Cytoplasmic hydrogen ion diffusion coefficient.
al-Baldawi, N F; Abercrombie, R F
1992-01-01
The apparent cytoplasmic proton diffusion coefficient was measured using pH electrodes and samples of cytoplasm extracted from the giant neuron of a marine invertebrate. By suddenly changing the pH at one surface of the sample and recording the relaxation of pH within the sample, an apparent diffusion coefficient of 1.4 +/- 0.5 x 10(-6) cm2/s (N = 7) was measured in the acidic or neutral range of pH (6.0-7.2). This value is approximately 5x lower than the diffusion coefficient of the mobile pH buffers (approximately 8 x 10(-6) cm2/s) and approximately 68x lower than the diffusion coefficient of the hydronium ion (93 x 10(-6) cm2/s). A mobile pH buffer (approximately 15% of the buffering power) and an immobile buffer (approximately 85% of the buffering power) could quantitatively account for the results at acidic or neutral pH. At alkaline pH (8.2-8.6), the apparent proton diffusion coefficient increased to 4.1 +/- 0.8 x 10(-6) cm2/s (N = 7). This larger diffusion coefficient at alkaline pH could be explained quantitatively by the enhanced buffering power of the mobile amino acids. Under the conditions of these experiments, it is unlikely that hydroxide movement influences the apparent hydrogen ion diffusion coefficient. PMID:1617134
Altitude Dependent Auroral Ion Diffusion Coefficients
NASA Astrophysics Data System (ADS)
Ludlow, G. R.
2011-12-01
Simultaneous upgoing auroral H+ and O+ ion beams generate ion acoustic waves which have both parallel and oblique wave vectors with respect to the ambient magnetic field. A parallel mode is investigated with phase velocity UO + CO in the direction of beam propagation, where UO is the oxygen beam velocity and CO is the oxygen ion sound speed. Due to the mass difference, this mode preferentially resonates with the oxygen beam through the n = 1 cyclotron resonance, causing O+ ions to diffuse in a direction that is primarily perpendicular to the background magnetic field. The Landau resonance (n = 0) is very narrow in parallel velocity and does not interact with either ion beam. In one case study the parallel acoustic mode begins to resonate with O+ ions within the auroral acceleration region and this resonant region in velocity space sweeps through the entire O+ beam as it moves into weaker magnetic field regions. The O+ quasilinear diffusion coefficients are examined during this process. Perpendicular diffusion becomes significant when the parallel resonant velocity is close to the parallel group velocity of the waves. This selects regions of velocity space where perpendicular diffusion is maximum which occurs at the leading edge of the resonant region as it sweeps through the O+ beam. In k - space these resonant velocities correspond to the regions of peak growth rate. The relevance of this work to the selective energization of heavy auroral ion beams will be discussed.
Limits on ion radial diffusion coefficients in Saturn's inner magnetosphere
NASA Technical Reports Server (NTRS)
Paonessa, M.; Cheng, A. F.
1986-01-01
The development of upper and lower limits for the rate of radial diffusion of energetic ions in Saturn's inner magnetosphere is discussed. Improved calculations of the satellite-sweeping rate and phase space density profiles for a wide range of ion invariants are utilized to determine the limits. The lower limit for the radial diffusion coefficient is established by requiring the rate of inward diffusion to be large enough to balance satellite sweeping losses; the upper limit is obtained by requiring the rate of inward diffusion to be less than the observable ultraviolet aurora on plasma torus L shell. It is concluded that the radial diffusion coefficient for ions in Saturn's inner magnetosphere is calculated to about two orders of magnitude.
Diffusion coefficients for three major ions in the topside ionosphere
NASA Astrophysics Data System (ADS)
Quegan, S.; Bailey, G. J.; Moffett, R. J.
1981-08-01
Published experimental data on ion composition in the topside ionosphere are examined. For certain features (the light ion trough, the high-latitude trough, the high-latitude hole and the mid-latitude total ion concentration trough) it is pointed out that the number of major ions present may be three or more. Transport equations derived by Schunk et al. (1975, 1977, 1979) are extended to include the case of the three major ions in the topside ionosphere. Specific calculations are made for the O(+), H(+) and He(+) ions and the behavior of the diffusion coefficients is discussed. From a model of the high-latitude ionization hole, described by Heelis et al. (1981), representative concentration and temperature profiles are obtained. These profiles are used to demonstrate further the behavior of the ion diffusion coefficients.
Ion diffusion coefficient measurements in nanochannels at various concentrations.
Wang, Junrong; Zhang, Li; Xue, Jianming; Hu, Guoqing
2014-03-01
Diffusion is one of the most fundamental properties of ionic transport in solutions. Here, we present experimental studies and theoretical analysis on the ion diffusion in nanochannels. Based on Fick's second law, we develop a current monitoring method to measure ion diffusion coefficient of high solution concentrations in nanochannels. This method is further extended to the cases at medium and low concentrations. Through monitoring ionic current during diffusion, we obtain diffusion coefficients of potassium chloride solution at different concentrations in nanochannels. These diffusion coefficients within the confined space are close to theirs bulk values. It is also found that the apparent ion diffusion equilibrium in the present experiments is very slow at low concentration, which we attribute to the slow equilibrium of the nanochannel surface charge. Finally, we get a primary acknowledge of the equilibrium rate between the nanochannel surface charge and electrolyte solution. The results in this work have improved the understanding of nanoscale diffusion and nanochannel surface charge and may be useful in nanofluidic applications such as ion-selective transport, energy conversion, and nanopore biosensors. PMID:24803967
Ion diffusion coefficient measurements in nanochannels at various concentrations
Wang, Junrong; Zhang, Li; Xue, Jianming; Hu, Guoqing
2014-01-01
Diffusion is one of the most fundamental properties of ionic transport in solutions. Here, we present experimental studies and theoretical analysis on the ion diffusion in nanochannels. Based on Fick's second law, we develop a current monitoring method to measure ion diffusion coefficient of high solution concentrations in nanochannels. This method is further extended to the cases at medium and low concentrations. Through monitoring ionic current during diffusion, we obtain diffusion coefficients of potassium chloride solution at different concentrations in nanochannels. These diffusion coefficients within the confined space are close to theirs bulk values. It is also found that the apparent ion diffusion equilibrium in the present experiments is very slow at low concentration, which we attribute to the slow equilibrium of the nanochannel surface charge. Finally, we get a primary acknowledge of the equilibrium rate between the nanochannel surface charge and electrolyte solution. The results in this work have improved the understanding of nanoscale diffusion and nanochannel surface charge and may be useful in nanofluidic applications such as ion-selective transport, energy conversion, and nanopore biosensors. PMID:24803967
Limits on ion radial diffusion coefficients in Saturn's inner magnetosphere
NASA Astrophysics Data System (ADS)
Paonessa, M.; Cheng, A. F.
1986-02-01
Voyager low energy charged particle (LECP) ion phase space densities at constant first and second adiabatic invariants have been used to place limits on the rate of radial diffusion of energetic ions (30 keV to 1 MeV) in Saturn's inner magnetosphere. Upper and lower limits to the radial diffusion coefficient, DLL, are deduced from physical requirements on the rates of diffusion and loss. If DLL is near the lower limit found in this work, then satellite sweeping accounts for a large fraction of the total ion losses. If DLL is near the upper limit, then ion losses can approach 10% of the strong diffusion rate. In this case, ion losses are dominated by wave-particle interactions, and sweeping losses are relatively unimportant.
An ion-beam technique for measuring surface diffusion coefficients
NASA Astrophysics Data System (ADS)
DeLuca, P. M.; Labanda, J. G. C.; Barnett, S. A.
1999-03-01
The effective surface diffusion coefficient of Ga along the [110] direction on vicinal GaAs(001)2×4 surfaces during molecular-beam epitaxy was measured using specular ion current measurements. In this technique, 3 keV Ar ions were impinged upon the surface at a glancing angle (typically 3°), and the specularly scattered ion current was measured. Since specular reflections require a locally flat surface, adatoms cause a decrease in the measured current, allowing an average adatom density measurement. The time dependence of the Ga adatom population was measured during and after Ga deposition. Diffusion coefficients, obtained from the adatom lifetimes using a simple model of diffusion to the step edges, were fit well by the expression D=2×10-9 exp(-0.73 eV/kT)cm2/s from 400 to 600 °C.
Electronic diffusion coefficient for fast-ion dechanneling
NASA Astrophysics Data System (ADS)
Nitta, H.; Ohtsuki, Y. H.; Kubo, K.
1986-12-01
A new local electronic diffusion coefficient for fast-ion dechanneling is derived on the basis of the fundamental method. To reveal detailed effects of electron states, numerical calculations are performed with use of the Roothaan-Hartree-Fock atomic wave functions. It is found that the Lindhard's formula of the electronic diffusion coefficient, which is proportional to the local electron density, is only a simple approximation of our rigorous formula and that this ``local-density approximation'' is not always sufficient, especially for metal targets.
Electronic diffusion coefficient for fast-ion dechanneling
Nitta, H.; Ohtsuki, Y.H.; Kubo, K.
1986-12-01
A new local electronic diffusion coefficient for fast-ion dechanneling is derived on the basis of the fundamental method. To reveal detailed effects of electron states, numerical calculations are performed with use of the Roothaan-Hartree-Fock atomic wave functions. It is found that the Lindhard's formula of the electronic diffusion coefficient, which is proportional to the local electron density, is only a simple approximation of our rigorous formula and that this ''local-density approximation'' is not always sufficient, especially for metal targets.
Mutual diffusion coefficients in systems containing the nickel ion
NASA Astrophysics Data System (ADS)
Ribeiro, Ana C. F.; Veríssimo, Luis V. M. M.; Gomes, Joselaine C. S.; Santos, Cecilia I. A. V.; Barros, Marisa C. F.; Lobo, Victor M. M.; Sobral, Abílio J. F. N.; Esteso, Miguel A.; Leaist, Derek G.
2013-04-01
Mutual diffusion coefficients of nickel chloride in water have been measured at 293.15 K and 303.15 K and at concentrations between 0.020 mol dm-3 and 0.100 mol dm-3, using a conductimetric cell. The experimental mutual diffusion coefficients are discussed on the basis of the Onsager-Fuoss model. The equivalent conductances at infinitesimal concentration of the nickel ion in these solutions at those temperatures have been estimated using these results. In addition, from these data, we have estimated some transport and structural parameters, such as limiting diffusion coefficient, ionic conductance at infinitesimal concentration, hydrodynamic radii and activation energy, contributing this way to a better understanding of the structure of these systems and of their thermodynamic behavior in aqueous solution at different concentrations.
Hydrogen ion diffusion coefficient of silicon nitride thin films
NASA Astrophysics Data System (ADS)
Yu, George T.; Yen, S. K.
2002-12-01
Hydrogen ion diffusion in silicon nitride thin film is of significant interest because of its importance in barrier, sensor and catalytic coating applications. In this study, a novel method based on potential-pH response measurement was used to determine hydrogen ion diffusion in silicon nitride thin films. Hydrogen ion diffusion coefficient in silicon nitride films obtained from this method was 1×10 -19 cm 2/s. A potential-pH response drift was observed and is believed to be due to the presence of a hydrated layer affecting the hydrogen ion diffusion onto the nitride film of the Si 3N 4-gate hydrogen ion-sensitive field effect transistors (ISFETs). The unique feature of the potential-pH response method is its relatively simple experimental procedure, which eliminates complications arising from surface-related effects and/or presence of hydrogen traps in membrane, such as those found in the conventional permeation method. The method also offers a considerable test time reduction, with the experiment being completed in 10 h as compared to the conventional electrochemical permeation method which takes as long as 5 days.
Estimating The Sodium Ion Diffusion Coefficient in Rat Brain
NASA Astrophysics Data System (ADS)
Goodman, James A.; Bretthorst, G. Larry; Kroenke, Christopher D.; Ackerman, Joseph J. H.; Neil, Jeffrey J.
2004-04-01
Quantifying sodium ion diffusion in the extra- and intracellular compartments will provide mechanistic insight into the as yet unexplained marked decrease in water diffusion resulting from central nervous system injury. As a first step, the apparent diffusion coefficient (ADC) of bulk brain Na+ has been determined in vivo in rat. A surface coil transmit/receive adiabatic-pulse scheme is used to provide two dimensions of volume localization, thus minimizing echo time. The third dimension is determined by slice selection gradients on the axis perpendicular to the coil plane. Signal decay in the presence of diffusion sensitizing pulsed field gradients was modeled by Bayesian Probability Theory. Preliminary findings indicate a bulk Na+ ADC of (1.16 ± .07) × 10-3 mm2/s.
Determination of the lithium ion diffusion coefficient in graphite
Yu, P.; Popov, B.N.; Ritter, J.A.; White, R.E.
1999-01-01
A complex impedance model for spherical particles was used to determine the lithium ion diffusion coefficient in graphite as a function of the state of charge (SOC) and temperature. The values obtained range from 1.12 {times} 10{sup {minus}10} to 6.51 {times} 10{sup {minus}11} cm{sup 2}/s at 25 C for 0 and 30% SOC, respectively, and for 0% SOC, the value at 55 C was 1.35 {times} 10{sup {minus}10} cm{sup 2}/s. The conventional potentiostatic intermittent titration technique (PITT) and Warburg impedance approaches were also evaluated, and the advantages and disadvantages of these techniques were exposed.
Pulsed ion beam technique for measuring diffusion coefficient of a slow diffusant in polymers
NASA Astrophysics Data System (ADS)
Venkatesan, T.; Edelson, D.; Brown, W. L.
1983-08-01
The determination of diffusion coefficients (D) of small molecules in a polymer for D below 10-10 cm2 s-1 is a difficult measurement using conventional self-supporting polymer membrane techniques. We propose a new method for obtaining similar information by irradiating a polymer with a pulsed ion beam and studying the evolving gaseous products. Product molecules that are not limited by the rate of their production in the film tend to exhibit diffusion limited dynamical characteristics in their transient evolution from the surface. By numerically modeling the diffusion problem we can extract diffusion coefficients from the data. Since thin films (<1 μm) can be used in these experiments, diffusion coefficients less than 10-10 cm2 s-1, typical of many molecules in polymers, can be measured with ease.
NASA Astrophysics Data System (ADS)
Renganathan, Sindhuja; White, Ralph E.
A semianalytical methodology based on the integral transform technique is proposed to solve the diffusion equation with concentration dependent diffusion coefficient in a spherical intercalation electrode particle. The method makes use of an integral transform pair to transform the nonlinear partial differential equation into a set of ordinary differential equations, which is solved with less computational efforts. A general solution procedure is presented and two illustrative examples are used to demonstrate the usefulness of this method for modeling of diffusion process in lithium ion battery electrode. The solutions obtained using the method presented in this study are compared to the numerical solutions.
Miyoshi, Hirofumi
1999-01-01
Donnan dialysis with ion-exchange membranes was studied under various kinds of experimental conditions using ions of different valences. The diffusion coefficients (D{sub d}) of various kinds of ions in the ion-exchange membrane were obtained by curve fitting an equation derived from the mass balance to three kinds of Donnan dialytic experiments. It was found that the value of D{sub d}/D{sub s} using D{sub d} of monovalent ions in Donnan dialysis with a set of monovalent feed ions and bivalent driving ions was 1/175, where D{sub s} represents a diffusion coefficient in solution. D{sub s} was calculated from the Nernst-Einstein equation substituted by the ionic conductance of ions at infinite dilution in water. Using D{sub d} of bivalent ions in Donnan dialysis with the same set led to a D{sub d}/D{sub s} value of 1/438. Moreover, using D{sub d} in Donnan dialysis with the same set, the value of D{sub d}/D{sub e} was kept constant at 0.4 (D{sub e} expresses the diffusion coefficient in the membrane when the valences of the feed and driving ions are equal). On the other hand, both D{sub d}/D{sub s} and D{sub d}/D{sub e} using D{sub d} in Donnan dialysis with a set of bivalent feed ions and monovalent driving ions were not constant.
Ion beam technique for the measurement of deuterium diffusion coefficients
Lewis, M.B.; Farrell, K.
1980-05-15
This letter describes how a combination of the techniques of nuclear microanalysis and cathodic hydrogenation has been used to determine the diffusion coefficient of dueterium in austenitic stainless steel at room temperature. Samples charged in deuterated acid solutions to levels of about 20 at. % deuterium were quickly transferred to a scattering chamber where a depth profile of the near-surface deuterium was measured. For charging times much longer than the transfer plus anlyzing time, the deuterium profile could be described by an error function at the specimen surface. A diffusion coefficient was determined by a chi-squared test fitting procedure and shown to be consistent with values reported for other methods measured at higher temperatures.
The influence of ion/molecule reactions on the evaluation of ion mobility and diffusion coefficients
NASA Astrophysics Data System (ADS)
de Urquijo, J.; Alvarez, I.; Cisneros, C.; Martinez, H.
1996-05-01
This paper deals with the evaluation of the mean and the variance of the ion flux at the exit of a drift tube, from which the drift velocity, [nu]d, and the longitudinal diffusion coefficient, DL, can be derived. Besides drift and diffusion, the presence of a primary ion conversion process through reactions with the gas is fully considered from the outset. Full expressions for the mean and variance of the ion flux are then approximated by resorting to experimental conditions in which low ionic reactivity, adequate drift tube geometry, and other experimental conditions are met, thus arriving at very simple expressions from which [nu]d and DL are derived. These simple expressions have been obtained previously from analyses ignoring ion/molecule reactions from the outset. The full expressions derived here and their approximations are used to provide a means of evaluating the errors incurred when very simple expressions are used in highly reacting ion/neutral systems.
Calculation of diffusion coefficients of defects and ions in UO2
NASA Astrophysics Data System (ADS)
Kuksin, A. Yu.; Smirnova, D. E.
2014-06-01
This paper has presented molecular dynamics calculations of the diffusion coefficients of interstitials, vacancies, and vacancy complexes of oxygen and uranium in UO2, as well as the coefficients of ion diffusion provided by these defects. The interatomic potentials have been chosen by comparing the defect formation energies with data of the DFT + U calculations. The results of the calculations have been compared with experimental data on the annealing of defects and the measurements of self-diffusion coefficients of ions. The limitations of the model of point defects for the description of the self-diffusion in nominally stoichiometric UO2 have been discussed.
Trapped-ion anomalous diffusion coefficient on the basis of single mode saturation
NASA Astrophysics Data System (ADS)
Koshi, Y.; Hatayama, A.; Ogasawara, M.
1982-03-01
Expressions of the anomalous diffusion coefficient due to the dissipative trapped ion instability (DTII) are derived for the case with and without the effect of magnetic shear. Derivation is made by taking into account of the single mode saturation of the DTII previously obtained numerically. In the absence of the shear effect, the diffusion coefficient is proportional to the squared effective collision frequency of the trapped ions times the squared minor radius of a torus and is much larger than the neoclassical ion heat conductivity. In the presence of the shear effect, the diffusion coefficient is much smaller than the Kadomtsev and Pogutse's value and is the same order of magnitude as the neoclassical ion heat conductivity. Dependences of the diffusion coefficient on the temperature and on the total particle number density are rather complicated due to the additional spectral cut-off.
Secondary ion mass spectroscopy determination of oxygen diffusion coefficient in heavily Sb doped Si
NASA Astrophysics Data System (ADS)
Pagani, M.
1990-10-01
The diffusion coefficient of oxygen in heavily antimony doped Czochralski Si was measured in the temperature range 950-1100 °C by using secondary ion mass spectroscopy (SIMS). The diffusion coefficient, obtained from SIMS oxygen concentration profiles in samples submitted to out diffusion, shows no dependence on antimony concentration. The combined data give an activation energy of 2.68 eV, which is in good agreement with published results.
Third-order transport properties of ion-swarms from mobility and diffusion coefficients
NASA Astrophysics Data System (ADS)
Koutselos, Andreas D.
2005-08-01
A method is presented for the calculation of third order transport properties of ions drifting in gases under the action of an electrostatic field with the use of mobility and ion-diffusion coefficients. The approach is based on a three-temperature treatment of the Boltzmann equation for the ion transport and follows the development of generalized Einstein relations (GER), between diffusion coefficients and mobility. The whole procedure is tested by comparison with numerical and molecular dynamics simulation results for three available alkali ion-noble gas systems. Extension to systems involving internal degrees of freedom and inelastic collisions is shown to follow the development of molecular GER.
Diffusion coefficient for ions in the presence of a coherent lower hybrid wave
NASA Astrophysics Data System (ADS)
Antonsen, T. M., Jr.; Ott, J.
1981-09-01
The diffusion coefficient resulting from ergodic ion motion when the amplitude of a coherent lower hybrid wave exceeds a certain stochasticity threshold is considered. A previously developed method by Rechester et al. (1981) is adopted to obtain an analytical result for the diffusion coefficient of an ion in a lower hybrid wave, and results are in good agreement with those of Karney (1979). The problem is formulated in terms of a recursion relation for the Fourier transformed distribution function, and results show a sharp resonance behavior in the diffusion coefficient. For large amplitude waves, the diffusion coefficient oscillates with decreasing amplitude about the quasi-linear value as the wave amplitude increases, and the coefficient is shown to be subject to narrow resonances at wave amplitudes corresponding to fixed points in the map.
Comparison of ICRF-Induced Ion Diffusion Coefficients Calculated with the DC and AORSA Codes
Harvey, R. W.; Petrov, Yu.; Jaeger, E. F.; Berry, L. A.; Batchelor, D. B.; Bonoli, P. T.; Wright, J. C.
2009-11-26
The DC (Diffusion Coefficient) code obtains RF diffusion coefficients by direct numerical integration of the Lorentz force equation for ion motion in the combined equilibrium fields and the RF full wave EM fields from the AORSA full-wave code. Suitable averaging over initial gyro- and toroidal-angle of coordinate 'kicks' after a bounce-period, gives noise-free bounce-averaged diffusion coefficients. For direct comparison with zero-banana-width coefficients from AORSA, perpendicular-drift terms in the Lorentz equation are subtracted off the integration. The DC code has been coupled to the CQL3D Fokker-Planck code. For a C-Mod minority ion ICRF heating test case, the total power absorption using the diffusion coefficients agree well, and the profiles are similarly close. This supports the DC calculation and the Kennel-Engelmann-based, no-correlations, coefficient calculation in AORSA. However, resonance correlations cause large differences in the pitch angle variations of the diffusion coefficients, and in the resulting evolution of the ion distribution functions.
Comparison of ICRF-Induced Ion Diffusion Coefficients Calculated with the DC and AORSA Codes
NASA Astrophysics Data System (ADS)
Harvey, R. W.; Petrov, Yu.; Jaeger, E. F.; Berry, L. A.; Batchelor, D. B.; Bonoli, P. T.; Wright, J. C.
2009-11-01
The DC (Diffusion Coefficient) code obtains RF diffusion coefficients by direct numerical integration of the Lorentz force equation for ion motion in the combined equilibrium fields and the RF full wave EM fields from the AORSA full-wave code. Suitable averaging over initial gyro- and toroidal-angle of coordinate "kicks" after a bounce-period, gives noise-free bounce-averaged diffusion coefficients. For direct comparison with zero-banana-width coefficients from AORSA, perpendicular-drift terms in the Lorentz equation are subtracted off the integration. The DC code has been coupled to the CQL3D Fokker-Planck code. For a C-Mod minority ion ICRF heating test case, the total power absorption using the diffusion coefficients agree well, and the profiles are similarly close. This supports the DC calculation and the Kennel-Engelmann-based, no-correlations, coefficient calculation in AORSA. However, resonance correlations cause large differences in the pitch angle variations of the diffusion coefficients, and in the resulting evolution of the ion distribution functions.
Monte Carlo calculations of drift velocities and diffusion coefficients of Ar + ions in helium
NASA Astrophysics Data System (ADS)
Barata, J. A. S.; Conde, C. A. N.
2007-09-01
Results are presented for the calculated drift velocities and diffusion coefficients for Ar + ions in helium at atmospheric pressure, temperature T=300 K and for reduced electric fields E/ N from about 1 Td up to about 150 Td, using Monte Carlo techniques. The drift velocities range from 5.94×10 3 to 559.0×10 3 cm s -1 for the Ar + ions in the ground state 2P 3/2 and from 5.85×10 3 to 545.0×10 3 cm s -1 for the Ar + ions in the metastable excited state 2P 1/2. These values are in good agreement (within about 5%) with the few experimental values available. The mobilities and diffusion coefficients for atomic Ar + ions in helium gas show no significant dependence on the spin state of the ion.
A novel method to determine the diffusion coefficient of hydrogen ion in ruthenium oxide films
NASA Astrophysics Data System (ADS)
Yu, George T.; Yen, S. K.
2002-10-01
Hydrogen ion diffusion in ruthenium oxide film is of significant interest because of its importance in capacitor, sensor and catalyst applications. In this study, a method based on potential-pH response measurement was used to determine hydrogen ion diffusion in ruthenium oxide films. The drift in the potential-pH response is believed to be due to the hydrated layer, which affects hydrogen ion diffusion onto the oxide film of the pH sensor. Hydrogen ion diffusion coefficient of ruthenium oxide films obtained from this method was 6×10 -14 cm2/ s. The unique feature of the potential-pH response method is its relatively simple experimental procedure, which eliminates complications arising from surface related effects and/or presence of hydrogen traps in membrane such as those found in the conventional permeation method.
Effects of ions on the diffusion coefficient of water in carbon nanotubes
NASA Astrophysics Data System (ADS)
Gao, Xiang; Zhao, Tianshou; Li, Zhigang
2014-08-01
In this work, we investigate the ion effects on the diffusion of water in carbon nanotubes through molecular dynamics simulations. The diffusion coefficient of water molecules Dw in the presence of cations (Na+ and K+) and anions (F-, Cl-, and Br-) are calculated by changing the ion concentration. The dependence of Dw on the ion concentration is found highly nonlinear and distinct for different ions. For positively charged systems, as the ion concentration is varied, Dw assumes a maximum under the competition between the number and orientation changes of free OH bonds and the effects of ionic hydration. For negatively charged systems, however, Dw decreases monotonously with increasing ion concentration for F-. For Cl- and Br-, Dw reaches the minima at certain ion concentrations and then gently increases. The different behaviors of Dw in the presence of different anions are caused by the stability change of water hydrogen bonds due to ionic hydration.
Modification of diffusion coefficients in MgO(100) through the chemical properties of implanted ions
NASA Astrophysics Data System (ADS)
Lu, M.; Lupu, C.; Lee, S. M.; Rabalais, J. W.
2001-07-01
Ti bulk diffusion coefficients have been determined for Ti in single crystal MgO(100) for four types of samples: Ti evaporated onto MgO and Ti evaporated onto MgO that was pre-bombarded with 7 keV Cl+, Ar+, and Cr+, respectively. Diffusion was induced by annealing to 1000 °C following the evaporation or pre-bombardment. Diffusion penetration profiles were obtained by using secondary ion mass spectrometry depth profiling techniques. A model that includes a depth-dependent bulk diffusion coefficient was used to analyze the observed radiation enhanced diffusion (RED) effects. The bulk diffusion coefficients are of the order of 10-20 m2/s and are enhanced due to the defect structure inflected by the ion pre-bombardment. Different RED effects for the samples pre-bombarded with Cl+, Ar+, and Cr+ were observed despite their very similar ballistic implantation parameters. The diffusion model was extended to include the effects of lattice deformation, requirement of electrical neutrality, and chemical effects such as volatile compound formation. This extended model satisfactorily explains the RED differences observed for Cl+, Ar+, and Cr+ implantation. Our results show that RED is strongly influenced by the chemical properties of implanted ions.
Role of surface energy coefficients and nuclear surface diffuseness in the fusion of heavy-ions
NASA Astrophysics Data System (ADS)
Dutt, Ishwar; Puri, Rajeev K.
2010-04-01
We discuss the effect of surface energy coefficients as well as nuclear surface diffuseness in the proximity potential and ultimately in the fusion of heavy-ions. Here we employ different versions of surface energy coefficients. Our analysis reveals that these technical parameters can influence the fusion barriers by a significant amount. A best set of these parameters is also given that explains the experimental data nicely.
Self-diffusion and activity coefficients of ions in charged disordered media
NASA Astrophysics Data System (ADS)
Jardat, Marie; Hribar-Lee, Barbara; Dahirel, Vincent; Vlachy, Vojko
2012-09-01
Self-diffusion and single ion activity coefficients of ions of size symmetric electrolytes were studied in the presence of a collection of charged obstacles (called matrix) within a "soft" version of the primitive model of electrolyte solutions. The matrix subsystem possesses a net charge, depending on the concentration and charge of obstacles. The Brownian dynamics method was used to calculate the self-diffusion coefficients of mobile species. The replica Ornstein-Zernike theory for the partly quenched systems was used to calculate the individual activity coefficients of mobile ionic species. The results reflect the competition between attractive (obstacle-counterion, co-ion-counterion), and repulsive (obstacle-co-ion) interactions in these model systems. For the simplest possible system of symmetric monovalent ions the latter effect wins: Co-ions are excluded from the area around obstacles, and this slows down their diffusion compared to that of counterions. Introduction of divalent charges into the system changes this result when the concentration of obstacles is low. We compare these results to those obtained for the corresponding fully annealed systems, i.e., where all the species are mobile. In most cases the self-diffusion and activity coefficients of counterions and co-ions in the presence of charged obstacles follow the trends of the fully annealed solution, which are dictated by the composition of the mixture. In few situations, however, the presence of charged obstacles modifies these trends. Our study allows us to clearly identify the effects due to obstacles, and to separate them from those arising from the composition of the solution. In the case of charge and size symmetric systems, the results for the individual activity coefficients fully support the hypothesis of the "electrostatic excluded volume". Thermodynamic and dynamic results are consistent in explaining the behavior of the systems studied.
NASA Astrophysics Data System (ADS)
Yuan Mou, Chung; Thacher, Thomas S.; Lin, Jeong-long
1983-07-01
A statistical mechanical theory of the self-diffusion coefficient of ions in solutions of simple electrolytes has been developed. Beginning with a generalized Langevin equation the self-diffusion coefficients of ions may be evaluated at the zero-frequency limit of the Laplace transform of the random force correlation function. We assume that the random force acting on the tagged ion may be separated into contributions from the solvent part, due to the surrounding solvent molecules and an ionic part due to all the other ions. Further, we assume that the evolution of the ionic random force is governed by the Smoluchowski operator. With these assumptions and using the Debye-Hückel pair correlation function, the Onsager limiting law may be derived. Numerical calculations using the HNC pair correlation function shows that our theory can describe experimental data of moderately concentrated solutions adequately.
Self-diffusion coefficients of ions in electrolyte solutions by nonequilibrium Brownian dynamics
NASA Astrophysics Data System (ADS)
Raineri, Fernando O.; Wood, Mark D.; Friedman, Harold L.
1990-01-01
The self-diffusion coefficients of the ions in a model electrolyte solution are calculated with a novel implementation of the nonequilibrium Brownian dynamics technique. The ions are coupled to an external color field E by color charges in such a way that each ionic species as a whole is electrically neutral to E. The ion-ion forces are not directly affected by the color charges or E. The method is tested on a model of a 1 M NaCl aqueous solution without hydrodynamic interactions and the results are compared with those of a previous equilibrium simulation for the same model system. The self-diffusion coefficients of Na+ and Cl- are determined with 2%-3% accuracy and, within this margin, agree with the results of the equilibrium simulation obtained with more than twice the computational effort. Furthermore, within the range of field strengths studied, the average color flows depend linearly on E.
NASA Astrophysics Data System (ADS)
Jordanova, V. K.; Kozyra, J. U.; Nagy, A. F.
1996-09-01
Ion composition measurements provided by recent satellite missions have confirmed the presence of heavy ions in the terrestrial magnetosphere. In order to describe the resonance of energetic ring current particles with electromagnetic ion cyclotron (EMIC) waves in a more realistic terrestrial environment, general expressions are derived that provide quasi-linear diffusion coefficients in a cold plasma containing heavy ions. Cold plasma theory is used as a first approximation. In such plasma, EMIC waves do not propagate in the frequency range between the ion gyrofrequency and the cutoff frequency for each ion component but form multiple stop bands. No interactions occur within the stop bands and the diffusion coefficients are zero over the corresponding frequency intervals. For most of the wave frequencies of interest, the particles in a multicomponent plasma resonate at lower parallel energies than particles in an electron-proton plasma for a given harmonic value. Therefore resonance with a fixed frequency wave occurs at larger pitch angles (lower parallel energies) in a multi-ion than in a proton-electron plasma. As a direct consequence, pitch angle diffusion coefficients for a given energy decrease at small pitch angles and increase at large pitch angles as heavy ions are added to the plasma. The energy and mixed diffusion coefficients change correspondingly. Also, higher harmonics need to be included in the calculations for resonances at higher energies. The pitch angle diffusion lifetimes are calculated for given plasmaspheric and wave parameters corresponding to conditions at a radial distance L=4. The values of the diffusion lifetimes decrease at low energies and increase at high energies in a multi-ion as compared to an electron-proton plasma. As a result, the resonances at lower energies (~ approximately tens of keV) will contribute to the ion precipitation losses from the ring current during geomagnetic storms.
Ion diffusion coefficients model and molar conductivities of ionic salts in aprotic solvents.
Garrido, Leoncio; Mejía, Alberto; García, Nuria; Tiemblo, Pilar; Guzmán, Julio
2015-02-19
In the study of the electric properties of electrolytes, the determination of the diffusion coefficients of the species that intervene in the charge transport process is of great importance, particularly that of the free ions (D(+) and D(-)), the only species that contribute to the conductivity. In this work we propose a model that allows, with reasonable assumptions, determination of D(+) and D(-), and the degree of dissociation of the salt, α, at different concentrations, using the diffusion coefficients experimentally obtained with NMR. Also, it is shown that the NMR data suffice to estimate the conductivity of the electrolytes. The model was checked by means of experimental results of conductivity and NMR diffusion coefficients obtained with solutions of lithium triflate in ethylene and propylene carbonates, as well as with other results taken from the literature. PMID:25603311
NASA Astrophysics Data System (ADS)
Yoshinobu, Tatsuo; Harada, Tetsuro; Iwasaki, Hiroshi
2000-04-01
The pH-imaging sensor is applied to visualization of ionic diffusion in an electrochemical system. Redistribution of the pH value due to diffusion of ions after electrolysis is measured to determine the diffusion coefficients of anions and cations. Dependence of the diffusion coefficient on the molecular weight of ions is investigated. Applicability of the pH-imaging sensor to quantitative analysis of dynamics in a chemical system is demonstrated.
Relation between Longitudinal and Transverse Diffusion Coefficients of Alkali Ions in Noble Gases
NASA Astrophysics Data System (ADS)
Hogan, M. J.
1997-10-01
The relation between longitudinal and transverse diffusion coefficients of ions drifting in a neutral gas under the influence of an electric field has been investigated for alkali ions in noble gases. The 125 combinations of ions of Li, Na, K, Rb, and Cs in the neutral gases He, Ne, Ar, Kr, and Xe at gas temperatures of 100, 200, 300, 400 and 500 K were included in this study. Plots of the ratio of the longitudinal-to-transverse diffusion coefficients versus E/N exhibited similar variation in the values of the ratios. As the value of E/N increased from zero, the value of the ratio increased rapidly from one for all ion/neutral/temperature combinations. The ratio peaked at values mostly in the range of 1.2 to 2.5 at E/N values in the range of 20 to 120 Td. As E/N increased further, the ratio values decreased, at an ever lower rate, to values ranging from 0.8 to 1.2. These results suggest the existence of a single function relating the longitudinal and transverse diffusion coefficients.
Diffusion coefficients of energetic water group ions near Comet Giacobini-Zinner
NASA Technical Reports Server (NTRS)
Tan, L. C.; Mason, G. M.; Richardson, I. G.; Ipavich, F. M.
1993-01-01
Data from the ultralow-energy charge analyzer and energetic particle anisotropy spectrometer sensors, acquired when the ICE spacecraft flew past Comet Giacobini-Zinner on September 11, 1985, are combined, and a single, self-consistent analysis technique is applied to derive a single-particle spectrum from about 200 to 1600 km/s. This information, together with the deduced bulk flow speed of the ions, is used to calculate a parallel diffusion coefficient in the transition region downstream of the bow wave (2.3 +/- 0.5) x 10 exp 17 sq cm/s; the corresponding scattering mean free path is (6 +/- 1) x 10 exp 4 km. The parallel diffusion coefficient is found to depend on the collision frequency of water group ions with Alfven waves, which are assumed to be propagating parallel (antiparallel) to the magnetic field.
Diffusion coefficients of energetic water group ions near Comet Giacobini-Zinner
NASA Astrophysics Data System (ADS)
Tan, L. C.; Mason, G. M.; Richardson, I. G.; Ipavich, F. M.
1993-03-01
Data from the ultralow-energy charge analyzer and energetic particle anisotropy spectrometer sensors, acquired when the ICE spacecraft flew past Comet Giacobini-Zinner on September 11, 1985, are combined, and a single, self-consistent analysis technique is applied to derive a single-particle spectrum from about 200 to 1600 km/s. This information, together with the deduced bulk flow speed of the ions, is used to calculate a parallel diffusion coefficient in the transition region downstream of the bow wave (2.3 +/- 0.5) x 10 exp 17 sq cm/s; the corresponding scattering mean free path is (6 +/- 1) x 10 exp 4 km. The parallel diffusion coefficient is found to depend on the collision frequency of water group ions with Alfven waves, which are assumed to be propagating parallel (antiparallel) to the magnetic field.
Modeling ion exchange in glass with concentration-dependent diffusion coefficients and mobilities
NASA Astrophysics Data System (ADS)
Lupascu, Alexandru I.; Kevorkian, Antoine P.; Boudet, Thierry; Saint-Andre, Francoise; Persegol, Dominique; Levy, Michel
1996-06-01
Multimode buried waveguides made in silicate glass by field-assisted ion exchange present very asymmetric profiles. We show how this phenomenon originates in the large dependence of the kinetics on the local ion concentrations. For this purpose, we derive an interdiffusion equation that includes the effects of concentration-dependent diffusion coefficients and mobilities. We show how to deduce this dependence from measurements on ion- diffused samples. The maximum concentration of the incoming ions is computed from surface equilibrium conditions and is used in the interdiffusion equation as a limiting parameter for coefficient variations. To control the model accuracy for surface as well as buried waveguides, we measure ion profiles with three independent methods: M-lines, scanning electron microscopy, and near-field refractometry. When applied to Ag+-Na+ exchange in silicate glass, the model yields theoretical estimations in good agreement with experiments. This approach underlines the fundamentally nonlinear process that takes place during ion exchange and is also valuable to properly model singlemode waveguide fabrication.
Tracer diffusion coefficient of oxide ions in LaCoO 3 single crystal
NASA Astrophysics Data System (ADS)
Ishigaki, Takamasa; Yamauchi, Shigeru; Mizusaki, Junichiro; Fueki, Kazuo; Tamura, Hifumi
1984-08-01
The tracer diffusion coefficient, D∗ O, of oxide ions in LaCoO 3 single crystal was determined over the temperature range of 700-1000°C by a gas-solid isotopic exchange technique using 18O tracer. For the determination, two methods, the gas phase analysis and the depth profile measurement, were employed. Under an oxygen pressure of 34 Torr, the temperature dependence of D∗ O in LaCoO 3 was expressed by D∗ O( cm2· sec-1) = 3.63 × 10 4exp- {(74 ± 5) kcal · mole-1}/{RT} D∗ O at 950°C was found to be proportional to P-0.35O 2. The diffusion of oxide ions occurs through a vacancy mechanism. The activation energy for the migration of oxide ion vacancies was estimated as 18 kcal · mole -1.
Diffusion coefficients of ions in lighter gases in an electric field
NASA Astrophysics Data System (ADS)
Ferrari, Leonardo
1996-05-01
The diffusion theory for ions in single lighter gases (and in mixtures of lighter gases), in moderately low electrostatic fields, is formulated in the so-called quasi-Rayleigh limit, starting from a proper approximate kinetic equation previously derived by the author. In this way new simple approximate expressions for transverse and longitudinal ion temperatures and diffusion coefficients are obtained. Their dependence on the ion-neutral interaction law is investigated in the simple case of an inverse-power force law. Moreover, the results are compared with the previous ones of the literature. In particular, agreement is found with Wannier's results in the Maxwell model and with the results of the first Chapman-Enskog approximation. On the contrary, some discrepancies with the one-temperature formulation of the moment method are encountered as regards the transverse ion temperature and the transverse diffusion coefficient, but this appears to be due to the questionable computational criteria used in the above method. Finally, the limits of validity of the present formulas are discussed.
Dynamic properties and third order diffusion coefficients of ions in electrostatic fields
NASA Astrophysics Data System (ADS)
Koutselos, Andreas D.
1997-05-01
Velocity correlation functions and third order diffusion coefficients of ions moving in a buffer gas under the influence of an electrostatic field are determined via molecular dynamics simulation. For the closed shell system of K+ in Ar using a universal interaction model potential, the general form of the third order correlation functions is found to be monotonically decaying in time except in the cases of <ΔvZ(0)ΔvX(t)2>, <ΔvZ(0)ΔvY(t)2>, and <ΔvZ(0)ΔvZ(t)2>, with Δv(t)=v(t) -
NASA Astrophysics Data System (ADS)
Kis, Arpad; Scholer, Manfred; Klecker, Berndt; Lucek, Elisabeth; Reme, Henry
2010-05-01
We present simultaneous multipoint observations of diffuse ions in front of the Earth's quasi-parallel bow shock. For the analysis we use data provided by the Cluster CIS-HIA particle instrument and data from FGM magnetic field instrument. Several individual diffuse ion events during various solar wind conditions are presented and analysed. The diffusion coefficients at each analysed upstream ion event present unique characteristics especially at lower diffuse ion energies (around 10 keV). We analyse in detail the reasons for the observed differences in the value of the diffusion coefficient; results are also compared with predictions of the theory and the reason for the eventual difference is explained.
NASA Astrophysics Data System (ADS)
Batabyal, R.; Patra, S.; Roy, A.; Roy, S.; Bischoff, L.; Dev, B. N.
2009-10-01
We have fabricated parallel stripes of nanostructures in an n-type Si substrate by implanting 30 keV Ga + ions from a focused ion beam (FIB) source. Two sets of implantation were carried out. In one case, during implantation the substrate was held at room temperature and in the other case at 400 °C. Photoemission electron microscopy (PEEM) was carried out on these samples. The implanted parallel stripes, each with a nominal dimension of 4000 nm × 100 nm, appear as bright regions in the PEEM image. Line scans of the intensities from the PEEM image were recorded along and across these stripes. The intensity profile at the edges of a line scan is broader for the implantation carried out at 400 °C compared to room temperature. From the analysis of this intensity profile, the lateral diffusion coefficient of Ga in silicon was estimated assuming that the PEEM intensity is proportional to Ga concentration. The diffusion coefficient at 400 °C has been estimated to be ˜1.3 × 10 -15 m 2/s. Across the stripes an asymmetric diffusion profile has been observed, which has been related to the sequence of implantation of these stripes and the associated defect distribution due to lateral straggling of the implanted ions.
NASA Astrophysics Data System (ADS)
Mandl, S.; Rauschenbach, B.
2002-06-01
Expanded austenite, formed after nitrogen plasma immersion ion implantation or low energy nitriding of austenitic stainless, is characterized by a high nitrogen content CN of up to 20 at. % and an unusual fast diffusion, which in general cannot be described using a single diffusion coefficient. Here, the concentration dependent diffusivity is calculated for several experimental parameters and steel alloys. Two mathematical simplifications of the general diffusion theory, well justified for physical reasons, helped in solving the equations. First, a constant surface concentration was assumed, despite a constant nitrogen flux into the surface, and, second, only mobile nitrogen atoms in a stationary steel matrix were considered. Thus, it was possible to solve the Boltzmann-Matano equation and obtain the concentration dependent diffusion coefficient D(CN). In all cases, a step-like behavior, with a high value for high nitrogen contents and a low value for low ones, is found, with the transition point between a nitrogen concentration of 5 and 17 at. %, depending on the sample.
Diffusion Coefficients in White Dwarfs
NASA Astrophysics Data System (ADS)
Saumon, D.; Starrett, C. E.; Daligault, J.
2015-06-01
Models of diffusion in white dwarfs universally rely on the coefficients calculated by Paquette et al. (1986). We present new calculations of diffusion coefficients based on an advanced microscopic theory of dense plasmas and a numerical simulation approach that intrinsically accounts for multiple collisions. Our method is validated against a state-of-the-art method and we present results for the diffusion of carbon ions in a helium plasma.
NASA Astrophysics Data System (ADS)
Borovkov, V. I.
2007-02-01
The diffusion coefficients of radical ions of hexafluorobenzene, diphenylacetylene, triptycene, and tetraphenylnaphthalene were measured in liquid n-hexane and n-hexadecane at different temperatures. These were compared with the literature values of the diffusion coefficients of the corresponding neutral molecules in these solvents. Typically, the relative change in the diffusion coefficients decreased with increasing the size of particles or the temperature of solutions. No evidence for a specific manifestation of the low solvent polarity in the relative change was observed. In the case of triptycene in hexadecane solution, the enhancement of the solute's diffusion caused by ionization was found.
Diffusion coefficient of yttrium ion in YCrO{sub 3}
Kawamura, Kenichi; Saiki, Atushi; Maruyama, Toshio; Nagata, Kazuhiro
1995-09-01
The solid-state reaction; 1/2 Y{sub 2}O{sub 3} + 1/2 Cr{sub 2}O{sub 3} = YCrO{sub 3} was conducted between 1,458 and 1,719 K in air (P{sub O{sub 2}} = 0.21 atm). The reaction obeyed the parabolic rate law and the diffusion of yttrium ion controlled the reaction. According to Wagner`s theory, the diffusion coefficient of yttrium ion Y{sup 3+} in YCrO{sub 3} was evaluated using the Gibbs free energy change of the reaction and the parabolic rate constant. The defect reaction, Cr{sub 2}O{sub 3} + 3/2 O{sub 2} in the presence of YCrO{sub 3} yields 2 V{prime}{double_prime}{sub Y} + 2Cr{sub Cr}{sup x} + 6O{sub O}{sup X} + 6h{sup {sm_bullet}}, is predominant in the formation of yttrium vacancy. The diffusion coefficient of yttrium ion is given D{sub Y{sup 3+}}/m{sup 2} s{sup {minus}1} = [8.36 {times} 10{sup {minus}9} exp ({minus} 272/kJ/mol/RT)] P{sub O{sub 2}}{sup 3/16}a{sub Cr{sub 2}O{sub 3}}{sup 1/8} where a{sub Cr{sub 2}O{sub 3}} is activity of Cr{sub 2}O{sub 3} and P{sub O{sub 2}} is oxygen pressure.
Longitudinal and transverse diffusion coefficients for Li+ ion swarms in Kr gas
NASA Astrophysics Data System (ADS)
Tan, T. L.; Ong, P. P.; Li, M. M.
1995-10-01
The ratio of the transverse diffusion coefficient to mobility, DT/K at 309 K for Li+ ion swarms drifting in Kr gas in the E/N (electric field to neutral gas number density ratio) range of 5 to 170 Td, was experimentally determined with an overall accuracy of +/-4%. The DT/K results were effectively corrected for longitudinal end effects present appreciably in the drift tube by an analysis which requires the measurement of variance
Direct measurement of small diffusion coefficients with secondary ion mass spectroscopy
NASA Astrophysics Data System (ADS)
Macht, M.-P.; Naundorf, V.
1982-11-01
Sputter sectioning in combination with secondary ion mass spectroscopy enables the determination of very small diffusion coefficients which are not attainable with classical sectioning techniques. The exceedingly good depth resolution of the sputter sectioning and the high sensitivity of the mass spectroscopy allow to resolve penetration profiles of solutes in the 10-nm range at the ppm level. Two perturbing effects, inherent to the method and limiting its sensitivity are discussed: degradation of depth resolution by surface roughening and atomic mixing, and near surface distortion of profiles by transient erosion effects. Degradation of depth resolution was minimized by use of single crystalline specimens and low energy sputtering with reactive ions. To overcome the near surface distortions a special sample preparation technique has been developed, resulting in single crystalline specimens with one or more inserted layers of the solutes to be diffused. The application of the method is demonstrated by examples of thermal- and irradiation-induced diffusion of nickel in copper, and the main errors are discussed.
NASA Astrophysics Data System (ADS)
Harvey, R. W.; Smirnov, A. P.; Ershov, N. M.; Bonoli, P.; Wright, J. C.; Jaeger, F.; Batchelor, D. B.; Berry, L. A.; Carter, M. D.; Smithe, D. N.
2003-10-01
Numerical calculations of bounce-averaged ion velocity-space diffusion coefficients resulting from full-wave code electromagnetic fields in tokamak geometry have been implemented by two methods: (1) appropriate averaging of velocity "kicks" during one transit of the torus cross-section calculated by direct numerical integration of the Lorentz equation of motion in tokamak and full-wave EM fields; and (2) local Fourier analysis of full-wave fields to obtain wavenumbers and polarizations, followed by analysis with a previously implemented ray-tracing/quasilinear-diffusion-coefficient calculation in the CQL3D collisional-quasilinear Fokker-Planck code. Diffusion coefficient results from the two approaches are compared. The diffusion coefficients are used in the FP code for calculation of the RF-driven nonthermal ion distributions.
Measurement of local ion diffusion coefficients in the Tokamak Fusion Test Reactor
NASA Astrophysics Data System (ADS)
Evensen, H. T.; Fonck, R. J.; Paul, S. F.; Scott, S. D.
1999-01-01
The perturbations in ion temperature, density and parallel velocity resulting from sawtooth disruptions in TFTR are measured with a novel diagnostic. The local ion thermal diffusivity, particle diffusivity and parallel momentum diffusivity are determined in a high power discharge at r/a = 0.64 by fitting the observed pulses to a simple model of the radial diffusive propagation of heat, particles and momentum caused by the crash. The incremental ion thermal diffusivity, χiinc, is found to be similar in amplitude to the ion and electron thermal diffusivities obtained from a steady state 1-D power balance analysis, and the particle and parallel momentum diffusivities are found to be an order of magnitude smaller than χiinc.
NASA Astrophysics Data System (ADS)
Thackston, M. G.; Byers, M. S.; Holleman, F. B.; Chelf, R. D.; Twist, J. R.; McDaniel, E. W.
1983-04-01
Longitudinal diffusion coefficients are measured for Tl+ in Kr and Xe, Li+ in Kr and Xe and cl- in N2. These diffusion coefficients are compared with the calculated ones from a previous measurement of ion mobility values.3 (AIP)
Drift Tube Measurements of Mobilities and Longitudinal Diffusion Coefficients of Ions in Gases.
NASA Astrophysics Data System (ADS)
Chelf, Roger Dale
The zero-field mobilities of Br('-) and NH(,4)('+) in O(,2) were determined as a function of gas temperature in a high pressure drift tube mass spectrometer. The mobilities and longitudinal diffusion coefficients of the ion-gas combinations Br('-) in Ne and Kr, Li('+) in Xe, and Tl('+) in Kr and Xe were determined as a function of E/N, where E is the electric field strength and N is the gas number density in a low pressure drift tube mass spectrometer. The measured longitudinal diffusion coefficients were used for a test and comparison of the generalized Einstein relations of Viehland-Mason and Waldman-Mason theories. The measured mobilities of Br('-) in Kr and Tl('+) in Kr were used in an iterative-inversion scheme from which the ion-neutral interaction potentials were determined. The zero-field reduced mobility of Br('-) in O(,2) ranged from 2.6 cm('2)/(V-sec) at 297(DEGREES)K to 3.0 cm('2)/(V-sec) at 600(DEGREES)K. The zero-field reduced mobility of NH(,4)('+) in O(,2) ranged from 3.4 cm('2)/(V -sec) at 418(DEGREES)K to 3.7 cm('2)/(V-sec) at 561(DEGREES)K. The zero-field values of the reduced mobilities measured as a function of E/N in units of cm('2)/(V-sec) are as follows: Br('-) in Kr (1.47 (+OR-) .03), Br('-) in Ne (6.94 (+OR -) .14), Li('+) in Xe (2.68 (+OR-) .05), Tl('+) in Kr (1.15 (+OR-) .03), and Tl('+) in Xe (.78 (+OR-) .02). The ion -gas combinations of Br('-) in Kr, Li('+) in Xe, and Tl('+) in Kr displayed the typical mobility peaks. The peak values in cm('2)/(V-sec) are for Br('-) in Kr, Li('+) in Xe, and Tl('+) in Kr respectively: (1.81 (+OR-) 0.4) at 130 Td, 4.47 (+OR-) .09 at 135 Td, and 1.42 (+OR-) .04 at 285 Td. The measured longitudinal diffusion coefficients were compared to the Einstein values in the low-field limit. Comparisons between the experimental values and the generalized Einstein relations (GER) of Viehland-Mason and Waldman-Mason were made at all E/N values. All comparisons were favorable within the error ranges. In general, the
Determination of the copper diffusion coefficient in silicon from transient ion-drift
NASA Astrophysics Data System (ADS)
Heiser, T.; Mesli, A.
1993-10-01
We use the transient ion drift in a depletion region of a Schottky barrier to determine ion diffusivities at moderate temperatures. The pulsed reverse bias leads to temperature dependent capacitance transients similar to deep level carrier emission transients. A simple theoretical model together with classical transient signal analysis provide the means to extract the ion diffusion constant. When applied to copper in silicon, diffusion data are obtained in a not yet investigated temperature range (280 400 K) which agree well with both low and high temperature diffusion data.
Mobilities and longitudinal diffusion coefficients for K+ ions in nitrogen and argon
NASA Astrophysics Data System (ADS)
Takebe, M.; Satoh, Y.; Iinuma, K.; Seto, K.
1980-10-01
We have constructed a drift tube with a movable ion source and measured the mobilities and longitudinal diffusion coefficients for K+ ions at 303 °K in N2 and at 305 °K in Ar in the pressure range 0.3-5.0 Torr, over the E/N range 4-346 Td in N2 and 3-320 Td in Ar. The zero-field reduced mobilities for K+ ions in N2 and Ar were determined to be 2.50±0.03 and 2.63±0.03 cm2/V sec, respectively. Both values are in excellent agreement with the values reported by Elford and Milloy. When our data are compared with the values obtained by Thomson et al. in N2 and the values obtained by James et al. in Ar over the entire E/N range, we find that the mean deviations are about 1.7%, independent of gas species and E/N. Our zero-field reduced mobilities are about 1.2% lower in both cases than the values compiled by Ellis et al. It is concluded that the discrepancy is due to a systematic error and is not caused by clustering reactions. The mean values of NDL over the E/N range 4-7 Td in N2 and 5-10 Td in Ar were found to be 1.96×1018 and 2.09×1018 cm-1 sec-1, respectively. Both values are about 7% higher than the values calculated from our mobility data by the generalized Einstein relation and from the same parameters reported by Pai et al.
NASA Astrophysics Data System (ADS)
Takebe, M.; Satoh, Y.; Iinuma, K.; Seto, K.
1982-03-01
The mobility of Li+ ions has been measured in Ar, Kr, and Xe at room temperature over the E/N range 6-218 Td in Ar, 8-216 Td in Kr, and 8-228 Td in Xe using a drift tube without mass spectrometer. The pressures used were 0.3-2.0 Torr for argon and 0.5-2.0 Torr for krypton and xenon. It is found that mobilities can be deduced from arrival time spectra which have been affected by reactions. The zero-field reduced mobilities are found to be 4.56±0.05 cm2/V s for Ar, 3.65±0.04 cm2/V s for Kr, and 2.77±0.03 cm2/V s for Xe. These mobility values are higher than the Langevin values by 2.3%, 4.9%, and 3.4%, respectively. The longitudinal diffusion coefficients were also measured and compared with values calculated using the generalized Einstein relations and the present mobility data. The experimental values are somewhat higher than the calculations in all cases.
NASA Astrophysics Data System (ADS)
Satoh, Y.; Takebe, M.; Iinuma, K.
1987-12-01
The transport coefficients for Li+ ions in some moleculars gases have been measured over a wide range of E/N with a conventional drift tube at temperatures close to 300 K. The zero-field reduced mobilities are found to be 3.91±0.11, 4.44±0.12, 3.64±0.10, 2.46±0.07, and 3.44±0.10 cm2/V s in N2, O2, CO, CO2, and CH4 gas, respectively, and these values except in O2 gas significantly deviate from the Langevin limit. In N2, CO, and CO2 gas, the resulting mobility curves show clear minima at intermediate E/N, but the depressions in O2 and CH4 gas are slight. The drop of the zero-field values in N2, CO, and CO2 gas is explained in terms of an effective ion-quadrupole interaction which provides the r-6 attractive behavior. From the mobility calculations with using n-4-6(γ) potential, it is suggested that the depression of the mobility curve is developed by the addition of a sufficient r-6 term and is partly attributed to inelastic collisions as expected even at intermediate E/N. The experimental diffusion data are compared with the values derived from the generalized Einstein relation. For all systems, the agreement is quite good at intermediate E/N, but there are large discrepancies at other E/N. The sources of the deviation are considered to be clustering reactions and inelastic collisions at low and high field, respectively.
NASA Astrophysics Data System (ADS)
Radhi, M. M.; Amir, Y. K. A.; Alwan, S. H.; Tee, T. W.
2013-04-01
Glassy carbon electrode (GCE) was modified with carbon nanotubes (CNT), C60 and activated carbon (AC) by mechanical attachment method and solution evaporation technique to preparation CNT/GCE, C60/GCE and AC/GCE, these electrodes were modified in Li+ solution via cyclic voltammetry (CV) potential cycling to preparing CNT/Li+/GCE, C60/Li+/GCE and AC/Li+/GCE. The sensing characteristics of the modified film electrodes, demonstrated in the application study for different heavy metal ions such as Hg2+, Cd2+, and Mn2+. Cyclic voltammetric effect by chronoamperometry (CA) technique was investigated to determination the diffusion coefficient (Df) values from Cottrell equation at these ions. Based on Cottrell equation (diffusion coefficient) of the redox current peaks of different heavy metal ions at different modified electrodes were studied to evaluate the sensing of these electrodes by the diffusion coefficient values. The modification of GCE with nano materials and Li+ act an enhancement for the redox current peaks to observe that the diffusion process are high at CNT/Li+/GCE, C60/Li+/GCE and AC/Li+/GCE, but it has low values at unmodified GCE.
NASA Astrophysics Data System (ADS)
Koutselos, Andreas D.
1996-06-01
The dynamic and transport properties of swarms of ions in a uniform electrostatic field are studied by using a molecular dynamics method. For a representative system, K+ in Ar, using a universal interaction model potential, second and third order ion-velocity correlation functions are determined at various field strengths. From them, Fickian diffusion coefficients parallel and perpendicular to the field, as well as higher order diffusion coefficients, Qzzz, are obtained within estimated overall accuracy 5% and 7%, respectively. Comparisons of the Fickian diffusion coefficients against results of the moment solution of Boltzmann kinetic equation and a Monte Carlo simulation method using the same interaction potential as well as against experimental data, reveal consistency among all calculation procedures and in addition agreement with drift tube measurements. These comparisons provide new tests for the accuracy of the employed interaction potential. The method has been applied for up to third order velocity correlations and diffusion coefficients but it is extendible to higher order dynamic and transport properties.
Computations of ion diffusion coefficients from the Boltzmann-Fokker-Planck equation
NASA Technical Reports Server (NTRS)
Roussel-Dupre, R.
1981-01-01
The Boltzmann-Fokker-Planck equation is solved with the Chapman-Enskog method of analysis for the velocity distribution functions of helium, carbon, nitrogen, and oxygen. The analysis is a perturbation scheme based on the assumption of a collision-dominated gas, and the calculations are carried out to first order. The elements considered are treated as trace constituents in an electron-proton gas. From the resulting distribution functions, diffusion coefficients are computed which are found to be 20-30% less than those obtained by Chapman and Burgers. In addition, it is shown that the return current of cold electrons needed to maintain quasi-neutrality in a plasma with a temperature gradient contributes a term in the thermal diffusion coefficient omitted erroneously in previous works. This added term resolves the longstanding controversy over the discrepancy between the coefficients of Chapman and Burgers, which are seen to be completely equivalent in the light of this analysis. The viscosity coefficient for an electron-proton gas is also computed and found to be 7% less than that obtained by Braginskii.
Diffusion coefficients of actinide and lanthanide ions in molten Li[sub 2]BeF[sub 4
Moriyama, Hirotake; Moritani, Kimikazu; Ito, Yasuhiko . Dept. of Nuclear Engineering)
1994-01-01
In the conceptual design of molten salt breeder reactors (MSBR) developed at ORNL, molten fluoride mixtures are used as the fuel carrier and coolant. The fuel salt must be reprocessed continuously in order to meet a high breeding ratio. The main function of the reprocessing are to isolate [sup 233]Pa from the neutron flux and to remove the fission product lanthanides having high neutron absorption cross sections. The processing method involves the reductive extraction of these components from the fuel salt into liquid bismuth solutions in a two phase contacting system. Diffusion coefficients of actinide and lanthanide ions in molten Li[sub 2]BeF[sub 4] were measured in the temperature range from 813 to 1,023 K by a capillary method. The diffusion coefficients of both ions are unusually high, considering the high viscosity of the liquids. The dependence of the diffusion coefficients on temperature and ionic charge are discussed in terms of the theories of Stokes and Einstein.
NASA Astrophysics Data System (ADS)
Dryahina, K.; Spanel, P.
2005-07-01
A method to calculate diffusion coefficients of ions important for the selected ion flow tube mass spectrometry, SIFT-MS, is presented. The ions, on which this method is demonstrated, include the SIFT-MS precursors H3O+(H2O)0,1,2,3, NO.+(H2O)0,1,2 and O2+ and the product ions relevant to analysis of breath trace metabolites ammonia (NH3+(H2O)0,1,2, NH4+(H2O)0,1,2), acetaldehyde (C2H4OH+(H2O)0,1,2), acetone (CH3CO+, (CH3)2CO+, (CH3)2COH+(H2O)0,1, (CH3)2CO.NO+), ethanol (C2H5OHH+(H2O)0,1,2) and isoprene (C5H7+, C5H8+, C5H9+). Theoretical model of the (12, 4) potential for interaction between the ions and the helium atoms is used, with the repulsive part approximated by the mean hard-sphere cross section and the attractive part describing ion-induced dipole interactions. The reduced zero-field mobilities at 300 K are calculated using the Viehland and Mason theory [L.A. Viehland, S.L. Lin, E.A. Mason, At. Data Nucl. Data Tables, 60 (1995) 37-95], parameterised by a simple formula as a function of the mean hard-sphere cross section, and converted to diffusion coefficients using the Einstein relation. The method is tested on a set of experimental data for simple ions and cluster ions.
Tseng, Y.J.; Huang, S.-C.; Chu, W.C.
