Ionophore-based quartz crystal microbalance (QCM) ammonium ion sensors with a detection limit for ammonium ion concentrations as low as 2.2 microM were fabricated. Ionophores are molecules, which selectively bind a particular ion. In this study, one of the known ionophores for ammonium, nonactin, was used to detect ammonium ions for environmental in-situ monitoring of aquarium water for the first time. To fabricate the sensing films, poly(vinyl chloride) was used as the matrix for the immobilization of nonactin. Furthermore, the anionic additive, tetrakis (4-chlorophenyl) borate potassium salt and the plasticizer dioctyl sebacate were used to enhance the sensor properties. The sensor allowed detecting ammonium ions not only in static solution, but also in flowing water. The sensor showed a nearly linear response with the increase of the ammonium ion concentration. The QCM resonance frequency increased with the increase of ammonium ion concentration, suggesting a decreasing weight of the sensing film. The detailed response mechanism could not be verified yet. However, from the results obtained when using a different plasticizer, nitrophenyl octyl ether, it is considered that this effect is caused by the release of water molecules. Consequently, the newly fabricated sensor detects ammonium ions by discharge of water. It shows high selectivity over potassium and sodium ions. We conclude that the newly fabricated sensor can be applied for detecting ammonium ions in aquarium water, since it allows measuring low ammonium ion concentrations. This sensor will be usable for water quality monitoring and controlling.

  19. Fluorescent Sensing of Fluoride in Cellular System

    PubMed Central

    Jiao, Yang; Zhu, Baocun; Chen, Jihua; Duan, Xiaohong

    2015-01-01

    Fluoride ions have the important roles in a lot of physiological activities related with biological and medical system, such as water fluoridation, caries treatment, and bone disease treatment. Great efforts have been made to develop new methods and strategies for F- detection in the past decades. Traditional methods for the detection of F- including ion chromatography, ion-selective electrodes, and spectroscopic techniques have the limitations in the biomedicine research. The fluorescent probes for F- are very promising that overcome some drawbacks of traditional fluoride detection methods. These probes exhibit high selectivity, high sensitivity as well as quick response to the detection of fluoride anions. The review commences with a brief description of photophysical mechanisms for fluorescent probes for fluoride, including photo induced electron transfer (PET), intramolecular charge transfer (ICT), fluorescence resonance energy transfer (FRET), and excited-state intramolecular proton transfer (ESIPT). Followed by a discussion about common dyes for fluorescent fluoride probes, such as anthracene, naphalimide, pyrene, BODIPY, fluorescein, rhodamine, resorufin, coumarin, cyanine, and near-infrared (NIR) dyes. We divide the fluorescent probes for fluoride in cellular application systems into nine groups, for example, type of hydrogen bonds, type of cleavage of Si-O bonds, type of Si-O bond cleavage and cylization reactions, etc. We also review the recent reported carriers in the delivery of fluorescent fluoride probes. Seventy-four typical fluorescent fluoride probes are listed and compared in detail, including quantum yield, reaction medium, excitation and emission wavelengths, linear detection range, selectivity for F-, mechanism, and analytical applications. Finally, we discuss the future challenges of the application of fluorescent fluoride probes in cellular system and in vivo. We wish that more and more excellent fluorescent fluoride probes will be developed and applied in the biomedicine field in the future. PMID:25553106

  20. Boron carbide coatings for neutron detection probed by x-rays, ions, and neutrons to determine thin film quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowak, G., E-mail: Gregor.Nowak@hzg.de; Störmer, M.; Horstmann, C.

    2015-01-21

    Due to the present shortage of {sup 3}He and the associated tremendous increase of its price, the supply of large neutron detection systems with {sup 3}He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid {sup 10}B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area {sup 10}B{sub 4}C coatings of up to 2 μm thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system.more » The {sup 10}B{sub 4}C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical {sup 10}B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black {sup 3}He-monitor. Thus, these converter coatings contribute to the development of {sup 3}He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative {sup 3}He-free converter elements available for large area neutron detection systems.« less

  1. Boron carbide coatings for neutron detection probed by x-rays, ions, and neutrons to determine thin film quality

    NASA Astrophysics Data System (ADS)

    Nowak, G.; Störmer, M.; Becker, H.-W.; Horstmann, C.; Kampmann, R.; Höche, D.; Haese-Seiller, M.; Moulin, J.-F.; Pomm, M.; Randau, C.; Lorenz, U.; Hall-Wilton, R.; Müller, M.; Schreyer, A.

