Science.gov

Sample records for ion exchange applications

  1. Pharmaceutical Applications of Ion-Exchange Resins

    ERIC Educational Resources Information Center

    Elder, David

    2005-01-01

    The historical uses of ion-exchanged resins and a summary of the basic chemical principles involved in the ion-exchanged process are discussed. Specific applications of ion-exchange are provided that include drug stabilization, pharmaceutical excipients, taste-masking agents, oral sustained-release products, topical products for local application…

  2. Pharmaceutical Applications of Ion-Exchange Resins

    NASA Astrophysics Data System (ADS)

    Elder, David P.

    2005-04-01

    The historical uses of ion-exchange resins and a summary of the basic chemical principles involved in the ion-exchange process are discussed. Specific applications of ion-exchange resins are provided. The utility of these agents to stabilize drugs are evaluated. Commonly occurring chemical and physical incompatibilities are reviewed. Ion-exchange resins have found applicability as inactive pharmaceutical constituents, particularly as disintegrants (inactive tablet ingredient whose function is to rapidly disrupt the tablet matrix on contact with gastric fluid). One of the more elegant approaches to improving palatability of ionizable drugs is the use of ion-exchange resins as taste-masking agents. The selection, optimization of drug:resin ratio and particle size, together with a review of scaleup of typical manufacturing processes for taste-masked products are provided. Ion-exchange resins have been extensively utilized in oral sustained-release products. The selection, optimization of drug:resin ratio and particle size, together with a summary of commonly occurring commercial sustained-release products are discussed. Ion-exchange resins have also been used in topical products for local application to the skin, including those where drug flux is controlled by a differential electrical current (ionotophoretic delivery). General applicability of ion-exchange resins, including ophthalmic delivery, nasal delivery, use as drugs in their own right (e.g., colestyramine, formerly referred to as cholestyramine), as well as measuring gastrointestinal transit times, are discussed. Finally, pharmaceutical monographs for ion-exchange resins are reviewed.

  3. TECHNICAL COMPARISON OF CANDIDATE ION EXCHANGE MEDIA FOR SMALL COLUMN ION EXCHANGE (SCIX) APPLICATIONS IN SUPPORT OF SUPPLEMENTAL LAW PRETREATMENT

    SciTech Connect

    RAMSEY AA; THORSON MR

    2010-12-28

    At-tank supplemental pretreatment including both filtration and small column ion exchange is currently under evaluation to facilitate salt waste retrieval and processing in the Hanford tank farms. Spherical resorcinol formaldehyde (sRF) resin is the baseline ion exchange resin for use in the Waste Treatment and Immobilization Plant (WTP). This document provides background and technical rationale to assist in determining whether spherical resorcinol formaldehyde (sRF) is also the appropriate ion exchange resin for supplemental LAW pretreatment processes and compares sRF with crystalline silicotitanate (CST) as potential supplemental pretreatment ion exchange media.

  4. Diverse secondary interactions between ions exchanged into the resin phase and their analytical applications.

    PubMed

    Yuchi, Akio

    2014-01-01

    The research activities by the author's group to elucidate the chemical states of ions within the ion exchange resin phase are summarized. The resin with the higher exchange capacity has the smaller space available for ion exchange, and the higher cross linking degree interferes more with swelling of the resin. As a result, diverse secondary interactions between exchanged ions are observed on the resins of high exchange capacities and high cross linking degrees: the van der Waals contact results in incomplete exchange or enhanced dehydration of ions, hydrogen bond formation between acidic anions, and coadsorption of anions with metal ions. Contribution of the simple ion exchange mechanism to the reactions of iminodiactate-type chelating resins with metal ions in the acidic media is quantitatively discussed. The resulting complexes were successfully applied to preconcentration and separation of anions. PMID:24420244

  5. Multivariant ion exchange: applications of weak-electrolyte resins in water purification

    SciTech Connect

    Wheelwright, S.M.

    1982-01-01

    Weak-electrolyte ion exchange resins differ from strong-electrolyte resins in several aspects, including the dependence of exchange capacity on pH, the tendency to shrink or swell appreciably, and the stronger forces holding the counter-ion in the resin matrix. These differences lead to variations in sorption performance. A model has been developed based on the mass-action law for exchange of a multi-protic weak-acid anion on a weak-base resin, to aid in evaluating resin suitability. This model, extended to include chloride ion competing with acid-anions for resin sites, has been used to predict the column behavior of phosphate removal on a weak-base resin accompanied by chloride and sulfate removal. While simplification (neglect of factors such as sulfate ions competing for resin sites, Donnan inclusion of neural salts, and resin shrinking and swelling) prevents full agreement between the model and published data, the model aids in the interpretation of experimental data by providing a theoretical estimation of plateau concentrations and transition velocities. A novel process, with wide potential application, has been developed for the removal of nitrate from water containing sulfate and chloride. This segmented-bed process reduces the amount of sulfate removed, by first separating sulfate and nitrate in different ion exchange columns, and then regenerating the sulfate column with chloride effluent from the exhaustion operation, so as to return sulfate to the water supply. Equilibrium analysis and column experiments indicate that successful operation can be expected. Two additional multivariate problems have been examined. The adsorption behavior of benzene on a charcoal bed under adiabatic conditions has been modeled with the multilayer equilibrium relationship of Brunauer, Emmett, and Teller, and examples have been solved in which condensation occurs.

  6. Microscale continuous ion exchanger.

    PubMed

    Kuban, Petr; Dasgupta, Purnendu K; Morris, Kavin A

    2002-11-01

    A microscale continuous ion exchanger based on two liquid streams flowing in parallel is presented. The ion exchange reaction occurs through diffusional transfer of molecules between the ion exchanger phase and the eluent phase and is applied for conductivity suppression. Two approaches are demonstrated. In the first approach, a liquid ion exchanger (i.e. a strongly basic compound, e.g., tetraoctylammonium hydroxide, or a secondary amine, e.g., Amberlite IA-2) is dissolved in an organic solvent immiscible with the aqueous eluent. The system allows for sensitive suppressed conductivity detection of various inorganic cations. When the weakly basic secondary amine is used, conductometric detection of heavy metals is possible. In the second approach, a suspension of finely ground ion-exchange resin is used as the ion exchanger phase. In this case, the suspension need not involve an organic solvent. Theoretical models and computations are presented along with experimental results. The potential of such a system as a chip-scale post-separation suppressor/reactor is evident.

  7. Ion Exchange Equilibrium and Kinetic Properties of Polyacrylate Films and Applications to Chemical Analysis and Environmental Decontamination

    NASA Technical Reports Server (NTRS)

    Tanner, Stephen P.

    1997-01-01

    One of the goals of the original proposal was to study how cross-linking affects the properties of an ion exchange material(IEM) developed at Lewis Research Center. However, prior to the start of this work, other workers at LERC investigated the effect of cross-linking on the properties of this material. Other than variation in the ion exchange capacity, the chemical characteristics were shown to be independent of the cross-linking agent, and the degree of cross-linking. New physical forms of the film were developed (film, supported film, various sizes of beads, and powder). All showed similar properties with respect to ion exchange equilibria but the kinetics of ion exchange depended on the surface area per unit mass; the powder form of the IEM exchanging much more rapidly than the other forms. The research performed under this grant was directed towards the application of the IEM to the analysis of metal ions at environmental concentrations.

  8. Ion exchange phenomena

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  9. Application of the new thermodynamic approach to the description of superequivalent sorption by ion exchangers

    NASA Astrophysics Data System (ADS)

    Khokhlova, O. N.

    2014-08-01

    Using the example of sorption systems with the participation of amino acids, it is shown that the novel thermodynamic approach to describing superequivalent sorption as a combination of ion exchange and nonexchangeable absorption allows us to adequately describe such equilibria. Results from calculating the activity coefficients of components of a sorbent phase and the thermodynamic constants of ion exchange equilibrium and the superequivalent absorption of phenylalanine by AV-17-8 anion exchange resin are presented.

  10. Composite ion exchange materials

    SciTech Connect

    Amarasinghe, S.; Zook, L.; Leddy, J.

    1994-12-31

    Composite ion exchange materials can be formed by sorbing ion exchange polymers on inert, high surface area substrates. In general, the flux of ions and molecules through these composites, as measured electrochemically, increases as the ratio of the surface area of the substrate increases relative to the volume of the ion exchanger. This suggests that fields and gradients established at the interface between the ion exchanger and substrate are important in determining the transport characteristics of the composites. Here, the authors will focus on composites formed with a cation exchange polymer, Nafion, and two different types of microbeads: polystyrene microspheres and polystyrene coated magnetic microbeads. For the polystyrene microbeads, scanning electron micrographs suggest the beads cluster in a self-similar manner, independent of the bead diameter. Flux of Ru(NH3)63+ through the composites was studied as a function of bead fraction, bead radii, and fixed surface area with mixed bead sizes. Flux was well modeled by surface diffusion along a fractal interface. Magnetic composites were formed with columns of magnetic microbeads normal to the electrode surface. Flux of Ru(NH3)63+ through these composites increased exponentially with bead fraction. For electrolyses, the difference in the molar magnetic susceptibility of the products and reactants, Dcm, tends to be non-zero. For seven redox reactions, the ratio of the flux through the magnetic composites to the flux through a Nafion film increases monotonically with {vert_bar}Dcm{vert_bar}, with enhancements as large as thirty-fold. For reversible species, the electrolysis potential through the magnetic composites is 35 mV positive of that for the Nafion films.

  11. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  12. A novel electrochemical ion exchange system and its application in water treatment.

    PubMed

    Li, Yansheng; Li, Yongbin; Liu, Zhigang; Wu, Tao; Tian, Ying

    2011-06-01

    A novel electrochemical ion exchange system with porous cylinder electrodes is proposed for treatment of wastewater. This system can be used for desalination without the costly ion-exchange membrane and extra chemical reagents. Since the electrodes are completely uniform and no ion-exchange membrane was used in this system, it can be operated by switching anodes and cathodes flexibly for eliminating the scaling on the surface of electrodes. The strong base ion-exchange resin grains placed among the anode and cathode have played as supporting electrolyte, which is capable for the treatment of wastewater with low conductivity. The concentrated and neutralized anolyte containing chlorine is effective for disinfection and contaminants removal. Under the experimental conditions, the removal percentage of total dissolved salts was 83% and the removal percentage of chemical oxygen demand was 92% without consumption of extra chemical reagents.

  13. Ion exchange fabric synthesized by graft polymerization and its application to ultra-pure water production

    NASA Astrophysics Data System (ADS)

    Takeda, T.; Tamada, M.; Seko, N.; Ueki, Y.

    2010-03-01

    Ion exchange fabric (IEF) having the functional group of sulfonic acid was synthesized by radiation grafting of glycidyl methacrylate on a polyethylene nonwoven fabric and subsequent chemical modification. Total organic carbon eluted from the resulting IEF could be reduced to the concentration less than 1 ppb after washing with organic solvents. Adsorption performance of the obtained IEF was evaluated by 10 ppb Na + solution. The column packed IEF, 7 mm in diameter and 20 mm high, could remove the Na + at the distribution coefficient of 1.2×10 7 at linear velocity of 400 m/h. At column height of 95 mm, the breakthrough point reached 2.0×10 5 in bed volume and the degree of column utilization was improved up to 18.7%. From these results, the IEF synthesized by graft polymerization was considered to be applicable for water purification in ultra-pure water production.

  14. The application of ion-exchanged clay as corrosion inhibiting pigments in organic coatings

    NASA Astrophysics Data System (ADS)

    Chrisanti, Santi

    High strength aluminum alloys are used in aerospace industry and are normally coated to prevent corrosion. The corrosion protection of the coatings is mainly provided by pigmented-primer layer. Strontium chromate pigments are widely used, but they are toxic and carcinogenic. The objective of the current study is to develop and characterize the ion exchange compounds bentonite and hydrotalcite as corrosion inhibiting pigments. These compounds were synthesized with different cations and anions, and were used either alone or in mixtures as particulate additive in organic coatings. In coating applications as well as bulk solution, the inhibitor release mechanism is based on ion exchange. To evaluate corrosion inhibition, pigments extract solutions were used in potentiodynamic polarization as well as electrochemical impedance spectroscopy (EIS) experiments on bare aluminum alloy 2024-T3. Cathodic polarization showed that zinc- and cerium-containing filtrate solutions modestly inhibited cathodic current density. These solutions also decreased the extent of pitting damage formed on the surface, as compared to uninhibited 0.5 M NaCl solution. Pigments were also added as primer additives, and painted on AA2024-T3. The coated panels were then subjected to salt spray exposure testing. The possibility of sensing inhibitor exhaustion by means of X-ray diffraction interrogation of the pigment in a coating is demonstrated and discussed on cerium bentonite-pigmented coatings. Although cerium bentonite-pigmented coatings did not show behavior indicative of self-healing, the combination of bentonite and hydrotalcite that released Ce3+, Zn 2+, and PO43- showed potent scribe protection even after 3000 h exposure in salt spray. Promising self-healing was also demonstrated by pigments that consisted of decavanadate-hydrotalcite and zinc pyrovanadate, as indicated by a shiny scribed area after 1000h exposure in salt spray. When these pigments are used, blistering is minimized.

  15. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Yen, S. P. S.; Klein, E. (Inventor)

    1976-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, crosslinked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  16. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1980-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  17. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1977-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  18. Electrically switched ion exchange

    SciTech Connect

    Lilga, M.A.; Schwartz, D.T.; Genders, D.

    1997-10-01

    A variety of waste types containing radioactive {sup 137}Cs are found throughout the DOE complex. These waste types include water in reactor cooling basins, radioactive high-level waste (HLW) in underground storage tanks, and groundwater. Safety and regulatory requirements and economics require the removal of radiocesium before these wastes can be permanently disposed of. Electrically Switched Ion Exchange (ESIX) is an approach for radioactive cesium separation that combines IX and electrochemistry to provide a selective, reversible, and economic separation method that also produces little or no secondary waste. In the ESIX process, an electroactive IX film is deposited electrochemically onto a high-surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. For cesium, the electroactive films under investigation are ferrocyanides, which are well known to have high selectivities for cesium in concentrated sodium solutions. When a cathode potential is applied to the film, Fe{sup +3} is reduced to the Fe{sup +2} state, and a cation must be intercalated into the film to maintain charge neutrality (i.e., Cs{sup +} is loaded). Conversely, if an anodic potential is applied, a cation must be released from the film (i.e., Cs{sup +} is unloaded). Therefore, to load the film with cesium, the film is simply reduced; to unload cesium, the film is oxidized.

  19. Development and properties of crystalline silicotitanate (CST) ion exchangers for radioactive waste applications

    SciTech Connect

    Miller, J.E.; Brown, N.E.

    1997-04-01

    Crystalline silicotitanates (CSTs) are a new class of ion exchangers that were jointly invented by researchers at Sandia National Laboratories and Texas A&M University. One particular CST, known as TAM-5, is remarkable for its ability to separate parts-per-million concentrations of cesium from highly alkaline solutions (pH> 14) containing high sodium concentrations (>5M). It is also highly effective for removing cesium from neutral and acidic solutions, and for removing strontium from basic and neutral solutions. Cesium isotopes are fission products that account for a large portion of the radioactivity in waste streams generated during weapons material production. Tests performed at numerous locations with early lab-scale TAM-5 samples established the material as a leading candidate for treating radioactive waste volumes such as those found at the Hanford site in Washington. Thus Sandia developed a Cooperative Research and Development Agreement (CRADA) partnership with UOP, a world leader in developing, commercializing, and supplying adsorbents and associated process technology to commercialize and further develop the material. CSTs are now commercially available from UOP in a powder (UOP IONSIV{reg_sign} IE-910 ion exchanger) and granular form suitable for column ion exchange operations (UOP IONSIV{reg_sign} IE-911 ion exchanger). These materials exhibit a high capacity for cesium in a wide variety of solutions of interest to the Department of Energy, and they are chemically, thermally, and radiation stable. They have performed well in tests at numerous sites with actual radioactive waste solutions, and are being demonstrated in the 100,000 liter Cesium Removal Demonstration taking place at Oak Ridge National Laboratory with Melton Valley Storage Tank waste. It has been estimated that applying CSTs to the Hanford cleanup alone will result in a savings of more than $300 million over baseline technologies.

  20. Ion exchange - Simulation and experiment

    NASA Technical Reports Server (NTRS)

    Herrmann, Cal C.; Finn, John E.

    1991-01-01

    A FORTRAN program for simulating multicomponent adsorption by ion-exchange resins was adapted for use as both an ASPEN-callable module and as a free-standing simulator of the ion-exchange bed. Four polystyrene-divinylbenzene sulfonic acid resins have been characterized for three principal ions. It is concluded that a chelating resin appears appropriate as a heavy-metal trap. The same ASPEN-callable module is used to model this resin when Wilson parameters can be obtained.

  1. Studies on the application of temperature-responsive ion exchange polymers with whey proteins.

    PubMed

    Maharjan, Pankaj; Campi, Eva M; De Silva, Kirthi; Woonton, Brad W; Jackson, W Roy; Hearn, Milton T W

    2016-03-18

    Several new types of temperature-responsive ion exchange resins of different polymer composition have been prepared by grafting the products from the co-polymerisation of N-phenylacrylamide, N-iso-propylacrylamide and acrylic acid derivatives onto cross-linked agarose. Analysis of the binding isotherms for these different resins obtained under batch adsorption conditions indicated that the resin based on N-iso-propylacrylamide containing 5% (w/w) N-phenylacrylamide and 5% (w/w) acrylic acid resulted in the highest adsorption capacity, Bmax, for the whey protein, bovine lactoferrin, e.g. 14 mg bovine lactoferrin/mL resin at 4 °C and 62 mg bovine lactoferrin/mL resin at 40 °C, respectively. Under dynamic loading conditions at 40 °C, 94% of the loaded bovine lactoferrin on a normalised mg protein per mL resin basis was adsorbed by this new temperature-responsive ion-exchanger, and 76% was eluted by a single cycle temperature shift to 4 °C without varying the composition of the 10mM sodium dihydrogen phosphate buffer, pH 6.5, or the flow rate. The binding characteristics of these different ion exchange resins with bovine lactoferrin were also compared to results obtained using other resins based on N-isopropylacrylamide but contained N-tert-butylacrylamide rather than N-phenylacrylamide, where the corresponding dynamic capture and release properties for bovine lactoferrin required different temperature conditions of 20 °C and 50 °C, respectively for optimal desorption/adsorption. The cationic protein, bovine lactoperoxidase, was also adsorbed and desorbed with these temperature-responsive resins under similar conditions of changing temperature, whereas the anionic protein, bovine β-lactoglobulin, was not adsorbed under this regime of temperature conditions but instead eluted in the flow-through.

  2. Reversible ion exchange and structural stability of garnet-type Nb-doped Li7La3Zr2O12 in water for applications in lithium batteries

    NASA Astrophysics Data System (ADS)

    Liu, Cai; Rui, Kun; Shen, Chen; Badding, Michael E.; Zhang, Gaoxiao; Wen, Zhaoyin

    2015-05-01

    H+/Li+ ion exchange and structural stability of the high ionic conductivity Nb-doped Zr-garnet Li6.75La3Nb0.25Zr1.75O12 (LLNZO) are investigated in this study. Relationships between ion exchange and Li-population per unit cell, which are necessary to establish the practical framework of garnet electrolytes, are deduced for garnet oxides within ion-exchange process. H+/Li+ ion exchange of cubic LLNZO powder is performed continuously in distilled water and products with various exchange levels are obtained via this simple method. FTIR spectra show the evolution of H-O bonding through the ion-exchange process. A maximum of 74.8% exchange of Li+ by H+ was found, consistent with a preferential replacement of octahedrally coordinated Li. The cubic garnet phase is maintained throughout all levels of proton exchange observed. The formation of garnet-type solid solution of Li6.75-xHxLa3Nb0.25Zr1.75O12 is indicated by well-resolved lattice fringes as well as the linear evolution of crystal lattice parameters with the ion exchange level. The reverse ion exchange of H+ by Li+ is successfully achieved in Li+ containing aqueous solutions, demonstrating its high structural stability and good compatibility for promising applications in lithium batteries.

  3. Vitrification of ion exchange resins

    DOEpatents

    Cicero-Herman, Connie A.; Workman, Rhonda Jackson

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  4. Solvent Extraction and Ion Exchange in Radiochemistry

    NASA Astrophysics Data System (ADS)

    Skarnemark, G.

    In 1805, Bucholz extracted uranium from a nitric acid solution into ether and back-extracted it into pure water. This is probably the first reported solvent-extraction investigation. During the following decades, the distribution of neutral compounds between aqueous phases and pure solvents was studied, e.g., by Peligot, Berthelot and Jungfleisch, and Nernst. Selective extractants for analytical purposes became available during the first decades of the twentieth century. From about 1940, extractants such as organophosphorous esters and amines were developed for use in the nuclear fuel cycle. This connection between radiochemistry and solvent-extraction chemistry made radiochemists heavily involved in the development of new solvent extraction processes, and eventually solvent extraction became a major separation technique in radiochemistry. About 160 years ago, Thompson and Way observed that soil can remove potassium and ammonium ions from an aqueous solution and release calcium ions. This is probably the first scientific report on an ion-exchange separation. The first synthesis of the type of organic ion exchangers that are used today was performed by Adams and Holmes in 1935. Since then, ion-exchange techniques have been used extensively for separations of various radionuclides in trace as well as macro amounts. During the last 4 decades, inorganic ion exchangers have also found a variety of applications. Today, solvent extraction as well as ion exchange are used extensively in the nuclear industry and for nuclear, chemical, and medical research. Some of these applications are discussed in the chapter.

  5. Electrically Switched Cesium Ion Exchange

    SciTech Connect

    JPH Sukamto; ML Lilga; RK Orth

    1998-10-23

    This report discusses the results of work to develop Electrically Switched Ion Exchange (ESIX) for separations of ions from waste streams relevant to DOE site clean-up. ESIX combines ion exchange and electrochemistry to provide a selective, reversible method for radionuclide separation that lowers costs and minimizes secondary waste generation typically associated with conventional ion exchange. In the ESIX process, an electroactive ion exchange film is deposited onto. a high surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. As a result, the production of secondary waste is minimized, since the large volumes of solution associated with elution, wash, and regeneration cycles typical of standard ion exchange are not needed for the ESIX process. The document is presented in two parts: Part I, the Summary Report, discusses the objectives of the project, describes the ESIX concept and the approach taken, and summarizes the major results; Part II, the Technology Description, provides a technical description of the experimental procedures and in-depth discussions on modeling, case studies, and cost comparisons between ESIX and currently used technologies.

  6. Solute transport with equilibrium aqueous complexation and either sorption or ion exchange: Simulation methodology and applications

    USGS Publications Warehouse

    Lewis, F.M.; Voss, C.I.; Rubin, J.

    1987-01-01

    Methodologies that account for specific types of chemical reactions in the simulation of solute transport can be developed so they are compatible with solution algorithms employed in existing transport codes. This enables the simulation of reactive transport in complex multidimensional flow regimes, and provides a means for existing codes to account for some of the fundamental chemical processes that occur among transported solutes. Two equilibrium-controlled reaction systems demonstrate a methodology for accommodating chemical interaction into models of solute transport. One system involves the sorption of a given chemical species, as well as two aqueous complexations in which the sorbing species is a participant. The other reaction set involves binary ion exchange coupled with aqueous complexation involving one of the exchanging species. The methodology accommodates these reaction systems through the addition of nonlinear terms to the transport equations for the sorbing species. Example simulation results show (1) the effect equilibrium chemical parameters have on the spatial distributions of concentration for complexing solutes; (2) that an interrelationship exists between mechanical dispersion and the various reaction processes; (3) that dispersive parameters of the porous media cannot be determined from reactive concentration distributions unless the reaction is accounted for or the influence of the reaction is negligible; (4) how the concentration of a chemical species may be significantly affected by its participation in an aqueous complex with a second species which also sorbs; and (5) that these coupled chemical processes influencing reactive transport can be demonstrated in two-dimensional flow regimes. ?? 1987.

  7. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.

    1981-01-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  8. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  9. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  10. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  11. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  12. Inorganic ion exchangers for nuclear waste remediation

    SciTech Connect

    Clearfield, A.; Bortun, A.; Bortun, L.; Behrens, E.

    1997-10-01

    The objective of this work is to provide a broad spectrum of inorganic ion exchangers that can be used for a range of applications and separations involving remediation of groundwater and tank wastes. The authors intend to scale-up the most promising exchangers, through partnership with AlliedSignal Inc., to provide samples for testing at various DOE sites. While much of the focus is on exchangers for removal of Cs{sup +} and Sr{sup 2+} from highly alkaline tank wastes, especially at Hanford, the authors have also synthesized exchangers for acid wastes, alkaline wastes, groundwater, and mercury, cobalt, and chromium removal. These exchangers are now available for use at DOE sites. Many of the ion exchangers described here are new, and others are improved versions of previously known exchangers. They are generally one of three types: (1) layered compounds, (2) framework or tunnel compounds, and (3) amorphous exchangers in which a gel exchanger is used to bind a fine powder into a bead for column use. Most of these exchangers can be regenerated and used again.

  13. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1997-01-01

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  14. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, A.W.; Gatrone, R.C.; Alexandratos, S.; Horwitz, E.P.

    1997-04-08

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorus. The pendent groups have the formula as shown in the patent wherein R is hydrogen, a cation or mixtures thereof; and R{sup 1} is hydrogen or an C{sub 1}-C{sub 2} alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  15. Grafted methylenediphosphonate ion exchange resins

    SciTech Connect

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1998-01-27

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange-resin are also disclosed.

  16. Disposal of bead ion exchange resin wastes

    SciTech Connect

    Gay, R.L.; Granthan, L.F.

    1985-12-17

    Bead ion exchange resin wastes are disposed of by a process which involves spray-drying a bead ion exchange resin waste in order to remove substantially all of the water present in such waste, including the water on the surface of the ion exchange resin beads and the water inside the ion exchange resin beads. The resulting dried ion exchange resin beads can then be solidified in a suitable solid matrix-forming material, such as a polymer, which solidifies to contain the dried ion exchange resin beads in a solid monolith suitable for disposal by burial or other conventional means.

  17. Ion Exchange and Liquid Column Chromatography.

    ERIC Educational Resources Information Center

    Walton, Harold F.

    1980-01-01

    Emphasizes recent advances in principles and methodology in ion exchange and chromatography. Two tables list representative examples for inorganic ions and organic compounds. Cites 544 references. (CS)

  18. Ion exchange purification of scandium

    DOEpatents

    Herchenroeder, Laurie A.; Burkholder, Harvey R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity.

  19. Ion exchange purification of scandium

    DOEpatents

    Herchenroeder, L.A.; Burkholder, H.R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity. 2 figs.

  20. Electrically controlled cesium ion exchange

    SciTech Connect

    Lilga, M.

    1996-10-01

    Several sites within the DOE complex (Savannah River, Idaho, Oak Ridge and Hanford) have underground storage tanks containing high-level waste resulting from nuclear engineering activities. To facilitate final disposal of the tank waste, it is advantageous to separate and concentrate the radionuclides for final immobilization in a vitrified glass matrix. This task proposes a new approach for radionuclide separation by combining ion exchange (IX) and electrochemistry to provide a selective and economic separation method.

  1. PRTR ion exchange vault column sampling

    SciTech Connect

    Cornwell, B.C.

    1995-03-14

    This report documents ion exchange column sampling and Non Destructive Assay (NDA) results from activities in 1994, for the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. The objective was to obtain sufficient information to prepare disposal documentation for the ion exchange columns found in the PRTR Ion exchange vault. This activity also allowed for the monitoring of the liquid level in the lower vault. The sampling activity contained five separate activities: (1) Sampling an ion exchange column and analyzing the ion exchange media for purpose of waste disposal; (2) Gamma and neutron NDA testing on ion exchange columns located in the upper vault; (3) Lower vault liquid level measurement; (4) Radiological survey of the upper vault; and (5) Secure the vault pending waste disposal.

  2. Synthesis, characterization and application of ion exchange resin as a slow-release fertilizer for wheat cultivation in space

    NASA Astrophysics Data System (ADS)

    Li, Bowei; Dong, Chen; Chu, Zhengpei; Zhang, Weizhe; Wang, Minjuan; Liu, Hong; Xie, Beizhen

    2016-10-01

    In addition to the bio-regenerative air revitalization, water recycling and waste management systems and their associated challenges, enhancing the crop yield with less fertilizer input for sustainable food production in space is also a challenge that needs to be overcome. The purpose of this study is to investigate the feasibility of applying ion exchange resin as a slow-release fertilizer for wheat cultivation in space. Strong-acid cationic exchange resins and weak-base anion exchange resins soaked in 1X, 5X, 10X and 15X Hoagland nutrient solutions, respectively, were used as fertilizers in clinoptilolite to cultivate wheat plants, and the morphological and physiological characteristics of the wheat plants were studied and compared with that of the wheat planted in vermiculite and nutrient solutions. The results showed that more ions were attached on the surface of the ion exchange resins as the solution concentration increased. After 14 days, the fresh weight of wheat planted in the ion exchange resin-clinoptilolite (IER-clinoptilolite) treated with 10X and 15X solutions were 190% and 192% higher than that of wheat planted in nutrient solution with the same concentration. Chlorophyll content of wheat plants cultivated in the two kinds of solid medium is significantly higher than that of liquid cultivation. The lowest peroxidase (POD) activity and malondialdehyde (MDA) contents of wheat plants cultivated in the IER-clinoptilolite appeared on the 14th day. According to all the experimental data, it's promising to produce slow-release nutrient fertilizer by using strong-acid cationic exchange resins and weak-base anion exchange resins for wheat cultivation in space.

  3. Effects of ionizing radiation on modern ion exchange materials

    SciTech Connect

    Marsh, S.F.; Pillay, K.K.S.

    1993-10-01

    We review published studies of the effects of ionizing radiation on ion exchange materials, emphasizing those published in recent years. A brief overview is followed by a more detailed examination of recent developments. Our review includes styrene/divinylbenzene copolymers with cation-exchange or anion-exchange functional groups, polyvinylpyridine anion exchangers, chelating resins, multifunctional resins, and inorganic exchangers. In general, strong-acid cation exchange resins are more resistant to radiation than are strong-base anion exchange resins, and polyvinylpyridine resins are more resistant than polystyrene resins. Cross-linkage, salt form, moisture content, and the surrounding medium all affect the radiation stability of a specific exchanger. Inorganic exchangers usually, but not always, exhibit high radiation resistance. Liquid ion exchangers, which have been used so extensively in nuclear processing applications, also are included.

  4. Facility produced charge-exchange ions

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1981-01-01

    These facility produced ions are created by charge-exchange collisions between neutral atoms and energetic thruster beam ions. The result of the electron transfer is an energetic neutral atom and an ion of only thermal energy. There are true charge-exchange ions produced by collisions with neutrals escaping from the ion thruster and being charge-exchange ionized before the neutral intercepts the tank wall. The facility produced charge-exchange ions will not exist in space and therefore, represent a source of error where measurements involving ion thruster plasmas and their density are involved. The quantity of facility produced ions in a test chamber with a 30 cm mercury ion thruster was determined.