2005-04-01
A least-squares error minimization approach was adopted to assess ferric ion diffusion coefficient of Fricke-agarose gels. Ferric ion diffusion process was modeled as a Gaussian-shaped degradation kernel operating on an initial concentration distribution. Diffusion coefficient was iteratively determined by minimizing the error function defined as the difference between the theoretically calculated and the experimentally measured dose distributions. A rapid MR image-based differential gel dosimetry technique that time resolves the evolution of the ferric ion diffusion process minimizes smearing of the dose distribution. Our results showed that for a Fricke-agarose gel contained 1 mM ammonium ferrous sulfate, 1% agarose, 1 mM sodium chloride, and 50 mM sulfuric acid, its ferric ion diffusion coefficient is (1.59{+-}0.28)x10{sup -2} cm{sup 2} h{sup -1} at room temperature. This value falls within the 1.00-2.00x10{sup -2} cm{sup 2} h{sup -1} range previously reported under varying gelling ingredients and concentrations. This method allows a quick, nondestructive evaluation of the ferric ion diffusion coefficient that can be used in conjunction with the in situ gel dosimetry experiment to provide a practical diffusion characterization of the dosimeter gel.
NASA Astrophysics Data System (ADS)
Batalioto, F.; Barbero, G.; Figueiredo Neto, A. M.
2007-11-01
We analyze the influence of Ohmic electrodes on the impedance spectroscopy of an electrolytic cell in the shape of a slab. The electrolyte is assumed completely dissociated. The positive and negative ions have different diffusion coefficients. We show that in the very low frequency limit, the electrical impedance of the cell reduces to a pure resistance, whose value depends on the diffusion coefficients and on the conductivity of the electrodes. The ratio between the diffusion coefficients determines the numerical value of the plateaus of the resistance, and the position and amplitude of the local minimum of the reactance of the cell.
NASA Astrophysics Data System (ADS)
Stefánsson, Thórarinn; Skullerud, H. R.
1999-03-01
The ratio 0953-4075/32/5/001/img1 between the transverse diffusion coefficient and the mobility for 0953-4075/32/5/001/img2 ions in argon has been determined from directly measured transverse current density distribution profiles of mass-analysed ions, as a function of the ratio 0953-4075/32/5/001/img3 between the electric field and the gas number density in the interval 0953-4075/32/5/001/img4 Td, at gas temperature T = 294 K using a variable-length drift tube mass spectrometer. The error (two standard deviations) in the results is believed to be less than 0953-4075/32/5/001/img5% for 0953-4075/32/5/001/img6 Td, thereafter gradually increasing to 0953-4075/32/5/001/img7% at 4000 Td. The results are compared with moment theory calculations based on an analytical four-parameter model potential. The agreement between measured and calculated values is very good except at the highest 0953-4075/32/5/001/img3-values.
Portable vapor diffusion coefficient meter
Ho, Clifford K.
2007-06-12
An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.
NASA Astrophysics Data System (ADS)
Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Shen, Chao; Wang, Yuming; Wang, Shui
2012-09-01
The electromagnetic ion cyclotron (EMIC) wave has long been suggested to be responsible for the rapid loss of radiation belt relativistic electrons. The test-particle simulations are performed to calculate the bounce-averaged pitch angle advection and diffusion coefficients for parallel-propagating monochromatic EMIC waves. The comparison between test-particle (TP) and quasi-linear (QL) transport coefficients is further made to quantify the influence of nonlinear processes. For typical EMIC waves, four nonlinear physical processes, i.e., the boundary reflection effect, finite perturbation effect, phase bunching and phase trapping, are found to occur sequentially from small to large equatorial pitch angles. The pitch angle averaged finite perturbation effect yields slight differences between the transport coefficients of TP and QL models. The boundary reflection effect and phase bunching produce an average reduction of >80% in the diffusion coefficients but a small change in the corresponding average advection coefficients, tending to lower the loss rate predicted by QL theory. In contrast, the phase trapping causes continuous negative advection toward the loss cone and a minor change in the corresponding diffusion coefficients, tending to increase the loss rate predicted by QL theory. For small amplitude EMIC waves, the transport coefficients grow linearly with the square of wave amplitude. As the amplitude increases, the boundary reflection effect, phase bunching and phase trapping start to occur. Consequently, the TP advection coefficients deviate from the linear growth with the square of wave amplitude, and the TP diffusion coefficients become saturated with the amplitude approaching 1 nT or above. The current results suggest that these nonlinear processes can cause significant deviation of transport coefficients from the prediction of QL theory, which should be taken into account in the future simulations of radiation belt dynamics driven by the EMIC waves.
NASA Astrophysics Data System (ADS)
Su, Z.; Zhu, H.; Xiao, F.; Zheng, H.; Shen, C.; Wang, Y.; Wang, S.
2012-12-01
The electromagnetic ion cyclotron (EMIC) wave has been long suggested to be responsible for the rapid loss of radiation belt relativistic electrons. The test-particle simulations are performed to calculate the bounce-averaged pitch-angle advection and diffusion coefficients for parallel-propagating monochromatic EMIC waves. The comparison between test-particle (TP) and quasi-linear (QL) transport coefficients is further made to quantify the influence of nonlinear processes. For typical EMIC waves, four nonlinear physical processes, i.e., the boundary reflection effect, finite perturbation effect, phase bunching and phase trapping, are found to occur sequentially from small to large equatorial pitch angles. The pitch-angle averaged finite perturbation effect yields slight differences between the transport coefficients of TP and QL models. The boundary reflection effect and phase bunching produce an average reduction of >80% in the diffusion coefficients but a small change in the corresponding average advection coefficients, tending to lower the loss rate predicted by QL theory. In contrast, the phase trapping causes continuous negative advection toward the loss cone and a minor change in the corresponding diffusion coefficients, tending to increase the loss rate predicted by QL theory. For small amplitude EMIC waves, the transport coefficients grow linearly with the square of wave amplitude. As the amplitude increases, the boundary reflection effect, phase bunching and phase trapping start to occur. Consequently, the TP advection coefficients deviate from the linear growth with the square of wave amplitude, and the TP diffusion coefficients become saturated with the amplitude approaching 1nT or above. The current results suggest that these nonlinear processes can cause significant deviation of transport coefficients from the prediction of QL theory, which should be taken into account in the future simulations of radiation belt dynamics driven by the EMIC waves.
NASA Astrophysics Data System (ADS)
Lee, K.; Nam, J.-D.
In direct methanol fuel cells (DMFCs), the optimum characteristics of ion-exchange membranes are investigated at high concentrations of methanol feed up to 7 M by modifying the diffusion coefficient and the ionic conductivity of the polyelectrolyte material. A Nafion membrane is modified by the incorporation of layered double hydroxide (LDH) nanoplatelets with different Mg 2+:Al 3+ ratios. When the feed concentration of methanol is lower than 3 M, the DMFC is controlled by the ionic conductivity of the polyelectrolyte membrane because methanol cross-over is not relatively significant. When the feed concentration is high, however, the diffusion coefficient of methanol is the key factor that determines the performance of the fuel cell. This is due to a high concentration gradient of methanol across the polyelectrolyte membrane. The open-circuit voltage is increased by the decreased diffusion coefficient in LDH/Nafion nanocomposite membranes at methanol feed concentrations up to 7 M; apparently because methanol cross-over is suppressed by the incorporation of LDH. The maximum power density of the DMFC is determined by the two competing transport processes of ion conduction and methanol diffusion, especially at a relatively high methanol concentration, that can provide optimum operating conditions in the membrane.
NASA Astrophysics Data System (ADS)
Rafik, Besbes; Noureddine, Ouerfelli; Abderabbou, Abdelmanef; Habib, Latrous
2010-03-01
We have continued the studies on the trivalent ions of the 4f and 5f elements. In this paper, we compare the transport properties (self-diffusion coefficient) of the trivalent aquo ions over two ranges of concentrations (0 — 2×10-3M) and (2×10-3 — 1.5M). Self-diffusion coefficients, D, of the trivalent f-element aquo ion series have been determined in aqueous background electrolytes of Gd(NO3)3 and Nd(ClO4)3, at pH=2.5 (HNO3, HClO4) and at 25°C using the open-end capillary method (O.E.C.M.). This method measures the transportation time of ions across a fixed distance. In this paper, we complete a measurement of self-diffusion coefficient for terbium. We optimized the pH to avoid hydrolysis, ion-pairing and complexation of the trivalent 4f and 5f ions. The variation of D versus √C is not linear for dilute solutions (0 — 2×10-3M) and quasi-linear in moderate concentrations (C<=1.5 M). Similar behavior was observed for Tb, as compared with those for Bk, Eu and Gd. We complete the comparison variation of D/D° versus √C for all studied 4f and 5f elements from concentration 0 to 1.5M and we obtained the same variation with √C for all studied elements. All 4f and 5f elements studied follow the Nernst-Hartley expression.
NASA Astrophysics Data System (ADS)
Compañ, Vincente; Smith Sørensen, Torben; Diaz-Calleja, Ricardo; Riande, Evaristo
1996-01-01
The dielectric dispersion measurements of Furukawa et al. are treated in the light of a previously proposed model of Trukhan. The latter describes the influence of mobile ions on the dielectric dispersion in a slab of material placed between polarizable electrodes. It is shown that the so-called ``constant phase element'' is just a crude approximation to the predictions of the theory of Trukhan, an approximation not valid at very low frequencies. At low frequencies macropolarizations appear analogous to the ones observed in asymmetric cellulose acetate membranes by Malmgren-Hansen et al. The polarizations are much larger in the present case, and this indicates that there are no microheterogeneities in the polymeric film of Furukawa et al. The diffusion coefficient of the most rapidly diffusing ion (presumably H+) may be found as a function of temperature within some uncertainty. The Arrhenius plot shows clearly the change in activation energy around the glass transition temperature (182 °C). Below the glass transition the activation energy for diffusion is much larger (˜50000 K) than above. The diffusion coefficients increase from ˜10-17 m2/s at 170 °C to ˜5.10-16 m2/s at 195 °C. The concentration of electrolyte present in the polymer increases from ˜15 to ˜200 mol m-3 in the same temperature interval.
Search for selective ion diffusion through membranes
NASA Technical Reports Server (NTRS)
May, C. E.; Philipp, W. H.
1983-01-01
The diffusion rates of several ions through some membranes developed as battery separators were measured. The ions investigated were Li(+), Rb(+), Cl(-), and So4. The members were crosslinked polyvinyl alcohol, crosslinked polyacrylic acid, a copolymer of the two, crosslinked calcium polyacrylate, cellulose, and several microporous polyphenylene oxide based films. No true specificity for diffusion of any of these ions was found for any of the membranes. But the calcium polyacrylate membrane was found to exhibit ion exchange with the diffusing ions giving rise to the leaching of the calcium ion and low reproducibility. These findings contrast earlier work where the calcium polyacrylate membrane did show specificity to the diffusion of the copper ion. In general, Fick's law appeared to be obeyed. Except for the microporous membranes, the coefficients for ion diffusion through the membranes were comparable with their values in water. For the microporous membranes, the values found for the coefficients were much less, due to the tortuosity of the micropores.
Molecular Diffusion Coefficients: Experimental Determination and Demonstration.
ERIC Educational Resources Information Center
Fate, Gwendolyn; Lynn, David G.
1990-01-01
Presented are laboratory methods which allow the demonstration and determination of the diffusion coefficients of compounds ranging in size from water to small proteins. Included are the procedures involving the use of a spectrometer, UV cell, triterated agar, and oxygen diffusion. Results including quantification are described. (CW)
NASA Astrophysics Data System (ADS)
Díaz, R.
2012-06-01
Diffusion coefficients of two mobile ions are computed from the conductivity variation with time of three In-rich chalcopyrite single crystals of the ABn-3Inn+1VI2n system (AB=Cu and Ag and VI=Se or Te). The coefficients have similar values in the three compounds, higher than in chalcopyrite compounds (ABInSe2) due to a higher number of (2VCu+InCu) defect pairs in the lattice. In each compound, the potential across the sample or the current intensity, Vm and I, can increase or decrease within time due to a change in the interface potential by the ion arrival, where the decrease could be explained by a charge decrease. Mobile ions arrive while others, with higher charge, should leave related to the formation or disappearance of (2VCu+InCu) defect pairs. Compositional measurements confirm the motion of Cu ions and In antisites, InCu, in the Cu sublattice. Therefore, these compounds are mixed ionic and electronic conductors, MIECs, with two mobile ions, where the electronic and ionic conductions are non-blocked and blocked in the metal/semiconductor interface respectively. An equivalent electrical circuit is proposed, extensible at MIECs with j mobile ions, where the interface potential is similar to the potential drop in the charge or discharge in the capacitor. The analysis of the total flux of ions due to diffusion, jdiff, and to the action of electrical field, jdrift, permits compute the number of ions, their diffusion coefficients and the change of the potential drop within time in the interface in compounds with several mobile ions. This electrical model is checked using the experimental data in the three single crystals in a computer program. To know different mobile ions in In-rich chalcopyrites and their diffusion coefficients will permit to understand and have mechanisms of control in solar cell fabrication based in chalcopyrite thin films.
Diffusion and transport coefficients in synthetic opals
Sofo, J. O.; Mahan, G. D.
2000-07-15
Opals are structures composed of close-packed spheres in the size range of nano to micrometers. They are sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures. The relation between the diffusion coefficient and the thermal and electrical conductivity is used to estimate the transport coefficients of opal structures as a function of the neck size and the mean free path of the carriers. The theory presented is also applicable to the diffusion problem in other periodic structures. (c) 2000 The American Physical Society.
Diffusion and ion mixing in amorphous alloys
Hahn, H.; Averback, R.S.; Ding, F.; Loxton, C.; Baker, J.
1986-10-01
Tracer impurity diffusion and ion beam mixing in amorphous (a-)Ni/sub 50/Zr/sub 50/ were measured. A correlation between the metallic radius of an impurity and its tracer diffusivity was observed; it is similar to that found in crystalline ..cap alpha..-Zr and ..cap alpha..-Ti. In addition, the temperature dependence of diffusion in a-NiZr exhibits Arrhenius behavior. Ion beam mixing of different impurities in a-NiZr correlates with tracer diffusivity at both high and low temperatures. At higher temperatures radiation enhanced diffusion (RED) was observed. The activation enthalpy of the RED diffusion coefficient is 0.3 eV/atom.
NASA Astrophysics Data System (ADS)
Iinuma, K.; Takebe, M.; Satoh, Y.; Seto, K.
1983-10-01
The mobility of Na+ ions has been measured at 313 K in Ne, at 314.5 K in Ar, and at 311 K in CH4 in the pressure range 0.05-1.2 Torr, over the E/N range 3-123 Td in Ne, 6-409 Td in Ar, and 13-520 Td in CH4 (E is the electric field strength, N the neutral gas number density, and 1 Td=10-17 V cm2). The measurements were made with a continuous guard-ring system which is different from conventional thin or thick type. The zero-field reduced mobilities are found to be 7.90±0.19 in Ne, 3.01±0.07 in Ar, and 2.58±0.06 cm2/V s in CH4, which are about +17.3%, +6.24%, and -8.53% higher than the Langevin polarization-limit mobilities, respectively. The mobility data in Ne and Ar have been compared with those of others over the whole E/N range. The longitudinal diffusion coefficients were also measured and compared with the data compiled by Ellis et al. and the theoretical values calculated by the generalized Einstein relations.
Testing ion-neutral interaction potentials using calculated ion transport coefficients.
Hogan, M J
2006-10-28
Several commonly measured ion transport coefficients were investigated in order to determine their sensitivity for testing and comparing proposed ion-neutral interaction potentials. A variety of positive ions, negative ions, neutrals, and temperatures were included in order to draw as general a conclusion as possible. All transport coefficients considered were found to be sufficiently sensitive to be used to clearly distinguish between less and more accurate interaction potentials. It was also found that the longitudinal diffusion coefficient is the most sensitive test, followed by both the transverse diffusion coefficient and the ratio of the longitudinal diffusion coefficient to mobility, followed by the ratio of the transverse diffusion coefficient to mobility and that the mobility is the least sensitive test. When presently achievable levels of experimental error were also taken into account, however, there was no significant difference in the sensitivities. PMID:17092091
Correlation and prediction of gaseous diffusion coefficients.
NASA Technical Reports Server (NTRS)
Marrero, T. R.; Mason, E. A.
1973-01-01
A new correlation method for binary gaseous diffusion coefficients from very low temperatures to 10,000 K is proposed based on an extended principle of corresponding states, and having greater range and accuracy than previous correlations. There are two correlation parameters that are related to other physical quantities and that are predictable in the absence of diffusion measurements. Quantum effects and composition dependence are included, but high-pressure effects are not. The results are directly applicable to multicomponent mixtures.
THE DIFFUSION COEFFICIENT OF CRYSTALLINE TRYPSIN
Scherp, Henry W.
1933-01-01
The diffusion coefficient of crystalline trypsin in 0.5 saturated magnesium sulfate at 5°C. is 0.020 ±0.001 cm.2 per day, corresponding to a molecular radius of 2.6 x 10–7 cm. The rate of diffusion of the proteolytic activity is the same as that of the protein nitrogen, indicating that these two properties are held together in chemical combination and not in the form of an adsorption complex. PMID:19872740
NASA Astrophysics Data System (ADS)
Oelkers, Eric H.; Helgeson, Harold C.
1988-01-01
Accurate values of diffusion coefficients for aqueous species are a requisite for predicting mass transfer in many geochemical processes. Tracer diffusion coefficients can be calculated from the limiting equivalent conductances of ions using the Nernst-Einstein equation. A corresponding states approach yields an isothermal/isobaric correlation between the limiting equivalent conductances and the standard partial molal entropies of aqueous species and electrolytes. These correlations, together with an equation of state for the standard partial molal entropies of aqueous species ( TANGER and HELGESON, 1987) and a modified Arrhenius representation of the limiting equivalent conductances of aqueous electrolytes, can be used to predict as a function of temperature and pressure the limiting equivalent conductances of many electrolytes of geologic interest for which no high pressure/temperature experimental data are available. Combining these estimates with the linear dependence of the logarithm of the ratio of the anion to cation transference number for NaCl on reciprocal temperature observed by SMITH and DISMUKES (1964) permits prediction of the limiting equivalent conductances of ions, and therefore tracer diffusion coefficients at temperatures and pressures to 1000°C and 5 kb. Values of these coefficients are given in tables for 30 monovalent anions, monovalent cations, and divalent cations of geologic interest at high temperatures and pressures. The diffusion coefficients increase with increasing temperature by ~two orders of magnitude from 0° to 1000°C. In contrast, they decrease slightly with increasing pressure.
The electron diffusion coefficient in Jupiter's magnetosphere
NASA Technical Reports Server (NTRS)
Birmingham, T.; Northrop, T.; Baxter, R.; Hess, W.; Lojko, M.
1974-01-01
A steady-state model of Jupiter's electron radiation belt is developed. The model includes injection from the solar wind, radial diffusion, energy degradation by synchrotron radiation, and absorption at Jupiter's surface. A diffusion coefficient of the form D sub RR/R sub J squared = k times R to the m-th power is assumed, and then observed data on synchrotron radiation are used to fit the model. The free parameters determined from this fit are m = 1.95 plus or minus 0.5, k = 1.7 plus or minus 0.5 x 10 to the 9th power per sec, and the magnetic moment of injected particles equals 770 plus or minus 300 MeV/G. The value of m shows quite clearly that the diffusion is not caused by magnetic pumping by a variable solar wind or by a fluctuating convection electric field. The process might be field line exchange driven by atmospheric-ionospheric winds; our diffusion coefficient has roughly the same radial dependence but is considerably smaller in magnitude than the upper bound diffusion coefficients recently suggested for this process by Brice and McDonough (1973) and Jacques and Davis (1972).
Luo, Yun; Egwolf, Bernhard; Walters, D. Eric; Roux, Benoît
2010-01-01
The α-hemolysin (αHL) is a self-assembling exotoxin that binds to the membrane of a susceptible host cell and causes its death. Experimental studies show that electrically neutral β-cyclodextrin (βCD) can insert into the αHL channel and significantly increase its anion selectivity. To understand how βCD can affect ion selectivity, molecular dynamics (MD) simulations potential of mean force (PMF) calculations are carried out for different αHL channels with and without βCD adapter. A multiscale approach based on the Generalized Solvent Boundary Potential (GSBP) is used to reduce the size of the simulated system. The PMF profiles reveal that βCD has no anion selectivity by itself, but can increase the Cl− selectivity of the αHL channel when lodged into the pore lumen. Analysis shows that βCD causes a partial desolvation of ions and affects the orientation of nearby charged residues. The ion selectivity appears to result from increased electrostatic interaction between the ion and the channel due to a reduction in dielectric shielding by the solvent. These observations suggest a reasonable explanation of the ion selectivity and provide important information for further ion channel modification. PMID:20041673
Micro-Fluidic Diffusion Coefficient Measurement
Forster, F.K.; Galambos, P.
1998-10-06
A new method for diffusion coefficient measurement applicable to micro-fluidics is pre- sented. The method Iltilizes an analytical model describing laminar dispersion in rect- anglllar ~llicro_channe]s. The Illethod ~vas verified throllgh measllremen~ of fllloresceill diffusivity in water and aqueolls polymer solutions of differing concentration. The diffll- sivity of flllorescein was measlmed as 0.64 x 10-gm2/s in water, 0.49 x 10-gm2/s in the 4 gm/dl dextran solution and 0.38 x 10-9n12/s in the 8 gnl/dl dextran solution.
Trace-Element Diffusion Coefficients in Olivine
NASA Astrophysics Data System (ADS)
Spandler, C.; O'Neill, H. S.
2006-12-01
We have undertaken chemical diffusion experiments at 1300°C to determine both crystal/melt partition coefficients and diffusion coefficients for a wide range of trace elements in forsteritic olivine. Experiments were conducted at 1 atm under controlled fO2 for up to 25 days using synthetic melts made to a composition in equilibrium with olivine for major elements, and doped with selected trace elements. The melt was put into a 5 mm diameter cylindrical hole in gem quality San Carlos olivine crystals drilled paralell to the a axis. Diffusion profiles were obtained both for trace elements that were added to the starting material and diffuse into the olivine, and also for several trace elements present at natural abundances in the olivine that diffuse out. The profiles were measured across sections perpendicular to crystal/melt boundary at a variety of crystallographic orientations (confirmed by EBSD) by laser-ablation ICP-MS. A thin laser slit oriented parallel to the crystal/melt interface was traversed from the melt through the crystal. Element concentrations were fitted to the diffusion equation to obtain both diffusion coefficients and concentrations at the crystal/melt interface, and hence partition coefficients. Calculated diffusivities for many trace elements (Ca, REE, Y, Sc, V, Cr, Ni, Co, Mn, Na, Li, Be, Ti) are relatively fast (D = 10-16 to 10^{-13 m2/s at 1300°C). The diffusion of Li in olivine (approx. D = 10^{-15} m2/s) is only slightly slower than REEs and similar to divalent cations, in good agreement with inferences from zoning profiles in natural olivine [1]. This rate is considerably slower than for plagioclase and clinopyroxene [2], a result which has important implications for interpreting Li isotopic data from mantle-derived rocks. The fastest diffusing trace element we observe is Be. Applying our diffusion and partition coefficients to the model of Qin et al. [3], we calculate that the REEs of olivine-hosted melt inclusions in the mantle will
NASA Astrophysics Data System (ADS)
Shi-jie, Wen; Li-quan, Chen
1996-09-01
In this paper, a new experimental method of lithium ion diffusion coefficient measurement for lithium intercalation thin film material is presented. This experimental method is feasible and can be applied to thin films with unknown lithium composition such as LiαCoO2 etc. To check its validity, we used the impedance spectroscopy method to make a verification on the WO3 thin film sample with known lithium composition.
NASA Astrophysics Data System (ADS)
García López, J.; Siejka, J.; Lemaitre, Y.; Mage, J. C.; Marcilhac, B.
An experimental chamber was connected to the 2.5 MV Van de Graaff accelerator allowing in situ sample annealing at T ≤ 700°C and under pO2 ranging from 10-8 to 1 bar. For the first time to our knowledge the 16O(3He,α)15O nuclear reaction has been employed to monitor in situ the oxygen loss and uptake in Y1Ba2Cu3 O7-x (YBCO) thin films as a function of oxygen pressure and temperature (T ≤ 500°C). The role played by the presence of carbon contamination on YBCO surface was elucidated. Using the 12C(d,p)13C nuclear reaction the carbon loss was observed for T ≥ 250°C and it was associated with the oxygen loss enhancement in YBCO. It is found that in absence of carbon contamination, oxygen in-diffusion rate in YBCO is much faster than the out-diffusion rate, the later being surface reaction limited. The oxygen diffusion coefficients and the surface exchange coefficients of YBCO films have been evaluated. These results will be discussed in relation with the mechanism of high temperature YBCO thin film growth by cathodic sputtering and with the mechanism of the oxygen loss and/or uptake during the sample cooling.
Estimating Vertical Diffusion Coefficients By Lidar
NASA Technical Reports Server (NTRS)
Culkowski, Walter M.; Swisher, Searle D.
1973-01-01
The Atmospheric Turbulence and Diffusion Laboratory at Oak Ridge, Tennessee has been conducting routine probing of the lower troposphere and comparing the results with those obtained with turbidity photometers and a distant suspended particulate station. The change in scale height, K (sub z) divided by v (sub s), with time permits the vertical turbulence coefficient K (sub z) to be estimated if v (sub s) is known or assumed. Extremely high monthly correlations of turbidity versus the log of backscatter at 100 meters have been obtained. In addition, high correlations of suspended particulate matter at Chattanooga and Oak Ridge suggest that the bulk of particulate matter is of natural, rather than industrial, origin.
Stratospheric eddy diffusion coefficients from tracer data
NASA Technical Reports Server (NTRS)
Massie, S. T.; Hunten, D. M.
1981-01-01
Global distributions of nitrous oxide, methane, ozone, and carbon 14 are used to estimate four sets of stratospheric eddy diffusion coefficients. A photochemical equilibrium model calculates O(3P), O(1D), H, HO2, OH, H2O2, NO, and NO2 densities, as a function of altitude, latitude, and time. The calculated O(1D), OH, and observed Cl densities are used to obtain the eddy profiles associated with the methane and nitrous oxide distributions, for altitudes between 10 and 40 km. Application of a constant flux condition to the seasonally averaged ozone data yields eddy values below 20 km. Time-dependent carbon 14 calculations produce eddy coefficients between 13 and 27 km. A composite profile is obtained by comparing the four sets of coefficients. Further, carbon 14 computations are used to test these profiles as well as those recommended in reports issued by the National Academy of Sciences in 1976 and 1979. The composite eddy profile produces the best agreement.
Diffusion in the system K2O-SrO-SiO2. II - Cation self-diffusion coefficients.
NASA Technical Reports Server (NTRS)
Varshneya, A. K.; Cooper, A. R.
1972-01-01
The self-diffusion coefficients were measured by introducing a slab of glass previously irradiated in a reactor between two slabs of unirradiated glass. By heating the specimens, etching them sequentially and determining the radioactivity, self-diffusion coefficients for K and Sr were measured. It is pointed out that the results obtained in the investigations appear to support the proposal that the network of the base glass predominantly controls the activation energy for the diffusion of ions.
Interplanetary diffusion coefficients for cosmic rays
NASA Technical Reports Server (NTRS)
Cummings, A. C.; Stone, E. C.; Vogt, R. E.
1974-01-01
Information on the cosmic-ray diffusion coefficient, kappa, derived from near-earth observations of the solar modulation of galactic electron fluxes and from the near-earth power spectra of the interplanetary magnetic field, has been used to study the heliocentric radial dependence of kappa, and to derive limits on the spatial extent of the solar modulation region. Representing kappa, as a separable function of radius r and rigidity, and assumming kappa(r) proportional to r to the n-th power, we can place a limit on the power law exponent, n not greater than 1.2. The distance of the modulation boundary is a function of n, and, e.g., for n = 0, falls into the range of 6-25 AU.
ANALYTIC FORMS OF THE PERPENDICULAR DIFFUSION COEFFICIENT IN NRMHD TURBULENCE
Shalchi, A.
2015-02-01
In the past different analytic limits for the perpendicular diffusion coefficient of energetic particles interacting with magnetic turbulence were discussed. These different limits or cases correspond to different transport modes describing how the particles are diffusing across the large-scale magnetic field. In the current paper we describe a new transport regime by considering the model of noisy reduced magnetohydrodynamic turbulence. We derive different analytic forms of the perpendicular diffusion coefficient, and while we do this, we focus on the aforementioned new transport mode. We show that for this turbulence model a small perpendicular diffusion coefficient can be obtained so that the latter diffusion coefficient is more than hundred times smaller than the parallel diffusion coefficient. This result is relevant to explain observations in the solar system where such small perpendicular diffusion coefficients have been reported.
An Ion Diffusion Model in Semi-Permeable Clay Materials
Liu, Chongxuan
2007-08-01
Ion diffusion in semi-impermeable clay materials dynamically interacts with electrostatic fields (or diffuse double layers) associated with clay particles. Current theory of ion transport in porous media containing fixed charges on solid materials, however, cannot explicitly account for the dynamic interactions. Here we proposed a model by coupling electrodynamics and nonequilibrium thermodynamics to describe ion diffusion in the clay materials. The developed model was validated by comparing the calculated and measured apparent ion diffusion coefficients in clay materials as a function of ionic strength, which affects the overlap extent of the electrostatic double layers associated with adjacent clay particles. The model shows that ion diffusion in clay materials is a complex function of factors including surface charge density, tortuosity, porosity, chemico-osmotic coefficient, and ion self-diffusivity. At transitional states, ion diffusive fluxes are dynamically related to the electrostatic fields, which shrink or expand as ion diffusion. At steady states, the electrostatic fields are time-invariant and ion diffusive fluxes conform to flux and concentration gradient relationships; and apparent diffusivity can be expressed by the ion diffusivity in bulk electrolytes corrected by a tortuosity factor and concentration gradient variations at the interfaces between clay materials and bulk solutions.
Diffusion coefficient of three-dimensional Yukawa liquids
Dzhumagulova, K. N.; Ramazanov, T. S.; Masheeva, R. U.
2013-11-15
The purpose of this work is an investigation of the diffusion coefficient of the dust component in complex plasma. The computer simulation of the Yukawa liquids was made on the basis of the Langevin equation, which takes into account the influence of buffer plasma on the dust particles dynamics. The Green–Kubo relation was used to calculate the diffusion coefficient. Calculations of the diffusion coefficient for a wide range of the system parameters were performed. Using obtained numerical data, we constructed the interpolation formula for the diffusion coefficient. We also show that the interpolation formula correctly describes experimental data obtained under microgravity conditions.
Combined diffusion coefficients for a mixture of three ionized gases
NASA Astrophysics Data System (ADS)
Zhang, X. N.; Murphy, A. B.; Li, H. P.; Xia, W. D.
2014-12-01
The combined diffusion coefficient method has been demonstrated to greatly simplify the treatment of diffusion in the modelling of thermal plasmas in gas mixtures without loss of accuracy. In this paper, an extension of this method to allow treatment of diffusion of a three-gas mixture has been achieved, provided that the gases are homonuclear and do not react with each other, and satisfy local chemical equilibrium. Formulas for the combined diffusion coefficients are presented, and combined diffusion coefficients for different mixtures of helium, argon and carbon at temperatures up to 30 000 K and at atmosphere pressure are calculated as an example.
Temperature dependence of the diffusion coefficient of nanoparticles
NASA Astrophysics Data System (ADS)
Rudyak, V. Ya.; Dubtsov, S. N.; Baklanov, A. M.
2008-06-01
The temperature dependence of the diffusion coefficient of nanoparticles in gases has been experimentally studied. It is established that this dependence significantly differs from that predicted by various correlations, in particular, by the Cunningham-Millikan-Davies correlation that is used as an instrumental basis for virtually all methods of measurement of the diffusion coefficient in aerosols.
Lithium ion diffusion through glassy carbon plate
Inaba, M.; Nohmi, S.; Funabiki, A.; Abe, T.; Ogumi, Z.
1998-07-01
The electrochemical permeation method was applied to the determination of the diffusion coefficient of Li{sup +} ion (D{sub Li{sup +}}) in a glassy carbon (GC) plate. The cell was composed of two compartments, which were separated by the GC plate. Li{sup +} ions were inserted electrochemically from one face, and extracted from the other. The flux of the permeated Li{sup +} ions was monitored as an oxidation current at the latter face. The diffusion coefficient was determined by fitting the transient current curve with a theoretical one derived from Fick's law. When the potential was stepped between two potentials in the range of 0 to 0.5 V, transient curves were well fitted with the theoretical one, which gave D{sub Li{sup +}} values on the order of 10{sup {minus}8} cm{sup {minus}2} s{sup {minus}1}. In contrast, when the potential was stepped between two potentials across 0.5 V, significant deviation was observed. The deviation indicated the presence of trap sites as well as diffusion sites for Li{sup +} ions, the former of which is the origin of the irreversible capacity of GC.
Determination of the zincate diffusion coefficient and its application to alkaline battery problems
NASA Technical Reports Server (NTRS)
May, C. E.; Kautz, Harold E.
1978-01-01
The diffusion coefficient for the zincate ion at 24 C was found to be 9.9 X 10 to the minus 7th power squared cm per sec + or - 30 percent in 45 percent potassium hydroxide and 1.4 x 10 to the minus 7 squared cm per sec + or - 25 percent in 40 percent sodium hydroxide. Comparison of these values with literature values at different potassium hydroxide concentrations show that the Stokes-Einstein equation is obeyed. The diffusion coefficient is characteristic of the zincate ion (not the cation) and independent of its concentration. Calculations with the measured value of the diffusion coefficient show that the zinc concentration in an alkaline zincate half cell becomes uniform throughout in tens of hours by diffusion alone. Diffusion equations are derived which are applicable to finite size chambers. Details and discussion of the experimental method are also given.
Determination of the zincate diffusion coefficient and its application to alkaline battery problems
NASA Technical Reports Server (NTRS)
May, C. E.; Kautz, H. E.
1978-01-01
The diffusion coefficient for the zincate ion at 24 C was found to be 9.9 x 10 to the -7th power sq cm/sec + or - 30% in 45% potassium hydroxide and 1.4 x 10 to the -7th power sq cm/sec + or - 25% in 40% sodium hydroxide. Comparison of these values with literature values at different potassium hydroxide concentrations show that the Stokes-Einstein equation is obeyed. The diffusion coefficient is characteristic of the zincate ion (not the cation) and independent of its concentration. Calculations with the measured value of the diffusion coefficient show that the zinc concentration in an alkaline zincate half-cell becomes uniform throughout in tens of hours by diffusion alone. Diffusion equations are derived which are applicable to finite-size chambers. Details and discussion of the experimental method are also given.
Aggregate influence on chloride ion diffusion into concrete
Hobbs, D.W.
1999-12-01
An attempt is made to predict the probable effect of the aggregate on chloride ion diffusion into saturated concrete. It is shown that if the chloride ion diffusion coefficient of an aggregate ranges from 0.2 to 10 times that of the cement past matrix, then this could result in variations in the concrete chloride ion diffusion coefficient of up to 10:1. Such a variation is equivalent to a change in free water-cement ration from 0.77 to 0.45.
Comparative study of methods used to estimate ionic diffusion coefficients using migration tests
Narsilio, G.A. Li, R. Pivonka, P. Smith, D.W.
2007-08-15
Ionic diffusion coefficients are estimated rapidly using electromigration tests. In this paper, electromigration tests are accurately simulated by numerically solving the Nernst-Planck (NP) equation (coupled with the electroneutrality condition (EN)) using the finite element method. Numerical simulations are validated against experimental data obtained elsewhere [E. Samson, J. Marchand, K.A. Snyder, Calculation of ionic diffusion coefficients on the basis of migration test results, Materials and Structures/Materiaux et Constructions 36 (257) (2003) 156-165., H. Friedmann, O. Amiri, A. Ait-Mokhtar, A direct method for determining chloride diffusion coefficient by using migration test, Cement and Concrete Research 34 (11) (2004) 1967-1973.]. It is shown that migration due to the non-linear electric potential completely overwhelms diffusion due to concentration gradients. The effects of different applied voltage differences and chloride source concentrations on estimations of chloride diffusion coefficients are explored. We show that the pore fluid within concrete and mortar specimens generally differs from the curing solution, lowering the apparent diffusion coefficient, primarily due to interactions of chloride ions with other ions in the pore fluid. We show that the variation of source chloride concentration strongly affects the estimation of diffusion coefficients in non-steady-state tests; however this effect vanishes under steady-state conditions. Most importantly, a comparison of diffusion coefficients obtained from sophisticated analyses (i.e., NP-EN) and a variety of commonly used simplifying methods to estimate chloride diffusion coefficients allows us to identify those methods and experimental conditions where both approaches deliver good estimates for chloride diffusion coefficients. Finally, we demonstrate why simultaneous use and monitoring of current density and fluxes are recommended for both the non-steady and steady-state migration tests.
Effect of the formation of EDTA complexes on the diffusion of metal ions in water
NASA Astrophysics Data System (ADS)
Furukawa, Kenji; Takahashi, Yoshio; Sato, Haruo
2007-09-01
The diffusion coefficients of aquo metal ions (M z+ ) and their EDTA complexes (M-EDTA ( z-4)+ ) were compared to understand the effect of EDTA complexation on the diffusion of metal ions by the diffusion cell method for Co 2+, Ga 3+, Rb +, Sr 2+, Ag +, Cd 2+, Cs +, Th 4+, UO22+, and trivalent lanthanides. Most studies about ionic diffusion in water have dealt with free ion (hydrated ion). In many cases, however, polyvalent ions are dissolved as complexed species in natural waters. Hence, we need to study the diffusion behavior of complexes in order to understand the diffusion phenomenon in natural aquifer and to measure speciation by diffusive gradient in thin films (DGT), which requires the diffusion coefficients of the species examined. For many ions, the diffusion coefficients of M-EDTA ( z-4)+ are smaller than those of hydrated ions, but the diffusion coefficients of M-EDTA ( z-4)+ are larger than those of hydrated ions for ions with high ionic potentials (Ga 3+ and Th 4+). As a result, the diffusion coefficients of EDTA complexes are similar among various metal ions. In other words, the diffusion of each ion loses its characteristics by the complexation with EDTA. Although the difference is subtle, it was also found that the diffusion coefficients of EDTA complexes increase as the ionic potential increases, which can be explained by the size of the EDTA complex of each metal ion.
Velocity-Space Diffusion Coefficients Due to Full-Wave ICRF Fields in Toroidal Geometry
Harvey, R.W.; Jaeger, F.; Berry, L.A.; Batchelor, D.B.; D'Azevedo, E.; Carter, M.D.; Ershov, N.M.; Smirnov, A.P.; Bonoli, P.; Wright, J.C.; Smithe, D.N.
2005-09-26
Jaeger et al. have calculated bounce-averaged QL diffusion coefficients from AORSA full-wave fields, based on non-Maxwellian distributions from CQL3D Fokker-Planck code. A zero banana-width approximation is employed. Complementing this calculation, a fully numerical calculation of ion velocity diffusion coefficients using the full-wave fields in numerical tokamak equilibria has been implemented to determine the finite orbit width effects. The un-approximated Lorentz equation of motion is integrated to obtain the change in velocity after one complete poloidal transit of the tokamak. Averaging velocity changes over initial starting gyro-phase and toroidal angle gives bounce-averaged diffusion coefficients. The coefficients from the full-wave and Lorentz orbit methods are compared for an ITER DT second harmonic tritium ICRF heating case: the diffusion coefficients are similar in magnitude but reveal substantial finite orbit effects.
Observations of Ag diffusion in ion implanted SiC
NASA Astrophysics Data System (ADS)
Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; Hunter, Jerry L.; Giordani, Andrew J.; Allen, Todd R.
2015-06-01
The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500-1625 °C, were investigated by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated, including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.
Observations of Ag diffusion in ion implanted SiC
Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; Jerry L. Hunter, Jr.; Giordani, Andrew J.; Allen, Todd R.
2015-03-17
The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated, including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.
Ionization dynamics in ionic liquids probed via self-diffusion coefficient measurements
NASA Astrophysics Data System (ADS)
Mao, Yougang; Damodaran, Krishnan
2014-08-01
Ionic liquids contain ions and ion pairs with fast exchange between them. We propose a novel process to deduce the fraction of ions present in an ionic liquid and the equilibrium constants of ionization processes from measured ion self-diffusion coefficients using Pulsed Field Gradient (PFG) NMR. The enthalpy and entropy changes of ionization and ion self-diffusion processes are obtained for a series of ionic liquids using this method. These data were used to explain the interactions between cations and anions of ionic liquids. The interactions are also interpreted by the delocalization of the ion’s charge densities. The self-diffusion coefficients of cations and anions for measured ionic liquids are discussed.
Analytic expressions for ULF wave radiation belt radial diffusion coefficients
Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K
2014-01-01
We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440
Improved diffusion coefficients generated from Monte Carlo codes
Herman, B. R.; Forget, B.; Smith, K.; Aviles, B. N.
2013-07-01
Monte Carlo codes are becoming more widely used for reactor analysis. Some of these applications involve the generation of diffusion theory parameters including macroscopic cross sections and diffusion coefficients. Two approximations used to generate diffusion coefficients are assessed using the Monte Carlo code MC21. The first is the method of homogenization; whether to weight either fine-group transport cross sections or fine-group diffusion coefficients when collapsing to few-group diffusion coefficients. The second is a fundamental approximation made to the energy-dependent P1 equations to derive the energy-dependent diffusion equations. Standard Monte Carlo codes usually generate a flux-weighted transport cross section with no correction to the diffusion approximation. Results indicate that this causes noticeable tilting in reconstructed pin powers in simple test lattices with L2 norm error of 3.6%. This error is reduced significantly to 0.27% when weighting fine-group diffusion coefficients by the flux and applying a correction to the diffusion approximation. Noticeable tilting in reconstructed fluxes and pin powers was reduced when applying these corrections. (authors)
Cosmic-ray diffusion coefficient in interplanetary space.
NASA Technical Reports Server (NTRS)
Gleeson, L. J.; Urch, I. H.
1972-01-01
The authors of three recent papers reporting cosmic-ray electron differential intensities near the earth during 1966 and 1968 in the rigidity range above 500 MV have concluded that the observations are not compatible with a diffusion coefficient that can be written as a product of a rigidity-dependent part and a part that is a function of heliocentric distance. It is shown in this paper that, with an interstellar electron spectrum and a near-earth spectrum given, a diffusion coefficient of the above form can always be determinedand the conclusion noted above cannot be sustained. Diffusion coefficients appropriate to the observations are given.
Local carbon diffusion coefficient measurement in the S-1 spheromak
Mayo, R.M.; Levinton, F.M.; Meyerhofer, D.D.; Chu, T.K.; Paul, S.F.; Yamada, M.
1988-10-01
The local carbon diffusion coefficient was measured in the S - 1 spheromak by detecting the radial spread of injected carbon impurity. The radial impurity density profile is determined by the balance of ionization and diffusion. Using measured local electron temperature T/sub e/ and density n/sub e/, the ionization rate is determined from which the particle diffusion coefficient is inferred. The results found in this work are consistent with Bohm diffusion. The absolute magnitude of D/sub /perpendicular// was determined to be (4/approximately/6) /times/ D/sub Bohm/. 25 refs., 13 figs., 2 tabs.
Study of diffusion coefficients of glasses under zero-G
NASA Technical Reports Server (NTRS)
Kinser, D. L.
1975-01-01
Diffusion studies of the glass forming ion are examined in zero-g environments and diffusion data obtained from these experiments are unique because of earth based experimental problems. The choice of system for diffusion studies is discussed along with the lab processing. The space processing is described consisting of a heating cycle designed to maximize time exposed to the diffusion temperature without exposing the low viscosity melt to gravitational forces.
Calculated diffusion coefficients and the growth rate of olivine in a basalt magma
NASA Technical Reports Server (NTRS)
Donaldson, C. H.
1975-01-01
Concentration gradients in glass adjacent to skeletal olivines in a basalt have been examined by electron probe. The glass is depleted in Mg, Fe, and Cr and enriched in Si, Al, Na, and Ca relative to that far from olivine. Ionic diffusion coefficients for the glass compositions are calculated from temperature, ionic radius and melt viscosity, using the Stokes-Einstein relation. At 1170 C, the diffusion coefficient of Mg(2+) ions in the basalt is 4.5 billionths sq cm per sec. Comparison with measured diffusion coefficients in a mugearite suggests this value may be 16 times too small. The concentration gradient data and the diffusion coefficients are used to calculate instantaneous olivine growth rates. Growth necessarily preceded emplacement such that the composition of the crystals plus the enclosing glass need not be that of a melt. The computed olivine growth rates are compatible with the rate of crystallization deduced for the Skaegaard intrusion.
The temperature variation of hydrogen diffusion coefficients in metal alloys
NASA Technical Reports Server (NTRS)
Danford, M. D.
1990-01-01
Hydrogen diffusion coefficients were measured as a function of temperature for a few metal alloys using an electrochemical evolution technique. Results from these measurements are compared to those obtained by the time-lag method. In all cases, diffusion coefficients obtained by the electrochemical method are larger than those by the time-lag method by an order of magnitude or more. These differences are attributed mainly to hydrogen trapping.
Red Cell Membrane Permeability Deduced from Bulk Diffusion Coefficients
Redwood, W. R.; Rall, E.; Perl, W.
1974-01-01
The permeability coefficients of dog red cell membrane to tritiated water and to a series of[14C]amides have been deduced from bulk diffusion measurements through a "tissue" composed of packed red cells. Red cells were packed by centrifugation inside polyethylene tubing. The red cell column was pulsed at one end with radiolabeled solute and diffusion was allowed to proceed for several hours. The distribution of radioactivity along the red cell column was measured by sequential slicing and counting, and the diffusion coefficient was determined by a simple plotting technique, assuming a one-dimensional diffusional model. In order to derive the red cell membrane permeability coefficient from the bulk diffusion coefficient, the red cells were assumed to be packed in a regular manner approximating closely spaced parallelopipeds. The local steady-state diffusional flux was idealized as a one-dimensional intracellular pathway in parallel with a one-dimensional extracellular pathway with solute exchange occurring within the series pathway and between the pathways. The diffusion coefficients in the intracellular and extracellular pathways were estimated from bulk diffusion measurements through concentrated hemoglobin solutions and plasma, respectively; while the volume of the extracellular pathway was determined using radiolabeled sucrose. The membrane permeability coefficients were in satisfactory agreement with the data of Sha'afi, R. I., C. M. Gary-Bobo, and A. K. Solomon (1971. J. Gen. Physiol. 58:238) obtained by a rapid-reaction technique. The method is simple and particularly well suited for rapidly permeating solutes. PMID:4443795
Franco, Luís F M; Castier, Marcelo; Economou, Ioannis G
2016-08-28
Applying classical molecular dynamics simulations, we calculate the parallel self-diffusion coefficients of different fluids (methane, nitrogen, and carbon dioxide) confined between two {101̄4} calcite crystal planes. We have observed that the molecules close to the calcite surface diffuse differently in distinct directions. This anisotropic behavior of the self-diffusion coefficient is investigated for different temperatures and pore sizes. The ion arrangement in the calcite crystal and the strong interactions between the fluid particles and the calcite surface may explain the anisotropy in this transport property. PMID:27586936
NASA Astrophysics Data System (ADS)
Franco, Luís F. M.; Castier, Marcelo; Economou, Ioannis G.
2016-08-01
Applying classical molecular dynamics simulations, we calculate the parallel self-diffusion coefficients of different fluids (methane, nitrogen, and carbon dioxide) confined between two { 10 1 ¯ 4 } calcite crystal planes. We have observed that the molecules close to the calcite surface diffuse differently in distinct directions. This anisotropic behavior of the self-diffusion coefficient is investigated for different temperatures and pore sizes. The ion arrangement in the calcite crystal and the strong interactions between the fluid particles and the calcite surface may explain the anisotropy in this transport property.
Northrop, John H.
1924-01-01
1. The Donnan equilibrium furnishes a test for the ionic nature of any diffusible substance, since the ratio of the concentration of any ion on the two sides of a membrane must be equal to the ratio of the concentrations of any other ion of the same sign and valence, whereas a non-ionic substance would be equally distributed on both sides. 2. The distribution of trypsin inside and outside of gelatin particles has been compared to the distribution of hydrogen and chloride ions under the same conditions. 3. The ratio of the trypsin concentration in the gelatin to the concentration in the outside liquid is equal to the ratio of the hydrogen ion under the same conditions and to the reciprocal of the chloride ion ratio. 4. This result was obtained between pH 2.0 and 10.2. At pH 10.2 the trypsin is equally distributed and on the akaline side of 10.2 the ratio is directly equal to the chloride ratio. 5. Trypsin is therefore a positive monovalent ion in solutions of pH 10 to 2. It is probably isoelectric at 10.2 and a monovalent negative ion on the alkaline side of 10.2 6. Trypsin must also be a strong base since there is no evidence of any undissociated form on the acid side of pH 10.2. PMID:19872075
Solutal diffusion coefficient for liquid PbTe-SnTe
NASA Technical Reports Server (NTRS)
Clark, I. O.; Fripp, A. L.; Debnam, W. J., Jr.; Crouch, R. K.; Brewer, W. D.
1983-01-01
The solutal diffusion coefficient has been determined for liquid lead telluride-tin telluride using a modified shear cell technique. Postdiffusion concentration profiles are presented for several diffusion couples. The best analytical curve fit to the data gives a composition-dependent diffusion coefficient of (/3/7/ to the C power) x 0.00014 sq cm/sec, where C is the PbTe concentration. In addition, data are presented to show the importance of solutal convection in the lead-tin-telluride system.
Calculation of self-diffusion coefficients in iron
Zhang, Baohua
2014-01-15
On the basis of available P-V-T equation of state of iron, the temperature and pressure dependence of self-diffusion coefficients in iron polymorphs (α, δ, γ and ε phases) have been successfully reproduced in terms of the bulk elastic and expansivity data by means of a thermodynamical model that interconnects point defects parameters with bulk properties. The calculated diffusion parameters, such as self-diffusion coefficient, activation energy and activation volume over a broad temperature range (500-2500 K) and pressure range (0-100 GPa), compare favorably well with experimental or theoretical ones when the uncertainties are considered.
Transport coefficients of He(+) ions in helium.
Viehland, Larry A; Johnsen, Rainer; Gray, Benjamin R; Wright, Timothy G
2016-02-21
This paper demonstrates that the transport coefficients of (4)He(+) in (4)He can be calculated over wide ranges of E/N, the ratio of the electrostatic field strength to the gas number density, with the same level of precision as can be obtained experimentally if sufficiently accurate potential energy curves are available for the X(2)Σu (+) and A(2)Σg (+) states and one takes into account resonant charge transfer. We start by computing new potential energy curves for these states and testing their accuracy by calculating spectroscopic values for the separate states. It is established that the potentials obtained by extrapolation of results from d-aug-cc-pVXZ (X = 6, 7) basis sets using the CASSCF+MRCISD approach are each in exceptionally close agreement with the best potentials available and with experiment. The potentials are then used in a new computer program to determine the semi-classical phase shifts and the transport cross sections, and from these the gaseous ion transport coefficients are determined. In addition, new experimental values are reported for the mobilities of (4)He(+) in (4)He at 298.7 K, as a function of E/N, where careful consideration is given to minimizing various sources of uncertainty. Comparison with previously measured values establishes that only one set of previous data is reliable. Finally, the experimental and theoretical ion transport coefficients are shown to be in very good to excellent agreement, once corrections are applied to account for quantum-mechanical effects. PMID:26896985
Transport coefficients of He+ ions in helium
NASA Astrophysics Data System (ADS)
Viehland, Larry A.; Johnsen, Rainer; Gray, Benjamin R.; Wright, Timothy G.
2016-02-01
This paper demonstrates that the transport coefficients of 4He+ in 4He can be calculated over wide ranges of E/N, the ratio of the electrostatic field strength to the gas number density, with the same level of precision as can be obtained experimentally if sufficiently accurate potential energy curves are available for the X2Σu+ and A2Σg+ states and one takes into account resonant charge transfer. We start by computing new potential energy curves for these states and testing their accuracy by calculating spectroscopic values for the separate states. It is established that the potentials obtained by extrapolation of results from d-aug-cc-pVXZ (X = 6, 7) basis sets using the CASSCF+MRCISD approach are each in exceptionally close agreement with the best potentials available and with experiment. The potentials are then used in a new computer program to determine the semi-classical phase shifts and the transport cross sections, and from these the gaseous ion transport coefficients are determined. In addition, new experimental values are reported for the mobilities of 4He+ in 4He at 298.7 K, as a function of E/N, where careful consideration is given to minimizing various sources of uncertainty. Comparison with previously measured values establishes that only one set of previous data is reliable. Finally, the experimental and theoretical ion transport coefficients are shown to be in very good to excellent agreement, once corrections are applied to account for quantum-mechanical effects.
Diffusion and viscosity coefficients for helium. [in astrophysical gas mixtures
NASA Technical Reports Server (NTRS)
Roussel-Dupre, R.
1982-01-01
The first order Boltzmann-Fokker-Planck equation is solved numerically to obtain diffusion and viscosity coefficients for a ternary gas mixture composed of electron, protons, and helium. The coefficients are tabulated for five He/H abundances ranging from 0.01 to 10 and for both He II and He III. Comparison with Burgers's thermal diffusion coefficients reveals a maximum difference of 9-10% for both He II and He III throughout the range of helium abundances considered. The viscosity coefficients are compared to those of Chapman and Cowling and show a maximum difference of only 5-6% for He II but 15-16% for He III. For the astrophysically important gas mixtures, it is concluded that the results of existing studies which employed Burgers's or Chapman and Cowling's coefficients will remain substantially unaltered.
Study of diffusion coefficients of glasses under Zero-G
NASA Technical Reports Server (NTRS)
Kinser, D. L.
1977-01-01
A diffusion experiment for glasses was formulated, such theoretical and earth bound results as were available were outlined, and the preliminary earth based experimental work in preparation for a weightless experiment was done. The fundamental premise of the work was that diffusion studies of the glass forming ion can be conducted in zero-g environments, and diffusion data obtained from these experiments are unique and valuable because of earth based experimental difficulties.
The single-valued diffusion coefficient for ionic diffusion through porous media
NASA Astrophysics Data System (ADS)
Lorente, Sylvie; Voinitchi, Dorinel; Bégué-Escaffit, Pascale; Bourbon, Xavier
2007-01-01
The current literature on ionic diffusion through porous media teaches that the diffusion coefficient is a complicated function depending on concentration, concentration gradient, and electrical potential gradient. This paper documents how natural diffusion tests and migration tests (electrically enhanced transport) lead to the measurement of a unique diffusion coefficient for a given ionic species and a given material. Natural diffusion tests for chloride and a ceramic of TiO2 were implemented at two different concentration levels. The experiments were designed to emphasize the impact of the membrane potential in the pore solution on the chloride flux. By accounting for the membrane potential it is shown that the chloride diffusion coefficient is unique for a given material. An iterative method based on a numerical model solving the continuity equations and the current law is proposed to determine the diffusion coefficient. The approach is applied with success to published results on a cement-based material. Migration tests were also performed with chloride in a cementitious material, where the chloride transport is enhanced by an external electrical field. The experimental results reveal the competition between diffusion and electrical effects in the case of noncontaminated porous materials. By varying the electrical potential difference it is shown that the flux of chloride varies linearly with the electrical field, meaning that the chloride diffusion coefficient does not depend on the electrical field. The main conclusion is that there is only one chloride diffusion coefficient for a given porous material.
Application of anomalous diffusion in production of negative ions
Jimbo, K.
1984-11-01
The production of negative hydrogen ions is investigated in the reflex-type negative ion sources. When anomalous diffusion in the positive column was found by Hoh and Lehnert (Phys. Fluids 3, 600 (1960)), it was pointed out that the large particle loss produced by anomalous diffusion is compensated for by the larger particle production inside the plasma. In the present experiments anomalous diffusion was artificially encouraged by changing the radial electric field inside the reflex discharge. Apparent encouragement of negative ion current by the increase of the density fluctuation amplitude is observed. Twice as much negative ion current was obtained with the artificial encouragement as without. On the other hand, the larger extracted negative ion current was observed with a lower electron temperature, which is calculated from the anomalous diffusion coefficient derived from a simple nonlinear theory. This result is consistent with Wadehra's calculated results (Appl. Phys. Lett. 35, 917 (1979)).
The diffusion of ions in unconsolidated sediments
Manheim, F. T.
1970-01-01
Diffusion in unconsolidated sediments generally proceeds at rates ranging from half to one twentieth of those applying to diffusion of ions and molecules in free solution. Diffusion rates are predictable with respect to porosity and path tortuosity in host sediments, and can be conveniently measured by determinations of electrical resistivity on bulk sediment samples. Net ion flux is further influenced by reactions of diffusing species with enclosing sediments, but such influences should not be confused with or lumped with diffusion processes. ?? 1970.
SHETTY, ANIL N.; CHIANG, SHARON; MALETIC-SAVATIC, MIRJANA; KASPRIAN, GREGOR; VANNUCCI, MARINA; LEE, WESLEY
2016-01-01
In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal–Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain. PMID:27441031
NASA Technical Reports Server (NTRS)
Thomsen, M. F.; Goertz, C. K.; Van Allen, J. A.
1977-01-01
A method is derived for determining the radial diffusion coefficient from observed satellite effects of the inner Jovian satellites on the energetic particle fluxes. The method is based on data from L values which are significantly removed from the actual sweeping region. With regard to the large losses to the protons at Io's L shell, it is suggested that in addition to satellite sweepup, the losses may be associated with an enhanced precipitation due to resonant interaction with ion cyclotron waves near Io's orbit. It is noted that such additional loss mechanisms may also apply to electrons, and that such losses may significantly affect the estimated diffusion coefficient.
Chemical diffusion coefficient of oxygen in thoria-urania mixed oxide
NASA Astrophysics Data System (ADS)
Matsui, Tsuneo; Naito, Keiji
1985-10-01
The chemical diffusion coefficients of oxygen ( D˜) in sintered samples of ( Th1- yUy) O2+ x ( y = 0.2 and 0.4) were measured by means of thermogravimetry in the temperature range 1282 ⩽ T ⩽ 1373 K. The defect diffusion coefficients ( Dd) were also calculated from the chemical diffusion coefficients obtained in this study. The activation energies of D˜ or Dd for the two samples ( Th1- yUy) O2+ xwithy = 0.2 and 0.4 were observed to be nearly the same, irrespective of the y value. These activation energies also nearly coincided with those of UO 2+x reported previously, suggesting the presence of a similar diffusion mechanism to that found in UO 2+x. The magnitude of both diffusion coefficients D˜ and Dd of ( Th1- yUy) O2+ x increased with increasing uranium content and approached that of UO 2+x. The increase of Dd of ( Th1- yUy) O2+ x with y value was considered to be due to the increase of both the vibrational frequency of lattice and the entropy change of migration produced by the substitution of a U ion for a Th ion.
Minimum Error Fickian Diffusion Coefficients for Mass Diffusion in Multicomponent Gas Mixtures
NASA Astrophysics Data System (ADS)
Subramaniam, S.
1999-04-01
Mass diffusion in multicomponent gas mixtures is governed by a coupled system of linear equations for the diffusive mass fluxes in terms of thermodynamic driving forces, known as the generalized Stefan-Maxwell equation. In computations of mass diffusion in multicomponent gas mixtures, this coupling between the different components results in considerable computational overhead. Consequently, simplified diffusion models for the diffusive mass fluxes as explicit functions of the driving forces are an attractive alternative. These models can be interpreted as an approximate solution to the Stefan-Maxwell equation. Simplified diffusion models require the specification of “effective” diffusion coefficients which are usually expressed as functions of the binary diffusion coefficients of each species pair in the mixture. Current models for the effective diffusion coefficients are incapable of providing
Optimal estimation of diffusion coefficients from single-particle trajectories
NASA Astrophysics Data System (ADS)
Vestergaard, Christian L.; Blainey, Paul C.; Flyvbjerg, Henrik
2014-02-01
How does one optimally determine the diffusion coefficient of a diffusing particle from a single-time-lapse recorded trajectory of the particle? We answer this question with an explicit, unbiased, and practically optimal covariance-based estimator (CVE). This estimator is regression-free and is far superior to commonly used methods based on measured mean squared displacements. In experimentally relevant parameter ranges, it also outperforms the analytically intractable and computationally more demanding maximum likelihood estimator (MLE). For the case of diffusion on a flexible and fluctuating substrate, the CVE is biased by substrate motion. However, given some long time series and a substrate under some tension, an extended MLE can separate particle diffusion on the substrate from substrate motion in the laboratory frame. This provides benchmarks that allow removal of bias caused by substrate fluctuations in CVE. The resulting unbiased CVE is optimal also for short time series on a fluctuating substrate. We have applied our estimators to human 8-oxoguanine DNA glycolase proteins diffusing on flow-stretched DNA, a fluctuating substrate, and found that diffusion coefficients are severely overestimated if substrate fluctuations are not accounted for.
Radial diffusion and ion partitioning in the Io torus
NASA Technical Reports Server (NTRS)
Cheng, A. F.
1986-01-01
A model is presented for radial diffusion and charge state partitioning of sulfur and oxygen ions in the Io torus, including effects of electron impact and charge exchange. When applied to Voyager 1 radial profiles of total ion flux tube content, the model shows that the ion residence time in the torus, tau(D), as defined in spectroscopic studies of ion partitioning, is related to the radial diffusion coefficient, D(LL), at L = 7 by tau(D) approximately 8/D(LL)(7). This result appears to bring spectroscopic estimates of the ion residence time (tau/D/ greater than about 60 to 100 days) into reasonable agreement with estimates of D(LL) from magnetospheric diffusion studies, D(LL) equals approximately 10 to the -6th/s.
Determination of diffusion coefficient in disordered organic semiconductors
NASA Astrophysics Data System (ADS)
Rani, Varsha; Sharma, Akanksha; Ghosh, Subhasis
2016-05-01
Charge carrier transport in organic semiconductors is dominated by positional and energetic disorder in Gaussian density of states (GDOS) and is characterized by hopping through localized states. Due to the immobilization of charge carriers in these localized states, significant non-uniform carrier distribution exists, resulting diffusive transport. A simple, nevertheless powerful technique to determine diffusion coefficient D in disordered organic semiconductors has been presented. Diffusion coefficients of charge carriers in two technologically important organic molecular semiconductors, Pentacene and copper phthalocyanine (CuPc) have been measured from current-voltage (J-V) characteristics of Al/Pentacene/Au and Al/CuPc/Au based Schottky diodes. Ideality factor g and carrier mobility μ have been calculated from the exponential and space charge limited region respectively of J-V characteristics. Classical Einstein relation is not valid in organic semiconductors due to energetic disorders in DOS. Using generalized Einstein relation, diffusion coefficients have been obtained to be 1.31×10-6 and 1.73×10-7 cm2/s for Pentacene and CuPc respectively.
Pyrrole copolymers with enhanced ion diffusion rates for lithium batteries
Calvert, P.; Gardlund, Z.; Huntoon, T.; Hall, H.K.; Padias, A.