    2015-01-01

    Due to the present shortage of 3He and the associated tremendous increase of its price, the supply of large neutron detection systems with 3He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid 10B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area 10B4C coatings of up to 2 μm thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system. The 10B4C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical 10B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black 3He-monitor. Thus, these converter coatings contribute to the development of 3He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative 3He-free converter elements available for large area neutron detection systems.

  2. Feasibility of the detection of trace elements in particulate matter using online High-Resolution Aerosol Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salcedo, D.; Laskin, Alexander; Shutthanandan, V.

    The feasibility of using an online thermal-desorption electron-ionization high-resolution aerosol mass spectrometer (AMS) for the detection of particulate trace elements was investigated analyzing data from Mexico City obtained during the MILAGRO 2006 field campaign, where relatively high concentrations of trace elements have been reported. This potential application is of interest due to the real-time data provided by the AMS, its high sensitivity and time resolution, and the widespread availability and use of this instrument. High resolution mass spectral analysis, isotopic ratios, and ratios of different ions containing the same elements are used to constrain the chemical identity of the measuredmore » ions. The detection of Cu, Zn, As, Se, Sn, and Sb is reported. There was no convincing evidence for the detection of other trace elements commonly reported in PM. The elements detected tend to be those with lower melting and boiling points, as expected given the use of a vaporizer at 600oC in this instrument. Operation of the AMS vaporizer at higher temperatures is likely to improve trace element detection. The detection limit is estimated at approximately 0.3 ng m-3 for 5-min of data averaging. Concentration time series obtained from the AMS data were compared to concentration records determined from offline analysis of particle samples from the same times and locations by ICP (PM2.5) and PIXE (PM1.1 and PM0.3). The degree of correlation and agreement between the three instruments (AMS, ICP, and PIXE) varied depending on the element. The AMS shows promise for real-time detection of some trace elements, although additional work including laboratory calibrations with different chemical forms of these elements are needed to further develop this technique and to understand the differences with the ambient data from the other techniques. The trace elements peaked in the morning as expected for primary sources, and the many detected plumes suggest the presence of multiple point sources, probably industrial, in Mexico City which are variable in time and space, in agreement with previous studies.« less

  3. New hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugates as highly selective and sensitive fluorescent chemosensor for Co2+ ions

    NASA Astrophysics Data System (ADS)

    Şenkuytu, Elif; Tanrıverdi Eçik, Esra

    2018-06-01

    In the study, the new hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugates (HBCP 1 and 2) have been successfully synthesized and characterized by using general spectroscopic techniques such as 1H, 13C and 31P NMR spectroscopies. The photophysical and metal sensing properties in THF solutions of dendrimeric cyclotriphosphazene conjugates (HBCP 1 and 2) were investigated by UV-Vis and fluorescence spectroscopies in dilute tetrahydrofuran solutions. These dendrimers showed strong absorption bands 501 and 641 nm at low concentration with high molar extinction coefficients. In addition, the stoichiometry of the complex between the conjugate (HBCP 2) and Co2+ ions were determined by a Job's plot obtained from fluorescence titrations. The metal sensing data showed that the hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugate (HBCP 2) is a candidate for fluorescent chemosensor for Co2+ ions due to showing high selectivity with a low limit of detection.

  4. Characterization of ANFO explosive by high accuracy ESI(±)-FTMS with forensic identification on real samples by EASI(-)-MS.

    PubMed

    Hernandes, Vinicius Veri; Franco, Marcos Fernado; Santos, Jandyson Machado; Melendez-Perez, Jose J; de Morais, Damila Rodrigues; Rocha, Werickson Fortunato de Carvalho; Borges, Rodrigo; de Souza, Wanderley; Zacca, Jorge Jardim; Logrado, Lucio Paulo Lima; Eberlin, Marcos Nogueira; Correa, Deleon Nascimento