  5. A nano-silver composite based on the ion-exchange response for the intelligent antibacterial applications.

    PubMed

    Wang, Chan; Huang, Xiaobo; Deng, Weilin; Chang, Chengliang; Hang, Ruiqiang; Tang, Bin

    2014-08-01

    As a kind of antimicrobial agent, nano-silver composites have attracted a great deal of interest in biomedical applications. However, the typical loadings of silver nanoparticles (AgNPs) in such composites could result in dose-related cytotoxicity. In this study, a nano-silver composite leading to antimicrobial activity without cytotoxicity was fabricated by loading AgNPs into a dried alginate hydrogel. The biological performance of this composite mainly depended on the release of AgNPs, which needed to be triggered by the ion-exchange response and was further influenced by the loadings of AgNPs in the composite. The antimicrobial activity against E. coli and S. aureus demonstrated that the released silver no less than 678 ppb in the medium caused a reduction of 7log10CFU/mL (100%) bacteria. Significantly, the dose (~1.10×10(3) ppb) of released silver was not toxic and allowed attachment, and growth of MC3T3-E1 pre-osteoblast cells. These results supported that the composite was compatible with in vitro mammalian cells yet exhibited antimicrobial activity by carefully designing the loadings of AgNPs within the alginate. Thus, it indicated that the performance of this composite might permit management of bacterial infection in wound beds without impairment of wound healing.

  6. Novel silica-based ion exchange resin

    SciTech Connect

    1997-11-01

    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  7. Method of uranium reclamation from aqueous systems by reactive ion exchange. [US DOE patent application; anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands

    DOEpatents

    Maya, L.

    1981-11-05

    A reactive ion exchange method for separation and recovery of values of uranium, neptunium, plutonium, or americium from substantially neutral aqueous systems of said metals comprises contacting said system with an effective amount of a basic anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands to achieve nearly 100% sorption of said actinyl ion onto said resin and an aqueous system practically free of said actinyl ions. The method is operational over an extensive range of concentrations from about 10/sup -6/ M to 1.0 M actinyl ion and a pH range of about 4 to 7. The method has particulr application to treatment of waste streams from Purex-type nuclear fuel reprocessing facilities and hydrometallurgical processes involving U, Np, P, or Am.

  8. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    ERIC Educational Resources Information Center

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  9. Ion Exchange Temperature Testing with SRF Resin

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Brown, Garrett N.; Peterson, Reid A.

    2012-03-01

    Ion exchange using the Spherical Resorcinol-Formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection for use in the Pretreatment Facility of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in an at-tank deployment for removing 137Cs. Recent proposed changes to the WTP ion exchange process baseline indicate that higher temperatures (50°C) to alleviate post-filtration precipitation issues prior to reaching the ion exchange columns may be required. Therefore, it is important to understand the behavior of SRF resin performance under the conditions expected with the new equipment and process changes. This research examined the impact of elevated temperature on resin loading and resin degradation during extended solution flow using elevated temperature (45°, 50°, 55°, 60°, 65°, 75°C). Testing for extended times at elevated temperatures showed that the resin does degrade and loading capacity is reduced at and above 45°C. Above 60°C the resin appears to not load at all.

  10. Ion Exchange Formation via Sulfonated Bicomponent Nonwovens

    NASA Astrophysics Data System (ADS)

    Stoughton, Hannah L.

    For many years ion exchange resins were used to: remove heavy metals from water, recover materials from wastewater, and eliminate harmful gases from the air. While use of these resin beads dominates the ion exchange industry, the beads have limitations that should be considered when decisions are made to employ them. For instance, officials must balance the inherent zero sum surface area and porosity of the materials. This series of studies investigates the use of bicomponent nonwovens as a base substrate for producing high surface area ion exchange materials for the removal of heavy metal ions. Functionalized materials were produced in a two-step process: (1) PET/PE spunbond bicomponent fibers were fractured completely, producing the high surface area nonwoven to be used as the base ion exchange material, and (2) the conditions for functionalizing the PET fibers of the nonwoven webs were investigated where an epoxy containing monomer was grafted to the surface followed by sulfonation of the monomer. The functionalization reactions of the PET fibers were monitored based on: weight gain, FTIR, TOF-SIMS, and SEM. Ion exchange properties were evaluated using titration and copper ion removal capacity from test solutions. The relationship between web structure and removal efficiency of the metal ions was defined through a comparison of the bicomponent and homocomponent nonwovens for copper ion removal efficiency. The investigation revealed that utilizing the high surface area, fractured bicomponent nonwoven ion exchange materials with capacities comparable to commercially available ion exchange resins could be produced.

  11. Ion exchange properties of novel hydrous metal oxide materials

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.

    1996-12-31

    Hydrous metal oxide (HMO) materials are inorganic ion exchangers which have many desirable characteristics for catalyst support applications, including high cation exchange capacity, anion exchange capability, high surface area, ease of adjustment of acidity and basicity, bulk or thin film preparation, and similar chemistry for preparation of various transition metal oxides. Cation exchange capacity is engineered into these materials through the uniform incorporation of alkali cations via manipulation of alkoxide chemistry. Specific examples of the effects of Na stoichiometry and the addition of SiO{sub 2} to hydrous titanium oxide (HTO) on ion exchange behavior will be given. Acid titration and cationic metal precursor complex exchange will be used to characterize the ion exchange behavior of these novel materials.

  12. [Ion specificity during ion exchange equilibrium in natural clinoptilolite].

    PubMed

    He, Yun-Hua; Li, Hang; Liu, Xin-Min; Xiong, Hai-Ling

    2015-03-01

    Zeolites have been widely applied in soil improvement and environment protection. The study on ion specificity during ion exchange equilibrium is of important significance for better use of zeolites. The maximum adsorption capacities of alkali ions during ion exchange equilibrium in the clinoptilolite showed obvious specificity. For alkali metal ions with equivalent valence, the differences in adsorption capacity increased with the decrease of ionic concentration. These results cannot be well explained by the classical theories including coulomb force, ionic size, hydration, dispersion force, classic induction force and surface complexation. We found that the coupling of polarization effects resulted from the quantum fluctuation of diverse alkali metal ions and electric field near the zeolite surface should be the primary reason for specific ion effect during ion exchange in zeolite. The result of this coupling effect was that the difference in the ion dipole moment increased with the increase of surface potential, which further expanded the difference in the adsorption ability between zeolite surface and ions, resulting in different ion exchange adsorption ability at the solid/liquid interface. Due to the high surface charge density of zeolite, ionic size also played an important role in the distribution of ions in the double diffuse layer, which led to an interesting result that distinct differences in exchange adsorption ability of various alkali metal ions were only detected at high surface potential (the absolute value was greater than 0.2 V), which was different from the ion exchange equilibrium result on the surface with low charge density.

  13. Titania bound sodium titanate ion exchanger

    DOEpatents

    DeFilippi, Irene C. G.; Yates, Stephen Frederic; Shen, Jian-Kun; Gaita, Romulus; Sedath, Robert Henry; Seminara, Gary Joseph; Straszewski, Michael Peter; Anderson, David Joseph

    1999-03-23

    This invention is method for preparing a titania bound ion exchange composition comprising admixing crystalline sodium titanate and a hydrolyzable titanium compound and, thereafter drying the titania bound crystalline sodium titanate and subjecting the dried titania bound ion exchange composition to optional compaction and calcination steps to improve the physical strength of the titania bound composition.

  14. Ion Exchange and Adsorption of Inorganic Contaminants

    EPA Science Inventory

    In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...

  15. Ion exchange in the nuclear industry

    SciTech Connect

    Bibler, J.P.

    1990-12-31

    Ion exchange is used in nearly every part of the nuclear fuel cycle -- from the purification of uranium from its ore to the final recovery of uranium and transmutation products. Ion exchange also plays a valuable role in the management of nuclear wastes generated in the fuel cycle.

  16. Ion exchange in the nuclear industry

    SciTech Connect

    Bibler, J.P.

    1990-01-01

    Ion exchange is used in nearly every part of the nuclear fuel cycle -- from the purification of uranium from its ore to the final recovery of uranium and transmutation products. Ion exchange also plays a valuable role in the management of nuclear wastes generated in the fuel cycle.

  17. Ion-exchange chromatographic protein refolding.

    PubMed

    Freydell, Esteban J; van der Wielen, Luuk; Eppink, Michel; Ottens, Marcel

    2010-11-12

    The application of ion-exchange (IEX) chromatography to protein refolding (IExR) has been successfully proven, as supported by various studies using different model proteins, ion-exchange media and flow configurations. Ion-exchange refolding offers a relatively high degree of process intensification, represented by the possibility of performing protein refolding, product purification and product concentration, in one unit operation. Besides its high degree of process intensification, IExR offers an additional set of key advantages including: spatial isolation of the bound protein molecules and the controllable change in chemical composition using gradients. Despite of the acknowledgement of the former advantages, the lack of mechanistic understanding on how they influence the process performance of the ion-exchange refolding reactor, limits the ability to exploit them in order to optimize the performance of the unit. This paper presents a quantitative analysis that assesses the effect that the spatial isolation and the urea gradient, have on the IExR performance, judged on the basis of the refolding yield (Y(N)) and the fractional mass recovery (f(Prot,Rec)). Additionally, this work discusses the effect of the protein load, the protein loading state (i.e., native, denatured, denatured and reduced (D&R)) and the adsorbent type on f(Prot,Rec). The presented work shows: (1) that the protein load has a direct effect on f(Prot,Rec), and the magnitude of this effect depends on the loading state of the protein solution and the adsorbent type; (2) that irrespectively of the type of adsorbent used, the saturation capacity of a denatured protein is less than the native protein and that this difference can be linked to differences in accessible binding surface area; (3) that there is a clear correlation between fractional surface coverage (θ) and f(Prot,Rec), indicating that the former could serve as a good descriptor to assess spatial isolation, and (4) that the urea

  18. Application of a Re-Pd bimetallic catalyst for treatment of perchlorate in waste ion-exchange regenerant brine.

    PubMed

    Liu, Jinyong; Choe, Jong Kwon; Sasnow, Zachary; Werth, Charles J; Strathmann, Timothy J

    2013-01-01

    Concentrated sodium chloride (NaCl) brines are often used to regenerate ion-exchange (IX) resins applied to treat drinking water sources contaminated with perchlorate (ClO(4)(-)), generating large volumes of contaminated waste brine. Chemical and biological processes for ClO(4)(-) reduction are often inhibited severely by high salt levels, making it difficult to recycle waste brines. Recent work demonstrated that novel rhenium-palladium bimetallic catalysts on activated carbon support (Re-Pd/C) can efficiently reduce ClO(4)(-) to chloride (Cl(-)) under acidic conditions, and here the applicability of the process for treating waste IX brines was examined. Experiments conducted in synthetic NaCl-only brine (6-12 wt%) showed higher Re-Pd/C catalyst activity than in comparable freshwater solutions, but the rate constant for ClO(4)(-) reduction measured in a real IX waste brine was found to be 65 times lower than in the synthetic NaCl brine. Through a series of experiments, co-contamination of the IX waste brine by excess NO(3)(-) (which the catalyst reduces principally to NH(4)(+)) was found to be the primary cause for deactivation of the Re-Pd/C catalyst, most likely by altering the immobilized Re component. Pre-treatment of NO(3)(-) using a different bimetallic catalyst (In-Pd/Al(2)O(3)) improved selectivity for N(2) over NH(4)(+) and enabled facile ClO(4)(-) reduction by the Re-Pd/C catalyst. Thus, sequential catalytic treatment may be a promising strategy for enabling reuse of waste IX brine containing NO(3)(-) and ClO(4)(-).

  19. Ion exchanger from chemically modified banana leaves.

    PubMed

    El-Gendy, Ahmed A; Mohamed, Samar H; Abd-Elkader, Amal H

    2013-07-25

    Cation exchangers from chemically modified banana leaves have been prepared. Banana leaves were treated with different molarities of KMnO4 and cross linked with epichlorohydrin and their effect on metal ion adsorption was investigated. Phosphorylation of chemically modified banana leaves was also studied. The metal ion uptake by these modified banana leaves was clarified. Effect of different varieties, e.g. activation of produced cation exchanger, concentration of metal ions was also investigated. Characterization of the prepared ion exchangers by using infrared and thermal analysis was also taken in consideration. PMID:23768590

  20. Ion exchange in hydroxyapatite with lanthanides.

    PubMed

    Cawthray, Jacqueline F; Creagh, A Louise; Haynes, Charles A; Orvig, Chris

    2015-02-16

    Naturally occurring hydroxyapatite, Ca5(PO4)3(OH) (HAP), is the main inorganic component of bone matrix, with synthetic analogues finding applications in bioceramics and catalysis. An interesting and valuable property of both natural and synthetic HAP is the ability to undergo cationic and anionic substitution. The lanthanides are well-suited for substitution for the Ca(2+) sites within HAP, because of their similarities in ionic radii, donor atom requirements, and coordination geometries. We have used isothermal titration calorimetry (ITC) to investigate the thermodynamics of ion exchange in HAP with a representative series of lanthanide ions, La(3+), Sm(3+), Gd(3+), Ho(3+), Yb(3+) and Lu(3+), reporting the association constant (Ka), ion-exchange thermodynamic parameters (ΔH, ΔS, ΔG), and binding stoichiometry (n). We also probe the nature of the La(3+):HAP interaction by solid-state nuclear magnetic resonance ((31)P NMR), X-ray diffraction (XRD), and inductively coupled plasma-optical emission spectroscopy (ICP-OES), in support of the ITC results. PMID:25594577

  1. Application of the Nernst-Planck approach to lead ion exchange in Ca-loaded Pelvetia canaliculata.

    PubMed

    Costa, Joana F de Sá S; Vilar, Vítor J P; Botelho, Cidália M S; da Silva, Eduardo A B; Boaventura, Rui A R

    2010-07-01

    Ca-loaded Pelvetia canaliculata biomass was used to remove Pb(2+) in aqueous solution from batch and continuous systems. The physicochemical characterization of algae Pelvetia particles by potentiometric titration and FTIR analysis has shown a gel structure with two major binding groups - carboxylic (2.8 mmol g(-1)) and hydroxyl (0.8 mmol g(-1)), with an affinity constant distribution for hydrogen ions well described by a Quasi-Gaussian distribution. Equilibrium adsorption (pH 3 and 5) and desorption (eluents: HNO(3) and CaCl(2)) experiments were performed, showing that the biosorption mechanism was attributed to ion exchange among calcium, lead and hydrogen ions with stoichiometry 1:1 (Ca:Pb) and 1:2 (Ca:H and Pb:H). The uptake capacity of lead ions decreased with pH, suggesting that there is a competition between H(+) and Pb(2+) for the same binding sites. A mass action law for the ternary mixture was able to predict the equilibrium data, with the selectivity constants alpha(Ca)(H)=9+/-1 and alpha(Ca)(Pb)=44+/-5, revealing a higher affinity of the biomass towards lead ions. Adsorption (initial solution pH 4.5 and 2.5) and desorption (0.3M HNO(3)) kinetics were performed in batch and continuous systems. A mass transfer model using the Nernst-Planck approximation for the ionic flux of each counter-ion was used for the prediction of the ions profiles in batch systems and packed bed columns. The intraparticle effective diffusion constants were determined as 3.73x10(-7)cm(2)s(-1) for H(+), 7.56x10(-8)cm(2)s(-1) for Pb(2+) and 6.37x10(-8)cm(2)s(-1) for Ca(2+). PMID:20605620

  2. Synthesis and characterization of a novel hybrid nano composite cation exchanger poly-o-toluidine Sn(IV) tungstate: Its analytical applications as ion-selective electrode

    NASA Astrophysics Data System (ADS)

    Khan, Asif Ali; Shaheen, Shakeeba

    2013-02-01

    A novel organic-inorganic nano composite cation exchanger poly-o-toluidine Sn(IV) tungstate has been synthesized by incorporation of a polymer material into inorganic precipitate. The material is a class of hybrid ion-exchanger with good ion-exchange properties, reproducibility, stability and good selectivity for heavy metals. The physico-chemical properties of this nano composite material were characterized by using XRD, TGA, FTIR, SEM and TEM. The ion-exchange capacity, pH titrations, elution behavior and chemical stability were also carried out to study ion-exchange properties of the material. Distribution studies for various metal ions revealed that the nano composite is highly selective for Cd(II). An ion-selective membrane electrode was fabricated using this material for the determination of Cd(II) ions in solutions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations.

  3. Spectroscopic Studies on Physicochemical Natures of Ion Exchangers and Highly Functional Polymers and Their Application to Analytical Chemistry

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kazuhisa

    The absorption spectra or NMR spectra of chemical species adsorbed on ion exchangers and highly functional polymers such as crosslinked dextran could be directly measured by the corresponding solution methods. Spectrophotometric measurements of a target species in the solid phase have been extended to solid phase spectrometry (SPS), based on the direct measurement of light-absorption by the solid phase, which has adsorbed the target analyte. SPS has employed two different procedures; i.e., batch and flow methods. The Lambert-Beer law could be applicable to the solid particle layer system. The sensitivity was proportional to the volume ratio of the solid and sample solution, giving more than 100 times the sensitivity obtainable with the combination of a 0.1 cm3 solid and a 10-100 cm3 sample for the batch method. An online measurement of the light attenuation by the adsorbed species in the flow-through cell made it possible to both significantly reduce the sample solution volume and to simplify the respective procedures for the derivatization of the analyte and packing the solid particles into the cell. Because the cross-linked dextran and similar glucopyranoside-based gels have polyol moieties in their gel matrix, they could be used as oxo acid-selective adsorbents without introducing any special functional groups. Especially, in the case of boric acid, 11B NMR spectroscopy was one of the best tools for elucidating the nature of the interaction between boric acid/borate and polyols. Its combination with other methods enabled basic understanding of the chemical reactions. Reaction paths for 1:1 complexation are in general divided into two groups, i.e., neutral polyols that directly react with tetrahedral borate, and acidic polyols that react with trigonal boric acid in a 1:1 complexation. Both of the reactions produce tetrahedral anionic complexes, followed by a condensation reaction between the 1:1 monochelate complex and the undissociated diols to yield the 1

  4. RECENT ADVANCES IN ION EXCHANGE MATERIALS AND PROCESSES FOR POLLUTION PREVENTION

    EPA Science Inventory

    The goal of this article was to summarize the recent advances in ion exchange technology for the metal finishing industry. Even though the ion exchange technology is mature and is widely employed in the industry, new applications, approaches and ion exchange materials are emergi...

  5. Porous Ceramic Spheres from Ion Exchange Resin

    NASA Technical Reports Server (NTRS)

    Dynys, Fred

    2005-01-01

    A commercial cation ion exchange resin, cross-linked polystyrene, has been successfully used as a template to fabricate 20 to 50 micron porous ceramic spheres. Ion exchange resins have dual template capabilities. Pore architecture of the ceramic spheres can be altered by changing the template pattern. Templating can be achieved by utilizing the internal porous structure or the external surface of the resin beads. Synthesis methods and chemical/physical characteristics of the ceramic spheres will be reported.

  6. Polarimetric difference interferometer made by ion exchange method*

    NASA Astrophysics Data System (ADS)

    Gut, K.

    2005-10-01

    The paper presents investigations on a planar and channel polarimetric interferometer made by ion exchange in glass for sensor applications.The dependence of the difference of propagation constants of orthogonal modes of the same order on the refractive index of the cover, for planar waveguides obtained during the ion exchange K+-Na+ in the glass BK-7 were determined. Similar measurements have been made for the exchange of Ag+-Na+, determining also the influence of the heating time on those parameters.

  7. ION EXCHANGE SOFTENING: EFFECTS ON METAL CONCENTRATIONS

    EPA Science Inventory

    A corrosion control pipe loop study to evaluate the effect of ion exchange water softening on metal leaching from household plumbing materials was conducted on two different water qualities having different pH's and hardness levels. The results showed that removing hardness ions ...

  8. Gelation via ion exchange in discotic suspensions.

    PubMed

    Chang, Ya-Wen; Mejia, Andres F; Cheng, Zhengdong; Di, Xiaojun; McKenna, Gregory B

    2012-06-15

    The phase behavior of charged disk suspensions displays a strong dependence on ionic strengths, as the interplay between excluded volume and electrostatic interactions determines the formation of glasses, gels, and liquid crystal states. The various ions in natural soil or brine, however, could present additional effects, especially considering that most platelet structures bear a momentous ion-exchange capacity. Here we observed how ion exchange modulates and controls the interaction between individual disks and leads to unconventional phase transitions from isotropic gel to nematic gel and finally to nematic liquid crystals.

  9. Closed cycle ion exchange method for regenerating acids, bases and salts

    DOEpatents

    Dreyfuss, Robert M.

    1976-01-01

    A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.

  10. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ion-exchange membranes. 173.20 Section 173.20 Food... for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange membranes may be safely used in the processing of food under the following prescribed conditions: (a) The ion-exchange membrane is prepared...

  11. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ion-exchange membranes. 173.20 Section 173.20 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange... ion-exchange membrane is prepared by subjecting a polyethylene base conforming to § 177.1520 of...

  12. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ion-exchange membranes. 173.20 Section 173.20 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange... ion-exchange membrane is prepared by subjecting a polyethylene base conforming to § 177.1520 of...

  13. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ion-exchange membranes. 173.20 Section 173.20 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange... ion-exchange membrane is prepared by subjecting a polyethylene base conforming to § 177.1520 of...

  14. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ion-exchange membranes. 173.20 Section 173.20 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange... ion-exchange membrane is prepared by subjecting a polyethylene base conforming to § 177.1520 of...

  15. Ion thruster charge-exchange plasma flow

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Gabriel, S. B.; Kitamura, S.

    1982-01-01

    The electron bombardment ion thruster has been under development for a number of years and during this time, studies of the plasmas produced by the thrusters and their interactions with spacecraft have been evaluated, based on available data. Due to diagnostic techniques used and facility effects, there is uncertainty as to the reliability of data from these early studies. This paper presents data on the flow of the charge-exchange plasma produced just downstream of the thruster's ion optics. The 'end-effect' of a cylindrical Langmuir probe is used to determine ion density and directed ion velocity. Results are compared with data obtained from a retarding potential analyzer-Faraday cup.

  16. Effect of polyamine reagents on exchange capacity in ion exchangers

    NASA Astrophysics Data System (ADS)

    Petrova, T. I.; Dyachenko, F. V.; Bogatyreva, Yu. V.; Borodastov, A. K.; Ershova, I. S.

    2016-05-01

    Effect of compounds involved in complex reagents is described using Helamin 906H reagent as an example. The working exchange capacity of KU-2-8chs cation exchanger in hydrogen form and Amberlite IRA 900Cl anion exchanger in OH form remained almost unchanged when they were used repeatedly to purify water that contained Helamin 906H reagent; in addition, this capacity was the same upon filtration of water that did not contain this reagent. Leakage of total organic carbon was observed earlier than that of calcium ions upon filtration of the solution through the cation exchanger layer. The test results obtained in industrial conditions indicated that using H-OH filters to purify turbine condensate enables the decrease of the concentration of organic and other impurities therein.

  17. Properties of a Novel Ion-Exchange Film

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.; Hill, Carol M.; Philipp, Warren H.; Tanner, Stephen P.; Gorse, Joseph; Lusk, Amy; Taylor, Jason; Dickens, Jason

    2004-01-01

    A new ion-exchange material (based on polyacrylic acid) and some of its analytical applications have been reported. This paper contains data on the ion-exchange properties of the film form of the material and its potential application to the decontamination of waste water and drinking water. The film has a high exchange capacity of 5 to 6 meq/g and a pK(sub a) of 5.7. The calcium form is the most effective for removing metal ions from solution, and the optimum pH range is between 5 and 7. The exchange rates are slower for the film than for bead and powder forms of the ion-exchange material; otherwise, the properties are similar. The film is effective when hard water solutions are employed and also when metal ions are in the complex matrix of waste water from electroplating. The film can be used in flow systems having a flow channel large enough to allow passage of turbid solutions.

  18. Properties of a Novel Ion-Exchange Film

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.; Hill, Carol M.; Philipp, Warren H.; Tanner, Stephen P.; Gorse, Joseph; Lusk, Amy; Taylor, Jason; Dickens, Jason

    2002-01-01

    A new ion-exchange material (based on polyacrylic acid) and some of its analytical applications have been reported. This paper contains data on the ion-exchange properties of the film form of the material and its potential application to the decontamination of waste water and drinking water. The film has a high exchange capacity of 5 to 6 meq/g and a pK(sub a) of 5.7. The calcium form is the most effective for removing metal ions from solution, and the optimum pH range is between 5 and 7. The exchange rates are slower for the film than for bead and powder forms of the ion-exchange material; otherwise, the properties are similar. The film is effective when hard water solutions are employed and also when metal ions are in the complex matrix of waste water from electroplating. The film can be used in flow systems having a flow channel large enough to allow passage of turbid solutions.

  19. Modeling of Crystalline Silicotitanate Ion Exchange Columns

    SciTech Connect

    Walker, D.D.

    1999-03-09

    Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R. G. Anthony, Department of Chemical Engineering, Texas A&038;M University, and Professor S. W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports.

  20. Organic ion exchange resin separation methods evaluation

    SciTech Connect

    Witwer, K.S.

    1998-05-27

    This document describes testing to find effective methods to separate Organic Ion Exchange Resin (OIER) from a sludge simulant. This task supports a comprehensive strategy for treatment and processing of K-Basin sludge. The simulant to be used resembles sludge that has accumulated in the 105KE and 105KW Basins in the 1OOK area of the Hanford Site. The sludge is an accumulation of fuel element corrosion products, organic and inorganic ion exchange materials, canister gasket materials, iron and aluminum corrosion products, sand, dirt, and other minor amounts of organic matter.

  1. Cesium-specific phenolic ion exchange resin

    DOEpatents

    Bibler, J.P.; Wallace, R.M.

    1995-08-15

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio. 2 figs.

  2. Cesium-specific phenolic ion exchange resin

    DOEpatents

    Bibler, Jane P.; Wallace, Richard M.

    1995-01-01

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio.

  3. Determination of boron in silicates after ion exchange separation

    USGS Publications Warehouse

    Kramer, H.

    1955-01-01

    Existing methods for the determination of boron in silicates are not entirely satisfactory. Separation as the methyl ester is lengthy and frequently erratic. An accurate and rapid method applicable to glass, mineral, ore, and water samples uses ion exchange to remove interfering cations, and boron is determined titrimetrically in the presence of mannitol, using a pH meter to indicate the end point.

  4. Ion exchangers as adsorbents for removing metals from aquatic media.

    PubMed

    Khan, Meraj A; Bushra, Rani; Ahmad, Anees; Nabi, Syed A; Khan, Dilwar A; Akhtar, Arshia

    2014-02-01

    A polyaniline-based composite cation-exchange material was synthesized by way of sol-gel method and studied to explore its analytical and environmental applications. It was characterized by using instrumental analyses [Fourier transform infrared (spectrometer), X-ray, thermogravimetric analysis/differential thermal analysis, standard electron microscopy, and transmission electron microscopy]. Physicochemical studies, such as ion-exchange capacity, pH titrations, and chemical stability, along with effect of eluent concentration and elution, were also performed to exploit the ion-exchange capabilities. pH titration studies showed that the material presents monofunctional strong cation-exchange behavior. This nanocomposite material is semicrystalline in nature and exhibits improved thermal and chemical stability. The partition coefficient studies of different metal ions in the material were performed in demineralised water and different surfactant media, and it was found to be selective for Pb(II) and Hg(II) ions. To exploit the usefulness of the material as an adsorbent, some important quantitative binary separations of metal ions were performed on polyaniline Zr(IV) molybdophosphate columns. This composite cation exchanger can be applied for the treatment of polluted water to remove heavy metals. PMID:24292693

  5. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    PubMed

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability

  6. Application of the electron nuclear dynamics method to hydrogen abstraction and exchange reactions of hydrogen + HOD and deuterium + ammonium ion

    NASA Astrophysics Data System (ADS)

    Coutinho Neto, Mauricio Domingues

    2001-07-01

    The field of quantum molecular dynamics have flourished in the last 20 years. Methods that propose the solution of the time dependent Schrodinger equation for a molecular reactive process abound in the literature. However the majority of these methods focus on solving the nuclear Schrodinger equation subject to a known electronic potential. The electron nuclear dynamics (END) method proposes a framework of a hierarchy of approximations to the Schrodinger equation based on the time dependent variational Principle (TDVP). A general approach is sought to solve the electronic and nuclear problem simultaneously without making use of the Born-Oppenheimer approximation. The purpose of this work is to apply the minimal END to areas where its unique qualities can give new insight into the relevant dynamics of a chemical or physical process. Minimal END is a method for direct non-adiabatic dynamics. It describes the electrons with a family of complex determinantal wave-functions in terms of non-orthogonal spin orbitals and treats the nuclei as classical particles. In the first two studies, we apply the END method to hydrogen abstraction and exchange reactions at hyper-thermal collision energies. We investigate the D2+ NH+3 reaction at collision energies ranging from 6 to 16 eV and the H + HOD reaction at a collision energy of 1.575 eV. Collision energies refer to center of mass energies. Emphasis is put on the details of the abstraction and exchange reaction mechanisms for ground state reactants. In a final application we use minimal END to study the interaction of a strong laser field with the diatomic molecules HF and LiH. Effects of the polarization of the electronic potential on the dynamics are investigated. Emphasis is also placed on the development of a general method for interpreting the final time dependent wave-function of the product fragments. The purpose is to analyze the final state wave-function in terms of charge transfer channels as well as individual

  7. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1988-01-01

    This invention relates to a method for improving the performance of liquid membrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selective for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  8. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1989-01-01

    This invention relates to a method for improving the performance of liquid embrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selected for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  9. ION EXCHANGE ADSORPTION PROCESS FOR PLUTONIUM SEPARATION

    DOEpatents

    Boyd, G.E.; Russell, E.R.; Taylor, M.D.

    1961-07-11

    Ion exchange processes for the separation of plutonium from fission products are described. In accordance with these processes an aqueous solution containing plutonium and fission products is contacted with a cation exchange resin under conditions favoring adsorption of plutonium and fission products on the resin. A portion of the fission product is then eluted with a solution containing 0.05 to 1% by weight of a carboxylic acid. Plutonium is next eluted with a solution containing 2 to 8 per cent by weight of the same carboxylic acid, and the remaining fission products on the resin are eluted with an aqueous solution containing over 10 per cent by weight of sodium bisulfate.

  10. An Empirical Formula From Ion Exchange Chromatography and Colorimetry.

    ERIC Educational Resources Information Center

    Johnson, Steven D.

    1996-01-01

    Presents a detailed procedure for finding an empirical formula from ion exchange chromatography and colorimetry. Introduces students to more varied techniques including volumetric manipulation, titration, ion-exchange, preparation of a calibration curve, and the use of colorimetry. (JRH)

  11. Porous solid ion exchange wafer for immobilizing biomolecules

    DOEpatents

    Arora, Michelle B.; Hestekin, Jamie A.; Lin, YuPo J.; St. Martin, Edward J.; Snyder, Seth W.

    2007-12-11

    A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.

  12. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Perfluorinated ion exchange membranes. 173.21... ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in the treatment of bulk quantities of liquid food under...

  13. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Perfluorinated ion exchange membranes. 173.21... ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in the treatment of bulk quantities of liquid food under...

  14. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Perfluorinated ion exchange membranes. 173.21... Polymer Adjuvants for Food Treatment § 173.21 Perfluorinated ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in...

  15. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Perfluorinated ion exchange membranes. 173.21... ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in the treatment of bulk quantities of liquid food under...

  16. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Perfluorinated ion exchange membranes. 173.21... ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in the treatment of bulk quantities of liquid food under...