1998-07-01
Copolymers of pyrrole with a polyether-substituted pyrrole were tested as cathodes for lithium batteries. The charge and discharge characteristics showed that anion transport was much faster in the copolymer than in polypyrrole. As a result these electrodes store and release much more charge at higher current densities but are similar to polypyrrole at low currents. Pulse and relaxation measurements of the ion diffusion showed that this difference was due to a ten-fold increase in the anion diffusion coefficient.
Vertical eddy diffusion coefficient from the LANDSAT imagery
NASA Technical Reports Server (NTRS)
Viswanadham, Y. (Principal Investigator); Torsani, J. A.
1982-01-01
Analysis of five stable cases of the smoke plumes that originated in eastern Cabo Frio (22 deg 59'S; 42 deg 02'W), Brazil using LANDSAT imagery is presented for different months and years. From these images the lateral standard deviation (sigma sub y) and the lateral eddy diffusion coefficient (K sub y) are obtained from the formula based on Taylor's theory of diffusion by continuous moment. The rate of kinetic energy dissipation (e) is evaluated from the diffusion parameters sigma sub y and K sub y. Then, the vertical diffusion coefficient (K sub z) is estimated using Weinstock's formulation. These results agree well with the previous experimental values obtained over water surfaces by various workers. Values of e and K sub z show the weaker mixing processes in the marine stable boundary layer. The data sample is apparently to small to include representative active turbulent regions because such regions are so intermittent in time and in space. These results form a data base for use in the development and validation of mesoscale atmospheric diffusion models.
The effects of deionization processes on meteor radar diffusion coefficients below 90 km
NASA Astrophysics Data System (ADS)
Younger, J. P.; Lee, C. S.; Reid, I. M.; Vincent, R. A.; Kim, Y. H.; Murphy, D. J.
2014-08-01
The decay times of VHF radar echoes from underdense meteor trails are reduced in the lower portions of the meteor region. This is a result of plasma neutralization initiated by the attachment of positive trail ions to neutral atmospheric molecules. Decreased echo decay times cause meteor radars to produce erroneously high estimates of the ambipolar diffusion coefficient at heights below 90 km, which affects temperature estimation techniques. Comparisons between colocated radars and satellite observations show that meteor radar estimates of diffusion coefficients are not consistent with estimates from the Aura Microwave Limb Sounder satellite instrument and that colocated radars operating at different frequencies estimate different values of the ambipolar diffusion coefficient for simultaneous detections of the same meteors. Loss of free electrons from meteor trails due to attachment to aerosols and chemical processes were numerically simulated and compared with observations to determine the specific mechanism responsible for low-altitude meteor trail plasma neutralization. It is shown that three-body attachment of positive metal ions significantly reduces meteor radar echo decay times at low altitudes compared to the case of diffusion only that atmospheric ozone plays little part in the evolution of low-altitude underdense meteor trails and that the effect of three-body attachment begins to exceed diffusion in echo decay times at a constant density surface.
Measurement of diffusion coefficients from solution rates of bubbles
NASA Technical Reports Server (NTRS)
Krieger, I. M.
1979-01-01
The rate of solution of a stationary bubble is limited by the diffusion of dissolved gas molecules away from the bubble surface. Diffusion coefficients computed from measured rates of solution give mean values higher than accepted literature values, with standard errors as high as 10% for a single observation. Better accuracy is achieved with sparingly soluble gases, small bubbles, and highly viscous liquids. Accuracy correlates with the Grashof number, indicating that free convection is the major source of error. Accuracy should, therefore, be greatly increased in a gravity-free environment. The fact that the bubble will need no support is an additional important advantage of Spacelab for this measurement.
Measurement of electron longitudinal diffusion coefficient in liquid argon
NASA Astrophysics Data System (ADS)
Li, Yichen; Tang, Wei; Qian, Xin
2016-03-01
The electron longitudinal diffusion coefficients in Liquid Argon (LAr) are measured for a range of electric fields from 0.05 to 2.0 kV/cm up to a maximum drift distance of 120 mm using the two experimental setups at BNL. The measurement principle, apparatus, and data analysis are described. Our result represents the world's best measurement of electron longitudinal coefficients in this range. The measured longitudinal diffusion results are directly applicable to the existing experiments such as MicroBooNE and are essential for the future LAr based experiment detector design such as SBN and DUNE. We also report the performance of the gas purification system, which is important for the design of the purification system of future large LArTPCs.
Water sorption and diffusion coefficient through an experimental dental resin.
Costella, A M; Trochmann, J L; Oliveira, W S
2010-01-01
Polymeric composites have been widely used as dental restorative materials. A fundamental knowledge and understanding of the behavior of these materials in the oral cavity is essential to improve their properties and performance. In this paper we computed the data set of water absorption through an experimental dental resin blend using specimen discs of different thicknesses to estimate the diffusion coefficient. The resins were produced using Bisphenol A glycol dimethacrylate, Bisphenol A ethoxylated dimethacrylate and Triethylene glycol dimethacrylate monomers. The water sorption test method was based on International Standard ISO 4049 "Dentistry-Polymer-based filling materials". Results show a diffusion coefficient around 6.38 x 10(-8) cm(2)/s, within a variance of 0.01%, which is in good agreement with the values reported in the literature and represents a very suitable value.
Takeda, M.; Hiratsuka, T.; Ito, K.; Finsterle, S.
2011-02-01
Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an
Takeda, M; Hiratsuka, T; Ito, K; Finsterle, S
2011-04-25
Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an
Takeda, M; Hiratsuka, T; Ito, K; Finsterle, S
2011-04-25
Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an
Woźnica, Emilia; Mieczkowski, Józef; Michalska, Agata
2011-11-21
The origin and effect of surface accumulation of primary ions within the ion-selective poly(n-butyl acrylate)-based membrane, obtained by thermal polymerization, is discussed. Using a new method, based on the relation between the shape of a potentiometric plot and preconditioning time, the diffusion of copper ions in the membrane was found to be slow (the diffusion coefficient estimated to be close to 10(-11) cm(2) s(-1)), especially when compared to ion-exchanger counter ions--sodium cations diffusion (a diffusion coefficient above 10(-9) cm(2) s(-1)). The higher mobility of sodium ions than those of the copper-ionophore complex results in exposed ion-exchanger role leading to undesirably exposed sensitivity to sodium or potassium ions. PMID:21957488
NASA Astrophysics Data System (ADS)
Kowsari, M. H.; Alavi, Saman; Ashrafizaadeh, Mahmud; Najafi, Bijan
2008-12-01
Molecular dynamics simulations are used to study the dynamics and transport properties of 12 room-temperature ionic liquids of the 1-alkyl-3-methylimidazolium [amim]+ (alkyl=methyl, ethyl, propyl, and butyl) family with PF6-, NO3-, and Cl- counterions. The explicit atom transferable force field of Canongia Lopes et al. [J. Phys. Chem. B 108, 2038 (2004)] is used in the simulations. In this first part, the dynamics of the ionic liquids are characterized by studying the mean-square displacement (MSD) and the velocity autocorrelation function (VACF) for the centers of mass of the ions at 400 K. Trajectory averaging was employed to evaluate the diffusion coefficients at two temperatures from the linear slope of MSD(t) functions in the range of 150-300 ps and from the integration of the VACF(t) functions at 400 K. Detailed comparisons are made between the diffusion results from the MSD and VACF methods. The diffusion coefficients from the integration of the VACFs are closer to experimental values than the diffusion coefficients calculated from the slope of MSDs. Both methods can show good agreement with experiment in predicting relative trends in the diffusion coefficients and determining the role of the cation and anion structures on the dynamical behavior of this family of ionic liquids. The MSD and self-diffusion of relatively heavier imidazolium cations are larger than those of the lighter anions from the Einstein results, except for the case of [bmim][Cl]. The cationic transference number generally decreases with temperature, in good agreement with experiments. For the same anion, the cationic transference numbers decrease with increasing length of the alkyl chain, and for the same cation, the trends in the cationic transference numbers are [NO3]-<[Cl]-<[PF6]-. The trends in the diffusion coefficient in the series of cations with identical anions are [emim]+>[pmim]+>[bmim]+ and those for anions with identical cations are [NO3]->[PF6]->[Cl]-. The [dmim]+ has a
Observations of Ag diffusion in ion implanted SiC
Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; Jerry L. Hunter, Jr.; Giordani, Andrew J.; Allen, Todd R.
2015-03-17
The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated,more » including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.« less
NASA Astrophysics Data System (ADS)
Szyszkiewicz-Warzecha, Krzysztof; Jasielec, Jerzy J.; Fausek, Janusz; Filipek, Robert
2016-08-01
Transport properties of ions have significant impact on the possibility of rebars corrosion thus the knowledge of a diffusion coefficient is important for reinforced concrete durability. Numerous tests for the determination of diffusion coefficients have been proposed but analysis of some of these tests show that they are too simplistic or even not valid. Hence, more rigorous models to calculate the coefficients should be employed. Here we propose the Nernst-Planck and Poisson equations, which take into account the concentration and electric potential field. Based on this model a special inverse method is presented for determination of a chloride diffusion coefficient. It requires the measurement of concentration profiles or flux on the boundary and solution of the NPP model to define the goal function. Finding the global minimum is equivalent to the determination of diffusion coefficients. Typical examples of the application of the presented method are given.
Effect of gamma irradiation on the structural properties and diffusion coefficient in Co-Zn ferrite
NASA Astrophysics Data System (ADS)
Hemeda, O. M.; El-Saadawy, M.
2003-01-01
A series of samples of Co 1- xZn xFe 2O 4 were prepared by the usual ceramic technique where x=0.3,0.5,0.6, and 0.8. The samples were irradiated by Co 60 gamma source with a high dose equal to 10 6 rad/h. The diffusion coefficient of oxygen vacancies was estimated from DC conductivity measurements. It was noticed that the diffusion coefficient increased after gamma irradiation for all Zn 2+ concentrations. This could be explained on the basis of displacement of metal ions from its original sites under the effect of irradiation leaving behind it lattice vacancies which increase the diffusion coefficient. The concentration of lattice vacancies increased, whereas the activation energy of diffusion process decreased after irradiation. The lattice parameter of the studied samples increased due to the formation of ferrous ions under the ionizing effect of gamma radiation. These changes in some physical properties of the studied samples are useful for the detection of nuclear contamination of environmental atmosphere.
Li + ion diffusion in nanoscale alumina coatings
NASA Astrophysics Data System (ADS)
Johannes, Michelle; Bernstein, Noam
Nanoscale coatings of alumina are used to stabilize surfaces for a variety of technologies. Diffusion of ions through these coatings is of primary importance: in some cases, diffusion is unwanted (e.g. corrosion) and in others (e.g. electrode materials), it is necessary. In this work DFT and AIMD calculations are used to investigate Li+ ion diffusion through a nano-layer of alumina, examining the phase (alpha, gamma, and amorphous), ion concentration, and electron count dependence. We look at the role of the surface itself in promoting diffusion. One of our main findings is that as the number of ions or charge increases, the diffusivity rises. We show how our data can explain electrochemical data from coated LiCoO2 cathodes and may point toward better and more efficient coatings for stabilizing electrodes.
Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma
NASA Astrophysics Data System (ADS)
Bakhtiyari-Ramezani, M.; Mahmoodi, J.; Alinejad, N.
2015-11-01
In the fusion devices, ions, H atoms, and H2 molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H2 molecules, and desorption of the recombined H2 molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.
Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma
Bakhtiyari-Ramezani, M. Alinejad, N.; Mahmoodi, J.
2015-11-15
In the fusion devices, ions, H atoms, and H{sub 2} molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H{sub 2} molecules, and desorption of the recombined H{sub 2} molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.
Diffusion of ion implanted aluminum in silicon carbide
Tajima, Y.; Kijima, K.; Kingery, W.D.
1982-09-01
Diffusion of aluminum in silicon carbide was studied by Al implantation into single crystal SiC and subsequent profile analyses by secondary ion mass spectrometry (SIMS). The bulk diffusion coefficient of Al at temperatures between 1350 and 1800 /sup 0/C was determined to be D(cm/sup 2//s) = 1.3 x 10/sup -8/ exp (-231 kJ/mol/RT). The results were characterized by a low activation energy and a low pre-exponential constant compared with previously reported results. Dislocation enhanced diffusion was suggested from the appearance of the tails observed in the annealed concentration profiles.
Kalwarf, D.R.; Nielson, K.K.; Rich, D.C.; Rogers, V.C.
1982-11-01
A method was developed and used to determine radon diffusion coefficients in compacted soils by transient-diffusion measurements. A relative standard deviation of 12% was observed in repeated measurements with a dry soil by the transient-diffusion method, and a 40% uncertainty was determined for moistures exceeding 50% of saturation. Excellent agreement was also obtained between values of the diffusion coefficient for radon in air, as measured by the transient-diffusion method, and those in the published literature. Good agreement was also obtained with diffusion coefficients measured by a steady-state method on the same soils. The agreement was best at low moistures, averaging less than ten percent difference, but differences of up to a factor of two were observed at high moistures. The comparison of the transient-diffusion and steady-state methods at low moistures provides an excellent verification of the theoretical validity and technical accuracy of these approaches, which are based on completely independent experimental conditions, measurement methods and mathematical interpretations.
Secondary Ion Mass Spectrometry for Mg Tracer Diffusion: Issues and Solutions
Tuggle, Jay; Giordani, Andrew; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Coffey, Kevin; Sohn, Yong Ho; HunterJr., Jerry
2014-01-01
A Secondary Ion Mass Spectrometry (SIMS) method has been developed to measure stable Mg isotope tracer diffusion. This SIMS method was then used to calculate Mg self- diffusivities and the data was verified against historical data measured using radio tracers. The SIMS method has been validated as a reliable alternative to the radio-tracer technique for the measurement of Mg self-diffusion coefficients and can be used as a routine method for determining diffusion coefficients.
NASA Technical Reports Server (NTRS)
Tenney, D. R.; Unnam, J.
1978-01-01
Diffusion calculations were performed to establish the conditions under which concentration dependence of the diffusion coefficient was important in single, two, and three phase binary alloy systems. Finite-difference solutions were obtained for each type of system using diffusion coefficient variations typical of those observed in real alloy systems. Solutions were also obtained using average diffusion coefficients determined by taking a logarithmic average of each diffusion coefficient variation considered. The constant diffusion coefficient solutions were used as reference in assessing diffusion coefficient variation effects. Calculations were performed for planar, cylindrical, and spherical geometries in order to compare the effect of diffusion coefficient variations with the effect of interface geometries. In most of the cases considered, the diffusion coefficient of the major-alloy phase was the key parameter that controlled the kinetics of interdiffusion.
Radon diffusion coefficients in soils of varying moisture content
NASA Astrophysics Data System (ADS)
Papachristodoulou, C.; Ioannides, K.; Pavlides, S.
2009-04-01
Radon is a naturally occurring radioactive gas that is generated in the Earth's crust and is free to migrate through soil and be released to the atmosphere. Due to its unique properties, soil gas radon has been established as a powerful tracer used for a variety of purposes, such as exploring uranium ores, locating geothermal resources and hydrocarbon deposits, mapping geological faults, predicting seismic activity or volcanic eruptions and testing atmospheric transport models. Much attention has also been given to the radiological health hazard posed by increased radon concentrations in the living and working environment. In order to exploit radon profiles for geophysical purposes and also to predict its entry indoors, it is necessary to study its transport through soils. Among other factors, the importance of soil moisture in such studies has been largely highlighted and it is widely accepted that any measurement of radon transport parameters should be accompanied by a measurement of the soil moisture content. In principle, validation of transport models in the field is encountered by a large number of uncontrollable and varying parameters; laboratory methods are therefore preferred, allowing for experiments to be conducted under well-specified and uniform conditions. In this work, a laboratory technique has been applied for studying the effect of soil moisture content on radon diffusion. A vertical diffusion chamber was employed, in which radon was produced from a 226Ra source, was allowed to diffuse through a soil column and was finally monitored using a silicon surface barrier detector. By solving the steady-state radon diffusion equation, diffusion coefficients (D) were determined for soil samples of varying moisture content (m), from null (m=0) to saturation (m=1). For dry soil, a D value of 4.1×10-7 m2s-1 was determined, which increased moderately by a factor of ~3 for soil with low moisture content, i.e. up to m ~0.2. At higher water fractions, a decrease
Estimation of glucose diffusion coefficient in scleral tissue
NASA Astrophysics Data System (ADS)
Bashkatov, Alexey N.; Genina, Elina A.; Sinichkin, Yurii P.; Lakodina, Nina A.; Kochubey, Vyacheslav I.; Tuchin, Valery V.
2000-04-01
Results of experimental and theoretical study of the optical properties of the eye sclera controlled by administration of osmotically active chemical, such as glucose, are presented. Glucose administration induces the diffusion of matter and as a result the equalization of the refractive indices of collagen fibrils and base material, and corresponding changes of transmittance spectra of scleral tissue. Transmittance spectra of the human scleral samples impregnated by glucose were measured. The significant increase of transmittance under action of osmotic liquid was observed. The diffusion coefficient of glucose within scleral tissue was estimated; the average value is 3.45 X 10-6 +/- 4.59 X 10-7 cm2/sec. The results are general and can be used to describe many other fibrous tissues impregnated by osmotically active chemical agents.
Nanoscale mapping of ion diffusion in a lithium-ion battery cathode
Balke, N.; Jesse, S.; Morozovska, A.; Eliseev, E.; Chung, D.; Kim, Y.; Adamczyk, L.; Garcia, R.
2010-08-29
The movement of lithium ions into and out of electrodes is central to the operation of lithium-ion batteries. Although this process has been extensively studied at the device level, it remains insufficiently characterized at the nanoscale level of grain clusters, single grains and defects. Here, we probe the spatial variation of lithium-ion diffusion times in the battery-cathode material LiCoO{sub 2} at a resolution of ~100 nm by using an atomic force microscope to both redistribute lithium ions and measure the resulting cathode deformation. The relationship between diffusion and single grains and grain boundaries is observed, revealing that the diffusion coefficient increases for certain grain orientations and single-grain boundaries. This knowledge provides feedback to improve understanding of the nanoscale mechanisms underpinning lithium-ion battery operation.
Tracer diffusion coefficients in a sheared inelastic Maxwell gas
NASA Astrophysics Data System (ADS)
Garzó, Vicente; Trizac, Emmanuel
2016-07-01
We study the transport properties of an impurity in a sheared granular gas, in the framework of the Boltzmann equation for inelastic Maxwell models. We investigate here the impact of a nonequilibrium phase transition found in such systems, where the tracer species carries a finite fraction of the total kinetic energy (ordered phase). To this end, the diffusion coefficients are first obtained for a granular binary mixture in spatially inhomogeneous states close to the simple shear flow. In this situation, the set of coupled Boltzmann equations are solved by means of a Chapman-Enskog-like expansion around the (local) shear flow distributions for each species, thereby retaining all the hydrodynamic orders in the shear rate a. Due to the anisotropy induced by the shear flow, three tensorial quantities D ij , D p,ij , and D T,ij are required to describe the mass transport process instead of the conventional scalar coefficients. These tensors are given in terms of the solutions of a set of coupled algebraic equations, which can be exactly solved as functions of the shear rate a, the coefficients of restitution {αsr} and the parameters of the mixture (masses and composition). Once the forms of D ij , D p,ij , and D T,ij are obtained for arbitrary mole fraction {{x}1}={{n}1}/≤ft({{n}1}+{{n}2}\\right) (where n r is the number density of species r), the tracer limit ({{x}1}\\to 0 ) is carefully considered for the above three diffusion tensors. Explicit forms for these coefficients are derived showing that their shear rate dependence is significantly affected by the order-disorder transition.
NASA Technical Reports Server (NTRS)
Ukanwa, A. O.
1974-01-01
This experiment was performed in Skylab 3 with two objectives in mind. First, the experimental self-diffusion coefficients for liquid zinc were to be determined in a convection-free environment. Secondly the reduction in convective mixing in earth gravity by going into the zero-gravity environment of space was to be estimated. The experiment was designed to utilize high temperatures and linear thermal gradients provided by the M518 Multipurpose Electric Furnace, and the radioactivity of zinc-65 of 245-day half-life to investigate self-diffusion in liquid zinc. The distribution of zinc-65 tracer, after melting, maintaining at soak temperature for 1 hour of soak time and then resolidifying, was obtained by sample sectioning. The concentration of activity of each section (microcurie-gram) was plotted against positions along the sample axial and radial position. Experimental data and theoretical results from solution of Fick's law of diffusion in one dimensional were compared. Samples tested on earth showed very rapid diffusion. Diffusion coefficient in unit gravity was 50 times the zero-gravity diffusion coefficient of Skylab.
Kozai, N; Inada, K; Kozaki, T; Sato, S; Ohashi, H; Banba, T
2001-02-01
Diffusion of neptunium (V) in compacted Na-montmorillonite was studied through the non-steady state diffusion method. In this study, two experimental attempts were carried out to understand the diffusion mechanism of neptunium. One was to establish the diffusion activation energy, which was then used to determine the diffusion process in the montmorillonite. The other was the measurement of the distribution of neptunium in the montmorillonite by a sequential batch extraction. The apparent diffusion coefficients of neptunium in the montmorillonite at a dry density of 1.0 Mg m-3 were from 3.7 x 10(-12) m2 s-1 at 288 K to 9.2 x 10(-12) m2 s-1 at 323 K. At a dry density of 1.6 Mg m-3, the apparent diffusion coefficients ranged between 1.5 x 10(-13) m2 s-1 at 288 K and 8.7 x 10(-13) m2 s-1 at 323 K. The activation energy for the diffusion of neptunium at a dry density of 1.0 Mg m-3 was 17.5 +/- 1.9 kJ mol-1. This value is similar to those reported for diffusion of other ions in free water, e.g., 18.4 and 17.4 kJ mol-1 for Na+ and Cl-, respectively. At a dry density of 1.6 Mg.m-3, the activation energy was 39.8 +/- 1.9 kJ mol-1. The change in the activation energy suggests that the diffusion process changes depending on the dry density of the compacted montmorillonite. A characteristic distribution profile was obtained by the sequential extraction procedure for neptunium diffused in compacted montmorillonite. The estimated fraction of neptunium in the pore water was between 3% and 11% at a dry density of 1.6 Mg m-3 and at a temperature of 313 K. The major fraction of the neptunium in the montmorillonite was identified as neptunyl ions sorbed on the outer surface of the montmorillonite. These findings suggested that the activation energy for diffusion and the distribution profile of the involved nuclides could become powerful parameters in understanding the diffusion mechanism.
Comparison Actin- and Glass-Supported Phospholipid Bilayer Diffusion Coefficients
Sterling, Sarah M.; Dawes, Ryan; Allgeyer, Edward S.; Ashworth, Sharon L.; Neivandt, David J.
2015-01-01
The formation of biomimetic lipid membranes has the potential to provide insights into cellular lipid membrane dynamics. The construction of such membranes necessitates not only the utilization of appropriate lipids, but also physiologically relevant substrate/support materials. The substrate materials employed have been shown to have demonstrable effects on the behavior of the overlying lipid membrane, and thus must be studied before use as a model cushion support. To our knowledge, we report the formation and investigation of a novel actin protein-supported lipid membrane. Specifically, inner leaflet lateral mobility of globular actin-supported DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayers, deposited via the Langmuir-Blodgett/Langmuir Schaefer methodology, was investigated by z-scan fluorescence correlation spectroscopy across a temperature range of 20–44°C. The actin substrate was found to decrease the diffusion coefficient when compared to an identical membrane supported on glass. The depression of the diffusion coefficient occurred across all measured temperatures. These results indicated that the actin substrate exerted a direct effect on the fluidity of the lipid membrane and highlighted the fact that the choice of substrate/support is critical in studies of model lipid membranes. PMID:25902434
Xing, D; Papadakis, N G; Huang, C L; Lee, V M; Carpenter, T A; Hall, L D
1997-01-01
This work studies the effect of diffusion-weighting on the precision of measurements of the apparent diffusion coefficient (ADC, or D) by diffusion-weighted magnetic resonance imaging. The precision in the value of the ADC was described in terms of a diffusion-to-noise ratio (DNR) which was calculated as the signal-to-noise ratio in the resultant ADC. A theoretical analysis decomposed the DNR into the signal-to-noise ratio in the diffusion-weighted image and the sensitivity of diffusion-weighting, "KD". The latter reflects the effect of the sampling strategy in the diffusion-weighting domain on the DNR. The theoretical analysis demonstrated that optimal two-point diffusion-weighting could be achieved in the vicinity of zeta = D(b2-b1) = 1.1, where zeta is a non-dimensional parameter of diffusion-weighting, and b1 and b2 are the diffusion-weighting factors for the two-point diffusion-weighting. This approach also derived an optimised signal averaging scheme. The limitations and restrictions of the two-point scheme for in vivo ADC measurement were also considered; these included a detailed discussion on partial volume effects. The theory was verified by experiments on phantoms and on the brain of a healthy volunteer using a diffusion-weighted echo-planar imaging protocol. This led to an optimal two-point diffusion-weighting for ADC measurement in human brain using b1 = 300, and b2 = 1550 +/- 100 s/mm2. Such a two-point scheme successfully measured values of the ADC in gray matter, white matter and cerebrospinal fluid in human brain. It thus offers an alternative to the commonly used multiple-point schemes and has the advantage of requiring significantly shorter imaging times.
Calculation of combined diffusion coefficients in SF{sub 6}-Cu mixtures
Zhong, Linlin; Wang, Xiaohua Rong, Mingzhe Wu, Yi; Murphy, Anthony B.
2014-10-15
Diffusion coefficients play an important role in the description of the transport of metal vapours in gas mixtures. This paper is devoted to the calculation of four combined diffusion coefficients, namely, the combined ordinary diffusion coefficient, combined electric field diffusion coefficient, combined temperature diffusion coefficient, and combined pressure diffusion coefficient in SF{sub 6}-Cu mixtures at temperatures up to 30 000 K. These four coefficients describe diffusion due to composition gradients, applied electric fields, temperature gradients, and pressure gradients, respectively. The influence of copper fluoride and sulfide species on the diffusion coefficients is shown to be negligible. The effect of copper proportion and gas pressures on these diffusion coefficients is investigated. It is shown that increasing the proportion of copper generally increases the magnitude of the four diffusion coefficients, except for copper mole fractions of 90% or more. It is further found that increasing the pressure reduces the magnitude of the coefficients, except for the combined temperature diffusion coefficient, and shifts the maximum of all four coefficients towards higher temperatures. The results presented in this paper can be applied to the simulation of high-voltage circuit breaker arcs.
Diffusion kinetics of the ion exchange of benzocaine on sulfocationites
NASA Astrophysics Data System (ADS)
Al'tshuler, O. G.; Shkurenko, G. Yu.; Gorlov, A. A.; Al'tshuler, G. N.
2016-06-01
The theory of the ion exchange kinetics on strong acid cationites with the participation of weak electrolytes is discussed. The kinetics of desorption of benzocaine in the protonated and molecular forms from strong acid cationites, sulfonated polycalixarene, and KU-23 30/100 sulfocationite, is studied experimentally. It is shown that the flow of protonated benzocaine from cationite upon desorption proceeding by the ion-exchange mechanism is more intense than upon desorption of nonionized benzocaine molecules. It is established that the diffusion coefficient of benzocaine cations is (1.21 ± 0.23) × 10-12 m2/s in KU-23 30/100 sulfocation and (0.65 ± 0.06) × 10-13 m2/s in sulfonated polycalixarene, while the diffusion coefficient of benzocaine molecules is (0.65 ± 0.15) × 10-14 m2/s in sulfonated polycalixarene.
Continuum Absorption Coefficient of Atoms and Ions
NASA Technical Reports Server (NTRS)
Armaly, B. F.
1979-01-01
The rate of heat transfer to the heat shield of a Jupiter probe has been estimated to be one order of magnitude higher than any previously experienced in an outer space exploration program. More than one-third of this heat load is due to an emission of continuum radiation from atoms and ions. The existing computer code for calculating the continuum contribution to the total load utilizes a modified version of Biberman's approximate method. The continuum radiation absorption cross sections of a C - H - O - N ablation system were examined in detail. The present computer code was evaluated and updated by being compared with available exact and approximate calculations and correlations of experimental data. A detailed calculation procedure, which can be applied to other atomic species, is presented. The approximate correlations can be made to agree with the available exact and experimental data.
Reconstruction of two constant coefficients in linear anisotropic diffusion model
NASA Astrophysics Data System (ADS)
Mola, Gianluca; Okazawa, Noboru; Yokota, Tomomi
2016-11-01
Let (H,< \\cdot ,\\cdot > ) be a complex Hilbert space and A:D(A)\\to H and B:D(B)\\to H be nonnegative and selfadjoint operators. We study the inverse problem consisting in the identification of the function u:[0,T]\\to H and two constants α, β \\in {{{R}}}+=(0,∞ ) (diffusion coefficients) that fulfill the initial-value problem u ‧ ( t ) + α Au ( t ) + β Bu ( t ) = 0 , t ∈ ( 0 , T ) , u ( 0 ) = x , and the additional conditions < Au ( T ) , u ( T ) > = φ and < Bu ( T ) , u ( T ) > = ψ . Under suitable assumptions on the operators A and B, and on the data x\\in H and \\varphi ,\\psi \\gt 0, we shall construct a solution and prove its uniqueness and continuous dependence on the data. Applications are considered.
Measurement of diffusion coefficient of propylene glycol in skin tissue
NASA Astrophysics Data System (ADS)
Genin, Vadim D.; Bashkatov, Alexey N.; Genina, Elina A.; Tuchin, Valery V.
2015-03-01
Optical clearing of the rat skin under the action of propylene glycol was studied ex vivo. It was found that collimated transmittance of skin samples increased, whereas weight and thickness of the samples decreased during propylene glycol penetration in skin tissue. A mechanism of the optical clearing under the action of propylene glycol is discussed. Diffusion coefficient of propylene glycol in skin tissue ex vivo has been estimated as (1.35±0.95)×10-7 cm2/s with the taking into account of kinetics of both weight and thickness of skin samples. The presented results can be useful for enhancement of many methods of laser therapy and optical diagnostics of skin diseases and localization of subcutaneous neoplasms.
Diffusion coefficient of hydrogen in a cast gamma titanium aluminide
Sundaram, P.A.; Wessel, E.; Ennis, P.J.; Quadakkers, W.J.; Singheiser, L.
1999-06-04
Gamma titanium aluminides have the potential for high temperature applications because of their high specific strength and specific modulus. Their oxidation resistance is good, especially at intermediate temperatures and with suitable alloying additions, good oxidation resistance can be obtained up to 800 C. One critical area of application is in combustion engines in aero-space vehicles such as hypersonic airplanes and high speed civil transport airplanes. This entails the use of hydrogen as a fuel component and hence the effect of hydrogen on the mechanical properties of gamma titanium aluminides is of significant scientific and technological utility. The purpose of this short investigation is to use an electrochemical method under galvanostatic conditions to determine the diffusion coefficient of hydrogen in a cast gamma titanium aluminide, a typical technical alloy with potential application in gas turbines under creep conditions. This result will be then compared with that obtained by microhardness profiling of electrolytically hydrogen precharged material.
Diffusion of ion-exchanging electrolytes in montmorillonite gels
Jahnke, F.M.
1987-01-01
The primary contributions of this work are: (1) Development of a unique radially perfused diffusion cell suitable for measuring transient diffusion rates in compacted, highly adsorbing and swelling porous media such as montmorillonite clay gels; (2) examination of the effective diffusion coefficient (D{sub 6}) of electrolytes in montmorillonite clay gels; and (3) Measurement of the transient diffusion rates of cesium, chloride and tritium in 15 w/o montmorillonite clay gels at pH 9 and sodium chloride backgrounds of 10{sup {minus}1} to 10{sup {minus}3} kmol/m{sup 3}. Results are interpreted by using the dilute limit of the multicomponent transport equations derived for species migration in a single clay pore after macroscopic averaging. The tortuosity of the clay gel is found by tritium diffusion. Transient chloride diffusion rates are found to be at molecular rates. Negative adsorption of anions from the clay gel, required for an a priori prediction of chloride profiles, are calculated from site-binding theory. Surface diffusion is the primary mode of cesium transport in montmorillonite clay gels. Migration of cesium is primarily along the inner Helmholtz plane of clay particles. The primary implication for the montmorillonite clay-based packing as a nuclear waste migration barrier is that surface diffusion must be included to describe properly diffusion rates of either anions or cations. Currently surface diffusion is neglected and cesium penetration into the packing is drastically underestimated. Penetration depths of anions is grossly overestimated. In either case, the appropriate diffusion coefficient of ions in compacted packing will be in considerable error relative to current design recommendations.
Computing quasi-linear diffusion coefficients using the delta-f particle-in-cell method
Austin, T. M.; Smithe, D. N.; Ranjbar, V.
2009-11-26
Linear wave codes AORSA and TORIC couple to the bounce-averaged nonlinear Fokker-Planck code CQL3D through quasi-linear diffusion coefficients. Both linear wave codes rely on the quasi-local approximation that includes only first-order parallel and perpendicular gradient variations of cyclotron frequency and ignores field line curvature along with temperature and density gradient effects. The delta-f particle-in-cell (DFPIC) method has been successfully used for simulating ion-cyclotron fast wave behavior. This method also permits particle behavior such as multiple pass resonance, banana orbits, and superadiabaticity. We present new work on generating quasi-linear diffusion coefficients using the DFPIC method that will permit the electromagnetic particle-in-cell (EMPIC) code, VORPAL, to couple to CQL3D and to compare to AORSA and TORIC. A new multiple weight delta-f approach will be presented that converts velocity derivatives to action derivatives and yields a full tensor quasi-linear diffusion coefficient.
Sodium ion diffusion in Al2O3: a distinct perspective compared with lithium ion diffusion.
Jung, Sung Chul; Kim, Hyung-Jin; Choi, Jang Wook; Han, Young-Kyu
2014-11-12
Surface coating of active materials has been one of the most effective strategies to mitigate undesirable side reactions and thereby improve the overall battery performance. In this direction, aluminum oxide (Al2O3) is one of the most widely adopted coating materials due to its easy synthesis and low material cost. Nevertheless, the effect of Al2O3 coating on carrier ion diffusion has been investigated mainly for Li ion batteries, and the corresponding understanding for emerging Na ion batteries is currently missing. Using ab initio molecular dynamics calculations, herein, we first find that, unlike lithiation, sodiation of Al2O3 is thermodynamically unfavorable. Nonetheless, there can still exist a threshold in the Na ion content in Al2O3 before further diffusion into the adjacent active material, delivering a new insight that both thermodynamics and kinetics should be taken into account to describe ionic diffusion in any material media. Furthermore, Na ion diffusivity in NaxAl2O3 turns out to be much higher than Li ion diffusivity in LixAl2O3, a result opposite to the conventional stereotype based on the atomic radius consideration. While hopping between the O-rich trapping sites via an Na-O bond breaking/making process is identified as the main Na ion diffusion mechanism, the weaker Na-O bond strength than the Li-O counterpart turns out to be the origin of the superior diffusivity of Na ions.
Inner zone electron radial diffusion coefficients - An update with Van Allen Probes MagEIS data
NASA Astrophysics Data System (ADS)
O'Brien, Paul; Fennell, Joseph; Guild, Timothy; Mazur, Joseph; Claudepierre, Seth; Clemmons, James; Turner, Drew; Blake, Bernard; Roeder, James
2016-07-01
Using MagEIS data from NASA's recent Van Allen Probes mission, we estimate the quiet-time radial diffusion coefficients for electrons in the inner radiation belt and slot, for energies up to ~700 keV. We provide observational evidence that energy diffusion is negligible. The main dynamic processes, then, are radial diffusion and elastic pitch angle scattering. We use a coordinate system in which these two modes of diffusion are separable. Then we integrate over pitch angle to obtain a field line content whose dynamics consist of radial diffusion and loss to the atmosphere. We estimate the loss timescale from periods of exponential decay in the time series. We then estimate the radial diffusion coefficient from the temporal and radial variation of the field line content. We show that our diffusion coefficients agree well with previously determined values. Our coefficients are consistent with diffusion by electrostatic impulses, whereas outer zone radial diffusion is thought to be dominated by electromagnetic fluctuations.
The solid-phase diffusion coefficient (Dm) and material-air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to es...
The diagnostic value of biexponential apparent diffusion coefficients in myopathy.
Ran, Jun; Liu, Yao; Sun, Dong; Morelli, John; Zhang, Ping; Wu, Gang; Sheng, Yuda; Xie, Ruyi; Zhang, Xiaoli; Li, Xiaoming
2016-07-01
To investigate the performance of a biexponential signal decay model using DWI in myopathies and to differentiate Polymyositis (PM)/Dermatomyositis (DM), Glycogen Storage Diseases (GSDs) and Muscular Dystrophies (MDs) utilizing diffusion-weighted imaging. 11 healthy volunteers (control group) and 46 patients with myopathy were enrolled in the retrospective study. 27 of 46 patients had PM/DM, 7 patients GSDs and 12 patients MDs. After conventional MR sequences, diffusion weighted imaging with a b-factor ranging from 0 to 1200 s/mm(2) was performed on both thighs. The intra-muscular signal-to-noise ratios (SNRs) on multiple-b DWI images were measured for 7 different muscles and compared among the different groups. The median T2 signal intensity and biexponential apparent diffusion coefficients (ADC), including standard ADC, fast ADC, and slow ADC values, were compared among the different groups. The intra-muscular SNRs were statistically significantly different depending on the b value, and also found among the 4 groups (p < 0.05). The median T2 signal intensity of the normal muscles in control group was statistically significantly lower than that of edematous muscles in the PM/DM, GSDs and MDs groups (p = 0.000), while there were no statistically significant differences among the PM/DM, GSDs, and MDs groups (p > 0.05). The median standard ADC value of the edematous muscles in GSDs was statistically significantly lower than that of normal muscles in the control group (p = 0.000) and the median ADC value of the edematous muscles in PM/DM patients was statistically significantly greater than that of the GSDs (p = 0.000) and MDs groups (p = 0.005). The median slow ADC value of the edematous muscles in MDs patients and PM/DM patients was statistically significantly greater than that of GSDs patients (p < 0.05). Intra-muscular SNR decay curves and biexponential ADC parameters are useful in distinguishing among PM/DM, GSDs, and MDs. PMID:27142711
High silicon self-diffusion coefficient in dry forsterite
NASA Astrophysics Data System (ADS)
Katsura, T.; Fei, H.; Hegoda, C.; Yamazaki, D.; Wiedenbeck, M.; Yurimoto, H.; Shcheka, S.
2012-12-01
Plastic deformation of mantle minerals is believed to be controlled by self-diffusion of the slowest species, which is silicon in silicate minerals. Olivine is the main constituent of upper mantle. Therefore, silicon self-diffusion coefficient (DSi) in olivine provides the basic information of upper mantle rheology. Dohmen et al. [1] and Jaoul et al. [2] measured the DSi at ambient pressure under dry conditions in natural olivine and iron-free forsterite, respectively. However, their results were ~2-3 orders of magnitude lower than that estimated from deformation experiments [3]. In this study, we revisited DSi in forsterite and resolved this discrepancy [4]. Forsterite single crystals were polished in colloidal silica solution, deposited with 300-500 nm of 29Si enriched Mg2SiO4 films, covered by 100 nm of ZrO2 films, and annealed at 1600-1800 K from ambient pressure up to 13 GPa using an ambient pressure furnace and multi-anvil apparatus. The surface roughness after diffusion were reduced to <50 nm by polishing again in colloidal silica solution. Diffusion profiles were obtained by SIMS. Water contents in the samples were <1 μg/g by FT-IR [4]. logDSi were determined to be -19.7±0.4 and -18.1±0.3 log[m2/s] under ambient pressure at 1600 and 1800 K, respectively. These values were 2.4 orders of magnitude higher than that determined by Jaoul et al. [2] in forsterite, as well as that reprted by Dohmen et al. [1] in natural olivine. Their low DSi could be obtained due to the bad contact of the coated films with the substrate. Our results well explain the high dislocation climb rates in deformation experiments [4]. We also determined a small negative pressure dependence of DSi with an activation volume of 1.7±0.4 cm3/mol, and an activation energy of ~410 kJ/mol. Calibratied to the same temperature, the nearly linear relationship of DSi against pressure in dry forsterite in this study, iron and water bearing wadsleyite and ringwoodite by Shimojuku et al. [5
On the Origin of Quantum Diffusion Coefficient and Quantum Potential
NASA Astrophysics Data System (ADS)
Gupta, Aseem
2016-03-01
Synchronizability of space and time experiences between different inhabitants of a spacetime is abstracted as a fundamental premise of Classical physics. Absence thereof i.e. desynchronization between space and time experiences of a system under study and the observer is then studied for a single dimension single particle system. Desynchronization fundamentally makes probability concepts enter physics ab-initio and not as secondary tools to deal with situations wherein incomplete information in situation following perfectly deterministic dynamics demands its introduction. Desynchronization model based on Poisson distribution of events vis-à-vis an observer, leads to expectation of particle's motion as a Brownian motion deriving Nelson's quantum diffusion coefficient naturally, without needing to postulate it. This model also incorporates physical effects akin to those of Bohm's Quantum Potential, again without needing any sub-quantum medium. Schrodinger's equation is shown to be derivable incorporating desynchronization only of space while Quantum Field Theory is shown to model desynchronization of time as well. Fundamental suggestion of the study is that it is desynchronization that is at the root of quantum phenomena rather than sub-micro scales of spacetime. Absence of possibility of synchronization between system's space and time and those of observer is studied. Mathematical modeling of desynchronized evolution explains some intriguing aspects of Quantum Mechanical theory.
Coordinate-dependent diffusion coefficients: Decay rate in open quantum systems
Sargsyan, V. V.; Palchikov, Yu. V.; Antonenko, N. V.; Kanokov, Z.; Adamian, G. G.
2007-06-15
Based on a master equation for the reduced density matrix of an open quantum collective system, the influence of coordinate-dependent microscopical diffusion coefficients on the decay rate from a metastable state is treated. For various frictions and temperatures larger than a crossover temperature, the quasistationary decay rates obtained with the coordinate-dependent microscopical set of diffusion coefficients are compared with those obtained with the coordinate-independent microscopical set of diffusion coefficients and coordinate-independent and -dependent phenomenological sets of diffusion coefficients. Neglecting the coordinate dependence of diffusion coefficients, one can strongly overestimate or underestimate the decay rate at low temperature. The coordinate-dependent phenomenological diffusion coefficient in momentum are shown to be suitable for applications.
Controlling chloride ions diffusion in concrete.
Zeng, Lunwu; Song, Runxia
2013-11-28
The corrosion of steel in concrete is mainly due to the chemical reaction between the chloride ions and iron ions. Indeed, this is a serious threaten for reinforced concrete structure, especially for the reinforced concrete structure in the sea. So it is urgent and important to protect concrete against chloride ions corrosion. In this work, we report multilayer concrete can cloak chloride ions. We formulated five kinds of concrete A, B, C, D and E, which are made of different proportion of cement, sand and glue, and fabricated six-layer (ABACAD) cylinder diffusion cloak and background media E. The simulation results show that the six-layer mass diffusion cloak can protect concrete against chloride ions penetration, while the experiment results show that the concentration gradients are parallel and equal outside the outer circle in the diffusion flux lines, the iso-concentration lines are parallel outside the outer circle, and the concentration gradients in the inner circle are smaller than those outside the outer circle.
Controlling chloride ions diffusion in concrete
Zeng, Lunwu; Song, Runxia
2013-01-01
The corrosion of steel in concrete is mainly due to the chemical reaction between the chloride ions and iron ions. Indeed, this is a serious threaten for reinforced concrete structure, especially for the reinforced concrete structure in the sea. So it is urgent and important to protect concrete against chloride ions corrosion. In this work, we report multilayer concrete can cloak chloride ions. We formulated five kinds of concrete A, B, C, D and E, which are made of different proportion of cement, sand and glue, and fabricated six-layer (ABACAD) cylinder diffusion cloak and background media E. The simulation results show that the six-layer mass diffusion cloak can protect concrete against chloride ions penetration, while the experiment results show that the concentration gradients are parallel and equal outside the outer circle in the diffusion flux lines, the iso-concentration lines are parallel outside the outer circle, and the concentration gradients in the inner circle are smaller than those outside the outer circle. PMID:24285220
Effect of transiently bound collision on binary diffusion coefficients of free radical species
NASA Astrophysics Data System (ADS)
Wang, Hai
2000-08-01
The influence of transiently bound collision on the diffusion coefficient of free radicals was examined using molecular dynamics simulations and the Green-Kubo formula. It was found that transiently bound collisions significantly increase the diffusion coefficients of free radicals at temperatures relevant to combustion. The present study suggests that a molecular theory beyond the Chapman-Enskog equation is needed to evaluate the diffusion coefficients of free radicals in laminar flame and other high-temperature reacting flow simulations.
Shalchi, A.
2013-09-01
We explore perpendicular diffusion based on the unified nonlinear transport theory. We derive simple analytical forms for the perpendicular mean free path and investigate the influence of different model spectra. We show that for cases where the field line random walk is normal diffusive, the perpendicular diffusion coefficient consists of only two transport regimes. Details of the spectral shape are less important, especially those of the inertial range. Only the macroscopic properties of the turbulence spectrum control the perpendicular diffusion coefficient. Simple formulae for the perpendicular diffusion coefficient are derived which can easily be implemented in solar modulation or shock acceleration codes.
Auria, R; Palacios, J; Revah, S
1992-04-15
A simple experimental diffusion controlled fermentor (DCF), coupled with the use of a mathematical model based on mass balance, is proposed to measure the variation of the gas (CO(2) and O(2)) diffusion coefficients in solid state fermentation. The DCF was packed with an ion-exchange resin impregnated with a nutritive medium and inoculated with Aspergillus niger. The growth conditions in the DCF were very similar to those found in equipment operated with convective oxygen supply. The diffusion coefficient was shown to be very dependent on the biomass concentration within the solid state fermentor, and attained values of less than 5% of the molecular diffusion in air when the biomass in the fermentor reached 27 mg dry/g dry support.
Ion diffusion at interfaces in hot plasmas
Boercker, D.B.; Warren, K.; Haggin, G.
1986-04-01
There are many laboratory applications in which it is important to know how fast two hot, ionized materials mix across an initially sharp interface. The speed of this process is regulated by the interdiffusion coefficient for the species involved. In a previous work, a theoretical method for calculating the interdiffusion coefficient in a Binary Ionic Mixture (classical ions in a uniform, neutralizing background) was described and found to give excellent agreement with Molecular Dynamics estimates. The purpose of this report is to show how these results may be applied to a model of the plasma interface, including electric field effects, to give a good description of the mixing across it.
NASA Astrophysics Data System (ADS)
Paddison, Stephen J.; Paul, Reginald; Zawodzinski, Thomas A.
2001-10-01
A recently derived mathematical model to compute the effective friction and diffusion coefficients of hydronium ions in hydrated polymer electrolyte membranes is described and tested for dependence on membrane-specific parameters. Contributions to the friction coefficient due to water-polymer, water-hydronium, and hydronium-polymer interactions are determined through computation of force-force correlation functions. The conventional Stokes law friction coefficient of the hydronium ion in bulk water is then "corrected" with these statistically derived contributions and the corresponding diffusion coefficient calculated. For a Nafion® membrane pore with an hydration level of six water molecules per sulfonic acid functional, the model was used to compute friction coefficients for various distributions of the fixed sites, and for different side chain lengths. The model showed substantial sensitivity to these parameters and predicted that for pores of fixed volume and a constant total number of sulfonate groups, the friction on the hydrated proton is the greatest for distributions with high local anionic charge density. In a second series of computations where the radius and length of the pore were varied, the model demonstrated that the proton diffusion increases with increasing channel diameter. These calculations, therefore, demonstrate the important predictive capability of this molecular-based, nonequilibrium statistical mechanical model.
Stellwagen, Earle; Stellwagen, Nancy C
2015-09-01
Free solution capillary electrophoresis (CE) is a useful technique for measuring the translational diffusion coefficients of charged analytes. The measurements are relatively fast if the polarity of the electric field is reversed to drive the analyte back and forth past the detection window during each run. We have tested the validity of the resulting diffusion coefficients using double-stranded DNA molecules ranging in size from 20 to 960 base pairs as the model system. The diffusion coefficients of small DNAs are equal to values in the literature measured by other techniques. However, the diffusion coefficients of DNA molecules larger than ∼30 base pairs are anomalously high and deviate increasingly from the literature values with increasing DNA molar mass. The anomalously high diffusion coefficients are due to electrostatic coupling between the DNA and its counterions. As a result, the measured diffusion coefficients vary with the diffusion coefficient of the counterion, as well as with cation concentration and electric field strength. These effects can be reduced or eliminated by measuring apparent diffusion coefficients of the DNA at several different electric field strengths and extrapolating the results to zero electric field.
In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm^{2}/s over a range of air...
Technology Transfer Automated Retrieval System (TEKTRAN)
Knowledge of the diffusion coefficient is necessary for modeling gas transport in soils and other porous media. This study was conducted to determine the relationship between the diffusion coefficient and pore structure parameters, such as the fractal dimension of pores (Dmp), the shortest path leng...
NASA Astrophysics Data System (ADS)
Ilia Anisa, Nor; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio
2014-04-01
6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10-11 m2/s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10-11 m2/s.
Low coefficient of thermal expansion polyimides containing metal ion additives
NASA Technical Reports Server (NTRS)
Stoakley, D. M.; St. Clair, A. K.
1992-01-01
Polyimides have become widely used as high performance polymers as a result of their excellent thermal stability and toughness. However, lowering their coefficient of thermal expansion (CTE) would increase their usefulness for aerospace and electronic applications where dimensional stability is a requirement. The incorporation of metal ion-containing additives into polyimides, resulting in significantly lowered CTE's, has been studied. Various metal ion additives have been added to both polyamic acid resins and soluble polyimide solutions in the concentration range of 4-23 weight percent. The incorporation of these metal ions has resulted in reductions in the CTE's of the control polyimides of 12 percent to over 100 percent depending on the choice of additive and its concentration.
A simple method for the determination of ionic diffusion coefficients in flooded soils
NASA Astrophysics Data System (ADS)
Gardner, P. J.; Flynn, N.; Maltby, E.
2001-02-01
Soil cores from river marginal wetlands from the Torridge and Severn catchments in the UK were collected to study rates of soil denitrification at different sites and at two stations (levee and backplain depression) at the river margin. Half the cores were sterilized prior to flooding to destroy the denitrifying bacteria. After flooding and equilibration, monitoring the concentration of amended nitrate in the supernatant of the sterile cores over a period of 7 days provided a simple procedure for the estimation of the diffusion coefficient of the nitrate ion in the flooded soils. An expression was developed that permitted this diffusion coefficient to be extracted from the slope of a plot of supernatant concentration versus (time)1/2. The values obtained, at 15 °C, varied from 2·4 to 6·8 × 10-10m2s-1. Sterile cores are usually treated as controls in denitrification experiments; this work develops a procedure whereby they may yield useful soil process information.
Chowdhury, Mohammed Tareque Takekawa, Reiji; Iwai, Yoshiki; Kuwata, Naoaki; Kawamura, Junichi
2014-03-28
The lithium ion diffusion coefficient of a 93% Li β-alumina single crystal was measured for the first time using pulsed field gradient (PFG) NMR spectroscopy with two different crystal orientations. The diffusion coefficient was found to be 1.2 × 10{sup −11} m{sup 2}/s in the direction perpendicular to the c axis at room temperature. The Li ion diffusion coefficient along the c axis direction was found to be very small (6.4 × 10{sup −13} m{sup 2}/s at 333 K), which suggests that the macroscopic diffusion of the Li ion in the β-alumina crystal is mainly two-dimensional. The diffusion coefficient for the same sample was also estimated using NMR line narrowing data and impedance measurements. The impedance data show reasonable agreement with PFG-NMR data, while the line narrowing measurements provided a lower value for the diffusion coefficient. Line narrowing measurements also provided a relatively low value for the activation energy and pre-exponential factor. The temperature dependent diffusion coefficient was obtained in the temperature range 297–333 K by PFG-NMR, from which the activation energy for diffusion of the Li ion was estimated. The activation energy obtained by PFG-NMR was smaller than that obtained by impedance measurements, which suggests that thermally activated defect formation energy exists for 93% Li β-alumina single crystals. The diffusion time dependence of the diffusion coefficient was observed for the Li ion in the 93% Li β-alumina single crystal by means of PFG-NMR experiments. Motion of Li ion in fractal dimension might be a possible explanation for the observed diffusion time dependence of the diffusion coefficient in the 93% Li β–alumina system.
Importance of diffuse metal ion binding to RNA.
Tan, Zhi-Jie; Chen, Shi-Jie
2011-01-01
RNAs are highly charged polyanionic molecules. RNA structure and function are strongly correlated with the ionic condition of the solution. The primary focus of this article is on the role of diffusive ions in RNA folding. Due to the long-range nature of electrostatic interactions, the diffuse ions can contribute significantly to RNA structural stability and folding kinetics. We present an overview of the experimental findings as well as the theoretical developments on the diffuse ion effects in RNA folding. This review places heavy emphasis on the effect of magnesium ions. Magnesium ions play a highly efficient role in stabilizing RNA tertiary structures and promoting tertiary structural folding. The highly efficient role goes beyond the mean-field effect such as the ionic strength. In addition to the effects of specific ion binding and ion dehydration, ion-ion correlation for the diffuse ions can contribute to the efficient role of the multivalent ions such as the magnesium ions in RNA folding.
Diffusion in mixed solvents. III - The heat of mixing parameter and the Soret coefficient
NASA Technical Reports Server (NTRS)
Carapellucci, P. A.
1976-01-01
New evidence is presented that for aqueous glycerol solutions, the Soret coefficient of glycerol, sigma sub 1 = D sub 1 T/D sub 1 (where D sub 1 T and D sub 1 are the thermal and self-diffusion coefficients, respectively, of glycerol in aqueous solutions), is an integral part of the heat of mixing parameter. Expressions are presented indicating the importance of the Soret coefficients to correlations for diffusion processes in glycerol water solvents.
Technology Transfer Automated Retrieval System (TEKTRAN)
The diffusion coefficient of water in biobased hydrogels were measured utilizing a simple NMR method. This method tracks the migration of deuterium oxide through imaging data that is fit to a diffusion equation. The results show that a 5 wt% soybean oil based hydrogel gives aqueous diffusion of 1.37...
Goemans, M.G.E.; Gloyna, E.F.
1996-10-01
The potential of sub- and supercritical water as extraction solvents has been demonstrated for the (reactive) extraction of coals, used car tires, organic species from residual aqueous solutions, and class selective extraction of organic pollutants with different polarities from solids. In addition, the potential of extraction of coal with supercritical aqueous solutions has been studied. However, physical transport in water at elevated temperature and pressures- and their impact on heterogenous reactions and (reactive) extraction -are not adequately understood. This situation is largely due to the limited data that is available for diffusion in high temperature, high pressure water mixture. Only the molecular diffusion of Iodine ions and hydroquinone in near-critical subcritical water and the self diffusion of coefficient of compressed supercritical water have been reported. In this paper, we present molecular diffusion coefficients of benzophenone, acetone, naphthalene, and anthracene in water at infinite dilution. Pressures ranged from 250 to 500 bar at temperatures ranging from 50{degrees}C to 500{degrees}C resulting in water densities ranging from 1000 to 150 kg/m{sup 3}. Diffusion coefficients were determined by the Taylor-Aris dispersion technique. The effects of increased diffusion on the mass transfer coefficients for emulsions and packed beds were quantified. Molecular division coefficients were 10 to 20 times faster in supercritical water than in water at ambient conditions. Experimental results were correlated with hydrodynamic and kinetic theory. This study and results to be published elsewhere show that diffusion-limited conditions are much more likely to be encountered in supercritical water than is commonly acknowledged.
Lober, Robert M; Cho, Yoon-Jae; Tang, Yujie; Barnes, Patrick D; Edwards, Michael S; Vogel, Hannes; Fisher, Paul G; Monje, Michelle; Yeom, Kristen W
2014-03-01
While pediatric diffuse intrinsic pontine gliomas (DIPG) remain fatal, recent data have shown subgroups with distinct molecular biology and clinical behavior. We hypothesized that diffusion-weighted MRI can be used as a prognostic marker to stratify DIPG subsets with distinct clinical behavior. Apparent diffusion coefficient (ADC) values derived from diffusion-weighted MRI were computed in 20 consecutive children with treatment-naïve DIPG tumors. The median ADC for the cohort was used to stratify the tumors into low and high ADC groups. Survival, gender, therapy, and potential steroid effects were compared between the ADC groups. Median age at diagnosis was 6.6 (range 2.3-13.2) years, with median follow-up seven (range 1-36) months. There were 14 boys and six girls. Seventeen patients received radiotherapy, five received chemotherapy, and six underwent cerebrospinal fluid diversion. The median ADC of 1,295 × 10(-6) mm(2)/s for the cohort partitioned tumors into low or high diffusion groups, which had distinct median survivals of 3 and 13 months, respectively (log-rank p < 0.001). Low ADC tumors were found only in boys, whereas high ADC tumors were found in both boys and girls. Available tissue specimens in three low ADC tumors demonstrated high-grade histology, whereas one high ADC tumor demonstrated low-grade histology with a histone H3.1 K27M mutation and high-grade metastatic lesion at autopsy. ADC derived from diffusion-weighted MRI may identify prognostically distinct subgroups of pediatric DIPG. PMID:24522717
Directional diffusion coefficients of solar protons inside and outside the bow shock.
NASA Technical Reports Server (NTRS)
Verzariu, P.; Krimigis, S. M.
1973-01-01
The directional diffusion coefficients of low-energy (greater than or equal to 0.3 MeV) solar protons inside and outside the bow shock are examined during the solar flare event of Jan. 24, 1969. The data are derived from simultaneous observations obtained by Explorer 33 inside the magnetosheath and by Explorer 35 in the interplanetary medium. Although the gross properties of the spin-averaged intensities on a diffusion-type plot appear to be the same in both media, the directional intensities show significant variations. It is shown that directional intensities of low-energy protons can be described reasonably well by anisotropic diffusion with an associated diffusion coefficient. Directional diffusion coefficients are found to differ by a factor of as much as three among different directions in space, and from the spin-averaged diffusion coefficient. This suggests that anisotropic diffusion does indeed take place and that so called 'isotropic' diffusion coefficients derived in the past from spin-averaged intensities may actually be directional diffusion coefficients in cases where substantial anisotropies (greater than 50%) exist.
Impurity Diffusion Coefficients of Al and Zn in Mg Determined from Solid-to-Solid Diffusion Couples
Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Perry, Kelly A; Belova, Irina; Murch, Prof. Graeme; Sohn, Yong Ho
2013-08-01
Increasing use and development of lightweight Mgalloys have led to the desire for more fundamental research in and understanding of Mg-based systems. As property enhancing components, Al and Zn are two of the most important and common alloying elements for Mg-alloys. We have investigated the concentration dependent interdiffusion of Al and Zn in Mg using diffusion couples of pure polycrystalline Mg mated to Mg solid solutions containing either <9 at.% Al or <3 at.% Zn. Concentration profiles were determined by electron micro-probe microanalysis of the diffusion zone. The interdiffusion coefficients were determined by the classical Boltzmann-Matano method within the Mg solid solution. As the concentration of Al or Zn approaches the dilute ends, we employ an analytical approach based on the Hall method to estimate the impurity diffusion coefficients. Results of Al and Zn impurity diffusion in Mg are reported and compared to published impurity diffusion coefficients typically determined by thin film techniques.
Ha, Jiyeon; Engler, Cady R; Lee, Seung Jae
2008-07-01
Diffusion characteristics of chlorferon and diethylthiophosphate (DETP) in Ca-alginate gel beads were studied to assist in designing and operating bioreactor systems. Diffusion coefficients for chlorferon and DETP in Ca-alginate gel beads determined at conditions suitable for biodegradation studies were 2.70 x 10(-11) m(2)/s and 4.28 x 10(-11) m(2)/s, respectively. Diffusivities of chlorferon and DETP were influenced by several factors, including viscosity of the bulk solution, agitation speed, and the concentrations of diffusing substrate and immobilized cells. Diffusion coefficients increased with increasing agitation speed, probably due to poor mixing at low speed and some attrition of beads at high speeds. Diffusion coefficients also increased with decreasing substrate concentration. Increased cell concentration in the gel beads caused lower diffusivity. Theoretical models to predict diffusivities as a function of cell weight fraction overestimated the effective diffusivities for both chlorferon and DETP, but linear relations between effective diffusivity and cell weight fraction were derived from experimental data. Calcium-alginate gel beads with radii of 1.65-1.70 mm used in this study were not subject to diffusional limitations: external mass transfer resistances were negligible based on Biot number calculations and effectiveness factors indicated that internal mass transfer resistance was negligible. Therefore, the degradation rates of chlorferon and DETP inside Ca-alginate gel beads were reaction-limited. PMID:18080347
NASA Astrophysics Data System (ADS)
Gubar, Yu. I.
2015-11-01
A radial profile of the plasma mass distribution in Jupiter's magnetosphere in the region beyond Io's orbit up to ˜15 Jupiter radii R J constructed according to the results of measurements on the Voyager 1 and Galileo spacecraft is used to determine the radial dependence and radial diffusion coefficient D LL . The initial profile is approximated by a function decreasing as L -5 ± 1. For this radial mass distribution, radial ion diffusion outside of Io's orbit caused by centrifugal forces is possible. An estimate of (1.2-6.7)10-11 L 6 ± 1 for D LL was obtained.
Nonlinearity Effects of Lateral Density Diffusion Coefficient on Gain-Guided VCSEL Performance
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.; Biegel, Bryan (Technical Monitor)
2001-01-01
Electron and hole diffusions in the plane of semiconductor quantum wells play an important part in the static and dynamic operations of semiconductor lasers. In this paper, we apply a hydrodynamic model developed from the semiconductor Bloch equations to numerically study the effects of nonlinearity in the diffusion coefficient on single mode operation and direct modulation of a gain-guided InGaAs/GaAs multiple quantum well laser, operating not too far from threshold. We found that a small diffusion coefficient is advantageous for lowering the threshold current and increasing the modulation bandwidth. Most importantly, the effects of nonlinearity in the coefficient can be approximately reproduced by replacing the coefficient with an effective constant diffusion coefficient, which corresponds roughly to the half height density of the density distribution.
Scale dependence of the effective matrix diffusion coefficient:some analytical results
Liu, H.H.; Zhang, Y.Q.; Molz, F.J.
2005-05-30
Matrix diffusion is an important process affecting solutetransport in fractured rock, and the matrix diffusion coefficient is akey parameter for describing this process. Previous studies haveindicated that the effective matrix-diffusion coefficient values,obtained from a number of field tracer tests, are enhanced in comparisonwith local values and may increase with test scale. In thiscommunication, we develop analytical expressions for the effective matrixdiffusion coefficient for two simple fracture-matrix systems, anddemonstrate that heterogeneities in the rock matrix at different scalescontribute to the scale dependence of the effective matrix diffusioncoefficient.
NASA Astrophysics Data System (ADS)
Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.
2016-04-01
Electron pitch angle (Dαα) and momentum (Dpp) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in Dαα and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than Dαα coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than Dαα coefficients for the case n ≠ 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of Dαα coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10° and Landau
NASA Astrophysics Data System (ADS)
Ray, E.; Bunton, P.; Pojman, J. A.