    2015-04-01

    Ammonium nitrate fuel oil (ANFO) is an explosive used in many civil applications. In Brazil, ANFO has unfortunately also been used in criminal attacks, mainly in automated teller machine (ATM) explosions. In this paper, we describe a detailed characterization of the ANFO composition and its two main constituents (diesel and a nitrate explosive) using high resolution and accuracy mass spectrometry performed on an FT-ICR-mass spectrometer with electrospray ionization (ESI(±)-FTMS) in both the positive and negative ion modes. Via ESI(-)-MS, an ion marker for ANFO was characterized. Using a direct and simple ambient desorption/ionization technique, i.e., easy ambient sonic-spray ionization mass spectrometry (EASI-MS), in a simpler, lower accuracy but robust single quadrupole mass spectrometer, the ANFO ion marker was directly detected from the surface of banknotes collected from ATM explosion theft. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Fluorescence spectroscopy of trapped molecular ions

    NASA Astrophysics Data System (ADS)

    Wright, Kenneth Charles

    This thesis describes the development of a unique instrument capable of detecting fluorescence emission from large gas phase molecular ions trapped in a three-dimensional quadrupole ion trap. The hypothesis that has formed the basis of this work is the belief that fluorescence spectroscopy can be combined with ion trap mass spectrometry to probe the structure of gas phase molecular ions. The ion trap provides a rarefied environment where fluorescence experiments can be conducted without interference from solvent molecules or impurities. Although fluorescence was not detected during preliminary experiments, two significant experimental challenges associated with detecting the gas phase fluorescence of ions were discovered. First, gas phase ions were vulnerable to photodissociation and low laser powers were necessary to avoid photodissociation. Since fluorescence emission is directly proportional to laser intensity, a lower laser power limits the fluorescence signal. Second, the fluorescence emission was not significantly Stokes shifted from the excitation. The lack of Stokes shift meant the small fluorescence signal must be detected in the presence of a large amount of background scatter generated by the excitation. Initially, this background was seven orders of magnitude higher than the analytical signal ultimately detected. A specially designed fiber optic probe was inserted between the electrodes of the ion trap to stop light scattered off the outside surfaces of the trap from reaching the detector. The inside surfaces of the ion trap were coated black to further reduce the amount of scattered light collected. These innovations helped reduced the background by six orders of magnitude and fluorescence emission from rhodamine-6G was detected. Pulse counting experiments were used to optimize fluorescence detection. The effects of trapping level, laser power, and irradiation time were investigated and optimized. The instrument developed in this work not only allows for the detection of fluorescent photons, but the sensitivity is high enough for the light to be dispersed and an emission spectrum recorded. The emission spectra of rhodamine-6G and 5-carboxyrhodamine-6G ions reported in this thesis represent the first spectra recorded from large molecular ions confined in a quadrupole ion trap. Finally, anti-Stokes fluorescence from rhodamine-6G was also detected.

  6. Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Li, Zhi-Yuan; Yamaguchi, Kohei; Tanemura, Masaki; Huang, Zhengren; Jiang, Dongliang; Chen, Yuhui; Zhou, Fei; Nogami, Masayuki

    2012-03-01

    Novel surface-enhanced Raman scattering (SERS) substrates with high SERS-activity are ideal for novel SERS sensors, detectors to detect illicitly sold narcotics and explosives. The key to the wider application of SERS technique is to develop plasmon resonant structure with novel geometries to enhance Raman signals and to control the periodic ordering of these structures over a large area to obtain reproducible Raman enhancement. In this work, a simple Ar+-ion sputtering route has been developed to fabricate silver nanoneedles arrays on silicon substrates for SERS-active substrates to detect trace-level illicitly sold narcotics. These silver nanoneedles possess a very sharp apex with an apex diameter of 15 nm and an apex angle of 20°. The SERS enhancement factor of greater than 1010 was reproducibly achieved by the well-aligned nanoneedles arrays. Furthermore, ketamine hydrochloride molecules, one kind of illicitly sold narcotics, can be detected down to 27 ppb by using our SERS substrate within 3 s, indicating the sensitivity of our SERS substrates for trace amounts of narcotics and that SERS technology can become an important analytical technique in forensic laboratories because it can provide a rapid and nondestructive method for trace detection.

  7. Progressing the analysis of Improvised Explosive Devices: Comparative study for trace detection of explosive residues in handprints by Raman spectroscopy and liquid chromatography.