  17. Cesium and strontium ion specific exchangers

    SciTech Connect

    Yates, S.

    1996-10-01

    This work is one of two parallel projects that are part of an ESP task to develop high-capacity, selective, solid extractants for cesium, strontium, and technetium from nuclear wastes. In this subtask, Pacific Northwest National Laboratory (PNNL) is collaborating with AlliedSignal, Inc. (Des Plaines, Illinois) to develop inorganic ion exchangers that are selective for strontium and cesium from alkaline high-level waste and groundwater streams.

  18. PRTR ion exchange vault water removal

    SciTech Connect

    Ham, J.E.

    1995-11-01

    This report documents the removal of radiologically contaminated water from the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. Approximately 57,000 liters (15,000 gallons) of water had accumulated in the vault due to the absence of a rain cover. The water was removed and the vault inspected for signs of leakage. No evidence of leakage was found. The removal and disposal of the radiologically contaminated water decreased the risk of environmental contamination.

  19. Applications of decelerated ions

    SciTech Connect

    Johnson, B.M.

    1985-03-01

    Many facilities whose sole purpose had been to accelerate ion beams are now becoming decelerators as well. The development and current status of accel-decel operations is reviewed here. Applications of decelerated ions in atomic physics experiments are discussed.

  20. Novel silica-based ion exchange resin

    SciTech Connect

    Gula, M.; Harvey, J.

    1996-12-31

    Shortcomings of chelating resins have been addressed by a new class of ion exchange resins called dual mechanism bifunctional polymers (DMBPs). DMBPs use hydrophilic cation exchange ligands with rapid uptake kinetics and use chelating ligands for selectivity for one or more metals; result is a resin that quickly recognizes and removes targeted metals from waste, remediation, and process streams. Eichrom`s Diphonix {reg_sign} resin is the first DMBP to be widely released as a commercial product; it is polystyrene based. Objective of this work is to synthesize commercial quantities of a silica-based ion exchange resin with the same or better metal ion selectivity, metal uptake kinetics, and acid stability as Diphonix. Feasibility was determined, however the process needs to be optimized. Studies at Eichrom and ANL of the performance of Diphonix resin over a broad range of HNO3 and HCl conditions and inorganic salt loadings are discussed together with the proposed method of incorporating similar characteristics into a silica-based resin. The new, silica-based resin functionalized with diphosphonic acid ligands can be used in environmental restoration and waste management situations involving processing of low-level, transuranic, and high-level radioactive wastes; it can also be used for processing liquid mixed waste including wastes contaminated with organic compounds.

  1. 25th anniversary article: Ion exchange in colloidal nanocrystals.

    PubMed

    Gupta, Shuchi; Kershaw, Stephen V; Rogach, Andrey L

    2013-12-23

    outlook for the field in terms of the emerging applications and the ion exchange derived materials that will enable them.

  2. Lanthanum-NaY zeolite ion exchange. 2; Kinetics

    SciTech Connect

    Lee, T.Y.; Lu, T.S.; Chen, S.H.; Chao, K.J. )

    1990-10-01

    This paper reports on La-NaY ion exchange breakthrough curves which were obtained experimentally at 27 and 60{degrees}C. A mathematical model of an ion exchanger was formulated and employed to calculate the ion exchanger coefficients. An ionic diffusion coefficient of the order of 10{sup {minus}8} cm{sup 2}/s was obtained. The effects of zeolite particle size, temperature, and column packing conditions on the kinetics of the exchange were investigated also.

  3. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange Enrichment... chemical exchange and solid-liquid ion exchange. A. In the liquid-liquid chemical exchange...

  4. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange Enrichment... chemical exchange and solid-liquid ion exchange. A. In the liquid-liquid chemical exchange...

  5. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange Enrichment... chemical exchange and solid-liquid ion exchange. A. In the liquid-liquid chemical exchange...

  6. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange Enrichment... chemical exchange and solid-liquid ion exchange. A. In the liquid-liquid chemical exchange...

  7. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange Enrichment... chemical exchange and solid-liquid ion exchange. A. In the liquid-liquid chemical exchange...

  8. Anion exchangers with branched functional ion exchange layers of different hydrophilicity for ion chromatography.

    PubMed

    Shchukina, O I; Zatirakha, A V; Smolenkov, A D; Nesterenko, P N; Shpigun, O A

    2015-08-21

    Novel polystyrene-divinylbenzene (PS-DVB) based anion exchangers differing from each other in the structure of the branched functional ion exchange layer are prepared to investigate the role of linker and functional site on ion exchange selectivity. The proposed method of synthesis includes the obtaining of aminated PS-DVB particles by means of their acylation with following reductive amination with methylamine. Further modification of the obtained secondary aminogroups is provided by the alkylation with either 1,4-butanediol diglycidyl ether (1,4-BDDGE) or resorcinol diglycidyl ether (RDGE), which form the linkers of different hydrophobicity, and amination of terminal epoxide rings with trimethylamine (TMA), dimethylethanolamine (DMEA), methyldiethanolamine (MDEA) or triethanolamine (TEA). The variation of the structure and hydrophobicity of the linker and terminal quaternary ammonium sites in the functional layer allows the alteration of selectivity and separation efficiency of the obtained adsorbents. The ion exchange selectivity and separation efficiency of the anion exchangers are evaluated using the model mixtures of anions (F(-), HCOO(-), Cl(-), NO2(-), Br(-), NO3(-), HPO4(2-) and SO4(2-)) in potassium hydroxide eluents. The adsorbents show the decrease of selectivity with increasing the hydrophilicity of the terminal functional site. The anion exchangers having more flexible and hydrophilic 1,4-BDDGE linker provide smaller separation factors for most of the analytes as compared with RDGE-containing adsorbents with the same terminal ion exchange sites, but are characterized with higher column efficiencies and better peak symmetry for polarizable anions. In case of 1,4-BDDGE-modified anion exchangers of the particle size of 3.3μm functionalized with DMEA and MDEA the calculated values of column efficiencies for polarizable NO3(-) and Br(-) are up to 49,000 and 53,000N/m, respectively, which is almost twice higher than the values obtained for the RDGE

  9. Ion exchange materials, method of forming ion exchange materials, and methods of treating liquids

    DOEpatents

    Wertsching, Alan K.; Peterson, Eric S.; Wey, John E.

    2007-12-25

    The invention includes an ion affinity material having an organic component which is sulfonated and which is chemically bonded to an inorganic substrate component. The invention includes a method of forming a metal binding material. A solid support material comprising surface oxide groups is provided and an organic component having at least one alkyl halide is covalently linked to at least some of the surface oxide groups to form a modified support material. The at least one alkyl halide is subsequently converted into an alkyl sulfonate. The invention further includes a method and system for extracting ions from a liquid. An ion exchange material having a sulfonated alkyl silane component covalently bonded to a metal oxide support material is provided and a liquid is exposed to the ion exchange material.

  10. Solidification of ion exchange resin wastes

    SciTech Connect

    Not Available

    1982-08-01

    Solidification media investigated included portland type I, portland type III and high alumina cements, a proprietary gypsum-based polymer modified cement, and a vinyl ester-styrene thermosetting plastic. Samples formulated with hydraulic cement were analyzed to investigate the effects of resin type, resin loading, waste-to-cement ratio, and water-to-cement ratio. The solidification of cation resin wastes with portland cement was characterized by excessive swelling and cracking of waste forms, both after curing and during immersion testing. Mixed bed resin waste formulations were limited by their cation component. Additives to improve the mechanical properties of portland cement-ion exchange resin waste forms were evaluated. High alumina cement formulations dislayed a resistance to deterioration of mechanical integrity during immersion testing, thus providing a significant advantage over portland cements for the solidification of resin wastes. Properties of cement-ion exchange resin waste forms were examined. An experiment was conducted to study the leachability of /sup 137/Cs, /sup 85/Sr, and /sup 60/Co from resins modified in portland type III and high alumina cements. The cumulative /sup 137/Cs fraction release was at least an order of magnitude greater than that of either /sup 85/Sr or /sup 60/Co. Release rates of /sup 137/Cs in high alumina cement were greater than those in portland III cement by a factor of two.Compressive strength and leach testing were conducted for resin wastes solidified with polymer-modified gypsum based cement. /sup 137/Cs, /sup 85/Sr, and /sup 60/Co fraction releases were about one, two and three orders of magnitude higher, respectively, than in equivalent portland type III cement formulations. As much as 28.6 wt % dry ion exchange resin was successfully solidified using vinyl ester-styrene compared with a maximum of 25 wt % in both portland and gypsum-based cement.

  11. Biodegradation of ion-exchange media

    SciTech Connect

    Bowerman, B.S.; Clinton, J.H.; Cowdery, S.R.

    1988-01-01

    The purpose of this study was to investigate further the potential for ion-exchange media (resin beads or powdered filter media) to support biological growth. A mixed microbial culture was grown from resin wastes obtained from the BNL HFBR by mixing the resin with a nutrient salt solution containing peptone and yeast extract. Bacterial and fungal growths appeared in the solution and on the resins after 7 to 10 days incubation at 337)degree)C. The mixed microbial cultures were used to inoculate several resin types, both irradiated and unirradiated. 12 refs., 5 tabs.

  12. Ion exchange polymers and method for making

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H. (Inventor); Street, Kenneth W., Jr. (Inventor)

    1994-01-01

    An ion exchange polymer comprised of an alkali metal or alkaline earth metal salt of a poly(carboxylic acid) in a poly(vinyl acetal) matrix is described. The polymer is made by treating a mixture made of poly(vinyl alcohol) and poly(acrylic acid) with a suitable aldehyde and an acid catalyst to cause acetalization with some cross-linking. The material is then subjected to an alkaline aqueous solution of an alkali metal salt or an alkali earth metal salt. All of the film forming and cross-linking steps can be carried out simultaneously, if desired.

  13. Fixation of radioactive ions in porous media with ion exchange gels

    DOEpatents

    Mercer, Jr., Basil W.; Godfrey, Wesley L.

    1979-01-01

    A method is provided for fixing radioactive ions in porous media by injecting into the porous media water-soluble organic monomers which are polymerizable to gel structures with ion exchange sites and polymerizing the monomers to form ion exchange gels. The ions and the particles of the porous media are thereby physically fixed in place by the gel structure and, in addition, the ions are chemically fixed by the ion exchange properties of the resulting gel.

  14. Ion Exchange Chromatography and Spectrophotometry: An Introductory Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Foster, N.; And Others

    1985-01-01

    Describes an experiment in which students use ion exchange chromatography to separate a mixture of chloro complexes of transition metal ions and then use spectrophotometry to define qualitatively the efficiency of the ion exchange columns. Background information, materials needed, and procedures used are included. (JN)

  15. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, Dwayne; Babcock, Walter C.; Tuttle, Mark

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets.

  16. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, D.; Babcock, W.C.; Tuttle, M.

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets. 5 figs.

  17. Multicomponent liquid ion exchange with chabazite zeolites

    SciTech Connect

    Robinson, S.M.; Arnold, W.D. Jr.; Byers, C.W.

    1993-10-01

    In spite of the increasing commercial use of zeolites for binary and multicomponent sorption, the understanding of the basic mass-transfer processes associated with multicomponent zeolite ion-exchange systems is quite limited. This study was undertaken to evaluate Na-Ca-Mg-Cs-Sr ion exchange from an aqueous solution using a chabazite zeolite. Mass-transfer coefficients and equilibrium equations were determined from experimental batch-reactor data for single and multicomponent systems. The Langmuir isotherm was used to represent the equilibrium relationship for binary systems, and a modified Dubinin-Polyani model was used for the multicomponent systems. The experimental data indicate that diffusion through the microporous zeolite crystals is the primary diffusional resistance. Macropore diffusion also significantly contributes to the mass-transfer resistance. Various mass-transfer models were compared to the experimental data to determine mass-transfer coefficients. Effective diffusivities were obtained which accurately predicted experimental data using a variety of models. Only the model which accounts for micropore and macropore diffusion occurring in series accurately predicted multicomponent data using single-component diffusivities. Liquid and surface diffusion both contribute to macropore diffusion. Surface and micropore diffusivities were determined to be concentration dependent.

  18. Radionuclide Leaching from Organic Ion Exchange Resin

    SciTech Connect

    Delegard, C.H.; Rinehart, D.E.

    1999-04-02

    Laboratory tests were performed to examine the efficacy of leach treatments for decontaminating organic ion exchange resins (OIER), which have been found in a number of samples retrieved from K East Basin sludge. Based on process records, the OIER found in the K Basins is a mixed-bet strong acid/strong base material marketed as Purolite{trademark} NRW-037. Radionuclides sorbed or associated with the OIER can restrict its disposal to the Environmental Restoration Disposal Facility (ERDF). The need for testing to support development of a treatment process for K Basin sludge has been described in Section 4.2 of ''Testing Strategy to Support the Development of K Basins Sludge Treatment Process'' (Flament 1998). To help understand the effects of anticipated OIER elutriation and washing, tests were performed with well-rinsed OIER material from K East Basin floor sludge (sample H-08 BEAD G) and with well-rinsed OIER having approximately 5% added K East canister composite sludge (sample KECOMP). The rinsed resin-bearing material also contained the inorganic ion exchanger Zeolon-900{trademark}, a zeolite primarily composed of the mineral mordenite. The zeolite was estimated to comprise 27 weight percent of the dry H-08 BEAD G material.

  19. Design software for ion-exchanged glass waveguide devices

    NASA Astrophysics Data System (ADS)

    Tervonen, Ari; Honkanen, Seppo; Poyhonen, Pekka; Tahkokorpi, Markku T.

    1993-04-01

    Software tools for design of passive integrated optical components based on ion-exchanged glass waveguides have been developed. All design programs have been implemented on personal computers. A general simulation program for ion exchange processes is used for optimization of waveguide fabrication. The optical propagation in the calculated channel waveguide profiles is modelled with various methods. A user-friendly user's interface has been included in this modelling software. On the basis of the calculated propagation properties, performance of channel waveguide circuits can be modelled and thus devices for different applications may be designed. From the design parameters, the lithography mask pattern to be used is generated for a commercial CAD program for final mask design. Examples of designed and manufactured guided-wave devices are described. These include 1- to-n splitters and asymmetric Mach-Zehnder interferometers for wavelength division multiplexing.

  20. ION EXCHANGE PROCESS FOR THE RECOVERY AND PURIFICATION OF MATERIALS

    DOEpatents

    Long, R.S.; Bailes, R.H.

    1958-04-15

    A process for the recovery of certain metallic ions from aqueous solutions by ion exchange techniques is described. It is applicable to elements such as vanadium, chromium, nnanganese, and the like, which are capable of forming lower valent cations soluble in aqueous solutions and which also form ldgher valent anions soluble in aqueous acidic solutions. For example, small amounts of vanadium occurring in phosphoric acid prepared from phosphate rock may be recovered by reducing the vanadium to a trivalent cation adsorbing; the vanadium in a cationic exchange resin, then treating the resin with a suitable oxidizing agent to convert the adsorbed vanadium to a higher valent state, and finally eluting; the vanadium as an anion from the resin by means of an aqueous acidic solution.

  1. Taenia saginata metacestode antigenic fractions obtained by ion-exchange chromatography: potential source of immunodominant markers applicable in the immunodiagnosis of human neurocysticercosis.

    PubMed

    Nunes, Daniela da Silva; Gonzaga, Henrique Tomaz; Ribeiro, Vanessa da Silva; da Cunha, Jair Pereira; Costa-Cruz, Julia Maria

    2013-05-01

    The aim of this study was to fractionate and partially characterize fractions obtained from the total saline extract (SE) of Taenia saginata metacestodes after ion-exchange procedure in carboxymethyl sepharose (CM) and diethylaminoethyl sepharose (DEAE) resins, as a source of antigenic markers applicable in the immunodiagnosis of neurocysticercosis (NCC). For IgG detection by enzyme-linked immunosorbent assay (ELISA) and immunoblotting, 140 serum samples were analyzed: 45 from patients with NCC (G1), 50 from patients with other parasitic infections (G2), and 45 from healthy individuals. Sensitivity (Se), specificity (Sp), area under curve (AUC), and likelihood ratios (LR) were calculated. CM S2 and DEAE S2 fractions provided high diagnostic values (Se 88.8% and 93.4%; Sp 93.7% and 92.6%; AUC 0.965 and 0.987; LR+ 14.07 and 12.67; LR- 0.11 and 0.07, respectively). In conclusion, CM S2 and DEAE S2 fractions are important sources of specific peptides, with high efficiency to diagnose NCC.

  2. Brown coals as natural electron-ion-exchangers

    SciTech Connect

    Kossov, I.I.; Aleksandrov, I.V.; Kamneva, A.I.

    1984-01-01

    The existence of electron-ion-exchange properties in brown coals has been established. The influence of the redox properties of the organic and mineral fractions of the coals on their capacity for electron exchange has been shown.

  3. Lead Removal From Synthetic Leachate Matrices by a Novel Ion-Exchange Material

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W., Jr.; Hovanitz, Edward S.; Chi, Sulan

    2002-01-01

    This report discusses the application of a novel polyacrylate-based ion-exchange material (IEM) for the removal of lead (Pb) ions from water. Preliminary testing includes the establishment of the operating pH range, capacity information, and the effect of calcium and anions in the matrix. Batch testing with powder indicates slightly different optimal operational conditions from those used for column testing. The ion exchanger is excellent for removing lead from aqueous solutions.

  4. Ion-exchange reactions on clay minerals coupled with advection/dispersion processes. Application to Na+/Ca2+ exchange on vermiculite: Reactive-transport modeling, batch and stirred flow-through reactor experiments

    NASA Astrophysics Data System (ADS)

    Tertre, E.; Hubert, F.; Bruzac, S.; Pacreau, M.; Ferrage, E.; Prêt, D.

    2013-07-01

    The present study aims at testing the validity of using an Na+/Ca2+ ion-exchange model, derived from batch data to interpret experimental Ca2+-for-Na+ exchange breakthrough curves obtained on vermiculite (a common swelling clay mineral in surface environments). The ion-exchange model was constructed considering the multi-site nature of the vermiculite surface as well as the exchange of all aqueous species (Mg2+ derived from the dissolution of the solid and H+). The proposed ion-exchange model was then coupled with a transport model, and the predicted breakthrough curves were compared with the experimental ones obtained using a well stirred flow-through reactor. For a given solute residence time in the reactor (typically 50 min), our thermodynamic model based on instantaneous equilibrium was found to accurately reproduce several of the experimental breakthrough curves, depending on the Na+ and Ca2+ concentrations of the influents pumped through the reactor. However the model failed to reproduce experimental breakthrough curves obtained at high flow rates and low chemical gradient between the exchanger phase and the solution. An alternative model based on a hybrid equilibrium/kinetic approach was thus used and allowed predicting experimental data. Based on these results, we show that a simple parameter can be used to differentiate between thermodynamic and kinetic control of the exchange reaction with water flow. The results of this study are relevant for natural systems where two aquatic environments having contrasted chemistries interact. Indeed, the question regarding the attainment of a full equilibrium in such a system during the contact time of the aqueous phase with the particle/colloid remains most often open. In this context, we show that when a river (a flow of fresh water) encounters marine colloids, a systematic full equilibrium can be assumed (i.e., the absence of kinetic effects) when the residence time of the solute in 1 m3 of the system is ⩾6200 h.

  5. Mineral Separation in a CELSS by Ion-exchange Chromatography

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1982-01-01

    Operational parameters pertinent to ion exchange chromatography separation were identified. The experiments were performed with 9 mm diameter ion exchange columns and conventional column accessories. The cation separation beds were packed with AG 50W-X2 strong acid cation exchange resin in H(+) form and 200-400 dry mesh particle size. The stripper beds used in some experiments were packed with AG 1-XB strong base cation exchange resin in OH(-) form and 200-400 dry mesh particle size.

  6. The use of Diphonix{sup {trademark}} ion exchange resin as a preconcentration step for the lanthanides and actinides in analytical applications

    SciTech Connect

    Rollins, A.N.; Thakkar, A.H.; Fern, M.J.

    1995-12-01

    Diphonix ion exchange resin is a chelating ion exchange resin containing sulfonic and gemdiphosphonic acid groups. This resin has a high specificity for the lanthanides and actinides, especially at acidities below pH = 3. Currently, we are investigating new ways to use Diphonix resin as a preconcentration step to separate the lanthanides and actinides from interfering elements present in a variety of environmental matrices. Once the lanthanides and actinides have been separated from the interfering matrix constituents, the elements are removed from the resin and passed through subsequent separation schemes. This presentation will outline the use of Diphonix resin with a variety of problem matrices, and demonstrate its usefulness for analysis of the lanthanides and actinides.

  7. An investigation of the applicability of the new ion exchange resin, Reillex{trademark}-HPQ, in ATW separations. Milestone 4, Final report

    SciTech Connect

    Ashley, K.R.; Ball, J.; Grissom, M.; Williamson, M.; Cobb, S.; Young, D.; Wu, Yen-Yuan J.

    1993-09-07

    The investigations with the anion exchange resin Reillex{trademark}-HPQ is continuing along several different paths. The topics of current investigations that are reported here are: The sorption behavior of chromium(VI) on Reillex{trademark}-HPQ from nitric acid solutions and from sodium hydroxide/sodium nitrate solutions; sorption behavior of F{sup {minus}} on Reillex{trademark}-HPQ resin in acidic sodium nitrate solution; sorption behavior of Cl{sup {minus}} on Reillex{trademark}-HPQ resin in acidic sodium nitrate solution; sorption behavior of Br{sup {minus}} on Reillex{trademark}-HPQ resin in acidic sodium nitrate solution; and the Honors thesis by one of the students is attached as Appendix II (on ion exchange properties of a new macroperous resin using bromide as the model ion in aqueous nitrate solutions).

  8. Ion exchange extraction of heavy metals from wastewater sludges.

    PubMed

    Al-Enezi, G; Hamoda, M F; Fawzi, N

    2004-01-01

    Heavy metals are common contaminants of some industrial wastewater. They find their way to municipal wastewaters due to industrial discharges into the sewerage system or through household chemicals. The most common heavy metals found in wastewaters are lead, copper, nickel, cadmium, zinc, mercury, arsenic, and chromium. Such metals are toxic and pose serious threats to the environment and public health. In recent years, the ion exchange process has been increasingly used for the removal of heavy metals or the recovery of precious metals. It is a versatile separation process with the potential for broad applications in the water and wastewater treatment field. This article summarizes the results obtained from a laboratory study on the removal of heavy metals from municipal wastewater sludges obtained from Ardhiya plant in Kuwait. Data on heavy metal content of the wastewater and sludge samples collected from the plant are presented. The results obtained from laboratory experiments using a commercially available ion exchange resin to remove heavy metals from sludge were discussed. A technique was developed to solubilize such heavy metals from the sludge for subsequent treatment by the ion exchange process. The results showed high efficiency of extraction, almost 99.9%, of heavy metals in the concentration range bound in wastewater effluents and sludges. Selective removal of heavy metals from a contaminated wastewater/sludge combines the benefits of being economically prudent and providing the possibility of reuse/recycle of the treated wastewater effluents and sludges.

  9. Characterization of ion-exchange membrane materials: properties vs structure.

    PubMed

    Berezina, N P; Kononenko, N A; Dyomina, O A; Gnusin, N P

    2008-06-22

    This review focuses on the preparation, structure and applications of ion-exchange membranes formed from various materials and exhibiting various functions (electrodialytic, perfluorinated sulphocation-exchange and novel laboratory-tested membranes). A number of experimental techniques for measuring electrotransport properties as well as the general procedure for membrane testing are also described. The review emphasizes the relationships between membrane structures, physical and chemical properties and mechanisms of electrochemical processes that occur in charged membrane materials. The water content in membranes is considered to be a key factor in the ion and water transfer and in polarization processes in electromembrane systems. We suggest the theoretical approach, which makes it possible to model and characterize the electrochemical properties of heterogeneous membranes using several transport-structural parameters. These parameters are extracted from the experimental dependences of specific electroconductivity and diffusion permeability on concentration. The review covers the most significant experimental and theoretical research on ion-exchange membranes that have been carried out in the Membrane Materials Laboratory of the Kuban State University. These results have been discussed at the conferences "Membrane Electrochemistry", Krasnodar, Russia for many years and were published mainly in Russian scientific sources.

  10. Scintillating 99Tc Selective Ion Exchange Resins

    SciTech Connect

    Mitchell Greenhalgh; Richard D. Tillotson

    2012-07-01

    Scintillating technetium (99Tc) selective ion exchange resins have been developed and evaluated for equilibrium capacities and detection efficiencies. These resins can be utilized for the in-situ concentration and detection of low levels of pertechnetate anions (99TcO4-) in natural waters. Three different polystyrene type resin support materials were impregnated with varying amounts of tricaprylmethylammonium chloride (Aliquat 336) extractant, several different scintillating fluors and wavelength shifters. The prepared resins were contacted batch-wise to equilibrium over a wide range of 99TcO4- concentrations in natural water. The measured capacities were used to develop Langmuir adsorption isotherms for each resin. 99Tc detection efficiencies were determined and up to 71.4 ± 2.6% was achieved with some resins. The results demonstrate that a low level detection limit for 99TcO4- in natural waters can be realized.

  11. Solid Phase Luminescence of Several Rare Earth Ions on Ion-Exchange Films

    NASA Technical Reports Server (NTRS)

    Tanner, Stephen P.; Street, Kenneth W., Jr.

    1999-01-01

    The development and characterization of a novel ion-exchange film for solid-phase fluorometry and phosphorimetry is reported. This new cation-exchange material is suitable for spectroscopic applications in the ultraviolet and visible regions. It is advantageous because it, as a single entity, is easily recovered from solution and mounted in the spectrofluorometers. After preconcentration on the film, the luminescence intensity of lanthanide ions is several orders of magnitude greater than that of the corresponding solution, depending on the volume of solution and the amount of film. This procedure allows emission spectral measurements and determination of lanthanide ions at solution concentrations of < 5 (micro)g/L. The film may be stored for subsequent reuse or as a permanent record of the analysis. The major drawback to the use of the film is slow uptake of analyte due to diffusion limitations.

  12. Ion-exchange chromatography separation applied to mineral recycle in closed systems

    NASA Technical Reports Server (NTRS)

    Ballou, E.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1981-01-01

    As part of the controlled ecological life support system (CELSS) program, a study is being made of mineral separation on ion-exchange columns. The purpose of the mineral separation step is to allow minerals to be recycled from the oxidized waste products of plants, man, and animals for hydroponic food production. In the CELSS application, relatively large quantities of minerals in a broad concentration range must be recovered by the desired system, rather than the trace quantities and very low concentrations treated in analytical applications of ion-exchange chromatography. Experiments have been carried out to assess the parameters pertinent to the scale-up of ion-exchange chromatography and to determine feasibility. Preliminary conclusions are that the column scale-up is in a reasonable size range for the CELSS application. The recycling of a suitable eluent, however, remains a major challenge to the suitability of using ion exchange chromatography in closed systems.

  13. Partitioning of mobile ions between ion exchange polymers and aqueous salt solutions: importance of counter-ion condensation.

    PubMed

    Kamcev, Jovan; Galizia, Michele; Benedetti, Francesco M; Jang, Eui-Soung; Paul, Donald R; Freeman, Benny D; Manning, Gerald S

    2016-02-17

    Equilibrium partitioning of ions between a membrane and a contiguous external solution strongly influences transport properties of polymeric membranes used for water purification and energy generation applications. This study presents a theoretical framework to quantitatively predict ion sorption from aqueous electrolytes (e.g., NaCl, MgCl2) into charged (i.e., ion exchange) polymers. The model was compared with experimental NaCl, MgCl2, and CaCl2 sorption data in commercial cation and anion exchange membranes. Ion sorption in charged polymers was modeled using a thermodynamic approach based on Donnan theory coupled with Manning's counter-ion condensation theory to describe non-ideal behavior of ions in the membrane. Ion activity coefficients in solution were calculated using the Pitzer model. The resulting model, with no adjustable parameters, provides remarkably good agreement with experimental values of membrane mobile salt concentration. The generality of the model was further demonstrated using literature data for ion sorption of various electrolytes in charged polymers, including HCl sorption in Nafion. PMID:26840776

  14. Rupture Loop Annex (RLA) ion exchange vault entry and characterization

    SciTech Connect

    Ham, J.E.

    1996-01-04

    This engineering report documents the entry and characterization of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located near the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns were found in the vault. Some of which contained transuranics, Cs 137, and Co 60. The characterization information is necessary for future vault cleanout and column disposal.

  15. Ion Exchange Temperature Testing with SRF Resin - 12088

    SciTech Connect

    Russell, R.L.; Rinehart, D.E.; Brown, G.N.; Peterson, R.A.

    2012-07-01

    Ion exchange using the Spherical Resorcinol-Formaldehyde (SRF) resin has been selected by the U.S. Department of Energy's Office of River Protection for use in the Pretreatment Facility of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in an at-tank deployment for removing Cs-137. Recent proposed changes to the WTP ion exchange process baseline indicate that higher temperatures (50 deg. C) to alleviate post-filtration precipitation issues prior to reaching the ion exchange columns may be required. Therefore, it is important to understand the behavior of SRF resin performance under the conditions expected with the new equipment and process changes. This research examined the impact of elevated temperature on resin loading and resin degradation during extended solution flow at elevated temperature (45 deg., 50 deg., 55 deg., 60 deg., 65 deg., 75 deg. C). Testing for extended times at elevated temperatures showed that the resin does degrade and loading capacity is reduced at and above 45 deg. C. Above 60 deg. C the resin appears to not load at all. It was observed that the resin disintegrated at 75 deg. C until not much was left and partially disintegrated at 65 deg. C, which caused the column to plug in both tests after ∼336 hours. The results indicate that WTP will lose resin loading capacity if the ion exchange process is performed above 25 deg. C, and the resin will disintegrate above 65 deg. C. Therefore, WTP will have a restricted operating range of temperatures to perform the ion exchange process with this resin. PNNL and WTP are currently evaluating the operating limits of the resin in further detail. Aging in 0.5 M HNO{sub 3} also caused the resin to lose capacity above 25 deg. C and to completely dissolve at 55 deg. C. Again, WTP will have a restricted operating range of temperatures when eluting the resin with nitric acid in order to maintain resin loading capacity and avoid disintegration of the resin

  16. Vibrational spectroscopy of ion exchange membranes

    NASA Astrophysics Data System (ADS)

    Kumari, Dunesh

    Infrared Spectroscopy (IR) and density functional theory (DFT) calculations were used to study Nafion, a sulfonated tetrafluoroethylene ionomer used as the electrolyte material of choice for polymer electrolyte membrane fuel cells (PEMFCs). A methodology is described for assignment of infrared peaks in terms of mechanically coupled internal coordinates of near neighbor functional groups. This work demonstrates (chapter 2--4) the use of ionomer functional group internal coordinate coupling analysis to assign two key Nafion peaks formerly assigned as the sulfonate symmetric stretch (1056 cm -1) and a COC (A) vibrational mode (971 cm-1). The experiments and theory complement each other to show that the dominate motions of the 1056 cm-1 and 971 cm-1 modes are attributed to the COC (A) and the sulfonate stretch respectively, exactly reverse of the convention used for decades. The salient point is that both peaks result from mechanically coupled internal coordinates of both functional groups. This explains why the 1056 cm-1 and 971 cm -1 peaks shift together with changes in the sulfonate group environment (i.e., ion exchange or membrane dehydration). The assignments, correlated with extensive literature data, and new data showing both peaks vanishing upon rigorous dehydration (i.e. conversion of a C3V deprotonated -SO3- to a C1 -SO3H) of the membrane, were based on the correlation of observed IR peaks with animations of mechanically coupled internal coordinates obtained by DFT calculations. Further, the above methodology was augmented with polarization modulated infrared reflection-adsorption spectroscopy (PM-IRRAS) to elucidate the Nafion ionomers functional groups that participate in self-assembly of Nafion onto Pt surfaces. A model for Nafion adsorption onto Pt shows that the Nafion side-chain sulfonate and CF3 co-adsorbates are structural components of the Nafion-Pt interface. The DFT-spectroscopy method of assigning peaks in terms of mechanically coupled internal

  17. Ion exchange and adsorption on low rank coals for liquefaction

    SciTech Connect

    Vorres, K.S.