2007-10-01
A simple technique for determining the diffusion coefficient between two miscible liquids is presented based on observing concentration-dependent ultraviolet-excited fluorescence using a digital camera. The ultraviolet-excited visible fluorescence of corn syrup is proportional to the concentration of the syrup. The variation of fluorescence with distance from the transition zone between the fluids is fit by the Fick's law solution to the diffusion equation. By monitoring the concentration at successive times, the diffusion coefficient can be determined in otherwise transparent materials. The technique is quantitative and makes measurement of diffusion accessible in the advanced undergraduate physics laboratory.
Effective diffusion coefficient of a Brownian particle in a periodically expanded conical tube
Antipov, Anatoly E.; Barzykin, Alexander V.; Berezhkovskii, Alexander M.; Makhnovskii, Yurii A.; Zitserman, Vladimir Yu.; Aldoshin, Sergei M.
2016-01-01
Diffusion in a tube of periodically varying diameter occurs slower than that in a cylindrical tube because diffusing particles get trapped in wells of the periodic entropy potential which is due to variation of the tube cross-section area. To quantify the slowdown one has to establish a relation between the effective diffusion coefficient of the particle and the tube geometry, which is a very complicated problem. Here we show how to overcome the difficulties in the case of a periodically expanded conical tube, where we find an approximate solution for the effective diffusion coefficient as a function of the parameters determining the tube geometry. PMID:24329385
Garcia-Ratés, Miquel; de Hemptinne, Jean-Charles; Bonet Avalos, Josep; Nieto-Draghi, Carlos
2012-03-01
Mass diffusion coefficients of CO(2)/brine mixtures under thermodynamic conditions of deep saline aquifers have been investigated by molecular simulation. The objective of this work is to provide estimates of the diffusion coefficient of CO(2) in salty water to compensate the lack of experimental data on this property. We analyzed the influence of temperature, CO(2) concentration,and salinity on the diffusion coefficient, the rotational diffusion, as well as the electrical conductivity. We observe an increase of the mass diffusion coefficient with the temperature, but no clear dependence is identified with the salinity or with the CO(2) mole fraction, if the system is overall dilute. In this case, we notice an important dispersion on the values of the diffusion coefficient which impairs any conclusive statement about the effect of the gas concentration on the mobility of CO(2) molecules. Rotational relaxation times for water and CO(2) increase by decreasing temperature or increasing the salt concentration. We propose a correlation for the self-diffusion coefficient of CO(2) in terms of the rotational relaxation time which can ultimately be used to estimate the mutual diffusion coefficient of CO(2) in brine. The electrical conductivity of the CO(2)-brine mixtures was also calculated under different thermodynamic conditions. Electrical conductivity tends to increase with the temperature and salt concentration. However, we do not observe any influence of this property with the CO(2) concentration at the studied regimes. Our results give a first evaluation of the variation of the CO(2)-brine mass diffusion coefficient, rotational relaxation times, and electrical conductivity under the thermodynamic conditions typically encountered in deep saline aquifers. PMID:22292779
NASA Astrophysics Data System (ADS)
Hamdouni, Yamen
2010-12-01
The elements of the quantum mechanical Markovian diffusion matrix leading to a Gibbs equilibrium state for a set of N coupled quantum harmonic oscillators are derived within Lindblad's axiomatic approach. Consequences of the fundamental constraints on the quantum friction coefficients are discussed. We derive the equations of motion for the expectation values and variances, and we solve them analytically. We apply our results to the description of the charge and mass asymmetry coordinates in heavy-ion collisions, and we investigate the effect of dissipation on tunneling in sub-barrier processes.
Quantitative mapping of the per‐axon diffusion coefficients in brain white matter
Kruggel, Frithjof; Alexander, Daniel C.
2015-01-01
Purpose This article presents a simple method for estimating the effective diffusion coefficients parallel and perpendicular to the axons unconfounded by the intravoxel fiber orientation distribution. We also call these parameters the per‐axon or microscopic diffusion coefficients. Theory and Methods Diffusion MR imaging is used to probe the underlying tissue material. The key observation is that for a fixed b‐value the spherical mean of the diffusion signal over the gradient directions does not depend on the axon orientation distribution. By exploiting this invariance property, we propose a simple, fast, and robust estimator of the per‐axon diffusion coefficients, which we refer to as the spherical mean technique. Results We demonstrate quantitative maps of the axon‐scale diffusion process, which has factored out the effects due to fiber dispersion and crossing, in human brain white matter. These microscopic diffusion coefficients are estimated in vivo using a widely available off‐the‐shelf pulse sequence featuring multiple b‐shells and high‐angular gradient resolution. Conclusion The estimation of the per‐axon diffusion coefficients is essential for the accurate recovery of the fiber orientation distribution. In addition, the spherical mean technique enables us to discriminate microscopic tissue features from fiber dispersion, which potentially improves the sensitivity and/or specificity to various neurological conditions. Magn Reson Med, 2015. Magn Reson Med 75:1752–1763, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. PMID:25974332
Molecular Simulations of Water and Ion Diffusion in Nanosized Mineral Fractures
Kerisit, Sebastien N.; Liu, Chongxuan
2009-02-01
Molecular dynamics simulations were carried out to investigate the effects of confinement and of the presence of the mineral surface on the diffusion of water and electrolyte ions in nano-sized mineral fractures. Feldspar was used as a representative mineral because recent studies found that it is an important mineral that hosts contaminants within its intragrain fractures at US Department of Energy Hanford site (1, 2). Several properties of the mineral-water interface were varied, such as the fracture width, the ionic strength of the contacting solution, and the surface charge, to provide atomic-level insights into the diffusion of ions and contaminants within intragrain regions. In each case, the self-diffusion coefficient of water and that of the electrolyte ions were computed as a function of distance from the mineral surface. Our calculations reveal a 2.0 to 2.5 nm interfacial region within which the self-diffusion coefficient of water and that of the electrolyte ions decrease as the diffusing species approach the surface. As a result of the extent of the interfacial region, water and electrolyte ions are predicted to never reach bulk-like diffusion in fractures narrower than approximately 5 nm. A density weighted, averaged diffusion coefficient was computed as a function of fracture width and indicated that the surface effects only become negligible for fractures several tens of nanometers wide. The calculations also showed that, within 1.2 nm from the surface, the diffusion of electrolyte ions is affected by the presence of the mineral surface to a greater extent than that of water. The molecular dynamics results improve our conceptual models of ion transport in nano-scale pore regions surrounded by mineral surfaces in porous media.
Diffusive limits of nonlinear hyperbolic systems with variable coefficients
NASA Astrophysics Data System (ADS)
Miyoshi, Hironari; Tsutsumi, Masayoshi
2016-09-01
We consider the initial-boundary value problem for a 2-speed system of first-order nonhomogeneous semilinear hyperbolic equations whose leading terms have a small positive parameter. Using energy estimates and a compactness lemma, we show that the diffusion limit of the sum of the solutions of the hyperbolic system, as the parameter tends to zero, verifies the nonlinear parabolic equation of the p-Laplacian type.
Transient enhanced diffusion in ion-implanted silicon
Pennycook, S.J.; Culbertson, R.J.
1987-03-01
We discuss the transient-enhanced diffusion of Sb, As, P, In, Ga, and B in ion-implanted Si, where the near-surface region has been amorphized by the dopant or by a self-implantation process. With Sb, a large transient diffusion enhancement is observed proportional to dopant concentration. For Sb, As, P, and In, the enhancement follows the relative interstitialcy diffusion coefficient. We believe this behavior is caused by stable implantation-induced point defects present in the amorphous surface layer, which decay during thermal processing to release high concentrations of self-interstitials. This process occurs in competition with the solid phase epitaxial (SPE) growth process, and for high dopant concentrations can occur in the amorphous phase ahead of the crystallization front. We believe this may be the origin of the dopant redistribution which can occur during SPE growth, which sets the upper limit to the dopant concentration which can be incorporated in the lattice by SPE growth. These effects are reduced for Ga and are absent for B, although transient enhanced diffusion of these species can still occur from defects emitted from the damaged crystal underlying the original amorphous/crystalline interface.
The ion polytropic coefficient in a collisionless sheath containing hot ions
NASA Astrophysics Data System (ADS)
Lin, Binbin; Xiang, Nong; Ou, Jing
2016-08-01
The fluid approach has been widely used to study plasma sheath dynamics. For a sheath containing hot ions whose temperature is greater than the electron's, how to truncate the fluid hierarchy chain equations while retaining to the fullest extent of the kinetic effects is always a difficult problem. In this paper, a one-dimensional, collisionless sheath containing hot ions is studied via particle-in-cell simulations. By analyzing the ion energy equation and taking the kinetic effects into account, we have shown that the ion polytropic coefficient in the vicinity of the sheath edge is approximately constant so that the state equation with the modified polytropic coefficient can be used to close the hierarchy chain of the ion fluid equations. The value of the polytropic coefficient strongly depends on the hot ion temperature and its concentration in the plasma. The semi-analytical model is given to interpret the simulation results. As an application, the kinetic effects on the ion saturation current density in the probe theory are discussed.
On the determinatino of high-pressure mass-diffusion coefficients for binary mixtures
NASA Technical Reports Server (NTRS)
Bellan, J.; Harstad, K.
2003-01-01
A model for high-pressure binary diffusion coefficient calculation is proposed based on considerations originating from recasting both the low pressure kinetic theory and the Stokes-Einstein infinite dilution expressions into forms consistent with corresponding states theory.
Lai, C.C.; Tan, C.S. . Dept. of Chemical Engineering)
1995-02-01
Molecular diffusion coefficients of ethyl acetate, toluene, phenol, and caffeine in supercritical carbon dioxide were measured by a chromatographic peak broadening technique in a coated capillary column at temperatures of 308, 318, and 328 K and pressures up to 145 bar. A linear adsorption in the polymer layer coated on the inner wall of the capillary column was observed. The experimentally determined diffusion coefficients showed substantial agreement with those reported in the literature. The diffusion coefficients were in the order of 10[sup [minus]4] cm[sup 2]/s and decreased with increasing carbon dioxide density. Based on the molecular diffusion coefficient data reported here and those published elsewhere, an empirically modified Wilke-Chang equation was proposed which was found to be more quantitative than some existing equations such as the Stokes-Einstein and Wilke-Chang equations.
Manzini, Gianmarco; Cangiani, Andrea; Sutton, Oliver
2014-10-02
This document presents the results of a set of preliminary numerical experiments using several possible conforming virtual element approximations of the convection-reaction-diffusion equation with variable coefficients.
Empirical time dependence of liquid self-diffusion coefficient in porous media.
Loskutov, V V
2012-03-01
A new method of finding experimental time dependence of the self-diffusion coefficient D(t) for fluid in the porous media is proposed. We investigate the time-dependent self-diffusion coefficient D(t) of random walkers in permeable porous media. D(t) is measured in pulse field gradient (PFG) experiments with fluid-saturated porous media of randomly packed spherical glass beads. In absence of the specific interactions between pore walls and a fluid we show that D(t) = (D(0) - D(∞))exp(-F√(D(0)t)/d) + D(∞), where D(0) is the diffusion constant in a bulk fluid, D(∞) is the asymptotical value of the diffusion coefficient for long diffusion times (t→∞), d is the bead diameter and F is the constant characterizing the geometry (the size and shape) pores.
FITTING OF THE DATA FOR DIFFUSION COEFFICIENTS IN UNSATURATED POROUS MEDIA
B. Bullard
1999-05-01
The purpose of this calculation is to evaluate diffusion coefficients in unsaturated porous media for use in the TSPA-VA analyses. Using experimental data, regression techniques were used to curve fit the diffusion coefficient in unsaturated porous media as a function of volumetric water content. This calculation substantiates the model fit used in Total System Performance Assessment-1995 An Evaluation of the Potential Yucca Mountain Repository (TSPA-1995), Section 6.5.4.
Note on coefficient matrices from stochastic Galerkin methods for random diffusion equations
Zhou Tao; Tang Tao
2010-11-01
In a recent work by Xiu and Shen [D. Xiu, J. Shen, Efficient stochastic Galerkin methods for random diffusion equations, J. Comput. Phys. 228 (2009) 266-281], the Galerkin methods are used to solve stochastic diffusion equations in random media, where some properties for the coefficient matrix of the resulting system are provided. They also posed an open question on the properties of the coefficient matrix. In this work, we will provide some results related to the open question.
Intrinsic diffusion coefficients and the vacancy flow factor in Dilute Cu-Zn Alloys
NASA Astrophysics Data System (ADS)
Hoshino, Kazutomo; Iijima, Yoshiaki; Hirano, Ken-Ichi
1982-07-01
Interdiffusion coefficients in copper-rich copper-zinc solid solutions containing up to 8 at. pct of Zn at 1168 K have been determined by Matano's analysis using semi-infinite diffusion couples consisting of pure copper and Cu-Zn alloys with Kirkendall markers. From the marker shift and Darken's relation, intrinsic diffusion coefficients, DZn and DCu, in the alloys containing 3.2 and 4.7 at. pct of Zn have been determined. Further, using thin plate couples, DZn and DCu in Cu alloys containing 0.9, 2.3, 3.5, and 4.6 at. pct of Zn at 1168 K have been determined by Heumann's method. The ratio of the intrinsic diffusion coefficients, DZn/DCu, has been found to be about two for all the compositions examined. Using the values of the intrinsic diffusion coefficient of copper at infinite dilution of zinc obtained by extrapolating the concentration dependence of DCu, and the self- and impurity diffusion coefficients in pure copper, the vacancy flow factor has been estimated to be - 0.22-0.15 +0.06 at 1168 K. By combining this value of the vacancy flow factor with the solute enhancement factor of solvent diffusion determined by Peterson and Rothman, the correlation factor for impurity diffusion of Zn in Cu at 1168 K has been evaluated to be 0.5, which is in good agreement with the value of 0.47 determined by Peterson and Rothman based on the isotope effect measurement.
Stellwagen, Earle; Stellwagen, Nancy C
2002-08-01
The free solution mobility of DNA molecules of different molecular weights, the sequence dependence of the mobility, and the diffusion coefficients of small single- and double-stranded DNA (ss- and dsDNA) molecules can be measured accurately by capillary zone electrophoresis, using coated capillaries to minimize the electroosmotic flow (EOF) of the solvent. Very small differences in mobility between various analytes can be quantified if a mobility marker is used to correct for small differences in EOF between successive experiments. Using mobility markers, the molecular weight at which the free solution mobility of dsDNA becomes independent of molecular weight is found to be approximately 170 bp in 40 mM Tris-acetate-EDTA buffer. A DNA fragment containing 170 bp has a contour length of approximately 58 nm, close to the persistence length of DNA under these buffer conditions. Hence, the approach of the free solution mobility of DNA to a plateau value may be associated with the transition from a rod-like to a coil-like conformation in solution. Markers have also been used to determine that the free solution mobilities of ss- and dsDNA oligomers are sequence-dependent. Double-stranded 20-bp oligomers containing runs of three or more adenine residues in a row (A-tracts) migrate somewhat more slowly than 20-mers without A-tracts, suggesting that somewhat larger numbers of counterions are condensed in the ion atmospheres of A-tract DNAs, decreasing their net effective charge. Single-stranded 20-mers with symmetric sequences migrate approximately 1% faster than their double-stranded counterparts, and faster than single-stranded 20-mers containing A(5)- or T(5)-tracts. Interestingly, the average mobility of two complementary single-stranded 20-mers is equal to the mobility of the double-stranded oligomer formed upon annealing. Finally, the stopped migration method has been used to measure the diffusion coefficients of single- and double-stranded oligomers. The diffusion
Diffusion Coefficients of n-Alkanes and Polyethylenes Filled with Zinc Oxide Nanoparticles
NASA Astrophysics Data System (ADS)
Ozisik, Rahmi; Mattice, Wayne L.; von Meerwall, Ernst
2003-03-01
The diffusion coefficients of various n-alkane and polyethylene samples filled with zinc oxide nanoparticles were measured with pulsed-gradient spin-echo (PGSE) NMR technique. The n-alkanes used in this study had carbon numbers ranging between 12 and 60. The number average molecular weights of the two polyethylene samples were 6200 and 13900 g/mol. The different size of zinc oxide used with spherical geometry. The experiments were performed with three different zinc oxide nanoparticles that had differing sizes. This study investigates the effects of the nanoparticle size and the molecular weight on the diffusion coefficient of the polymer chains. The results account for the restriction to diffusion due to detour and tortuosity effects, which differ for n-alkanes and polyethylene. Because the effective diffusion distance in the PGSE NMR experiments is larger than the size of the nanoparticles, the observed diffusivities represent asymptotic averages over multiple encounters between the diffusing molecules and the nanoparticles.
NASA Astrophysics Data System (ADS)
Wu, Qiong; Li, Shu-Suo; Ma, Yue; Gong, Sheng-Kai
2012-10-01
The diffusion coefficients of several alloying elements (Al, Mo, Co, Ta, Ru, W, Cr, Re) in Ni are directly calculated using the five-frequency model and the first principles density functional theory. The correlation factors provided by the five-frequency model are explicitly calculated. The calculated diffusion coefficients show their excellent agreement with the available experimental data. Both the diffusion pre-factor (D0) and the activation energy (Q) of impurity diffusion are obtained. The diffusion coefficients above 700 K are sorted in the following order: DAl > DCr > DCo > DTa > DMo > DRu > DW > DRe. It is found that there is a positive correlation between the atomic radius of the solute and the jump energy of Ni that results in the rotation of the solute-vacancy pair (E1). The value of E2-E1 (E2 is the solute diffusion energy) and the correlation factor each also show a positive correlation. The larger atoms in the same series have lower diffusion activation energies and faster diffusion coefficients.
An alternative model for estimating liquid diffusion coefficients requiring no viscosity data
NASA Technical Reports Server (NTRS)
Morales, Wilfredo
1993-01-01
An equation, based on the free volume of a liquid solvent, was derived via dimensional analysis, to predict binary diffusion coefficients. The equation assumed that interaction between the solute and liquid solvent molecules followed a Lennard-Jones potential. The equation was compared to other diffusivity equations and was found to give good results over the temperature range examined.
2015-01-01
Supercapacitors are electrochemical devices which store energy by ion adsorption on the surface of a porous carbon. They are characterized by high power delivery. The use of nanoporous carbon to increase their energy density should not hinder their fast charging. However, the mechanisms for ion transport inside electrified nanopores remain largely unknown. Here we show that the diffusion is characterized by a hierarchy of time scales arising from ion confinement, solvation, and electrosorption effects. By combining electrochemistry experiments with molecular dynamics simulations, we determine the in-pore conductivities and diffusion coefficients and their variations with the applied potential. We show that the diffusion of the ions is slower by 1 order of magnitude compared to the bulk electrolyte. The desolvation of the ions occurs on much faster time scales than electrosorption. PMID:26369420
Pean, Clarisse; Daffos, Barbara; Rotenberg, Benjamin; Levitz, Pierre; Haefele, Matthieu; Taberna, Pierre-Louis; Simon, Patrice; Salanne, Mathieu
2015-10-01
Supercapacitors are electrochemical devices which store energy by ion adsorption on the surface of a porous carbon. They are characterized by high power delivery. The use of nanoporous carbon to increase their energy density should not hinder their fast charging. However, the mechanisms for ion transport inside electrified nanopores remain largely unknown. Here we show that the diffusion is characterized by a hierarchy of time scales arising from ion confinement, solvation, and electrosorption effects. By combining electrochemistry experiments with molecular dynamics simulations, we determine the in-pore conductivities and diffusion coefficients and their variations with the applied potential. We show that the diffusion of the ions is slower by 1 order of magnitude compared to the bulk electrolyte. The desolvation of the ions occurs on much faster time scales than electrosorption.
Pean, Clarisse; Daffos, Barbara; Rotenberg, Benjamin; Levitz, Pierre; Haefele, Matthieu; Taberna, Pierre-Louis; Simon, Patrice; Salanne, Mathieu
2015-10-01
Supercapacitors are electrochemical devices which store energy by ion adsorption on the surface of a porous carbon. They are characterized by high power delivery. The use of nanoporous carbon to increase their energy density should not hinder their fast charging. However, the mechanisms for ion transport inside electrified nanopores remain largely unknown. Here we show that the diffusion is characterized by a hierarchy of time scales arising from ion confinement, solvation, and electrosorption effects. By combining electrochemistry experiments with molecular dynamics simulations, we determine the in-pore conductivities and diffusion coefficients and their variations with the applied potential. We show that the diffusion of the ions is slower by 1 order of magnitude compared to the bulk electrolyte. The desolvation of the ions occurs on much faster time scales than electrosorption. PMID:26369420
Calculation Of The Interdiffusion Coefficient In The Cu-Zn Diffusion Couple
NASA Astrophysics Data System (ADS)
Hoxha, Adhurim; Oettel, Heinrich; Heger, Dietrich
2010-01-01
A quantitative analysis of multiphase diffusion in Cu-Zn diffusion couple is presented. The analysis is based in using the concentration profiles provided by electron micro-beam analyzer. From the dependence of the square of phase thickness from annealing time, the growth constant for each phase in each annealing temperature can be calculated. Knowing the growth constant of γ and ɛ phases one can calculate the activation energy and the diffusion coefficient of the above mentioned intermetallic phases.
Diffusion and Coulomb separation of ions in dense matter.
Beznogov, M V; Yakovlev, D G
2013-10-18
We analyze diffusion equations in strongly coupled Coulomb mixtures of ions in dense stellar matter. Strong coupling of ions in the presence of gravitational forces and electric fields (induced by plasma polarization in the presence of gravity) produces a specific diffusion current which can separate ions with the same A/Z (mass to charge number) ratios but different Z. This Coulomb separation of ions can be important for the evolution of white dwarfs and neutron stars. PMID:24182248
Kalnin, Juris R.; Berezhkovskii, Alexander M.
2013-01-01
The Lifson-Jackson formula provides the effective free diffusion coefficient for a particle diffusing in an arbitrary one-dimensional periodic potential. Its counterpart, when the underlying dynamics is described in terms of an unbiased nearest-neighbor Markovian random walk on a one-dimensional periodic lattice is given by the formula obtained by Derrida. It is shown that the latter formula can be considered as a discretized version of the Lifson-Jackson formula with correctly chosen position-dependent diffusion coefficient. PMID:24320354
Temperature-Dependent Diffusion Coefficients from ab initio Computations: Hydrogen in Nickel
E Wimmer; W Wolf; J Sticht; P Saxe; C Geller; R Najafabadi; G Young
2006-03-16
The temperature-dependent mass diffusion coefficient is computed using transition state theory. Ab initio supercell phonon calculations of the entire system provide the attempt frequency, the activation enthalpy, and the activation entropy as a function of temperature. Effects due to thermal lattice expansion are included and found to be significant. Numerical results for the case of hydrogen in nickel demonstrate a strong temperature dependence of the migration enthalpy and entropy. Trapping in local minima along the diffusion path has a pronounced effect especially at low temperatures. The computed diffusion coefficients with and without trapping bracket the available experimental values over the entire temperature range between 0 and 1400 K.
NASA Astrophysics Data System (ADS)
Yang, Linlin; Sun, Hai; Fu, Xudong; Wang, Suli; Jiang, Luhua; Sun, Gongquan
2014-07-01
A novel method for measuring effective diffusion coefficient of porous materials is developed. The oxygen concentration gradient is established by an air-breathing proton exchange membrane fuel cell (PEMFC). The porous sample is set in a sample holder located in the cathode plate of the PEMFC. At a given oxygen flux, the effective diffusion coefficients are related to the difference of oxygen concentration across the samples, which can be correlated with the differences of the output voltage of the PEMFC with and without inserting the sample in the cathode plate. Compared to the conventional electrical conductivity method, this method is more reliable for measuring non-wetting samples.
Entropy-scaling laws for diffusion coefficients in liquid metals under high pressures
Cao, Qi-Long Shao, Ju-Xiang; Wang, Fan-Hou; Wang, Pan-Pan
2015-04-07
Molecular dynamic simulations on the liquid copper and tungsten are used to investigate the empirical entropy-scaling laws D{sup *}=A exp(BS{sub ex}), proposed independently by Rosenfeld and Dzugutov for diffusion coefficient, under high pressure conditions. We show that the scaling laws hold rather well for them under high pressure conditions. Furthermore, both the original diffusion coefficients and the reduced diffusion coefficients exhibit an Arrhenius relationship D{sub M}=D{sub M}{sup 0} exp(−E{sub M}/K{sub B}T), (M=un,R,D) and the activation energy E{sub M} increases with increasing pressure, the diffusion pre-exponential factors (D{sub R}{sup 0} and D{sub D}{sup 0}) are nearly independent of the pressure and element. The pair correlation entropy, S{sub 2}, depends linearly on the reciprocal temperature S{sub 2}=−E{sub S}/T, and the activation energy, E{sub S}, increases with increasing pressure. In particular, the ratios of the activation energies (E{sub un}, E{sub R}, and E{sub D}) obtained from diffusion coefficients to the activation energy, E{sub S}, obtained from the entropy keep constants in the whole pressure range. Therefore, the entropy-scaling laws for the diffusion coefficients and the Arrhenius law are linked via the temperature dependence of entropy.
Styszko, Katarzyna; Kupiec, Krzysztof
2016-10-01
In this study the diffusion coefficients of isoproturon, diuron and cybutryn in acrylate and silicone resin-based renders were determined. The diffusion coefficients were determined using measuring concentrations of biocides in the liquid phase after being in contact with renders for specific time intervals. The mathematical solution of the transient diffusion equation for an infinite plate contacted on one side with a limited volume of water was used to calculate the diffusion coefficient. The diffusion coefficients through the acrylate render were 8.10·10(-9) m(2) s(-1) for isoproturon, 1.96·10(-9) m(2) s(-1) for diuron and 1.53·10(-9) m(2) s(-1) for cybutryn. The results for the silicone render were lower by one order of magnitude. The compounds with a high diffusion coefficient for one polymer had likewise high values for the other polymer. PMID:27391050
Narváez Valderrama, Jhon F; Baek, Kine; Molina, Francisco J; Allan, Ian J
2016-01-01
A film-stacking technique was used to estimate diffusion coefficients of polybrominated diphenyl ethers (PBDEs) in low density polyethylene (LDPE) and silicone rubber. Substantially higher PBDE diffusion coefficients were observed for silicone rubber (AlteSil™) than for LDPE. A much steeper decrease in LDPE diffusion coefficients was found with increasing PBDE molecular weight than that for silicone rubber. From a passive sampling point-of-view, this means that for equivalent polymer-water partition coefficients for these two materials, the mass transfer resistance for these substances in the LDPE will be significantly higher than that for silicone rubber. Boundary layer control of the uptake process for silicone rubber can be expected for PBDEs. With a microplastic perspective, the low diffusion coefficients of PBDEs and in particular of decabromo diphenyl ether (BDE 209) in LDPE imply that the polymer diffusion coefficients for these plastic additives used as flame retardants need to be taken into account when considering the risk posed by microplastic particle ingestion by marine organisms.
Narváez Valderrama, Jhon F; Baek, Kine; Molina, Francisco J; Allan, Ian J
2016-01-01
A film-stacking technique was used to estimate diffusion coefficients of polybrominated diphenyl ethers (PBDEs) in low density polyethylene (LDPE) and silicone rubber. Substantially higher PBDE diffusion coefficients were observed for silicone rubber (AlteSil™) than for LDPE. A much steeper decrease in LDPE diffusion coefficients was found with increasing PBDE molecular weight than that for silicone rubber. From a passive sampling point-of-view, this means that for equivalent polymer-water partition coefficients for these two materials, the mass transfer resistance for these substances in the LDPE will be significantly higher than that for silicone rubber. Boundary layer control of the uptake process for silicone rubber can be expected for PBDEs. With a microplastic perspective, the low diffusion coefficients of PBDEs and in particular of decabromo diphenyl ether (BDE 209) in LDPE imply that the polymer diffusion coefficients for these plastic additives used as flame retardants need to be taken into account when considering the risk posed by microplastic particle ingestion by marine organisms. PMID:26678428
Diffusion Coefficient and Electric Field Studies for HSX using Monte Carlo Methods
NASA Astrophysics Data System (ADS)
Gerhardt, S. P.; Talmadge, J. N.
1999-11-01
The HSX experiment has a magnetic field spectrum which closely approximates helical symmetry. Never the less, symmetry breaking terms are present which lead to asymmetric diffusion. Models for the asymmetric component of the monoenergetic diffusion coefficient are unable to account for all the terms in the HSX magnetic spectrum and the functional dependence on the radial electric field (Er). To model the diffusion coefficient as a function of Er and collisionality, Monte Carlo simulations have been made for different values of Er and background density. These results are fit to analytic models for the diffusion coefficient. Enforcing ambipolarity on these fluxes can lead to a calculation of the stellarator Er. To measure Er, we will use a spectroscopic system to measure impurity flow. A 1-meter spectrometer with a CCD detector has been purchased for this purpose; a LabVIEW control system has been implemented and collection optics designed. Details of the spectroscopic system will be presented.
Diffusion coefficient measurement by the "stop-flow" method in a 5% collagen gel.
Shaw, M; Schy, A
1981-01-01
We measured the translational bulk diffusion coefficient (D) of solute in a collagen gel column of 5% concentration (wt/wt) by a new, noninvasive method applicable to a wide range of solutes and gels. The system also enabled measurement of solute partition coefficients and convective flow velocity since the gel was contained within a chromatography column. The spread of diffusing solute in the gel column is measured during an interval of stopped flow in this method. Experimentally determined values of D/D degrees (free aqueous diffusion coefficient) ranged from 0.24 (3H2O) to 0.13 (ovalbumin) as anticipated by observations of other investigators from interstitium in heart and mesentery, but were significantly smaller than predicted by the widely used Ogston gel model with parameters extracted from partition coefficient data. PMID:7248468
NASA Astrophysics Data System (ADS)
Jafari Raad, Seyed Mostafa; Azin, Reza; Osfouri, Shahriar
2015-11-01
Storage and disposal of CO2 as the main component of greenhouse gases in saline aquifers require careful measurement of diffusivity for predicting rate of transfer and cumulative amount of trapped gas. Little information is available on diffusion of CO2 in highly concentrated saline aquifers at reservoir conditions. In this study, diffusivity of CO2 was measured into different solutions, including saline aquifer taken from oil field, distilled water and synthetic solutions prepared from four most common ions, Mg2+, Ca2+, K+, Na+. The roles of salvation effect and hydration phenomenon were studied on diffusivity of dissolved CO2. Synthetic solutions were prepared at concentration ranges of 83-200 g/l. Experimental measurements were reported at temperature and pressure ranges of 30-40 °C and 5,880-6,265 kPa, respectively. Results show that both type and concentration of ion affect CO2 diffusivity. Diffusion coefficient was found dependent on effective radius of hydrated ions. Also, CO2 diffusivity increase by increasing strength of bonds between ion and neighbor water molecules. Also, presence of ions in water solution creates hydration competition between solution metal ions and aqua ions from diffusive gas. The Mg2+ cation, which has strongest hydration competition among other ions, has an increasing effect on gas diffusivity into saline aquifer. However, increasing ion concentration in solution decreases diffusivity of CO2 due to growth in fraction of contact ion pairs. Results of this study provide unique measures of CO2 diffusion coefficient in saline aquifer at high pressure and temperature conditions and conceptual information about effect of each common saline formation ion on gas diffusivity.
Eddy diffusion coefficients and their upper limits based on application of the similarity theory
NASA Astrophysics Data System (ADS)
Vlasov, M. N.; Kelley, M. C.
2015-07-01
The equation for the diffusion velocity in the mesosphere and the lower thermosphere (MLT) includes the terms for molecular and eddy diffusion. These terms are very similar. For the first time, we show that, by using the similarity theory, the same formula can be obtained for the eddy diffusion coefficient as the commonly used formula derived by Weinstock (1981). The latter was obtained by taking, as a basis, the integral function for diffusion derived by Taylor (1921) and the three-dimensional Kolmogorov kinetic energy spectrum. The exact identity of both formulas means that the eddy diffusion and heat transport coefficients used in the equations, both for diffusion and thermal conductivity, must meet a criterion that restricts the outer eddy scale to being much less than the scale height of the atmosphere. This requirement is the same as the requirement that the free path of molecules must be much smaller than the scale height of the atmosphere. A further result of this criterion is that the eddy diffusion coefficients Ked, inferred from measurements of energy dissipation rates, cannot exceed the maximum value of 3.2 × 106 cm2 s-1 for the maximum value of the energy dissipation rate of 2 W kg-1 measured in the mesosphere and the lower thermosphere (MLT). This means that eddy diffusion coefficients larger than the maximum value correspond to eddies with outer scales so large that it is impossible to use these coefficients in eddy diffusion and eddy heat transport equations. The application of this criterion to the different experimental data shows that some reported eddy diffusion coefficients do not meet this criterion. For example, the large values of these coefficients (1 × 107 cm2 s-1) estimated in the Turbulent Oxygen Mixing Experiment (TOMEX) do not correspond to this criterion. The Ked values inferred at high latitudes by Lübken (1997) meet this criterion for summer and winter polar data, but the Ked values for summer at low latitudes are larger than the
Balch, J; Guéguen, C
2015-01-01
In situ measurements of labile metal species using diffusive gradients in thin films (DGT) passive samplers are based on the diffusion rates of individual species. Although most studies have dealt with chemically isolated humic substances, the diffusion of dissolved organic matter (DOM) across the hydrogel is not well understood. In this study, the diffusion coefficient (D) and molecular weight (MW) of 11 aquatic DOM and 4 humic substances (HS) were determined. Natural, unaltered aquatic DOM was capable of diffusing across the diffusive gel membrane with D values ranging from 2.48×10(-6) to 5.31×10(-6) cm(2) s(-1). Humic substances had diffusion coefficient values ranging from 3.48×10(-6) to 6.05×10(-6) cm(2) s(-1), congruent with previous studies. Molecular weight of aquatic DOM and HS samples (∼500-1750 Da) measured using asymmetrical flow field-flow fractionation (AF4) strongly influenced D, with larger molecular weight DOM having lower D values. No noticeable changes in DOM size properties were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. The influence of molecular weight on DOM mobility will assist in further understanding and development of the DGT technique and the uptake and mobility of contaminants associated with DOM in aquatic environments.
Cloride ion diffusion in low water-to-solid cement pastes
Clifton, J.R.; Knab, L.I.; Garboczi, E.J. ); Xiong, L.X. )
1991-06-01
Diffusion coefficients of 0.3 water to solids ratio (w/s) hydrated portland cement paste specimens were measured using a conventional diffusion cell. Specimens were made from both ASTM Type 1 and Type 2 portland cements and blends containing mineral admixtures (fly ash, granulated blastfurnace slag, or silica fume). The average diffusion coefficient for the portland cement paste specimens was 14 {times} 10{sup {minus}13} m{sup 2}/s. The diffusion coefficients for the specimens containing mineral admixtures were such more variable than those for the portland cement paste specimens. A probable cause of the variability in the test results was the presence of cracks observed in the test specimens. The effects of the depth of concrete cover over reinforcing steel and of the chloride ion diffusion coefficient on the service life of reinforced concrete exposed to chloride ions were predicted based on a diffusion model. Based on the model, the effect of the cover was shown to be proportional to the square of the cover depth. 18 refs., 5 figs., 6 tabs.
NASA Astrophysics Data System (ADS)
Liu, Xiaoyu; Guo, Zhishi; Roache, Nancy F.
2014-06-01
The solid-phase diffusion coefficient (Dm) and material/air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to estimate parameters Dm and Kma. The SVOCs chosen for study were polychlorinated biphenyl (PCB) congeners, including PCB-52, PCB-66, PCB-101, PCB-110, and PCB-118. The test materials included polypropylene, high density polyethylene, low density polyethylene, polytetrafluoroethylene, polyether ether ketone, glass, stainless steel and concrete. Two 53-L environmental chambers were connected in series, with the relatively stable SVOCs source in the source chamber and the test materials, made as small “buttons”, in the test chamber. Prior to loading the test chamber with the test materials, the test chamber had been dosed with SVOCs for 12 days to “coat” the chamber walls. During the tests, the material buttons were removed from the test chamber at different exposure times to determine the amount of SVOC absorbed by the buttons. SVOC concentrations at the inlet and outlet of the test chamber were also monitored. The data were used to estimate the partition and diffusion coefficients by fitting a sink model to the experimental data. The parameters obtained were employed to predict the accumulation of SVOCs in the sink materials using an existing mass transfer model. The model prediction agreed reasonably well with the experimental data.
Martinavicius, A.; Abrasonis, G.; Moeller, W.
2011-10-01
The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm{sup -2}), ion energy (0.5-1.2 keV), and temperature (370-430 deg. C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasing ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.
NASA Astrophysics Data System (ADS)
Martinavičius, A.; Abrasonis, G.; Möller, W.
2011-10-01
The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm-2), ion energy (0.5-1.2 keV), and temperature (370-430 °C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasing ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.
NASA Astrophysics Data System (ADS)
Rosenberg, E.; Kellner, Robert A.
1992-03-01
During the past few years, the importance of membranes in chemical and biotechnological applications, such as separation processes and biosensor construction, has dramatically increased. As a consequence, membrane properties have to be characterized very thoroughly with special respect to diffusivity and selectivity. Whereas most techniques for the determination of diffusion coefficients require sophisticated and often indirect methods for the detection of the analyte diffusing through the membrane, which generally do not allow monitoring of the diffusion process continuously, we present in this work an experimentally simple and straightforward method employing FTIR-ATR spectroscopy. The diffusion of glucose into a PVA membrane is chosen as a model example for the determination of carbohydrates in polymer matrices due to its special relevance in biosensor construction. The method is based on monitoring the time-dependent change in absorption due to the diffusion of the glucose into the polymer membrane. After reaching a steady-state, the normalized absorbance plot (A/A(infinity) ) versus time can be used for numerical evaluation. The diffusion coefficient is determined by comparing the experimental with simulated data using the membrane thickness (iota) and the diffusion coefficient D as simulation parameters. For this reason, the performance of a recursive and two non-recursive models for the description of the diffusion process is examined. Modifications in the second non-recursive algorithm finally resulted in very good agreement with the experimental data. This work marks the first application of IR-ATR spectroscopy for the determination of diffusion coefficients even as large as of the order of 10-6 cm2/sec.
NASA Astrophysics Data System (ADS)
Paul, Reginald; Paddison, Stephen J.
2005-12-01
Proton transport in perfluorosulfonic acid (PFSA) membranes is investigated through a statistical mechanical model that includes the effects of the interaction of the tethered sulfonate groups with both the water and solvated protons. We first derive a potential that describes the electrostatic field due to the dissociated sulfonic acid groups by extending the work of Grønbech-Jensen et al. [Grønbech-Jensen et al. Mol. Phys. 92, 941 (1997)] to a finite array of point charges. A highly convergent series is obtained which includes the effects of screening due to the protons. We then investigate the effects of both dielectric saturation and two distinct formulations of ionic screening on the proton self-diffusion coefficient in Nafion membranes over a range of water contents. Our computations show that the two phenomena (i.e., dielectric saturation and ionic screening) under constant temperature conditions result in canceling affects. Our calculations provide a radial dependence of the proton mobility suggesting that the dominant self-diffusion occurs in the central region of the pores, well separated from the sulfonate groups. Through comparison of our calculated diffusion coefficients with the experimental values we derived a slightly smaller average separation distance of the hydronium ion from the sulfonate ions than suggested by either electronic structure calculations or multistate empirical valence bond molecular-dynamics simulations.
2014-01-01
Background Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of electroanalytical experimental data to estimate diffusion coefficients. Results For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of typical voltammetric peak features decreased the performance of both regression algorithms compared to a reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for three organometallic complexes. Conclusions Estimated diffusion coefficients closely matched the values determined by the parameter fitting method, but reduced the required computational time considerably for one of the reaction mechanisms. The automated processing of voltammograms according to the regression algorithms yields better results than the conventional analysis of peak-related data. PMID:24987463
Sublimation kinetics and diffusion coefficients of TNT, PETN, and RDX in air by thermogravimetry.
Hikal, Walid M; Weeks, Brandon L
2014-07-01
The diffusion coefficients of explosives are crucial in their trace detection and lifetime estimation. We report on the experimental values of diffusion coefficients of three of the most important explosives in both military and industry: TNT, PETN, and RDX. Thermogravimetric analysis (TGA) was used to determine the sublimation rates of TNT, PETN, and RDX powders in the form of cylindrical billets. The TGA was calibrated using ferrocene as a standard material of well-characterized sublimation rates and vapor pressures to determine the vapor pressures of TNT, PETN, and RDX. The determined sublimation rates and vapor pressures were used to indirectly determine the diffusion coefficients of TNT, PETN, and RDX for the first time. A linear log-log dependence of the diffusion coefficients on temperature is observed for the three materials. The diffusion coefficients of TNT, PETN, and RDX at 273 K were determined to be 5.76×10(-6)m(2)/sec, 4.94×10(-6)m(2)/s, and 5.89×10(-6)m(2)/s, respectively. Values are in excellent agreement with the theoretical values in literature.
A first-principles methodology for diffusion coefficients in metals and dilute alloys
NASA Astrophysics Data System (ADS)
Mantina, Manjeera
This work is a study exploring the extent of suitability of static first-principles calculations for studying diffusion in metallic systems. Specifically, vacancy-mediated volume diffusion in pure elements and alloys with dilute concentration of impurities is studied. A novel procedure is discovered for predicting diffusion coefficients that overcomes the shortcomings of the well-known transition state theory, by Vineyard. The procedure that evolves from Eyring's reaction rate theory yields accurate diffusivity results that include anharmonic effects within the quasi-harmonic approximation. Alongside, the procedure is straightforward in its application within the conventional harmonic approximation, from the results of static first-principles calculations. To prove the extensibility of the procedure, diffusivities have been computed for a variety of systems. Over a wide temperature range, the calculated self-diffusion and impurity diffusion coefficients using local density approximation (LDA) of density functional theory (DFT) are seen to be in excellent match with experimental data. Self-diffusion coefficients have been calculated for: (i) fcc Al, Cu, Ni and Ag (ii) bcc W and Mo (v) hcp Mg, Ti and Zn. Impurity diffusion coefficients have been computed for: (i) Mg, Si, Cu, Li, Ag, Mo and 3d transition elements in fcc Al (ii) Mo, Ta in bcc W and Nb, Ta and W in bcc Mo (iii) Sn and Cd in hcp Mg and Al in hcp Ti. It is also an observation from this work, that LDA does not require surface correction for yielding energetics of vacancy-containing system in good comparison with experiments, unlike generalized gradient approximation (GGA). It is known that first-principles' energy minimization procedures based on electronic interactions are suited for metallic systems wherein the valence electrons are freely moving. In this thesis, research has been extended to study suitability of first-principles calculations within LDA/GGA including the localization parameter U, for Al
Liu, Fei; Kolesov, Grigory; Parkinson, Bruce A.
2014-09-26
A simple and straightforward method for measuring diffusion coefficients using interdigitated array (IDA) electrodes is reported. The method does not require that the exact electrode area be known but depends only the size of the gap between the IDA electrode pairs. Electroactive molecules produced at the generator electrode of the IDA by a voltage step or scan can diffuse to the collector electrode and the time delay before the current for the reverse electrochemical reaction is detected at the collector is used to calculate the diffusion coefficient. The measurement of the diffusion rate of Ru(NH3)6+2 in aqueous solution has been used as an example measuring diffusion coefficients using this method. Additionally, a digital simulation of the electrochemical response of the IDA electrodes was used to simulate the entire current/voltage/time behavior of the system and verify the experimentally measured diffusion coefficients. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the Department of Energy, Office of Science, Office of Basic Energy Sciences.
Haghighat, F; Lee, C S; Ghaly, W S
2002-06-01
The measurement and prediction of building material emission rates have been the subject of intensive research over the past decade, resulting in the development of advanced sensory and chemical analysis measurement techniques as well as the development of analytical and numerical models. One of the important input parameters for these models is the diffusion coefficient. Several experimental techniques have been applied to estimate the diffusion coefficient. An extensive literature review of the techniques used to measure this coefficient was carried out, for building materials exposed to volatile organic compounds (VOC). This paper reviews these techniques; it also analyses the results and discusses the possible causes of difference in the reported data. It was noted that the discrepancy between the different results was mainly because of the assumptions made in and the techniques used to analyze the data. For a given technique, the results show that there can be a difference of up to 700% in the reported data. Moreover, the paper proposes what is referred to as the mass exchanger method, to calculate diffusion coefficients considering both diffusion and convection. The results obtained by this mass exchanger method were compared with those obtained by the existing method considering only diffusion. It was demonstrated that, for porous materials, the convection resistance could not be ignored when compared with the diffusion resistance.
Buffie, K.; Shalchi, A.; Heesen, V. E-mail: v.heesen@soton.ac.uk
2013-02-10
Diffusion coefficients are usually used to describe the propagation of cosmic rays through the universe. Whereas such transport parameters can be obtained from experiments in the solar system, it is difficult to determine diffusion coefficients in the Milky Way or in external galaxies. Recently, a value for the perpendicular diffusion coefficient in the nearby starburst galaxy NGC 253 has been proposed. In the present paper, we reproduce this value theoretically by using an advanced analytical theory for perpendicular diffusion.
Boving, T B; Grathwohl, P
2001-12-01
Matrix diffusion is an important transport process in geologic materials of low hydraulic conductivity. For predicting the fate and transport of contaminants, a detailed understanding of the diffusion processes in natural porous media is essential. In this study, diffusive tracer transport (iodide) was investigated in a variety of geologically different limestone and sandstone rocks. Porosity, structural and mineralogical composition, hydraulic conductivity, and other rock properties were determined. The effective diffusion coefficients were measured using the time-lag method. The results of the diffusion experiments indicate that there is a close relationship between total porosity and the effective diffusion coefficient of a rock (analogous to Archie's Law). Consequently, the tortousity factor can be expressed as a function of total porosity. The relationship fits best for thicker samples (> 1.0 cm) with high porosities (> 20%), because of the reduced influence of heterogeneity in larger samples. In general, these correlations appear to be a simple way to determine tortuosity and the effective diffusion coefficient from easy to determine rock porosity values.
NASA Astrophysics Data System (ADS)
Marquardt, Katharina; Dohmen, Ralf; Wagner, Johannes
2014-05-01
Diffusion along interface and grain boundaries provides an efficient pathway and may control chemical transport in rocks as well as their mechanical strength. Besides the significant relevance of these diffusion processes for various geologic processes, experimental data are still very limited (e.g., Dohmen & Milke, 2010). Most of these data were measured using polycrystalline materials and the formalism of LeClaire (1951) to fit integrated concentration depth profiles. To correctly apply this formalism, certain boundary conditions of the diffusion problem need to be fulfilled, e.g., surface diffusion is ignored, and furthermore the lattice diffusion coefficient has to be known from other studies or is an additional fitting parameter, which produces some ambiguity in the derived grain boundary diffusion coefficients. We developed an experimental setup where we can measure the lattice and grain boundary diffusion coefficients simultaneously but independent and demonstrate the relevance of surface diffusion for typical grain boundary diffusion experiments. We performed Mg2SiO4 bicrystal diffusion experiments, where a single grain boundary is covered by a thin-film of pure Ni2SiO4 acting as diffusant source, produced by pulsed laser deposition. The investigated grain boundary is a 60° (011)/[100]. This specific grain boundary configuration was modeled using molecular dynamics for comparison with the experimental observations in the transmission electron microscope (TEM). Both, experiment and model are in good agreement regarding the misorientation, whereas there are still some disagreements regarding the strain fields along the grain boundary that are of outmost importance for the strengths of the material. The subsequent diffusion experiments were carried out in the temperature range between 800° and 1450° C. The inter diffusion profiles were measured using the TEMs energy dispersive x-ray spectrometer standardized using the Cliff-Lorimer equation and EMPA
Electro-diffusion in a plasma with two ion species
NASA Astrophysics Data System (ADS)
Kagan, Grigory; Tang, Xian-Zhu
2012-08-01
Electric field is a thermodynamic force that can drive collisional inter-ion-species transport in a multicomponent plasma. In an inertial confinement fusion capsule, such transport causes fuel ion separation even with a target initially prepared to have equal number densities for the two fuel ion species. Unlike the baro-diffusion driven by ion pressure gradient and the thermo-diffusion driven by ion and electron temperature gradients, electro-diffusion has a critical dependence on the charge-to-mass ratio of the ion species. Specifically, it is shown here that electro-diffusion vanishes if the ion species have the same charge-to-mass ratio. An explicit expression for the electro-diffusion ratio is obtained and used to investigate the relative importance of electro- and baro-diffusion mechanisms. In particular, it is found that electro-diffusion reinforces baro-diffusion in the deuterium and tritium mix, but tends to cancel it in the deuterium and helium-3 mix.
Electro-diffusion in a plasma with two ion species
Kagan, Grigory; Tang Xianzhu
2012-08-15
Electric field is a thermodynamic force that can drive collisional inter-ion-species transport in a multicomponent plasma. In an inertial confinement fusion capsule, such transport causes fuel ion separation even with a target initially prepared to have equal number densities for the two fuel ion species. Unlike the baro-diffusion driven by ion pressure gradient and the thermo-diffusion driven by ion and electron temperature gradients, electro-diffusion has a critical dependence on the charge-to-mass ratio of the ion species. Specifically, it is shown here that electro-diffusion vanishes if the ion species have the same charge-to-mass ratio. An explicit expression for the electro-diffusion ratio is obtained and used to investigate the relative importance of electro- and baro-diffusion mechanisms. In particular, it is found that electro-diffusion reinforces baro-diffusion in the deuterium and tritium mix, but tends to cancel it in the deuterium and helium-3 mix.
NASA Astrophysics Data System (ADS)
Shen, Jun; Zhou, Jianqin; Astrath, Nelson G. C.; Navessin, Titichai; Liu, Zhong-Sheng (Simon); Lei, Chao; Rohling, Jurandir H.; Bessarabov, Dmitri; Knights, Shanna; Ye, Siyu
In this work, using an in-house made Loschmidt diffusion cell, we measure the effective coefficient of dry gas (O 2-N 2) diffusion in cathode catalyst layers of PEM fuel cells at 25 °C and 1 atmosphere. The thicknesses of the catalyst layers under investigation are from 6 to 29 μm. Each catalyst layer is deposited on an Al 2O 3 membrane substrate by an automated spray coater. Diffusion signal processing procedure is developed to deduce the effective diffusion coefficient, which is found to be (1.47 ± 0.05) × 10 -7 m 2 s -1 for the catalyst layers. Porosity and pore size distribution of the catalyst layers are also measured using Hg porosimetry. The diffusion resistance of the interface between the catalyst layer and the substrate is found to be negligible. The experimental results show that the O 2-N 2 diffusion in the catalyst layers is dominated by the Knudsen effect.
Excess entropy scaling for the diffusion coefficient in expanded liquid metals.
Bretonnet, J L
2004-06-15
Molecular-dynamics simulation is used to compute the pair correlation function and the velocity autocorrelation function of Cs and Rb along the liquid-vapor coexistence curve, from which the excess entropy S(ex) and the diffusion coefficient D are deduced. The numerical results of both physical properties are correlated and a scaling law between the excess entropy and the reduced diffusion coefficient D(*)(=D/D(0)) is investigated for different expressions of the reduction parameter D(0). The choice of thermodynamic states along the liquid--vapor coexistence curve gives us the possibility to extend the investigation of the relation between the reduced diffusion coefficient and the excess entropy over a wide area and to test the adequacy of the scaling law confidently.
Wave-induced eddy diffusion coefficients in the upper atmosphere of Mars.
NASA Technical Reports Server (NTRS)
Beasley, W. H.; Hodges, R. R., Jr.
1973-01-01
A theory and method previously used to calculate terrestrial eddy diffusion coefficients due to instabilities in internal gravity waves have been extended to obtain wave-induced eddy diffusion coefficients in the upper atmosphere of Mars. If the Martian atmosphere is relatively dry (water vapor mixing ratio much less than .001), the effects of radiative damping are minimal for all but the longest-period waves. For greater concentrations of water vapor the effects of radiative damping are increased, but in any event it is reasonable to expect wave-induced turbulence, with eddy diffusion coefficients of the order of 10 to the 7th sq cm/sec in the Martian upper atmosphere.
Crack diffusion coefficient - A candidate fracture toughness parameter for short fiber composites
NASA Technical Reports Server (NTRS)
Mull, M. A.; Chudnovsky, A.; Moet, A.
1987-01-01
In brittle matrix composites, crack propagation occurs along random trajectories reflecting the heterogeneous nature of the strength field. Considering the crack trajectory as a diffusive process, the 'crack diffusion coefficient' is introduced. From fatigue crack propagation experiments on a set of identical SEN polyester composite specimens, the variance of the crack tip position along the loading axis is found to be a linear function of the effective 'time'. The latter is taken as the effective crack length. The coefficient of proportionality between variance of the crack trajectory and the effective crack length defines the crack diffusion coefficient D which is found in the present study to be 0.165 mm. This parameter reflects the ability of the composite to deviate the crack from the energetically most efficient path and thus links fracture toughness to the microstructure.
Field-Scale Effective Matrix Diffusion Coefficient for FracturedRock: Results From Literature Survey
Zhou, Quanlin; Liu, Hui Hai; Molz, Fred J.; Zhang, Yingqi; Bodvarsson, Gudmundur S.
2005-03-28
Matrix diffusion is an important mechanism for solutetransport in fractured rock. We recently conducted a literature survey onthe effective matrix diffusion coefficient, Dem, a key parameter fordescribing matrix diffusion processes at the field scale. Forty fieldtracer tests at 15 fractured geologic sites were surveyed and selectedfor study, based on data availability and quality. Field-scale Dem valueswere calculated, either directly using data reported in the literature orby reanalyzing the corresponding field tracer tests. Surveyed dataindicate that the effective-matrix-diffusion-coefficient factor FD(defined as the ratio of Dem to the lab-scale matrix diffusioncoefficient [Dem]of the same tracer) is generally larger than one,indicating that the effective matrix diffusion coefficient in the fieldis comparatively larger than the matrix diffusion coefficient at therock-core scale. This larger value could be attributed to the manymass-transfer processes at different scales in naturally heterogeneous,fractured rock systems. Furthermore, we observed a moderate trend towardsystematic increase in the emDFmDDF value with observation scale,indicating that the effective matrix diffusion coefficient is likely tobe statistically scale dependent. The FD value ranges from 1 to 10,000for observation scales from 5 to 2,000 m. At a given scale, the FD valuevaries by two orders of magnitude, reflecting the influence of differingdegrees of fractured rock heterogeneity at different sites. In addition,the surveyed data indicate that field-scale longitudinal dispersivitygenerally increases with observation scale, which is consistent withprevious studies. The scale-dependent field-scale matrix diffusioncoefficient (and dispersivity) may have significant implications forassessing long-term, large-scale radionuclide and contaminant transportevents in fractured rock, both for nuclear waste disposal and contaminantremediation.
NASA Astrophysics Data System (ADS)
Nagai, Shingo
2013-11-01
We report estimation of the effective diffusion coefficient of moisture through a barrier coating to develop an encapsulation technology for the thin-film electronics industry. This investigation targeted a silicon oxide (SiOx) film that was deposited on a plastic substrate by a large-process-area web coater. Using the finite difference method based on diffusion theory, our estimation of the effective diffusion coefficient of a SiOx film corresponded to that of bulk glass that was previously reported. This result suggested that the low diffusivities of barrier films can be obtained on a mass-production level in the factory. In this investigation, experimental observations and mathematical confirmation revealed the limit of the water vapor transmission rate on the single barrier coating.
NASA Astrophysics Data System (ADS)
Salazar, Agustín; Fuente, Raquel; Apiñaniz, Estibaliz; Mendioroz, Arantza; Celorrio, R.
2011-08-01
The aim of this work is to analyze the ability of modulated photothermal radiometry to retrieve the thermal diffusivity and the optical absorption coefficient of layered materials simultaneously. First, we extend the thermal quadrupole method to calculate the surface temperature of semitransparent multilayered materials. Then, this matrix method is used to evaluate the influence of heat losses by convection and radiation, the influence of the use of thin paint layers on the accuracy of thermal diffusivity measurements, and the effect of lateral heat diffusion due to the use of Gaussian laser beams. Finally, we apply the quadrupole method to retrieve (a) the thermal contact resistance in glass stacks and (b) the thermal diffusivity and optical absorption coefficient depth profiles in heterogeneous materials with continuously varying physical properties, as is the case of functionally graded materials and partially cured dental resins.
NASA Astrophysics Data System (ADS)
Kopelevich, Oleg V.; Filippov, Yuri V.
1994-10-01
The goal of this work is to verify different spectral models of the diffuse attenuation and absorption coefficients of sea water and to work out a recommendation for their use. It is shown that the spectral models of the diffuse attenuation coefficient Kd((lambda) ) developed by Austin, Petzold, 1984 and by Volynsky, Sud'bin, 1992 correspond with each other, as well the models of Ivanov, Shemshura, 1973 and of Kopelevich, Shemshura, 1988 for calculation of the spectral absorption coefficient a((lambda) ) on the values of Kd((lambda) ). Theoretical foundation of the relation between a((lambda) ) and Kd((lambda) ) is given. The up-to-date physical model of the sea water light absorption is considered and checked by means of comparison with measured values of the attenuation coefficient at the ultraviolet and visible spectral ranges.
Diffusion of Rubidium Ion and Potassium Ion in Silver-Bromide and Silver-Chloride
NASA Astrophysics Data System (ADS)
Cardegna, Peter Anthony
The diffusion of Rb('+) in AgBr and AgCl was performed using the standard tracer and serial sectioning technique. For AgBr in the temperature range 184-420(DEGREES)C and AgCl in the temperature range 184-447(DEGREES)C, the temperature dependence of the diffusivity follows the normal, linear relationship D = D(,0) e('-H/kT). The pre-exponential factor for AgBr is. (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI). and for. (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI). The diffusion activation energy for AgBr is H = (1.33 (+OR-) 0.02) eV and for AgCl is H = (1.20 (+OR -) 0.02) eV. It is argued that the lack of curvature in these Arrhenius plots, which is predicted on the basis of a temperature dependent defect formation enthalpy, is intimately associated with the elastic strain field set up in the vicinity of the oversized Rb('+) ion. The diffusion of the smaller K('+) ion was also studied in AgBr and AgCl using the same technique. The temperature range investigated for AgBr was 248-418(DEGREES)C and for AgCl was 264-448(DEGREES)C. In this case, the Arrhenius plots describing the temperature dependence of the diffusion coefficient do show a continuous positive curvature as you approach the melting point. However, it is shown that the curvature is not completely accounted for by the the temperature dependent defect enthalpy model. Again, it is argued that small, but nevertheless temperature dependent, elastic binding does exist which affects the degree of curvature in the Arrhenius graphs.
Importance of diffuse metal ion binding to RNA.
Tan, Zhi-Jie; Chen, Shi-Jie
2011-01-01
RNAs are highly charged polyanionic molecules. RNA structure and function are strongly correlated with the ionic condition of the solution. The primary focus of this article is on the role of diffusive ions in RNA folding. Due to the long-range nature of electrostatic interactions, the diffuse ions can contribute significantly to RNA structural stability and folding kinetics. We present an overview of the experimental findings as well as the theoretical developments on the diffuse ion effects in RNA folding. This review places heavy emphasis on the effect of magnesium ions. Magnesium ions play a highly efficient role in stabilizing RNA tertiary structures and promoting tertiary structural folding. The highly efficient role goes beyond the mean-field effect such as the ionic strength. In addition to the effects of specific ion binding and ion dehydration, ion-ion correlation for the diffuse ions can contribute to the efficient role of the multivalent ions such as the magnesium ions in RNA folding. PMID:22010269
Ion movement through gramicidin A channels. Studies on the diffusion-controlled association step.
Andersen, O S
1983-01-01
The permeability characteristics of gramicidin A channels are generally considered to reflect accurately the intrinsic properties of the channels themselves; i.e., the aqueous convergence regions are assumed to be negligible barriers for ion movement through the channels. The validity of this assumption has been examined by an analysis of gramicidin A single-channel current-voltage characteristics up to very high potentials (500 mV). At low permeant ion concentrations the currents approach a voltage-independent limiting value, whose magnitude is proportional to the permeant ion concentration. The magnitude of this current is decreased by experimental maneuvers that decrease the aqueous diffusion coefficient of the ions. It is concluded that the magnitude of this limiting current is determined by the diffusive ion movement through the aqueous convergence regions up to the channel entrance. It is further shown that the small-signal (ohmic) permeability properties also reflect the existence of the aqueous diffusion limitation. These results have considerable consequences for the construction of kinetic models for ion movement through gramicidin A channels. It is shown that the simple two-site-three-barrier model commonly used to interpret gramicidin A permeability data may lead to erroneous conclusions, as biionic potentials will be concentration dependent even when the channel is occupied by at most one ion. The aqueous diffusion limitation must be considered explicitly in the analysis of gramicidin A permeability characteristics. Some implications for understanding the properties of ion-conducting channels in biological membranes will be considered. PMID:6188502
A New Method for the Calculation of Diffusion Coefficients with Monte Carlo
NASA Astrophysics Data System (ADS)
Dorval, Eric
2014-06-01
This paper presents a new Monte Carlo-based method for the calculation of diffusion coefficients. One distinctive feature of this method is that it does not resort to the computation of transport cross sections directly, although their functional form is retained. Instead, a special type of tally derived from a deterministic estimate of Fick's Law is used for tallying the total cross section, which is then combined with a set of other standard Monte Carlo tallies. Some properties of this method are presented by means of numerical examples for a multi-group 1-D implementation. Calculated diffusion coefficients are in general good agreement with values obtained by other methods.
A relation between cosmic-ray fluctuations, gradient, and diffusion coefficient
NASA Technical Reports Server (NTRS)
Owens, A. J.; Jokipii, J. R.
1974-01-01
The motion of charged particles in a stochastic magnetic field is considered via a generalized quasi-linear expansion of Liouville's equation. The result is an equation relating cosmic-ray scintillations to particle gradients and to magnetic-field fluctuations (or diffusion coefficient). The resulting theory may be regarded as an example of a fluctuation-dissipation phenomenon, in which the diffusion coefficient plays the role of the dissipative parameter. The resonant interaction between particles and the random interplanetary magnetic field is considered explicitly, and it is shown that observed scintillations of high-energy (about 1 GeV) cosmic rays may be reasonably explained by the model.
NASA Technical Reports Server (NTRS)
Penner, Reginald M.; Vandyke, Leon S.; Martin, Charles R.
1987-01-01
The current pulse E sub oc relaxation method and its application to the determination of diffusion coefficients in electrochemically synthesized polypyrrole thin films is described. Diffusion coefficients for such films in Et4NBF4 and MeCN are determined for a series of submicron film thicknesses. Measurement of the double-layer capacitance, C sub dl, and the resistance, R sub u, of polypyrrole thin films as a function of potential obtained with the galvanostatic pulse method is reported. Measurements of the electrolyte concentration in reduced polypyrrole films are also presented to aid in the interpretation of the data.