    PubMed

    Zapata, Félix; de la Ossa, Mª Ángeles Fernández; Gilchrist, Elizabeth; Barron, Leon; García-Ruiz, Carmen

    2016-12-01

    Concerning the dreadful global threat of terrorist attacks, the detection of explosive residues in biological traces and marks is a current need in both forensics and homeland security. This study examines the potential of Raman microscopy in comparison to liquid chromatography (ion chromatography (IC) and reversed-phase high performance liquid chromatography (RP-HPLC)) to detect, identify and quantify residues in human handmarks of explosives and energetic salts commonly used to manufacture Improvised Explosive Devices (IEDs) including dynamite, ammonium nitrate, single- and double-smokeless gunpowders and black powder. Dynamite, ammonium nitrate and black powder were detected through the identification of the energetic salts by Raman spectroscopy, their respective anions by IC, and organic components by RP-HPLC. Smokeless gunpowders were not detected, either by Raman spectroscopy or the two liquid chromatography techniques. Several aspects of handprint collection, sample treatment and a critical comparison of the identification of compounds by both techniques are discussed. Raman microscopy and liquid chromatography were shown to be complementary to one another offering more comprehensive information for trace explosives analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Doping-assisted low-pressure photoionization mass spectrometry for the real-time detection of lung cancer-related volatile organic compounds.

    PubMed

    Li, Zhen; Xu, Ce; Shu, Jinian; Yang, Bo; Zou, Yao

    2017-04-01

    Real-time detection of lung cancer-related volatile organic compounds (VOCs) is a promising, non-intrusive technique for lung cancer (LC) prescreening. In this study, a novel method was designed to enhance the detection selectivity and sensitivity of LC-related polar VOCs by dichloromethane (CH 2 Cl 2 ) doping-assisted low-pressure photoionization mass spectrometry (LPPI-MS). Compared with conventional LPPI-MS, CH 2 Cl 2 doping-assisted LPPI-MS boosted the peak intensities of n-propanol, n-pentanal, acetone, and butyl acetate in nitrogen specifically by 53, 18, 16, and 43 times, respectively. The signal intensities of their daughter ions were inhibited or reduced. At relative humidity (RH) of 20%, the sensitivities of n-propanol, n-pentanal, acetone, and butyl acetate detection ranged from 116 to 452 counts/ppbv with a detection time of 10s and R 2 >0.99 for the linear calibration curves. The method was also applicable under higher RH levels of 50% and 90%. Breath samples obtained from 10 volunteers and spiked samples were investigated. Eight-fold enhancements in the signal intensities of polar VOCs were observed in the normal and spiked samples. These preliminary results demonstrate the efficacy of the dichloromethane doping-assisted LPPI technique for the detection of LC-related polar VOCs. Further studies are indispensible to illustrating the detailed mechanism and applying the technique to breath diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. [Investigation of concentration levels of chromium(VI) in bottled mineral and spring waters by high performance ion chromatography technique with application of postcolumn reaction with 1,5-diphenylcarbazide and VIS detection].

    PubMed

    Swiecicka, Dorota; Garboś, Sławomir

    2008-01-01

    The aim of this work was optimization and validation of the method of determination of Cr(VI) existing in the form of chromate(VI) in mineral and spring waters by High Performance Ion Chromatography (HPIC) technique with application of postcolumn reaction with 1,5-diphenylcarbazide and VIS detection. Optimization of the method performed with the use of initial apparatus parameters and chromatographic conditions from the Method 218.6 allowed to lowering detection limit for Cr(VI) from 400 ng/l to 2 ng/l. Thanks to very low detection limit achieved it was possible to determine of Cr(VI) concentrations in 25 mineral and spring waters presented at Polish market. In the cases of four mineral and spring waters analyzed, determined Cr(VI) concentrations were below of quantification limit (< 4 ng/l) but simultaneously in another mineral and spring waters the concentrations of chromium(VI) were determined in the range of 5.6 - 1281 ng/l. The fact of existence of different Cr(VI) concentrations in investigated waters could be connected with secondary contamination of mineral and spring waters by chromium coming from metal installations and fittings. One should be underlined that even the highest determined concentration level of chromium(VI) was below of the maximum admissible concentration of total chromium presented in Polish Decree of Minister of Health from April 29th 2004. Therefore after taking into account determined in this work concentration of Cr(VI), the consumption of all waters analyzed in this study does not lead to essential human health risk.