    1994-09-01

    The objectives of this program are to study the application of catalysts and the catalysis of liquefaction of low rank coals. Ion exchange and adsorption techniques are being used or modified to incorporate catalytically active metals (Fe, Co, Ni and Mo) in relatively small (100-2000 ppM) quantities into coal samples. Relative oil yields are being determined by PETC and Auburn University workers as collaborators to establish the effectiveness of the catalyst incorporation techniques. It is hoped that these techniques will provide highly active forms of the catalyst in low concentrations to minimize the need for metals recovery. A two step preparation of the coal is used to (1) remove material which both limits oil conversion and prepares for the addition of exchangeable catalyst, and (2) add catalytically active material which enhances the conversion of the coal matter to the oil fraction in the processing.

  18. Ion exchange defines the biological activity of titanate nanotubes.

    PubMed

    Rónavári, Andrea; Kovács, Dávid; Vágvölgyi, Csaba; Kónya, Zoltán; Kiricsi, Mónika; Pfeiffer, Ilona

    2016-05-01

    One-dimensional titanate nanotubes (TiONTs) were subjected to systematic ion exchange to determine the impact of these modifications on biological activities. Ion exchanged TiONTs (with Ag, Mg, Bi, Sb, Ca, K, Sr, Fe, and Cu ions) were successfully synthesized and the presence of the substituted ions was verified by energy dispersive X-ray spectroscopy (EDS). A complex screening was carried out to reveal differences in toxicity to human cells, as well as in antibacterial, antifungal, and antiviral activities between the various modified nanotubes. Our results demonstrated that Ag ion exchanged TiONTs exerted potent antibacterial and antifungal effects against all examined microbial species but were ineffective on viruses. Surprisingly, the antibacterial activity of Cu/TiONTs was restricted to Micrococcus luteus. Most ion exchanged TiONTs did not show antimicrobial activity against the tested bacterial and fungal species. Incorporation of various ions into nanotube architectures lead to mild, moderate, or even to a massive loss of human cell viability; therefore, this type of biological effect exerted by TiONTs can be greatly modulated by ion exchange. These findings further emphasize the contribution of ion exchange in determining not only the physical and chemical characteristics but also the bioactivity of TiONT against different types of living cells.

  19. Removal of heavy metals from oil sludge using ion exchange textiles.

    PubMed

    Elektorowicz, M; Muslat, Z

    2008-04-01

    Development of a new simple and economic method for heavy-metal removal from oil sludge using ion exchange textiles was the main objective of this research. Three experimental stages were developed for this purpose using the bottom tank oil sludge from the Shell Canada refinery in Montreal, Canada. The first stage consisted of the direct application of ion exchange to oil sludge. The second stage included the pretreatment of oil sludge with organic solvents prior to the application of ion exchange process. The third stage included the pretreatment of oil sludge with an aqueous solution in order to extract heavy metals to the aqueous phase and then apply ion exchange textiles to the aqueous phase. Best results were obtained when acetone was used as an organic solvent leading to a total removal of vanadium while cadmium, zinc, nickel, iron, copper by 99%; 96%; 94%; 92% and 89%, respectively. PMID:18619144

  20. Application of ion trap-MS with H/D exchange and QqTOF-MS in the identification of microbial degradates of trimethoprim in nitrifying activated sludge.

    PubMed

    Eichhorn, Peter; Ferguson, P Lee; Pérez, Sandra; Aga, Diana S

    2005-07-01

    In this work, the identification of two microbial degradation products of the antimicrobial trimethoprim (290 Da) is described. The structural elucidation of the metabolites, which were produced by nitrifying activated sludge bacteria in a small-scale laboratory batch reactor, was accomplished by electrospray ionization-ion trap mass spectrometry conducting consecutive fragmentation steps (MS(n)) combined with H/D-exchange experiments. Although one metabolite corresponded to alpha-hydroxytrimethoprim (306 Da), oxidation of the aromatic ring within the diaminopyrimidine substructure was determined for the second degradate (324 Da). Accurate mass measurements of the two metabolites were provided by a hybrid quadrupole time-of-flight-mass spectrometer operated in MS/MS mode. With absolute mass errors of <5 mDa, it allowed us to confirm the proposed elemental composition for the protonated precursor ions as well as for a series of fragment ions that were previously identified by ion trap mass spectrometry. The study emphasized the potential of nitrifying activated sludge bacteria for breaking down an environmentally relevant pharmaceutical that is otherwise poorly degradable by a bacterial community encountered in conventional activated sludge.

  1. Gadolinium-hydrogen ion exchange of zirconium phosphate

    NASA Technical Reports Server (NTRS)

    Liu, D. C.; Power, J. L.

    1972-01-01

    The Gd(+3)/H(+) ion exchange on a commercial zirconium phosphate ion exchanger was investigated in chloride, sulfate, and phosphate solutions of Gd(+3) at gadolinium concentrations of 0.001 to 1 millimole per cc and in the pH range of 0 to 3.5. Relatively low Gd(+3) capacities, in the range of 0.01 to 0.1 millimole per g of ion exchanger were found at room temperature. A significant difference in Gd(+3) sorption was observed, depending on whether the ion exchanger was converted from initial conditions of greater or lesser Gd(+3) sorption than the specific final conditions. Correlations were found between decrease in Gd(+3) capacity and loss of exchanger phosphate groups due to hydrolysis during washing and between increase in capacity and treatment with H3PO4. Fitting of the experimental data to ideal ion exchange equilibrium expressions indicated that each Gd(+3) ion is sorbed on only one site of the ion exchanger. The selectivity quotient was determined to be 2.5 + or - 0.4 at room temperature on gadolinium desorption in chloride solutions.

  2. Hydrolyzed Poly(acrylonitrile) Electrospun Ion-Exchange Fibers

    PubMed Central

    Jassal, Manisha; Bhowmick, Sankha; Sengupta, Sukalyan; Patra, Prabir K.; Walker, Douglas I.

    2014-01-01

    Abstract A potential ion-exchange material was developed from poly(acrylonitrile) fibers that were prepared by electrospinning followed by alkaline hydrolysis (to convert the nitrile group to the carboxylate functional group). Characterization studies performed on this material using X-ray photoelectron spectroscopy, scanning electron microscopy, Fourier-Transform infra-red spectroscopy, and ion chromatography confirmed the presence of ion-exchange functional group (carboxylate). Optimum hydrolysis conditions resulted in an ion-exchange capacity of 2.39 meq/g. Ion-exchange fibers were used in a packed-bed column to selectively remove heavy-metal cation from the background of a benign, competing cation at a much higher concentration. The material can be efficiently regenerated and used for multiple cycles of exhaustion and regeneration. PMID:24963270

  3. Influence of Ionic Liquids on the Selectivity of Ion Exchange-Based Polymer Membrane Sensing Layers.

    PubMed

    Mendecki, Lukasz; Callan, Nicole; Ahern, Meghan; Schazmann, Benjamin; Radu, Aleksandar

    2016-01-01

    The applicability of ion exchange membranes is mainly defined by their permselectivity towards specific ions. For instance, the needed selectivity can be sought by modifying some of the components required for the preparation of such membranes. In this study, a new class of materials -trihexyl(tetradecyl)phosphonium based ionic liquids (ILs) were used to modify the properties of ion exchange membranes. We determined selectivity coefficients for iodide as model ion utilizing six phosphonium-based ILs and compared the selectivity with two classical plasticizers. The dielectric properties of membranes plasticized with ionic liquids and their response characteristics towards ten different anions were investigated using potentiometric and impedance measurements. In this large set of data, deviations of obtained selectivity coefficients from the well-established Hofmeister series were observed on many occasions thus indicating a multitude of applications for these ion-exchanging systems. PMID:27438837

  4. Influence of Ionic Liquids on the Selectivity of Ion Exchange-Based Polymer Membrane Sensing Layers.

    PubMed

    Mendecki, Lukasz; Callan, Nicole; Ahern, Meghan; Schazmann, Benjamin; Radu, Aleksandar

    2016-01-01

    The applicability of ion exchange membranes is mainly defined by their permselectivity towards specific ions. For instance, the needed selectivity can be sought by modifying some of the components required for the preparation of such membranes. In this study, a new class of materials -trihexyl(tetradecyl)phosphonium based ionic liquids (ILs) were used to modify the properties of ion exchange membranes. We determined selectivity coefficients for iodide as model ion utilizing six phosphonium-based ILs and compared the selectivity with two classical plasticizers. The dielectric properties of membranes plasticized with ionic liquids and their response characteristics towards ten different anions were investigated using potentiometric and impedance measurements. In this large set of data, deviations of obtained selectivity coefficients from the well-established Hofmeister series were observed on many occasions thus indicating a multitude of applications for these ion-exchanging systems.

  5. Influence of Ionic Liquids on the Selectivity of Ion Exchange-Based Polymer Membrane Sensing Layers

    PubMed Central

    Mendecki, Lukasz; Callan, Nicole; Ahern, Meghan; Schazmann, Benjamin; Radu, Aleksandar

    2016-01-01

    The applicability of ion exchange membranes is mainly defined by their permselectivity towards specific ions. For instance, the needed selectivity can be sought by modifying some of the components required for the preparation of such membranes. In this study, a new class of materials –trihexyl(tetradecyl)phosphonium based ionic liquids (ILs) were used to modify the properties of ion exchange membranes. We determined selectivity coefficients for iodide as model ion utilizing six phosphonium-based ILs and compared the selectivity with two classical plasticizers. The dielectric properties of membranes plasticized with ionic liquids and their response characteristics towards ten different anions were investigated using potentiometric and impedance measurements. In this large set of data, deviations of obtained selectivity coefficients from the well-established Hofmeister series were observed on many occasions thus indicating a multitude of applications for these ion-exchanging systems. PMID:27438837

  6. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    SciTech Connect

    Tawfic, A.F.; Dickson, S.E.; Kim, Y.; Mekky, W.

    2015-03-15

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  7. Ion exchange properties of Japanese natural zeolites in seawater.

    PubMed

    Wajima, Takaaki

    2013-01-01

    Ion exchange properties of five different Japanese natural zeolites in seawater were examined. Sodium ions could be reduced by all zeolites, although anions, Cl(-) and SO(4)(2-), in seawater showed barely changes. Natural zeolite desalination treatment mainly depends on the ion exchange between Na(+), K(+) and Mg(2+) in seawater and Ca(2+) in natural zeolite. This study found that mordenite is superior to clinoptilolite for use in Na(+) reduction. Mordenite with high cation exchange capacity containing Ca(2+) resulted in the highest Na(+) reduction from seawater.

  8. Ion exchange capacity of Nafion and Nafion composites

    SciTech Connect

    Chen, T.Y.; Leddy, J.

    2000-03-21

    The ion exchange capacity of recast Nafion films and composites of Nafion and polystyrene microbeads is determined by titration. Composite formation enhances exchange capacity; exchange capacity increases with the surface area microbeads in the composite. For recast films, an equivalent weight of 996 {+-} 24 is found, whereas the lowest equivalent weight (highest exchange capacity) found for composite is 878 {+-} 8. This suggests that {approx_gt} 13% of the exchange sites within recast films are inaccessible for ion exchange; for 1,100 equivalent weight material, {approx_gt} 25% of the sulfonates are inaccessible. Equivalent weight results are consistent with an ordered interfacial domain between Nafion and the microbeads. A fractal model based on microbead radii, microbead fraction, and interfacial domain thickness provides a predictive model for designing composites with increased exchange capacity and cation transport.

  9. Ion-exchange properties of strontium hydroxyapatite under acidic conditions

    SciTech Connect

    Sugiyama, Shigeru; Nishioka, Hitoshi; Moriga, Toshihiro; Hayashi, Hiromu; Moffat, J.B.

    1998-09-01

    The ion exchange of strontium hydroxyapatite (SrHAp) with Pb{sup 2+} has been investigated under acidic conditions at 293 K. The addition of various acids to the exchanging solution enhanced the exchange capacity in the order HCl > HBr > HF > HNO{sub 3} > no acid, corresponding to the formation of halogen apatites with the former three acids or hydrogen phosphate with HNO{sub 3}. Since the ion-exchange capacity of SrHAp under nonacidic conditions is higher than that of chlorapatite, the aforementioned observations can be attributed to the participation of the protons introduced by the acids.z

  10. Ion Exchange Testing with SRF Resin FY2012

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2013-06-11

    Ion exchange using spherical resorcinol-formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection (DOE-ORP) for use in the Pretreatment Facility (PTF) of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in at-tank deployment. Numerous studies have shown SRF resin to be effective for removing 137Cs from a wide variety of actual and simulated tank waste supernatants (Adamson et al. 2006; Blanchard et al. 2008; Burgeson et al. 2004; Duignan and Nash 2009; Fiskum et al. 2006a; Fiskum et al. 2006b; Fiskum et al. 2006c; Fiskum et al. 2007; Hassan and Adu-Wusu 2003; King et al. 2004; Nash et al. 2006). Prior work at the Pacific Northwest National Laboratory (PNNL) has focused primarily on the loading behavior for 4 to 6 M Na solutions at 25 to 45°C. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (0.1 to 8 M) and higher temperatures (50°C) to alleviate post-filtration precipitation issues. This report discusses ion exchange loading kinetics testing activities performed in accordance with Test Plan TP-WTPSP-002, Rev. 3.0 , which was prepared and approved in response to the Test Specification 24590 PTF-TSP-RT-09-002, Rev. 0 (Lehrman 2010) and Test Exception 24590 PTF TEF RT-11-00003, Rev. 0 (Meehan 2011). This testing focused on column tests evaluating the impact of elevated temperature on resin degradation over an extended period of time and batch contacts evaluating the impact on Cs loading over a broad range of sodium concentrations (0.1 to 5 M). These changes may be required to alleviate post-filtration precipitation issues and broaden the data range of SRF resin loading under the conditions expected with the new equipment and process changes.

  11. Tc-99 Ion Exchange Resin Testing

    SciTech Connect

    Valenta, Michelle M.; Parker, Kent E.; Pierce, Eric M.

    2010-08-01

    Pacific Northwest National Laboratory was contracted by CHPRC to evaluate the release of 99Tc from spent resin used to treat water from well 299-W15-765 and stored for several years. The key questions to be answered are: 1) does 99Tc readily release from the spent ion exchange resin after being in storage for several years; 2) if hot water stripping is used to remove the co-contaminant carbon tetrachloride, will 99Tc that has been sequestered by the resin be released; and 3) can spent resin be encapsulated into a cementitious waste form; if so, how much 99Tc would be released from the weathering of the monolith waste form? The results from the long term stability leach test results confirm that the resin is not releasing a significant amount of the sequestered 99Tc, evident by the less than 0.02% of the total 99Tc loaded being identified in the solution. Furthermore, it is possible that the measured 99Tc concentration is the result of 99Tc contained in the pore spaces of the resin. In addition to these results, analyses conducted to examine the impact of hot water on the release of 99Tc suggest that only a small percentage of the total is being released. This suggest that hot water stripping to remove carbon tetrachloride will not have a significant affect on the resin’s ability to hold-on to sequestered 99Tc. Finally, encapsulation of spent resin in a cementitious material may be a viable disposal option, but additional tests are needed to examine the extent of physical degradation caused by moisture loss and the effect this degradation process can have on the release of 99Tc.

  12. Enhanced DOC removal using anion and cation ion exchange resins.

    PubMed

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. PMID:26624231

  13. Interpenetrating polymer network ion exchange membranes and method for preparing same

    DOEpatents

    Alexandratos, Spiro D.; Danesi, Pier R.; Horwitz, E. Philip

    1989-01-01

    Interpenetrating polymer network ion exchange membranes include a microporous polymeric support film interpenetrated by an ion exchange polymer and are produced by absorbing and polymerizing monomers within the support film. The ion exchange polymer provides ion exchange ligands at the surface of and throughout the support film which have sufficient ligand mobility to extract and transport ions across the membrane.

  14. XAFS Studies of Silver Environments in Ion-Exchanged Glasses

    SciTech Connect

    Yang, X. C.; Dubiel, M.

    2007-02-02

    The X-ray absorption fine structure (XAFS) technique was used to analyze the structural geometry of Ag atoms introduced into soda-lime silicate glass and soda aluminosilicate glass by ion-exchange methods. The results show that Ag+ ions in aluminosilicate glass are coordinated by about two oxygens and the nearest-neighbor Ag-O distance increases when the Ag+-for-Na+ ion-exchange ratio is larger than 0.47. When the exchange ratio is low, the introduced Ag+ ions are stabilized at the non-bridge oxygen (NBO) site with a Ag-O distance of 2.20 A, and the Na+ ions in the AlO4 site are exchanged by Ag+ ions after full replacement of the NBO sites with a Ag-O distance of 2.28 A. The disorder of Ag-O coordination increases with increasing ion-exchange ratio in aluminosilicate glass where Ag+ ions are coordinated by NBO and bridge oxygen (BO)

  15. Removal of uranium, arsenic, and nitrate by continuously regenerated ion exchange process

    SciTech Connect

    Chang, D.; Awad, J.; Panahi, Z.

    1996-11-01

    Groundwater is the major source of water supply for the City of Riverside (the City). Groundwater from some of the local wells contains high levels of uranium, arsenic, and nitrate. The City is evaluating treatment technologies that can remove these contaminants, in order to be prepared to select appropriate treatment technologies when groundwater treatment is required. Treatment technologies identified by the USEPA as best available technology (BAT) for uranium and arsenic removal are coagulation/filtration, lime softening, ion exchange, and reverse osmosis. Among these technologies, ion exchange is the most cost-effective and suitable for wellhead treatment applications. Ion exchange is also effective for nitrate removal. An ion exchange pilot study was conducted for the removal of uranium, arsenic and nitrate from groundwater. This paper presents a summary of the tests results, conceptual design criteria, and preliminary cost estimate for a full-scale facility.

  16. Ion Exchange Separation of the Oxidation State of Vanadium.

    ERIC Educational Resources Information Center

    Cornelius, Richard

    1980-01-01

    Describes an experiment that emphasizes the discrete nature of the different oxidation states of vanadium by the separation of ammonium metavanadate into all four species by ion exchange chromatography. (CS)

  17. Synthesis, characterization and analytical application of nano-composite cation-exchange material, poly-o-toluidine Ce(IV) phosphate: Its application in making Cd(II) ion selective membrane electrode

    NASA Astrophysics Data System (ADS)

    Khan, Asif Ali; Akhtar, Tabassum

    2011-03-01

    An organic-inorganic composite, poly-o-toluidine Ce(IV) phosphate was chemically synthesized by mixing ortho-toluidine into the gel of Ce(IV) phosphate in different mixing volume ratios. Effect of eluant concentration, elution behavior and pH-titration studies were carried out to understand the ion-exchange capabilities. The physico-chemical properties of the material were determined using AAS, CHN elemental analysis, UV-VIS spectrophotometry, FTIR, SEM/EDX, TGA-DTA, TEM (Transmission electron microscopy), XRD and SEM studies. The distribution studies revealed that the cation-exchange material is highly selective for Cd(II). Due to selective nature of the cation-exchanger, ion selective membrane electrode was fabricated for the determination of Cd(ІІ) ions in solutions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations.

  18. Samarium Ion Exchanged Montmorillonite for High Temperature Cumene Cracking Reaction

    NASA Astrophysics Data System (ADS)

    Binitha, N. N.; Silija, P. P.; Suraj, V.; Yaakob, Z.; Sugunan, S.

    2011-02-01

    Montmorillonite clay is cation exchanged with samarium and its catalytic influence in cumene cracking reaction is investigated. Effect of exchange with sodium ions on further exchange with samarium ions is also noted. Acidity measurements are done using Temperature Programmed Desorption (TPD) of ammonia. The retention of basic structure is proved from FTIR spectra and XRD patterns. Elemental analysis result shows that samarium exchange has occurred, which is responsible for the higher catalytic activity. Surface area and pore volume remains more or less unaffected upon exchange. Thermogravimetric analysis indicates the enhanced thermal stability on exchanging. Cumene cracking reaction is carried out at atmospheric pressure in a fixed bed glass reactor at 673 K. The predominance of Brønsted acidity is confirmed from high selectivity to benzene.

  19. MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS

    SciTech Connect

    Nash, C.; Hang, T.; Aleman, S.

    2011-01-03

    Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.

  20. ELUTION OF URANIUM VALUES FROM ION EXCHANGE RESINS

    DOEpatents

    Kennedy, R.H.

    1959-11-24

    A process is described for eluting complex uranium ions absorbed on ion exchange resins. The resin is subjected to the action of an aqueous eluting solution contuining sulfuric acid and an alkali metal, ammonium, or magnesium chloride or nitrate, the elution being carried out until the desired amount of the uranium is removed from the resin.

  1. Microsecond pulsed hydrogen/deuterium exchange of electrosprayed ubiquitin ions stored in a linear ion trap.

    PubMed

    Rajabi, Khadijeh

    2015-02-01

    A pulse of D2O vapour on the order of microseconds is allowed to react with the +6 to +9 charge states of ubiquitin confined in a linear ion trap (LIT). Two envelopes of peaks are detected for the ions of ubiquitin, corresponding to the ions that exchange more quickly and more slowly. The deuterium uptake of the protonated sites on ubiquitin ions accounts for the ion population with the fast exchange. The hydrogen/deuterium exchange (HDX) kinetics of ubiquitin ions trapped in the LIT for 200 ms showed comparable structural transitions to those trapped for 300 ms. When ions are trapped for longer, i.e. up to 2000 ms, mainly the slow exchanging ion population is detected. In all experiments the +7 ions exchange the most, suggesting a short distance between the surface protonated sites and nearby charged sites, and concomitantly high accessibility of surface protonated sites towards D2O. The +6 ions are more compact than the +7 ions but have one fewer protonated site, therefore fewer surface availabilities for D2O attack. The data suggest that the +6 ions keep most of their solution-phase contacts intact while the hydrophobic core is slightly interrupted in the +7 ions, possibly due to the exposure of charged His68 that is normally buried in the hydrophobic pocket. The +8 and +9 ions have more protonated sites but are less compact than the +7 ions because of Coulombic repulsion, resulting in a larger distance between the protonated sites and the basic sites. The data indicate that the HDX mechanism of ions with the slower exchange corresponding to the second envelope of peaks is primarily governed via a relay mechanism. The results suggest that the pulsed HDX MS method is sampling a population of ubiquitin ions with a similar backbone fold to the solution.

  2. Microsecond pulsed hydrogen/deuterium exchange of electrosprayed ubiquitin ions stored in a linear ion trap.

    PubMed

    Rajabi, Khadijeh

    2015-02-01

    A pulse of D2O vapour on the order of microseconds is allowed to react with the +6 to +9 charge states of ubiquitin confined in a linear ion trap (LIT). Two envelopes of peaks are detected for the ions of ubiquitin, corresponding to the ions that exchange more quickly and more slowly. The deuterium uptake of the protonated sites on ubiquitin ions accounts for the ion population with the fast exchange. The hydrogen/deuterium exchange (HDX) kinetics of ubiquitin ions trapped in the LIT for 200 ms showed comparable structural transitions to those trapped for 300 ms. When ions are trapped for longer, i.e. up to 2000 ms, mainly the slow exchanging ion population is detected. In all experiments the +7 ions exchange the most, suggesting a short distance between the surface protonated sites and nearby charged sites, and concomitantly high accessibility of surface protonated sites towards D2O. The +6 ions are more compact than the +7 ions but have one fewer protonated site, therefore fewer surface availabilities for D2O attack. The data suggest that the +6 ions keep most of their solution-phase contacts intact while the hydrophobic core is slightly interrupted in the +7 ions, possibly due to the exposure of charged His68 that is normally buried in the hydrophobic pocket. The +8 and +9 ions have more protonated sites but are less compact than the +7 ions because of Coulombic repulsion, resulting in a larger distance between the protonated sites and the basic sites. The data indicate that the HDX mechanism of ions with the slower exchange corresponding to the second envelope of peaks is primarily governed via a relay mechanism. The results suggest that the pulsed HDX MS method is sampling a population of ubiquitin ions with a similar backbone fold to the solution. PMID:25553956

  3. Desalination of brackish waters using ion exchange media.

    SciTech Connect

    Pless, Jason D.; Krumhansl, James Lee; Nenoff, Tina Maria; Voigt, James A.; Phillips, Mark L. F.; Axness, Marlene; Moore, Diana Lynn

    2005-01-01

    An environmentally friendly method and materials study for desalinating inland brackish waters (i.e., coal bed methane produced waters) using a set of ion-exchange materials is presented. This desalination process effectively removes anions and cations in separate steps with minimal caustic waste generation. The anion-exchange material, hydrotalcite (HTC), exhibits an ion-exchange capacity (IEC) of {approx} 3 mequiv g{sup -1}. The cation-exchange material, an amorphous aluminosilicate permutite-like material, (Na{sub x+2y}Al{sub x}Si{sub 1-x}O{sub 2+y}), has an IEC of {approx}2.5 mequiv g{sup -1}. These ion-exchange materials were studied and optimized because of their specific ion-exchange capacity for the ions of interest and their ability to function in the temperature and pH regions necessary for cost and energy effectiveness. Room temperature, minimum pressure column studies (once-pass through) on simulant brackish water (total dissolved solids (TDS) = 2222 ppm) resulted in water containing TDS = 25 ppm. A second once-pass through column study on actual produced water (TDS = {approx}11,000) with a high carbonate concentration used an additional lime softening step and resulted in a decreased TDS of 600 ppm.

  4. Desalination of brackish waters using ion-exchange media

    SciTech Connect

    Pless, J.D.; Philips, M.L.F.; Voigt, J.A.; Moore, D.; Axness, M.; Krumhansl, J.L.; Nenoff, T.M.

    2006-06-21

    An environmentally friendly method and materials study for desalinating inland brackish waters (i.e., coal bed methane produced waters) using a set of ion-exchange materials is presented. This desalination process effectively removes anions and cations in separate steps with minimal caustic waste generation. The anion-exchange material, hydrotalcite (HTC), exhibits an ion-exchange capacity (IEC) of around 3 mequiv g{sup -1}. The cation-exchange material, an amorphous aluminosilicate permutite-like material, (Na{sub x}+2yAl{sub x}Si{sub 1}-xO{sub 2+y}), has an IEC of around to 2.5 mequiv g{sup -1}. These ion-exchange materials were studied and optimized because of their specific ion-exchange capacity for the ions of interest and their ability to function in the temperature and pH regions necessary for cost and energy effectiveness. Room temperature, minimum pressure column studies (once-pass through) on simulant brackish water (total dissolved solids (TDS) = 2222 ppm) resulted in water containing TDS = 25 ppm. A second once-pass through column study on actual produced water (TDS = similar to 11 000) with a high carbonate concentration used an additional lime softening step and resulted in a decreased TDS of 600 ppm.

  5. Development and application of an actively controlled hybrid proton exchange membrane fuel cell-Lithium-ion battery laboratory test-bed based on off-the-shelf components

    NASA Astrophysics Data System (ADS)

    Yufit, V.; Brandon, N. P.

    The use of commercially available components enables rapid prototyping and assembling of laboratory scale hybrid test-bed systems, which can be used to evaluate new hybrid configurations. The development of such a test-bed using an off-the-shelf PEM fuel cell, lithium-ion battery and DC/DC converter is presented here, and its application to a hybrid configuration appropriate for an unmanned underwater vehicle is explored. A control algorithm was implemented to regulate the power share between the fuel cell and the battery with a graphical interface to control, record and analyze the electrochemical and thermal parameters of the system. The results demonstrate the applicability of the test-bed and control algorithm for this application, and provide data on the dynamic electrical and thermal behaviour of the hybrid system.

  6. Electrical and magnetic properties of ion-exchangeable layered ruthenates

    SciTech Connect

    Sugimoto, Wataru . E-mail: wsugi@shinshu-u.ac.jp; Omoto, Masashi; Yokoshima, Katsunori; Murakami, Yasushi; Takasu, Yoshio

    2004-12-01

    An ion-exchangeable ruthenate with a layered structure, K{sub 0.2}RuO{sub 2.1}, was prepared by solid-state reactions. The interlayer cation was exchanged with H{sup +}, C{sub 2}H{sub 5}NH{sub 3}{sup +}, and ((C{sub 4}H{sub 9}){sub 4}N{sup +}) through proton-exchange, ion-exchange, and guest-exchange reactions. The electrical and magnetic properties of the products were characterized by DC resistivity and susceptibility measurements. Layered K{sub 0.2}RuO{sub 2.1} exhibited metallic conduction between 300 and 13K. The products exhibited similar magnetic behavior despite the differences in the type of interlayer cation, suggesting that the ruthenate sheet in the protonated form and the intercalation compounds possesses metallic nature.

  7. ION EXCHANGE PERFORMANCE OF TITANOSILICATES, GERMANATES AND CARBON NANOTUBES

    SciTech Connect

    Alsobrook, A. N.; Hobbs, D. T.

    2013-04-24

    This report presents a summary of testing the affinity of titanosilicates (TSP), germanium-substituted titanosilicates (Ge-TSP) and multiwall carbon nanotubes (MWCNT) for lanthanide ions in dilute nitric acid solution. The K-TSP ion exchanger exhibited the highest affinity for lanthanides in dilute nitric acid solutions. The Ge-TSP ion exchanger shows promise as a material with high affinity, but additional tests are needed to confirm the preliminary results. The MWCNT exhibited much lower affinities than the K-TSP in dilute nitric acid solutions. However, the MWCNT are much more chemically stable to concentrated nitric acid solutions and, therefore, may candidates for ion exchange in more concentrated nitric acid solutions. This technical report serves as the deliverable documenting completion of the FY13 research milestone, M4FT-13SR0303061 – measure actinide and lanthanide distribution values in nitric acid solutions with sodium and potassium titanosilicate materials.

  8. Ion-exchange chromatographic analysis of peroxynitric acid.

    PubMed

    Nakashima, Yoichi; Ikawa, Satoshi; Tani, Atsushi; Kitano, Katsuhisa

    2016-01-29

    Ion-exchange chromatographic analysis of peroxynitric acid (O2NOOH) was performed by combining an acidic eluate with an UV-vis detector and immersing the separation column in an ice-water bath. The decomposition behavior of peroxynitric acid in the solution was also studied using this system. The fraction for the peroxynitric acid peak was collected. Ion-exchange chromatographic analysis of this fraction, after standing at room temperature for 24h, showed that the decomposition products were mainly nitrate ions with a very small amount of nitrous acid. The peroxynitric acid peak area correlated perfectly with the total amount of decomposition products. The ion-exchange chromatographic isolation allowed us to evaluate the molar extinction coefficient of peroxynitric acid precisely in a wider wavelength range than previous reports. The value decreases monotonically from 1729±26M(-1)cm(-1) at 200nm to 12.0±0.5M(-1)cm(-1) at 290nm.