ICP-MS measurement of diffusion coefficients of Cs in NBG-18 graphite
NASA Astrophysics Data System (ADS)
Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.
2015-11-01
Graphite is used in the HGTR/VHTR as moderator and it also functions as a barrier to fission product release. Therefore, an elucidation of transport of fission products in reactor-grade graphite is required. We have measured diffusion coefficients of Cs in graphite NBG-18 using the release method, wherein we infused spheres of NBG-18 with Cs and measured the release rates in the temperature range of 1090-1395 K. We have obtained: These seem to be the first reported values of Cs diffusion coefficients in NBG-18. The values are lower than those reported for other graphites in the literature.
NASA Astrophysics Data System (ADS)
Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H.
2016-06-01
Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Mass transport properties of electronic packaging materials are needed in order to investigate the influence of moisture and temperature on reliability of electronic devices. Polycarbonate (PC) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, it is shown how the estimated value can be different depending on the choice of dimensionality in the model.
Small effect of water on upper mantle rheology based on silicon self-diffusion coefficients
NASA Astrophysics Data System (ADS)
Fei, H.; Wiedenbeck, M.; Yamazaki, D.; Katsura, T.
2012-12-01
Water has been considered to significantly affect the mantle dynamics. In particular, experimental deformation studies [1-4] claimed that even small amount of water enhanced the creep in olivine by orders of magnitude. However, we note that their results are experimental artifact due to a number of limitations: e.g., unavoidable grain boundary sliding when polycrystalline samples were used; limited ranges of water contents due to the limited pressures; several orders higher stress and strain rate than those in nature. High temperature creep of silicate minerals is controlled by silicon self-diffusion. Therefore, measurement of silicon self-diffusion coefficients (DSi) in minerals, which can be performed without these limitations, is an independent way to study the mantle rheology. In this study, we measured DSi in Mg end-member of olivine, namely, forsterite, as a function of water content (CH2O) across a wide range, and concluded that effect of water on upper mantle rheology is very small. Forsterite single crystals were doped with <1 to ~800 μg/g of water at 1600 K, 8 GPa using talc+brucite water sources and graphite buffer. The CH2O in the samples were controlled by the ratio of water sources to graphite. The water doped samples were polished, deposited with 500 nm 29Si enriched Mg2SiO4 thin films, and annealed at 8 GPa, 1600 or 1800 K for diffusion with the same proportion of water sources, which successfully made constant values of CH2O during diffusion annealing. The diffusion profiles were obtained by SIMS. CH2O in the samples were determined by FT-IR before and after diffusion, and also examined by SIMS. Our results yield a relationship: DSi ∝ (CH2O)1/3. This is explained by defect chemistry, where DSi∝[VSi‧‧‧‧]×[VO●●]∝(CH2O)2/3×(CH2O)-1/3=(CH2O)1/3 under the charge neutrality condition of [(OH)O●]=2[VMg‧‧] because both Si and O vacancies are needed for Si ions to diffuse. The water contents exponent (1/3) determined in this study
Suárez, Inmaculada; Coto, Baudilio
2015-08-14
Average molecular weights and polydispersity indexes are some of the most important parameters considered in the polymer characterization. Usually, gel permeation chromatography (GPC) and multi angle light scattering (MALS) are used for this determination, but GPC values are overestimated due to the dispersion introduced by the column separation. Several procedures were proposed to correct such effect usually involving more complex calibration processes. In this work, a new method of calculation has been considered including diffusion effects. An equation for the concentration profile due to diffusion effects along the GPC column was considered to be a Fickian function and polystyrene narrow standards were used to determine effective diffusion coefficients. The molecular weight distribution function of mono and poly disperse polymers was interpreted as a sum of several Fickian functions representing a sample formed by only few kind of polymer chains with specific molecular weight and diffusion coefficient. Proposed model accurately fit the concentration profile along the whole elution time range as checked by the computed standard deviation. Molecular weights obtained by this new method are similar to those obtained by MALS or traditional GPC while polydispersity index values are intermediate between those obtained by the traditional GPC combined to Universal Calibration method and the MALS method. Values for Pearson and Lin coefficients shows improvement in the correlation of polydispersity index values determined by GPC and MALS methods when diffusion coefficients and new methods are used.
NASA Astrophysics Data System (ADS)
Kruk, D.; Meier, R.; Rachocki, A.; Korpała, A.; Singh, R. K.; Rössler, E. A.
2014-06-01
Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220-258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4, 243-318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6, 258-323 K). The dispersion of 1H spin-lattice relaxation rate R1(ω) is measured in the frequency range of 10 kHz-20 MHz, and the studies are complemented by 19F spin-lattice relaxation measurements on BMIM-PF6 in the corresponding frequency range. From the 1H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF4, and BMIM-PF6 are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the 1H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R1 on square root of frequency. From the 19F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF6. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids.
Kruk, D; Meier, R; Rachocki, A; Korpała, A; Singh, R K; Rössler, E A
2014-06-28
Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220-258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4, 243-318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6, 258-323 K). The dispersion of (1)H spin-lattice relaxation rate R1(ω) is measured in the frequency range of 10 kHz-20 MHz, and the studies are complemented by (19)F spin-lattice relaxation measurements on BMIM-PF6 in the corresponding frequency range. From the (1)H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF4, and BMIM-PF6 are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the (1)H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R1 on square root of frequency. From the (19)F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF6. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids.
Effect of particle-hole symmetry on the behavior of tracer and jump diffusion coefficients.
Torrez Herrera, J J; Ranzuglia, G A; Manzi, S J; Pereyra, V D
2013-05-01
This paper analyzes the effect of particle-hole symmetry on the behavior of the tracer diffusion coefficient as well as the jump diffusion coefficient. The coefficients are obtained by performing a random walk of individual atoms in a two-dimensional square lattice at monolayer, using the n-fold way Monte Carlo simulation. Different hopping mechanisms have been introduced to study the effect of particle-hole symmetry. For hopping kinetics where the initial-state interactions are involved, the diffusion coefficient at high coverage falls several orders of magnitude due to the effect of particle-hole symmetry. For hopping kinetics where the final-state interactions are present, the effect is the opposite. For those involving both initial- and final-state interactions, like the so-called interaction kinetics, the effect of particle-hole symmetry is also discussed. This effect seems to be critical for repulsive lateral interactions, for which the behavior of the diffusion coefficients is modified by introducing the particle-hole symmetry condition. PMID:23767481
Zhou, Quanlin; Liu, Hui-Hai; Molz, Fred J; Zhang, Yingqi; Bodvarsson, Gudmundur S
2007-08-15
Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D(m)(e), a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D(m)(e) values were calculated, either directly using data reported in the literature, or by reanalyzing the corresponding field tracer tests. The reanalysis was conducted for the selected tracer tests using analytic or semi-analytic solutions for tracer transport in linear, radial, or interwell flow fields. Surveyed data show that the scale factor of the effective matrix diffusion coefficient (defined as the ratio of D(m)(e) to the lab-scale matrix diffusion coefficient, D(m), of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate, on average trend toward systematic increase in the scale factor with observation scale. This trend suggests that the effective matrix diffusion coefficient is likely to be statistically scale-dependent. The scale-factor value ranges from 0.5 to 884 for observation scales from 5 to 2000 m. At a given scale, the scale factor varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different geologic sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity
FIELD-SCALE EFFECTIVE MATRIX DIFFUSION COEFFICIENT FOR FRACTURED ROCK:RESULTS FROM LITERATURE SURVEY
Q. Zhou; Hui-Hai Liu; F.J. Molz; Y. Zhang; G.S. Bodvarsson
2005-04-08
Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D{sub m}{sup e}, a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D{sub m}{sup e} values were calculated, either directly using data reported in the literature or by reanalyzing the corresponding field tracer tests. Surveyed data indicate that the effective-matrix-diffusion-coefficient factor F{sub D} (defined as the ratio of D{sub m}{sup e} to the lab-scale matrix diffusion coefficient [D{sub m}] of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate trend toward systematic increase in the F{sub D} value with observation scale, indicating that the effective matrix diffusion coefficient is likely to be statistically scale dependent. The F{sub D} value ranges from 1 to 10,000 for observation scales from 5 to 2,000 m. At a given scale, the F{sub D} value varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal
Non-Fermi liquid behavior of the drag and diffusion coefficients in QED plasma
Sarkar, Sreemoyee; Dutt-Mazumder, Abhee K.
2011-11-01
We calculate the drag and diffusion coefficients in low temperature QED plasma and go beyond the leading order approximation. The non-Fermi-liquid behavior of these coefficients are clearly revealed. We observe that the subleading contributions due to the exchange of soft transverse photon in both cases are larger than the leading order terms coming from the longitudinal sector. The results are presented in closed form at zero and low temperature.
NASA Astrophysics Data System (ADS)
Kozaki, T.; Sawaguchi, T.; Fujishima, A.; Sato, S.
Compacted Na-bentonite, of which the major mineral is montmorillonite, is a candidate buffer material for the geological disposal of high-level radioactive waste. A potential alteration of the bentonite in a repository is the partial replacement of the exchangeable cations of Na + with Ca 2+. The Ca 2+ cations could be released from cementitious materials and diffuse into the buffer material in the repository. In this study, to evaluate the alteration that could reduce the performance of the bentonite buffer, the apparent diffusion coefficients of HTO and Ca 2+ ions were determined from non-steady, one-dimensional diffusion experiments using Na- and Ca-montmorillonite mixtures with different ionic equivalent fractions of Ca 2+ ions. The apparent diffusion coefficient of HTO at a dry density of 1.0 Mg m -3 slightly increased with an increase in the ionic equivalent fraction of Ca 2+ ions. However, the apparent diffusion coefficient of Ca 2+ and the activation energy for diffusion at the same dry density were independent of the ionic equivalent fraction of Ca 2+ ions. These findings suggest that unlike HTO, which can be postulated to diffuse mainly in pore water, Ca 2+ ion diffusion could occur predominantly in interlayer spaces, of which the basal spacing was determined to be constant by the XRD technique.
Self-Diffusion Coefficient of a Weakly Ionized Cesium Monatomic Gas. Symmetry Effects
NASA Astrophysics Data System (ADS)
Bouledroua, Moncef; Tahar Bouazza, M.
2006-11-01
The quantum-mechanical computation of the diffusion coefficient D begins with the determination of the singlet and triplet potential-energy curves which, in this work, separate asymptotically to Cs(6s)+Cs(6s). The knowledge of these potentials should lead to the determination of the phase shifts. Ignoring the identity of the interacting atoms, the cross section effective in diffusion is calculated for one molecular symmetry and the coefficient of diffusion is determined according to the Chapman-Enskog method. In reality, the colliding atoms are identical. Thus, the wave function of the diatomic system should be symmetrized. In such a case, quantum mechanics leads to symmetric and antisymmetric diffusion cross sections, as described by Karstic and Schultz, and the average diffusion cross section is recalculated by considering the Cs nuclear spin and the statistical weight of each molecular state. The evaluation of the self-diffusion coefficient of a dilute Cs gas is in a first step carried out without considering the symmetry effects. The results are compared with those of Nieto de Castro et al. The variation law with temperature of D are further analyzed when the symmetry effects are ignored/included.
Kilo, Martin; Taylor, Marcela A; Argirusis, Christos; Borchardt, Günter; Weber, Sylvain; Scherrer, Hubert; Jackson, Robert A
2004-09-15
The diffusion of all stable lanthanides was measured both in calcia stabilized zirconia (CSZ) and in yttria stabilized zirconia (YSZ) in the temperature range between 1,286 and 1,600 degrees C. The lanthanide diffusion coefficients obtained increase with increasing ionic radius. The experimental activation enthalpy of diffusion is near 6 eV for CSZ and between 4 and 5 eV for YSZ and is not strongly affected by the type of lanthanide. The results were correlated with defect energy calculations of the lanthanide diffusion enthalpy using the Mott-Littleton approach. An association enthalpy of cation vacancies with oxygen vacancies of about 1 eV (96 kJ/mol) was deduced in the case of CSZ, while there is no association in the case of YSZ. Furthermore, the change in diffusion coefficients can be correlated to the interaction parameter for the interaction between the lanthanide oxide with zirconia: The higher the interaction parameter, the higher the lanthanide diffusion coefficient.
NASA Astrophysics Data System (ADS)
Kilo, Martin; Taylor, Marcela A.; Argirusis, Christos; Borchardt, Günter; Weber, Sylvain; Scherrer, Hubert; Jackson, Robert A.
2004-09-01
The diffusion of all stable lanthanides was measured both in calcia stabilized zirconia (CSZ) and in yttria stabilized zirconia (YSZ) in the temperature range between 1286 and 1600 °C. The lanthanide diffusion coefficients obtained increase with increasing ionic radius. The experimental activation enthalpy of diffusion is near 6 eV for CSZ and between 4 and 5 eV for YSZ and is not strongly affected by the type of lanthanide. The results were correlated with defect energy calculations of the lanthanide diffusion enthalpy using the Mott-Littleton approach. An association enthalpy of cation vacancies with oxygen vacancies of about 1 eV (96 kJ/mol) was deduced in the case of CSZ, while there is no association in the case of YSZ. Furthermore, the change in diffusion coefficients can be correlated to the interaction parameter for the interaction between the lanthanide oxide with zirconia: The higher the interaction parameter, the higher the lanthanide diffusion coefficient.
Point defect sinks in self-ion-irradiated nickel: A self-diffusion investigation
Mueller, A.; Naundorf, V.; Macht, M.
1988-10-01
The diffusion coefficient of /sup 63/Ni in pure nickel after irradiation with 300 keV Ni ions has been measured directly using a secondary ion mass spectrometer. The calculated displacement rate for this irradiation ranged from 1.2 x 10/sup -5/ to 3.1 x 10/sup -2/ dpa/s, the dose from 0.2 to 102 dpa, and the temperatures from 293 to 950 K. Between 293 and 650 K the irradiation-induced diffusion coefficient is temperature independent for a displacement rate of 1.2 x 10/sup -2/ dpa/s. In this temperature range mass transport by atomic mixing prevails over diffusion via point defects (radiation-enhanced diffusion). Normalized to the displacement rate K' the diffusion coefficient describing atomic mixing attains a value of D/sub mix/ /K' = 1.3 x 10/sup -18/ m/sup 2/ /dpa. The temperature and displacement rate dependence of the radiation-enhanced diffusion coefficient is discussed in the framework of a rate equation model. The analysis yields a production rate of freely migrating defects of about 1.5% of the calculated displacement rate. The effective concentration of point defect sinks was derived for nickel under heavy ion irradiation. This effective sink concentration C/sub s/ showed no dependence on displacement rate but a considerable temperature dependence, e.g., C/sub s/ = 2 x 10/sup -6/ at 850 K and C/sub s/ = 2.5 x 10/sup -7/ at 950 K. The conditions for a stationary effective sink concentration in self-ion irradiated nickel are discussed.
NASA Astrophysics Data System (ADS)
Jebaraj Johnley Muthuraj, Josiah
Cathodic protection is widely used for corrosion prevention. However, this process generates hydrogen at the protected metal surface, and diffusion of hydrogen through the metal may cause hydrogen embrittlement or hydrogen induced stress corrosion cracking. Thus the choice of a metal for use as fasteners depends upon its hydrogen uptake, permeation, diffusivity and trapping. The diffusivity of hydrogen through four high strength alloys (AISI 4340, alloy 718, alloy 686, and alloy 59) was analyzed by an electrochemical method developed by Devanathan and Stachurski. The effect of plasma nitriding and microstructure on hydrogen permeation through AISI 4340 was studied on six different specimens: as-received (AR) AISI 4340, nitrided samples with and without compound layer, samples quenched and tempered (Q&T) at 320° and 520°C, and nitrided samples Q&T 520°C. Studies on various nitrided specimens demonstrate that both the gamma'-Fe 4N rich compound surface layer and the deeper N diffusion layer that forms during plasma nitriding reduce the effective hydrogen diffusion coefficient, although the gamma'-Fe4N rich compound layer has a larger effect. Multiple permeation transients yield evidence for the presence of only reversible trap sites in as-received, Q&T 320 and 520 AISI 4340 specimens, and the presence of both reversible and irreversible trap sites in nitrided specimens. Moreover, the changes in microstructure during the quenching and tempering process result in a significant decrease in the diffusion coefficient of hydrogen compared to as-received specimens. In addition, density functional theory-based molecular dynamics simulations yield hydrogen diffusion coefficients through gamma'- Fe4N one order of magnitude lower than through α-Fe, which supports the experimental measurements of hydrogen permeation. The effect of microstructure and trapping was also studied in cold rolled, solutionized, and precipitation hardened Inconel 718 foils. The effective hydrogen
On The Anomalous Fast Ion Energy Diffusion in Toroidal Plasmas Due to Cavity Modes
N.N. Gorelenkov, N.J. Fisch and E. Fredrickson
2010-03-09
An enormous wave-particle diffusion coefficient along paths suitable for alpha channeling had been deduced in mode converted ion Bernstein wave experiments on Tokamak Fusion Test Reactor (TFTR) the only plausible explanation advanced for such a large diffusion coefficient was the excitation of internal cavity modes which induce particle diffusion along identical diffusion paths, but at much higher rates. Although such a mode was conjectured, it was never observed. However, recent detailed observations of high frequency compressional Alfven eigenmodes (CAEs) on the National Spherical torus Experiment (NSTX) indirectly support the existence of the related conjectured modes on TFTR. The eigenmodes responsible for the high frequency magnetic activity can be identified as CAEs through the polarization of the observed magnetic field oscillations in NSTX and through a comparison with the theoretically derived freuency dispersion relation. Here, we show how these recent observations of high frequency CAEs lend support to this explanation of the long-standing puzzle of anomalous fast ion energy diffusion on TFTR. The support of the conjecure that these internal modes could have caused the remarkable ion energy diffusion on TFTR carries significant and favorable implications for the possibilities in achieving the alpha channeling effect with small injected power in a tokamak reactor.
Measurement and modeling of CO2 diffusion coefficient in Saline Aquifer at reservoir conditions
NASA Astrophysics Data System (ADS)
Azin, Reza; Mahmoudy, Mohamad; Raad, Seyed Mostafa Jafari; Osfouri, Shahriar
2013-12-01
Storage of CO2 in deep saline aquifers is a promising techniques to mitigate global warming and reduce greenhouse gases (GHG). Correct measurement of diffusivity is essential for predicting rate of transfer and cumulative amount of trapped gas. Little information is available on diffusion of GHG in saline aquifers. In this study, diffusivity of CO2 into a saline aquifer taken from oil field was measured and modeled. Equilibrium concentration of CO2 at gas-liquid interface was determined using Henry's law. Experimental measurements were reported at temperature and pressure ranges of 32-50°C and 5900-6900 kPa, respectively. Results show that diffusivity of CO2 varies between 3.52-5.98×10-9 m2/s for 5900 kPa and 5.33-6.16×10-9 m2/s for 6900 kPa initial pressure. Also, it was found that both pressure and temperature have a positive impact on the measures of diffusion coefficient. Liquid swelling due to gas dissolution and variations in gas compressibility factor as a result of pressure decay was found negligible. Measured diffusivities were used model the physical model and develop concentration profile of dissolved gas in the liquid phase. Results of this study provide unique measures of CO2 diffusion coefficient in saline aquifer at high pressure and temperature conditions, which can be applied in full-field studies of carbon capture and sequestration projects.
Thermodiffusion, molecular diffusion and Soret coefficients of aromatic+n-alkane binary mixtures
NASA Astrophysics Data System (ADS)
Larrañaga, Miren; Bou-Ali, M. Mounir; Lapeira, Estela; Lizarraga, Ion; Santamaría, Carlos
2016-10-01
In the present work, we have measured the thermodiffusion coefficient of 51 binary liquid mixtures at 25 oC. These mixtures correspond to the series of the aromatics toluene and 1-methylnaphthalene with n-alkanes nCi (i = 6, 8, 10, 12, and 14) at different mass fractions in the whole range. For that, we have used the thermogravitational technique. It is shown that the thermodiffusion coefficient is a linear function of the mass fraction in all the mixtures. Extrapolating the lines, we obtain the thermodiffusion coefficient in dilute solutions of n-alkanes for both toluene and 1-methylnaphthalene. These limiting values show a linear dependence with the inverse of the product of the molecular weights. In addition, we have measured the molecular diffusion coefficient of all the mixtures at 0.5 of mass fraction and at 25 oC, by the sliding symmetric tubes technique. It is observed that the product of this coefficient with the viscosity at the same concentrations takes a constant value for each of the series considered. Finally, we have also determined the Soret coefficient of the equimass mixtures by the combination of the measurements of thermodiffusion and molecular diffusion coefficients.
Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...
Cipelletti, Luca; Biron, Jean-Philippe; Martin, Michel; Cottet, Hervé
2015-08-18
Taylor dispersion analysis is an absolute and straightforward characterization method that allows determining the diffusion coefficient, or equivalently the hydrodynamic radius, from angstroms to submicron size range. In this work, we investigated the use of the Constrained Regularized Linear Inversion approach as a new data processing method to extract the probability density functions of the diffusion coefficient (or hydrodynamic radius) from experimental taylorgrams. This new approach can be applied to arbitrary polydisperse samples and gives access to the whole diffusion coefficient distributions, thereby significantly enhancing the potentiality of Taylor dispersion analysis. The method was successfully applied to both simulated and real experimental data for solutions of moderately polydisperse polymers and their binary and ternary mixtures. Distributions of diffusion coefficients obtained by this method were favorably compared with those derived from size exclusion chromatography. The influence of the noise of the simulated taylorgrams on the data processing is discussed. Finally, we discuss the ability of the method to correctly resolve bimodal distributions as a function of the relative separation between the two constituent species.
Effective diffusion coefficients of gas mixture in heavy oil under constant-pressure conditions
NASA Astrophysics Data System (ADS)
Li, Huazhou Andy; Sun, Huijuan; Yang, Daoyong
2016-09-01
We develop a method to determine the effective diffusion coefficient for each individual component of a gas mixture in a non-volatile liquid (e.g., heavy oil) at high pressures with compositional analysis. Theoretically, a multi-component one-way diffusion model is coupled with the volume-translated Peng-Robinson equation of state to quantify the mass transfer between gas and liquid (e.g., heavy oil). Experimentally, the diffusion tests have been conducted with a PVT setup for one pure CO2-heavy oil system and one C3H8-CO2-heavy oil system under constant temperature and pressure, respectively. Both the gas-phase volume and liquid-phase swelling effect are simultaneously recorded during the measurement. As for the C3H8-CO2-heavy oil system, the gas chromatography method is employed to measure compositions of the gas phase at the beginning and end of the diffusion measurement, respectively. The effective diffusion coefficients are then determined by minimizing the discrepancy between the measured and calculated gas-phase composition at the end of diffusion measurement. The newly developed technique can quantify the contributions of each component of mixture to the bulk mass transfer from gas into liquid. The effective diffusion coefficient of C3H8 in the C3H8-CO2 mixture at 3945 ± 20 kPa and 293.85 K, i.e., 18.19 × 10^{ - 10} m^{ 2} / s, is found to be much higher than CO2 at 3950 ± 18 kPa and 293.85 K, i.e., 8.68 × 10^{ - 10} m^{ 2} / s. In comparison with pure CO2, the presence of C3H8 in the C3H8-CO2 mixture contributes to a faster diffusion of CO2 from the gas phase into heavy oil and consequently a larger swelling factor of heavy oil.
Diffusion coefficient of krypton atoms in helium gas at low and moderate temperatures
NASA Astrophysics Data System (ADS)
Bouazza, M. T.; Bouledroua, M.
In the present work, using the Chapman-Enskog method for dilute gases, the diffusion coefficients of ground krypton atoms in a very weakly ionized helium buffer gas are revisited. The calculations are carried out quantum mechanically in the range of low and moderate temperatures. The 1 Σ+ potential-energy curve via which Kr approaches He is constructed from the most recent ab initio energy points. The reliable data points used in the construction are smoothly connected to adequate long- and short-range forms. The calculations of the classical second virial coefficients and the Boyle temperature of the helium-krypton mixture are also discussed. These coefficients and their variations in terms of temperature are analysed by adopting the constructed HeKr potential and the Lennard-Jones form that fits it. The diffusion and elastic cross sections are also explored and the resonance features they exhibit are closely examined. The variation law of the diffusion coefficients with temperature is determined for typical values of density and pressure. The coefficients show excellent agreement with the available experimental data; the discrepancies do not exceed 5%.
On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering.
Aja-Fernández, Santiago; Alberola-López, Carlos
2006-09-01
In this paper, we focus on the problem of speckle removal by means of anisotropic diffusion and, specifically, on the importance of the correct estimation of the statistics involved. First, we derive an anisotropic diffusion filter that does not depend on a linear approximation of the speckle model assumed, which is the case of a previously reported filter, namely, SRAD. Then, we focus on the problem of estimation of the coefficient of variation of both signal and noise and of noise itself. Our experiments indicate that neighborhoods used for parameter estimation do not need to coincide with those used in the diffusion equations. Then, we show that, as long as the estimates are good enough, the filter proposed here and the SRAD perform fairly closely, a fact that emphasizes the importance of the correct estimation of the coefficients of variation.
Group-Theoretical Calculation of the Diffusion Coefficient via the Vacancy-Assisted Mechanism
NASA Astrophysics Data System (ADS)
Okamoto, Ryuichi; Fujitani, Youhei
2005-09-01
Lower vacancy-density in a crystalline solid slows down the tracer diffusion via the vacancy-assisted mechanism, which can be modeled by means of particles hopping to their respective nearest-neighbor lattice-sites stochastically with double occupancy prohibited. The explicit expressions of the diffusion coefficient were previously obtained for various lattices in terms of Nakazato and Kitahara’s method [Prog. Theor. Phys. 64 (1980) 2261]. This method yields a set of linear simultaneous algebraic equations as many as the number of lattice sites, which is reduced to a simple equation with respect to the diffusion coefficient in the final step of the method. We here give a systematic way of the reduction in terms of the group theory.
Effect of computed horizontal diffusion coefficients on two-dimensional N2O model distributions
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Guthrie, Paul D.; Schoeberl, Mark R.; Newman, Paul A.
1988-01-01
The effects of horizontal diffusion coefficients K(yy) and K(yz), computed directly from the residual circulation, on the N2O distribution in a photochemical model were investigated, using a modified version of the two-dimensional model of Guthrie et al. (1984). The residual circulation was computed using the NMC's temperature data and the heating rates reported by Rosenfield et al. (1987). As compared with the effect of the residual circulation alone, the use of horizontal diffusion coefficients produced substantial changes in the N2O distribution and increased the N2O's lifetime values by a few percent. It is suggested that trace gases, such as CH4, CFCl3, CF2Cl2, CH3Cl, and CCl4, which impact the NO(x), HO(x), and Cl(x) radical distributions and therefore ozone, will be influenced in a similar manner by the addition of more realistic diffusion fields.
Perko, Janez; Patel, Ravi A
2014-05-01
The paper presents an approach that extends the flexibility of the standard lattice Boltzmann single relaxation time scheme in terms of spatial variation of dissipative terms (e.g., diffusion coefficient) and stability for high Péclet mass transfer problems. Spatial variability of diffusion coefficient in SRT is typically accommodated through the variation of relaxation time during the collision step. This method is effective but cannot deal with large diffusion coefficient variations, which can span over several orders of magnitude in some natural systems. The approach explores an alternative way of dealing with large diffusion coefficient variations in advection-diffusion transport systems by introducing so-called diffusion velocity. The diffusion velocity is essentially an additional convective term that replaces variations in diffusion coefficients vis-à-vis a chosen reference diffusion coefficient which defines the simulation time step. Special attention is paid to the main idea behind the diffusion velocity formulation and its implementation into the lattice Boltzmann framework. Finally, the performance, stability, and accuracy of the diffusion velocity formulation are discussed via several advection-diffusion transport benchmark examples. These examples demonstrate improved stability and flexibility of the proposed scheme with marginal consequences on the numerical performance.
Belova, Irina; Kulkarni, Nagraj S; Sohn, Yong Ho; Murch, Prof. Graeme
2013-01-01
In this paper, a new development of the classic Onsager phenomenological formalism is derived using relations based on linear response theory. The development concerns the correct description of the fluxes of the atomic isotopes. The resulting expressions in the laboratory frame are surprisingly simple and consist of terms coming from the standard interdiffusion expressions and from Fick s first law where the tracer diffusion coefficient is involved thus providing a better understanding of the relationship between the two approaches - Fick s first law and the Onsager phenomenological formalism. From an experimental application perspective, the new development is applied to the binary alloy case. The formalism provides the means to obtain the interdiffusion coefficient and tracer diffusion coefficients simultaneously from analysis of the interdiffusion concentration profiles in a single experiment.
Fickian Diffusion Coefficient of Binary Liquid Mixtures in a Thermogravitational Column
NASA Astrophysics Data System (ADS)
Valencia, J. J.; Bou-Ali, M. M.; Platten, J. K.; Ecenarro, O.; Madariaga, J. M.; Santamaría, C. M.
2007-09-01
By measuring the mass fraction difference between the top and the bottom of a thermogravitational column as a function of time, we show that this transient evolution of the separation toward its steady value gives the isothermal mass diffusion coefficient, at least in the validity limit of the Furry-Jones-Onsager theory, whereas the final steady separation produces the thermodiffusion coefficient. The following mixtures have been considered: water-ethanol (39.12 wt% ethanol), toluene-hexane (51.7 wt% toluene), and the three systems of the so-called “benchmark of Fontainebleau”, which are the three binaries composed of isobutylbenzene and/or dodecane and/or 1,2,3,4 tetrahydronaphthalene (50 wt% in each component for each case). The obtained results indicate that reliable values of the isothermal diffusion coefficient can be determined by using the thermogravitational method.
Venus ionosphere - Photochemical and thermal diffusion control of ion composition
NASA Technical Reports Server (NTRS)
Bauer, S. J.; Hartle, R. E.; Taylor, H. A., Jr.; Donahue, T. M.
1979-01-01
The major photochemical sources and sinks for ten of the ions measured by the ion mass spectrometer on the Pioneer Venus bus and orbiter spacecraft that are consistent with the neutral gas composition measured on the same spacecraft are identified. The neutral gas temperature (as a function of solar zenith angle) derived from measured ion distributions in photochemical equilibrium is given. Above 200 kilometers, the altitude behavior of ions is generally controlled by plasma diffusion, with important modifications for minor ions due to thermal diffusion resulting from the observed gradients of plasma temperatures. The dayside equilibrium distributions of ions are sometimes perturbed by plasma convection, while lateral transport of ions from the dayside seems to be a major source of the nightside ionosphere.
The diffusion properties of ion implanted species in selected target materials
Alton, G.D.; Dellwo, J.; Carter, H.K.; Kormicki, J.; Bartolo, G. di; Batchelder, J.C.; Breitenbach, J.; Chediak, J.A.; Jentoff-Nilsen, K.; Ichikawa, S.
1995-02-01
Experiments important to the future success of the Holifield Radioactive Ion Beam Facility (HRIBF) are in progress at the Oak Ridge National Laboratory which are designed to select the most appropriate target material for generating a particular radioactive ion beam (RIB). The 25-MV HHIRF tandem accelerator is used to implant stable complements of interesting radioactive elements into refractory targets mounted in a high-temperature FEBIAD ion source which is {open_quotes}on-line{close_quotes} at the UNISOR facility. The intensity versus time of implanted species, which diffuse from the high-temperature target material ({approximately}1700{degrees}C) and are ionized in the FEBIAD ion source, is used to determine release times for a particular projectile/target material combination. From such release data, diffusion coefficients can be derived by fitting the theoretical results obtained by computational solution of Fick`s second equation to experimental data. The diffusion coefficient can be used subsequently to predict the release properties of the particular element from the same material in other target geometries and at other temperatures, provided that the activation energy is also known. Diffusion coefficients for Cl implanted into and diffused from CeS and Zr{sub 5}Si{sub 3} and As, Br, and Se implanted into and diffused from Zr{sub 5}Ge{sub 3} have been derived from the resulting intensity versus time profiles. Brief descriptions of the experimental apparatus and procedures utilized in the present experiments and plans for future related experiments are presented.
Ion beam analysis of diffusion in heterogeneous materials
NASA Astrophysics Data System (ADS)
Clough, A. S.; Jenneson, P. M.
1998-04-01
Ion-beam analysis has been applied to a variety of problems involving diffusion in heterogeneous materials. An energy loss technique has been used to study both the diffusion of water and the surface segregation of fluoropolymers in polymeric matrices. A scanning micro-beam technique has been developed to allow water concentrations in hydrophilic polymers and cements to be measured together with associated solute elements. It has also been applied to the diffusion of shampoo into hair.
Ion beam microtexturing and enhanced surface diffusion
NASA Technical Reports Server (NTRS)
Robinson, R. S.
1982-01-01
Ion beam interactions with solid surfaces are discussed with particular emphasis on microtexturing induced by the deliberate deposition of controllable amounts of an impurity material onto a solid surface while simultaneously sputtering the surface with an ion beam. Experimental study of the optical properties of microtextured surfaces is described. Measurements of both absorptance as a function of wavelength and emissivity are presented. A computer code is described that models the sputtering and ion reflection processes involved in microtexture formation.
NASA Astrophysics Data System (ADS)
Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barun, V. V.
2016-03-01
We have designed an experimental setup, based on two integrating spheres, that lets us measure the optical diffuse reflectance spectra (diffuse reflection coefficient vs. wavelength) of human skin quickly under clinical conditions in vivo. For the wavelength interval 520-1100 nm, we give the values of the diffuse reflection coefficient for healthy tissue, skin with a benign nevus, and skin with a malignant melanoma for a large group of test subjects. We experimentally established a number of wavelengths in the red-near IR region of the spectrum which can be used for early differential diagnosis of nevi and melanoma in patient cancer screening. According to the Kramer-Welch test, the probability of the diffuse reflection coefficient for skin with melanoma and a nevus having different distributions is >0.94, and at many wavelengths it is >0.999. By solving the inverse problem, we estimated the changes in a number of structural and biophysical parameters of the tissue on going from healthy skin to nevus and melanoma. The results obtained can provide a basis for developing a clinical approach to identifying the risk of malignant transformation of the skin before surgery and histological analysis of the tissue.
NASA Astrophysics Data System (ADS)
Bradley, I. V.; Gillin, W. P.; Homewood, K. P.; Webb, R. P.
1993-02-01
Photoluminescence coupled with repetitive thermal annealing has been used to determine the diffusion coefficients for intermixing in InxGa1-xAs/GaAs quantum wells and to study the subsequent effects of ion implantation on the intermixing. It is shown that following ion implantation there is a very fast interdiffusion process, which is independent of the implanted ion and that is thought to be due to the rapid diffusion of interstitials created during the implantation. Following this rapid process, it was found that neither gallium nor krypton ions had any effect on the subsequent interdiffusion coefficient. Following arsenic implantation in addition to the initial damage related process, an enhanced region of interdiffusion was observed with a diffusion coefficient that was an order of magnitude greater than that of an unimplanted control wafer. This enhanced process is thought to be due to the creation of group III vacancies by the arsenic atoms moving onto group V lattice sites. This fast process was present until the structure had broadened by about 75 Å when the diffusion coefficient returned to the unimplanted control value. The activation energy for the interdiffusion was measured over the temperature range 1050-750°C and a value of 3.7±0.1 eV was measured. This was found to be independent of the implanted ion.
Kruk, D.; Meier, R.; Rössler, E. A.; Rachocki, A.; Korpała, A.; Singh, R. K.
2014-06-28
Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220–258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF{sub 4}, 243–318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF{sub 6}, 258–323 K). The dispersion of {sup 1}H spin-lattice relaxation rate R{sub 1}(ω) is measured in the frequency range of 10 kHz–20 MHz, and the studies are complemented by {sup 19}F spin-lattice relaxation measurements on BMIM-PF{sub 6} in the corresponding frequency range. From the {sup 1}H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF{sub 4}, and BMIM-PF{sub 6} are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the {sup 1}H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R{sub 1} on square root of frequency. From the {sup 19}F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF{sub 6}. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids.
The influence of ionic forces on the effective diffusion coefficient in fractured, porous chalk.
NASA Astrophysics Data System (ADS)
Kremer, K.; Reichert, B.
2005-12-01
Solute transport in fractured, highly porous chalk significantly depends on the diffusive mass transfer of substances between the mobile water in the fracture and the immobile water of the rock matrix. Matrix diffusion is an important transport mechanism and a central factor for the retardation of solutes. Until now, simple estimation methods for the diffusive behavior of substances such as Archie's law can only be applied to single substances. Multi-tracer experiments proved a mutual influence on the diffusion of ionic solutes thus leading to significant deviations in respect to the theoretically estimated effective diffusion coefficient D_e. An increase of ionic forces in the aqueous phase is often accompanied by a decrease of D_e for cations and an increase for anions. However, groundwater contamination usually consists of several pollutants in different mixtures. Besides ionic forces, effects of channeling and transport of colloids can result in incorrectly estimated D_e values and, hence, high inaccuracy in the modeling of contaminant transport in fractured porous media. In the context of a current DFG-project, the impact of ionic forces on D_e as well as the interaction of the diffusion of ionic ground water solutes in fractured chalk of Denmark (Cretaceous, Sigerslev) and Israel (Eocene, Negev desert) will be quantified to develop a procedure for an improved estimation of D_e in dependence of the ionic activity. Consequently, the well established Archie's law for the prediction of diffusivities on the basis of the total porosities will be modified by an extension term a. So far series of single-tracer through-diffusion experiments have been performed with potassium bromide in six different concentrations to quantify the concentration dependence on the matrix diffusion as well as to examine the influence of the ionic strength on the effective diffusion coefficients of ionic solutes. The simultaneously injected neutral deuterium serves as a reference tracer
A new in-situ method to determine the apparent gas diffusion coefficient of soils
NASA Astrophysics Data System (ADS)
Laemmel, Thomas; Paulus, Sinikka; Schack-Kirchner, Helmer; Maier, Martin
2015-04-01
Soil aeration is an important factor for the biological activity in the soil and soil respiration. Generally, gas exchange between soil and atmosphere is assumed to be governed by diffusion and Fick's Law is used to describe the fluxes in the soil. The "apparent soil gas diffusion coefficient" represents the proportional factor between the flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gases through the soil. One common way to determine this coefficient is to take core samples in the field and determine it in the lab. Unfortunately this method is destructive and needs laborious field work and can only reflect a small fraction of the whole soil. As a consequence insecurity about the resulting effective diffusivity on the profile scale must remain. We developed a new in-situ method using new gas sampling device, tracer gas and inverse soil gas modelling. The gas sampling device contains several sampling depths and can be easily installed into vertical holes of an auger, which allows for fast installation of the system. At the lower end of the device inert tracer gas is injected continuously. The tracer gas diffuses into the surrounding soil. The resulting distribution of the tracer gas concentrations is used to deduce the diffusivity profile of the soil. For Finite Element Modeling of the gas sampling device/soil system the program COMSOL is used. We will present the results of a field campaign comparing the new in-situ method with lab measurements on soil cores. The new sampling pole has several interesting advantages: it can be used in-situ and over a long time; so it allows following modifications of diffusion coefficients in interaction with rain but also vegetation cycle and wind.
Effect of carbon ion irradiation on Ag diffusion in SiC
NASA Astrophysics Data System (ADS)
Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.; Deng, Jie; Giordani, Andrew J.; Hunter, Jerry L.; Morgan, Dane; Szlufarska, Izabela; Sridharan, Kumar
2016-04-01
Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C-SiC, as well as Ag and single crystalline 4H-SiC samples before and after irradiation with C2+ ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). Diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.
Effect of carbon ion irradiation on Ag diffusion in SiC
Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.; Deng, Jie; Giordani, Andrew J.; Hunter, Jerry L.; Morgan, Dane; Szlufarska, Izabela; Sridharan, Kumar
2015-11-14
Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C–SiC, as well as Ag and single crystalline 4H–SiC samples before and after irradiation with C^{2+} ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). We found that diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.
Effect of carbon ion irradiation on Ag diffusion in SiC
Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.; Deng, Jie; Giordani, Andrew J.; Hunter, Jerry L.; Morgan, Dane; Szlufarska, Izabela; Sridharan, Kumar
2015-11-14
Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C–SiC, as well as Ag and single crystalline 4H–SiC samples before and after irradiation with C2+more » ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). We found that diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.« less
Calculating the diffusion coefficient for laser cooling of atoms with long-range collisions
NASA Astrophysics Data System (ADS)
Smith, A. M.; Burnett, K.; Cooper, J.
1992-10-01
A calculation of the collisional diffusion coefficient is made which estimates the effect of collisions in an optical trap. The theory is based on the method of Gordon and Ashkin [Phys. Rev. A 21, 1606 (1980)] and incorporates the equations derived by Smith and Burnett [J. Opt. Soc. Am. B 8, 1592 (1991)] to describe the interaction of two two-level atoms in a laser field. Results are obtained by using a nearest-neighbor model for the collisions and suggest a definite relationship between atomic density and collisional diffusion.
Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites
NASA Technical Reports Server (NTRS)
Wei, Chengyu; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)
2001-01-01
Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and van der Waals forces for polymer-nanotube interface have been used to investigate thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Addition of carbon nanotubes to polymer matrix is found to significantly increase the glass transition temperature Tg, and thermal expansion and diffusion coefficients in the composite above Tg. The increase has been attributed to the temperature dependent increase of the excluded volume for the polymer chains, and the findings could have implications in the composite processing, coating and painting applications.
Diffusion mechanism and the thermal stability of fluorine ions in GaN after ion implantation
Wang, M. J.; Yuan, L.; Chen, K. J.; Xu, F. J.; Shen, B.
2009-04-15
The diffusion mechanisms of fluorine ions in GaN are investigated by means of time-of-flight secondary ion mass spectrometry. Instead of incorporating fluorine ions close to the sample surface by fluorine plasma treatment, fluorine ion implantation with an energy of 180 keV is utilized to implant fluorine ions deep into the GaN bulk, preventing the surface effects from affecting the data analysis. It is found that the diffusion of fluorine ions in GaN is a dynamic process featuring an initial out-diffusion followed by in- diffusion and the final stabilization. A vacancy-assisted diffusion model is proposed to account for the experimental observations, which is also consistent with results on molecular dynamic simulation. Fluorine ions tend to occupy Ga vacancies induced by ion implantation and diffuse to vacancy rich regions. The number of continuous vacancy chains can be significantly reduced by a dynamic thermal annealing process. As a result, strong local confinement and stabilization of fluorine ions can be obtained in GaN crystal, suggesting excellent thermal stability of fluorine ions for device applications.
Mechanisms of Stochastic Diffusion of Energetic Ions in Spherical Tori
Ya.I. Kolesnichenko; R.B. White; Yu.V. Yakovenko
2001-01-18
Stochastic diffusion of the energetic ions in spherical tori is considered. The following issues are addressed: (I) Goldston-White-Boozer diffusion in a rippled field; (ii) cyclotron-resonance-induced diffusion caused by the ripple; (iii) effects of non-conservation of the magnetic moment in an axisymmetric field. It is found that the stochastic diffusion in spherical tori with a weak magnetic field has a number of peculiarities in comparison with conventional tokamaks; in particular, it is characterized by an increased role of mechanisms associated with non-conservation of the particle magnetic moment. It is concluded that in current experiments on National Spherical Torus eXperiment (NSTX) the stochastic diffusion does not have a considerable influence on the confinement of energetic ions.
Stress enhanced diffusion of krypton ions in polycrystalline titanium
Nsengiyumva, S.; Raji, A. T.; Rivière, J. P.; Britton, D. T.; Härting, M.
2014-07-14
An experimental investigation on the mutual influence of pre-existing residual stress and point defect following ion implantation is presented. The study has been carried out using polycrystalline titanium samples energetically implanted with krypton ions at different fluences. Ion beam analysis was used to determine the concentration profile of the injected krypton ions, while synchrotron X-ray diffraction has been used for stress determination. Ion beam analysis and synchrotron X-ray diffraction stress profile measurements of the implanted titanium samples show a clear evidence of stress-enhanced diffusion of krypton ions in titanium. It is further observed that for the titanium samples implanted at low fluence, ion implantation modifies the pre-existing residual stress through the introduction of point and open volume defects. The stress fields resulting from the ion implantation act to drift the krypton inclusions towards the surface of titanium.
Probing the pseudo-1-D ion diffusion in lithium titanium niobate anode for Li-ion battery.
Das, Suman; Dutta, Dipak; Araujo, Rafael B; Chakraborty, Sudip; Ahuja, Rajeev; Bhattacharyya, Aninda J
2016-08-10
Comprehensive understanding of the charge transport mechanism in the intrinsic structure of an electrode material is essential in accounting for its electrochemical performance. We present here systematic experimental and theoretical investigations of Li(+)-ion diffusion in a novel layered material, viz. lithium titanium niobate. Lithium titanium niobate (exact composition Li0.55K0.45TiNbO5·1.06H2O) is obtained from sol-gel synthesized potassium titanium niobate (KTiNbO5) by an ion-exchange method. The Li(+)-ions are inserted and de-inserted preferentially into the galleries between the octahedral layers formed by edge and corner sharing TiO6 and NbO6 octahedral units and the effective chemical diffusion coefficient, is estimated to be 3.8 × 10(-11) cm(2) s(-1) using the galvanostatic intermittent titration technique (GITT). Calculations based on density functional theory (DFT) strongly confirm the anisotropic Li(+)-ion diffusion in the interlayer galleries and that Li(+)-ions predominantly diffuse along the crystallographic b-direction. The preferential Li(+)-ion diffusion along the b-direction is assisted by line-defects, which are observed to be higher in concentration along the b-direction compared to the a- and c-directions, as revealed by high resolution electron microscopy. The Li-Ti niobate can be cycled to low voltages (≈0.2 V) and show stable and satisfactory battery performance over 100 cycles. Due to the possibility of cycling to low voltages, cyclic voltammetry and X-ray photoelectron spectroscopy convincingly reveal the reversibility of Ti(3+) ↔ Ti(2+) along with Ti(4+) ↔ Ti(3+) and Nb(5+) ↔ Nb(4+). PMID:27459636
Probing the pseudo-1-D ion diffusion in lithium titanium niobate anode for Li-ion battery.
Das, Suman; Dutta, Dipak; Araujo, Rafael B; Chakraborty, Sudip; Ahuja, Rajeev; Bhattacharyya, Aninda J
2016-08-10
Comprehensive understanding of the charge transport mechanism in the intrinsic structure of an electrode material is essential in accounting for its electrochemical performance. We present here systematic experimental and theoretical investigations of Li(+)-ion diffusion in a novel layered material, viz. lithium titanium niobate. Lithium titanium niobate (exact composition Li0.55K0.45TiNbO5·1.06H2O) is obtained from sol-gel synthesized potassium titanium niobate (KTiNbO5) by an ion-exchange method. The Li(+)-ions are inserted and de-inserted preferentially into the galleries between the octahedral layers formed by edge and corner sharing TiO6 and NbO6 octahedral units and the effective chemical diffusion coefficient, is estimated to be 3.8 × 10(-11) cm(2) s(-1) using the galvanostatic intermittent titration technique (GITT). Calculations based on density functional theory (DFT) strongly confirm the anisotropic Li(+)-ion diffusion in the interlayer galleries and that Li(+)-ions predominantly diffuse along the crystallographic b-direction. The preferential Li(+)-ion diffusion along the b-direction is assisted by line-defects, which are observed to be higher in concentration along the b-direction compared to the a- and c-directions, as revealed by high resolution electron microscopy. The Li-Ti niobate can be cycled to low voltages (≈0.2 V) and show stable and satisfactory battery performance over 100 cycles. Due to the possibility of cycling to low voltages, cyclic voltammetry and X-ray photoelectron spectroscopy convincingly reveal the reversibility of Ti(3+) ↔ Ti(2+) along with Ti(4+) ↔ Ti(3+) and Nb(5+) ↔ Nb(4+).
NASA Astrophysics Data System (ADS)
Charsooghi, Mohammad A.; Akhlaghi, Ehsan A.; Tavaddod, Sharareh; Khalesifard, H. R.
2011-02-01
We developed a graphical user interface, MATLAB based program to calculate the translational diffusion coefficients in three dimensions for a single diffusing particle, suspended inside a fluid. When the particles are not spherical, in addition to their translational motion also a rotational freedom is considered for them and in addition to the previous translational diffusion coefficients a planar rotational diffusion coefficient can be calculated in this program. Time averaging and ensemble averaging over the particle displacements are taken to calculate the mean square displacement variations in time and so the diffusion coefficients. To monitor the random motion of non-spherical particles a reference frame is used that the particle just have translational motion in it. We call it the body frame that is just like the particle rotates about the z-axis of the lab frame. Some statistical analysis, such as velocity autocorrelation function and histogram of displacements for the particle either in the lab or body frames, are available in the program. Program also calculates theoretical values of the diffusion coefficients for particles of some basic geometrical shapes; sphere, spheroid and cylinder, when other diffusion parameters like temperature and fluid viscosity coefficient can be adjusted. Program summaryProgram title: KOJA Catalogue identifier: AEHK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 48 021 No. of bytes in distributed program, including test data, etc.: 1 310 320 Distribution format: tar.gz Programming language: MatLab (MathWorks Inc.) version 7.6 or higher. Statistics Toolbox and Curve Fitting Toolbox required. Computer: Tested on windows and linux, but generally it would work on any
Determination of the Solute Diffusion Coefficient by the Droplet Migration Method
Shan Liu; Jing Teng; Jeongyun Choi
2007-07-01
Further analysis of droplet migration in a temperature gradient field indicates that different terms can be used to evaluate the solute diffusion coefficient in liquid (D{sub L}) and that there exists a characteristic curve that can describe the motion of all the droplets for a given composition and temperature gradient. Critical experiments are subsequently conducted in succinonitrile (SCN)-salol and SCN-camphor transparent alloys in order to observe dynamic migration processes of a number of droplets. The derived diffusion coefficients from different terms are the same within experimental error. For SCN-salol alloys, D{sub L} = (0.69 {+-} 0.05) x 10{sup -3} mm{sup 2}/s, and for SCN-camphor alloys, D{sub L} = (0.24 {+-} 0.02) x 10{sup -3} mm{sup 2}/s.
Thermal diffusivity coefficient of glycerin determined on an acoustically levitated drop.
Ohsaka, K; Rednikov, A; Sadhal, S S
2002-10-01
We present a technique that can be used to determine the thermal diffusivity coefficient of undercooled liquids that exist at temperatures below their freezing points. The technique involves levitation of a small amount of liquid in the shape of a flattened drop using an acoustic levitator and heating it with a CO2 laser. The heated drop is then allowed to cool naturally by heat loss from the surface. Due to acoustic streaming, heat loss is highly non-uniform and appears to mainly occur at the drop circumference (equatorial region). This fact allows us to relate the heat loss rate with a heat transfer model to determine the thermal diffusion coefficient. We demonstrate the feasibility of the technique using glycerin drops as a model liquid. PMID:12446319
Eddy diffusion coefficient for the atmosphere of Venus from radio scintillation measurements
NASA Technical Reports Server (NTRS)
Woo, R.; Ishimaru, A.
1981-01-01
Estimates are obtained of the vertical mass eddy diffusion coefficient of the Venus atmosphere in the region of turbulence near 60 km on the basis of radio scintillations observed during radio occultation by the atmosphere. The structure constant estimated from Pioneer Venus orbit 18 entrance radio occultation measurements is used, under the assumption that the turbulence is generated by wind-shear, to derive a value of 40,000 sq cm/sec for the vertical mass eddy diffusion coefficient, together with an energy dissipation rate of 20 sq cm/sec and a temperature fluctuation dissipation rate of 0.001 K-squared/sec. Results are noted to fall within the range measured for the earth's troposphere, however, indicate that small-scale turbulence is probably the dominant mechanism for vertical transport near the tropopause in the Venus atmosphere.
Mialdun, A; Yasnou, V; Shevtsova, V; Königer, A; Köhler, W; Alonso de Mezquia, D; Bou-Ali, M M
2012-06-28
We report on the measurement of diffusion (D), thermodiffusion (D(T)), and Soret (S(T)) coefficients in water-isopropanol mixtures by three different instrumental techniques: thermogravitational column in combination with sliding symmetric tubes, optical beam deflection, and optical digital interferometry. All the coefficients have been measured over the full concentration range. Results from different instruments are in excellent agreement over a broad overlapping composition (water mass fraction) range 0.2 < c < 0.7, providing new reliable benchmark data. Comparison with microgravity measurements (SODI/IVIDIL (Selected Optical Diagnostic Instrument/Influence of VIbration on DIffusion in Liquids)) onboard the International Space Station and with literature data (where available) generally gives a good agreement. Contrary to theoretical predictions and previous experimental expectations we have not observed a second sign change of S(T) at low water concentrations.
Determination of the diffusion coefficient of protons in Nafion thin films by ac-electrogravimetry.
Sel, Ozlem; To Thi Kim, L; Debiemme-Chouvy, Catherine; Gabrielli, Claude; Laberty-Robert, Christel; Perrot, Hubert
2013-11-12
This letter deals with an adaptation of the ac-electrogravimetry technique to extract separately the dynamic properties of H(+) and water in Nafion nanometric thin films (average thickness of 400 nm). An original theoretical approach was developed to extract the representative parameters from ac-electrogravimetry data. The concentration change of the exchanged species and the diffusion coefficient of the protons in a Nafion nanometric thin film (D = 0.5 × 10(-6) cm(2) s(-1) at 0.3 V vs SCE) were estimated for the first time according to the applied potential. The conductivity value of Nafion thin films was calculated from the Nernst-Einstein equation using diffusion coefficients and concentration values extracted from ac-electrogravimetry data. The calculated conductivity results agree well with the experimental proton conductivity values of Nafion thin films. PMID:24131383
Wang, Xinke; Zhang, Yinping
2009-07-01
The initial mobile formaldehyde concentration, C(m,0); the partition coefficient, K; and the diffusion coefficient, D, of a dry building material are key parameters to characterize formaldehyde emissions from the building material. The solvent extraction method and direct thermal desorption method can overestimate C(m,0) because of high temperature. A new method has been developed to determine C(m,0) under similar conditions to common indoor environment, together with K and D. In the proposed method, the tested materials are placed in an airtight environmental chamber for which the temperature can be controlled by a water bath, then the materials undergo a multisorption/emission process and the instantaneous formaldehyde concentration in the chamber is recorded. The K and C(m,0) are determined from the equilibrium concentrations after every sorption by means of the linear least-square regression, and D is obtained by fitting the concentration at the emission stage into a mass-transfer-based model in the literature. Four kinds of wooden medium-density boards are tested. The C(m,0) measured using this method is the mobile formaldehyde concentration in the material, which differs significantly from the total formaldehyde concentration in the material measured by using the traditional method recommended by the Chinese standard (GB/T 17657-1999) extraction method. This means that the mobile formaldehyde takes only a small portion of the total quantity in the tested material. The K, D, and C(m,0) values measured using this new method are used to predict formaldehyde concentrations for sorption processes. The results agree well with experimental data. In addition, some factors influencing the accuracy are analyzed.
Influence of ion induced amorphicity on the diffusion of gold into silicon
Ehrhardt, J.; Klimmer, A.; Eisenmenger, J.; Mueller, Th.; Boyen, H.-G.; Ziemann, P.; Biskupek, J.; Kaiser, U.
2006-09-15
It is experimentally demonstrated that, after ion irradiating 60 nm thick Au films on Si substrates with 230 keV Ar{sup +} ions, annealing conditions can be found leading to strong diffusional contrasts between bombarded and unbombarded areas. While Au readily diffuses into the bombarded part of the sample at 310 deg. C, its diffusion is still completely blocked under identical conditions in the unbombarded parts. Clear evidence is provided that this diffusional contrast is due to bombardment induced amorphization of the underlying Si substrate. The amorphous Silicon (a-Si), however, has to extend right to the Au/Si interface, since any intermediate crystalline layer will suppress the diffusional contrast. An example for this latter situation is realized by performing the ion bombardment prior to the evaporation of the top Au layer leading to a still crystalline Si surface layer, which is found to act as a barrier against Au diffusion at 310 deg. C. In accordance with the idea that a-Si, independent of its specific preparation, causes the observed Au diffusion enhancement, the effect is also found for a-Si prepared by evaporation at ambient temperature. In that case an even higher Au diffusion coefficient is obtained than for Si amorphized by ion bombardment pointing to subtle structural differences between both types of amorphous Si.
NASA Astrophysics Data System (ADS)
Kujawa, Sebastian; Weres, Jerzy; Olek, Wiesław
2016-07-01
Uncertainties in mathematical modelling of water transport in cereal grain kernels during drying and storage are mainly due to implementing unreliable values of the water diffusion coefficient and simplifying the geometry of kernels. In the present study an attempt was made to reduce the uncertainties by developing a method for computer-aided identification of the water diffusion coefficient and more accurate 3D geometry modelling for individual kernels using original inverse finite element algorithms. The approach was exemplified by identifying the water diffusion coefficient for maize kernels subjected to drying. On the basis of the developed method, values of the water diffusion coefficient were estimated, 3D geometry of a maize kernel was represented by isoparametric finite elements, and the moisture content inside maize kernels dried in a thin layer was predicted. Validation of the results against experimental data showed significantly lower error values than in the case of results obtained for the water diffusion coefficient values available in the literature.
NASA Technical Reports Server (NTRS)
Gage, K. S.; Jasperson, W. H.
1977-01-01
An analysis is presented of the tropospheric turbulence data obtained by the Metrac positioning system, a radio location system which employs the Doppler principle to track inexpensive expendable balloon-borne transmitters. A Minneapolis field test of the Metrac system provided one-second samples of transmitter frequency from balloons tracked by four ground stations for more than an hour. The derivation of diffusion coefficients from the turbulence data was conducted by two methods, yielding highly consistent results.
Wang, Junmei; Hou, Tingjun
2011-01-01
In this work, we have evaluated how well the General AMBER force field (GAFF) performs in studying the dynamic properties of liquids. Diffusion coefficients (D) have been predicted for 17 solvents, 5 organic compounds in aqueous solutions, 4 proteins in aqueous solutions, and 9 organic compounds in non-aqueous solutions. An efficient sampling strategy has been proposed and tested in the calculation of the diffusion coefficients of solutes in solutions. There are two major findings of this study. First of all, the diffusion coefficients of organic solutes in aqueous solution can be well predicted: the average unsigned error (AUE) and the root-mean-square error (RMSE) are 0.137 and 0.171 ×10−5 cm−2s−1, respectively. Second, although the absolute values of D cannot be predicted, good correlations have been achieved for 8 organic solvents with experimental data (R2 = 0.784), 4 proteins in aqueous solutions (R2 = 0.996) and 9 organic compounds in non-aqueous solutions (R2 = 0.834). The temperature dependent behaviors of three solvents, namely, TIP3P water, dimethyl sulfoxide (DMSO) and cyclohexane have been studied. The major MD settings, such as the sizes of simulation boxes and with/without wrapping the coordinates of MD snapshots into the primary simulation boxes have been explored. We have concluded that our sampling strategy that averaging the mean square displacement (MSD) collected in multiple short-MD simulations is efficient in predicting diffusion coefficients of solutes at infinite dilution. PMID:21953689
Measurement of the diffusion coefficient of acetone in succinonitrile at its melting point
NASA Technical Reports Server (NTRS)
Chopra, M. A.; Glicksman, M. E.; Singh, N. B.
1988-01-01
The diffusion coefficient of acetone in liquid succinonitrile at 331.1 K was determined using the method of McBain and Dawson (1935). Only dilute mixtures of SCN-acetone were studied. The interdiffusion constant was determined to be 0.0000127 sq cm/s and was essentially independent of the acetone concentration over the range investigated (0.5 to 18 mol pct acetone).
NASA Technical Reports Server (NTRS)
Chow, M.; Houska, C. R.
1980-01-01
Solutions are given for one-dimensional diffusion problems with a time varying surface composition and also a composition dependent diffusion coefficient. The most general solution does not require special mathematical functions to fit the variation in surface composition or D(C). In another solution, a series expansion may be used to fit the time dependent surface concentration. These solutions make use of iterative calculations that converge rapidly and are highly stable. Computer times are much shorter than that required for finite difference calculations and can efficiently make use of interactive graphics terminals. Existing gas carburization data were used to provide an illustration of an iterative approach with a time varying carbon composition at the free surface.
NASA Astrophysics Data System (ADS)
Mueller, James L.; Trees, Charles C.; Arnone, Robert A.
1990-09-01
The Coastal Zone Color Scannez (ZCS) and associated atmospheric and in-water algorithms have allowed synoptic analyses of regional and large scale variability of bio-optical properties [phytoplankton pigments and diffuse auenuation coefficient K(490)}. Austin and Petzold (1981) developed a robust in-water K(490) algorithm which related the diffuse attenuation coefficient at one optical depth [1/K(490)] to the ratio of the water-leaving radiances at 443 and 550 nm. Their regression analysis included diffuse attenuation coefficients K(490) up to 0.40 nm, but excluded data from estuarine areas, and other Case II waters, where the optical properties are not predominantly determined by phytoplankton. In these areas, errors are induced in the retrieval of remote sensing K(490) by extremely low water-leaving radiance at 443 nm [Lw(443) as viewed at the sensor may only be 1 or 2 digital counts], and improved cury can be realized using algorithms based on wavelengths where Lw(λ) is larger. Using ocean optical profiles quired by the Visibility Laboratory, algorithms are developed to predict K(490) from ratios of water leaving radiances at 520 and 670, as well as 443 and 550 nm.
Tuan, D.Q.; Zollweg, J.A.; Rizvi, S.S.H.; Yener, M.E. |
1999-02-01
A new, steady-state experimental system for measurement of the Fickian diffusion coefficients for solutes in supercritical carbon dioxide (SC-CO{sub 2}) was designed and evaluated. Mass transfer between a liquid solute and SC-CO{sub 2} was carried out in a parallel plate geometry where a porous metal sheet, immersed in the liquid phase, stabilized the interface. The SC-CO{sub 2} flowed over the porous metal sheet containing the liquid phase which was presaturated with CO{sub 2}. The use of the porous metal sheet and a thin mobile layer allowed flow rates high enough to achieve the necessary pressure drop to eliminate the commonly encountered, density-induced stagnation of SC-CO{sub 2} at the interface while avoiding surface-tension-related problems. The binary diffusion coefficients of methyl oleate in SC-CO{sub 2} at finite concentrations were measured at 40, 50, and 60 C and at pressures ranging from 10.6 to 14.0 MPa. The experimentally measured values were 1.5--4.6 times lower than those predicted for infinite dilution and were found to decrease with solute concentration at constant pressure and temperature. This technique offers advantages over other commonly used methods in that the concentration dependence of diffusion coefficients in multicomponent systems can be studied.