  10. Ion Beam Processing.

    DTIC Science & Technology

    1987-03-13

    guides Taps for plastics Orthopedic implants (hip and knee joints, etc.) Extrusion spinnerettes Finishing rolls for copper rod Extrusion nozzles...detail in following sections. C. Comparison to Coating Techniques -,* Because ion implantation is a process that modifies surface properties it is often...Therefore, it is important to understand the differences between ion implantation and coating techniques, especially ion plating. The result of ion

  11. Accurate Mass Fragment Library for Rapid Analysis of Pesticides on Produce Using Ambient Pressure Desorption Ionization with High-Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kern, Sara E.; Lin, Lora A.; Fricke, Frederick L.

    2014-08-01

    U.S. food imports have been increasing steadily for decades, intensifying the need for a rapid and sensitive screening technique. A method has been developed that uses foam disks to sample the surface of incoming produce. This work provides complimentary information to the extensive amount of published pesticide fragmentation data collected using LCMS systems (Sack et al. Journal of Agricultural and Food Chemistry, 59, 6383-6411, 2011; Mol et al. Analytical and Bioanalytical Chemistry, 403, 2891-2908, 2012). The disks are directly analyzed using transmission-mode direct analysis in real time (DART) ambient pressure desorption ionization coupled to a high resolution accurate mass-mass spectrometer (HRAM-MS). In order to provide more certainty in the identification of the pesticides detected, a library of accurate mass fragments and isotopes of the protonated parent molecular ion (the [M+H]+) has been developed. The HRAM-MS is equipped with a quadrupole mass filter, providing the capability of "data-dependent" fragmentation, as opposed to "all -ion" fragmentation (where all of the ions enter a collision chamber and are fragmented at once). A temperature gradient for the DART helium stream and multiple collision energies were employed to detect and fragment 164 pesticides of varying chemical classes, sizes, and polarities. The accurate mass information of precursor ([M+H]+ ion) and fragment ions is essential in correctly identifying chemical contaminants on the surface of imported produce. Additionally, the inclusion of isotopes of the [M+H]+ in the database adds another metric to the confirmation process. The fragmentation data were collected using a Q-Exactive mass spectrometer and were added to a database used to process data collected with an Exactive mass spectrometer, an instrument that is more readily available for this screening application. The commodities investigated range from smooth-skinned produce such as apples to rougher surfaces like broccoli. The minimal sample preparation and absence of chromatography has shortened the analysis time to about 15 min per sample, and the simplicity and robustness of the technique make it ideal for rapid screening.

  12. Development of quantitative laser ionization mass spectrometry (LIMS). Final report, 1 Aug 87-1 Jan 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odom, R.W.

    1991-06-04

    The objective of the research was to develop quantitative microanalysis methods for dielectric thin films using the laser ionization mass spectrometry (LIMS) technique. The research involved preparation of thin (5,000 A) films of SiO2, Al2O3, MgF2, TiO2, Cr2O3, Ta2O5, Si3N4, and ZrO2, and doping these films with ion implant impurities of 11B, 40Ca, 56Fe, 68Zn, 81Br, and 121Sb. Laser ionization mass spectrometry (LIMS), secondary ion mass spectrometry (SIMS) and Rutherford backscattering spectrometry (RBS) were performed on these films. The research demonstrated quantitative LIMS analysis down to detection levels of 10-100 ppm, and led to the development of (1) a compoundmore » thin film standards product line for the performing organization, (2) routine LIMS analytical methods, and (3) the manufacture of high speed preamplifiers for time-of-flight mass spectrometry (TOF-MS) techniques.« less

  13. A 23Na Multiple-Quantum-Filtered NMR Study of the Effect of the Cytoskeleton Conformation on the Anisotropic Motion of Sodium Ions in Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Knubovets, Tatyana; Shinar, Hadassah; Eliav, Uzi; Navon, Gil