  9. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, G.D.; Marsh, S.F.; Bartsch, R.A.

    1997-09-23

    Anion exchange resins including at least two positively charged sites and a well-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  10. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, Gordon D.; Marsh, S. Fredric; Bartsch, Richard A.

    1997-01-01

    Anion exchange resins including at least two positively charged sites and a ell-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  11. THERMODYNAMICS OF ION-EXCHANGED NATURAL CLINOPTILOLITE

    EPA Science Inventory

    Natural clinoptilolite from Castle Creek, Idaho, and its cation-exchanged variants (Na-Cpt, NaK-Cpt, K-Cpt, and Ca-Cpt) were studied by high-temperature calorimetry. The hydration enthalpy for all clinoptilolites is about -30 kJ/mol H2O (liquid water reference state) at 25 C. T...

  12. Hydrous oxide ion-exchange compound catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1990-01-01

    A catalytic material of improved activity which comprises a hydrous, alkali metal or alkaline earth metal or quaternary ammonium titanate, zirconate, niobate, or tantalate, in which the metal or ammonium cations have been exchange with a catalytically effective quantity of a catalyst metal, and which has been subsequently treated with a solution of a Bronsted acid.

  13. The electrochemical investigation of salts partition with ion exchange membranes.

    PubMed

    Ata, Nejla; Yazicigil, Zafer; Oztekin, Yasemin

    2008-12-15

    The regenaration of acid and base from the solutions containing metallic salts was achieved by salt splitting method (SSM) using not only anion-exchange membranes (AEM) but also cation-exchange membrane (CEM). In these experiments, while the ion exchange membrane was anion-exchange membrane, acid solutions were used as an anolyte and different salts of potassium were used as a catholyte. In addition to these experiments, while the ion exchange membrane was cation-exchange membrane, base solutions were used as a catholyte and different salts of potassium were used as an anolyte. The effects of current density, initial concentrations of anolyte and catholyte solutions, the type of salt solution and the type of the ion-exchange membranes on the recovery ratio of bases and acids were investigated. The results of the experiments were investigated with the Statistical Package for Social Sciences (SPSS) program. The obtained results show that this technique can be used not only for recovering the acid and base wastes of industry but also for removing the impurities in order to obtain pure acids and bases in laboratory conditions. PMID:18417288

  14. Small Column Ion Exchange Design and Safety Strategy

    SciTech Connect

    Huff, T.; Rios-Armstrong, M.; Edwards, R.; Herman, D.

    2011-02-07

    Small Column Ion Exchange (SCIX) is a transformational technology originally developed by the Department of Energy (DOE) Environmental Management (EM-30) office and is now being deployed at the Savannah River Site (SRS) to significantly increase overall salt processing capacity and accelerate the Liquid Waste System life-cycle. The process combines strontium and actinide removal using Monosodium Titanate (MST), Rotary Microfiltration, and cesium removal using Crystalline Silicotitanate (CST, specifically UOP IONSIV{reg_sign}IE-911 ion exchanger) to create a low level waste stream to be disposed in grout and a high level waste stream to be vitrified. The process also includes preparation of the streams for disposal, e.g., grinding of the loaded CST material. These waste processing components are technically mature and flowsheet integration studies are being performed including glass formulations studies, application specific thermal modeling, and mixing studies. The deployment program includes design and fabrication of the Rotary Microfilter (RMF) assembly, ion-exchange columns (IXCs), and grinder module, utilizing an integrated system safety design approach. The design concept is to install the process inside an existing waste tank, Tank 41H. The process consists of a feed pump with a set of four RMFs, two IXCs, a media grinder, three Submersible Mixer Pumps (SMPs), and all supporting infrastructure including media receipt and preparation facilities. The design addresses MST mixing to achieve the required strontium and actinide removal and to prevent future retrieval problems. CST achieves very high cesium loadings (up to 1,100 curies per gallon (Ci/gal) bed volume). The design addresses the hazards associated with this material including heat management (in column and in-tank), as detailed in the thermal modeling. The CST must be size reduced for compatibility with downstream processes. The design addresses material transport into and out of the grinder and

  15. Ion Exchange Testing with SRF Resin FY 2012

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-07-02

    Ion exchange using spherical resorcinol-formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection (DOE-ORP) for use in the Pretreatment Facility (PTF) of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in at-tank deployment. Numerous studies have shown SRF resin to be effective for removing 137Cs from a wide variety of actual and simulated tank waste supernatants (Adamson et al. 2006; Blanchard et al. 2008; Burgeson et al. 2004; Duignan and Nash 2009; Fiskum et al. 2006a; Fiskum et al. 2006b; Fiskum et al. 2006c; Fiskum et al. 2007; Hassan and Adu-Wusu 2003; King et al. 2004; Nash et al. 2006). Prior work at the Pacific Northwest National Laboratory (PNNL) has focused primarily on the loading behavior for 4 to 6 M Na solutions at 25 to 45°C. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (0.1 to 8 M) and higher temperatures (50°C) to alleviate post-filtration precipitation issues. This report discusses ion exchange loading kinetics testing activities performed in accordance with Test Plan TP-WTPSP-002, Rev. 3.01, which was prepared and approved in response to the Test Specification 24590-PTF-TSP-RT-09-002, Rev. 0 (Lehrman 2010) and Test Exception 24590-PTF-TEF-RT-11-00003, Rev. 0 (Meehan 2011). This testing focused on column tests evaluating the impact of elevated temperature on resin degradation over an extended period of time and batch contacts evaluating the impact on Cs loading over a broad range of sodium concentrations (0.1 to 5 M). These changes may be required to alleviate post-filtration precipitation issues and broaden the data range of SRF resin loading under the conditions expected with the new equipment and process changes.

  16. Cesium Ion Exchange Loading Kinetics Testing with SRF Resin

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Brown, Garrett N.; Peterson, Reid A.

    2012-11-02

    Ion exchange using the Spherical Resorcinol-Formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection for use in the Pretreatment Facility of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in an at-tank deployment for removing 137Cs. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (2 to 8 M) due to caustic leaching and higher temperatures (50°C) to alleviate post-filtration precipitation issues prior to reaching the ion exchange columns. Therefore, it is important to understand the behavior of SRF resin performance under the conditions expected with the new equipment and process changes. This research examined the impact of linear load velocity (4, 6, 8 cm/min), initial sodium concentration (2, 5, 8 M), initial sodium-to-cesium ratio (1.4E+05, 2.1E+05, 2.8E+05 mol/mol), initial sodium-to-hydroxide ratio (2.0, 3.0, 4.0 mol/mol), and resin degradation during extended solution flow using elevated temperature (45°, 50°, 55°, 60°, 65°, 75°C). Testing was performed using a~2mL column packed with SRF resin with feed flowing through it in an up-flow pattern. Samples were taken at set intervals and the data analyzed to help understand the impact of these conditions on the SRF resin performance. It was found that the loading kinetics were not significantly impacted by the sodium concentration over the range tested. However, the loading kinetics were impacted by the linear load velocity. These results indicated that at the test temperature, the adsorption of cesium is strongly dependent on mass transfer through the film and not significantly impacted by interparticle diffusion. Testing for extended times at elevated temperatures showed that the resin does degrade and loading capacity is reduced at and above 45°C. Above 60°C the resin appears to not load at all.

  17. Ion exchange in KTiOPO4 crystals irradiated by copper and hydrogen ions.

    PubMed

    Zhang, Ruifeng; Lu, Fei; Lian, Jie; Liu, Hanping; Liu, Xiangzhi; Lu, Qingming; Ma, Hongji

    2008-05-12

    Cs(+)-K+ ion exchanges were produced on KTiOPO4 crystals which is prior irradiated by Cu+ can H+ ions. The energy and dose of implanted Cu+ ions are 1.5 MeV and 0.5 x 10(14) ions/cm2, and that of H+ are 300 keV and 1 x 10(16) ions/cm2, respectively. The temperature of ions exchange is 430 degrees C, and the time range from 15 minutes to 30 minutes. The prism coupling method is used to measure the dark mode spectra of the samples. Compared with results of ion exchange on the sample without irradiations, both the number of guided mode and its corresponding effective refractive index are decreased. The experimental results indicate that the ion exchange rate closely related with the lattice damage and the damage layers formed in the depth of maximum nuclear energy deposition act as a barrier to block the ions diffuse into the sample and the concentration of defects can modify the speed of ion exchange..

  18. MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS

    SciTech Connect

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-09-20

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  19. Radiocarbon detection by ion charge exchange mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hotchkis, Michael; Wei, Tao

    2007-06-01

    A method for detection of radiocarbon at low levels is described and the results of tests are presented. We refer to this method as ion charge exchange mass spectrometry (ICE-MS). The ICE-MS instrument is a two stage mass spectrometer. In the first stage, molecular interferences which would otherwise affect radiocarbon detection at mass 14 are eliminated by producing high charge state ions directly in the ion source (charge state ⩾2). 14N interference is eliminated in the second stage by converting the beam to negative ions in a charge exchange cell. The beam is mass-analysed at each stage. We have built a test apparatus consisting of an electron cyclotron resonance ion source and a pair of analysing magnets with a charge exchange cell in between, followed by an electrostatic analyser to improve the signal to background ratio. With this apparatus we have measured charge exchange probabilities for (Cn+ → C-) from 4.5 to 40.5 keV (n = 1-3). We have studied the sources of background including assessment of limits for nitrogen interference by searching for negative ions from charge exchange of 14N ions. Our system has been used to detect 14C in enriched samples of CO2 gas with 14C/12C isotopic ratio down to the 10-9 level. Combined with a measured sample consumption rate of 4 ng/s, this corresponds to a capability to detect transient signals containing only a few μBq of 14C activity, such as may be obtained from chromatographic separation. The method will require further development to match the sensitivity of AMS with a gas ion source; however, even in its present state its sensitivity is well suited to tracer studies in biomedical research and drug development.

  20. Salt Processing Through Ion Exchange at the Savannah River Site Selection of Exchange Media and Column Configuration - 9198

    SciTech Connect

    Spires, Renee; Punch, Timothy; McCabe, Daniel

    2009-02-11

    The Department of Energy (DOE) has developed, modeled, and tested several different ion exchange media and column designs for cesium removal. One elutable resin and one non-elutable resin were considered for this salt processing application. Deployment of non-elutable Crystalline Silicotitanate and elutable Resorcinol Formaldehyde in several different column configurations were assessed in a formal Systems Engineering Evaluation (SEE). Salt solutions were selected that would allow a grouping of non-compliant tanks to be closed. Tests were run with the elutable resin to determine compatibility with the resin configuration required for an in-tank ion exchange system. Models were run to estimate the ion exchange cycles required with the two resins in several column configurations. Material balance calculations were performed to estimate the impact on the High Level Waste (HLW) system at the Savannah River Site (SRS). Conceptual process diagrams were used to support the hazard analysis. Data from the hazard analysis was used to determine the relative impact on safety. This report will discuss the technical inputs, SEE methods, results and path forward to complete the technical maturation of ion exchange.

  1. Intensification of ammonia removal from waste water in biologically active zeolitic ion exchange columns.

    PubMed

    Almutairi, Azel; Weatherley, Laurence R

    2015-09-01

    The use of nitrification filters for the removal of ammonium ion from waste-water is an established technology deployed extensively in municipal water treatment, in industrial water treatment and in applications such as fish farming. The process involves the development of immobilized bacterial films on a solid packing support, which is designed to provide a suitable host for the film, and allow supply of oxygen to promote aerobic action. Removal of ammonia and nitrite is increasingly necessary to meet drinking water and discharge standards being applied in the US, Europe and other places. Ion-exchange techniques are also effective for removal of ammonia (as the ammonium ion) from waste water and have the advantage of fast start-up times compared to biological filtration which in some cases may take several weeks to be fully operational. Here we explore the performance of ion exchange columns in which nitrifying bacteria are cultivated, with the goal of a "combined" process involving simultaneous ion-exchange and nitrification, intensified by in-situ aeration with a novel membrane module. There were three experimental goals. Firstly, ion exchange zeolites were characterized and prepared for comparative column breakthrough studies for ammonia removal. Secondly effective in-situ aeration for promotion of nitrifying bacterial growth was studied using a number of different membranes including polyethersulfone (PES), polypropylene (PP), nylon, and polytetra-fluoroethylene (PTFE). Thirdly the breakthrough performance of ion exchange columns filled with zeolite in the presence of aeration and in the presence of nitrifying bacteria was determined to establish the influence of biomass, and aeration upon breakthrough during ammonium ion uptake. The methodology adopted included screening of two types of the naturally occuring zeolite clinoptilolite for effective ammonia removal in continuous ion-exchange columns. Next, the performance of fixed beds of clinoptilolite in the

  2. Intensification of ammonia removal from waste water in biologically active zeolitic ion exchange columns.

    PubMed

    Almutairi, Azel; Weatherley, Laurence R

    2015-09-01

    The use of nitrification filters for the removal of ammonium ion from waste-water is an established technology deployed extensively in municipal water treatment, in industrial water treatment and in applications such as fish farming. The process involves the development of immobilized bacterial films on a solid packing support, which is designed to provide a suitable host for the film, and allow supply of oxygen to promote aerobic action. Removal of ammonia and nitrite is increasingly necessary to meet drinking water and discharge standards being applied in the US, Europe and other places. Ion-exchange techniques are also effective for removal of ammonia (as the ammonium ion) from waste water and have the advantage of fast start-up times compared to biological filtration which in some cases may take several weeks to be fully operational. Here we explore the performance of ion exchange columns in which nitrifying bacteria are cultivated, with the goal of a "combined" process involving simultaneous ion-exchange and nitrification, intensified by in-situ aeration with a novel membrane module. There were three experimental goals. Firstly, ion exchange zeolites were characterized and prepared for comparative column breakthrough studies for ammonia removal. Secondly effective in-situ aeration for promotion of nitrifying bacterial growth was studied using a number of different membranes including polyethersulfone (PES), polypropylene (PP), nylon, and polytetra-fluoroethylene (PTFE). Thirdly the breakthrough performance of ion exchange columns filled with zeolite in the presence of aeration and in the presence of nitrifying bacteria was determined to establish the influence of biomass, and aeration upon breakthrough during ammonium ion uptake. The methodology adopted included screening of two types of the naturally occuring zeolite clinoptilolite for effective ammonia removal in continuous ion-exchange columns. Next, the performance of fixed beds of clinoptilolite in the

  3. Recovery of boric acid from ion exchangers

    DOEpatents

    Pollock, Charles W.

    1976-01-01

    The recovery of boric acid from an anion exchange resin is improved by eluting the boric acid with an aqueous solution of ammonium bicarbonate. The boric acid can be readily purified and concentrated by distilling off the water and ammonium bicarbonate. This process is especially useful for the recovery of boric acid containing a high percentage of .sup.10 B which may be found in some nuclear reactor coolant solutions.

  4. Catalysis using hydrous metal oxide ion exchanges

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  5. Catalysis using hydrous metal oxide ion exchangers

    DOEpatents

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  6. Evaluation of electrochemical ion exchange for cesium elution

    SciTech Connect

    Bontha, J.D.; Kurath, D.E.; Surma, J.E.; Buehler, M.F.

    1996-04-01

    Electrochemical elution was investigated as an alternative method to acid elution for the desorption of cesium from loaded ion exchange resins. The approach was found to have several potential advantages over existing technologies, in particular, electrochemical elution eliminates the need for addition of chemicals to elute cesium from the ion exchange resin. Also, since, in the electrochemical elution process the eluting solution is not in direct contact with the ion exchange material, very small volumes of the eluting solution can be used in a complete recycle mode in order to minimize the total volume of the cesium elute. In addition, the cesium is eluted as an alkaline solution that does not require neutralization with caustic to meet the tank farm specifications. Other advantages include easy incorporation of the electrochemical elution process into the present cesium recovery schemes.

  7. Development and evaluation of ion exchange hollow fibers. [vinyl copolymers

    NASA Technical Reports Server (NTRS)

    Smith, J. K.

    1975-01-01

    An ion exchange hollow fiber impregnated with a vinylpyridine base was developed. The basic exchange resin used to impart the necessary permselectivity to the hollow fiber is a copolymer of vinylpyridine and dibromoethane prepared according to Rembaum. A slight pressure was used to impregnate the exchange monomer mixture into the void structure of the fiber wall, and with maintenance of subambient temperatures, the rate of cross-linking is slow enough to allow the growing polymer to permeate the wall structure before significant increase in polymer molecular weight. These ion exchange fibers are produced from polyacrylonitrile hollow fibers with an appropriate wall structure that enables the impregnating vinylpyridine monomer mixture to form a truly semipermeable anion barrier after curing.

  8. Charge-exchange plasma generated by an ion thruster

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1977-01-01

    The charge exchange plasma generated by an ion thruster was investigated experimentally using both 5 cm and 15 cm thrusters. Results are shown for wide ranges of radial distance from the thruster and angle from the beam direction. Considerations of test environment, as well as distance from the thruster, indicate that a valid simulation of a thruster on a spacecraft was obtained. A calculation procedure and a sample calculation of charge exchange plasma density and saturation electron current density are included.

  9. Zirconium(IV) Phosphonate-Phosphates as Efficient Ion-Exchange Materials.

    PubMed

    Silbernagel, Rita; Martin, Caroline H; Clearfield, Abraham

    2016-02-15

    Layered metal phosphonate-phosphate hybrid materials are known to be ion-exchange materials. Hybrids with zirconium metal centers were synthesized at varying phosphonate-phosphate ratios in order to explore the function and charge preference. The zirconium hybrid materials were found to have a range of applicable uses with preference for highly charged ions (3+) over lower charged ions (1+ and 2+). The addition of a large excess of phosphate altered the selectivity, and these materials were able to remove all ions from solution regardless of charge. In this paper, we describe newly synthesized compounds that are simple to prepare, reproducible, stable, and offer a variety of separation schemes.

  10. Development of a transparent, non-cytotoxic, silver ion-exchanged glass with antimicrobial activity and low ion elution.

    PubMed

    Shim, Gyu-In; Kim, Seong-Hwan; Eom, Hyung-Woo; Kim, Kwang-Mahn; Choi, Se-Young

    2015-05-01

    We investigated the antimicrobial, cytotoxicity, skin irritation, and ion elution behaviors of glass doped with silver ions with respect to its application to electronic equipment such as phones and tablet screens. The microbes tested were Escherichia coli, Staphylococcus aureus, and Penicillium funiculosum. AgNO3 powder was spread on both sides of aluminosilicate glass, and it was heated to 250-280°C for 10min. Under optimized heating conditions (260°C, 10min), the antimicrobial activity of ion-exchanged glass against bacteria and fungi was over 99.9% after 24 weeks. The glass failed to irritate the skin of experimental animals and was considered non-cytotoxic. The maximum amount of Ag ions that were eluted from the ion-exchanged glass into drinking water was measured at 0.037±0.003μgL(-1), an amount which is several orders of magnitude below the standard limit of 0.1mgL(-1) in drinking water. Ag ion-exchanged glass had characteristics suitable for use as a display screen, such as a light transmittance of 90% and a surface roughness of 0.704nm. Our findings suggest that glass doped with silver ions is more hygienic than non-doped glass is, and should be applied to display screens and glassware.

  11. Transport properties of highly ordered heterogeneous ion-exchange membranes.

    PubMed

    Shapiro, V; Freger, V; Linder, C; Oren, Y

    2008-08-01

    Model "ordered" heterogeneous ion exchange membranes are made with ion exchange particles heaving ion exchange capacity in the range 3 to 2.5 meq/gr (dry basis) and diameters ranging from 37 to 7 microm and 2 component room-temperature vulcanizing silicon rubber as a polymeric matrix, by applying an electric field normal to the membrane surface during preparation. These membranes were shown to have an improved ionic conductivity compared with "nonordered" membranes based on the same ion exchange content (for instance, at 10% resin content "nonordered" membranes show <10(-5) mS/cm while "ordered" membranes have conductivity of 1 mS/cm). The transport properties of ordered membranes were compared with those of nonordered membranes, through the current-voltage characteristics. Limiting currents measured for the ordered membranes were significantly higher than those of the nonordered membranes with the same resin concentration. In addition, higher limiting currents were observed in ordered membranes as the resin particles became smaller. Energy dispersion spectrometry analyses revealed that the concentration of cation exchange groups on the membrane surface was higher for ordered membrane as compared to that of nonordered membranes. This implies that the local current density for the conducting domains at the surface of the nonordered membranes is higher, leading to higher concentration polarization and, eventually, to lower average limiting current densities. The effect of ordering the particles on the membrane conductivity and transport properties was studied, and the advantages of the ordered membranes are discussed.

  12. Rupture loop annex ion exchange RLAIX vault deactivation

    SciTech Connect

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    1996-08-01

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  13. Determination of the inner surface of macroporous ion exchange resins.

    PubMed

    Martinola, F; Meyer, A

    1975-12-01

    Study on macroporours IX resins and the pore structure. In addition to ion exchange reactions, macroporous ion exchange resins also show adsorptive properties which are due to the large pores of the resin beads and to the inner surface inside the beads. To measure this surface and the pore radii requires very precise fixation of the condition existing prior to the drying of the water-moist resin beads. Such stabilizing fixation can be achieved by displacing the regain water by isopropyl alcohol and subsequent drying for measuring the pore data. PMID:1223012

  14. Chromatographic separation of inorganic ions on thin layers of titanium phosphate ion-exchanger.

    PubMed

    Ghoulipour, Vanik; Safari, Moharram

    2014-12-01

    The chromatographic behavior of 30 inorganic cations has been studied on thin layers of titanium phosphate ion-exchanger using several aqueous, organic and mixed mobile phases. The separation of one ion from several other ions and also ternary and binary separations have been developed. Some important analytical separations are reported. The effect of pH of the mobile phase on retention factor (Rf) values of the cations in the presence of complex-forming anion along with the separation power of the ion-exchanger were studied. This ion-exchanger exhibits high sorption capacity and varying selectivity towards metal ions and makes it a suitable stationaiy phase in thin layer chromatography.

  15. Waste separation and pretreatment using crystalline silicotitanate ion exchangers

    SciTech Connect

    Tadros, M.E.; Miller, J.E.; Anthony, R.G.

    1997-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CSTs) has been developed jointly by Sandia National Laboratories and Texas A&M University to selectively remove Cs and other radionuclides from a wide spectrum of radioactive defense wastes. The CST exhibits high selectivity and affinity for Cs and Sr under a wide range of conditions. Tests show it can remove part-per-million concentrations of Cs{sup +} from highly alkaline, high-sodium simulated radioactive waste solutions modeled after those at Hanford, Oak Ridge, and Savannah River. The materials exhibit ion exchange properties based on ionic size selectivity. Specifically, crystalline lattice spacing is controlled to be highly selective for Cs ions even in waste streams containing very high (5 to 10 M) concentrations of sodium. The CST technology is being demonstrated with actual waste at several DOE facilities. The use of inorganic ion exchangers. The inorganics are more resistant to chemical, thermal, and radiation degradation. Their high selectivities result in more efficient operations offering the possibility of a simple single-pass operation. In contrast, regenerable organic ion exchangers require additional processing equipment to handle the regeneration liquids and the eluant with the dissolved Cs.

  16. Novel ion-exchange membranes for electrodialysis prepared by radiation-induced graft polymerization

    SciTech Connect

    Tsuneda, Satoshi; Saito, Kyoichi; Misuhara, Hisashi; Sugo, Takanobu

    1995-11-01

    Ion-exchange membranes have been used to concentrate seawater to produce salt as well as to desalinate brackish water to render it potable. Also, the interest in applications of ion-exchange membranes as separators for electrodialytic desalination of bioproducts and separators in hydrogen-oxygen fuel cells has been growing. Novel ion-exchange membranes containing sulfonic acid (SO{sub 3}H) and trimethyl ammonium [N(CH{sub 3}){sub 3}] groups were prepared by a simple method of radiation-induced cografting of sodium styrene sulfonate (SSS) with acrylic acid (AAc) and vinyl benzyl trimethyl ammonium chloride (VBTAC) with 2-hydroxyethyl methacrylate (HEMA), onto a polyethylene film with a thickness of 50 {micro}m. The high density graft chain was introduced throughout the polyethylene film. The maximum cation- and anion-exchange capacities of the resultant membranes were 2.5 and 1.3 mol/kg, receptively. These membranes exhibited an electrical resistance one order lower than commercially available ion-exchange membranes; for example, 12 h cografting provided cation- and anion-exchange membranes whose electrical resistances in a 0.5 M NaCl solution were 0.25 and 0.85 {Omega} cm{sup 2}, respectively. From the evaluation of electrodialytic desalination in a batch mode, using a pair of the graft-type ion-exchange membranes, the time required to achieve 99.5% desalination of the initial 0.5 M NaCl solutions was reduced to 85% comparing with that of the commercial ion-exchange membranes.

  17. An Empirical Formula from Ion Exchange Chromatography and Colorimetry

    NASA Astrophysics Data System (ADS)

    Johnson, Steven D.

    1996-12-01

    Experimental determination of the empirical formula for sodium salicylate, Nax(C7H5O3)y, using colorimetry and cation exchange. A Beer's Law plot is prepared for salicylate using 0.0050 M salicylic acid solution. Colorimetric analysis is performed on the salicylate ion in the form of an aqueous ferric complex, which is intensely violet-red, using a simple, inexpensive colorimeter constructed from readily available electronic parts and PVC pipe. Determination of sodium content is conducted using cation exchange, using simple re-usable exchange columns, followed by titration with OH-. The procedure is involved, yet has been conducted by high school chemistry students as a lab final.

  18. Insoluble polyelectrolyte and ion-exchange hollow fiber impregnated therewith

    NASA Technical Reports Server (NTRS)

    Rembaum, A. (Inventor)

    1977-01-01

    The number of quaternary sites and ion exchange capacity of a polyquaternary, cross linked, insoluble copolymer of a vinyl pyridine and a dihalo organic compound is increased by about 15-35% by reaction of the polymer with an amine followed by quaternization, if required. The polymer forms spontaneously in the presence of a substrate such as within the pores of a hollow fiber. The improved resin impregnated fiber may be utilized to remove ions from waste or process steams.

  19. Plasma ion temperature measurements via charge exchange recombination radiation

    NASA Astrophysics Data System (ADS)

    Fonck, R. J.; Goldston, R. J.; Kaita, R.; Post, D. E.

    1983-02-01

    Spatially and temporally resolved plasma ion temperatures can be determined by measuring the Doppler-broadened line profiles of transitions excited by charge-exchange recombination reactions between fast hydrogen atoms and fully ionized low-Z ions. Plasma rotation velocity profiles can also be obtained. A sample result from the PDX tokamak using He+ radiation is presented, and expected line intensities for model cases for PDX and TFTR are calculated.

  20. Plasma ion temperature measurements via charge-exchange recombination radiation

    SciTech Connect

    Fonck, R.J.; Goldston, R.J.; Kaita, R.; Post, D.E.

    1982-11-01

    Spatially and temporally resolved plasma ion temperatures can be determined by measuring the Doppler-broadened line profiles of transitions excited by charge-exchange recombination reactions between fast hydrogen atoms and fully ionized low-Z ions. Plasma rotation velocity profiles can also be obtained. A sample result from the PDX tokamak using He/sup +/ radiation is presented, and expected line intensities for model cases for PDX and TFTR are calculated.

  1. Plasma ion temperature measurements via charge exchange recombination radiation

    SciTech Connect

    Fonck, R.J.; Goldston, R.J.; Kaita, R.; Post, D.E.

    1983-02-01

    Spatially and temporally resolved plasma ion temperatures can be determined by measuring the Doppler-broadened line profiles of transitions excited by charge-exchange recombination reactions between fast hydrogen atoms and fully ionized low-Z ions. Plasma rotation velocity profiles can also be obtained. A sample result from the PDX tokamak using He/sup +/ radiation is presented, and expected line intensities for model cases for PDX and TFTR are calculated.

  2. Fission product ion exchange between zeolite and a molten salt

    NASA Astrophysics Data System (ADS)

    Gougar, Mary Lou D.

    The electrometallurgical treatment of spent nuclear fuel (SNF) has been developed at Argonne National Laboratory (ANL) and has been demonstrated through processing the sodium-bonded SNF from the Experimental Breeder Reactor-II in Idaho. In this process, components of the SNF, including U and species more chemically active than U, are oxidized into a bath of lithium-potassium chloride (LiCl-KCl) eutectic molten salt. Uranium is removed from the salt solution by electrochemical reduction. The noble metals and inactive fission products from the SNF remain as solids and are melted into a metal waste form after removal from the molten salt bath. The remaining salt solution contains most of the fission products and transuranic elements from the SNF. One technique that has been identified for removing these fission products and extending the usable life of the molten salt is ion exchange with zeolite A. A model has been developed and tested for its ability to describe the ion exchange of fission product species between zeolite A and a molten salt bath used for pyroprocessing of spent nuclear fuel. The model assumes (1) a system at equilibrium, (2) immobilization of species from the process salt solution via both ion exchange and occlusion in the zeolite cage structure, and (3) chemical independence of the process salt species. The first assumption simplifies the description of this physical system by eliminating the complications of including time-dependent variables. An equilibrium state between species concentrations in the two exchange phases is a common basis for ion exchange models found in the literature. Assumption two is non-simplifying with respect to the mathematical expression of the model. Two Langmuir-like fractional terms (one for each mode of immobilization) compose each equation describing each salt species. The third assumption offers great simplification over more traditional ion exchange modeling, in which interaction of solvent species with each other

  3. Charge Exchange with Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Glick, Jeremy; Ferri, Kevin; Schmitt, Jaclyn; Hanson, Joshua; Marler, Joan

    2016-05-01

    A detailed study of the physics of highly charged ions (HCIs) is critical for a deep understanding of observed phenomena resulting from interactions of HCIs with neutral atoms in astrophysical and fusion environments. Specifically the charge transfer rates and spectroscopy of the subsequent decay fluorescence are of great interest to these communities. Results from a laboratory based investigation of these rates will be presented. The experiment takes advantage of an energy and charge state selected beam of HCIs from the recently on-line Clemson University EBIT (CUEBIT). Progress towards an experimental apparatus for retrapping HCIs towards precision spectroscopy of HCIs will also be presented.

  4. Nonpropulsive applications of ion beams

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.

    1976-01-01

    Eight centimeter ion beam sources utilizing xenon and argon have been developed that operate over a wide range of beam energies and currents. Three types of processes have been studied: sputter deposition, ion beam machining, and ion beam surface texturing. The broad range of source operating conditions allows optimum sputter deposition of various materials. An ion beam source was used to ion mill laser reflection holograms using photoresist patterns on silicon. Ion beam texturing was tried with many materials and has a multitude of potential applications.