Ong, Mitchell T; Verners, Osvalds; Draeger, Erik W; van Duin, Adri C T; Lordi, Vincenzo; Pask, John E
2015-01-29
Lithium-ion battery performance is strongly influenced by the ionic conductivity of the electrolyte, which depends on the speed at which Li ions migrate across the cell and relates to their solvation structure. The choice of solvent can greatly impact both the solvation and diffusivity of Li ions. In this work, we used first-principles molecular dynamics to examine the solvation and diffusion of Li ions in the bulk organic solvents ethylene carbonate (EC), ethyl methyl carbonate (EMC), and a mixture of EC and EMC. We found that Li ions are solvated by either carbonyl or ether oxygen atoms of the solvents and sometimes by the PF6(-) anion. Li(+) prefers a tetrahedrally coordinated first solvation shell regardless of which species are involved, with the specific preferred solvation structure dependent on the organic solvent. In addition, we calculated Li diffusion coefficients in each electrolyte, finding slightly larger diffusivities in the linear carbonate EMC compared to the cyclic carbonate EC. The magnitude of the diffusion coefficient correlates with the strength of Li(+) solvation. Corresponding analysis for the PF6(-) anion shows greater diffusivity associated with a weakly bound, poorly defined first solvation shell. These results can be used to aid in the design of new electrolytes to improve Li-ion battery performance.
Shcherbak, L.; Kopach, O.; Fochuk, P.; James, R. B.; Bolotnikov, A. E.
2015-01-21
Understanding of self- and dopant-diffusion in semiconductor devices is essential to our being able to assure the formation of well-defined doped regions. In this paper, we compare obtained in the literature up to date the Arrhenius’ parameters (D=D0exp(–ΔEa/kT)) of point-defect diffusion coefficients and the I-VII groups impurities in CdTe crystals and films. We found that in the diffusion process there was a linear dependence between the pre-exponential factor, D0, and the activation energy, ΔEa, of different species: This was evident in the self-diffusivity and isovalent impurity Hg diffusivity as well as for the dominant IIIA and IVA groups impurities andmore » Chlorine, except for the fast diffusing elements (e.g., Cu and Ag), chalcogens O, S, and Se, halogens I and Br as well as the transit impurities Mn, Co, Fe. As a result, reasons of the lack of correspondence of the data to compensative dependence are discussed.« less
Shcherbak, L.; Kopach, O.; Fochuk, P.; James, R. B.; Bolotnikov, A. E.
2015-01-21
Understanding of self- and dopant-diffusion in semiconductor devices is essential to our being able to assure the formation of well-defined doped regions. In this paper, we compare obtained in the literature up to date the Arrhenius’ parameters (D=D_{0}exp(–ΔE_{a}/kT)) of point-defect diffusion coefficients and the I-VII groups impurities in CdTe crystals and films. We found that in the diffusion process there was a linear dependence between the pre-exponential factor, D_{0}, and the activation energy, ΔE_{a}, of different species: This was evident in the self-diffusivity and isovalent impurity Hg diffusivity as well as for the dominant IIIA and IVA groups impurities and Chlorine, except for the fast diffusing elements (e.g., Cu and Ag), chalcogens O, S, and Se, halogens I and Br as well as the transit impurities Mn, Co, Fe. As a result, reasons of the lack of correspondence of the data to compensative dependence are discussed.
Renslow, Ryan S.; Majors, Paul D.; McLean, Jeffrey S.; Fredrickson, Jim K.; Ahmed, B.; Beyenal, Haluk
2010-08-15
Diffusive mass transfer in biofilms is characterized by the effective diffusion coefficient. It is well-documented that the effective diffusion coefficient can vary by location in a biofilm. The current literature is dominated by effective diffusion coefficient measurements for distinct cell clusters and stratified biofilms showing this spatial variation. Regardless of whether distinct cell clusters or surface-averaging methods are used, position-dependent measurements of the effective diffusion coefficient are currently: 1) invasive to the biofilm, 2) performed under unnatural conditions, 3) lethal to cells, and/or 4) spatially restricted to only certain regions of the biofilm. Invasive measurements can lead to inaccurate results and prohibit further (time dependent) measurements which are important for the mathematical modeling of biofilms. In this study our goals were to: 1) measure the effective diffusion coefficient for water in live biofilms, 2) monitor how the effective diffusion coefficient changes over time under growth conditions, and 3) correlate the effective diffusion coefficient with depth in the biofilm. We measured in situ two-dimensional effective diffusion coefficient maps within Shewanella oneidensis MR-1biofilms using pulsed-field gradient nuclear magnetic resonance methods, and used them to calculate surface-averaged relative effective diffusion coefficient (Drs) profiles. We found that 1) Drs decreased from the top of the biofilm to the bottom, 2) Drs profiles differed for biofilms of different ages, 3) Drs profiles changed over time and generally decreased with time, 4) all the biofilms showed very similar Drs profiles near the top of the biofilm, and 5) the Drs profile near the bottom of the biofilm was different for each biofilm. Practically, our results demonstrate that advanced biofilm models should use a variable effective diffusivity which changes with time and location in the biofilm.
Renslow, Ryan S.; Majors, Paul D.; McLean, Jeffrey S.; Fredrickson, Jim K.; Ahmed, Bulbul; Beyenal, Haluk
2010-01-01
Diffusive mass transfer in biofilms is characterized by the effective diffusion coefficient. It is well-documented that the effective diffusion coefficient can vary by location in a biofilm. The current literature is dominated by effective diffusion coefficient measurements for distinct cell clusters and stratified biofilms showing this spatial variation. Regardless of whether distinct cell clusters or surface-averaging methods are used, position-dependent measurements of the effective diffusion coefficient are currently: 1) invasive to the biofilm, 2) performed under unnatural conditions, 3) lethal to cells, and/or 4) spatially restricted to only certain regions of the biofilm. Invasive measurements can lead to inaccurate results and prohibit further (time-dependent) measurements which are important for the mathematical modeling of biofilms. In this study our goals were to: 1) measure the effective diffusion coefficient for water in live biofilms, 2) monitor how the effective diffusion coefficient changes over time under growth conditions, and 3) correlate the effective diffusion coefficient with depth in the biofilm. We measured in situ two-dimensional effective diffusion coefficient maps within Shewanella oneidensis MR-1 biofilms using pulsed-field gradient nuclear magnetic resonance methods, and used them to calculate surface-averaged relative effective diffusion coefficient (Drs) profiles. We found that 1) Drs decreased from the top of the biofilm to the bottom, 2) Drs profiles differed for biofilms of different ages, 3) Drs profiles changed over time and generally decreased with time, 4) all the biofilms showed very similar Drs profiles near the top of the biofilm, and 5) the Drs profile near the bottom of the biofilm was different for each biofilm. Practically, our results demonstrate that advanced biofilm models should use a variable effective diffusivity which changes with time and location in the biofilm. PMID:20589671
Measurement of tracer diffusion coefficients in an interdiffusion context for multicomponent alloys
NASA Astrophysics Data System (ADS)
Belova, I. V.; Sohn, Y. H.; Murch, G. E.
2015-08-01
A recently developed novel approach of simultaneous analysis of isotope and interdiffusion profiles in binary alloy systems is significantly advanced in order to apply to the case of multicomponent alloy systems. The resulting relations for the tracer or self-diffusion coefficients allow for the avoiding of the explicit solution of the interdiffusion equations. This remarkable result means that in the experimental implementation of this new technique there is no need for multiple diffusion couples. Only two profiles of the same component are necessary for the complete analysis. These can be two different isotopes or just two spatially different parts of the same atomic species. Descriptions of three possible experimental implementations of the novel technique combined with the Sauer-Freise method are discussed. Therefore, the new development is ready to be applied experimentally and can provide valuable insight into otherwise very difficult diffusion investigations into multicomponent alloys including high-entropy alloys.
Mass dependence of the Soret coefficient for atomic diffusion in condensed matter
NASA Astrophysics Data System (ADS)
Yu, Wei-Feng; Lin, Zheng-Zhe; Ning, Xi-Jing
2013-06-01
Particle diffusion in condensed matters driven by thermal gradient, the so-called Ludwig-Soret effect, has been investigated for about 160 years, but up to the present, seldom do theories on atomic level understand a series of puzzles in relevant experiments. In this work, we derived an expression of Soret coefficient for atomic diffusion in condensed matter from a single atom statistic model with relevant parameters expressed in terms of atomic mass and the potential profile felt by the guest atom without empirical parameters. The reality of the model was strictly tested by molecular dynamics simulations, especially the result for He atom diffusing on graphene sheet, which suggests the Soret effect may be used to separate 3He from 4He.
Minority carrier diffusion lengths and absorption coefficients in silicon sheet material
NASA Technical Reports Server (NTRS)
Dumas, K. A.; Swimm, R. T.
1980-01-01
Most of the methods which have been developed for the measurement of the minority carrier diffusion length of silicon wafers require that the material have either a Schottky or an ohmic contact. The surface photovoltage (SPV) technique is an exception. The SPV technique could, therefore, become a valuable diagnostic tool in connection with current efforts to develop low-cost processes for the production of solar cells. The technique depends on a knowledge of the optical absorption coefficient. The considered investigation is concerned with a reevaluation of the absorption coefficient as a function of silicon processing. A comparison of absorption coefficient values showed these values to be relatively consistent from sample to sample, and independent of the sample growth method.
NASA Astrophysics Data System (ADS)
Kim, Changho; Borodin, Oleg; Karniadakis, George Em
2015-12-01
We analyze two standard methods to compute the diffusion coefficient of a tracer particle in a medium from molecular dynamics (MD) simulation, the velocity autocorrelation function (VACF) method, and the mean-squared displacement (MSD) method. We show that they are equivalent in the sense that they provide the same mean values with the same level of statistical errors. We obtain analytic expressions for the level of the statistical errors present in the time-dependent diffusion coefficient as well as the VACF and the MSD. Under the assumption that the velocity of the tracer particle is a Gaussian process, all results are expressed in terms of the VACF. Hence, the standard errors of all relevant quantities are computable once the VACF is obtained from MD simulation. By using analytic models described by the Langevin equations driven by Gaussian white noise and Poissonian white shot noise, we verify our theoretical error estimates and discuss the non-Gaussianity effect in the error estimates when the Gaussian process approximation does not hold exactly. For validation, we perform MD simulations for the self-diffusion of a Lennard-Jones fluid and the diffusion of a large and massive colloid particle suspended in the fluid. Our theoretical framework is also applicable to mesoscopic simulations, e.g., Langevin dynamics and dissipative particle dynamics.
Molecular dynamics calculation of rotational diffusion coefficient of a carbon nanotube in fluid.
Cao, Bing-Yang; Dong, Ruo-Yu
2014-01-21
Rotational diffusion processes are correlated with nanoparticle visualization and manipulation techniques, widely used in nanocomposites, nanofluids, bioscience, and so on. However, a systematical methodology of deriving this diffusivity is still lacking. In the current work, three molecular dynamics (MD) schemes, including equilibrium (Green-Kubo formula and Einstein relation) and nonequilibrium (Einstein-Smoluchowski relation) methods, are developed to calculate the rotational diffusion coefficient, taking a single rigid carbon nanotube in fluid argon as a case. We can conclude that the three methods produce same results on the basis of plenty of data with variation of the calculation parameters (tube length, diameter, fluid temperature, density, and viscosity), indicative of the validity and accuracy of the MD simulations. However, these results have a non-negligible deviation from the theoretical predictions of Tirado et al. [J. Chem. Phys. 81, 2047 (1984)], which may come from several unrevealed factors of the theory. The three MD methods proposed in this paper can also be applied to other situations of calculating rotational diffusion coefficient. PMID:25669403
Sandwich mixer-reactor: influence of the diffusion coefficient and flow rate ratios.
Abonnenc, Mélanie; Josserand, Jacques; Girault, Hubert H
2009-02-01
A sandwich mixer consists of mixing two solutions in a channel, one central laminar flow being sandwiched between two outer flow solutions. The present numerical study considers the convection-diffusion of two reacting species A and B, provided respectively by the two incoming solutions. The simulations show how the diffusion coefficient, flow rate and species concentration ratios influence, via the transversal diffusion length and reaction kinetics, the reaction extent at the end of the sandwich mixer. First, this extent can be enhanced up to 60% if the species with the lowest diffusion coefficient is located in the outer solutions where the flow velocity is small compared to that of the central part (higher residence time). Secondly, decreasing the outer flow rates (to confine the reaction close to the walls) and increasing the local concentration to keep the same flux ratio improve the extent by 300%. Comparison with a bi-lamination passive mixer, with an ideal mixer and an electro-osmotic driven flow mixer is presented. These conclusions are also demonstrated for consecutive reactions, showing an amplification of the effects described above. The results are also presented versus the residence time in the mixer-reactor to show the time window for which the gain is appreciable.
NASA Astrophysics Data System (ADS)
Lu, Yong; Zhang, Ping
2013-05-01
We report the prediction of temperature-dependent diffusion coefficients of interstitial hydrogen, deuterium, and tritium atoms in α-Ti using transition state theory. The microscopic parameters in the pre-factor and activation energy of the impurity diffusion coefficients are obtained from first-principles total energy and phonon calculations including the full coupling between the vibrational modes of the diffusing atom with the host lattice. The dual occupancy case of impurity atom in the hcp matrix is considered, and four diffusion paths are combined to obtain the final diffusion coefficients. The calculated diffusion parameters show good agreement with experiments. Our numerical results indicate that the diffusions of deuterium and tritium atoms are slower than that of the hydrogen atom at temperatures above 425 K and 390 K, respectively.
Mialdun, A; Shevtsova, V
2015-12-14
We report on the measurement of diffusion (D), Soret (S(T)), and thermodiffusion (D(T)) coefficients in toluene-cyclohexane mixture with mass fraction of toluene 0.40 onboard of the International Space Station. The coefficients were measured in the range of the mean temperatures between 20 °C and 34 °C. The Soret coefficient is negative within the investigated temperature range and its absolute value |S(T)| decreases with increasing temperature. The diffusion coefficient for this system increases with temperature rising. For comparison, the temperature dependence of diffusion coefficient was measured in ground laboratory using counter-flow cell technique and revealed a good agreement with microgravity results. A non-direct comparison of the measured onboard Soret coefficients with different systems indicated a similar trend for the temperature dependent behavior. Unexpected experimental finding is that for this system the thermodiffusion coefficient D(T) does not depend on temperature. PMID:26671399
Mialdun, A; Shevtsova, V
2015-12-14
We report on the measurement of diffusion (D), Soret (S(T)), and thermodiffusion (D(T)) coefficients in toluene-cyclohexane mixture with mass fraction of toluene 0.40 onboard of the International Space Station. The coefficients were measured in the range of the mean temperatures between 20 °C and 34 °C. The Soret coefficient is negative within the investigated temperature range and its absolute value |S(T)| decreases with increasing temperature. The diffusion coefficient for this system increases with temperature rising. For comparison, the temperature dependence of diffusion coefficient was measured in ground laboratory using counter-flow cell technique and revealed a good agreement with microgravity results. A non-direct comparison of the measured onboard Soret coefficients with different systems indicated a similar trend for the temperature dependent behavior. Unexpected experimental finding is that for this system the thermodiffusion coefficient D(T) does not depend on temperature.
Simulations of ion acceleration at non-relativistic shocks. III. Particle diffusion
Caprioli, D.; Spitkovsky, A.
2014-10-10
We use large hybrid (kinetic-protons-fluid-electrons) simulations to investigate the transport of energetic particles in self-consistent electromagnetic configurations of collisionless shocks. In previous papers of this series, we showed that ion acceleration may be very efficient (up to 10%-20% in energy), and outlined how the streaming of energetic particles amplifies the upstream magnetic field. Here, we measure particle diffusion around shocks with different strengths, finding that the mean free path for pitch-angle scattering of energetic ions is comparable with their gyroradii calculated in the self-generated turbulence. For moderately strong shocks, magnetic field amplification proceeds in the quasi-linear regime, and particles diffuse according to the self-generated diffusion coefficient, i.e., the scattering rate depends only on the amount of energy in modes with wavelengths comparable with the particle gyroradius. For very strong shocks, instead, the magnetic field is amplified up to non-linear levels, with most of the energy in modes with wavelengths comparable to the gyroradii of highest-energy ions, and energetic particles experience Bohm-like diffusion in the amplified field. We also show how enhanced diffusion facilitates the return of energetic particles to the shock, thereby determining the maximum energy that can be achieved in a given time via diffusive shock acceleration. The parameterization of the diffusion coefficient that we derive can be used to introduce self-consistent microphysics into large-scale models of cosmic ray acceleration in astrophysical sources, such as supernova remnants and clusters of galaxies.
Kusama, Y. . Naka Fusion Research Establishment); Heidbrink, W.W. ); Barnes, C.W. ); Beer, M.; Hammett, G.W.; McCune, D.C.; Medley, S.S.; Scott, S.D.; Zarnstorff, M.C. . Plasma Physics Lab.)
1992-01-01
The radial diffusivity of fast ions was evaluated from vertical neutral particle measurements in experiments where a short pulse of neutral deuterium beams was injected into a TFTR ohmic deuterium plasma. A comparison between the temporal evolution of the measured neutral particle flux and theoretical calculations showed that the spatially-averaged diffusion coefficient of fast ions is {le} 0.1 m{sup 2}/sec. This value is approximately an order of magnitude less than the diffusion coefficient for thermal ions and is consistent with results obtained previously on TFTR from other diagnostics.
Sun, Jia; Zhang, Xiao-Peng; Li, Xiao-Ting; Tang, Lei; Cui, Yong; Zhang, Xiao-Yan; Sun, Ying-Shi
2014-01-01
In vivo imaging studies in animal models are hindered by variables that contribute to poor image quality and measurement reliability. As such we sought to improve the diffusion coefficient (ADC) of an orthotopic mouse model of gastric cancer in diffusion-weighted images (DWI) using alginate moulding and Ultrasonic coupling medium. BGC-823 human gastric cancer cells were subcutaneously injected into the abdomen of nude mice and 1 mm3 primary tumour was orthotopically transplanted. Alginate and coupling medium were applied to the mice and MRI (T2 and DWI) was performed for 6 weeks. Regions of interest (ROI) were drawn and liver and tumour ADC were evaluated. Using alginate moulding, the mean quality total score of DW imaging was 8.53; however, in control animals this value was 5.20 (p < 0.001). The coefficient of variation of ADC of liver in experimental and control groups were 0.071 and 0.270 (p < 0.001), respectively, suggesting this method may be helpful for DWI studies of important human diseases such as gastric cancer. PMID:25123166
Ion-beam-induced topography and surface diffusion
NASA Technical Reports Server (NTRS)
Robinson, R. S.; Rossnagel, S. M.
1982-01-01
It is pointed out that the development of surface topography along with enhanced surface and bulk diffusion processes accompanying ion bombardment have generated growing interest among users of ion beams and plasmas for thin film or material processing. Interest in these processes stems both from attempts to generate topographic changes for specific studies or applications and from the need to suppress or control undesirable changes. The present investigation provides a summary of the current status of impurity-induced texturing, with emphasis on recent developments. Particular attention is given to the texturing accompanying deposition of an impurity material onto a solid surface while simultaneously etching the surface with an ion beam. A description of experimental considerations is provided, and a thermal-diffusion model is discussed along with the development of sputter cones, and aspects of impact-enhanced surface diffusion.
NASA Astrophysics Data System (ADS)
Hirao, Akiko; Nishizawa, Hideyuki; Tsukamoto, Takayuki; Matsumoto, Kazuki
1999-10-01
A new easy method for obtaining a drift mobility and a diffusion coefficient from a nondispersive time-of-flight transient has been developed. Nondispersive transients are described well in the theoretical photocurrent equation (PTE) based on the fact that a carrier packet drifts at a constant velocity and is spread by diffusion, the top electrode acts as a reflecting and partially absorbing wall, and the counter electrode acts as an absorbing wall. The fitting of the PTE to photocurrent transients gives the mobility and the diffusion coefficient (D) simultaneously. These are suitable characteristic values for descriptions of carriers transport because they do not show the thickness dependence and the negative field dependence in a low electric field. The mobility that sometimes shows the thickness dependence and the negative field dependence in a low electric field, however, has usually been measured from the time of the intersection of the asymptotes to the plateau and trailing edge of the transients. In order to obtain (mu) a from photocurrent transients by a simple method, we have tried to describe t0 and tail-broadening parameter W as functions of (mu) a and D, where W is defined as (t1/2 - t0)/t1/2 and t1/2 is the time at which the current is a half of that in the plateau region. The dependences of calculated (mu) k and W on the electric field and the sample thickness agreed well with those of the experimental data. These results verify the PTE and suggest that (mu) a and D can be calculated from t0 and W. We also report that the diffusion coefficient is proportional to the power of 2 of the mobility. This result agrees with a theory based on the Langevin equation which describes motions of carriers in a fluctuated field.
NASA Astrophysics Data System (ADS)
Somers, Marcel A. J.; Mittemeijer, Eric J.
1995-01-01
Models were derived for monolayer and bilayer growth into a substrate in which diffusion of the solute governs the growth kinetics, as in gas-solid reactions, for example. In the models, the composition dependence of the solute diffusivity in the phases constituting the layers was accounted for by appropriate definition of an effective diffusion coefficient for a (sub)layer. This effective diffusion coefficient is the intrinsic diffusion coefficient weighted over the composition range of the (sub)layer. The models were applied for analyzing the growth kinetics of a γ'-Fe4N1-x monolayer on an α-Fe substrate and the growth kinetics of an ɛ-Fe2N1-z/γ'-Fe4N1-x bilayer on an α-Fe substrate, as observed by gaseous nitriding in an NH3/H2-gas mixture at 843 K. The kinetics of layer development and the evolution of the microstructure were investigated by means of thermogravimetry, layer-thickness measurements, light microscopy, and electron probe X-ray microanalysis (EPMA). The effective and self-diffusion coefficients were determined for each of the nitride layers. The composition dependence of the intrinsic (and effective) diffusion coefficients was established. Re-evaluating literature data for diffusion in γ'-Fe4N1-x on the basis of the present model, it followed that the previous and present data are consistent. The activation energy for diffusion of nitrogen in γ'-Fe4N1-x was determined from the temperature dependence of the self-diffusion coefficient. The self-diffusion coefficient for nitrogen in ɛ-Fe2N1-z was significantly larger than that for γ'-Fe4N1-x. This was explained qualitatively, considering the possible mechanisms for interstitial diffusion of nitrogen atoms in the close-packed iron lattices of the ɛ and γ' iron nitrides.
Theory and simulation of the time-dependent rate coefficients of diffusion-influenced reactions.
Zhou, H X; Szabo, A
1996-01-01
A general formalism is developed for calculating the time-dependent rate coefficient k(t) of an irreversible diffusion-influenced reaction. This formalism allows one to treat most factors that affect k(t), including rotational Brownian motion and conformational gating of reactant molecules and orientation constraint for product formation. At long times k(t) is shown to have the asymptotic expansion k(infinity)[1 + k(infinity) (pie Dt)-1/2 /4 pie D + ...], where D is the relative translational diffusion constant. An approximate analytical method for calculating k(t) is presented. This is based on the approximation that the probability density of the reactant pair in the reactive region keeps the equilibrium distribution but with a decreasing amplitude. The rate coefficient then is determined by the Green function in the absence of chemical reaction. Within the framework of this approximation, two general relations are obtained. The first relation allows the rate coefficient for an arbitrary amplitude of the reactivity to be found if the rate coefficient for one amplitude of the reactivity is known. The second relation allows the rate coefficient in the presence of conformational gating to be found from that in the absence of conformational gating. The ratio k(t)/k(0) is shown to be the survival probability of the reactant pair at time t starting from an initial distribution that is localized in the reactive region. This relation forms the basis of the calculation of k(t) through Brownian dynamics simulations. Two simulation procedures involving the propagation of nonreactive trajectories initiated only from the reactive region are described and illustrated on a model system. Both analytical and simulation results demonstrate the accuracy of the equilibrium-distribution approximation method. PMID:8913584
Anisotropie des coefficients de diffusion dans des cristaux liquides discotiques hexagonaux
NASA Astrophysics Data System (ADS)
Daoud, M.; Gharbia, M.; Gharbi, A.
1994-06-01
The diffusion constants of dyes in several hexagonal discotic liquid crystals are measured and discussed. For all the liquid crystals studied, these constants are anisotropic : the diffusion in the direction parallel to the columns is faster than that in the perpendicular plane (frac{D_allel}{D_perp}>1). The effects of the length and shape of the chains bound to the triphenylene discs are shown. The effect of the dye molecular size is also described. The study of the diffusion coefficients of hexapentoxytriphenylene (C5HET) as a function of temperature has shown that the activation energies along the columns and perpendicular to the columns are comparable. The main features of dye diffusion in the hexagonal columnar liquid crystals studied are similar to those reported in nematic phases. Les mesures des constantes de diffusion de colorants dans plusieurs cristaux liquides discotiques hexagonaux sont présentées et discutées. Pour tous les cristaux liquides étudiés, ces constantes présentent une anisotropie, avec une diffusion plus rapide parallèlement aux colonnes que perpendiculairement à celles-ci (frac{D_allel}{D_perp}>1). Des effets de longueur et de forme des chaînes branchées sur les disques de triphénylène sont mis en évidence. Il en est de même pour la taille des molécules de colorants. L'étude en fonction de la température a montré que dans le cas de l'hexapentoxytriphénylène (C5HET), les énergies d'activation dans les directions parallèle et perpendiculaire aux colonnes sont comparables. Les caractéristiques de la diffusion de colorants dans les cristaux liquides colonnaires hexagonaux étudiés sont semblables à celles des nématiques.
Measurement of Retinalamin diffusion coefficient in human sclera by optical spectroscopy
NASA Astrophysics Data System (ADS)
Genina, Elina A.; Bashkatov, Alexey N.; Zubkova, Elena A.; Kamenskikh, Tatiana G.; Tuchin, Valery V.
2008-12-01
The use of cytomedines (such as Retinalamin) in clinical practice has shown high effectiveness of the medicaments in ophthalmology. The study of diffusion of Retinalamin in scleral tissue is important for estimation of a drug dose delivered into inner tissue of eye, time of drug action, etc. In vitro measurements of spectral reflectance of sclera interacting with aqueous solution of Retinalamin have been carried out. Ten human sclera samples were included in the study. The results of the experiments have shown that penetration of Retinalamin into scleral tissue leads to the decrease of scleral reflectance due to optical immersion. Estimation of diffusion coefficient of studied solution has been made on the basis of analysis of optical reflectance dynamics of the sclera samples. The diffusion coefficient of Retinalamin in human scleral tissue was evaluated as (1.82±0.14)×10 -6 cm 2/s. The results are important for treatment of partial optic atrophy observed at primary open-angle glaucoma and others eye diseases.
Ab initio calculation of oxygen self-diffusion coefficient in uranium dioxide UO2
NASA Astrophysics Data System (ADS)
Dorado, Boris; Garcia, Philippe; Torrent, Marc
Uranium dioxide UO2 is the most widely used nuclear fuel worldwide and its atomic transport properties are relevant to practically all engineering aspects of the material. Although transport properties have already been studied in UO2 by means of first-principles calculations, the ab initio determination of self-diffusion coefficients has up to now remained unreachable because the relevant computational tools were neither available or adapted. The present work reports our results related to the ab initio calculation of the oxygen self-diffusion coefficient in UO2. We first determine the Gibbs free energies of formation of oxygen charged defects by calculating both the electronic and vibrational (hence entropic) contributions. Then, we use the transition state theory in order to compute the effective jump frequency of the defects, which in turn provides us with the value of the pre-exponential factor. The results are compared to self-diffusion data obtained experimentally with a careful monitoring of the relevant thermodynamic conditions (oxygen partial pressure, temperature, impurity content).
Measuring partition and diffusion coefficients for volatile organic compounds in vinyl flooring
NASA Astrophysics Data System (ADS)
Cox, Steven S.; Zhao, Dongye; Little, John C.
Interactions between volatile organic compounds (VOCs) and vinyl flooring (VF), a relatively homogenous, diffusion-controlled building material, were characterized. The sorption/desorption behavior of VF was investigated using single-component and binary systems of seven common VOCs ranging in molecular weight from n-butanol to n-pentadecane. The simultaneous sorption of VOCs and water vapor by VF was also investigated. Rapid determination of the material/air partition coefficient ( K) and the material-phase diffusion coefficient ( D) for each VOC was achieved by placing thin VF slabs in a dynamic microbalance and subjecting them to controlled sorption/desorption cycles. K and D are shown to be independent of concentration for all of the VOCs and water vapor. For the four alkane VOCs studied, K correlates well with vapor pressure and D correlates well with molecular weight, providing a means to estimate these parameters for other alkane VOCs. While the simultaneous sorption of a binary mixture of VOCs is non-competitive, the presence of water vapor increases the uptake of VOCs by VF. This approach can be applied to other diffusion-controlled materials and should facilitate the prediction of their source/sink behavior using physically-based models.
The effective charge number and diffusion coefficient of cationic cytochrome c in aqueous solution.
Kontturi, A K; Kontturi, K; Niinikoski, P; Savonen, A; Vuoristo, M
1992-04-01
The diffusion coefficient and the effective charge number of cytochrome c as a function of ionic strength, temperature and pH have been measured. The measurements were carried out using a method based on a convective diffusion process across a porous membrane. The effect of ionic strength was studied in an NaCl solution the concentration of which varied from 0.001 to 1.0 M. The temperature range studied was 10-50 degrees C, and the pH values studied were 4.0, 6.5 and 8.25. The diffusion coefficient is fairly constant as a function of ionic strength and pH, and Walden's rule is valid in the temperature range studied. The effective charge number is practically constant (ca. 2) in the concentration range studied, except in 0.001 M solution, where it is the same as the titrated value. The charge number decreases slightly in the temperature range 10-30 degrees C, but seems to drop suddenly to zero at ca. 40 degrees C. Measurements using heavy water (D2O) as a solvent instead of water did not give zero charge at 40 degrees C for cytochrome c. PMID:1325179
Evolution of the Magnetic Field Line Diffusion Coefficient and Non-Gaussian Statistics
NASA Astrophysics Data System (ADS)
Snodin, A. P.; Ruffolo, D.; Matthaeus, W. H.
2016-08-01
The magnetic field line random walk (FLRW) plays an important role in the transport of energy and particles in turbulent plasmas. For magnetic fluctuations that are transverse or almost transverse to a large-scale mean magnetic field, theories describing the FLRW usually predict asymptotic diffusion of magnetic field lines perpendicular to the mean field. Such theories often depend on the assumption that one can relate the Lagrangian and Eulerian statistics of the magnetic field via Corrsin’s hypothesis, and additionally take the distribution of magnetic field line displacements to be Gaussian. Here we take an ordinary differential equation (ODE) model with these underlying assumptions and test how well it describes the evolution of the magnetic field line diffusion coefficient in 2D+slab magnetic turbulence, by comparisons to computer simulations that do not involve such assumptions. In addition, we directly test the accuracy of the Corrsin approximation to the Lagrangian correlation. Over much of the studied parameter space we find that the ODE model is in fairly good agreement with computer simulations, in terms of both the evolution and asymptotic values of the diffusion coefficient. When there is poor agreement, we show that this can be largely attributed to the failure of Corrsin’s hypothesis rather than the assumption of Gaussian statistics of field line displacements. The degree of non-Gaussianity, which we measure in terms of the kurtosis, appears to be an indicator of how well Corrsin’s approximation works.
Mongrain, Rosaire; Faik, Isam; Leask, Richard L; Rodés-Cabau, Josep; Larose, Eric; Bertrand, Olivier F
2007-10-01
In the context of drug eluting stent, we present two-dimensional numerical models of mass transport of the drug in the wall and in the lumen to study the effect of the drug diffusion coefficients in the three principal media (blood, vascular wall, and polymer coating treated as a three-compartment problem) and the impact of different strut apposition configurations (fully embedded, half embedded, and not embedded). The different conditions were analyzed in terms of their consequence on the drug concentration distribution in the arterial wall. We apply the concept of the therapeutic window to the targeted vascular wall region and derive simple metrics to assess the efficiency of the various stent configurations. Although most of the drug is dispersed in the lumen, variations in the blood flow rate within the physiological range of coronary blood flow and the diffusivity of the drug molecule in the blood were shown to have a negligible effect on the amount of drug in the wall. Our results reveal that the amount of drug cumulated in the wall depends essentially on the relative values of the diffusion coefficients in the polymer coating and in the wall. Concerning the strut apposition, it is shown that the fully embedded strut configuration would provide a better concentration distribution.
Physics-based ULF Wave Radial Diffusion Coefficients in the Van Allen Belts
NASA Astrophysics Data System (ADS)
Mann, Ian; Rae, Jonathan; Murphy, Kyle; Ozeke, Louis; Milling, David; Chan, Anthony; Elkington, Scot; Angelopoulos, Vassilis
Power in the Pc5 ULF wave band is believed to have strong impact on the acceleration and transport of MeV energy electrons in the outer radiation belt. Typically, radial belt diffusion coefficients are defined from empirical approaches, based on observed flux variations and param-eterised by geomagnetic indices. We report the results of new ULF wave diffusion coefficients derived from statistical analyses of ULF wave power from ground-based magnetometers from the CARISMA chain, as well as from in-situ data from GOES and THEMIS. These results are compared to previous empirical results, and the dependence of the wave-driven coefficients on energy and solar wind speed presented. The ULF wave physics model illustrates the importance of global measurements for identifying dominant or active acceleration mechanisms. Future in-situ radiation belt missions such as the Canadian Space Agency Outer Radiation Belt Injec-tion, Transport, Acceleration and Loss Satellite (ORBITALS) will enable these physics-based models to be tested and the relative importance of various ULF and VLF wave acceleration and loss processes established. In combination with the approved NASA LWS RBSP mission, and the proposed Japanese ERG satellite, the ORBITALS-RBSP-ERG three petal constella-tion together with supporting ground-based and geosynchronous measurements will resolve the spatio-temporal ambiguities and global dynamics and morphology of the Earths radiation belts.
Brain-water diffusion coefficients reflect the severity of inherited prion disease
Hyare, H.; Wroe, S.; Siddique, D.; Webb, T.; Fox, N. C.; Stevens, J.; Collinge, J.; Yousry, T.; Thornton, J. S.
2010-01-01
Objective: Inherited prion diseases are progressive neurodegenerative conditions, characterized by cerebral spongiosis, gliosis, and neuronal loss, caused by mutations within the prion protein (PRNP) gene. We wished to assess the potential of diffusion-weighted MRI as a biomarker of disease severity in inherited prion diseases. Methods: Twenty-five subjects (mean age 45.2 years) with a known PRNP mutation including 19 symptomatic patients, 6 gene-positive asymptomatic subjects, and 7 controls (mean age 54.1 years) underwent conventional and diffusion-weighted MRI. An index of normalized brain volume (NBV) and region of interest (ROI) mean apparent diffusion coefficient (ADC) for the head of caudate, putamen, and pulvinar nuclei were recorded. ADC histograms were computed for whole brain (WB) and gray matter (GM) tissue fractions. Clinical assessment utilized standardized clinical scores. Mann-Whitney U test and regression analyses were performed. Results: Symptomatic patients exhibited an increased WB mean ADC (p = 0.006) and GM mean ADC (p = 0.024) compared to controls. Decreased NBV and increased mean ADC measures significantly correlated with clinical measures of disease severity. Using a stepwise multivariate regression procedure, GM mean ADC was an independent predictor of Clinician's Dementia Rating score (p = 0.001), Barthel Index of activities of daily living (p = 0.001), and Rankin disability score (p = 0.019). Conclusions: Brain volume loss in inherited prion diseases is accompanied by increased cerebral apparent diffusion coefficient (ADC), correlating with increased disease severity. The association between gray matter ADC and clinical neurologic status suggests this measure may prove a useful biomarker of disease activity in inherited prion diseases. GLOSSARY ADAS-Cog = Alzheimer's Disease Assessment Scale–Cognitive subscale; ADC = apparent diffusion coefficient; ADL = Barthel Activities of Daily Living scale; BET = brain extraction tool; BPRS
Statistical analysis of diffuse ion events upstream of the Earth's bow shock
NASA Technical Reports Server (NTRS)
Trattner, K. J.; Mobius, E.; Scholer, M.; Klecker, B.; Hilchenbach, M.; Luehr, H.
1994-01-01
A statistical study of diffuse energetic ion events and their related waves upstream of the Earth's bow shock was performed using data from the Active Magnetospheric Particle Tracer Explorers/Ion Release Module (AMPTE/IRM) satellite over two 5-month periods in 1984 and 1985. The data set was used to test the assumption in the self-consistent model of the upstream wave and particle populations by Lee (1982) that the particle acceleration through hydromagnetic waves and the wave generation are directly coupled. The comparison between the observed wave power and the wave power predicted on the observed energetic particle energy density and solar wind parameters results in a high correlation coefficient of about 0.89. The intensity of diffuse ions falls off approximately exponentially with the distance upstream from the bow shock parallel to the magnetic field with e-folding distances which vary from approximately 3.3 R(sub E) to approximately 11.7 R(sub E) over the energy range from 10 keV/e to 67.3 keV/e for both protons and alpha particles. After normalizing the upstream particle densities to zero bow shock distance by using these exponential variations, a good correlation (0.7) of the density of the diffuse ions with the solar wind density was found. This supports the suggestion that the solar wind is the source of the diffuse ions. Furthermore, the spectral slope of the diffuse ions correlates well with the solar wind velocity component in the direction of the interplanetary magnetic field (0.68 and 0.66 for protons and alpha particles) which concurs with the notion that the solar wind plays an important role in the acceleration of the upstream particles.
Autrey, S Thomas ); Camaioni, Donald M. ); Kandanarachchi, Pramod H.; Franz, James A. )
2000-12-01
The diffusion coefficients of a benzyl-, sec-phenethyl-, and diphenylmethyl alcohol and the corresponding aryl carbonyls (benzaldehyde, acetophenone and benzophenone) were measured by Taylor's dispersion method in both ethyl and isopropyl alcohol. The experimental values are compared to published transient grating measurements of the corresponding aryl ketyl radicals (benzyl-, sec-phenethyl-, and diphenylmethyl-ketyl radical). In general, the diffusion coefficient of the aryl alcohols and the corresponding aryl ketyl radicals are equivalent within experimental error. This work shows that the diffusion of ketyl radicals is not anomalously slow and that aryl alcohols are significantly better models than the corresponding aryl ketones for analyzing the diffusion of aryl ketyl radicals in both ethyl and isopropyl alcohol. Empirical estimates of the diffusion coefficients of aryl alcohols using the Spernol-Wirtz and Wilke-Chang modifications to the Stokes-Einstein diffusion equation do not adequately account for the interactions between the aryl ketyl radicals or aryl alcohols with the hydroxylic solvents ethyl and isopropyl alcohol. The excellent agreement between the experimental diffusion coefficients of the aryl alcohols and the corresponding ketyl radicals show that the transient grating method can provide accurate estimates for the diffusion coefficients of transient species. This is especially important when a stable model is not available, for example the pyranyl radical.
NASA Technical Reports Server (NTRS)
Goldstein, M. L.
1977-01-01
In a study of cosmic ray propagation in interstellar and interplanetary space, a perturbed orbit resonant scattering theory for pitch angle diffusion in a slab model of magnetostatic turbulence is slightly generalized and used to compute the diffusion coefficient for spatial propagation parallel to the mean magnetic field. This diffusion coefficient has been useful for describing the solar modulation of the galactic cosmic rays, and for explaining the diffusive phase in solar flares in which the initial anisotropy of the particle distribution decays to isotropy.
Time-dependent diffusion coefficient as a probe of the permeability of the pore wall
NASA Astrophysics Data System (ADS)
Sen, Pabitra N.
2003-11-01
The time dependence of the mean-square displacement (or equivalently of the diffusion coefficient) in the presence of a permeable barrier can be used as a probe of the surface-to-volume ratio and permeability of a membrane. An exact, universal, short-time asymptotics in a pack of cells, assuming that the surfaces are locally smooth, shows that the effects of nonzero permeability appear as a correction to the diffusion coefficient that is linear in time, whereas the surface-to-volume ratio enters as a square root in time. With κ as the permeability of the membrane, we find, for the particles released inside the cells, DR,eff(t)=DR[1-(SR/VR){4√DR t/(9√π )-κt√DL (√DL +√DR )/(6DR)}]+⋯ . Here DR and DL are free (i.e., bulk) diffusion coefficients inside and outside of the cell, respectively, and SR/VR is the total internal surface divided by the total internal cell volume. The other terms linear in t that add to the right side of above equation are DR(SR/VR)[(1/6)ρt-(1/12)DRt<(1/R1+1/R2)>R], where ρ is a surface relaxation, which is generally negligible in biological samples, and <(1/R1+1/R2)>R is the average of the principal radii of curvatures over the interior surface. An equivalent expression for the particles starting outside the cell is obtained by swapping L↔R. The NMR data on erthrocytes show that the effect of permeability can be significant within the time scales of measurement and hence κ is deducible from the data. The long-time behavior given previously [Proc. Natl. Acad. Sci. USA 92, 1229 (1994)] is augmented by giving a nonuniversal form that includes the rate of approach to this limit.
Sanford, R.F.
1982-01-01
Geological examples of binary diffusion are numerous. They are potential indicators of the duration and rates of geological processes. Analytical solutions to the diffusion equations generally do not allow for variable diffusion coefficients, changing boundary conditions, and impingement of diffusion fields. The three programs presented here are based on Crank-Nicholson finite-difference approximations, which can take into account these complicating factors. Program 1 describes the diffusion of a component into an initially homogeneous phase that has a constant surface composition. Specifically it is written for Fe-Mg exchange in olivine at oxygen fugacities appropriate for the lunar crust, but other components, phases, or fugacities may be substituted by changing the values of the diffusion coefficient. Program 2 simulates the growth of exsolution lamellae. Program 3 describes the growth of reaction rims. These two programs are written for pseudobinary Ca-(Mg, Fe) exchange in pyroxenes. In all three programs, the diffusion coefficients and boundary conditions can be varied systematically with time. To enable users to employ widely different numerical values for diffusion coefficients and diffusion distance, the grid spacing in the space dimension and the increment by which the grid spacing in the time dimension is increased at each time step are input constants that can be varied each time the programs are run to yield a solution of the desired accuracy. ?? 1982.
Integral formula for the effective diffusion coefficient in two-dimensional channels.
Kalinay, Pavol
2016-07-01
The effective one-dimensional description of diffusion in two-dimensional channels of varying cross section is revisited. The effective diffusion coefficient D(x), extending Fick-Jacobs equation, depending on the longitudinal coordinate x, is derived here without use of scaling of the transverse coordinates. The result of the presented method is an integral formula for D(x), calculating its value at x as an integral of contributions from the neighboring positions x^{'} depending on h(x^{'}), a function shaping the channel. Unlike the standard formulas based on the scaling, the new proposed formula also describes D(x) correctly near the cusps, or in wider channels. PMID:27575072
Diffusion Coefficients in Liquid and Grain Boundary Predicted by Ab Initio Molecular Dynamics
Jablonski, P.D.; Liu, Z.; Fang, H.; Wang, B.
2011-04-01
Molecular dynamics (MD) is a powerful tool to probe the thermodynamic and kinetic properties of solid, glass and liquid phases. In classical molecular dynamics (CMD), empirical models are used to describe the force by considering bond, bend and dihedral angle contributions with parameters fitted to experimental data or first-principles calculations of small clusters. In the ab initio molecular dynamics (AIMD), the forces are calculated on the fly using the first-principles density functional theory as discussed above. In the present work, we use AIMD simulations to follow the random walk of atoms in the liquid state. Based on the mean square displacements (MSD), the diffusion coefficients are calculated from the Einstein equation. Furthermore, we extend this approach to understand the diffusion in grain boundaries.
The rapid inward diffusion of cold ions in tokamaks and their effect on ion transport
NASA Astrophysics Data System (ADS)
Ware, A. A.
1990-06-01
The observed increase with density of the density asymmetry caused by the centrifugal force of toroidal motion in the PDX tokamak [Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna, 1981), Vol. 1, p. 665], which is contrary to conventional theory, is explained by the presence of an excess of low-energy ions with 10%-15% concentration. The prime source being recycling, it is shown that low-energy ions undergo rapid inward diffusion (too rapid to thermalize with the outward diffusing energetic ions) because of the combined effects of large νPA, electrostatic diffusion, and negative Er and ∂Ti/∂r. The presence of the low-energy ions alters dramatically the predictions of neoclassical theory and many hydrogen and impurity ion transport phenomena now have simple explanations.
The rapid inward diffusion of cold ions in tokamaks and their effect on ion transport
Ware, A.A. )
1990-06-01
The observed increase with density of the density asymmetry caused by the centrifugal force of toroidal motion in the PDX tokamak ({ital Plasma} {ital Physics} {ital and} {ital Controlled} {ital Nuclear} {ital Fusion} {ital Research} (IAEA, Vienna, 1981), Vol. 1, p. 665), which is contrary to conventional theory, is explained by the presence of an excess of low-energy ions with 10%--15% concentration. The prime source being recycling, it is shown that low-energy ions undergo rapid inward diffusion (too rapid to thermalize with the outward diffusing energetic ions) because of the combined effects of large {nu}{sub PA}, electrostatic diffusion, and negative {ital E}{sub {ital r}} and {partial derivative}{ital T}{sub {ital i}}/{partial derivative}{ital r}. The presence of the low-energy ions alters dramatically the predictions of neoclassical theory and many hydrogen and impurity ion transport phenomena now have simple explanations.
The rapid inward diffusion of cold ions in tokamaks and their effect on ion transport
NASA Astrophysics Data System (ADS)
Ware, A. A.
1989-10-01
The observed increase with density of the density asymmetry caused by the centrifugal force of toroidal motion in PDX, which is contrary to conventional theory, is explained by the presence of an excess of low energy ions with 10 to 15 percent concentration. The prime source being recycling, it is shown that low energy ions undergo rapid inward diffusion (too rapid to thermalize with the outward diffusion energetic ions) due to the combined effects of large nu (sub PA), electrostatic diffusion, and negative E(sub r) and partial derivative of T(sub i)/(partial derivative) of r. The presence of the low energy ions alters dramatically the predictions of neoclassical theory and many hydrogen and impurity ion transport phenomena now have simple explanations.
Sterling, Sarah M.; Allgeyer, Edward S.; Fick, Jörg; Prudovsky, Igor; Mason, Michael D.; Neivandt, David J.
2013-01-01
Model cellular membranes enable the study of biological processes in a controlled environment and reduce the traditional challenges associated with live or fixed cell studies. However, model membrane systems based on the air/water or oil/solution interface do not allow for incorporation of transmembrane proteins, or for the study of protein transport mechanisms. Conversely, a phospholipid bilayer deposited via the Langmuir-Blodgett/Langmuir Schaefer method on a hydrogel layer is potentially an effective mimic of the cross-section of a biological membrane, and facilitates both protein incorporation and transport studies. Prior to application, however, such membranes must be fully characterized, particularly with respect to the phospholipid bilayer phase transition temperature. Here we present a detailed characterization of the phase transition temperature of the inner and outer leaflets of a chitosan supported model membrane system. Specifically, the lateral diffusion coefficient of each individual leaflet has been determined as a function of temperature. Measurements were performed utilizing z-scan fluorescence correlation spectroscopy (FCS), a technique that yields calibration-free diffusion information. Analysis via the method of Wawrezinieck and coworkers, revealed that phospholipid diffusion changes from raft-like to free diffusion as the temperature is increased; an insight into the dynamic behavior of hydrogel supported membranes not previously reported. PMID:23705855
Diffusion coefficients and current velocities in coastal waters by remote sensing techniques.
NASA Technical Reports Server (NTRS)
James, W. P.
1972-01-01
This paper presents a simplified procedure for determining water current velocities and diffusion coefficients. Dye drops which form dye patches in the receiving water are made from an aircraft. The changes in position and size of the patches are recorded from two flights over the area. The data processing procedure requires that the ground coordinates about the dye patches be determined at the time of each flight. With an automatic recording coordinatograph for measuring coordinates and a computer for processing the data, this technique provides a practical method of determining circulation patterns and mixing characteristics of large aquatic systems.
Shiva, Amir Houshang; Teasdale, Peter R; Bennett, William W; Welsh, David T
2015-08-12
A systematic comparison of the diffusion coefficients of cations (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) and oxyanions (Al, As, Mo, Sb, V, W) in open (ODL) and restricted (RDL) diffusive layers used by the DGT technique was undertaken. Diffusion coefficients were measured using both the diffusion cell (Dcell) method at pH 4.00 and the DGT time-series (D(DGT)) method at pH 4.01 and 7.04 (pH 8.30 was used instead of 7.04 for Al) using the Chelex-Metsorb mixed binding layer. The performance of Chelex-Metsorb as a new DGT binding layer for Al uptake was also evaluated for the first time. Reasonable agreement was observed between D(cell) and D(DGT) measurements for both ODL and RDL, except for V and W. The ratios of D(cell)/D(DGT) for V of 0.44 and 0.39, and for W of 0.66 and 0.63 with ODL and RDL respectively, were much lower due to the formation of a high proportion of polyoxometalate species at the higher concentrations required with the D(cell) measurements. This is the first time that D values have been reported for several oxyanions using RDL. Except for Al at pH 8.30 with ODL, all D(DGT) measurements were retarded relative to diffusion coefficients in water (DW) for both diffusive hydrogels. Diffusion in RDL was further retarded compared with ODL, for all elements (0.66-0.78) with both methods. However, the degree of retardation observed changed for cations and anions at each pH. At pH 7.04 cations had a slightly higher D(DGT) and oxyanions had a slightly lower D(DGT) than at pH 4.01 for both ODL and RDL. It is proposed that this is due to partial formation of acrylic acid functional groups (pKa ≈4.5), which would be fully deprotonated at pH 7.04 (negative) and mostly protonated at pH 4.01 (neutral). As Al changes from being cationic at pH 4.01 to anionic at pH 8.30 the results were more complex.
Yu, Xin; Schmidt, Arthur R; Bello-Perez, Luis A; Schmidt, Shelly J
2008-01-01
The bulk moisture diffusion coefficient (Db) is an important physical parameter of food ingredients and systems. However, the traditional method of measuring Db using saturated salt solutions is very time-consuming and cumbersome. New automated water sorption instruments, which can be used to conveniently and precisely control both relative humidity and temperature, provide a faster, more robust method for collecting the data needed for determining Db. Thus, the objectives of this study were to (1) investigate the use of the DVS instrument for collecting the data needed for determining the adsorption (Dba) and desorption (Dbd) bulk moisture diffusion coefficients for dent corn starch as a function of relative humidity and (2) determine the effect of temperature on Dba for dent corn starch at a constant relative humidity. Kinetic water sorption profiles of dent corn starch were obtained at eight relative humidity values ranging from 10 to 80% at 10% intervals at 25 degrees C and at five temperatures, 15, 20, 25, 30, and 35 degrees C, at 50% relative humidity using a DVS instrument. Db was calculated from the kinetic water sorption profiles using the full solution of Fick's second law for the thin slab model, as well as the slope method, a simplification of the full model. The Dba of dent corn starch at 25 degrees C reached a maximum at intermediate relative humidity values, after which Dba decreased due to a change in the moisture diffusion mechanism from vapor to liquid diffusion. The Dbd of dent corn starch at 25 degrees C remained nearly constant as a function of relative humidity. The Dba for dent corn starch increased as temperature increased from 15 to 35 degrees C, with an activation energy of 38.85 +/- 0.433 kJ/mol.
Lateral diffusivity coefficients from the dynamics of a SF6 patch in a coastal environment
NASA Astrophysics Data System (ADS)
Kersalé, M.; Petrenko, A. A.; Doglioli, A. M.; Nencioli, F.; Bouffard, J.; Blain, S.; Diaz, F.; Labasque, T.; Quéguiner, B.; Dekeyser, I.
2016-01-01
The dispersion of a patch of the tracer sulfur hexafluoride (SF6) is used to assess the lateral diffusivity in the coastal waters of the western part of the Gulf of Lion (GoL), northwestern Mediterranean Sea, during the Latex10 experiment (September 2010). Immediately after the release, the spreading of the patch is associated with a strong decrease of the SF6 concentrations due to the gas exchange from the ocean to the atmosphere. This has been accurately quantified, evidencing the impact of the strong wind conditions during the first days of this campaign. Few days after the release, as the atmospheric loss of SF6 decreased, lateral diffusivity coefficient at spatial scales of 10 km has been computed using two approaches. First, the evolution of the patch with time was combined with a diffusion-strain model to obtain estimates of the strain rate (γ = 2.5 10- 6 s- 1) and of the lateral diffusivity coefficient (Kh = 23.2 m2 s- 1). Second, a steady state model was applied, showing Kh values similar to the previous method after a period of adjustment between 2 and 4.5 days. This implies that after such period, our computation of Kh becomes insensitive to the inclusion of further straining of the patch. Analysis of sea surface temperature satellite imagery shows the presence of a strong front in the study area. The front clearly affected the dynamics within the region and thus the temporal evolution of the patch. Our results are consistent with previous studies in open ocean and demonstrate the success and feasibility of those methods also under small-scale, rapidly-evolving dynamics typical of coastal environments.
Effect of molecular weight on ion diffusion and transference number in poly(ethylene oxide)
NASA Astrophysics Data System (ADS)
Timachova, Ksenia; Balsara, Nitash
2015-03-01
Solid polymer electrolytes are of great interest for their potential use in high specific energy, solid-state batteries, however, salt transport properties in polymer electrolytes have not been comprehensively addressed over a wide range of molecular weights. Poly(ethylene oxide) (PEO) has been the most widely studied polymer electrolyte due to its high solvation of lithium salts and low glass transition temperature. This study presents measurements of the transport properties of lithium bis(trifluoromethanesulfone)imide (LiTFSI) in PEO at both the high concentration present in functional electrolytes and in the dilute limit for a large range of PEO molecular weights. Individual diffusion coefficients of the Li + and TFSI- ions were measured using pulsed-field gradient nuclear magnetic resonance and the cation transference number was calculated. The diffusion coefficients, transference number, and conductivity as a function of molecular weight and salt concentration provide a complete set of transport properties for PEO.
NASA Technical Reports Server (NTRS)
Nesbitt, J. A.; Heckel, R. W.
1987-01-01
Interdiffusion in Ni-rich Ni-Cr-Al alloys is investigated experimentally after annealing at 1100 and 1200 C using gamma/gamma, gamma/gamma+beta, gamma/gamma+gamma prime, and gamma/gamma+alpha diffusion couples. The amount and location of Kirkendall porosity suggests that Al diffuses more rapidly than Cr which diffuses more rapidly than Ni in the gamma phase of Ni-Cr-Al alloys. The location and extent of maxima and minima in the concentration profiles of the diffusion couples indicate that both cross-term diffusion coefficients are positive. Measurements are also presented of the ternary interdiffusion coefficients of the gamma phase in the Ni-Cr-Al system. It is shown that the interdiffusion coefficients can be accurately predicted by using a ternary finite-difference interdiffusion model.
Xu, Jing; Zhang, Jianshun S; Liu, Xiaoyu; Gao, Zhi
2012-06-01
The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50%, and 70% RH). The "green" materials contained recycled materials and were friendly to environment. A dynamic dual-chamber test method was used. Results showed that a higher relative humidity led to a larger effective diffusion coefficient for two kinds of wallboards and carpet. The carpet was also found to be very permeable resulting in an effective diffusion coefficient at the same order of magnitude with the formaldehyde diffusion coefficient in air. The partition coefficient (K(ma)) of formaldehyde in conventional wallboard was 1.52 times larger at 50% RH than at 20% RH, whereas it decreased slightly from 50% to 70% RH, presumably due to the combined effects of water solubility of formaldehyde and micro-pore blocking by condensed moisture at the high RH level. The partition coefficient of formaldehyde increased slightly with the increase of relative humidity in "green" wallboard and "green" carpet. At the same relative humidity level, the "green" wallboard had larger partition coefficient and effective diffusion coefficient than the conventional wallboard, presumably due to the micro-pore structure differences between the two materials. The data generated could be used to assess the sorption effects of formaldehyde on building materials and to evaluate its impact on the formaldehyde concentration in buildings.
Influence of hydrophobicity on the ion exchange selectivity coefficients for aromatic amines.
Kril, M B; Fung, H L
1990-05-01
Hydrophobic effects could play an important role in determining the selectivity of organic ions for ion-exchange resins in aqueous solutions. We used the octanol-water partition coefficient (P) and the chromatographic capacity factor (K') as indices of hydrophobicity of a series of primary and secondary amines, and examined their relationships with the amine selectivity coefficient (K) in binding to the Amberlite IRP-69 ion-exchange resin. Good correlations were found between log K versus log P and log K versus log K', but the relationship appears to be dependent on the degree of substitution at the amino nitrogen. These relationships may be useful for the estimation of selectivity coefficients of various amine drug candidates when they are considered for incorporation with ion-exchange resins in potential controlled-release systems.
NASA Astrophysics Data System (ADS)
Yoshida, Masayuki; Morooka, Masami; Takahashi, Manabu; Tomokage, Hajime
2000-05-01
Based on the pair diffusion models of vacancy and interstitial (V and I) mechanisms, the V and I components of effective P diffusion coefficient, DP^+,Veff and DP^+,Ieff, and the controlling process of P diffusion in Si are obtained. Assuming that the I mechanism is dominant, not only the I- concentration, CI^-, but also its gradient, d CI^-/d λ , is effective on DP^+,Ieff at high CP^+. DP^+,Ieff is large at d CI^-/d λ <0 and small at d CI^-/d λ >0. P+ and I- are generated by the dissociation of P-I pair. When excess I- thus generated is removed, d CI^-/d λ <0 is obtained. d CI^-/d λ <0 is also obtained by the decrease in quasi self-interstitial formation energy. Several diffusion models simulate the P diffusion profile well under an inert atmosphere. Applying the controlling process to them, the reason why they simulate the P profile well is investigated. Because all of them simulate the P profile well, it is difficult to conclude which model is correct. It is suggested that it is possible to conclude which model is correct from the P profile under oxidation at CP^+s >1× 1020 cm-3 (s: surface).
Self-consistent pitch angle diffusion of newborn ions
Yoon, P.H.; Ziebell, L.F.; Wu, C.S. )
1991-04-01
It is well known from the study of ion pickup process by the solar wind that hydromagnetic turbulence can cause the newborn ions to undergo rapid pitch angle diffusion or scattering, thus forming a partial or complete velocity shell distribution. In most of the recent discussions based on quasi-linear theory it is assumed that the spectral wave energy density associated with the hydromagnetic turbulence is constant in time, implying a saturated turbulence level. In contrast, in this work the effect of self-consistently generated waves on the ion dynamics is discussed on the basis of a simple theoretical model, and it is shown both analytically and numerically that the self-consistent diffusion process leads to a time-asymptotic partial shell distribution which extends approximately from the initial pitch angle cos{sup {minus}1}{mu}{sub 0} to {approximately}{pi}/2 in pitch angle space. Particularly, the role of resonant versus nonresonant diffusion processes is discussed in detail. In addition, the effect of continuous ion source term is also incorporated in the numerical analysis since in cometary environment the ions are continuously created.
1985-10-10
MARCOPOLO calculates the radial and axial diffusion coefficients in one-group and multi-group theory for a cylinderized cell (Wigner-Seitz theory) with several concentric zones according to the isotropic shock or linear anisotropic shock hypotheses.
The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...
The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...
Alonso de Mezquia, David; Wang, Zilin; Lapeira, Estela; Klein, Michael; Wiegand, Simone; Mounir Bou-Ali, M
2014-11-01
In this study, the thermodiffusion, molecular diffusion, and Soret coefficients of 12 binary mixtures composed of toluene, n-hexane and n-dodecane in the whole range of concentrations at atmospheric pressure and temperatures of 298.15 K and 308.15 K have been determined. The experimental measurements have been carried out using the Thermogravitational Column, the Sliding Symmetric Tubes and the Thermal Diffusion Forced Rayleigh Scattering techniques. The results obtained using the different techniques show a maximum deviation of 9% for the thermodiffusion coefficient, 8% for the molecular diffusion coefficient and 2% for the Soret coefficient. For the first time we report a decrease of the thermodiffusion coefficient with increasing ratio of the thermal expansion coefficient and viscosity for a binary mixture of an organic ring compound with a short n-alkane. This observation is discussed in terms of interactions between the different components. Additionally, the thermogravitational technique has been used to measure the thermodiffusion coefficients of four ternary mixtures consisting of toluene, n-hexane and n-dodecane at 298.15 K. In order to complete the study, the values obtained for the molecular diffusion coefficient in binary mixtures, and the thermodiffusion coefficient of binary and ternary mixtures have been compared with recently derived correlations. PMID:25376978
NASA Astrophysics Data System (ADS)
Tulipano, P. Karina; Millar, William S.; Imielinska, Celina; Liu, Xin; Rosiene, Joel; D'Ambrosio, Anthony L.
2006-03-01
Magnetic resonance (MR) imaging is an imaging modality that is used in the management and diagnosis of acute stroke. Common MR imaging techniques such as diffusion weighted imaging (DWI) and apparent diffusion coefficient maps (ADC) are used routinely in the diagnosis of acute infarcts. However, advances in radiology information systems and imaging protocols have led to an overload of image information that can be difficult to manage and time consuming. Automated techniques to assist in the identification of acute ischemic stroke can prove beneficial to 1) the physician by providing a mechanism for early detection and 2) the patient by providing effective stroke therapy at an early stage. We have processed DW images and ADC maps using a novel automated Relative Difference Map (RDM) method that was tailored to the identification and delineation of the stroke region. Results indicate that the technique can delineate regions of acute infarctions on DW images and ADC maps. A formal evaluation of the RDM algorithm was performed by comparing accuracy measurements between 1) expert generated ground truths with the RDM delineated DWI infarcts and 2) RDM delineated DWI infarcts with RDM delineated ADC infarcts. The accuracy measurements indicate that the RDM delineated DWI infarcts are comparable to the expert generated ground truths. The true positive volume fraction value (TPVF), between RDM delineated DWI and ADC infarcts, is nonzero for all cases with an acute infarct while the value for non-acute cases remains zero.
NASA Astrophysics Data System (ADS)
Farajnezhad, Arsalan; Asef Afshar, Orang; Asgarpour Khansary, Milad; Shirazian, Saeed
2016-07-01
The free volume theory has found practical application for prediction of diffusional behavior of polymer/solvent systems. In this paper, reviewing free volume theory, binary mutual diffusion coefficients in some polymer/solvent systems have been systematically presented through chemical thermodynamic modeling in terms of both activity coefficients and fugacity coefficients models. Here chemical thermodynamic model of compressible regular solution (CRS) was used for evaluation of diffusion coefficients calculations as the pure component properties would be required only. Four binary polymeric solutions of cyclohexane/polyisobutylene, n-pentane/polyisobutylene, toluene/polyisobutylene and chloroform/polyisobutylene were considered. The agreement between calculated data and the experimentally collected data was desirable and no considerable error propagation in approximating mutual diffusion coefficients has been observed.
Shalchi, A.; Danos, R. J.
2013-03-10
A spatially varying mean magnetic field gives rise to so-called adiabatic focusing of energetic particles propagating through the universe. In the past, different analytical approaches have been proposed to calculate the particle diffusion coefficient along the mean field with focusing. In the present paper, we show how these different results are related to each other. New results for the parallel diffusion coefficient that are more general than previous results are also presented.