    1996-01-01

    Recently, it has been shown that23Na double-quantum-filtered NMR spectroscopy can be used to detect anisotropic motion of bound sodium ions in biological systems. The technique is based on the formation of the second-rank tensor when the quadrupolar interaction is not averaged to zero. Using this method, anisotropic motion of bound sodium in human and dog red blood cells was detected, and the effect was shown to depend on the integrity of the membrane cytoskeleton. In the present study, multiple-quantum-filtered techniques were applied in combination with a quadrupolar echo to measure the transverse-relaxation times,T2fandT2s. Line fitting was performed to obtain the values of the residual quadrupolar interaction, which was measured for sodium in a variety of mammalian erythrocytes of different size, shape, rheological properties, and sodium concentrations. Human unsealed white ghosts were used to study sodium bound at the anisotropic sites on the inner side of the RBC membrane. Modulations of the conformation of the cytoskeleton by the variation of either the ionic strength or pH of the suspending medium caused drastic changes in both the residual quadrupolar interaction andT2fdue to changes in the fraction of bound sodium ions as well as changes in the structure of the binding sites. By combining the two spectroscopic parameters, structural change can be followed. The changes in the structure of the sodium anisotropic binding sites deduced by this method were found to correlate with known conformational changes of the membrane cytoskeleton. Variations of the medium pH affected both the fraction of bound sodium ions and the structure of the anisotropic binding sites. Sodium and potassium were shown to bind to the anisotropic binding sites with the same affinity.

  14. Mass spectrometry of rhenium complexes: a comparative study by using LDI-MS, MALDI-MS, PESI-MS and ESI-MS.

    PubMed

    Petroselli, Gabriela; Mandal, Mridul Kanti; Chen, Lee Chuin; Ruiz, Gustavo T; Wolcan, Ezequiel; Hiraoka, Kenzo; Nonami, Hiroshi; Erra-Balsells, Rosa

    2012-03-01

    A group of rhenium (I) complexes including in their structure ligands such as CF(3)SO(3)-, CH(3)CO(2)-, CO, 2,2'-bipyridine, dipyridil[3,2-a:2'3'-c]phenazine, naphthalene-2-carboxylate, anthracene-9-carboxylate, pyrene-1-carboxylate and 1,10-phenanthroline have been studied for the first time by mass spectrometry. The probe electrospray ionization (PESI) is a technique based on electrospray ionization (ESI) that generates electrospray from the tip of a solid metal needle. In this work, mass spectra for organometallic complexes obtained by PESI were compared with those obtained by classical ESI and high flow rate electrospray ionization assisted by corona discharge (HF-ESI-CD), an ideal method to avoid decomposition of the complexes and to induce their oxidation to yield intact molecular cation radicals in gas state [M](+·) and to produce their reduction yielding the gas species [M](-·). It was found that both techniques showed in general the intact molecular ions of the organometallics studied and provided additional structure characteristic diagnostic fragments. As the rhenium complexes studied in the present work showed strong absorption in the UV-visible region, particularly at 355 nm, laser desorption ionization (LDI) mass spectrometry experiments could be conducted. Although intact molecular ions could be detected in a few cases, LDI mass spectra showed diagnostic fragments for characterization of the complexes structure. Furthermore, matrix-assisted laser desorption ionization (MALDI) mass spectra were obtained. Nor-harmane, a compound with basic character, was used as matrix, and the intact molecular ions were detected in two examples, in negative ion mode as the [M](-·) species. Results obtained with 2-[(2E)-3-(4-tert-buthylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) as matrix are also described. LDI experiments provided more information about the rhenium complex structures than did the MALDI ones. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Analytical Methodologies for Detection of Gamma-valerolactone, Delta-valerolactone, Acephate, and Azinphos Methyl and their Associated Metabolites in Complex Biological Matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zink, Erika M.; Clark, Ryan J.; Grant, Karen E.

    2005-01-01

    Non-invasive biomonitoring for chemicals of interest in law enforcement and similar monitoring of pesticides together with their metabolites can not only save money but can lead to faster medical attention for individuals exposed to these chemicals. This study describes methods developed for the analysis of gamma-valerolactone (GVL), delta-valerolactone (DVL), acephate, and azinphos methyl in saliva and serum. Liquid chromatography/mass spectrometry (LC/MS) operated in the negative ion mode and in the positive ion mode and gas chromatography/mass spectrometry (GC/MS) were used to analyze GVL and DVL. Although both analytical techniques worked well, lower detection limits were obtained with GC/MS. The lactonesmore » and their corresponding sodium salts were spiked into both saliva and serum. The lactones were isolated from saliva or serum using newly developed extraction techniques and then subsequently analyzed using GC/MS. The sodium salts of the lactones are nonvolatile and require derivatization prior to analysis by this method. N-methyl-N-(t-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA) was ultimately selected as the reagent for derivatization because the acidic conditions required for reactions with diazomethane caused the salts to undergo intramolecular cyclization to the corresponding lactones. In vitro studies were conducted using rat liver microsomes to determine other metabolites associated with these compounds. Azinphos methyl and acephate are classified as organophosphate pesticides, and are known to be cholinesterase inhibitors in humans and insects, causing neurotoxicity. For this reason they have both exposure and environmental impact implications. These compounds were spiked into serum and saliva and prepared for analysis by GC/MS. Continuation of this research would include analysis by GC/MS under positive ion mode to determine the parent ions of the unknown metabolites. Further research is planned through an in vivo analysis of the lactones and pesticides. These methodologies could be extended for further analysis of other similar compounds as well as chemical and biological warfare agents.« less