  5. ATPases, ion exchangers and human sperm motility.

    PubMed

    Peralta-Arias, Rubén D; Vívenes, Carmen Y; Camejo, María I; Piñero, Sandy; Proverbio, Teresa; Martínez, Elizabeth; Marín, Reinaldo; Proverbio, Fulgencio

    2015-05-01

    Human sperm has several mechanisms to control its ionic milieu, such as the Na,K-ATPase (NKA), the Ca-ATPase of the plasma membrane (PMCA), the Na(+)/Ca(2) (+)-exchanger (NCX) and the Na(+)/H(+)-exchanger (NHE). On the other hand, the dynein-ATPase is the intracellular motor for sperm motility. In this work, we evaluated NKA, PMCA, NHE, NCX and dynein-ATPase activities in human sperm and investigated their correlation with sperm motility. Sperm motility was measured by Computer Assisted Semen Analysis. It was found that the NKA activity is inhibited by ouabain with two Ki (7.9 × 10(-9) and 9.8 × 10(-5) M), which is consistent with the presence of two isoforms of α subunit of the NKA in the sperm plasma membranes (α1 and α4), being α4 more sensitive to ouabain. The decrease in NKA activity is associated with a reduction in sperm motility. In addition, sperm motility was evaluated in the presence of known inhibitors of NHE, PMCA and NCX, such as amiloride, eosin, and KB-R7943, respectively, as well as in the presence of nigericin after incubation with ouabain. Amiloride, eosin and KB-R7943 significantly reduced sperm motility. Nigericin reversed the effect of ouabain and amiloride on sperm motility. Dynein-ATPase activity was inhibited by acidic pH and micromolar concentrations of Ca(2) (+). We explain our results in terms of inhibition of the dynein-ATPase in the presence of higher cytosolic H(+) and Ca(2) (+), and therefore inhibition of sperm motility. PMID:25820902

  6. Recycling asymmetric hydrogenation catalysts by their immobilization onto ion-exchange resins.

    PubMed

    Barbaro, Pierluigi

    2006-07-24

    Ion-exchange resins can be used as supports for the preparation of single-site, heterogenised asymmetric hydrogenation catalysts. The immobilised catalysts obtained can be efficiently and conveniently recovered and recycled. This article reviews the significant contributions in the field including the main concepts behind the design and the applications of this type of catalyst. PMID:16552795

  7. The development and characterization of ion exchange membranes for selected electrochemical power sources

    NASA Astrophysics Data System (ADS)

    Arnold, C., Jr.; Assink, R. A.

    The work is reviewed on the development and characterization of ion exchange membranes in an effort to improve the efficiency of three flowing electrolyte batteries. The batteries are: (1) NASA's iron chromium redox battery; (2) Lockheed's zinc ferricyanide battery; and (3) Johnson Control's zinc bromine battery. These batteries were developed for solar photovoltaic, utility load leveling, and electric vehicle applications, respectively.

  8. Adsorption of three pharmaceuticals on two magnetic ion-exchange resins.

    PubMed

    Jiang, Miao; Yang, Weiben; Zhang, Ziwei; Yang, Zhen; Wang, Yuping

    2015-05-01

    The presence of pharmaceuticals in aquatic environments poses potential risks to the ecology and human health. This study investigated the removal of three widely detected and abundant pharmaceuticals, namely, ibuprofen (IBU), diclofenac (DC), and sulfadiazine (SDZ), by two magnetic ion-exchange resins. The adsorption kinetics of the three adsorbates onto both resins was relatively fast and followed pseudo-second-order kinetics. Despite the different pore structures of the two resins, similar adsorption patterns of DC and SDZ were observed, implying the existence of an ion-exchange mechanism. IBU demonstrated a combination of interactions during the adsorption process. These interactions were dependent on the specific surface area and functional groups of the resin. The adsorption isotherm fittings verified the differences in the behavior of the three pharmaceuticals on the two magnetic ion-exchange resins. The presence of Cl- and SO4(2-) suppressed the adsorption amount, but with different inhibition levels for different adsorbates. This work facilitates the understanding of the adsorption behavior and mechanism of pharmaceuticals on magnetic ion-exchange resins. The results will expand the application of magnetic ion-exchange resins to the removal of pharmaceuticals in waters.

  9. Charge-exchange born He(+) ions in the solar wind

    NASA Technical Reports Server (NTRS)

    Gruntman, Michael A.

    1992-01-01

    The effect of charge transfer between solar wind alpha-particles and hydrogen atoms of interstellar origin is revisited. Singly-charged helium ions born in the charge transfer carry important information on processes in the solar wind and the heliosphere. The velocity distribution of such He(+) ions is substantially different from that of He(+) pick-up ions due to ionization of the interstellar helium atoms. Estimates of the expected abundances of the charge-exchange born He(+) in the solar wind are presented, and the possibility of measuring this plasma component on deep space missions is discussed.

  10. Charge-exchange born He(+) ions in the solar wind

    NASA Astrophysics Data System (ADS)

    Gruntman, Michael A.

    1992-07-01

    The effect of charge transfer between solar wind alpha-particles and hydrogen atoms of interstellar origin is revisited. Singly-charged helium ions born in the charge transfer carry important information on processes in the solar wind and the heliosphere. The velocity distribution of such He(+) ions is substantially different from that of He(+) pick-up ions due to ionization of the interstellar helium atoms. Estimates of the expected abundances of the charge-exchange born He(+) in the solar wind are presented, and the possibility of measuring this plasma component on deep space missions is discussed.

  11. Thermal Analysis for Ion-Exchange Column System

    SciTech Connect

    Lee, Si Y.; King, William D.

    2012-12-20

    Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models were used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.

  12. EVALUATING ION EXCHANGE FOR REMOVING RADIUM FROM GROUNDWATER

    EPA Science Inventory

    This article, the second in a series, focuses on the results of bench- and pilot-scale studies of ion exchange processes for radium removal from groundwater in Lemont, Ill. Batch and column studies indicated a very high resin selectivity for radium compared with common cations. E...

  13. Method and solvent composition for regenerating an ion exchange resin

    DOEpatents

    Even, William R.; Irvin, David J.; Irvin, Jennifer A.; Tarver, Edward E.; Brown, Gilbert M.; Wang, James C. F.

    2002-01-01

    A method and composition for removing perchlorate from a highly selective ion exchange resin is disclosed. The disclosed approach comprises treating the resin in a solution of super critical or liquid carbon dioxide and one or more quaternary ammonium chloride surfactant compounds.

  14. Copper Removal from A-01 Outfall by Ion Exchange

    SciTech Connect

    Oji, L.N.

    1999-02-17

    Chelex100, a commercially available ion exchange resin, has been identified in this study as having a significant affinity for copper and zinc in the A-01 outfall water. Removal of copper and zinc from A-01 outfall water will ensure that the outfall meets the state of South Carolina's limit on these heavy metals.

  15. Controlled charge exchange between alkaline earth metals and their ions

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Côté, Robin

    2015-05-01

    We theoretically investigate the prospects of realizing controlled charge exchange via magnetic Feshbach resonances in cold and ultracold collisions of atoms and ions. In particular, we focus on near-resonant charge exchange in heteroisotopic combinations of alkaline earth metals, such as 9Be++10 Be<-->9 Be+10Be+ , which exhibit favorable electronic and hyperfine structure. The quantum scattering calculations are performed for a range of initial states and experimentally attainable magnetic fields in standard coupled-channel Feshbach projection formalism, where higher-order corrections such as the mass-polarization term are explicitely included. In addition, we predict a number of magnetic Feshbach resonances for different heteronuclear isotopic combinations of the listed and related alkaline earth elements. Our results imply that near-resonant charge-exchange could be used to realize atom-ion quantum gates, as well as controlled charge transfer in optically trapped cold quantum gases. This work is partially supported by ARO.

  16. Ion-exchange selectivity of diclofenac, ibuprofen, ketoprofen, and naproxen in ureolyzed human urine.

    PubMed

    Landry, Kelly A; Sun, Peizhe; Huang, Ching-Hua; Boyer, Treavor H

    2015-01-01

    This research advances the knowledge of ion-exchange of four non-steroidal anti-inflammatory drugs (NSAIDs) - diclofenac (DCF), ibuprofen (IBP), ketoprofen (KTP), and naproxen (NPX) - and one analgesic drug-paracetamol (PCM) - by strong-base anion exchange resin (AER) in synthetic ureolyzed urine. Freundlich, Langmuir, Dubinin-Astakhov, and Dubinin-Radushkevich isotherm models were fit to experimental equilibrium data using nonlinear least squares method. Favorable ion-exchange was observed for DCF, KTP, and NPX, whereas unfavorable ion-exchange was observed for IBP and PCM. The ion-exchange selectivity of the AER was enhanced by van der Waals interactions between the pharmaceutical and AER as well as the hydrophobicity of the pharmaceutical. For instance, the high selectivity of the AER for DCF was due to the combination of Coulombic interactions between quaternary ammonium functional group of resin and carboxylate functional group of DCF, van der Waals interactions between polystyrene resin matrix and benzene rings of DCF, and possibly hydrogen bonding between dimethylethanol amine functional group side chain and carboxylate and amine functional groups of DCF. Based on analysis of covariance, the presence of multiple pharmaceuticals did not have a significant effect on ion-exchange removal when the NSAIDs were combined in solution. The AER reached saturation of the pharmaceuticals in a continuous-flow column at varying bed volumes following a decreasing order of DCF > NPX ≈ KTP > IBP. Complete regeneration of the column was achieved using a 5% (m/m) NaCl, equal-volume water-methanol solution. Results from multiple treatment and regeneration cycles provide insight into the practical application of pharmaceutical ion-exchange in ureolyzed urine using AER. PMID:25462757

  17. Ion-exchange selectivity of diclofenac, ibuprofen, ketoprofen, and naproxen in ureolyzed human urine.

    PubMed

    Landry, Kelly A; Sun, Peizhe; Huang, Ching-Hua; Boyer, Treavor H

    2015-01-01

    This research advances the knowledge of ion-exchange of four non-steroidal anti-inflammatory drugs (NSAIDs) - diclofenac (DCF), ibuprofen (IBP), ketoprofen (KTP), and naproxen (NPX) - and one analgesic drug-paracetamol (PCM) - by strong-base anion exchange resin (AER) in synthetic ureolyzed urine. Freundlich, Langmuir, Dubinin-Astakhov, and Dubinin-Radushkevich isotherm models were fit to experimental equilibrium data using nonlinear least squares method. Favorable ion-exchange was observed for DCF, KTP, and NPX, whereas unfavorable ion-exchange was observed for IBP and PCM. The ion-exchange selectivity of the AER was enhanced by van der Waals interactions between the pharmaceutical and AER as well as the hydrophobicity of the pharmaceutical. For instance, the high selectivity of the AER for DCF was due to the combination of Coulombic interactions between quaternary ammonium functional group of resin and carboxylate functional group of DCF, van der Waals interactions between polystyrene resin matrix and benzene rings of DCF, and possibly hydrogen bonding between dimethylethanol amine functional group side chain and carboxylate and amine functional groups of DCF. Based on analysis of covariance, the presence of multiple pharmaceuticals did not have a significant effect on ion-exchange removal when the NSAIDs were combined in solution. The AER reached saturation of the pharmaceuticals in a continuous-flow column at varying bed volumes following a decreasing order of DCF > NPX ≈ KTP > IBP. Complete regeneration of the column was achieved using a 5% (m/m) NaCl, equal-volume water-methanol solution. Results from multiple treatment and regeneration cycles provide insight into the practical application of pharmaceutical ion-exchange in ureolyzed urine using AER.

  18. Systematics of heavy-ion charge-exchange straggling

    NASA Astrophysics Data System (ADS)

    Sigmund, P.; Schinner, A.

    2016-10-01

    The dependence of heavy-ion charge-exchange straggling on the beam energy has been studied theoretically for several ion-target combinations. Our previous work addressed ions up to krypton, while the present study focuses on heavier ions, especially uranium. Particular attention has been paid to a multiple-peak structure which has been predicted theoretically in our previous work. For high-Z1 and high-Z2 systems, exemplified by U in Au, we identify three maxima in the energy dependence of charge-exchange straggling, while the overall magnitude is comparable with that of collisional straggling. Conversely, for U in C, charge-exchange straggling dominates, but only two peaks lie in the energy range where we presently are able to produce credible predictions. For U-Al we find good agreement with experiment in the energy range around the high-energy maximum. The position of the high-energy peak - which is related to processes in the projectile K shell - is found to scale as Z12 , in contrast to the semi-empirical Z13/2 dependence proposed by Yang et al. Measurements for heavy ions in heavy targets are suggested in order to reconcile a major discrepancy between the present calculations and the frequently-used formula by Yang et al.

  19. Ion-exchange behavior of alkali metals on treated carbons

    SciTech Connect

    Mohiuddin, G.; Hata, W.Y.; Tolan, J.S.

    1983-01-01

    The ion-exchange behavior of trace quantities of the alkali-metal ions sodium and cesium, on activated carbon impregnated with zirconium phosphate (referred to here as ZrP), was studied. Impregnated carbon had twice as much ion-exchange activity as unimpregnated, oxidized carbon, and 10 times as much as commercial activated carbons. The distribution coefficient of sodium increased with increasing pH; the distribution coefficient of cesium decreased with increasing pH. Sodium and cesium were separated with an electrolytic solution of 0.1 M HCl. Preliminary studies indicated that 0.2 M potassium and cesium can also be separated. Distribution coefficients of the supported ZrP were determined by the elution technique and agreed within 20% of the values for pure ZrP calculated from the literature.

  20. Separation of americium from curium by oxidation and ion exchange.

    PubMed

    Burns, Jonathan D; Shehee, Thomas C; Clearfield, Abraham; Hobbs, David T

    2012-08-21

    Nuclear energy has the potential to be a clean alternative to fossil fuels, but in order for it to play a major role in the US, many questions about the back end of the fuel cycle must be addressed. One of these questions is the difficult separation of americium from curium. Here, we report the oxidation of Am in two systems, perchloric acid and nitric acid and the affect of changing the acid has on the oxidation. K(d) values were observed and a direct separation factor was calculated and was seen to be as high as 20 for four metal(IV) pillared phosphate phosphonate inorganic organic hybrid ion exchange materials. These ion exchangers are characterized by very low selectivity for cations with low charge but extremely high uptake of ions of high charge.

  1. Poisson-Fermi Modeling of the Ion Exchange Mechanism of the Sodium/Calcium Exchanger.

    PubMed

    Liu, Jinn-Liang; Hsieh, Hann-Jeng; Eisenberg, Bob

    2016-03-17

    The ion exchange mechanism of the sodium/calcium exchanger (NCX) crystallized by Liao et al. in 2012 is studied using the Poisson-Fermi theory developed by Liu and Eisenberg in 2014. A cycle of binding and unbinding is proposed to account for the Na(+)/Ca(2+) exchange function of the NCX molecule. Outputs of the theory include electric and steric fields of ions with different sizes, correlations of ions of different charges, and polarization of water, along with number densities of ions, water molecules, and interstitial voids. We calculate the electrostatic and steric potentials of the four binding sites in NCX, i.e., three Na(+) binding sites and one Ca(2+) binding site, with protein charges provided by the software PDB2PQR. The energy profiles of Na(+) and Ca(2+) ions along their respective Na(+) and Ca(2+) pathways in experimental conditions enable us to explain the fundamental mechanism of NCX that extrudes intracellular Ca(2+) across the cell membrane against its chemical gradient by using the downhill gradient of Na(+). Atomic and numerical details of the binding sites are given to illustrate the 3 Na(+):1 Ca(2+) stoichiometry of NCX. The protein NCX is a catalyst. It does not provide (free) energy for transport. All energy for transport in our model comes from the ions in surrounding baths. PMID:26906748

  2. Ion-exchange chromatography for the characterization of biopharmaceuticals.

    PubMed

    Fekete, Szabolcs; Beck, Alain; Veuthey, Jean-Luc; Guillarme, Davy

    2015-09-10

    Ion-exchange chromatography (IEX) is a historical technique widely used for the detailed characterization of therapeutic proteins and can be considered as a reference and powerful technique for the qualitative and quantitative evaluation of charge heterogeneity. The goal of this review is to provide an overview of theoretical and practical aspects of modern IEX applied for the characterization of therapeutic proteins including monoclonal antibodies (Mabs) and antibody drug conjugates (ADCs). The section on method development describes how to select a suitable stationary phase chemistry and dimensions, the mobile phase conditions (pH, nature and concentration of salt), as well as the temperature and flow rate, considering proteins isoelectric point (pI). In addition, both salt-gradient and pH-gradient approaches were critically reviewed and benefits as well as limitations of these two strategies were provided. Finally, several applications, mostly from pharmaceutical industries, illustrate the potential of IEX for the characterization of charge variants of various types of biopharmaceutical products.

  3. Porous metal oxide microspheres from ion exchange resin

    NASA Astrophysics Data System (ADS)

    Picart, S.; Parant, P.; Caisso, M.; Remy, E.; Mokhtari, H.; Jobelin, I.; Bayle, J. P.; Martin, C. L.; Blanchart, P.; Ayral, A.; Delahaye, T.

    2015-07-01

    This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700-800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.

  4. Field performance of GCL under ion exchange conditions

    SciTech Connect

    James, A.N.; Fullerton, D.; Drake, R.

    1997-10-01

    Five Victorian reservoirs of brick pillar and arch construction were renovated using geosynthetic clay liners (also called bentonite/geosynthetic composites) (GCL) as roof sealing materials. The GCL was predominantly sodium bentonite and contained some 2% of calcite. GCLs were laid on leveled, original puddled clay packed between and above the brick arches. There was an overlying gravel layer connected to a drainage system that, in turn, was covered with soil and seeded with grass. Leaks through roofs into stored potable water were discovered. Excavation and exposure of the GCL showed that they were finely cracked in many places. Samples of the GCL bentonite from several locations at each of five sites had a high moisture content. Also, the GCL had a much reduced exchangeable sodium and increased exchangeable calcium content when compared to the dry unused GCL. Laboratory experiments, lasting for a limited period, were carried out to simulate operating conditions of the GCL whereby water falling on the ground and reaching the GCL flowed across the GCL in the overlying gravel layer to collector drains. Similar but less extensive ion exchange, calcium for sodium, was found here also. The evidence demonstrates that calcium from calcite, contained in the GCL bentonite, exchanged with sodium and, in so doing, contributed to shrinkage and cracking. Supplementary sources of calcium for ion exchange probably came from overlying calcareous soil and water from firehoses used to field test the integrity of the GCL.

  5. Ion exchange and surface charge on montmorillonite clay

    SciTech Connect

    Sperry, J.M.; Peirce, J.J.

    1999-05-01

    An ion-exchange model originally developed for pure oxides prepared in the laboratory is extended to study of ion exchange and surface charge on a naturally occurring montmorillonite clay. The range of surface charges measured for montmorillonite with various electrolyte solutions and clay pretreatments is within the range of those measured for a wide variety of oxides prepared in the laboratory, including MnO{sub 2}-IC1, MnO{sub 2}-IC12, MnO{sub 2}-IC22, titanium dioxide, ferric oxide, and aluminum oxide. In addition, fitted parameter values for lateral interaction constants and equilibrium constants for the acid sites that characterize ion exchange on montmorillonite are on the same order of magnitude as those obtained for pure oxides. Surface charge of montmorillonite in sodium nitrate solution is measured to be approximately 15 to 25% greater than that measured between a pH of 4 and 9 in calcium chloride solution. This difference is attributed to the greater charge on the calcium (2{sup +}) ion; thus, its stronger electrostatic attraction to the acid hydroxyl site. An order of magnitude change in solids concentration (C{sub p}) can lead to a difference in measured net surface charge density of the same oxide sample of several orders of magnitude. This difference increases at higher pH, indicating the importance of reporting the corresponding C{sub p} at which experiments are conducted.

  6. Ion-exchange chromatographic analysis of peroxynitric acid.

    PubMed

    Nakashima, Yoichi; Ikawa, Satoshi; Tani, Atsushi; Kitano, Katsuhisa

    2016-01-29

    Ion-exchange chromatographic analysis of peroxynitric acid (O2NOOH) was performed by combining an acidic eluate with an UV-vis detector and immersing the separation column in an ice-water bath. The decomposition behavior of peroxynitric acid in the solution was also studied using this system. The fraction for the peroxynitric acid peak was collected. Ion-exchange chromatographic analysis of this fraction, after standing at room temperature for 24h, showed that the decomposition products were mainly nitrate ions with a very small amount of nitrous acid. The peroxynitric acid peak area correlated perfectly with the total amount of decomposition products. The ion-exchange chromatographic isolation allowed us to evaluate the molar extinction coefficient of peroxynitric acid precisely in a wider wavelength range than previous reports. The value decreases monotonically from 1729±26M(-1)cm(-1) at 200nm to 12.0±0.5M(-1)cm(-1) at 290nm. PMID:26748867

  7. Syntesis of lanthanum zirconate hydrosols by the ion exchange method

    NASA Astrophysics Data System (ADS)

    Bovina, E. A.; Tarasova, J. V.; Chibirova, F. Kh

    2011-04-01

    Ion exchange of LaCl3 and ZrOCl2 aqueous solutions with anion-exchanger AV-17-8 was used to synthesize finely dispersed hydrosol of amorphous lanthanum zirconate La2Zr2O7. Heat treatment of dried La2Zr2O7 hydrosols at 700°C and 1100°C resulted in the formation of powders with fluorite and pyrochlore type structures, respectively. Epitaxial La2Zr2O7 films were obtained on SrTiO3 (001) single crystals. The substrate has an influence on the lanthanum zirconate crystal orientation, as well as strong inhibitory effect on sintering processes.

  8. Demonstration of an Ion Exchange Resin Addition/Removal System with Superlig 659

    SciTech Connect

    Norato, M.A.

    2000-12-19

    A pilot facility was designed and built in the Thermal Fluids Laboratory at the Savannah River Technology Center to demonstrate the slurry transport of ion exchange resins in and out of ion exchange columns.

  9. Ion exchange membrane textile bioreactor as a new alternative for drinking water denitrification.

    PubMed

    Berdous, Dalila; Akretche, Djamal-Eddine; Abderahmani, Ahmed; Berdous, Sakina; Meknaci, Rima

    2014-06-01

    This work enters in the optics of the denitrification of a polluted water by two membrane techniques, the Donnan dialysis (DD) and the ion exchange membrane bioreactor (IEMB), using a conventional barrier, composed by an anion exchange membrane (AEM), and a hybrid barrier, where the AEM is combined to an anion exchange textile (AET). The effects of the hydrodynamic factor and the nature of the carbon source on the transfer and the reduction of nitrate ions were studied. The study results obtained through the DD showed the effectiveness of the hybrid barrier in the recovery and concentration of nitrate ions. This was also recorded during denitrification by the hybrid process, called the ion exchange membrane textile bioreactor (IEMTB), with a significant reduction of nitrates, compared to IEMB, due to the efficiency of the Pseudomonas aeruginosa biofilm formed at the surface of the AET. Here, the permselectivity of the membrane and the good bioreduction of the pollutants are no longer major conditions to the better performance of the process. The application of IEMTB in the denitrification of groundwater, having a nitrate concentration of 96.67 ppm, shows a total reduction of nitrate ions without changing the quality of the water. Indeed, the analysis of the recovered water, or yet the treated water, shows the absence of the bacterium by-products and concentrations in the nitrates and nitrites which are, respectively, equal to 0.02±0.01 ppm, and inferiors to the detection limit (<0.02 ppm).

  10. Membrane consisting of polyquaternary amine ion exchange polymer network interpenetrating the chains of thermoplastic matrix polymer

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Wallace, C. J. (Inventor)

    1978-01-01

    An ion exchange membrane was formed from a solution containing dissolved matrix polymer and a set of monomers which are capable of reacting to form a polyquaternary ion exchange material; for example vinyl pyride and a dihalo hydrocarbon. After casting solution and evaporation of the volatile component's, a relatively strong ion exchange membrane was obtained which is capable of removing anions, such as nitrate or chromate from water. The ion exchange polymer forms an interpenetrating network with the chains of the matrix polymer.

  11. Isotope effects of neodymium in different ligands exchange systems studied by ion exchange displacement chromatography.

    PubMed

    Ismail, Ibrahim; Fawzy, Ahmed S; Ahmad, Mohammad I; Aly, Hisham F; Nomura, Masao; Fujii, Yasuhiko

    2013-03-01

    The isotope effects of neodymium in Nd-glycolate ligand exchange system were studied by using ion exchange chromatography. The separation coefficients of neodymium isotopes, ε's, were calculated from the observed isotopic ratios at the front and rear boundaries of the neodymium adsorption band. The values of separation coefficients of neodymium isotopes, ε's, for the Nd-glycolate ligand exchange system were compared with those of Nd-malate and Nd-citrate, which indicated that the isotope effects of neodymium as studied by the three ligands takes the following direction Malate > Citrate > Glycolate. This order agrees with the number of available sites for complexation of each ligand. The values of the plate height, HETP of Nd in Nd-ligand exchange systems were also calculated.

  12. Enigmatic ion-exchange behavior of myo-inositol phosphates.

    PubMed

    Shelor, C Phillip; Liao, Hongzhu; Kadjo, Akinde Florence; Dasgupta, Purnendu K

    2015-05-01

    The separation of myo-inositol mono-, di-, tri-, tetra-, pentakis-, and hexakisphosphate (InsP1, InsP2, InsP3, InsP4, InsP5, InsP6) was carried out using hydroxide eluent ion chromatography. Acid hydrolysis of InsP6 (phytate) was used to prepare a distribution of InsPs, ranging from InsP1 to InsP5's and including unhydrolyzed InsP6. Counting all possible positional isomers (many of which have stereoisomers that will not be separable by conventional ion exchange), 40 chromatographically separable peaks are possible; up to 22 were separated and identified by mass spectrometry. InsPs show unusual ion-exchange behavior in two respects: (a) the retention order is not monotonically related with the charge on the ion and (b) at the same hydroxide eluent concentration, retention is greatly dependent on the eluent metal cation. The retention of InsP3-InsP6 was determined to be controlled by steric factors while elution was influenced by eluent cation complexation. These highly phosphorylated InsPs have a much greater affinity for alkali metals (Li(+) > Na(+) > K(+)) than quaternary ammonium ions. This difference in cation affinity was exploited to improve separation through the use of a tetramethylammonium hydroxide-sodium hydroxide gradient.

  13. Ion exchange at the critical point of solution.

    PubMed

    Savoy, J D; Baird, J K; Lang, J R

    2016-03-11

    A mixture of isobutyric acid (IBA)+water has an upper critical point of solution at 26.7°C and an IBA concentration of 4.40M. We have determined the Langmuir isotherms for the hydroxide form of Amberlite IRN-78 resin in contact with mixtures of IBA+water at temperatures, 27.0, 29.0, 31.0 and 38.0°C, respectively. The Langmuir plot at 38.0°C forms a straight line. At the three lower temperatures, however, a peak in the Langmuir plot is observed for IBA concentrations in the vicinity of 4.40M. We regard this peak to be a critical effect not only because it is located close to 4.40M, but also because its height becomes more pronounced as the temperature of the isotherm approaches the critical temperature. For concentrations in the vicinity of the peak, the data indicate that the larger isobutyrate ion is rejected by the resin in favor of the smaller hydroxide ion. This reversal of the expected ion exchange reaction might be used to separate ions according to size. Using the Donnan theory of ion exchange equilibrium, we link the swelling pressure to the osmotic pressure. We show that the peak in the Langmuir plot is associated with a maximum in the "osmotic" energy. This maximum has its origin in the concentration derivative of the osmotic pressure, which goes to zero as the critical point is approached.

  14. Ion exchange at the critical point of solution.

    PubMed

    Savoy, J D; Baird, J K; Lang, J R

    2016-03-11

    A mixture of isobutyric acid (IBA)+water has an upper critical point of solution at 26.7°C and an IBA concentration of 4.40M. We have determined the Langmuir isotherms for the hydroxide form of Amberlite IRN-78 resin in contact with mixtures of IBA+water at temperatures, 27.0, 29.0, 31.0 and 38.0°C, respectively. The Langmuir plot at 38.0°C forms a straight line. At the three lower temperatures, however, a peak in the Langmuir plot is observed for IBA concentrations in the vicinity of 4.40M. We regard this peak to be a critical effect not only because it is located close to 4.40M, but also because its height becomes more pronounced as the temperature of the isotherm approaches the critical temperature. For concentrations in the vicinity of the peak, the data indicate that the larger isobutyrate ion is rejected by the resin in favor of the smaller hydroxide ion. This reversal of the expected ion exchange reaction might be used to separate ions according to size. Using the Donnan theory of ion exchange equilibrium, we link the swelling pressure to the osmotic pressure. We show that the peak in the Langmuir plot is associated with a maximum in the "osmotic" energy. This maximum has its origin in the concentration derivative of the osmotic pressure, which goes to zero as the critical point is approached. PMID:26884137

  15. Synergistic integration of ion-exchange and catalytic reduction for complete decomposition of perchlorate in waste water.

    PubMed

    Kim, You-Na; Choi, Minkee

    2014-07-01

    Ion-exchange has been frequently used for the treatment of perchlorate (ClO4(-)), but disposal or regeneration of the spent resins has been the major hurdle for field application. Here we demonstrate a synergistic integration of ion-exchange and catalytic decomposition by using Pd-supported ion-exchange resin as an adsorption/catalysis bifunctional material. The ion-exchange capability of the resin did not change after generation of the Pd clusters via mild ethanol reduction, and thus showed very high ion-exchange selectivity and capacity toward ClO4(-). After the resin was saturated with ClO4(-) in an adsorption mode, it was possible to fully decompose the adsorbed ClO4(-) into nontoxic Cl(-) by the catalytic function of the Pd catalysts under H2 atmosphere. It was demonstrated that prewetting the ion-exchange resin with ethanol significantly accelerate the decomposition of ClO4(-) due to the weaker association of ClO4(-) with the ion-exchange sites of the resin, which allows more facile access of ClO4(-) to the catalytically active Pd-resin interface. In the presence of ethanol, >90% of the adsorbed ClO4(-) could be decomposed within 24 h at 10 bar H2 and 373 K. The ClO4(-) adsorption-catalytic decomposition cycle could be repeated up to five times without loss of ClO4(-) adsorption capacity and selectivity.

  16. Diffusion kinetics of the ion exchange of benzocaine on sulfocationites

    NASA Astrophysics Data System (ADS)

    Al'tshuler, O. G.; Shkurenko, G. Yu.; Gorlov, A. A.; Al'tshuler, G. N.

    2016-06-01

    The theory of the ion exchange kinetics on strong acid cationites with the participation of weak electrolytes is discussed. The kinetics of desorption of benzocaine in the protonated and molecular forms from strong acid cationites, sulfonated polycalixarene, and KU-23 30/100 sulfocationite, is studied experimentally. It is shown that the flow of protonated benzocaine from cationite upon desorption proceeding by the ion-exchange mechanism is more intense than upon desorption of nonionized benzocaine molecules. It is established that the diffusion coefficient of benzocaine cations is (1.21 ± 0.23) × 10-12 m2/s in KU-23 30/100 sulfocation and (0.65 ± 0.06) × 10-13 m2/s in sulfonated polycalixarene, while the diffusion coefficient of benzocaine molecules is (0.65 ± 0.15) × 10-14 m2/s in sulfonated polycalixarene.

  17. Radiation degradation in EPICOR-2 ion exchange resins

    SciTech Connect

    McConnell, J.W. Jr.; Johnson, D.A.; Sanders, R.D. Sr.

    1990-09-01

    The Low-Level Waste Data base Development -- EPICOR-II Resin/Liner Investigation Program funded by the US Nuclear Regulatory Commission is investigating chemical and physical conditions for organic ion exchange resins contained in several EPICOR-II prefilters. Those prefilters were used during cleanup of contaminated water from the Three Mile Island Nuclear Power Station after the March 1979 accident. The work was performed by EG G Idaho, Inc. at the Idaho Engineering Laboratory. This is the final report of this task and summarizes results and analyses of three samplings of ion exchange resins from prefilters PF-8 and -20. Results are compared with baseline data from tests performed on unirradiated resins supplied by Epicor, Inc. to determine the extent of degradation due to the high internal radiation dose received by the organic resins. Results also are compared with those of other researchers. 18 refs., 23 figs., 7 tabs.