NASA Technical Reports Server (NTRS)
Kozyra, J. U.; Rasmussen, C. E.; Miller, R. H.; Lyons, L. R.
1994-01-01
Protons that are convected into the inner magnetosphere in response to enhanced magnetic activity can resonate with ducted plasmaspheric hiss in the outer plasmasphere via an anomalous Doppler-shifted cyclotron resonance. Plasmaspheric hiss is a right-hand-polarized electromagnetic emission that is observed to fill the plasmasphere on a routine basis. When plasmaspheric hiss is confined within field-aligned ducts or guided along density gradients, wave normal angles remain largely below 45 deg. This allows resonant interactions with ions at typical ring current and radiation belt energies to take place. Such field-aligned ducts have been observed both within the plasmasphere and in regions outside of the plasmasphere. Wave intensities are estimated using statistical information from studies of detached plasma regions. Diffusion coefficients are presented for a range of L shells and proton energies for a fixed wave distribution. Harmonic resonances in the range N = +/-100 are considered in order to include interactions between hiss at 100 Hz to 2 kHz frequencies, and protons in the energy range between approximately 10 keV and 1000 keV. Diffusion timescales are estimated to be of the order of tens of days and comparable to or shorter than lifetimes for Coulomb decay and charge exchange losses over most of the energy and spatial ranges of interest.
Computing the blood brain barrier (BBB) diffusion coefficient: A molecular dynamics approach
NASA Astrophysics Data System (ADS)
Shamloo, Amir; Pedram, Maysam Z.; Heidari, Hossein; Alasty, Aria
2016-07-01
Various physical and biological aspects of the Blood Brain Barrier (BBB) structure still remain unfolded. Therefore, among the several mechanisms of drug delivery, only a few have succeeded in breaching this barrier, one of which is the use of Magnetic Nanoparticles (MNPs). However, a quantitative characterization of the BBB permeability is desirable to find an optimal magnetic force-field. In the present study, a molecular model of the BBB is introduced that precisely represents the interactions between MNPs and the membranes of Endothelial Cells (ECs) that form the BBB. Steered Molecular Dynamics (SMD) simulations of the BBB crossing phenomenon have been carried out. Mathematical modeling of the BBB as an input-output system has been considered from a system dynamics modeling viewpoint, enabling us to analyze the BBB behavior based on a robust model. From this model, the force profile required to overcome the barrier has been extracted for a single NP from the SMD simulations at a range of velocities. Using this data a transfer function model has been obtained and the diffusion coefficient is evaluated. This study is a novel approach to bridge the gap between nanoscale models and microscale models of the BBB. The characteristic diffusion coefficient has the nano-scale molecular effects inherent, furthermore reducing the computational costs of a nano-scale simulation model and enabling much more complex studies to be conducted.
Double obstacle phase field approach to an inverse problem for a discontinuous diffusion coefficient
NASA Astrophysics Data System (ADS)
Deckelnick, Klaus; Elliott, Charles M.; Styles, Vanessa
2016-04-01
We propose a double obstacle phase field approach to the recovery of piece-wise constant diffusion coefficients for elliptic partial differential equations. The approach to this inverse problem is that of optimal control in which we have a quadratic fidelity term to which we add a perimeter regularization weighted by a parameter σ. This yields a functional which is optimized over a set of diffusion coefficients subject to a state equation which is the underlying elliptic PDE. In order to derive a problem which is amenable to computation the perimeter functional is relaxed using a gradient energy functional together with an obstacle potential in which there is an interface parameter ɛ. This phase field approach is justified by proving {{Γ }}- convergence to the functional with perimeter regularization as ε \\to 0. The computational approach is based on a finite element approximation. This discretization is shown to converge in an appropriate way to the solution of the phase field problem. We derive an iterative method which is shown to yield an energy decreasing sequence converging to a discrete critical point. The efficacy of the approach is illustrated with numerical experiments.
Kubo number and magnetic field line diffusion coefficient for anisotropic magnetic turbulence.
Pommois, P; Veltri, P; Zimbardo, G
2001-06-01
The magnetic field line diffusion coefficients Dx and D(y) are obtained by numerical simulations in the case that all the magnetic turbulence correlation lengths l(x), l(y), and l(z) are different. We find that the variety of numerical results can be organized in terms of the Kubo number, the definition of which is extended from R=(deltaB/B(0))(l(parallel)/l(perpendicular)) to R=(deltaB/B(0))(l(z)/l(x)), for l(x) > or = l(y). Here, l(parallel) (l(perpendicular)) is the correlation length along (perpendicular to) the average field B(0)=B(0)ê(z). We have anomalous, non-Gaussian transport for R less, similar 0.1, in which case the mean square deviation scales nonlinearly with time. For R greater, similar 1 we have several Gaussian regimes: an almost quasilinear regime for 0.1 less, similar R less, similar 1, an intermediate, transition regime for 1 less, similar R less, similar 10, and a percolative regime for R greater, similar 10. An analytical form of the diffusion coefficient is proposed, D(i)=D(deltaBl(z)/B(0)l(x))(mu)(l(i)/l(x))(nu)l(2)(x)/l(z), which well describes the numerical simulation results in the quasilinear, intermediate, and percolative regimes.
Joshi, R P; Sridhara, V; Schoenbach, K H
2006-09-22
Interaction of electric fields with biological systems has begun to receive considerable attention for applications that include field-assisted drug delivery, medical interventions, and genetic engineering. External fields induce the strongest effects at membranes with electroporation being a common feature. Membrane transport in this context of poration is often based on continuum approaches utilizing macroscopic parameters such as the permittivity, diffusion coefficients, and mobilities. In such modeling, field dependences, local inhomogeneities, and microscopic details are usually ignored. Here, a molecular dynamics (MD) scheme is used for a more rigorous and physically realistic evaluation of such parameters for potential application to electroporative transport model development. A suitable membrane structure containing a nanopore derived from MD analysis is used as the initial geometric configuration. Both static and frequency dependent diffusion coefficients have been evaluated. Permittivities are also calculated and shown to be dramatically non-uniform in the vicinity of membranes under high external fields. A positive feedback mechanism leading to enhanced membrane fields is discussed.
Effect of cation on diffusion coefficient of ionic liquids at onion-like carbon electrodes.
Van Aken, Katherine L; McDonough, John K; Li, Song; Feng, Guang; Chathoth, Suresh M; Mamontov, Eugene; Fulvio, Pasquale F; Cummings, Peter T; Dai, Sheng; Gogotsi, Yury
2014-07-16
While most supercapacitors are limited in their performance by the stability of the electrolyte, using neat ionic liquids (ILs) as the electrolyte can expand the voltage window and temperature range of operation. In this study, ILs with bis(trifluoromethylsulfonyl)imide (Tf2N) as the anion were investigated as the electrolyte in onion-like carbon-based electrochemical capacitors. To probe the influence of cations on the electrochemical performance of supercapacitors, three different cations were used: 1-ethyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium and 1,6-bis(3-methylimidazolium-1-yl). A series of electrochemical characterization tests was performed using cyclic voltammetry (CV), galvanostatic cycling and electrochemical impedance spectroscopy (EIS). Diffusion coefficients were measured using EIS and correlated with quasielastic neutron scattering and molecular dynamics simulation. These three techniques were used in parallel to confirm a consistent trend between the three ILs. It was found that the IL with the smaller sized cation had a larger diffusion coefficient, leading to a higher capacitance at faster charge-discharge rates. Furthermore, the IL electrolyte performance was correlated with increasing temperature, which limited the voltage stability window and led to the formation of a solid electrolyte interphase on the carbon electrode surface, evident in both the CV and EIS experiments.
Sassiat, P.R.; Mourier, P.; Caude, M.H.; Rosset, R.H.
1987-04-15
Diffusion coefficients of acetone, benzene, naphthalene, 1,3,5-trimethylbenzene, phenanthrene, pyrene, and chrysene have been measured by a chromatographic broadening technique in an open capillary tube (950 x 0.103 cm) filled with pure supercritical carbon dioxide or, in the case of benzene, with CO/sub 2/-methanol mixtures ranging from 0 to 100% in methanol. In pure supercritical CO/sub 2/, diffusion coefficients decrease when density increases; they increase linearly vs. the reciprocal of the viscosity; a linear relationship exists between the logarithms of the diffusion coefficients and the molar volumes with a slope of 0.6. Finally, in the range 0.6-0.9 g cm/sup -3/, the Wilke and Chang equation for the calculation of diffusion coefficients is valid for supercritical CO/sub 2/. For methanol-CO/sub 2/ mixtures there is no discontinuity of the diffusion coefficient of benzene when the methanol content varies from 0 to 100%. In the usual supercritical chromatographic conditions with a methanol content less than 10%, diffusion coefficients are at least 4 times higher than in pure methanol.
Koenig, Gary M; Ong, Rizal; Cortes, Angel D; Moreno-Razo, J Antonio; de Pablo, Juan J; Abbott, Nicholas L
2009-07-01
This letter reports that darkfield microscopy can be used to track the trajectories of chemically functionalized gold nanoparticles in nematic liquid crystals (LCs), thus leading to measurements of the diffusion coefficients of the nanoparticles in the LCs. These measurements reveal that the diffusion coefficients of the nanoparticles dispersed in the LC are strongly dependent on the surface chemistry of the nanoparticles. Because the changes in surface chemistry are measured to have negligible influence on the diffusion coefficients of the same nanoparticles dispersed in isotropic solvents, we conclude that surface chemistry-induced changes in the local order of LCs underlie the behavior of the diffusion coefficients of the nanoparticles in the LC. Surface chemistry-dependent ordering of the LCs near the surfaces of the nanoparticles was also found to influence diffusion coefficients measured when the LC was heated above the bulk nematic-to-isotropic transition temperature. These experimental measurements are placed into the context of past theoretical predictions regarding the impact of local ordering of LCs on diffusion coefficients. The results that emerge from this study provide important insights into the mobility of nanoparticles in LCs and suggest new approaches based on measurements of nanoparticle dynamics that can yield information on the ordering of LCs near nanoparticles.
Charge collected by diffusion from an ion track under mixed boundary conditions
Edmonds, L.D. )
1991-04-01
This paper analyzes charge-carrier diffusion from an ion track in a silicon substrate, at least a few hundred {mu}m thick. The substrate upper surface is treated as reflective except for a small section, intended to represent a reverse-biased junction, which is treated as a sink. Total charge collected by the sink is calculated by assuming transport to be governed by an ambipolar diffusion equation with temporally constant and spatially uniform carrier lifetime and diffusion coefficient. Present results apply to a normally incident track but could easily be generalized to arbitrary track direction. The collected charge is found to depend on track length and on the electrostatic capacitance, rather than the area, of the sink. Theoretical prediction are compared to the results of a numerical simulation called the Poisson and Continuity Equation Solver (PISCES) for three cases and are found to agree within a factor of two in the worst case.
In-situ estimate of submesoscale horizontal eddy diffusion coefficients across a front
NASA Astrophysics Data System (ADS)
Nencioli, Francesco; d'Ovidio, Francesco; Doglioli, Andrea; Petrenko, Anne
2013-04-01
Fronts, jets and eddies are ubiquitous features of the world oceans, and play a key role in regulating energy budget, heat transfer, horizontal and vertical transport, and biogeochemical processes. Although recent advances in computational power have favored the analysis of mesoscale and submesoscale dynamics from high-resolution numerical simulations, studies from in-situ observations are still relatively scarce. The small dimensions and short duration of such structures still pose major challenges for fine-scale dedicated field experiments. As a consequence, in-situ quantitative estimates of key physical parameters for high-resolution numerical models, such as horizontal eddy diffusion coefficients, are still lacking. The Latex10 campaign (September 1-24, 2010), within the LAgrangian Transport EXperiment (LATEX), adopted an adaptive sampling strategy that included satellite data, ship-based current measurements, and iterative Lagrangian drifter releases to successfully map coherent transport structures in the western Gulf of Lion. Comparisons with AVHRR imagery evidenced that the detected structures were associated with an intense frontal feature, originated by the convergence and subsequent stirring of colder coastal waters with warmer open-sea waters. We present a method for computing horizontal eddy diffusion coefficients by combining the stirring rates estimated from the Lagrangian drifter trajectories with the shapes of the surface temperature and salinity gradient (assumed to be at the equilibrium) from the ship thermosalinograph. The average value we obtained from various sections across the front is 2.5 m2s-1, with horizontal scales (width of the front) ranging between 0.5 and 2.5 km. This is in line with the values commonly used for high-resolution numerical simulations. Further field experiment will be required to extend the results to different ocean regions and regimes, and to thoroughly test the robustness of the equilibrium hypothesis. Remote sensed
NASA Astrophysics Data System (ADS)
Yoshida, Ken; Matubayasi, Nobuyuki; Nakahara, Masaru
2008-12-01
The self-diffusion coefficients D for water, benzene, and cyclohexane are determined by using the pulsed-field-gradient spin echo method in high-temperature conditions along the liquid branch of the coexistence curve: 30-350 °C (1.0-0.58 g cm-3), 30-250 °C (0.87-0.56 g cm-3), and 30-250 °C (0.77-0.48 g cm-3) for water, benzene, and cyclohexane, respectively. The temperature and density effects are separated and their origins are discussed by examining the diffusion data over a wide range of thermodynamic states. The temperature dependence of the self-diffusion coefficient for water is larger than that for organic solvents due to the large contribution of the attractive hydrogen-bonding interaction in water. The density dependence is larger for organic solvents than for water. The difference is explained in terms of the van der Waals picture that the structure of nonpolar organic solvents is determined by the packing effect due to the repulsion or exclusion volumes. The dynamic solvation shell scheme [K. Yoshida et al., J. Chem. Phys. 127, 174509 (2007)] is applied for the molecular interpretation of the translational dynamics with the aid of molecular dynamics simulation. In water at high temperatures, the velocity relaxation is not completed before the relaxation of the solvation shell (mobile-shell type) as a result of the breakdown of the hydrogen-bonding network. In contrast, the velocity relaxation of benzene is rather confined within the solvation shell (in-shell type).
Mikitishin, S.I.; Fedorov, V.V.; Sergienko, O.M.; Sokolovskii, O.R.; Spas, Y.M.
1985-07-01
A proposed method of measuring the diffusion coefficient of hydrogen D from the rate of change in electrical resistance in degassing of hydrogenimpregnated specimens is presented. Distinguished by simplicity, the method makes it possible to determine the coefficients with any method of hydrogen impregnation in a broad temperature range.
Measurement of diffusion coefficient using a diaphragm cell: PbBr 2AgBr system
NASA Astrophysics Data System (ADS)
Singh, N. B.; Glicksman, M. E.; Coriell, S. R.; Duval, W. M. B.; Santoro, G. J.; DeWitt, R.
1996-09-01
The diffusion coefficient of molten lead bromide-silver bromide was determined using a two chamber diaphragm cell separated by the porous membrane of a sintered glass disk. Only dilute mixtures of PbBr 2AgBr were studied. The interdiffusion coefficient was determined to be 1.71 × 10 -5cm 20/s.
Apparent diffusion coefficient and fractional anisotropy of newly diagnosed grade II gliomas†
Khayal, Inas S.; McKnight, Tracy R.; McGue, Colleen; Vandenberg, Scott; Lamborn, Kathleen R.; Chang, Susan M.; Cha, Soonmee; Nelson, Sarah J.
2013-01-01
Distinguishing between low-grade oligodendrogliomas (ODs) and astrocytomas (AC) is of interest for defining prognosis and stratifying patients to specific treatment regimens. The purpose of this study was to determine if the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) from diffusion imaging can help to differentiate between newly diagnosed grade II OD and AC subtypes and to evaluate the ADC and FA values for the mixed population of oligoastrocytomas (OA). Fifty-three patients with newly diagnosed grade II gliomas were studied using a 1.5T whole body scanner (23 ODs, 16 ACs, and 14 OAs). The imaging protocol included post-gadolinium T1-weighted images, T2-weighted images, and either three and/or six directional diffusion imaging sequence with b = 1000 s/mm2. Diffusion-weighted images were analyzed using in-house software to calculate maps of ADC and for six directional acquisitions, FA. The intensity values were normalized by values from normal appearing white matter (NAWM) to generate maps of normalized apparent diffusion coefficient (nADC) and normalized fractional anisotropy (nFA). The hyperintense region in the T2 weighted image was defined as the T2All region. A Mann–Whitney rank-sum test was performed on the 25th, median, and 75th nADC and nFA among the three subtypes. Logistic regression was performed to determine how well the nADC and nFA predict subtype. Lesions diagnosed as being OD had significantly lower nADC and significantly higher nFA, compared to AC. The nADC and nFA values individually classified the data with an accuracy of 87%. Combining the two did not enhance the classification. The patients with OA had nADC and nFA values between those of OD and AC. This suggests that ADC and FA may be helpful in directing tissue sampling to the most appropriate regions for taking biopsies in order to make a definitive diagnosis. PMID:19125391
Diffusion enhancement due to low-energy ion bombardment during sputter etching and deposition
Eltoukhy, A.H.; Greene, J.E.
1980-08-01
The effects of low-energy ion bombardment on enhancing elemental diffusion rates at both heterojunction interfaces during film deposition and over the compositionally altered layer created during sputter etching alloy targets have been considered. Depth dependent enhanced interdiffusion coefficients, expressed as D*(x)=D*(0) exp(-x/L/sub d/), where D*(0) is more than five orders of magnitude greater than thermal diffusion values, were measured in InSb/GaSb multilayer structures deposited by multitarget bias sputering. D*(0) was determined from the amplitude u of the compositional modulation in the multilayered films (layer thicknesses between 20 and 45 A) as measured by superlattice x-ray diffraction techniques. The value of D*(0) was found to increase from 3 x 10/sup -17/ to 1 x 10/sup -16/ cm/sup 2//sec as the applied substrate bias was increased from 0 to -75 V. However even at V/sub a/=0, the diffusion coefficient was enhanced owing to an induced substrate potential with respect to the positive space-charge region in the Ar discharge. The diffusion length of L/sub d/ of the ion bombardment created defects was approx.1000 A. Enhanced diffusion also has a significiant effect on the altered layer thickness x/sub e/ and the total sputtering time t/sub e/ (or ion dose) required to reach steady state during ion etching of multielement targets. The effects of using an exponentially depth dependent versus a constant value of the enhanced diffusion coefficient on calculated values of x/sub e/ and t/sub e/ in single-phase binary alloys were considered. The results show that both x/sub e/ and t/sub e/ are considerably larger using a depth dependent D*(x), when L/sub d/
Diffusion, trapping, and isotope exchange of plasma implanted deuterium in ion beam damaged tungsten
NASA Astrophysics Data System (ADS)
Barton, Joseph Lincoln
Tritium accumulation in nuclear fusion reactor materials is a major concern for practical and safe fusion energy. This work examines hydrogen isotope exchange as a tritium removal technique, analyzes the effects of neutron damage using high energy copper ion beams, and introduces a diffusion coefficient that is a function of the concentration of trapped atoms. Tungsten samples were irradiated with high energy (0.5 - 5 MeV) copper ions for controlled levels of damage - 10-3 to 10-1 displacements per atom (dpa) - at room temperature. Samples were then exposed to deuterium plasma at constant temperature (˜ 380 K) to a high fluence of 1024 ions/m2, where retention is at is maximized (i.e. saturated). By then subsequently exposing these samples to fractions of this fluence with hydrogen plasma, isotope exchange rates were observed. The resulting deuterium still trapped in the tungsten is then measured post mortem. Nuclear reaction analysis (NRA) gives the depth resolved deuterium retention profile with the 3He(D,p) 4He reaction, and thermal desorption spectroscopy (TDS) gives the total amount of deuterium trapped in the tungsten by heating a sample in vacuum up to 1200 K and measuring the evaporated gas molecules with a residual gas analyzer. Isotope exchange data show that hydrogen atoms can displace trapped deuterium atoms efficiently only up to the first few microns, but does not affect the atoms trapped at greater depths. In ion damaged tungsten, measurements showed a significant increase in retention in the damage region proportional to dpa 0.66, which results in a significant spike in total retention, and isotope exchange in damaged samples is still ineffective at depths greater than a few microns. Thus, isotope exchange is not an affective tritium removal technique; however, these experiments have shown that trapping in material defects greatly affects diffusion. These experiments lead to a simplified diffusion model with defect densities as the only free
Diffuse plasma effects on the ion-hose instability
Welch, D.R.; Hughes, T.P. )
1993-02-01
The transverse stability of a relativistic electron beam focused by an ion channel in the presence of a diffuse background plasma is investigated. The linear behavior of the ion-hose and electron two-stream instabilities is treated analytically using a spread-mass model for the beam and ion channel and a cold-fluid model for the plasma. The electron two-stream instability is found to be quite weak. As the plasma neutralization radius approaches the beam radius, the ion-hose growth rate is reduced up to 50% before the model's assumptions break down. Particle-in-cell simulations confirm the linear analytic theory and show that the electron two-stream instability can saturate nonlinearly with little beam emittance growth.
Ab initio transport coefficients of Ar+ ions in Ar for cold plasma jet modeling
NASA Astrophysics Data System (ADS)
Chicheportiche, A.; Lepetit, B.; Gadéa, F. X.; Benhenni, M.; Yousfi, M.; Kalus, R.
2014-06-01
Collision cross sections and transport coefficients are calculated for Ar+ ions, in the ground state 2P3/2 and in the metastable state 2P1/2, colliding with their parent gas. Differential and integral collision cross sections are obtained using a numerical integration of the nuclear Schrödinger equation for several published interaction potentials. The Cohen-Schneider semi-empirical model is used for the inclusion of the spin-orbit interaction. The corresponding differential collision cross sections are then used in an optimized Monte Carlo code to calculate the ion transport coefficients for each initial ion state over a wide range of reduced electric field. Ion swarm data results are then compared with available experimental data for different proportions of ions in each state. This allows us to identify the most reliable interaction potential which reproduces ion transport coefficients falling within the experimental error bars. Such ion transport data will be used in electrohydrodynamic and chemical kinetic models of the low temperature plasma jet to quantify and to tune the active species production for a better use in biomedical applications.
Goemans, M.G.E.; Gloyna, E.F.; Buelow, S.J.
1996-04-01
Molecular diffusion coefficients of lithium-, sodium-, potassium-, cesium-, calcium-, and strontium nitrate in subcritical water were determined by analysis of Taylor dispersion profiles. Pressures ranged from 300 to 500 bar at temperatures ranging from 25{degrees}C to 300{degrees}C. The reported diffusion values were determined at infinite dilution. Molecular diffusion coefficients were 10 to 20 times faster in near-critical subcritical water than in water at ambient temperature and pressure (ATP). These findings implied that the diffusion rates were more liquid like than they were gas like, hence experimental results were correlated with diffusion models for liquids. The subcritical diffusion data presented in this work, and supercritical diffusion results published elsewhere were correlated with hydrodynamic diffusion equations. Both the Wilke-Chang correlation and the Stokes-Einstein equation yielded predictions within 10% of the experimental results if the structure of the diffusing species could be estimated. The effect of the increased diffusion rates on mass transfer rates in supercritical water oxidation applications was quantified, with emphasis on heterogeneous oxidation processes. This study and results published elsewhere showed that diffusion limited conditions are much more likely to be encountered in SCWO processes than commonly acknowledged.
NASA Astrophysics Data System (ADS)
Seo, Hyunseok; Choi, Joonsung; Oh, Changheun; Han, Yeji; Park, HyunWook
2014-10-01
This work proposes an isotropic diffusion weighting method for a high-resolution diffusion-weighted image and for a high-resolution apparent diffusion coefficient (ADC) map using a single radial scan in MRI. By using a conventional radial imaging technique, a high-resolution diffusion-weighted (DW) image can be obtained at the cost of a long imaging time. To reduce the imaging time, the proposed method acquires a DW image by altering the diffusion gradient directions for each radial spoke. The acquisition order and directions of the diffusion gradients for an accurate DW image and an ADC map are also proposed by modifying the golden angle ratio in 3D space. In addition, an individual-direction diffusion-weighted (id-DW) image can also be obtained by a diffusion gradient direction, which is one of the multiple directions used in isotropic diffusion weighting. Computer simulations and experiment results show that the proposed method is more accurate and faster than the conventional radial diffusion-weighted imaging. This study suggests that the proposed isotropic diffusion-weighted imaging can be used to obtain a DW image and a high-resolution ADC map accurately in a single radial scan, while reducing the artifacts caused by the diffusion anisotropy, compared to the diffusion-weighted echo-planar-imaging.
Modeling Diffusion Induced Stresses for Lithium-Ion Battery Materials
NASA Astrophysics Data System (ADS)
Chiu Huang, Cheng-Kai
Advancing lithium-ion battery technology is of paramount importance for satisfying the energy storage needs in the U.S., especially for the application in the electric vehicle industry. To provide a better acceleration for electric vehicles, a fast and repeatable discharging rate is required. However, particle fractures and capacity loss have been reported under high current rate (C-rate) during charging/discharging and after a period of cycling. During charging and discharging, lithium ions extract from and intercalate into electrode materials accompanied with the volume change and phase transition between Li-rich phase and Li-poor phase. It is suggested that the diffusion-induced-stress is one of the main reasons causing capacity loss due to the mechanical degradation of electrode particles. Therefore, there is a fundamental need to provide a mechanistic understanding by considering the structure-mechanics-property interactions in lithium-ion battery materials. Among many cathode materials, the olivine-based lithium-iron-phosphate (LiFePO4) with an orthorhombic crystal structure is one of the promising cathode materials for the application in electric vehicles. In this research we first use a multiphysic approach to investigate the stress evolution, especially on the phase boundary during lithiation in single LiFePO4 particles. A diffusion-controlled finite element model accompanied with the experimentally observed phase boundary propagation is developed via a finite element package, ANSYS, in which lithium ion concentration-dependent anisotropic material properties and volume misfits are incorporated. The stress components on the phase boundary are used to explain the Mode I, Mode II, and Mode III fracture propensities in LiFePO4 particles. The elastic strain energy evolution is also discussed to explain why a layer-by-layer lithium insertion mechanism (i.e. first-order phase transformation) is energetically preferred. Another importation issue is how current
Hadjiev, Nicholas A; Amsden, Brian G
2015-02-10
The ability to estimate the diffusion coefficient of a solute within hydrogels has important application in the design and analysis of hydrogels used in drug delivery, tissue engineering, and regenerative medicine. A number of mathematical models have been derived for this purpose; however, they often rely on fitted parameters and so have limited predictive capability. Herein we assess the ability of the obstruction-scaling model to provide reasonable estimates of solute diffusion coefficients within hydrogels, as well as the assumption that a hydrogel can be represented as an entangled polymer solution of an equivalent concentration. Fluorescein isothiocyanate dextran solutes were loaded into sodium alginate solutions as well as hydrogels of different polymer volume fractions formed from photoinitiated cross-linking of methacrylate sodium alginate. The tracer diffusion coefficients of these solutes were measured using fluorescence recovery after photobleaching (FRAP). The measured diffusion coefficients were then compared to the values predicted by the obstruction-scaling model. The model predictions were within ±15% of the measured values, suggesting that the model can provide useful estimates of solute diffusion coefficients within hydrogels and solutions. Moreover, solutes diffusing in both sodium alginate solutions and hydrogels were demonstrated to experience the same degree of solute mobility restriction given the same effective polymer concentration, supporting the assumption that a hydrogel can be represented as an entangled polymer solution of equivalent concentration.
Hadjiev, Nicholas A; Amsden, Brian G
2015-02-10
The ability to estimate the diffusion coefficient of a solute within hydrogels has important application in the design and analysis of hydrogels used in drug delivery, tissue engineering, and regenerative medicine. A number of mathematical models have been derived for this purpose; however, they often rely on fitted parameters and so have limited predictive capability. Herein we assess the ability of the obstruction-scaling model to provide reasonable estimates of solute diffusion coefficients within hydrogels, as well as the assumption that a hydrogel can be represented as an entangled polymer solution of an equivalent concentration. Fluorescein isothiocyanate dextran solutes were loaded into sodium alginate solutions as well as hydrogels of different polymer volume fractions formed from photoinitiated cross-linking of methacrylate sodium alginate. The tracer diffusion coefficients of these solutes were measured using fluorescence recovery after photobleaching (FRAP). The measured diffusion coefficients were then compared to the values predicted by the obstruction-scaling model. The model predictions were within ±15% of the measured values, suggesting that the model can provide useful estimates of solute diffusion coefficients within hydrogels and solutions. Moreover, solutes diffusing in both sodium alginate solutions and hydrogels were demonstrated to experience the same degree of solute mobility restriction given the same effective polymer concentration, supporting the assumption that a hydrogel can be represented as an entangled polymer solution of equivalent concentration. PMID:25499554
Casalegno, Mosè; Castiglione, Franca; Passarello, Marco; Mele, Andrea; Passerini, Stefano; Raos, Guido
2016-07-21
Carboxymethylcellulose (CMC) has been proposed as a polymeric binder for electrodes in environmentally friendly Li-ion batteries. Its physical properties and interaction with Li(+) ions in water are interesting not only from the point of view of electrode preparation-processability in water is one of the main reasons for its environmental friendliness-but also for its possible application in aqueous Li-ion batteries. We combine molecular dynamics simulations and variable-time pulsed field gradient spin-echo (PFGSE) NMR spectroscopy to investigate Li(+) transport in CMC-based solutions. Both the simulations and experimental results show that, at concentrations at which Li-CMC has a gel-like consistency, the Li(+) diffusion coefficient is still very close to that in water. These Li(+) ions interact preferentially with the carboxylate groups of CMC, giving rise to a rich variety of coordination patterns. However, the diffusion of Li(+) in these systems is essentially unrestricted, with a fast, nanosecond-scale exchange of the ions between CMC and the aqueous environment. PMID:27253620
Casalegno, Mosè; Castiglione, Franca; Passarello, Marco; Mele, Andrea; Passerini, Stefano; Raos, Guido
2016-07-21
Carboxymethylcellulose (CMC) has been proposed as a polymeric binder for electrodes in environmentally friendly Li-ion batteries. Its physical properties and interaction with Li(+) ions in water are interesting not only from the point of view of electrode preparation-processability in water is one of the main reasons for its environmental friendliness-but also for its possible application in aqueous Li-ion batteries. We combine molecular dynamics simulations and variable-time pulsed field gradient spin-echo (PFGSE) NMR spectroscopy to investigate Li(+) transport in CMC-based solutions. Both the simulations and experimental results show that, at concentrations at which Li-CMC has a gel-like consistency, the Li(+) diffusion coefficient is still very close to that in water. These Li(+) ions interact preferentially with the carboxylate groups of CMC, giving rise to a rich variety of coordination patterns. However, the diffusion of Li(+) in these systems is essentially unrestricted, with a fast, nanosecond-scale exchange of the ions between CMC and the aqueous environment.
Sijens, Paul E; Irwan, Roy; Potze, Jan Hendrik; Mostert, Jop P; De Keyser, Jacques; Oudkerk, Matthijs
2006-04-01
Fifteen multiple sclerosis patients were examined by diffusion tensor imaging (DTI) to determine fractional anisotropy (FA) and apparent diffusion coefficient (ADC) in a superventricular volume of interest of 8 x 8 x 2 cm(3) containing gray matter (GM) and white matter (WM) tissue. Point resolved spectroscopy 2D-chemical shift imaging of the same volume was performed without water suppression. The water contents and DTI parameters in 64 voxels of 2 cm(3) were compared. The water content was increased in patients compared with controls (GM: 244+/-21 vs. 194+/-10 a.u.; WM: 245+/-32 vs. 190+/-11 a.u.), FA decreased (GM: 0.226+/-0.038 vs. 0.270+/-0.020; WM: 0.337+/-0.044 vs. 0.402+/-0.011) and ADC increased [GM: 1134+/-203 vs. 899+/-28 (x10(-6) mm(2)/s); WM: 901+/-138 vs. 751+/-17 (x10(-6) mm(2)/s)]. Correlations of water content with FA and ADC in WM were strong (r=-0.68, P<0.02; r=0.75; P<0.01, respectively); those in GM were weaker (r=-0.50, P<0.05; r=0.45, P<0.1, respectively). Likewise, FA and ADC were more strongly correlated in WM (r=-0.88; P<0.00001) than in GM (r=-0.69, P<0.01). The demonstrated relationship between DTI parameters and water content in multiple sclerosis patients suggests a potential for therapy monitoring in normal-appearing brain tissue.
Radon (222Rn) in ground water of fractured rocks: A diffusion/ion exchange model
Wood, W.W.; Kraemer, T.F.; Shapiro, A.
2004-01-01
Ground waters from fractured igneous and high-grade sialic metamorphic rocks frequently have elevated activity of dissolved radon (222Rn). A chemically based model is proposed whereby radium (226Ra) from the decay of uranium (238U) diffuses through the primary porosity of the rock to the water-transmitting fracture where it is sorbed on weathering products. Sorption of 226Ra on the fracture surface maintains an activity gradient in the rock matrix, ensuring a continuous supply of 226Ra to fracture surfaces. As a result of the relatively long half-life of 226Ra (1601 years), significant activity can accumulate on fracture surfaces. The proximity of this sorbed 226Ra to the active ground water flow system allows its decay progeny 222Rn to enter directly into the water. Laboratory analyses of primary porosity and diffusion coefficients of the rock matrix, radon emanation, and ion exchange at fracture surfaces are consistent with the requirements of a diffusion/ion- exchange model. A dipole-brine injection/withdrawal experiment conducted between bedrock boreholes in the high-grade metamorphic and granite rocks at the Hubbard Brook Experimental Forest, Grafton County, New Hampshire, United States (42??56???N, 71??43???W) shows a large activity of 226Ra exchanged from fracture surfaces by a magnesium brine. The 226Ra activity removed by the exchange process is 34 times greater than that of 238U activity. These observations are consistent with the diffusion/ion-exchange model. Elutriate isotopic ratios of 223Ra/226Ra and 238U/226Ra are also consistent with the proposed chemically based diffusion/ion-exchange model.
Radon (222Rn) in ground water of fractured rocks: a diffusion/ion exchange model.
Wood, Warren W; Kraemer, Thomas F; Shapiro, Allen
2004-01-01
Ground waters from fractured igneous and high-grade sialic metamorphic rocks frequently have elevated activity of dissolved radon (222Rn). A chemically based model is proposed whereby radium (226Ra) from the decay of uranium (238U) diffuses through the primary porosity of the rock to the water-transmitting fracture where it is sorbed on weathering products. Sorption of 226Ra on the fracture surface maintains an activity gradient in the rock matrix, ensuring a continuous supply of 226Ra to fracture surfaces. As a result of the relatively long half-life of 226Ra (1601 years), significant activity can accumulate on fracture surfaces. The proximity of this sorbed 226Ra to the active ground water flow system allows its decay progeny 222Rn to enter directly into the water. Laboratory analyses of primary porosity and diffusion coefficients of the rock matrix, radon emanation, and ion exchange at fracture surfaces are consistent with the requirements of a diffusion/ion-exchange model. A dipole-brine injection/withdrawal experiment conducted between bedrock boreholes in the high-grade metamorphic and granite rocks at the Hubbard Brook Experimental Forest, Grafton County, New Hampshire, United States (42 degrees 56'N, 71 degrees 43'W) shows a large activity of 226Ra exchanged from fracture surfaces by a magnesium brine. The 226Ra activity removed by the exchange process is 34 times greater than that of 238U activity. These observations are consistent with the diffusion/ion-exchange model. Elutriate isotopic ratios of 223Ra/226Ra and 238U/226Ra are also consistent with the proposed chemically based diffusion/ion-exchange model. PMID:15318778
Radon (222Rn) in ground water of fractured rocks: a diffusion/ion exchange model.
Wood, Warren W; Kraemer, Thomas F; Shapiro, Allen
2004-01-01
Ground waters from fractured igneous and high-grade sialic metamorphic rocks frequently have elevated activity of dissolved radon (222Rn). A chemically based model is proposed whereby radium (226Ra) from the decay of uranium (238U) diffuses through the primary porosity of the rock to the water-transmitting fracture where it is sorbed on weathering products. Sorption of 226Ra on the fracture surface maintains an activity gradient in the rock matrix, ensuring a continuous supply of 226Ra to fracture surfaces. As a result of the relatively long half-life of 226Ra (1601 years), significant activity can accumulate on fracture surfaces. The proximity of this sorbed 226Ra to the active ground water flow system allows its decay progeny 222Rn to enter directly into the water. Laboratory analyses of primary porosity and diffusion coefficients of the rock matrix, radon emanation, and ion exchange at fracture surfaces are consistent with the requirements of a diffusion/ion-exchange model. A dipole-brine injection/withdrawal experiment conducted between bedrock boreholes in the high-grade metamorphic and granite rocks at the Hubbard Brook Experimental Forest, Grafton County, New Hampshire, United States (42 degrees 56'N, 71 degrees 43'W) shows a large activity of 226Ra exchanged from fracture surfaces by a magnesium brine. The 226Ra activity removed by the exchange process is 34 times greater than that of 238U activity. These observations are consistent with the diffusion/ion-exchange model. Elutriate isotopic ratios of 223Ra/226Ra and 238U/226Ra are also consistent with the proposed chemically based diffusion/ion-exchange model.
Helander, P.; Hazeltine, R.D.; Catto, P.J.
1996-12-31
The orderings in the kinetic equations commonly used to study the plasma core of a tokamak do not allow a balance between parallel ion streaming and radial diffusion, and are, therefore, inappropriate in the plasma edge. Different orderings are required in the edge region where radial transport across the steep gradients associated with the scrape-off layer is large enough to balance the rapid parallel flow caused by conditions close to collecting surfaces (such as the Bohm sheath condition). In the present work, we derive and solve novel kinetic equations, allowing for such a balance, and construct distinctive transport laws for impure, collisional, edge plasmas in which the perpendicular transport is (i) due to Coulomb collisions of ions with heavy impurities, or (ii) governed by anomalous diffusion driven by electrostatic turbulence. In both the collisional and anomalous radial transport cases, we find that one single diffusion coefficient determines the radial transport of particles, momentum and heat. The parallel transport laws and parallel thermal force in the scrape-off layer assume an unconventional form, in which the relative ion-impurity flow is driven by a combination of the conventional parallel gradients, and new (i) collisional or (ii) anomalous terms involving products of radial derivatives of the temperature and density with the radial shear of the parallel velocity. Thus, in the presence of anomalous radial diffusion, the parallel ion transport cannot be entirely classical, as usually assumed in numerical edge computations. The underlying physical reason is the appearance of a novel type of parallel thermal force resulting from the combined action of anomalous diffusion and radial temperature and velocity gradients. In highly sheared flows the new terms can modify impurity penetration into the core plasma.
NASA Astrophysics Data System (ADS)
Manouchehrian Fard, Manouchehr; Beiki, Hossein
2016-10-01
An experimental study was performed to measure benzoic acid diffusion coefficient in water-based γ-Al2O3 nanofluids at different temperatures. Measurements were carried out at 15, 20 and 25 °C. γ-Al2O3 nanoparticles with an average diameter of 10-20 nm were added into de-ionized water as the based fluid. Nanoparticles volume fractions used in the based fluid were 0.025, 0.05, 0.1, 0.2, 0.4 and 0.8 %. Measurements showed that the diffusion coefficients was not changed with nanoparticles concentration and no enhancement was found. Dependence of diffusion coefficients on nanoparticles concentration followed the same trend in all temperatures investigated in this work. Nano stirring and nano-obstacles could be regarded as two reasons for mass diffusivity changes in nanofluids.
NASA Technical Reports Server (NTRS)
Mogro-Campero, A.; Fillius, W.
1976-01-01
The process of trapped particle absorption by the inner Jovian satellites is considered in detail taking into account both the particle and satellite motions in a magnetic dipole field which is displaced from the center of the planet and tilted with respect to the planetary rotation axis. An expression is derived for computing the sweeping time at a given satellite, defined as the time required for the satellite to sweep up a given fraction of the trapped particles within its sweeping region. By making use of the sweeping time and the radial diffusion equation of particle transport approximate expressions for the diffusion coefficient are derived. Measurements obtained by Pioneer 10 are then used to obtain estimates of the diffusion coefficient at the orbits of Io and Europa. We find that the diffusion coefficient is a function of energy and magnetic latitude for electrons in the energy range 0.7-14 MeV.
Absolute rate coefficients for photorecombination of beryllium-like and boron-like silicon ions
NASA Astrophysics Data System (ADS)
Bernhardt, D.; Becker, A.; Brandau, C.; Grieser, M.; Hahn, M.; Krantz, C.; Lestinsky, M.; Novotný, O.; Repnow, R.; Savin, D. W.; Spruck, K.; Wolf, A.; Müller, A.; Schippers, S.
2016-04-01
We report measured rate coefficients for electron-ion recombination of Si10+ forming Si9+ and of Si9+ forming Si8+, respectively. The measurements were performed using the electron-ion merged-beams technique at a heavy-ion storage ring. Electron-ion collision energies ranged from 0 to 50 eV for Si9+ and from 0 to 2000 eV for Si10+, thus, extending previous measurements for Si10+ (Orban et al 2010 Astrophys. J. 721 1603) to much higher energies. Experimentally derived rate coefficients for the recombination of Si9+ and Si10+ ions in a plasma are presented along with simple parameterizations. These rate coefficients are useful for the modeling of the charge balance of silicon in photoionized plasmas (Si9+ and Si10+) and in collisionally ionized plasmas (Si10+ only). In the corresponding temperature ranges, the experimentally derived rate coefficients agree with the latest corresponding theoretical results within the experimental uncertainties.
Temperature Activated Diffusion of Radicals through Ion Implanted Polymers.
Wakelin, Edgar A; Davies, Michael J; Bilek, Marcela M M; McKenzie, David R
2015-12-01
Plasma immersion ion implantation (PIII) is a promising technique for immobilizing biomolecules on the surface of polymers. Radicals generated in a subsurface layer by PIII treatment diffuse throughout the substrate, forming covalent bonds to molecules when they reach the surface. Understanding and controlling the diffusion of radicals through this layer will enable efficient optimization of this technique. We develop a model based on site to site diffusion according to Fick's second law with temperature activation according to the Arrhenius relation. Using our model, the Arrhenius exponential prefactor (for barrierless diffusion), D0, and activation energy, EA, for a radical to diffuse from one position to another are found to be 3.11 × 10(-17) m(2) s(-1) and 0.31 eV, respectively. The model fits experimental data with a high degree of accuracy and allows for accurate prediction of radical diffusion to the surface. The model makes useful predictions for the lifetime over which the surface is sufficiently active to covalently immobilize biomolecules and it can be used to determine radical fluence during biomolecule incubation for a range of storage and incubation temperatures so facilitating selection of the most appropriate parameters.
2014-01-01
Background Diffusion tensor cardiac magnetic resonance (DT-CMR) enables probing of the microarchitecture of the myocardium, but the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) reported in healthy volunteers have been inconsistent. The aim of this study was to validate a stimulated-echo diffusion sequence using phantoms, and to assess the intercentre reproducibility of in-vivo diffusion measures using the sequence. Methods and results A stimulated-echo, cardiac-gated DT-CMR sequence with a reduced-field-of-view, single-shot EPI readout was used at two centres with 3 T MRI scanners. Four alkane phantoms with known diffusivities were scanned at a single centre using a stimulated echo sequence and a spin-echo Stejskal-Tanner diffusion sequence. The median (maximum, minimum) difference between the DT-CMR sequence and Stejskal-Tanner sequence was 0.01 (0.04, 0.0006) × 10-3 mm2/s (2%), and between the DT-CMR sequence and literature diffusivities was 0.02 (0.05, 0.006) × 10-3 mm2/s (4%). The same ten healthy volunteers were scanned using the DT-CMR sequence at the two centres less than seven days apart. Average ADC and FA were calculated in a single mid-ventricular, short axis slice. Intercentre differences were tested for statistical significance at the p < 0.05 level using paired t-tests. The mean ADC ± standard deviation for all subjects averaged over both centres was 1.10 ± 0.06 × 10-3 mm2/s in systole and 1.20 ± 0.09 × 10-3 mm2/s in diastole; FA was 0.41 ± 0.04 in systole and 0.54 ± 0.03 in diastole. With similarly-drawn regions-of-interest, systolic ADC (difference 0.05 × 10-3 mm2/s), systolic FA (difference 0.003) and diastolic FA (difference 0.01) were not statistically significantly different between centres (p > 0.05), and only the diastolic ADC showed a statistically significant, but numerically small, difference of 0.07 × 10-3 mm2/s (p = 0.047). The intercentre, intrasubject coefficients
Theoretical calculations of the self-reflection coefficients for some species of ions
NASA Astrophysics Data System (ADS)
Luo, Z. M.; Gou, C.; Hou, Q.
2002-06-01
The bipartition model of ion transport has been applied to study the self-reflection coefficients of some species of ion beams which are normally incident to a surface. The computational results has been compared with the results taken from Eckstein and Biersack and the compilation data given by Thomas, Janev and Smith. It was found that there are in reasonable agreement between the results given by the bipartition model and the results given by Monte Carlo method.
Surface diffusion coefficient of Au atoms on single layer graphene grown on Cu
Ruffino, F. Cacciato, G.; Grimaldi, M. G.
2014-02-28
A 5 nm thick Au film was deposited on single layer graphene sheets grown on Cu. By thermal processes, the dewetting phenomenon of the Au film on the graphene was induced so to form Au nanoparticles. The mean radius, surface-to-surface distance, and surface density evolution of the nanoparticles on the graphene sheets as a function of the annealing temperature were quantified by scanning electron microscopy analyses. These quantitative data were analyzed within the classical mean-field nucleation theory so to obtain the temperature-dependent Au atoms surface diffusion coefficient on graphene: D{sub S}(T)=[(8.2±0.6)×10{sup −8}]exp[−(0.31±0.02(eV)/(at) )/kT] cm{sup 2}/s.
Dos Santos, Leslie; Laberty-Robert, Christel; Maréchal, Manuel; Perrot, Hubert; Sel, Ozlem
2015-09-15
Electrochemical Impedance Spectroscopy (EIS) was, for the first time, used to estimate the global transverse proton diffusion coefficient, D(H+)(EHM), in electrospun hybrid conducting membranes (EHMs). In contrast to conventional impedance spectroscopy, EIS measurements were performed at room temperature with a liquid interface. In this configuration, the measure of the bulk proton transport is influenced by the kinetics of the transfer of proton at the solid/liquid interface. We demonstrated that the use of additives in the process of the membrane impacts the organization of the hydrophilic domains and also the proton transport. The D(H+)(EHM) is close to 1.10(-7) cm(2) s(-1) (± 0.1.10(-7) cm(2) s(-1)) for the EHMs without additive, whereas it is 4.10(-6) cm(2) s(-1) (± 0.4.10(-6) cm(2) s(-1)) for EHMs with additives.
Alipoor, Mohammad; Maier, Stephan E.; Gu, Irene Yu-Hua; Mehnert, Andrew; Kahl, Fredrik
2015-01-01
The monoexponential model is widely used in quantitative biomedical imaging. Notable applications include apparent diffusion coefficient (ADC) imaging and pharmacokinetics. The application of ADC imaging to the detection of malignant tissue has in turn prompted several studies concerning optimal experiment design for monoexponential model fitting. In this paper, we propose a new experiment design method that is based on minimizing the determinant of the covariance matrix of the estimated parameters (D-optimal design). In contrast to previous methods, D-optimal design is independent of the imaged quantities. Applying this method to ADC imaging, we demonstrate its steady performance for the whole range of input variables (imaged parameters, number of measurements, and range of b-values). Using Monte Carlo simulations we show that the D-optimal design outperforms existing experiment design methods in terms of accuracy and precision of the estimated parameters. PMID:26839880
Binary Diffusion Coefficients of Platinum(II) Acetylacetonate in Supercritical Carbon Dioxide.
Kong, Chang Yi; Siratori, Tomoya; Wang, Guosheng; Sako, Takeshi; Funazukuri, Toshitaka
2013-11-14
Binary diffusion coefficients (D12) and retention factors (k) of platinum(II) acetylacetonate at infinitesimal concentration in supercritical (sc) carbon dioxide (CO2) were measured by the chromatographic impulse response method with a poly(ethylene glycol) coated capillary column at temperatures from (308.15 to 343.15) K and pressures from (8.5 to 40.0) MPa, and D12 in liquid ethanol at temperatures from (298.15 to 333.15) K and atmospheric pressure by the Taylor dispersion method. As has been seen for our previously reported data on other metal complexes measured in sc CO2 and organic solvents, the D12 data in sc CO2 and liquid ethanol were represented by a function of temperature and solvent viscosity. The D12 values for metal complexes were not related to the solute molecular weights. The k values in sc CO2 were expressed by a function of temperature and CO2 density.
Energetic particle diffusion coefficients upstream of quasi-parallel interplanetary shocks
NASA Technical Reports Server (NTRS)
Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.
1989-01-01
The properties of about 30 to 130-keV/e protons and alpha particles upstream of six quasi-parallel interplanetary shocks that passed by the ISEE 3 spacecraft during 1978-1979 were analyzed, and the values for the upstream energegic particle diffusion coefficient, kappa, in these six events were deduced for a number of energies and upstream positions. These observations were compared with predictions of Lee's (1983) theory of shock acceleration. It was found that the observations verified the prediction of the A/Q dependence (where A and Q are the particle atomic mass and ionization state, respectively) of kappa for alpha and proton particles upstream of the quasi-parallel shocks.
Curing and diffusion coefficient study in pastırma, a Turkish traditional meat product.
Akköse, Ahmet; Aktaş, Nesimi
2014-01-01
Changes in water activity (a(w)), moisture and salt contents and salt effective diffusion coefficients (D(eff)) of pastırma samples during the curing process were determined. At the end of the curing stage, a(w) values decreased to 0.942. The average initial moisture content of the samples decreased from 74.56% to 66.64%, depending on the curing time and the average salt content increased to 15.65 g NaCl/100 g dry matter at the end of the 48-hour curing process. Pastırma samples were assumed the geometry of endless slices, and the analytical solution of Fick's second equation was used for determination of salt D(eff) values. Salt D(eff) values were found to vary between 1.49×10(-9)-4.08×10(-9) m(2)/s.
Alipoor, Mohammad; Maier, Stephan E; Gu, Irene Yu-Hua; Mehnert, Andrew; Kahl, Fredrik
2015-01-01
The monoexponential model is widely used in quantitative biomedical imaging. Notable applications include apparent diffusion coefficient (ADC) imaging and pharmacokinetics. The application of ADC imaging to the detection of malignant tissue has in turn prompted several studies concerning optimal experiment design for monoexponential model fitting. In this paper, we propose a new experiment design method that is based on minimizing the determinant of the covariance matrix of the estimated parameters (D-optimal design). In contrast to previous methods, D-optimal design is independent of the imaged quantities. Applying this method to ADC imaging, we demonstrate its steady performance for the whole range of input variables (imaged parameters, number of measurements, and range of b-values). Using Monte Carlo simulations we show that the D-optimal design outperforms existing experiment design methods in terms of accuracy and precision of the estimated parameters.
The diffusion coefficient of vacancies and jump length of electrons in zinc doped manganese ferrite
NASA Astrophysics Data System (ADS)
Tawfik, A.; Olofa, S. A.
1997-10-01
Samples of mixed ferrite Mn 1- xZn xFe 2O 4 ( x = 0.0, 0.1, 0.3, 0.5 and 0.7) have been prepared by the usual ceramic technique. X-ray diffraction patterns confirmed the spinel cubic structure for the samples. The jump length of electrons in the octahedral sites and electrical conductivity were studied as a function of zinc concentration. The increase of the jump length with Zn concentration is attributed to the substitution of Fe 3+ for Zn 2+ at the A sites which increase the B-B interaction. The increase of the diffusion coefficient and jump rate of vacancies with increasing Zn concentration expedite densification of the samples during sintering.
The effective diffusion coefficient of a small molecule in a two-phase gel medium
NASA Astrophysics Data System (ADS)
Kingsburry, Christine; Slater, Gary W.
2009-12-01
Using simple theoretical arguments and exact numerical lattice calculations, Hickey et al. [J. Chem. Phys. 124, 204903 (2006)] derived and tested an expression for the effective diffusion coefficient of a probe molecule in a two-phase medium consisting of a hydrogel with large gel-free inclusions. Although providing accurate predictions, this expression neglects important characteristics that such two-phase systems can present. In this article, we extend the previously derived expression in order to include local interactions between the gel and the analyte, interfacial effects between the main phase and the inclusions, and finally a possible incomplete separation between the two phases. We test our new, generalized expressions using exact numerical calculations. These generalized equations should be a useful tool for the development of novel multiphase systems for specific applications, such as drug-delivery platforms.
Diffusivity of ions in agarose gels and intervertebral disc: effect of porosity.
Gu, Wei Yong; Yao, Hai; Vega, Adriana L; Flagler, Daniel
2004-12-01
The effect of tissue porosity on ion (sodium, potassium, and chloride) diffusivity in agarose gels and porcine intervertebral disc tissues was investigated using an electrical conductivity method. An empirical, constitutive model for diffusivity (D) of solutes in porous fibrous media was proposed: D/Do = exp[-alpha(r(s)/k(1/2))beta] where r(s) is the Stokes radius of a solute, kappa is the Darcy permeability of the porous medium, Do is the diffusivity in free solution, alpha and beta are two positive parameters whose values depend on material structure. It is found that alpha = 1.25 +/- 0.138, beta = 0.681 +/- 0.059 (95% confidence interval, R2 = 0.92, n = 72) for agarose gels and alpha = 1.29 +/- 0.171 and beta = 0.372 +/- 0.088 (95% confidence interval, R2 = 0.88, n = 86) for porcine annulus fibrosus. The functional relationship between solute diffusivity and tissue deformation was derived. Comparisons of our model prediction with experimental data on diffusion coefficients of macromolecules (proteins, dextrans, polymer beads) in agarose gels in the literature were made. Our results were also compared to the data on ion diffusivity in charged gels and in cartilaginous tissues reported in the literature. There was a good agreement between our model prediction and the data in the literature. The present study provides additional information on solute diffusivity in uncharged gels and charged tissues, and is important for understanding nutritional transport in avascular cartilaginous tissues under different mechanical loading conditions.
A uniqueness result for the identification of a time-dependent diffusion coefficient
NASA Astrophysics Data System (ADS)
Fraguela, A.; Infante, J. A.; Ramos, A. M.; Rey, J. M.
2013-12-01
This paper deals with the problem of determining the time-dependent thermal diffusivity coefficient of a medium, when the evolution of the temperature in a part of it is known. Such situations arise in the context of food technology, when thermal processes at high pressures are used for extending the shelf life of the food, in order to preserve its nutritional and organoleptic properties (Infante et al 2009 On the Modelling and Simulation of High Pressure Processes and Inactivation of Enzymes in Food Engineering pp 2203-29 and Otero et al 2007 J. Food Eng. 78 1463-70). The phenomenon is modeled by the heat equation involving a term which depends on the source temperature and pressure increase, and appropriate initial and boundary conditions. We study the inverse problem of determining time-dependent thermal diffusivities k, when some temperature measurements at the border and inside the medium are known. We prove the uniqueness of the inverse problem solution under suitable a priori assumptions on regularity, size and growth of k.
Motyka, Kamil; Mikuška, Pavel; Večeřa, Zbyněk
2011-04-15
The comparison of theoretical approaches describing the collection of analyte in the cylindrical wet effluent diffusion denuder (CWEDD) with experimental data is presented. Various absorption liquids were tested for the collection of formaldehyde (distilled-deionized water, H(2)SO(4) solution), acetaldehyde (distilled-deionized water) and nitrous acid (distilled-deionized water, sodium carbonate and sodium bicarbonate solutions of various concentrations and sodium phosphate pH 6-8) in CWEDD. pH of absorption liquids significantly influences the collection of formaldehyde as well as nitrous acid. The collection efficiency of formaldehyde for 0.05 M H(2)SO(4) as absorption liquid was generally higher than for distilled-deionized water. Absorption liquid pH markedly affected the collection efficiency of HONO too (with increasing pH the collection efficiency increase). Data derived by Gormley-Kennedy equation for all investigated compounds were overestimated especially for higher flow rates of air, data calculated with respect to Henry constant are not in good agreement with experimental data and are considerably depended on a determination of the Henry constant value. The CWEDD can be alternative tool for the determination of uptake coefficient. Obtained uptake coefficients were in good agreement with data found in other literature. PMID:21376982
Remote sensing of the diffuse attenuation coefficient of ocean water. [coastal zone color scanner
NASA Technical Reports Server (NTRS)
Austin, R. W.
1981-01-01
A technique was devised which uses remotely sensed spectral radiances from the sea to assess the optical diffuse attenuation coefficient, K (lambda) of near-surface ocean water. With spectral image data from a sensor such as the coastal zone color scanner (CZCS) carried on NIMBUS-7, it is possible to rapidly compute the K (lambda) fields for large ocean areas and obtain K "images" which show synoptic, spatial distribution of this attenuation coefficient. The technique utilizes a relationship that has been determined between the value of K and the ratio of the upwelling radiances leaving the sea surface at two wavelengths. The relationship was developed to provide an algorithm for inferring K from the radiance images obtained by the CZCS, thus the wavelengths were selected from those used by this sensor, viz., 443, 520, 550 and 670 nm. The majority of the radiance arriving at the spacecraft is the result of scattering in the atmospheric and is unrelated to the radiance signal generated by the water. A necessary step in the processing of the data received by the sensor is, therefore, the effective removal of these atmospheric path radiance signals before the K algorithm is applied. Examples of the efficacy of these removal techniques are given together with examples of the spatial distributions of K in several ocean areas.
Doping-Enhanced Lithium Diffusion in Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Wu, Gang; Wu, Shunnian; Wu, Ping
2011-09-01
We disclose a distortion-assisted diffusion mechanism in Li3N and Li2.5Co0.5N by first-principles simulations. A B2g soft mode at the Γ point is found in α-Li3N, and a more stable α'-Li3N (P3¯m1) structure, which is 0.71 meV lower in energy, is further derived. The same soft mode is inherited into Li2.5Co0.5N and is enhanced due to Co doping. Consequently, unlike the usual Peierls spin instability along Co-N chains, large lithium-ion displacements on the Li-N plane are induced by a set of soft modes. Such a distortion is expected to offer Li atoms a route to bypass the high diffusion barrier and promote Li-ion conductivity. In addition, we further illustrate abnormal Born effective charges along Co-N chains which result from the competition between the motions of electrons and ion cores. Our results provide future opportunities in both fundamental understanding and structural modifications of Li-ion battery materials.
Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients.
Fei, Hongzhan; Wiedenbeck, Michael; Yamazaki, Daisuke; Katsura, Tomoo
2013-06-13
Water has been thought to affect the dynamical processes in the Earth's interior to a great extent. In particular, experimental deformation results suggest that even only a few tens of parts per million of water by weight enhances the creep rates in olivine by orders of magnitude. However, those deformation studies have limitations, such as considering only a limited range of water concentrations and very high stresses, which might affect the results. Rock deformation can also be understood as an effect of silicon self-diffusion, because the creep rates of minerals at temperatures as high as those in the Earth's interior are limited by self-diffusion of the slowest species. Here we experimentally determine the silicon self-diffusion coefficient DSi in forsterite at 8 GPa and 1,600 K to 1,800 K as a function of water content CH2O from less than 1 to about 800 parts per million of water by weight, yielding the relationship, DSi ≈ (CH2O)(1/3). This exponent is strikingly lower than that obtained by deformation experiments (1.2; ref. 7). The high nominal creep rates in the deformation studies under wet conditions may be caused by excess grain boundary water. We conclude that the effect of water on upper-mantle rheology is very small. Hence, the smooth motion of the Earth's tectonic plates cannot be caused by mineral hydration in the asthenosphere. Also, water cannot cause the viscosity minimum zone in the upper mantle. And finally, the dominant mechanism responsible for hotspot immobility cannot be water content differences between their source and surrounding regions. PMID:23765497
van de Lagemaat, J.; Zhu, K.; Benkstein, K. D.; Frank, A. J.
2008-02-01
Electron transport in electrolyte-filled mesoporous TiO{sub 2}-based solar cells is described quantitatively from the perspective of the continuous-time random walk model. An analytical expression is derived for the time-dependent diffusion coefficient of electrons, which transforms at a characteristic (Fermi) time from strongly time-dependent values (dispersive transport) at short times to relatively time-independent values (nondispersive transport) at long times. At short times, the diffusion coefficient displays a power-law behavior with time. The timescale for the diffusion coefficient to reach its steady-state value is substantially longer than the Fermi time. The Fermi time and the steepness of the distribution of waiting times associated with trap sites have a strong influence on both the steady-state diffusion coefficient of electrons and on the dispersiveness of electron transport. At short timescales, ionic drag, associated with the ambipolar effect, slows electron transport through the TiO{sub 2} matrix, whereas at steady state, transport is trap limited. Decreasing the electron density lowers the steady-state limit of the diffusion coefficient and increases the timescale over which transport is dispersive.
First-principles binary diffusion coefficients for H, H2 and four normal alkanes + N2
Jasper, Ahren W.; Kamarchik, Eugene; Miller, James A.; Klippenstein, Stephen J.
2014-09-30
Collision integrals related to binary (dilute gas) diffusion are calculated classically for six species colliding with N2. The most detailed calculations make no assumptions regarding the complexity of the potential energy surface, and the resulting classical collision integrals are in excellent agreement with previous semiclassical results for H + N2 and H2 + N2 and with recent experimental results for C n H2n+2 + N2, n = 2–4. The detailed classical results are used to test the accuracy of three simplifying assumptions typically made when calculating collision integrals: (1) approximating the intermolecular potential as isotropic, (2) neglecting the internal structuremore » of the colliders (i.e., neglecting inelasticity), and (3) employing unphysical R–12 repulsive interactions. The effect of anisotropy is found to be negligible for H + N2 and H2 + N2 (in agreement with previous quantum mechanical and semiclassical results for systems involving atomic and diatomic species) but is more significant for larger species at low temperatures. For example, the neglect of anisotropy decreases the diffusion coefficient for butane + N2 by 15% at 300 K. The neglect of inelasticity, in contrast, introduces only very small errors. Approximating the repulsive wall as an unphysical R–12 interaction is a significant source of error at all temperatures for the weakly interacting systems H + N2 and H2 + N2, with errors as large as 40%. For the normal alkanes in N2, which feature stronger interactions, the 12/6 Lennard–Jones approximation is found to be accurate, particularly at temperatures above –700 K where it predicts the full-dimensional result to within 5% (although with somewhat different temperature dependence). Overall, the typical practical approach of assuming isotropic 12/6 Lennard–Jones interactions is confirmed to be suitable for combustion applications except for weakly interacting systems, such as H + N2. For these systems, anisotropy and inelasticity
First-principles binary diffusion coefficients for H, H₂, and four normal alkanes + N₂.