  16. Accurate characterization of carcinogenic DNA adducts using MALDI tandem time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Barnes, Charles A.; Chiu, Norman H. L.

    2009-01-01

    Many chemical carcinogens and their in vivo activated metabolites react readily with genomic DNA, and form covalently bound carcinogen-DNA adducts. Clinically, carcinogen-DNA adducts have been linked to various cancer diseases. Among the current methods for DNA adduct analysis, mass spectroscopic method allows the direct measurement of unlabeled DNA adducts. The goal of this study is to explore the use of matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to determine the identity of carcinogen-DNA adducts. Two of the known carcinogenic DNA adducts, namely N-(2'-deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenyl-imidazo [4,5-b] pyridine (dG-C8-PhIP) and N-(2'-deoxyguanosin-8yl)-4-aminobiphenyl (dG-C8-ABP), were selected as our models. In MALDI-TOF MS measurements, the small matrix ion and its cluster ions did not interfere with the measurements of both selected dG adducts. To achieve a higher accuracy for the characterization of selected dG adducts, 1 keV collision energy in MALDI-TOF/TOF MS/MS was used to measure the adducts. In comparison to other MS/MS techniques with lower collision energies, more extensive precursor ion dissociations were observed. The detection of the corresponding fragment ions allowed the identities of guanine, PhIP or ABP, and the position of adduction to be confirmed. Some of the fragment ions of dG-C8-PhIP have not been reported by other MS/MS techniques.

  17. Strong-field Photoionization of Sputtered Neutral Molecules for Molecular Depth Profiling

    PubMed Central

    Willingham, D; Brenes, D. A.; Wucher, A

    2009-01-01

    Molecular depth profiles of an organic thin film of guanine vapor deposited onto a Ag substrate are obtained using a 40 keV C60 cluster ion beam in conjunction with time-of-flight secondary ion mass spectrometric (ToF-SIMS) detection. Strong-field, femtosecond photoionization of intact guanine molecules is used to probe the neutral component of the profile for direct comparison with the secondary ion component. The ability to simultaneously acquire secondary ions and photoionized neutral molecules reveals new fundamental information about the factors that influence the properties of the depth profile. Results show that there is an increased ionization probability for protonated molecular ions within the first 10 nm due to the generation of free protons within the sample. Moreover, there is a 50% increase in fragment ion signal relative to steady state values 25 nm before reaching the guanine/Ag interface as a result of interfacial chemical damage accumulation. An altered layer thickness of 20 nm is observed as a consequence of ion beam induced chemical mixing. In general, we show that the neutral component of a molecular depth profile using the strong-field photoionization technique can be used to elucidate the effects of variations in ionization probability on the yield of molecular ions as well as to aid in obtaining accurate information about depth dependent chemical composition that cannot be extracted from TOF-SIMS data alone. PMID:20495665

  18. Multi-dimensional TOF-SIMS analysis for effective profiling of disease-related ions from the tissue surface.

    PubMed

    Park, Ji-Won; Jeong, Hyobin; Kang, Byeongsoo; Kim, Su Jin; Park, Sang Yoon; Kang, Sokbom; Kim, Hark Kyun; Choi, Joon Sig; Hwang, Daehee; Lee, Tae Geol