  18. Hybrid metallic ion-exchanged waveguides for SPR biological sensing

    NASA Astrophysics Data System (ADS)

    de Bonnault, S.; Bucci, D.; Zermatten, P.. J.; Charette, P. G.; Broquin, J. E.

    2015-02-01

    Glass substrates have been used for decades to create biosensors due to their biocompatibility, low thermal conductivity, and limited fluorescence. Among the different types of sensors, those based on surface plasmon resonance (SPR) allow exploitation of the sensing lightwave at the vicinity of the sensor surface where small entities such as DNA or proteins are located. In this paper, ion-exchanged waveguides and SPR are combined to create a multianalyte optical sensor integrated onto glass. First the principle of operation is introduced, then the theoretical analysis and design of the sensing element. Simulations have been carried out using the Aperiodic Fourier Modal Method (AFMM) and a custom software that handles ion-exchange index-profiles. Fabrication and characterization processes are also presented. Finally the first experimental spectra are displayed and discussed. The sensor presents a bulk sensibility of 5000nm/RIU.

  19. Sorption properties of radiation-cross-linked polymer hydrogels containing ion-exchange fibers

    NASA Astrophysics Data System (ADS)

    Rezvova, M. A.; Zhevnyk, V. D.; Pak, V.; Borodin, Y. V.; Kachina, E. V.

    2016-02-01

    Polymer hydrogel modification for soft contact lenses by ion-exchange fibers was studied in this work. The obtained results showed that the ion-exchange fiber modifiers have a number of advantages as compared with ion-exchange resin modifiers.

  20. Separation of organic ion exchange resins from sludge -- engineering study

    SciTech Connect

    Duncan, J.B.

    1998-08-25

    This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation.

  1. Momentum transfer in relativistic heavy ion charge-exchange reactions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  2. Applications of Ion Laser Systems

    NASA Astrophysics Data System (ADS)

    Fletcher, Peter W.

    1987-04-01

    This paper provides an introduction to the more common applications of ion laser systems. Applications discussed include photocoagulation, flow cytometry, laser disk mastering, laser doppler velocimetry, Raman spectroscopy, holography, laser light shows, large screen projection, fingerprint detection, and applications in printing such as color separation and scanning. All these applications are currently in widespread use. At the end of the paper a short review is provided of developing applications such as cardiovascular surgery and semiconductor processing.

  3. Thermal analysis for ion-exchange column system

    SciTech Connect

    Lee, S. Y.; King, W. D.

    2012-07-01

    Models have been developed to simulate the thermal characteristics of Crystalline Silico-titanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. A primary objective of these calculations was to estimate temperature distributions across packed CST beds immersed in waste supernate or filled with dry air under various accident scenarios. Accident scenarios evaluated included loss of salt solution flow through the bed, inadvertent column drainage, and loss of active cooling in the column. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. (authors)

  4. Donnan dialysis with ion-exchange membranes. 3: Diffusion coefficients using ions of different valence

    SciTech Connect

    Miyoshi, Hirofumi

    1999-01-01

    Donnan dialysis with ion-exchange membranes was studied under various kinds of experimental conditions using ions of different valences. The diffusion coefficients (D{sub d}) of various kinds of ions in the ion-exchange membrane were obtained by curve fitting an equation derived from the mass balance to three kinds of Donnan dialytic experiments. It was found that the value of D{sub d}/D{sub s} using D{sub d} of monovalent ions in Donnan dialysis with a set of monovalent feed ions and bivalent driving ions was 1/175, where D{sub s} represents a diffusion coefficient in solution. D{sub s} was calculated from the Nernst-Einstein equation substituted by the ionic conductance of ions at infinite dilution in water. Using D{sub d} of bivalent ions in Donnan dialysis with the same set led to a D{sub d}/D{sub s} value of 1/438. Moreover, using D{sub d} in Donnan dialysis with the same set, the value of D{sub d}/D{sub e} was kept constant at 0.4 (D{sub e} expresses the diffusion coefficient in the membrane when the valences of the feed and driving ions are equal). On the other hand, both D{sub d}/D{sub s} and D{sub d}/D{sub e} using D{sub d} in Donnan dialysis with a set of bivalent feed ions and monovalent driving ions were not constant.

  5. Structural Insight into the Ion-Exchange Mechanism of the Sodium/Calcium Exchanger

    SciTech Connect

    Liao, Jun; Li, Hua; Zeng, Weizhong; Sauer, David B.; Belmares, Ricardo; Jiang, Youxing

    2012-06-19

    Sodium/calcium (Na{sup +}/Ca{sup 2+}) exchangers (NCX) are membrane transporters that play an essential role in maintaining the homeostasis of cytosolic Ca{sup 2+} for cell signaling. We demonstrated the Na{sup +}/Ca{sup 2+}-exchange function of an NCX from Methanococcus jannaschii (NCX{_}Mj) and report its 1.9 angstrom crystal structure in an outward-facing conformation. Containing 10 transmembrane helices, the two halves of NCX{_}Mj share a similar structure with opposite orientation. Four ion-binding sites cluster at the center of the protein: one specific for Ca{sup 2+} and three that likely bind Na{sup +}. Two passageways allow for Na{sup +} and Ca{sup 2+} access to the central ion-binding sites from the extracellular side. Based on the symmetry of NCX{_}Mj and its ability to catalyze bidirectional ion-exchange reactions, we propose a structure model for the inward-facing NCX{_}Mj.

  6. Applications of Ion Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Barnard, John J.; Briggs*, Richard J.

    As discussed in Chap. 9, the physics of ion induction accelerators has many commonalities with the physics of electron induction accelerators. However, there are important differences, arising because of the different missions of ion machines relative to electron machines and also because the velocity of the ions is usually non-relativistic in these applications. The basic architectures and layout reflects these differences. In Chaps. 6, 7, and 8 a number of examples of electron accelerators and their applications were given, including machines that have already been constructed. In this chapter, we give several examples of potential uses for ion induction accelerators. Although, as of this writing, none of these applications have come to fruition, in the case of heavy ion fusion (HIF) , small scale experiments have been carried out and a sizable effort has been made in laying the groundwork for such an accelerator. A second application, using ion beams for study of High Energy Density Physics (HEDP) or Warm Dense Matter (WDM) physics will soon be realized and the requirements for this machine will be discussed in detail. Also, a concept for a spallation neutron source is discussed in lesser detail.

  7. Continuous ion exchange separation of zirconium and hafnium

    SciTech Connect

    Begovich, J.M.; Sisson, W.G.

    1981-01-01

    A pressurized continuous annular chromatograph (CAC) has been developed for truly continuous ion exchange preparative separations. This device utilizes a slowly rotating annular bed of sorbent material, fixed multiple feed points, and fixed withdrawal locations. Most of our investigations have been performed with a 28-cm-diam by 60-cm-long CAC, but a larger model has recently been designed and constructed. A detailed study has been made of the separation of copper, nickel, and cobalt components from a simulated carbonate leach liquor of the Caron process for recovering nickel and cobalt from laterite ores. Recent studies have investigated the ion exchange separation of zirconium and hafnium from a sulfate feed solution. Nuclear reactor-grade zirconium, containing < 0.01 wt % hafnium, and hafnium, containing < 1% zirconium, have been continuously prepared using cation exchange resin in the pressurized CAC. This device, because of its continuous feed and product withdrawal, its adaptability to largescale operations, and its ability to separate many components, is expected to make chromatography a more competitive process in the industrial sector.

  8. Diffusional transport of ions in plasticized anion-exchange membranes.

    PubMed

    Kumar, Rakesh; Pandey, Ashok K; Sharma, Manoj K; Panicker, L V; Sodaye, Suparna; Suresh, G; Ramagiri, Shobha V; Bellare, Jayesh R; Goswami, A

    2011-05-19

    Diffusional transport properties of hydrophobic anion-exchange membranes were studied using the polymer inclusion membrane (PIM). This class of membranes is extensively used in the chemical sensor and membrane based separation processes. The samples of PIM were prepared by physical containment of the trioctylmethylammonium chloride (Aliquat-336) in the plasticized matrix of cellulose triacetate (CTA). The plasticizers 2-nitrophenyl octyl ether, dioctyl phthalate, and tris(2-ethylhexyl)phosphate having different dielectric constant and viscosity were used to vary local environment of the membrane matrix. The morphological structure of the PIM was obtained by atomic force microscopy and transmission electron microscopy (TEM). For TEM, platinum nanoparticles (Pt nps) were formed in the PIM sample. The formation of Pt nps involved in situ reduction of PtCl(6)(2-) ions with BH(4)(-) ions in the membrane matrix. Since both the species are anions, Pt nps thus formed can provide information on spatial distribution of anion-exchanging molecules (Aliquat-336) in the membrane. The glass transitions in the membrane samples were measured to study the effects of plasticizer on physical structure of the membrane. The self-diffusion coefficients (D) of the I(-) ions and water in these membranes were obtained by analyzing the experimentally measured exchange rate profiles of (131)I(-) with (nat)I(-) and tritiated water with H(2)O, respectively, between the membrane and equilibrating solution using an analytical solution of Fick's second law. The values of D(I(-)) in membrane samples with a fixed proportion of CTA, plasticizer, and Aliquat-336 were found to vary significantly depending upon the nature of the plasticizer used. The comparison of values of D with properties of the plasticizers indicated that both dielectric constant and viscosity of the plasticizer affect the self-diffusion mobility of I(-) ions in the membrane. The value of D(I(-)) in the PIM samples did not vary

  9. Charge exchange spectroscopy as a fast ion diagnostic on TEXTORa)

    NASA Astrophysics Data System (ADS)

    Delabie, E.; Jaspers, R. J. E.; von Hellermann, M. G.; Nielsen, S. K.; Marchuk, O.

    2008-10-01

    An upgraded charge exchange spectroscopy diagnostic has been taken into operation at the TEXTOR tokamak. The angles of the viewing lines with the toroidal magnetic field are close to the pitch angles at birth of fast ions injected by one of the neutral beam injectors. Using another neutral beam for active spectroscopy, injected counter the direction in which fast ions injected by the first beam are circulating, we can simultaneously measure a fast ion tail on the blue wing of the Dα spectrum while the beam emission spectrum is Doppler shifted to the red wing. An analysis combining the two parts of the spectrum offers possibilities to improve the accuracy of the absolute (fast) ion density profiles. Fast beam modulation or passive viewing lines cannot be used for background subtraction on this diagnostic setup and therefore the background has to be modeled and fitted to the data together with a spectral model for the slowing down feature. The analysis of the fast ion Dα spectrum obtained with the new diagnostic is discussed.

  10. Ion Exchange and Solvent Extraction: Supramolecular Aspects of Solvent Exchange Volume 21

    SciTech Connect

    Gloe, Karsten; Tasker, Peter A; Oshima, Tatsuya; Watarai, Hitoshi; Nilsson, Mikael

    2013-01-01

    Preface The theme of supramolecular chemistry (SC), entailing the organization of multiple species through noncovalent interactions, has permeated virtually all aspects of chemical endeavor over the past several decades. Given that the observed behavior of discrete molecular species depends upon their weak interactions with one another and with matrix components, one would have to conclude that SC must indeed form part of the fabric of chemistry itself. A vast literature now serves to categorize SC phenomena within a body of consistent terminology. The word supramolecular itself appears in the titles of dozens of books, several journals, and a dedicated encyclopedia. Not surprisingly, the theme of SC also permeates the field of solvent extraction (SX), inspiring the framework for this volume of Ion Exchange and Solvent Extraction. It is attempted in the six chapters of this volume to identify both how supramolecular behavior occurs and is studied in the context of SX and how SC is influencing the current direction of SX. Researchers and practitioners have long dealt with supramolecular interactions in SX. Indeed, the use of polar extractant molecules in nonpolar media virtually assures that aggregative interactions will dominate the solution behavior of SX. Analytical chemists working in the 1930s to the 1950s with simple mono- and bidentate chelating ligands as extractants noted that extraction of metal ions obeyed complicated mass-action equilibria involving complex stoichiometries. As chemists and engineers developed processes for nuclear and hydrometallurgical applications in the 1950s and 1960s, the preference for aliphatic diluents only enhanced the complexity and supramolecular nature of extraction chemistry. Use of physical techniques such as light scattering and vapor-pressure measurements together with various spectroscopic methods revealed organic-phase aggregates from well-defined dimers to small aggregates containing a few extractant molecules to large

  11. Ion exchange substrates for plant cultivation in extraterrestrial stations and space crafts

    NASA Astrophysics Data System (ADS)

    Soldatov, Vladimir

    2012-07-01

    Ion exchange substrates Biona were specially designed at the Belarus Academy of Sciences for plants cultivation in spacecrafts and extraterrestrial stations. The first versions of such substrates have been successfully used in several space experiments and in a long-term experiment in which three soviet test-spacemen spent a full year in hermetic cabin imitating a lunar station cabin (1067-1968). In this experiment the life support system included a section with about one ton of the ion exchange substrate, which was used to grow ten vegetations of different green cultures used in the food of the test persons. Due to failure of a number of Soviet space experiments, decay of the Soviet Union and the following economic crisis the research in this field carried out in Belarus were re-directed to the needs of usual agriculture, such as adaptation of cell cultures, growing seedlings, rootage of cuttings etc. At present ion exchange substrate Biona are produced in limited amounts at the experimental production plant of the Institute of Physical Organic Chemistry and used in a number of agricultural enterprises. New advanced substrates and technologies for their production have been developed during that time. In the presentation scientific principles of preparation and functioning of ion exchange substrates as well as results of their application for cultivation different plants are described. The ion exchange substrate is a mixture of cation and anion exchangers saturated in a certain proportions with all ions of macro and micro elements. These chemically bound ions are not released to water and become available for plants in exchange to their root metabolites. The substrates contain about 5% mass of nutrient elements far exceeding any other nutrient media for plants. They allow generating 3-5 kg of green biomass per kilogram of substrate without adding any fertilizers; they are sterile by the way of production and can be sterilized by usual methods; allow regeneration

  12. Ion-exchange equilibrium of N-acetyl-D-neuraminic acid on a strong anionic exchanger.

    PubMed

    Wu, Jinglan; Ke, Xu; Zhang, Xudong; Zhuang, Wei; Zhou, Jingwei; Ying, Hanjie

    2015-09-15

    N-acetyl-D-neuraminic acid (Neu5Ac) is a high value-added product widely applied in the food industry. A suitable equilibrium model is required for purification of Neu5Ac based on ion-exchange chromatography. Hence, the equilibrium uptake of Neu5Ac on a strong anion exchanger, AD-1 was investigated experimentally and theoretically. The uptake of Neu5Ac by the hydroxyl form of the resin occurred primarily by a stoichiometric exchange of Neu5Ac(-) and OH(-). The experimental data showed that the selectivity coefficient for the exchange of Neu5Ac(-) with OH(-) was a non-constant quantity. Subsequently, the Saunders' model, which took into account the dissociation reactions of Neu5Ac and the condition of electroneutrality, was used to correlate the Neu5Ac sorption isotherms at various solution pHs and Neu5Ac concentrations. The model provided an excellent fit to the binary exchange data for Cl(-)/OH(-) and Neu5Ac(-)/OH(-), and an approximate prediction of equilibrium in the ternary system Cl(-)/Neu5Ac(-)/OH(-). This basic information combined with the general mass transfer model could lay the foundation for the prediction of dynamic behavior of fixed bed separation process afterwards.

  13. Nitrate and Perchlorate removal from groundwater by ion exchange

    SciTech Connect

    Burge, S; Halden, R

    1999-09-15

    This study was conducted to evaluate the performance of a small scale ion exchange unit (Krudico, Inc of Auborn, IA) for removal of nitrate and perchlorate from groundwater at Lawrence Livermore National Laboratory's Site 300. The unit was able to treat 3,600 gallons of Site 300 groundwater, at an average influent concentration of 100 mg/L NO{sub 3}{sup -} before breakthrough occurred. The unit contained 2.5 ft{sup 3} of Sybron SR-7 resin. Seventy gallons of regeneration waste were generated (water treated to waste ratio of 51:1). The effluent concentration was about 20 mg/L NO{sub 3}{sup -}, which is equivalent to a treatment efficiency of at least 80%. There are several options for implementing this technology at Site 300. A target well, in the 817 area, has been selected. It has a 3 to 4 gpm flow rate, and concentrations of 90 mg/L NO{sub 3}{sup -} and 40 {micro}g/L perchlorate. The different treatment options include ion exchange treatment of nitrate only, nitrate and perchlorate, or perchlorate only. Option 1: For the treatment of nitrate only, this unit will be able to treat 3,700 gallons of water before regeneration is required. If both columns of the ion exchange unit are used, 7,400 gallons could be treated before the columns will need to be regenerated (producing 140 gallons of waste, per cycle or every 1.5 days). The effluent nitrate concentration is expected to be about 17 mg/L. Annual operation and maintenance costs are estimated to be $0.14 per gallon of water treated. Option 2: If only perchlorate is to be removed with ion exchange at the 817 area, a smaller unit should be considered. A 55 gallon canister filled with ion exchange resin should be able to reduce perchlorate concentrations in the groundwater from 40 {micro}g/L to non-detect levels for three years before the resin would need to be replaced. The contaminant-laden resin would be disposed of as hazardous waste. It is not practical to regenerate the resin because of the extreme difficulty of

  14. Design of high efficiency fibers for ion exchange and heavy metal removal

    NASA Astrophysics Data System (ADS)

    Dominguez, Lourdes

    Ion exchange materials coated on glass fiber substrates have a number of advantages over the conventional ion exchange beads. These include simplification of the overall synthesis including faster more efficient functionalization and elimination of toxic solvents. Other benefits include the ability to be fabricated in the form of felts, papers, or fabrics, improving media contact efficiency and enhancing both the rates of reaction and regeneration. In addition, physical and mechanical requirements of strength and dimensional stability are achieved by use of glass fiber substrates. Investigations were focused on design of: (1) polymeric cationic exchange fibers and their application for lead and mercury removal, (2) polymeric anionic exchange fibers and their application for arsenate removal, (3) enhancement of anionic fiber selectivity for monovalent ions over divalent ions through bulkier triaklylamine functional groups, and (4) polymeric mercaptyl fibers for the application of arsenite removal. The design and characterization of a cationic exchange fiber is described. Dynamic mode (breakthrough) experiments for calcium, lead, and mercury ion solutions are also presented. The second system consists of the preparation and characterization of anionic exchange fibers with equilibrium adsorption isotherms and dynamic mode kinetic experiments for arsenate removal. Modification of the resin with bulkier functional groups (trimethylamine, triethylamine, tripropylamine, tributylanmine), thereby effecting a change in the selectivity from divalent species to monovalent species, is considered in the separation of nitrates from sulfates. The ability of a thiol group to bind to the highly toxic arsenite ion (as is done in proteins and enzymes) provided the model used to chemically modify and characterize a polyvinyl alcohol mercaptyl fibrous system, coated on a fiberglass substrate, for the purpose of arsenite (As3+) removal from water. Physical/chemical aspects of naturally

  15. Vitrification of cesium-contaminated organic ion exchange resin

    SciTech Connect

    Sargent, T.N. Jr.

    1994-08-01

    Vitrification has been declared by the Environmental Protection Agency (USEPA) as the Best Demonstrated Available Technology (BDAT) for the permanent disposal of high-level radioactive waste. Savannah River Site currently uses a sodium tetraphenylborate (NaTPB) precipitation process to remove Cs-137 from a wastewater solution created from the processing of nuclear fuel. This process has several disadvantages such as the formation of a benzene waste stream. It has been proposed to replace the precipitation process with an ion exchange process using a new resorcinol-formaldehyde resin developed by Savannah River Technical Center (SRTC). Preliminary tests, however, showed that problems such as crust formation and a reduced final glass wasteform exist when the resin is placed in the melter environment. The newly developed stirred melter could be capable of overcoming these problems. This research explored the operational feasibility of using the stirred tank melter to vitrify an organic ion exchange resin. Preliminary tests included crucible studies to determine the reducing potential of the resin and the extent of oxygen consuming reactions and oxygen transfer tests to approximate the extent of oxygen transfer into the molten glass using an impeller and a combination of the impeller and an external oxygen transfer system. These preliminary studies were used as a basis for the final test which was using the stirred tank melter to vitrify nonradioactive cesium loaded organic ion exchange resin. Results from this test included a cesium mass balance, a characterization of the semi-volatile organic compounds present in the off gas as products of incomplete combustion (PIC), a qualitative analysis of other volatile metals, and observations relating to the effect the resin had on the final redox state of the glass.

  16. HEAT TRANSFER ANALYSIS FOR ION-EXCHANGE COLUMN SYSTEM

    SciTech Connect

    Lee, S.; King, W.

    2011-05-23

    Models have been developed to simulate the thermal characteristics of Crystalline Silicotitanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. The SCIX design includes CST columns inserted and supported in the tank top risers for cesium removal. Temperature distributions and maximum temperatures across the column were calculated with a focus on process upset conditions. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. The current full-scale design for the CST column includes one central cooling pipe and four outer cooling tubes. Most calculations assumed that the fluid within the column was stagnant (i.e. no buoyancy-induced flow) for a conservative estimate. A primary objective of these calculations was to estimate temperature distributions across packed CST beds immersed in waste supernate or filled with dry air under various accident scenarios. Accident scenarios evaluated included loss of salt solution flow through the bed, inadvertent column drainage, and loss of active cooling in the column. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature.

  17. Improved brine recycling during nitrate removal using ion exchange.

    PubMed

    Bae, Byung-Uk; Jung, Yoo-Hoon; Han, Woon-Woo; Shin, Hang-Sik

    2002-07-01

    Ion exchange technology is currently the best for removing nitrate from drinking water. However, problems related to the disposal of spent brine from regeneration of exhausted resins must be overcome so that ion exchange can be applied more widely and economically, especially in small communities. For this purpose, a novel spent brine recycling system using combined biological denitrification and sulfate reduction processes was developed for more efficient reuse of brine. A granular activated carbon (GAC) adsorption column was introduced as an additional step to prevent contamination of resins by bio-polymers and dissolved organics present in the bio-reactor effluent. Two upflow sludge blanket reactors (USBRs) were operated in series for 166 days to provide denitrification and sulfate reduction. The denitrification reactor provided a nitrate removal efficiency of 96% at a nitrate-N loading rate of 5.4 g NO3(-)-N/l d. The sulfate reduction efficiency of the sulfate reduction reactor remained approximately 62% at a sulfate loading rate of 1.8 g SO4(2-)/l d. Five ion exchange columns containing A520E resins were repeatedly operated in up to 25 cycles of service and regeneration using five kinds of brine: one virgin 3% NaCl and four differently recycled spent brines. Throughput decreased remarkably when the biologically recycled brine was not treated with the GAC column, probably due to the presence of bio-polymers and dissolved organic compounds. The sulfate reduction reactor placed after the denitrification step increased the bicarbonate concentration, which could be used as a co-regenerant with chloride. The inclusion of the sulfate reduction reactor into the conventional brine recycling system allowed more efficient reuse of brine, resulting in both reduced salt consumption and brine discharge.

  18. Ion-exchange polymer artificial muscle and actuating system

    NASA Astrophysics Data System (ADS)

    Vial, Dominique; Tondu, Bertrand; Lopez, Pierre; Aurelle, Yves; Ricard, Alain

    1996-04-01

    Chemomechanical transformations are used to produce a mechanical force from a reversible chemical reaction in order to generate artificial muscular contraction, on the model of the biological muscle. The design and experimentation of an original artificial muscle using an ion-exchange polymer which reacts inside a soft envelope, derived from research on pneumatic artificial McKibben muscle, is presented. Then a chemomechanical actuator constituted of two artificial muscles has been conceived: first results are shown on position control in open-loop mode.

  19. Protonation and ion exchange equilibria of weak base anion-exchange resins.

    PubMed

    Miyazaki, Yoshinobu; Nakai, Mariko

    2011-09-30

    Protonation and ion exchange equilibria of weak base anion-exchange resins, in which tertiary amine moieties were introduced as a functional group, were investigated by applying NMR spectroscopy to species adsorbed into the resins. (31)P NMR signals of the phosphinate ion in the resin phases shifted to a lower field due to the influence of protonation of the tertiary amine groups of the resins in the pH range of 4-10. Protonation constants of the tertiary amine groups in styrene-divinylbenzene (DVB)-based resins were estimated to be K(H)=10(6.4) for Amberlite IRA96 and 10(6.5) for DIAION WA30 by the (31)P NMR method using the phosphinate ion as a probe species. In addition to the low field shift caused by the protonation of the tertiary amine moieties, another low field shift was observed for the phosphinate ion in acrylic acid-DVB-based resins at a rather high pH. This shift should be due to an unexpected deprotonation in the acrylic resin: a tautomerism accompanying the proton release from the amide form to the imide one in the functional group, thus, the resin could exhibit a cation exchange property at the high pH. Protonation constants of the tertiary amine moieties in the acrylic resins were estimated to be 10(8.8) for DIAION WA10, 10(9.0) for Amberlite IRA67 and 10(9.3) for Bio-Rad AG 4-X4 on the basis of the Henderson-Hasselbalch equation using the resin phase pH estimated by the (133)Cs and (1)H NMR signal intensities.

  20. Extraction and ion-exchange behavior of mendelevium (II)

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.; Buklanov, G.V.; Pkhar, Z.Z.; Lebedev, I.A.; Katargin, N.V.; Myasoedov, B.F.

    1988-09-01

    Medelevium-256 was obtained via multinucleon transfer reactions upon irradiation of /sup 249/Bk by /sup 22/Ne ions from the extracted beam of a U-300 cyclotron. In order to extract mendelevium and separate it from the products of nuclear reactions, an express ion-exchange method using one column with cationite and zinc amalgam in a solution of 1 mole/liter HCl as the eluent was developed. It was shown that under these conditions mendelevium is reduced and washes out as an alkaline earth element. On the basis of the location of the peaks of the elution curves of Sr/sup 2+/, Eu/sup 2+/, and Md/sup 2+/, the value of the ionic radium of Md/sup 2+/ is estimated and is used to estimate the heat of hydration.

  1. ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS

    DOEpatents

    Kennedy, J.

    1959-04-14

    An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.

  2. Regeneration of spent powdered activated carbon saturated with inorganic ions by cavitation united with ion exchange method.

    PubMed

    Li, Gang; Gao, Hong; Li, Yansheng; Yang, Huixin

    2011-06-01

    Using ion exchange resin as transfer media, regenerate powdered activated carbon (PAC) adsorbed inorganic ions by cavitation to enhance the transfer; we studied how the regeneration time and the mass ratio of resin and PAC influence the regeneration rate respectively through re-adsorption. The result showed that the effective regeneration of PAC saturated with inorganic ions was above 90% using ion exchange resin as media and transfer carrier, the quantity of PAC did not reduced but activated in the process. PMID:25084579

  3. Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes.

    PubMed

    Radchenko, V; Engle, J W; Wilson, J J; Maassen, J R; Nortier, F M; Taylor, W A; Birnbaum, E R; Hudston, L A; John, K D; Fassbender, M E

    2015-02-01

    Actinium-225 (t1/2=9.92d) is an α-emitting radionuclide with nuclear properties well-suited for use in targeted alpha therapy (TAT), a powerful treatment method for malignant tumors. Actinium-225 can also be utilized as a generator for (213)Bi (t1/2 45.6 min), which is another valuable candidate for TAT. Actinium-225 can be produced via proton irradiation of thorium metal; however, long-lived (227)Ac (t1/2=21.8a, 99% β(-), 1% α) is co-produced during this process and will impact the quality of the final product. Thus, accurate assays are needed to determine the (225)Ac/(227)Ac ratio, which is dependent on beam energy, irradiation time and target design. Accurate actinium assays, in turn, require efficient separation of actinium isotopes from both the Th matrix and highly radioactive activation by-products, especially radiolanthanides formed from proton-induced fission. In this study, we introduce a novel, selective chromatographic technique for the recovery and purification of actinium isotopes from irradiated Th matrices. A two-step sequence of cation exchange and extraction chromatography was implemented. Radiolanthanides were quantitatively removed from Ac, and no non-Ac radionuclidic impurities were detected in the final Ac fraction. An (225)Ac spike added prior to separation was recovered at ≥ 98%, and Ac decontamination from Th was found to be ≥ 10(6). The purified actinium fraction allowed for highly accurate (227)Ac determination at analytical scales, i.e., at (227)Ac activities of 1-100 kBq (27 nCi to 2.7 μCi).

  4. Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes.

    PubMed

    Radchenko, V; Engle, J W; Wilson, J J; Maassen, J R; Nortier, F M; Taylor, W A; Birnbaum, E R; Hudston, L A; John, K D; Fassbender, M E

    2015-02-01

    Actinium-225 (t1/2=9.92d) is an α-emitting radionuclide with nuclear properties well-suited for use in targeted alpha therapy (TAT), a powerful treatment method for malignant tumors. Actinium-225 can also be utilized as a generator for (213)Bi (t1/2 45.6 min), which is another valuable candidate for TAT. Actinium-225 can be produced via proton irradiation of thorium metal; however, long-lived (227)Ac (t1/2=21.8a, 99% β(-), 1% α) is co-produced during this process and will impact the quality of the final product. Thus, accurate assays are needed to determine the (225)Ac/(227)Ac ratio, which is dependent on beam energy, irradiation time and target design. Accurate actinium assays, in turn, require efficient separation of actinium isotopes from both the Th matrix and highly radioactive activation by-products, especially radiolanthanides formed from proton-induced fission. In this study, we introduce a novel, selective chromatographic technique for the recovery and purification of actinium isotopes from irradiated Th matrices. A two-step sequence of cation exchange and extraction chromatography was implemented. Radiolanthanides were quantitatively removed from Ac, and no non-Ac radionuclidic impurities were detected in the final Ac fraction. An (225)Ac spike added prior to separation was recovered at ≥ 98%, and Ac decontamination from Th was found to be ≥ 10(6). The purified actinium fraction allowed for highly accurate (227)Ac determination at analytical scales, i.e., at (227)Ac activities of 1-100 kBq (27 nCi to 2.7 μCi). PMID:25596759

  5. Anion selective membrane. [ion exchange resins and ion exchange membrane electrolytes for electrolytic cells

    NASA Technical Reports Server (NTRS)

    Alexander, S. S.; Geoffroy, R. R.; Hodgdon, R. B.

    1975-01-01

    Experimental anion permselective membranes were prepared and tested for their suitability as cell separators in a chemical redox power storage system being developed at NASA-Lewis Research Center. The goals of long-term (1000 hr) oxidative and thermal stability at 80 C in FeCl3 and CrCl3 electrolytes were met by most of the weak base and strong base amino exchange groups considered in the program. Good stability is exhibited by several of the membrane substrate resins. These are 'styrene' divinylbenzene copolymer and PVC film. At least four membrane systems produce strong flexible films with electrochemical properties (resistivity, cation transfer) superior to those of the 103QZL, the most promising commercial membrane. The physical and chemical properties of the resins are listed.