Jasper, Ahren W; Kamarchik, Eugene; Miller, James A; Klippenstein, Stephen J
2014-09-28
Collision integrals related to binary (dilute gas) diffusion are calculated classically for six species colliding with N2. The most detailed calculations make no assumptions regarding the complexity of the potential energy surface, and the resulting classical collision integrals are in excellent agreement with previous semiclassical results for H + N2 and H2 + N2 and with recent experimental results for CnH(2n+2) + N2, n = 2-4. The detailed classical results are used to test the accuracy of three simplifying assumptions typically made when calculating collision integrals: (1) approximating the intermolecular potential as isotropic, (2) neglecting the internal structure of the colliders (i.e., neglecting inelasticity), and (3) employing unphysical R(-12) repulsive interactions. The effect of anisotropy is found to be negligible for H + N2 and H2 + N2 (in agreement with previous quantum mechanical and semiclassical results for systems involving atomic and diatomic species) but is more significant for larger species at low temperatures. For example, the neglect of anisotropy decreases the diffusion coefficient for butane + N2 by 15% at 300 K. The neglect of inelasticity, in contrast, introduces only very small errors. Approximating the repulsive wall as an unphysical R(-12) interaction is a significant source of error at all temperatures for the weakly interacting systems H + N2 and H2 + N2, with errors as large as 40%. For the normal alkanes in N2, which feature stronger interactions, the 12/6 Lennard-Jones approximation is found to be accurate, particularly at temperatures above ∼700 K where it predicts the full-dimensional result to within 5% (although with somewhat different temperature dependence). Overall, the typical practical approach of assuming isotropic 12/6 Lennard-Jones interactions is confirmed to be suitable for combustion applications except for weakly interacting systems, such as H + N2. For these systems, anisotropy and inelasticity can safely be
First-principles binary diffusion coefficients for H, H₂, and four normal alkanes + N₂.
Jasper, Ahren W; Kamarchik, Eugene; Miller, James A; Klippenstein, Stephen J
2014-09-28
Collision integrals related to binary (dilute gas) diffusion are calculated classically for six species colliding with N2. The most detailed calculations make no assumptions regarding the complexity of the potential energy surface, and the resulting classical collision integrals are in excellent agreement with previous semiclassical results for H + N2 and H2 + N2 and with recent experimental results for CnH(2n+2) + N2, n = 2-4. The detailed classical results are used to test the accuracy of three simplifying assumptions typically made when calculating collision integrals: (1) approximating the intermolecular potential as isotropic, (2) neglecting the internal structure of the colliders (i.e., neglecting inelasticity), and (3) employing unphysical R(-12) repulsive interactions. The effect of anisotropy is found to be negligible for H + N2 and H2 + N2 (in agreement with previous quantum mechanical and semiclassical results for systems involving atomic and diatomic species) but is more significant for larger species at low temperatures. For example, the neglect of anisotropy decreases the diffusion coefficient for butane + N2 by 15% at 300 K. The neglect of inelasticity, in contrast, introduces only very small errors. Approximating the repulsive wall as an unphysical R(-12) interaction is a significant source of error at all temperatures for the weakly interacting systems H + N2 and H2 + N2, with errors as large as 40%. For the normal alkanes in N2, which feature stronger interactions, the 12/6 Lennard-Jones approximation is found to be accurate, particularly at temperatures above ∼700 K where it predicts the full-dimensional result to within 5% (although with somewhat different temperature dependence). Overall, the typical practical approach of assuming isotropic 12/6 Lennard-Jones interactions is confirmed to be suitable for combustion applications except for weakly interacting systems, such as H + N2. For these systems, anisotropy and inelasticity can safely be
First-principles binary diffusion coefficients for H, H2, and four normal alkanes + N2
NASA Astrophysics Data System (ADS)
Jasper, Ahren W.; Kamarchik, Eugene; Miller, James A.; Klippenstein, Stephen J.
2014-09-01
Collision integrals related to binary (dilute gas) diffusion are calculated classically for six species colliding with N2. The most detailed calculations make no assumptions regarding the complexity of the potential energy surface, and the resulting classical collision integrals are in excellent agreement with previous semiclassical results for H + N2 and H2 + N2 and with recent experimental results for CnH2n+2 + N2, n = 2-4. The detailed classical results are used to test the accuracy of three simplifying assumptions typically made when calculating collision integrals: (1) approximating the intermolecular potential as isotropic, (2) neglecting the internal structure of the colliders (i.e., neglecting inelasticity), and (3) employing unphysical R-12 repulsive interactions. The effect of anisotropy is found to be negligible for H + N2 and H2 + N2 (in agreement with previous quantum mechanical and semiclassical results for systems involving atomic and diatomic species) but is more significant for larger species at low temperatures. For example, the neglect of anisotropy decreases the diffusion coefficient for butane + N2 by 15% at 300 K. The neglect of inelasticity, in contrast, introduces only very small errors. Approximating the repulsive wall as an unphysical R-12 interaction is a significant source of error at all temperatures for the weakly interacting systems H + N2 and H2 + N2, with errors as large as 40%. For the normal alkanes in N2, which feature stronger interactions, the 12/6 Lennard-Jones approximation is found to be accurate, particularly at temperatures above ˜700 K where it predicts the full-dimensional result to within 5% (although with somewhat different temperature dependence). Overall, the typical practical approach of assuming isotropic 12/6 Lennard-Jones interactions is confirmed to be suitable for combustion applications except for weakly interacting systems, such as H + N2. For these systems, anisotropy and inelasticity can safely be
Zheng, De-Xian; Meng, Shu-Chun; Liu, Qing-Jun; Li, Chuan-Ting; Shang, Xi-Dan; Zhu, Yu-Seng; Bai, Tian-Jun; Xu, Shi-Ming
2016-01-01
AIM: To determine if efficacy of chemotherapy on liver metastasis of gastrointestinal tract cancer can be predicted by apparent diffusion coefficient (ADC) values of diffusion-weighted imaging (DWI). METHODS: In total, 86 patients with liver metastasis of gastrointestinal tract cancer (156 metastatic lesions) diagnosed in our hospital were included in this study. The maximum diameters of these tumors were compared with each other before treatment, 2 wk after treatment, and 12 wk after treatment. Selected patients were classified as the effective group and the ineffective group, depending on the maximum diameter of the tumor after 12 wk of treatment; and the ADC values at different treatment times between the two groups were compared. Spearman rank correlation was used to analyze the relationship between ADC value and tumor diameter. Receiver operating characteristic curve (ROC curve) was used to analyze the ADC values before treatment to predict the patient’s sensitivity and specificity degree of efficacy to the chemotherapy. RESULTS: There was no difference in age between the two groups and in maximum tumor diameter before treatment and 2 wk after treatment. However, after 12 wk of treatment, maximum tumor diameter in the effective group was significantly lower than that in the ineffective group (P < 0.05). Before treatment, ADC values in the ineffective group were significantly higher than those in the effective group (P < 0.05). There was no difference in ADC values between the effective and ineffective groups after 2 and 12 wk of treatment. However, ADC values were significantly higher after 2 and 12 wk of treatment compared to before treatment in the effective group (P < 0.05). Spearman rank correlation analysis showed that ADC value before treatment and the reduced percentage of the maximum tumor diameter after 12 wk of treatment were negatively correlated, while the increase in the percentage of the ADC value 12 wk after treatment and the decrease in the
Park, Sung Yoon; Kim, Chan Kyo; Park, Byung Kwan; Park, Won; Park, Hee Chul; Han, Deok Hyun; Kim, Bohyun
2012-06-01
Purpose: To investigate the feasibility of diffusion-weighted MRI (DWI) as an early and reproducible change indicator in patients receiving radiotherapy for prostate cancer (PC). Methods and Materials: Eight consecutive patients with biopsy-proven PC underwent DWI at 3T. All patients who received external-beam radiotherapy had four serial MR scans, as follows: before therapy (PreTx); after 1 week of therapy (PostT1); after 3 weeks of therapy (PostT2); and 1 month after the completion of therapy (PostT3). At each time, the apparent diffusion coefficient (ADC) was measured in tumors and normal tissues. For reproducibility of the ADC measurement, five patients also had two separate pretreatment DWI scans at an interval of <2 weeks. Serum prostate-specific antigen (PSA) levels were evaluated at the same time as MR scans. Results: Thirteen tumors (peripheral zone = 10; transition zone = 3) were found. The mean ADC values for the tumors from PreTx to PostT3 were 0.86, 1.03, 1.15, and 1.26 Multiplication-Sign 10{sup -3} mm{sup 2}/s in sequence, respectively. Compared with PreTx, PostT1 (p = 0.005), PostT2 (p = 0.003), and PostT3 (p < 0.001) showed a significant increase in ADC values. The mean ADC values of the benign tissues from PreTx to PostT3 were 1.60, 1.58, 1.47, and 1.46 Multiplication-Sign 10{sup -3} mm{sup 2}/s in sequence, respectively. Reproducibility of ADC measurements was confirmed with a mean difference in ADC of -0.04 in peripheral zone and -0.017 in transition zone between two separate pretreatment MR scans. The mean PSA levels from PreTx to PostT3 were 9.05, 9.18, 9.25, and 4.11 ng/mL in sequence, respectively. Conclusions: DWI, as a reproducible biomarker, has the potential to evaluate the early therapeutic changes of PC to radiotherapy.
Jafar, Maysam M; Parsai, Arman; Miquel, Marc E
2016-01-01
There is considerable disparity in the published apparent diffusion coefficient (ADC) values across different anatomies. Institutions are increasingly assessing repeatability and reproducibility of the derived ADC to determine its variation, which could potentially be used as an indicator in determining tumour aggressiveness or assessing tumour response. In this manuscript, a review of selected articles published to date in healthy extra-cranial body diffusion-weighted magnetic resonance imaging is presented, detailing reported ADC values and discussing their variation across different studies. In total 115 studies were selected including 28 for liver parenchyma, 15 for kidney (renal parenchyma), 14 for spleen, 13 for pancreatic body, 6 for gallbladder, 13 for prostate, 13 for uterus (endometrium, myometrium, cervix) and 13 for fibroglandular breast tissue. Median ADC values in selected studies were found to be 1.28 × 10-3 mm2/s in liver, 1.94 × 10-3 mm2/s in kidney, 1.60 × 10-3 mm2/s in pancreatic body, 0.85 × 10-3 mm2/s in spleen, 2.73 × 10-3 mm2/s in gallbladder, 1.64 × 10-3 mm2/s and 1.31 × 10-3 mm2/s in prostate peripheral zone and central gland respectively (combined median value of 1.54×10-3 mm2/s), 1.44 × 10-3 mm2/s in endometrium, 1.53 × 10-3 mm2/s in myometrium, 1.71 × 10-3 mm2/s in cervix and 1.92 × 10-3 mm2/s in breast. In addition, six phantom studies and thirteen in vivo studies were summarized to compare repeatability and reproducibility of the measured ADC. All selected phantom studies demonstrated lower intra-scanner and inter-scanner variation compared to in vivo studies. Based on the findings of this manuscript, it is recommended that protocols need to be optimised for the body part studied and that system-induced variability must be established using a standardized phantom in any clinical study. Reproducibility of the measured ADC must also be assessed in a volunteer population, as variations are far more significant in vivo compared
NASA Astrophysics Data System (ADS)
Hennad, A.; Yousfi, M.
2011-01-01
The ion swarm transport coefficients such as reduced mobility, diffusion coefficients and reaction rates of the following systems Ar+/Cl2, Ar+/N2, N_2^+/Cl_{2} and N_2^+/Ar have been determined from a Monte Carlo simulation using calculated elastic and experimentally estimated inelastic collision cross sections. The elastic momentum transfer cross sections have been determined from a semi-classical JWKB approximation based on a rigid core interaction potential model. The inelastic cross sections have been fitted using the measured reaction coefficients as for instance ion conversion reaction coefficients. Then, the cross section sets are fitted using either the measured reduced mobility when available in the literature or the zero-field mobility calculated from Satoh's relation. From the sets of elastic and inelastic collision cross sections thus obtained in Ar+/Cl2, Ar+/N2, N_2^+/Cl_{2} and N_2^+/Ar systems, the ion transport and reaction coefficients are then calculated in pure gases and also in binary and ternary mixtures involving Cl2, Ar and N2 over a wide range of reduced electric field. These ion data are very useful for modelling and simulation of non-equilibrium low pressure electrical discharges used more particularly for etching of the III-V compounds in the case of crystal photonic applications.
Dickson, David J; Lassetter, Bethany; Glassy, Benjamin; Page, Catherine J; Yokochi, Alexandre F T; Ely, Roger L
2013-02-01
Divalent nickel (Ni(2+)), Cu(II)EDTA, methyl orange, and dichromate were used to investigate diffusion from hydrated silica sol-gel monoliths. The objective was to examine diffusion of compounds on a size regime relevant to supporting biological components encapsulated within silica gel prepared in a biologically compatible process space with no post-gelation treatments. With an initial sample set, gels prepared from tetraethoxysilane were explored in a factorial design with Ni(2+) as the tracer, varying water content during hydrolysis, acid catalyst present during hydrolysis, and the final concentration of silica. A second sample set explored diffusion of all four tracers in gels prepared with aqueous silica precursors and a variety of organically modified siloxanes. Excluding six outliers which displayed significant syneresis, the mean diffusion constant (D(gel)) across the entire process space of sample set 1 was 2.42×10(-10) m(2) s(-1); approximately 24% of the diffusion coefficient of Ni(2+) in unconfined aqueous solution. In sample set 2, the tracer size and not gel hydrophobicity was the primary determinant of changes in diffusion rates. A strong linear inverse correlation was found between tracer size and the magnitude of D(gel). Based on correlation with the tracers used in this investigation, the characteristic 1-h diffusion distance for carbonate species relevant to supporting active phototrophic organisms was approximately 1.5mm. These results support the notion that silica sol-gel formulations may be optimized for a given biological entity of interest with manageable impact to the diffusion of small ions and molecules.
A graphical method for estimating charge collected by diffusion from an ion track
Edmonds, L.D.
1996-08-01
The diffusion equation has some applications relevant to charge collection from ion tracks in silicon devices. This problem has been treated in the past for cases in which the entire upper surface can be represented as a sink of minority carriers. The present paper treats the case in which there are a number of disconnected upper junctions separated by reflective surfaces. Numerical results, presented as plots of charge-collection efficiency contours, are given for several device geometries. Such plots, combined with a simple superposition, provide charge-collection estimates for arbitrary track length, location, and direction. The mathematical theory applies to any geometry and can be used by the reader to obtain additional plots and/or analytical expressions. The diffusion coefficient can be an arbitrary function of carrier density.
NASA Astrophysics Data System (ADS)
Shalchi, A.
2016-10-01
We explore the transport of energetic particles in two-component turbulence in which the stochastic magnetic field is assumed to be a superposition of slab and two-dimensional modes. It is known that in magnetostatic slab turbulence, the motion of particles across the mean magnetic field is subdiffusive. If a two-dimensional component is added, diffusion is recovered. It was also shown before that in two-component turbulence, the slab modes do not explicitly contribute to the perpendicular diffusion coefficient. In the current paper, the implicit contribution of slab modes is explored and it is shown that this contribution leads to a reduction of the perpendicular diffusion coefficient. This effect improves the agreement between simulations and analytical theory. Furthermore, the obtained results are relevant for investigations of diffusive shock acceleration.
Apparent electrostatic ion cyclotron waves in the diffuse aurora
NASA Technical Reports Server (NTRS)
Bering, E. A.
1983-01-01
Emissions that have properties consistent with electrostatic ion cyclotron (EIC) waves have been observed at low altitude in the diffuse aurora by a sounding rocket payload. Peaks were observed in the power spectrum of the electric field near the hydrogen and oxygen ion cyclotron frequencies. Doppler shift and polarization analyses have been performed using EIC wave parameters derived from linear theory. Both analyses indicated that these emissions had properties consistent with those expected for H(+) and O(+) EIC waves. The two analyses indicated that both emission bands were due to waves propagating eastward parallel to the poleward boundary of the diffuse aurora. The large local cold plasma density and resulting Landau damping require that the source be local. Magnetometer data indicated the presence of a downward parallel current density of 5 microamps/sq m. Sufficient free energy for the waves was available from this current, although the waves were observed frequently at altitudes where the ion-neutral collision frequency exceeded the oxygen cyclotron frequency.
Structure, hydrolysis, and diffusion of aqueous vanadium ions from Car-Parrinello molecular dynamics
NASA Astrophysics Data System (ADS)
Jiang, Zhen; Klyukin, Konstantin; Alexandrov, Vitaly
2016-09-01
A molecular level understanding of the properties of electroactive vanadium species in aqueous solution is crucial for enhancing the performance of vanadium redox flow batteries. Here, we employ Car-Parrinello molecular dynamics simulations based on density functional theory to investigate the hydration structures, first hydrolysis reaction, and diffusion of aqueous V2+, V3+, VO2+, and VO 2+ ions at 300 K. The results indicate that the first hydration shell of both V2+ and V3+ contains six water molecules, while VO2+ is coordinated to five and VO 2+ to three water ligands. The first acidity constants (pKa) estimated using metadynamics simulations are 2.47, 3.06, and 5.38 for aqueous V3+, VO 2+ , and VO2+, respectively, while V2+ is predicted to be a fairly weak acid in aqueous solution with a pKa value of 6.22. We also show that the presence of chloride ions in the first coordination sphere of the aqueous VO 2+ ion has a significant impact on water hydrolysis leading to a much higher pKa value of 4.8. This should result in a lower propensity of aqueous VO 2+ for oxide precipitation reaction in agreement with experimental observations for chloride-based electrolyte solutions. The computed diffusion coefficients of vanadium species in water at room temperature are found to increase as V 3 + < VO 2 + < V O 2 + < V 2 + and thus correlate with the simulated hydrolysis constants, namely, the higher the pKa value, the greater the diffusion coefficient.
Długosz, Maciej; Antosiewicz, Jan M
2014-01-14
We have investigated the rotational dynamics of hen egg white lysozyme in monodisperse aqueous solutions of concentrations up to 250 mg/mL, using a rigid-body Brownian dynamics method that accurately accounts for anisotropies of diffusing objects. We have examined the validity of the free diffusion concept in the analysis of computer simulations of volume-occupied molecular solutions. We have found that, when as the only intermolecular interaction, the excluded volume effect is considered, rotational diffusion of molecules adheres to the free diffusion model. Further, we present a method based on the exact (in the case of the free diffusion) analytic forms of autocorrelation functions of particular vectors rigidly attached to diffusing objects, which allows one to obtain from results of molecular simulations the three principal rotational diffusion coefficients characterizing rotational Brownian motion of an arbitrarily shaped rigid particle for an arbitrary concentration of crowders. We have applied this approach to trajectories resulting from Brownian dynamics simulations of hen egg white lysozyme solutions. We show that the apparent anisotropy of proteins' rotational motions increases with an increasing degree of crowding. Finally, we demonstrate that even if the hydrodynamic anisotropy of molecules is neglected and molecules are simulated using their average translational and rotational diffusion coefficients, excluded volume effects still lead to their anisotropic rotational dynamics.
Cheng, Kai-Chung; Acevedo-Bolton, Viviana; Jiang, Ruo-Ting; Klepeis, Neil E; Ott, Wayne R; Fringer, Oliver B; Hildemann, Lynn M
2011-05-01
For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used 30-37 real-time monitors to simultaneously measure CO at different angles and distances from a continuous indoor point source. For 11 experiments involving two houses, with natural ventilation conditions ranging from <0.2 to >5 air changes per h, an eddy diffusion model was used to estimate the turbulent diffusion coefficients, which ranged from 0.001 to 0.013 m² s⁻¹. The model reproduced observed concentrations with reasonable accuracy over radial distances of 0.25-5.0 m. The air change rate, as measured using a SF₆ tracer gas release, showed a significant positive linear correlation with the air mixing rate, defined as the turbulent diffusion coefficient divided by a squared length scale representing the room size. The ability to estimate the indoor turbulent diffusion coefficient using two readily measurable parameters (air change rate and room dimensions) is useful for accurately modeling exposures in close proximity to an indoor pollution source.
NASA Astrophysics Data System (ADS)
Guilet, Jérôme; Ogilvie, Gordon I.
2013-04-01
We investigate the radial transport of magnetic flux in a thin accretion disc, the turbulence being modelled by effective diffusion coefficients (viscosity and resistivity). Both turbulent diffusion and advection by the accretion flow contribute to flux transport, and they are likely to act in opposition. We study the consequences of the vertical variation of the diffusion coefficients, due to a varying strength of the turbulence. For this purpose, we consider three different vertical profiles of these coefficients. The first one is aimed at mimicking the turbulent stress profile observed in numerical simulations of magnetohydrodynamic turbulence in stratified discs. This enables us to confirm the robustness of the main result of Paper I obtained for uniform diffusion coefficients that, for weak magnetic fields, the contribution of the accretion flow to the transport velocity of magnetic flux is much larger than the transport velocity of mass. We then consider the presence of a dead zone around the equatorial plane where the physical resistivity is high while the turbulent viscosity is low. We find that it amplifies the previous effect: weak magnetic fields can be advected orders of magnitude faster than mass, for dead zones with a large vertical extension. The ratio of advection to diffusion, determining the maximum inclination of the field at the surface of the disc, is however not much affected. Finally, we study the effect of a non-turbulent layer at the surface of the disc, which has been suggested as a way to reduce the diffusion of the magnetic flux. We find that the reduction of the diffusion requires the conducting layer to extend below the height at which the magnetic pressure equals the thermal pressure. As a consequence, if the absence of turbulence is caused by the large-scale magnetic field, the highly conducting layer is inefficient at reducing the diffusion.
The role of diffusion in ISOL targets for the production of radioactive ion beams
NASA Astrophysics Data System (ADS)
Beyer, G. J.; Hagebø, E.; Novgorodov, A. F.; Ravn, H. L.; Isolde Collaboration
2003-05-01
On-line isotope separation techniques (ISOL) for production of ion beams of short-lived radionuclides require fast separation of nuclear reaction products from irradiated target materials followed by a transfer into an ion source. As a first step in this transport chain the release of nuclear reaction products from refractory metals has been studied systematically and will be reviewed. High-energy protons (500-1000 MeV) produce a large number of radionuclides in irradiated materials via the nuclear reactions spallation, fission and fragmentation. Foils and powders of Re, W, Ta, Hf, Mo, Nb, Zr, Y, Ti and C were irradiated with protons (600-1000 MeV) at the Dubna synchrocyclotron, the CERN synchrocyclotron and at the CERN PS-booster to produce different nuclear reaction products. The main topic of the paper is the determination of diffusion coefficients of the nuclear reaction products in the target matrix, data evaluation and a systematic interpretation of the data. The influence of the ionic radius of the diffusing species and the lattice type of the host material used as matrix or target on the diffusion will be evaluated from these systematics. Special attention was directed to the release of group I-, II- and III-elements. Arrhenius plots lead to activation energies of the diffusion process. Results:A strong radius determined diffusion behaviour was found: DIIIB> DIIA> DIA> DVIIIA, ( DY> DSr> DRb> DKr). Rare earth elements diffuse as Me 3+-species. Within the host elements of one period of the periodic table the diffusion of the trace elements changes in the following order: DIIIB> DIVB≫ DVB> DVIB. In a given target trace elements of group I and II of a lower period diffuse faster than the corresponding elements of the higher period of the periodic table. D2ndperiod> D5thperiod> D6thperiod, ( DBe≫ DSr> DBa). The diffusion determined transport rate of nuclear reaction products in solid target materials is often satisfactory, and consequently several
Jakubovic, Raphael; Zhou, Stephanie; Heyn, Chris; Soliman, Hany; Zhang, Liyang; Aviv, Richard; Sahgal, Arjun
2016-03-01
To investigate the predictive capacity of the apparent diffusion coefficient (ADC) as a biomarker of radiation response in brain metastases. Seventy brain metastases from 42 patients treated with either stereotactic radiosurgery or whole brain radiotherapy were imaged at baseline, 1 week, and 1 month post-treatment using diffusion-weighted MRI. Mean and median relative ADC for metastases was calculated by normalizing ADC measurements to baseline ADC. At 1 year post-treatment, or last available follow-up MRI, volume criteria determined final tumour response status. Uni- and multivariate analysis was used to account for factors associated with tumour response at 1 week and 1 month. A generalized estimating equations model took into consideration multiple tumours per subject. Optimal thresholds that distinguished responders from non-responders, as well as sensitivity and specificity were determined by receiver operator characteristic analysis and Youden's index. Lower relative ADC values distinguished responders from non-responders at 1 week and 1 month (P < 0.05). Optimal cut-off values for response were 1.060 at 1 week with a sensitivity and specificity of 75.0 and 56.3 %, respectively. At 1 month, the cut-off was 0.971 with a sensitivity and specificity of 70.0 and 68.8 %, respectively. A multivariate general estimating equations analysis identified no prior radiation [odds ratio (OR) 0.211 and 0.137, P = 0.033 and 0.0177], and a lower median relative ADC at 1 week and 1 month (OR 0.619 and 0.694, P = 0.0036 and 0.005), as predictors of tumour response. Lower relative ADC values at 1 week and 1 month following radiation distinguished responders from non-responders and may be a promising biomarker of early radiation response.
Diffusion length damage coefficient and annealing studies in proton-irradiated InP
NASA Technical Reports Server (NTRS)
Hakimzadeh, Roshanak; Vargas-Aburto, Carlos; Bailey, Sheila G.; Williams, Wendell
1993-01-01
We report on the measurement of the diffusion length damage coefficient (K(sub L)) and the annealing characteristics of the minority carrier diffusion length (L(sub n)) in Czochralski-grown zinc-doped indium phosphide (InP), with a carrier concentration of 1 x 10(exp l8) cm(exp -3). In measuring K(sub L) irradiations were made with 0.5 MeV protons with fluences ranging from 1 x 10(exp 11) to 3 x 10(exp 13) cm(exp -2). Pre- and post-irradiation electron-beam induced current (EBIC) measurements allowed for the extraction of L(sub n) from which K(sub L) was determined. In studying the annealing characteristics of L(sub n) irradiations were made with 2 MeV protons with fluence of 5 x 10(exp 13) cm(exp -2). Post-irradiation studies of L(sub n) with time at room temperature, and with minority carrier photoinjection and forward-bias injection were carried out. The results showed that recovery under Air Mass Zero (AMO) photoinjection was complete. L(sub n) was also found to recover under forward-bias injection, where recovery was found to depend on the value of the injection current. However, no recovery of L(sub n) after proton irradiation was observed with time at room temperature, in contrast to the behavior of 1 MeV electron-irradiated InP solar cells reported previously.
Bozkurt Bostan, Tuğba; Koç, Gonca; Sezgin, Gülten; Altay, Canan; Fazıl Gelal, M.; Oyar, Orhan
2016-01-01
Background: Magnetic resonance imaging (MRI) has become a diagnostic and problem solving method for the breast examinations in addition to conventional breast examination methods. Diffusion-weighted imaging (DWI) adds valuable information to conventional MRI. Aims: Our aim was to show the impact of apparent diffusion coefficient (ADC) values acquired with DWI to differentiate benign and malignant breast lesions. Study Design: Diagnostic accuracy study. Methods: Forty-six women with 58 breast masses (35 malignant, 23 benign) were examined on a 1.5 T clinical MRI scanner. The morphologic characteristics of the lesions on conventional MRI sequences and contrast uptake pattern were assessed. ADC values of both lesions and normal breast parenchyma were measured. The ADC values obtained were statistically compared with the histopathologic results using Paired Samples t-Test. Results: Multiple lesions were detected in 12 (26%) of the patients, while only one lesion was detected in 34 (74%). Overall, 35 lesions out of 58 were histopathologically proven to be malignant. In the dynamic contrast-enhanced series, 5 of the malignant lesions were type 1, while 8 benign lesions revealed either type 2 or 3 time signal intensity curves (85% sensitivity, 56% spesifity). Mean ADC values were significantly different in malignant vs. benign lesions. (1.04±0.29×10−3 cm2/sec vs. 1.61±0.50×10−3 cm2/sec for the malignant and benign lesions, respectively, p=0.03). A cut-off value of 1.30×10−3 mm2/sec for ADC detected with receiver operating characteristic analysis yielded 89.1% sensitivity and 100% specificity for the differentiation between benign and malignant lesions. Conclusion: ADC values improve the diagnostic accuracy of solid breast lesions when evaluated with the conventional MRI sequences. Therefore, DWI should be incorporated to routine breast MRI protocol. PMID:27308073
Katirag, Ahmet; Beker-Acay, Mehtap; Unlu, Ebru; Demirbas, Hayri; Demirturk, Nese
2016-01-01
Objective: Our purpose was to reveal the efficiency of diffusion weighted imaging (DWI) in the diagnosis of encephalitis, and to determine the relation between the apparent diffusion coefficient (ADC) values, the onset of the clinical symptoms, and the lesion extent. Methods: Conventional magnetic resonance imaging (MRI) was performed in 17 patients with encephalitis diagnosed on the basis of laboratory, clinical and radiologic findings during 2009 and 2015. Based on the duration between the onset of the symptoms and the brain MRI findings, the patients were divided into three groups. ADC values of the encephalitis lesion, the lesions’ topographic analysis score, deep gray matter involvement, patients’ clinical situation and the duration of the arrival to the clinic was examined. Results: Mean ADC values were 0,988±0,335 x10-3 mm2/s in group I (0-2 days), 1,045±0,347 x10-3 mm2/s in Group-II (3-7 days), 1,451±0,225 x10-3 mm2/s in Group-III (8 days and over). The relation between the ADC values and the duration of the arrival, topographic analysis score, the relation between the patients’ clinical situation and the deep gray matter involvement were found to be statistically significant. The deep gray matter involvement was demonstrated more clearly by FLAIR images when compared with DWI. Conclusion: Conventional MRI sequences may be insufficient in showing the encephalitis lesion. DWI must be added to the imaging modalities immediately in the cases suspected of having encephalitis. PMID:27375722
Fast-ion diffusion measurements from radial triton burn up studies
McCauley, J.S.; Budny, R.; McCune, D.; Strachan, J.D.
1993-08-01
A fast-ion diffusion coefficient of 0.1 {plus_minus} 0.1 m{sup 2}s{sup {minus}1} has been deduced from the triton burnup neutron emission profile measured by a collimated array of helium-4 spectrometers. The experiment was performed with high-power deuterium discharges produced by Princeton University`s Tokamak Fusion Test Reactor (TFTR). The fast ions monitored were the 1.0 MeV tritons produced from the d(d,t)p. These tritons ``burn up`` with deuterons and emit a 14 MeV neutron by the d(t,{alpha})n reaction. The ratio of the measured to calculated DT yield is typically 70%. The measured DT profile width is comparable to that predicted by the TRANSP transport code during neutral beam heating and narrower after the beam heating ended.
Ion radial diffusion in an electrostatic impulse model for stormtime ring current formation
Chen, M.W.; Schulz, M.; Lyons, L.R.; Gorney, D.J.
1992-09-01
Guiding-center simulations of stormtime transport of ring-current and radiation-belt ions having first adiabatic invariants mu is approximately greater than 15 MeV/G (E is approximately greater than 165 keV at L is approximately 3) are surprisingly well described (typically within a factor of approximately less than 4) by the quasilinear theory of radial diffusion. This holds even for the case of an individual model storm characterized by substorm-associated impulses in the convection electric field, provided that the actual spectrum of the electric field is incorporated in the quasilinear theory. Correction of the quasilinear diffusion coefficient D[sub LL][sup ql] for drift-resonance broadening so as to define D[sub LL][sup ql] reduced the typical discrepancy with the diffusion coefficients D[sub LL][sup sim] deduced from guiding-center simulations of representative-particle trajectories to a factor of approximately 3. The typical discrepancy was reduced to a factor of approximately 1.4 by averaging D[sub LL][sup sim], D[sub LL][sup ql], and D[sub LL][sup rb] over an ensemble of model storms characterized by different (but statistically equivalent) sets of substorm-onset times.
NASA Astrophysics Data System (ADS)
Hayashi, Tetsutaro; Miyazaki, Takamichi; Matsuda, Yasutaka; Kuwata, Naoaki; Saruwatari, Motoaki; Furuichi, Yuki; Kurihara, Koji; Kuzuo, Ryuichi; Kawamura, Junichi
2016-02-01
To investigate the contribution of lithium-ion diffusibility of lithium tungsten oxides (LWOs) to low interfacial resistance, we fabricate thin-film electrodes of 6Li-enriched LiCoO2 (6LCO) modified with various structure-types of 6Li-enriched LWOs by pulsed laser deposition. The electrodes are subjected to X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and secondary-ion mass spectrometry (SIMS) analyses. XRD reveals that the LWO layers have Li2WO4 structure with rhombohedral and tetragonal symmetries and amorphous states. EIS shows that the lowest interfacial resistance of the positive electrodes is given by the amorphous state, followed in order by the tetragonal and the rhombohedral symmetry, and that the diffusion coefficients of lithium-ions in the electrodes increase in the same order. SIMS demonstrates that the fastest lithium-ion self-diffusibility into the LWOs is found in the amorphous state, followed in order by tetragonal and rhombohedral symmetry. Furthermore, the amorphous state LWO modification shows smooth lithium-ion diffusion between the LWO and LCO layers after the electrochemical test. Conversely, the rhombohedral LWO modification demonstrates congested lithium-ion diffusion between the LWO and LCO layers after the test. Thus, fast lithium-ion self-diffusibility into the LWO-modified LCO contributes to enhancing the diffusion of lithium-ions, resulting in the reduction of interfacial resistance.
Shalchi, A.
2014-01-10
We explore perpendicular diffusion based on the unified nonlinear transport theory. In Paper I, we focused on magnetostatic turbulence, whereas in the present article we include dynamical turbulence effects. For simplicity, we assume a constant correlation time. We show that there is now a nonvanishing contribution of the slab modes. We explore the parameter regimes in which the turbulence dynamics becomes important for perpendicular diffusion. Analytical forms for the perpendicular diffusion coefficient are derived, which can be implemented easily in solar modulation or shock acceleration codes.
Yuan, Zhen; Wang, Qiang; Jiang, Huabei
2007-12-24
We describe a novel reconstruction method that allows for quantitative recovery of optical absorption coefficient maps of heterogeneous media using tomographic photoacoustic measurements. Images of optical absorption coefficient are obtained from a diffusion equation based regularized Newton method where the absorbed energy density distribution from conventional photoacoustic tomography serves as the measured field data. We experimentally demonstrate this new method using tissue-mimicking phantom measurements and simulations. The reconstruction results show that the optical absorption coefficient images obtained are quantitative in terms of the shape, size, location and optical property values of the heterogeneities examined.
Isotopic mass-dependence of metal cation diffusion coefficients in liquid water
Bourg, I.C.; Richter, F.M.; Christensen, J.N.; Sposito, G.
2009-01-11
Isotope distributions in natural systems can be highly sensitive to the mass (m) dependence of solute diffusion coefficients (D) in liquid water. Isotope geochemistry studies routinely have assumed that this mass dependence either is negligible (as predicted by hydrodynamic theories) or follows a kinetic-theory-like inverse square root relationship (D {proportional_to} m{sup -0.5}). However, our recent experimental results and molecular dynamics (MD) simulations showed that the mass dependence of D is intermediate between hydrodynamic and kinetic theory predictions (D {proportional_to} m{sup -{beta}} with 0 {<=} {beta} < 0.2 for Li{sup +}, Cl{sup -}, Mg{sup 2+}, and the noble gases). In this paper, we present new MD simulations and experimental results for Na{sup +}, K{sup +}, Cs{sup +}, and Ca{sup 2+} that confirm the generality of the inverse power-law relation D {proportional_to} m{sup -{beta}}. Our new findings allow us to develop a general description of the influence of solute valence and radius on the mass dependence of D for monatomic solutes in liquid water. This mass dependence decreases with solute radius and with the magnitude of solute valence. Molecular-scale analysis of our MD simulation results reveals that these trends derive from the exponent {beta} being smallest for those solutes whose motions are most strongly coupled to solvent hydrodynamic modes.
Vijayakumar, C; Damayanti, Gharpure; Pant, R; Sreedhar, C M
2007-10-01
An accurate computer-assisted method to perform segmentation of brain tumor on apparent diffusion coefficient (ADC) images and evaluate its grade (malignancy state) has been designed using a mixture of unsupervised artificial neural networks (ANN) and hierarchical multiresolution wavelet. Firstly, the ADC images are decomposed by multiresolution wavelets, which are subsequently selectively reconstructed to form wavelet filtered images. These wavelet filtered images along with FLAIR and T2 weighted images have been utilized as the features to unsupervised neural network - self organizing maps (SOM) - to segment the tumor, edema, necrosis, CSF and normal tissue and grade the malignant state of the tumor. A novel segmentation algorithm based on the number of hits experienced by Best Matching Units (BMU) on SOM maps is proposed. The results shows that the SOM performs well in differentiating the tumor, edema, necrosis, CSF and normal tissue pattern vectors on ADC images. Using the trained SOM and proposed segmentation algorithm, we are able to identify high or low grade tumor, edema, necrosis, CSF and normal tissue. The results are validated against manually segmented images and sensitivity and the specificity are observed to be 0.86 and 0.93, respectively. PMID:17572068
Lee, Jeongwon; Choi, Seung Hong; Kim, Ji-Hoon; Sohn, Chul-Ho; Lee, Sooyeul; Jeong, Jaeseung
2014-09-01
The accurate diagnosis of glioma subtypes is critical for appropriate treatment, but conventional histopathologic diagnosis often exhibits significant intra-observer variability and sampling error. The aim of this study was to investigate whether histogram analysis using an automatically segmented region of interest (ROI), excluding cystic or necrotic portions, could improve the differentiation between low-grade and high-grade gliomas. Thirty-two patients (nine low-grade and 23 high-grade gliomas) were included in this retrospective investigation. The outer boundaries of the entire tumors were manually drawn in each section of the contrast-enhanced T1 -weighted MR images. We excluded cystic or necrotic portions from the entire tumor volume. The histogram analyses were performed within the ROI on normalized apparent diffusion coefficient (ADC) maps. To evaluate the contribution of the proposed method to glioma grading, we compared the area under the receiver operating characteristic (ROC) curves. We found that an ROI excluding cystic or necrotic portions was more useful for glioma grading than was an entire tumor ROI. In the case of the fifth percentile values of the normalized ADC histogram, the area under the ROC curve for the tumor ROIs excluding cystic or necrotic portions was significantly higher than that for the entire tumor ROIs (p < 0.005). The automatic segmentation of a cystic or necrotic area probably improves the ability to differentiate between high- and low-grade gliomas on an ADC map. PMID:25042540
Hosoya, Osamu; Chono, Sumio; Saso, Yuko; Juni, Kazuhiko; Morimoto, Kazuhiro; Seki, Toshinobu
2004-12-01
The diffusion coefficient (D) of peptide and protein drugs needs to be determined to examine the permeability through biological barriers and to optimize delivery systems. In this study, the D values of fluorescein isothiocyanate (FITC)-labelled dextrans (FDs) and peptides were determined and the permeability through a porous membrane was discussed. The observed D values of FDs and peptides, except in the case of insulin, were similar to those calculated based on a relationship previously reported between the molecular weight and D of lower-molecular-weight compounds, although the molecular weight range was completely different. The observed D value of insulin was between the calculated values for the insulin monomer and hexamer. The permeability of poly-lysine and insulin through the membrane was determined and the observed values were compared with predicted values by using the relationship between molecular weight and D and an equation based on the Renkin function. The observed permeability of insulin through the membrane was between that of the predicted permeability for the insulin monomer and hexamer. For the permeation of insulin, the determination of D was useful for estimating the permeability because of the irregular relationship between molecular weight and D. The methodology used in this study will be useful for a more quantitative evaluation of the absorption of peptide and protein drugs applied to mucous membranes.
Sun, Licun; Pu, Xiaoyun
2016-01-01
A visualization and quantification optical method for measuring binary liquid diffusion coefficient (D) based on an asymmetric liquid-core cylindrical lens (ALCL) is introduced in this paper. Four groups of control experiments were performed to verify the influences of diffusing substance category, concentration and temperature on diffusion process, and the measured D values were well consistent with data measured by Holographic interferometry and Taylor dispersion methods. The drifting of the diffusion image recorded by CCD reflects the diffusion rate visually in an easily understandable way. This optical method for measuring D values based on the ALCL is characterized by visual measurement, simplified device, and easy operation, which provides a new way for measuring liquid D value visually. PMID:27325006
Sun, Licun; Pu, Xiaoyun
2016-01-01
A visualization and quantification optical method for measuring binary liquid diffusion coefficient (D) based on an asymmetric liquid-core cylindrical lens (ALCL) is introduced in this paper. Four groups of control experiments were performed to verify the influences of diffusing substance category, concentration and temperature on diffusion process, and the measured D values were well consistent with data measured by Holographic interferometry and Taylor dispersion methods. The drifting of the diffusion image recorded by CCD reflects the diffusion rate visually in an easily understandable way. This optical method for measuring D values based on the ALCL is characterized by visual measurement, simplified device, and easy operation, which provides a new way for measuring liquid D value visually. PMID:27325006
Electron-Ion Recombination Rate Coefficient Measurements in a Flowing Afterglow Plasma
NASA Technical Reports Server (NTRS)
Gougousi, Theodosia; Golde, Michael F.; Johnsen, Rainer
1996-01-01
The flowing-afterglow technique in conjunction with computer modeling of the flowing plasma has been used to determine accurate dissociative-recombination rate coefficients alpha for the ions O2(+), HCO(+), CH5(+), C2H5(+), H3O(+), CO2(+), HCO2(+), HN2O(+), and N2O(+) at 295 K. We find that the simple form of data analysis that was employed in earlier experiments was adequate and we largely confirm earlier results. In the case of HCO(+) ions, published coefficients range from 1.1 X 10(exp -7) to 2.8 x 10(exp -7) cu cm/S, while our measurements give a value of 1.9 x 10(exp -7) cu cm/S.
Marchal, D; Boireau, W; Laval, J M; Moiroux, J; Bourdillon, C
1998-01-01
The long-range diffusion coefficients of isoprenoid quinones in a model of lipid bilayer were determined by a method avoiding fluorescent probe labeling of the molecules. The quinone electron carriers were incorporated in supported dimyristoylphosphatidylcholine layers at physiological molar fractions (<3 mol%). The elaborate bilayer template contained a built-in gold electrode at which the redox molecules solubilized in the bilayer were reduced or oxidized. The lateral diffusion coefficient of a natural quinone like UQ10 or PQ9 was 2.0 +/- 0.4 x 10(-8) cm2 s(-1) at 30 degrees C, two to three times smaller than the diffusion coefficient of a lipid analog in the same artificial bilayer. The lateral mobilities of the oxidized or reduced forms could be determined separately and were found to be identical in the 4-13 pH range. For a series of isoprenoid quinones, UQ2 or PQ2 to UQ10, the diffusion coefficient exhibited a marked dependence on the length of the isoprenoid chain. The data fit very well the quantitative behavior predicted by a continuum fluid model in which the isoprenoid chains are taken as rigid particles moving in the less viscous part of the bilayer and rubbing against the more viscous layers of lipid heads. The present study supports the concept of a homogeneous pool of quinone located in the less viscous region of the bilayer. PMID:9545054
Estimation of CO2 diffusion coefficient at 0-10 cm depth in undisturbed and tilled soils
Technology Transfer Automated Retrieval System (TEKTRAN)
Diffusion coefficients (D) of CO2 at 0 – 10 cm layers in undisturbed and tilled soil conditions were estimated using Penman, Millington-Quirk, Ridgwell et al. (1999), Troeh et al., and Moldrup et al. models. Soil bulk density and volumetric soil water content ('v) at 0 – 10 cm were measured on April...
NASA Astrophysics Data System (ADS)
Wang, J. Y.; Zalar, A.; Mittemeijer, E. J.
2004-01-01
Depth dependences of the ion bombardment induced roughness and of the interdiffusion coefficient observed by Auger electron spectroscopical (AES) depth profiling of stationary as-deposited and annealed Si/Al multilayered specimens were evaluated by fitting calculated concentration-depth profiles to measured ones. The model used for calculation of the concentration-depth profile accounts for the instrumental smearing (interface broadening) upon AES depth profiling and, if relevant, interdiffusion. The instrumental smearing incorporates the effects of atomic mixing, roughness, escape depth of the Auger electrons, and preferential sputtering. The depth profile recorded from a stationary as-deposited Si/Al multilayered specimen was fitted by assuming, additionally, that the ion bombardment induced roughness increases with the sputter depth, keeping the other fitting parameters (including the inherent surface roughness) equal to the values determined for a rotating specimen. The roughness values determined by fitting to the measured depth profiles agree well with those determined directly by atomic force microscopy (AFM). Interdiffusion at the Si/Al interfaces was induced by annealing the specimens isothermally in an argon atmosphere at 120 °C for 240 min, 135 °C for 60 min, and 150 °C for 20 min. It was found that interdiffusion across interfaces near the surface of the multilayer is more pronounced than across interfaces in the deeper part of the layer. To account for this depth dependence of the extent of interdiffusion, calculated depth profiles for the annealed specimens were fitted to measured ones by assuming that diffusion annealing can be described as an additional "roughening" of the interfaces. As a result, values of the interdiffusion coefficient as a function of the depth beneath the surface were obtained. The depth dependence of the interdiffusion coefficient was discussed in terms of the microstructural development.
Fusion product measurements of the local ion thermal diffusivity in the PLT tokamak
Heidbrink, W.W.; Lovberg, J.; Strachan, J.D.; Bell, R.E.
1986-03-01
Measurement of the gradient of the d-d fusion rate profile in an ohmic PLT plasma is used to deduce the gradient of the ion temperature and, thus, the local ion thermal diffusivity through an energy balance analysis. The inferred ion diffusivity is consistent with neoclassical theory.
NASA Technical Reports Server (NTRS)
Paillat, O.; Wasserburg, G. J.
1993-01-01
Experimental studies of self-diffusion isotopes in silicate melts often have quite large uncertainties when comparing one study to another. We designed an experiment in order to improve the precision of the results by simultaneously studying several elements (Mg, Ca, Sr, Ba) during the same experiment thereby greatly reducing the relative experimental uncertainties. Results show that the uncertainties on the diffusion coefficients can be reduced to 10 percent, allowing a more reliable comparison of differences of self-diffusion coefficients of the elements. This type of experiment permits us to study precisely and simultaneously several elements with no restriction on any element. We also designed an experiment to investigate the possible effects of multicomponent diffusion during Mg self-diffusion experiments by comparing cases where the concentrations of the elements and the isotopic compositions are different. The results suggest that there are differences between the effective means of transport. This approach should allow us to investigate the importance of multicomponent diffusion in silicate melts.
Majer, G.; Melchior, J. P.
2014-03-07
Precise diffusion measurements of rhodamine 6G (Rh6G) dissolved in D{sub 2}O at concentrations between 50 and 200 μM were carried out in the temperature range from 280 to 320 K using pulsed field gradient nuclear magnetic resonance (PFG-NMR). The obtained diffusion coefficients can be used as a calibration reference in fluorescence correlation spectroscopy (FCS). Besides measuring the diffusivity of Rh6G, the diffusion coefficient of the solvent in the same system could be determined in parallel by PFG-NMR as the resonances of water and Rh6G are well separated in the {sup 1}H NMR spectrum. To analyze the differences due to the isotope effect of the solvent (D{sub 2}O vs. H{sub 2}O), the correlation time τ{sub D} of Rh6G was measured by FCS in both D{sub 2}O and H{sub 2}O. The obtained isotopic correction factor, τ{sub D}(D{sub 2}O)/τ{sub D}(H{sub 2}O) = 1.24, reflects the isotope effect of the solvent´s self-diffusion coefficients as determined previously by PFG-NMR.
Gebrekristos, R.A.; Shapiro, A.M.; Usher, B.H.
2008-01-01
An in situ method of estimating the effective diffusion coefficient for a chemical constituent that diffuses into the primary porosity of a rock is developed by abruptly changing the concentration of the dissolved constituent in a borehole in contact with the rock matrix and monitoring the time-varying concentration. The experiment was conducted in a borehole completed in mudstone on the campus of the University of the Free State in Bloemfontein, South Africa. Numerous tracer tests were conducted at this site, which left a residual concentration of sodium chloride in boreholes that diffused into the rock matrix over a period of years. Fresh water was introduced into a borehole in contact with the mudstone, and the time-varying increase of chloride was observed by monitoring the electrical conductivity (EC) at various depths in the borehole. Estimates of the effective diffusion coefficient were obtained by interpreting measurements of EC over 34 d. The effective diffusion coefficient at a depth of 36 m was approximately 7.8??10-6 m2/d, but was sensitive to the assumed matrix porosity. The formation factor and mass flux for the mudstone were also estimated from the experiment. ?? Springer-Verlag 2007.
Higaki, M.; Otsuka, T.; Hashizume, K.; Tokunaga, K.; Ezato, K.; Suzuki, S.; Enoeda, M.; Akiba, M.
2015-03-15
Hydrogen diffusion coefficients in a reduced activation ferritic/martensitic steel (F82H) and an oxide dispersion strengthened F82H (ODS-F82H) have been determined from depth profiles of plasma-loaded hydrogen with a tritium imaging plate technique (TIPT) in the temperature range from 298 K to 523 K. Data on hydrogen diffusion coefficients, D, in F82H, are summarized as D [m{sup 2}*s{sup -1}] =1.1*10{sup -7}exp(-16[kJ mol{sup -1}]/RT). The present data indicate almost no trapping effect on hydrogen diffusion due to an excess entry of energetic hydrogen by the plasma loading, which results in saturation of the trapping sites at the surface and even in the bulk. In the case of ODS-F82H, data of hydrogen diffusion coefficients are summarized as D [m{sup 2}*s{sup -1}] =2.2*10{sup -7}exp(-30[kJ mol{sup -1}]/RT) indicating a remarkable trapping effect on hydrogen diffusion caused by tiny oxide particles (Y{sub 2}O{sub 3}) in the bulk of F82H. Such oxide particles introduced in the bulk may play an effective role not only on enhancement of mechanical strength but also on suppression of hydrogen penetration by plasma loading.
Absolute rate coefficients for the recombination of open f-shell tungsten ions
NASA Astrophysics Data System (ADS)
Krantz, C.; Spruck, K.; Badnell, N. R.; Becker, A.; Bernhardt, D.; Grieser, M.; Hahn, M.; Novotný, O.; Repnow, R.; Savin, D. W.; Wolf, A.; Müller, A.; Schippers, S.
2014-04-01
We have carried out direct measurements of the absolute recombination rate coefficients of four charge states of tungsten in the range from W18+ to W21+ in a heavy ion storage ring. We find that the rich atomic fine structure of the open f-shell leads to very high resonant enhancement of the recombination rate at energies below ~50 eV. Even in the higher energy domain relevant to fusion plasma this leads to a recombination rate coefficient that is more than four times higher than predicted by the commonly used ADAS database of recombination rates. In addition to the experimental measurements we have carried out theoretical calculations using Autostructure. For W20+ these predict a plasma recombination rate coefficient that agrees much better with the measurement than the ADAS model but still fail to reproduce the experimental data in detail.
NASA Astrophysics Data System (ADS)
Manapova, Aigul
2016-08-01
We consider optimal control problems for second order elliptic equations with non-self-adjoint operators-convection-diffusion problems. Control processes are described by semi-linear convection-diffusion equation with discontinuous data and solutions (states) subject to the boundary interface conditions of imperfect type (i.e., problems with a jump of the coefficients and the solution on the interface; the jump of the solution is proportional to the normal component of the flux). Controls are involved in the coefficients of diffusion and convective transfer. We prove differentiability and Lipshitz continuity of the cost functional, depending on a state of the system and a control. The calculation of the gradients uses the numerical solutions of direct problems for the state and adjoint problems.
NASA Astrophysics Data System (ADS)
Bologna, Mauro; Svenkeson, Adam; West, Bruce J.; Grigolini, Paolo
2015-07-01
Diffusion processes in heterogeneous media, and biological systems in particular, are riddled with the difficult theoretical issue of whether the true origin of anomalous behavior is renewal or memory, or a special combination of the two. Accounting for the possible mixture of renewal and memory sources of subdiffusion is challenging from a computational point of view as well. This problem is exacerbated by the limited number of techniques available for solving fractional diffusion equations with time-dependent coefficients. We propose an iterative scheme for solving fractional differential equations with time-dependent coefficients that is based on a parametric expansion in the fractional index. We demonstrate how this method can be used to predict the long-time behavior of nonautonomous fractional differential equations by studying the anomalous diffusion process arising from a mixture of renewal and memory sources.
NASA Technical Reports Server (NTRS)
Gloeckler, G.; Ipavich, F. M.; Klecker, B.; Hovestadt, D.; Scholer, M.
1985-01-01
Characteristics of wuprathermal particles accelerated by quasi-parallel interplanetary traveling shocks have been generally explained in terms of a first order Fermi mechanism. Such models require diffusive scattering of particles upstream of the shock. This scattering is characterized by a local diffusion coefficient, kappa, which is determined by the local power density of waves in the upstream region. The dependence of the diffusion coefficient of suprathermal upstream protons on distance from the November 12, 1978 interplanetary traveling shock using a different approach is studied. Unlike previous studies this method, which is based on measurements of particle streaming and intensity gradients, does not rely on predictions. The local spatial variations of Kappa upstream of the November 12, 1978 shock have been chosen for study because the characteristics of this quasi-parallel shock have been extensively studied, and also because of its favorable geometry (i.e. B field nearly radial).
Evaluation of Apparent Diffusion Coefficient Values in Spinal Tuberculosis by MRI
Sachdeva, Primal
2016-01-01
Introduction Spinal tuberculosis presents a radiological challenge in many cases when it presents with atypical pattern of involvement and has to be distinguished from various differentials, which include metastases. In such cases Diffusion Weighted Imaging (DWI) with Apparent Diffusion Co-efficient (ADC) value may play a role in reaching towards a conclusion, thereby preventing unnecessary biopsy in such patients. Aim Measurement of mean ADC values in tubercular vertebrae and associated collection. Materials and Methods The study was comprised of 55 patients and was conducted on 3.0 TESLA Siemens machine Magnetom Verio. Patients either known to have tuberculosis or those with classic tuberculous findings were included in the study. All these patients were followed up for post-treatment confirmation and ADC value. All the patients underwent routine MRI along with DW-MRI sequence, ADC values and FNAC/ Biopsy if required. The ADC values were calculated from the involved vertebral bodies and surrounding soft tissue and also from normal vertebrae preferably from one above and below the affected vertebrae to establish ADC of normal vertebrae, which was helpful in treatment response in patients with antitubercular therapy. At least six ADC value was taken from affected vertebrae and soft tissue. Results The mean ADC value of tubercular vertebrae was found out to be 1.47 ± 0.25 x 10-3 mm2/sec, of adjacent soft tissue collection (abscess) was 1.94 ± 0.30 x 10-3 mm2/sec and normal vertebrae was 0.48 ± 0.16 x 10-3 mm2/sec. ADC value of post treated vertebrae decreased and complete resolution showed ADC near normal vertebrae. Conclusion Normal range of the ADC values in spinal tuberculosis and associated paravertebral collection may be helpful in the differentiation of spinal tuberculosis from lesions with spinal involvement which are not proven to be tuberculosis and who did not have the classical appearance of either tuberculosis or metastasis. But there exists a zone of
Shi, Zhi-Qiang; Zhang, Yun-Lin; Wang, Ming-Zhu; Liu, Xiao-Han
2013-02-01
Based on the underwater irradiance profile measurement and water samples collection in September, October 2007 in Lake Donghu, Lake Liangzi and Lake Honghu, and in April in 2010 in Lake Kuileihu, the diffuse attenuation coefficient and the dominant attenuation factors were analyzed. The ranges of diffuse attenuation coefficient and total suspended solid (TSS), organic suspended solid (OSS), inorganic suspended solid (ISS), chlorophyll a (Chla), and dissolved organic carbon (DOC) concentration varied less in Lake Donghu and Lake Kuileihu than in Lake liangzi and Lake Honghu. The regression analysis showed that ISS was the dominant affecting factor of transparency in Lake Donghu and Lake Kuileihu, but ISS and OSS jointly controlled the transparency in Lake Liangzi and Lake Honghu. The diffuse attenuation coefficient minimum occurred near 580 nm. At around 675 nm, the diffuse attenuation coefficient peak was due to phytoplankton absorption, especially at sites with high pigment concentration. The euphotic depth was less than the mean water depth in Lake Donghu, suggesting that the submerged aquatic vegetation (SAV) can not grow in the present underwater light climate. However, the euphotic depth was larger than the mean water depth in other three lakes showing that the underwater light climate can meet the light requirements for the growth of SAV. The regression analysis showed that ISS was the dominant affecting factor of PAR attenuation in Lake Donghu and Lake Kuileihu, but ISS, OSS and Chla jointly controlled PAR attenuation in lake Liangzi and lake Honghu. The significant correlation between the beam attenuatin coefficient at 750 nm and PAR difffuse attenuation coefficient showed that the particles scattering significantly contributed to underwater irradiance attenuation.
Analysis of ligand-protein exchange by Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP)
NASA Astrophysics Data System (ADS)
Snyder, David A.; Chantova, Mihaela; Chaudhry, Saadia
2015-06-01
NMR spectroscopy is a powerful tool in describing protein structures and protein activity for pharmaceutical and biochemical development. This study describes a method to determine weak binding ligands in biological systems by using hierarchic diffusion coefficient clustering of multidimensional data obtained with a 400 MHz Bruker NMR. Comparison of DOSY spectrums of ligands of the chemical library in the presence and absence of target proteins show translational diffusion rates for small molecules upon interaction with macromolecules. For weak binders such as compounds found in fragment libraries, changes in diffusion rates upon macromolecular binding are on the order of the precision of DOSY diffusion measurements, and identifying such subtle shifts in diffusion requires careful statistical analysis. The "CoLD-CoP" (Clustering of Ligand Diffusion Coefficient Pairs) method presented here uses SAHN clustering to identify protein-binders in a chemical library or even a not fully characterized metabolite mixture. We will show how DOSY NMR and the "CoLD-CoP" method complement each other in identifying the most suitable candidates for lysozyme and wheat germ acid phosphatase.
Analysis of ligand-protein exchange by Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP).
Snyder, David A; Chantova, Mihaela; Chaudhry, Saadia
2015-06-01
NMR spectroscopy is a powerful tool in describing protein structures and protein activity for pharmaceutical and biochemical development. This study describes a method to determine weak binding ligands in biological systems by using hierarchic diffusion coefficient clustering of multidimensional data obtained with a 400 MHz Bruker NMR. Comparison of DOSY spectrums of ligands of the chemical library in the presence and absence of target proteins show translational diffusion rates for small molecules upon interaction with macromolecules. For weak binders such as compounds found in fragment libraries, changes in diffusion rates upon macromolecular binding are on the order of the precision of DOSY diffusion measurements, and identifying such subtle shifts in diffusion requires careful statistical analysis. The "CoLD-CoP" (Clustering of Ligand Diffusion Coefficient Pairs) method presented here uses SAHN clustering to identify protein-binders in a chemical library or even a not fully characterized metabolite mixture. We will show how DOSY NMR and the "CoLD-CoP" method complement each other in identifying the most suitable candidates for lysozyme and wheat germ acid phosphatase.
Muir, B R; McEwen, M R; Rogers, D W O
2014-10-01
A method is presented to obtain ion chamber calibration coefficients relative to secondary standard reference chambers in electron beams using depth-ionization measurements. Results are obtained as a function of depth and average electron energy at depth in 4, 8, 12 and 18 MeV electron beams from the NRC Elekta Precise linac. The PTW Roos, Scanditronix NACP-02, PTW Advanced Markus and NE 2571 ion chambers are investigated. The challenges and limitations of the method are discussed. The proposed method produces useful data at shallow depths. At depths past the reference depth, small shifts in positioning or drifts in the incident beam energy affect the results, thereby providing a built-in test of incident electron energy drifts and/or chamber set-up. Polarity corrections for ion chambers as a function of average electron energy at depth agree with literature data. The proposed method produces results consistent with those obtained using the conventional calibration procedure while gaining much more information about the behavior of the ion chamber with similar data acquisition time. Measurement uncertainties in calibration coefficients obtained with this method are estimated to be less than 0.5%. These results open up the possibility of using depth-ionization measurements to yield chamber ratios which may be suitable for primary standards-level dissemination.
Sartori, E; Brescaccin, L; Serianni, G
2016-02-01
Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production-detrimental for high current negative ion systems such as beam sources for fusion-are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient and energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.
NASA Astrophysics Data System (ADS)
Muir, B. R.; McEwen, M. R.; Rogers, D. W. O.
2014-10-01
A method is presented to obtain ion chamber calibration coefficients relative to secondary standard reference chambers in electron beams using depth-ionization measurements. Results are obtained as a function of depth and average electron energy at depth in 4, 8, 12 and 18 MeV electron beams from the NRC Elekta Precise linac. The PTW Roos, Scanditronix NACP-02, PTW Advanced Markus and NE 2571 ion chambers are investigated. The challenges and limitations of the method are discussed. The proposed method produces useful data at shallow depths. At depths past the reference depth, small shifts in positioning or drifts in the incident beam energy affect the results, thereby providing a built-in test of incident electron energy drifts and/or chamber set-up. Polarity corrections for ion chambers as a function of average electron energy at depth agree with literature data. The proposed method produces results consistent with those obtained using the conventional calibration procedure while gaining much more information about the behavior of the ion chamber with similar data acquisition time. Measurement uncertainties in calibration coefficients obtained with this method are estimated to be less than 0.5%. These results open up the possibility of using depth-ionization measurements to yield chamber ratios which may be suitable for primary standards-level dissemination.
Sartori, E; Brescaccin, L; Serianni, G
2016-02-01
Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production-detrimental for high current negative ion systems such as beam sources for fusion-are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient and energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared. PMID:26931910
Diffuse Attenuation Coefficient of Downwelling Irradiance: An Evaluation of Remote Sensing Methods
NASA Technical Reports Server (NTRS)
Lee, Zhong-Ping; Darecki, Miroslaw; Carder, Kendall L.; Davis, Curtiss O.; Stramski, Dariusz; Rhea, W. Joseph
2005-01-01
The propagation of downwelling irradiance at wavelength lambda from surface to a depth (z) in the ocean is governed by the diffuse attenuation coefficient, K(sup -)(sub d)(lambda). There are two standard methods for the derivation of K(sup -)(sub d)(lambda) in remote sensing, which both are based on empirical relationships involving the blue-to-green ratio of ocean color. Recently, a semianalytical method to derive K(sup -)(sub d)(lambda) from reflectance has also been developed. In this study, using K(sup -)(sub d)(490) and K(sup -)(sub d)(443) as examples, we compare the K(sup -)(sub d)(lambda) values derived from the three methods using data collected in three different regions that cover oceanic and coastal waters, with K(sup -)(sub d)(490) ranging from approximately 0.04 to 4.0 per meter. The derived values are compared with the data calculated from in situ measurements of the vertical profiles of downwelling irradiance. The comparisons show that the two standard methods produced satisfactory estimates of K(sup -)(sub d)(lambda) in oceanic waters where attenuation is relatively low but resulted in significant errors in coastal waters. The newly developed semianalytical method appears to have no such limitation as it performed well for both oceanic and coastal waters. For all data in this study the average of absolute percentage difference between the in situ measured and the semianalytically derived K(sup -)(sub d) is approximately 14% for lambda = 490 nm and approximately 11% for lambda = 443 nm.