    2015-06-05

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) emerges as a promising tool to identify the ions (small molecules) indicative of disease states from the surface of patient tissues. In TOF-SIMS analysis, an enhanced ionization of surface molecules is critical to increase the number of detected ions. Several methods have been developed to enhance ionization capability. However, how these methods improve identification of disease-related ions has not been systematically explored. Here, we present a multi-dimensional SIMS (MD-SIMS) that combines conventional TOF-SIMS and metal-assisted SIMS (MetA-SIMS). Using this approach, we analyzed cancer and adjacent normal tissues first by TOF-SIMS and subsequently by MetA-SIMS. In total, TOF- and MetA-SIMS detected 632 and 959 ions, respectively. Among them, 426 were commonly detected by both methods, while 206 and 533 were detected uniquely by TOF- and MetA-SIMS, respectively. Of the 426 commonly detected ions, 250 increased in their intensities by MetA-SIMS, whereas 176 decreased. The integrated analysis of the ions detected by the two methods resulted in an increased number of discriminatory ions leading to an enhanced separation between cancer and normal tissues. Therefore, the results show that MD-SIMS can be a useful approach to provide a comprehensive list of discriminatory ions indicative of disease states.

  19. Multi-dimensional TOF-SIMS analysis for effective profiling of disease-related ions from the tissue surface

    PubMed Central

    Park, Ji-Won; Jeong, Hyobin; Kang, Byeongsoo; Kim, Su Jin; Park, Sang Yoon; Kang, Sokbom; Kim, Hark Kyun; Choi, Joon Sig; Hwang, Daehee; Lee, Tae Geol

    2015-01-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) emerges as a promising tool to identify the ions (small molecules) indicative of disease states from the surface of patient tissues. In TOF-SIMS analysis, an enhanced ionization of surface molecules is critical to increase the number of detected ions. Several methods have been developed to enhance ionization capability. However, how these methods improve identification of disease-related ions has not been systematically explored. Here, we present a multi-dimensional SIMS (MD-SIMS) that combines conventional TOF-SIMS and metal-assisted SIMS (MetA-SIMS). Using this approach, we analyzed cancer and adjacent normal tissues first by TOF-SIMS and subsequently by MetA-SIMS. In total, TOF- and MetA-SIMS detected 632 and 959 ions, respectively. Among them, 426 were commonly detected by both methods, while 206 and 533 were detected uniquely by TOF- and MetA-SIMS, respectively. Of the 426 commonly detected ions, 250 increased in their intensities by MetA-SIMS, whereas 176 decreased. The integrated analysis of the ions detected by the two methods resulted in an increased number of discriminatory ions leading to an enhanced separation between cancer and normal tissues. Therefore, the results show that MD-SIMS can be a useful approach to provide a comprehensive list of discriminatory ions indicative of disease states. PMID:26046669

  20. Synthesis and characterisation of nano structure lead (II) ion-imprinted polymer as a new sorbent for selective extraction and preconcentration of ultra trace amounts of lead ions from vegetables, rice, and fish samples.

    PubMed

    Behbahani, Mohammad; Bagheri, Akbar; Taghizadeh, Mohsen; Salarian, Mani; Sadeghi, Omid; Adlnasab, Laleh; Jalali, Kobra

    2013-06-01

    This paper describes the preparation of new Pb(II)-imprinted polymeric particles using 2-vinylpyridine as a functional monomer, ethylene glycol dimethacrylate as the cross-linker, 2,2'- azobisisobutyronitrile as the initiator, diphenylcarbazone as the ligand, acetonitril as the solvent, and Pb(NO(3))(2) as the template ion, through bulk polymerisation technique. The imprinted lead ions were removed from the polymeric matrix using 5 mL of HCl (2 mol.L(-1)) as the eluting solvent. The lead ion concentration was determined by flame atomic absorption spectrometry. Optimum pH for maximum sorption was obtained at 6.0. Sorption and desorption of Pb(II) ions on the IIP particles were quite fast and achieved fully over 5 min. In the proposed method, the maximum sorbent capacity of the ion-imprinted polymer was calculated to be 75.4 mg g(-1). The preconcentration factor, relative standard deviation, and limit of detection of the method were found to be 245, 2.1%, and 0.42 ng mL(-1), respectively. The prepared ion-imprinted polymer particles have an increased selectivity toward Pb(II) ions over a range of competing metal ions with the same charge and similar ionic radius. This ion-imprinted polymer is an efficient solid phase for extraction and preconcentration of lead ions in complex matrixes. For proving that the proposed method is reliable, a wide range of food samples with different and complex matrixes was used. Copyright © 2012 Elsevier Ltd. All rights reserved.

Top