  6. Use of Novel Highly Selective Ion Exchange Media for Minimizing the Waste Arising from Different NPP and Other Liquids

    SciTech Connect

    Tusa, Esko; Harjula, Risto; Lehto, Jukka

    2003-02-25

    Highly selective inorganic ion exchangers give new possibilities to implement and operate new innovative treatment systems for radioactive liquids. Because of high selectivity these ion exchangers can be used even in liquids of high salt concentrations. Only selected target nuclides will be separated and inactive salts are left in the liquid, which can be released or recategorized. Thus, it is possible to reduce the volume of radioactive waste dramatically. On the other hand, only a small volume of highly selective material is required in applications, which makes it possible to design totally new types of compact treatment systems. The major benefit of selective ion exchange media comes from the very large volume reduction of radioactive waste in final disposal. It is also possible to save in investment costs, because small ion exchanger volumes can be used and handled in a very small facility. This paper describes different applications of these highly selective ion exchangers, both commercial fullscale applications and laboratory tests, to give the idea of their efficiency for different liquids.

  7. High performance disulfonated poly(arylene sulfone) co- and terpolymers for proton exchange membranes for fuel cell and transducer applications: Synthesis, characterization and fabrication of ion conducting membranes

    NASA Astrophysics Data System (ADS)

    Wiles, Kenton Broyhill

    2005-07-01

    The results described in this dissertation have demonstrated several alternative proton exchange membranes (PEM) for hydrogen-air and direct methanol fuel cells (DMFC) that perform as well or better than the state of the art Nafion perfluorosulfonic acid membrane. Direct aromatic nucleophilic substitution polycondensations of disodium 3,3'-disulfonate-4,4 '-difluorodiphenylsulfone (SDFDPS), 4,4'-difluorodiphenylsulfone (DFDPS) (or their chlorinated analogs, SDCDPS, DCDPS) and 4,4' -thiobisbenzenethiol (TBBT) in the presence of potassium carbonate were investigated. Electrophilic aromatic substitution was employed to synthesize the SDFDPS or SDCDPS comonomers in high yields and purity. High molecular weight disulfonated poly(arylene thioether sulfone) (PATS) copolymers were easily obtained using the SDFDPS monomers, but in general, slower rates and a lower molecular weight copolymer was obtained using the analogous chlorinated monomers. Tough and ductile membranes were solution cast from N,N-dimethylacetamide for both series of copolymers. The degrees of disulfonation (20--50%, PATS 20--50) were controlled by varying the ratio of disulfonated to unsulfonated comonomers. Composite membranes were prepared by homogeneous solution blending the copolymers with phosphotungstic acid (PTA) in dimethylacetamide (DMAc). The composite PATS membranes exhibited moderate PTA molecule water extraction after acidification treatments performed at either room or boiling temperatures. The membranes containing HPA showed improved conductivity at high temperatures (120°C) and low relative humidities when compared to the pure copolymers. Molecular weight of the copolymers plays a critical role in the overall copolymer physical behavior. It is well known that molecular weight has an enormous impact on practically all of the physical properties of polymeric systems. This dissertation discusses the influence of molecular weight on the characteristics of a specific family of PEM PATS

  8. Evaluation of Ion Exchange Materials in K Basin Floor Sludge and Potential Solvents for PCB Extraction from Ion Exchange Materials

    SciTech Connect

    Schmidt, A.J.; Klinger, G.S.; Bredt, P.R.

    1999-04-10

    Approximately 73 m{sup 3} of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. These small amounts are significant from a regulatory standpoint. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). Chemical pretreatment is required to address criticality issues and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Eleven technologies have been evaluated (Papp 1997) as potential pretreatment methods. Based on the evaluations and engineering studies and limited testing, Fluor Daniel Hanford recommended solvent washing of the K Basin sludge, followed by nitric acid dissolution and, potentially, peroxide addition (FDH 1997). The solvent washing (extraction) and peroxide addition would be used to facilitate PCB removal and destruction. Following solvent extraction, the PCBs could be distilled and concentrated for disposal as a low-level waste. The purpose of the work reported here was to continue investigating solvent extraction, first by better identifying the ion exchange materials in the actual sludge samples and then evaluating various solvents for removing the PCBs or possibly dissolving the resins. This report documents some of the process knowledge on ion exchange materials used and spilled in the K Basins and describes the materials identified from wet sieving KE Basin floor and canister sludge and the results of other analyses. Several photographs are included to compare materials and illustrate material behavior. A summary of previous tests on

  9. Formation of metallic nanostructures on the surface of ion- exchange glass by focused electron beam

    NASA Astrophysics Data System (ADS)

    Komissarenko, F. E.; Zhukov, M. V.; Mukhin, I. S.; Golubok, A. O.; Sidorov, A. I.

    2015-11-01

    This paper presents a new method for formation of metallic nanostructures on the surface of ion-exchange glass. The method is based on the interaction of a focused electron beam with ions in ion-exchange glass. In experiments nanostructures with different shapes were obtained, depending on the electrons irradiation conditions.

  10. Capillary ion-exchange chromatography with nanogram sensitivity for the analysis of monoclonal antibodies.

    PubMed

    Rea, Jennifer C; Freistadt, Benny S; McDonald, Daniel; Farnan, Dell; Wang, Yajun Jennifer

    2015-12-11

    Ion-exchange chromatography (IEC) is widely used for profiling the charge heterogeneity of proteins, including monoclonal antibodies (mAbs). Despite good resolving power and robustness, ionic strength-based ion-exchange separations are generally product specific and can be time consuming to develop. In addition, conventional analytical scale ion-exchange separations require tens of micrograms of mAbs for each injection, amounts that are often unavailable in sample-limited applications. We report the development of a capillary IEC (c-IEC) methodology for the analysis of nanogram amounts of mAb charge variants. Several key modifications were made to a commercially available liquid chromatography system to perform c-IEC for charge variant analysis of mAbs with nanogram sensitivity. We demonstrate the method for multiple monoclonal antibodies, including antibody fragments, on different columns from different manufacturers. Relative standard deviations of <10% were achieved for relative peak areas of main peak, acidic and basic regions, which are common regions of interest for quantifying monoclonal antibody charge variants using IEC. The results herein demonstrate the excellent sensitivity of this c-IEC characterization method, which can be used for analyzing charge variants in sample-limited applications, such as early-stage candidate screening and in vivo studies.

  11. Impact of natural organic matter properties on the kinetics of suspended ion exchange process.

    PubMed

    Bazri, Mohammad Mahdi; Mohseni, Madjid

    2016-03-15

    Removal kinetics of four standard organic matter isolates under the application of strongly basic ion exchange resins (IEX) in suspended mode was studied under commercial application conditions. Suwannee River natural organic matter (SRNOM), SR fulvic acid (SRFA), and Pony Lake fulvic acid (PLFA) were greatly removed (>90%) and highly preferred by IEX resins (α > 5, over Cl(-), and HCO3(-)) while SR humic acid (SRHA) was the least preferred organic structure among the four isolates studied (α ≈ 1). Moreover, the efficacy of removal for fulvic acids (i.e., SRFA, PLFA) was consistent over consecutive reuse of IEX resins (i.e., loading cycles) whereas it decreased for SRNOM and SRHA over the course of operation. The stoichiometric correlation between the chloride released from the resins as a result of organic molecules uptake indicated that ion exchange was the dominant mechanism. Results obtained indicated that molecular weight and charge density of isolates played a major role in the performance of ion exchange process for organic matter removal. Furthermore, various empirical and physical models were evaluated using the experimental data and pore diffusion was found to be the rate-liming step during the uptake of organic matters; hence, it was used as the appropriate model to predict the kinetics of removal. Consequently, free liquid diffusivities and effective pore diffusion coefficients of organic molecules were estimated and findings were in agreement with the literature data that were obtained from spectrophotometric methods.

  12. Data quality objectives for Ion Exchange Module (IXM) disposition

    SciTech Connect

    Choi, I.

    1995-01-31

    This Data Quality Objective (DQO) document presents the data needs and accuracy requirements for sampling ion exchange modules at the K Basins, 100 K Area, to determine if there is a hydrogen gas buildup within the modules. This document was produced by PNL, with the assistance of Neptune and Associates, and was partly funded (for facilitator) by DOE-HQ as a demonstration DQO for EM activities. PNL involved a number of PNL, WHC and support contract staff (including external technical consultants) in meetings to define the data needed, along with the necessary accuracy, to resolve issues associated with hydrogen accumulation in Ion Exchange Modules (IXMS) that were generated prior to July 1994 and only have one nuc-fil vent. IXMs generated after July 1994 have multiple nuc-fil vents and do not require sampling. PNL transmitted this DQO to WHC on January 31, 1995. This Supporting Document is to assure that the document is captured into the document retrieval system. WHC review focused on the acceptability of the technical conclusions such that the data collected will meet minimum operational, safety and environmental needs.

  13. Low-level liquid waste decontamination by ion exchange

    SciTech Connect

    Campbell, D.O.; Lee, D.D.; Dillow, T.A.

    1991-12-01

    Improved processes are being developed to treat contaminated liquid wastes that have been and continue to be generated at Oak Ridge National Laboratory. Both inorganic and organic ion-exchange methods have given promising results. Nickel and cobalt hexacyanoferrate(2) compounds are extremely selective for cesium removal, with distribution coefficients in excess of 10{sup 6} and remarkable insensitivity to competition from sodium and potassium. They tend to lose effectiveness at pH > {approximately}11, but some formulations are useful for limited periods of time up to pH {approximately}13. Sodium titanate is selective for strontium removal at high pH. The separations are so efficient that simple batch processes can yield large decontamination factors while generating small volumes of solid waste. A resorcinol-based resin developed at the Savannah River Site gave superior cesium removal, compared with other organic ion exchangers; the distribution coefficient was limited primarily by competition from potassium and was nearly independent of sodium. The optimum pH was {approximately}12.5. It was much less effective for strontium removal, which was limited by competition from sodium. 8 refs., 6 figs., 9 tabs.

  14. Analysis of radionuclide release from spent ion-exchange resins

    SciTech Connect

    Su, S.I.; Yim, M.S.

    2000-04-01

    Ion-exchange resins represent one of the most important waste streams in low-level waste management due to the unstabilized nature of the waste form and the large amount of radioactivity contained. To describe the release of radionuclides from ion-exchange resins stored in a disposal facility, a mechanistic release model was developed. The model is based on description of radionuclide migration both in the resin bead phase and the bulk pore water phase within waste containers. This modeling setup provides the capability to describe all the major physical processes taking place for the release of radionuclides. Because of the difficulty in obtaining analytical solutions, the numerical solution approach was employed in this model. The new resin release model was used to examine key processes and parameters in describing radionuclide release. These were found to be diffusion within the bulk pore water phase, flow rate of infiltrating leachant water, concentration of counterions of the leachant water, and sorption during the transport in the bulk pore water phase. Some parameters were found to have little impact in describing the release. These include the interdiffusion coefficient within resin beads and the density and radius of resin beads. Existing simplified modeling approaches were also compared with the new resin release model, and validities of using these simplified models are discussed.

  15. Small Column Ion Exchange Monitor System Final Report

    SciTech Connect

    CASELLA, VITO

    2004-09-30

    A Small Column Ion Exchange (SCIX) system has been designed by the Oak Ridge and Savannah River National Laboratories (ORNL and SRNL) as a potential way to reduce Cs-137 concentrations in high-level radioactive waste at the Savannah River Site. SRNL was asked to develop gamma-ray monitors at six locations within the SCIX system. Gamma-ray monitors are required to verify the proper operation of the ion exchange system, detect cesium breakthrough, and confirm presence of cesium before and after used resin is transferred to a grinder module. The only observable gamma ray in the decay of Cs-137 is from its short-lived Ba-137m daughter. Chemical processes, such as the SCIX, may disrupt the secular equilibrium between this parent-daughter pair; meaning that measurement of Ba-137m will not necessarily yield information about Cs-137 content. While this is a complicating factor that can not be ignored, it is controllable by either: allowing sufficient time for equilibrium to be reestablished (about 20 minutes), or by making multiple measurements with sufficient statistical precision to determine the extent of disequilibrium. The present work provides a means of measuring the Cs-137 and Ba-137m by taking multiple measurements in a process isolation loop that contains the process solution of interest.

  16. Inline Monitors for the SRS Small Column Ion Exchange Process

    SciTech Connect

    VITO, CASELLA

    2005-05-16

    A Small Column Ion Exchange (SCIX) system, designed by the Oak Ridge and Savannah River National Laboratories (ORNL and SRNL), is a potential way to reduce Cs-137 concentrations in high-level radioactive waste at the Savannah River Site (SRS). SRNL has developed gamma-ray monitors for six locations within the SCIX system to verify the proper operation of the ion exchange system, detect cesium breakthrough, and confirm the presence of cesium before and after used resin is transferred to a grinder module. Two sodium iodide breakthrough monitors, one Geiger-Mueller breakthrough monitor, and three Geiger-Mueller transfer monitors were used. The present work provides a means of measuring the Cs-137 and Ba-137m breakthrough by taking multiple measurements in a process flow diversion and isolation loop. A lead shield was used for the NaI detectors, and the aperture of the collimator tube in this shield was designed using Monte Carlo analyses to provide the desired count rate for the gamma rays of interest. A computer program was written to collect data from the process monitors, provide alarm notification, and plot the data for ease of operation.

  17. Radiation stability of sodium titanate ion exchange materials

    SciTech Connect

    Kenna, B.T.

    1980-02-01

    Sodium titanate and sodium titanate loaded macroreticular resin are being considered as ion exchangers to remove /sup 90/Sr and actinides from the large volume of defense waste stored at Hanford Site in Washington. Preliminary studies to determine the radiation effect on Sr/sup +2/ and I/sup -/ capacity of these ion-exchange materials were conducted. Samples of sodium titanate powder, sodium titanate loaded macroreticular resin, as well as the nitrate form of macroreticular anion resin were irradiated with up to 2 x 10/sup 9/ Rads of /sup 60/Co gamma rays. Sodium titanate cation capacity decreased about 50% while the sodium titanate loaded macroeticular resin displayed a dramatic decrease in cation capacity when irradiated with 10/sup 8/-10/sup 9/ Rad. The latter decrease is tentatively ascribed to radiation damage to the organic portion which subsequently inhibits interaction with the contained sodium titanate. The anion capacity of both macroreticular resin and sodium titanate loaded macroreticular resin exhibited significant decreases with increasing radiation exposure. These results suggest that consideration should be given to the potential effects of radiation degradation if column regeneration is to be used. 5 figures, 2 tables.

  18. Expanded-bed adsorption utilizing ion-exchange resin to purify extracellular beta-galactosidase.

    PubMed

    Pereira, J A; Vieira E Rosa, P De T; Pastore, G M; Santana, C C

    1998-01-01

    The application of expanded-bed ion-exchange resins allows the elimination of intermediary particulate separation steps like filtration or centrifugation prior to adsorption steps in enzyme-purification processes from crude fermentation broths. This work is concerned with the experimental evaluation data of a process related to the adsorption of an extracellular p-galactosidase from the fungi Scopulariopsis. The protein recovery in the ion-exchange resin Accell Plus QMA was accomplished using a continuous-monitoring method. The direct adsorption step was followed by a elution step with concentrated NaCl solutions aiming to improve the enzyme-specific activity. Experimental data for fixed and expanded bed were compared.

  19. U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads

    USGS Publications Warehouse

    Bischoff, J.L.; Wooden, J.; Murphy, F.; Williams, Ross W.

    2005-01-01

    We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ???60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few ??m deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems. Copyright ?? 2005 Elsevier Ltd.

  20. UREA/ammonium ion removal system for the orbiting frog otolith experiment. [ion exchange resins for water treatment during space missions

    NASA Technical Reports Server (NTRS)

    Schulz, J. R.; Anselmi, R. T.

    1976-01-01

    The feasibility of using free urease enzyme and ANGC-101 ion exchange resin to remove urea and ammonium ion for space system waste water applications was studied. Specifically examined is the prevention of urea and ammonia toxicity in a 30-day Orbiting Frog Otolith (OFO) flight experiment. It is shown that free urease enzyme used in conjunction with ANGC-101 ion-exchange resin and pH control can control urea and amonium ion concentration in unbuffered recirculating water. In addition, the resin does not adversely effect the bullfrogs by lowering the concentration of cations below critical minimum levels. Further investigations on bioburden control, frog waste excretion on an OFO diet, a trade-off analysis of methods of automating the urea/ammonium ion removal system and fabrication and test of a semiautomated breadboard were recommended as continuing efforts. Photographs of test equipment and test animals are shown.

  1. Ultrasmall fluorescent ion-exchanging nanospheres containing selective ionophores.

    PubMed

    Xie, Xiaojiang; Mistlberger, Günter; Bakker, Eric

    2013-10-15

    We present a convenient precipitation procedure to fabricate ultrasmall fluorescent ion-selective nanosensors that operate on the basis of bulk ion-exchange sensing principles. The nanosphere matrix is composed of bis(2-ethylhexyl) sebacate (DOS) and a triblock copolymer Pluronic(®) F-127, which also functions as a surfactant to stabilize the nanoparticle. The particles can be prepared easily in large quantity without resorting to further complicated purification. Dynamic light scattering shows that these particles have a monodisperse size distribution with an average diameter of ∼40 nm, suggesting that the nanoparticles are among the smallest ionophore-based ion-selective nanosensors reported to date. A newly reported oxazinoindoline (Ox) as well as a Nile blue derivative (chromoionophore I) was used as a chromoionophore. Na(+)- and H(+)-selective nanospheres were characterized by absorbance and fluorescence spectroscopy. Owing to the very small size of the nanospheres, the suspension containing the particles is transparent. In the additional presence of the pH indicator HPTS, spectroscopic interrogation of pH and Na(+) in the same sample was demonstrated. As an example, the nanospheres were used to measure the Na(+) level in commercial mineral waters, and the results showed good agreement with atomic absorption spectroscopy (AAS).

  2. Influence of charge exchange on the collection of the laser produced ions

    NASA Astrophysics Data System (ADS)

    Hasegawa, Shuichi; Takei, Manabu; Suzuki, Atsuyuki; Kurosawa, Hitoshi

    2001-12-01

    We evaluated influences of charge exchange on ion collection of laser isotope separation of uranium. We made a two-dimensional code based on fluid dynamics taking the charge exchange term into consideration. Parametric study was performed in terms of electric amplitude, ion density, and electron temperature. In addition to parallel electrode arrangement, calculations were performed for Π- and M-type arrangements. The ratio of charge exchanged ions is found to largely depend on the collection time.

  3. Combined Water and the Ion Exchange Characteristics of Manganese Dioxide Produced by Ozonation.

    PubMed

    Contreras; Lapidus

    1999-05-01

    The change in ion exchange properties of manganese dioxide produced by ozonation (OMD) was studied with respect to its preheated temperature. This was performed by heating samples to different temperatures and later, saturating a part of them in aqueous cadmium sulfate solutions. Analyses were practiced on both the cadmium ion exchanged and un-ion exchanged samples. Results showed that the ion exchange reaction followed a stoichiometric relation between the hydrogen and cadmium ions, promoted by the combined water. The molar ratio of combined water to exchanged cadmium was found to be five. X rays and photographs taken in the scanning electron microscope showed that the structure and morphology of the OMD were not modified by the insertion of the cadmium during ion exchange. From the X rays, the structure of the OMD was determined to be of the gamma type. When the samples were heated to 400 and 500 degrees C, the crystal structure changed to beta and finally to Mn2O3, respectively. However, the changes in structure alone apparently did not affect the ion exchange. The surface area, measured by the BET technique, diminished linearly with the preheat temperature. The ion exchanged cadmium and the surface area showed a nonlinear relationship. However, the surface area and the quantity of combined water in the OMD were both linearly affected by preheating and are directly related to the ion exchange capacity. Copyright 1999 Academic Press.

  4. Planar optical waveguides fabricated by Ag+/K+-Na+ ion exchange in soda lime glass

    NASA Astrophysics Data System (ADS)

    Marzuki, Ahmad; Gregorius, Seran Daton; Widhianingsih, Ika; Lestari, Siti; Suryawan, Joko

    2015-12-01

    This paper reports the optical properties of the optical planar waveguides in a soda lime glass fabricated by ion exchange. Planar waveguide fabrication was carried out by immersing the soda lime glass in molten 100 % AgNO3 bath for different duration (ranging from 15 minutes to 735 minutes) and at temperature of 280°C. The results show that the surface refractive index values of the ion exchanged glasses are independent of both the ion exchange duration and temperature. The number of modes and the effective diffusion depth, however, increase with increasing the duration of ion exchange process.

  5. Increasing parvovirus filter throughput of monoclonal antibodies using ion exchange membrane adsorptive pre-filtration.

    PubMed

    Brown, Arick; Bechtel, Charity; Bill, Jerome; Liu, Hui; Liu, Jun; McDonald, Dan; Pai, Satyan; Radhamohan, Asha; Renslow, Ryan; Thayer, Brooke; Yohe, Stefan; Dowd, Chris

    2010-07-01

    Pre-filtration using ion exchange membrane adsorbers can improve parvovirus filter throughput of monoclonal antibodies (mAbs). The membranes work by binding trace foulants, and although some antibody product also binds, yields > or =99% are easily achieved by overloading. Results show that foulant adsorption is dependent on pH and conductivity, but independent of scale and adsorber brand. The ability to use ion exchange membranes as pre-filters is significant because it provides a clean, well defined, chemically stable option for enhancing throughput. Additionally, ion exchange membranes facilitate characterization of parvovirus filter foulants. Examination of adsorber elution samples using sedimentation velocity analysis and SEC-MALS/QELS revealed the presence of high molecular weight species ranging from 8 to 13 nm in hydrodynamic radius, which are similar in size to parvoviruses and thus would be expected to plug the pores of a parvovirus filter. A study of two identical membranes in-series supports the hypothesis that the foulants are soluble, trace level aggregates in the feed. This study's significance lies in a previously undiscovered application of membrane chromatography, leading to a more cost effective and robust approach to parvovirus filtration for the production of monoclonal antibodies.

  6. Ultra-low vanadium ion diffusion amphoteric ion-exchange membranes for all-vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Liao, J. B.; Lu, M. Z.; Chu, Y. Q.; Wang, J. L.

    2015-05-01

    An amphoteric ion-exchange membrane (AIEM) from fluoro-methyl sulfonated poly(arylene ether ketone) bearing content-controlled benzimidazole moiety, was firstly fabricated for vanadium redox flow battery (VRB). The AIEM and its covalently cross-linked membrane (AIEM-c) behave the highly suppressed vanadium-ion crossover and their tested VO2+ permeability are about 638 and 1117 times lower than that of Nafion117, respectively. This is further typically verified by the lower VO2+ concentration inside AIEM that is less than half of that inside Nafion117 detected by energy dispersive X-ray spectrometry, in addition of the nearly 3 times longer battery self-discharge time. The ultra-low vanadium ion diffusion could be ascribed to the narrower ion transporting channel originated from the acid-base interactions and the rebelling effect between the positively-charged benzimidazole structure and VO2+ ions. It is found that, VRB assembled with AIEM exhibits the equal or higher Coulombic efficiency (99.0% vs. 96.4%), voltage efficiency (90.7% vs. 90.7%) and energy efficiency (89.8% vs. 87.4%) than that with Nafion117 and keeps continuous 220 charge-discharge cycles for over 25 days, confirming that the AIEM of this type is a potentially suitable separator for VRB application.

  7. Advanced integrated solvent extraction and ion exchange systems

    SciTech Connect

    Horwitz, P.

    1996-10-01

    Advanced integrated solvent extraction (SX) and ion exchange (IX) systems are a series of novel SX and IX processes that extract and recover uranium and transuranics (TRUs) (neptunium, plutonium, americium) and fission products {sup 90}Sr, {sup 99}Tc, and {sup 137}Cs from acidic high-level liquid waste and that sorb and recover {sup 90}Sr, {sup 99}Tc, and {sup 137}Cs from alkaline supernatant high-level waste. Each system is based on the use of new selective liquid extractants or chromatographic materials. The purpose of the integrated SX and IX processes is to minimize the quantity of waste that must be vitrified and buried in a deep geologic repository by producing raffinates (from SX) and effluent streams (from IX) that will meet the specifications of Class A low-level waste.

  8. Electrodialysis-ion exchange for the separation of dissolved salts

    SciTech Connect

    Baroch, C.J.; Grant, P.J.

    1995-10-01

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. There is considerable interest in developing processes that remove or destroy the nitrate wastes. Electrodialysis-Ion Exchange (EDIX) is a possible process that should be more cost effective in treating aqueous waste steams. This report describes the EDIX process.

  9. Electrodialysis-ion exchange for the separation of dissolved salts

    SciTech Connect

    Baroch, C.J.; Grant, P.J.

    1995-12-31

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. This report describes the process of electrodialysis-ion exchange (EDIX) for treating aqueous wastes streams consisting of nitrates, sodium, organics, heavy metals, and radioactive species.

  10. Electrotransportation of aniline through a perfluorosulfonate ion-exchange membrane

    SciTech Connect

    Katakura, Katsumi . Dept. of Chemical Engineering); Inaba, Minoru; Toyama, Koji; Ogumi, Zempachi; Takehara, Zenichiro . Division of Energy and Hydrocarbon Chemistry)

    1994-07-01

    Transport phenomena of aniline through Na[sup +]-, K[sup +]-, and Cs[sup +]-form of a perfluorosulfonate ion-exchange membrane, Nafion 117, under a flow of dc current, electrotransportation, were investigated. In each form, an increase in transport number of anilinium cation was observed in the current density range from 0.3 to 1.3 mA cm[sup [minus]2]. The transport number of the anilinium cation in Cs[sup +]-form was larger than that expected from the concentration and diffusion coefficient of the anilinium cation in Cs[sup +]-form Nafion. These aniline transport phenomena may be attributable to a structural change of Nafion or a decrease in hydrophobic interaction between the anilinium cation and Nafion caused by the flow of dc current.

  11. Immobilization of Acetobacter aceti on cellulose ion exchangers: adsorption isotherms

    SciTech Connect

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1986-08-01

    The adsorptive behavior of cells of Acetobacter aceti, ATCC 23746, on DEAE-, TEAE-, and DEHPAE-cellulose ion exchangers in a modified Hoyer's medium at 30 degrees Centigrade was investigated. The maximum observed adsorption capacities varied from 46 to 64 mg dry wt/g resin. The Langmuir isotherm form was used to fit the data, since the cells formed a monolayer on the resin and exhibited saturation. The equilibrium constant in the Langmuir expression was qualitatively correlated with the surface charge density of the resin. The adsorption was also ''normalized'' by considering the ionic capacities of the resins. The exceptionally high normalized adsorption capacity of ECTEOLA-cellulose, 261 mg dry/meq, may be explained by an interaction between the cell wall and the polyglyceryl chains of the exchanging groups in addition to the electrostatic effects. The effect of pH on the bacterial adsorption capacity of ECTEOLA-, TEAE-, and phosphate-cellulose resins was studied and the pH of the bacteria was estimated to be 3.0. 17 references.

  12. Peptide Orientation Affects Selectivity in Ion-Exchange Chromatography

    SciTech Connect

    Alpert, Andrew J.; Petritis, Konstantinos; Kangas, Lars J.; Smith, Richard D.; Mechtler, Karl; Mitulovic, Goran; Mohammed, Shabaz; Heck, Albert J.

    2010-06-15

    Here we demonstrate that separation of proteolytic peptides, having the same net charge and one basic residue, is affected by their specific orientation toward the stationary phase in ion-exchange chromatography. In electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) with an anion-exchange material, the C-terminus of the peptides is, on average, oriented toward the stationary phase. In cation exchange, the average peptide orientation is the opposite. Data with synthetic peptides, serving as orientation probes, indicate that in tryptic/Lys-C peptides the C-terminal carboxyl group appears to be in a zwitterionic bond with the side chain of the C-terminal Lys/Arg residue. In effect, the side chain is then less basic than the N-terminus, accounting for the specific orientation of tryptic and Lys-C peptides. Analyses of larger sets of peptides, generated from lysates by either Lys-N, Lys-C, or trypsin, reveal that specific peptide orientation affects the ability of harged side chains, such as phosphate residues, to influence retention. Phosphorylated residues that are remote in the sequence from the binding site affect retention less than those that are closer. When a peptide contains multiple charged sites, then orientation is observed to be less rigid and retention tends to be governed by the peptide’s net charge rather than its sequence. These general observations could be of value in confirming a peptide’s identification and, in particular, phosphosite assignments in proteomics analyses. More generally, orientation accounts for the ability of chromatography to separate peptides of the same compositionbut different sequence.

  13. Materials for Electroactive Ion-Exchange (EaIX) Separations of Pertechnetate Ion

    SciTech Connect

    Stender, Matthias; Hubler, Timothy L.; Alhoshan, Mansour; Smyrl, William H.

    2004-03-29

    Many contaminants of interest to the U.S. Department of Energy (DOE) exist as anions (e.g. chromate, pertechnetate and nitrate). The objective of this study is to develop Electroactive Ion-Exchange (EaIX) materials. Such materials can be used to separate pertechnetate ion from radioactive wastes located at DOE sites while limiting the amount of secondary wastes generated. We have developed a synthetic strategy to prepare vinyl-bipyridyl and -terpyridyl ligands which allow incorporation of ion-selective architectures with a polymerizable handle. Fe complexes formed with these ligands provide the working core of the electroactive polymers. The polymers can be directly used as materials for EaIX or they can be incorporated into porous composite materials that are then used for EaIX.

  14. Kinetics of cadmium ion sorption on ion exchange and chelating resins

    SciTech Connect

    Bilba, D.; Bilba, N.; Albu, M.

    1999-11-01

    Cadmium sorption from aqueous solutions on sulfonic (C-150) and iminodiacetic (S-930) Purolite macroporous resins was investigated. The influence of operating variables such as initial pH, Cd(II) concentration, time and temperature on the equilibrium parameters was measured. The ion preference and sorption ability of resins, i.e., binding constant (b) and saturation capacity (x{sub m}), derived from sorption isotherm, depend on the functional group structure. The Cd(II) uptake is only particle diffusion controlled. The kinetic parameters, i.e., t{sub 1/2} values for 50% attainment of equilibrium sorption, rate constant ({bar K}) and diffusion coefficient ({bar D}) are higher on the sulfonic resin. The moving boundary particle diffusion model fits the entire ion sorption process on chelating resin, but only the initial sorption on the sulfonic resin, confirming the difference in chemistry between chelation and ion exchange.

  15. Effects of ion exchange on stream solute fluxes in a basin receiving highway deicing salts

    USGS Publications Warehouse

    Shanley, J.B.

    1994-01-01

    At Fever Brook, a 1260-ha forested basin in central Massachusetts, highway deicing salt application increased the solute flux in streamflow by 120% above background flux (equivalent basis) during a 2-yr period. Attempts to isolate the nonsalt component of stream solute fluxes have commonly subtracted salt contributions based on the net Cl flux (Cl output in streamflow minus Cl input in precipitation). In these studies, any net Na flux in excess of the amount needed to balance the net Cl flux has been attributed to weathering. At Fever Brook, however, the net output of Na was less than the net output of Cl, suggesting a loss of Na within the basin. The Na sink was inferred to be cation exchange of Na for Ca and Mg in the soil. A method was developed to quantify the exchange based on a Na budget, which included an independent estimate of the Na flux from weathering. The amount of exchange was apportioned to Ca and Mg based on their relative concentrations in the stream. The background fluxes of Ca and Mg (i.e., those that would occur in the absence of deicing salts) were calculated by subtracting the amounts from ion exchange plus the much smaller direct contributions in deicing salts from the observed fluxes. Ion exchange and direct salt contributions increased the net output fluxes of Ca and Mg, each by 44% above background. In basins that receive deicing salts, failure to account for cation exchange thus may result in an underestimate of the flux of Na from weathering and overestimates of the fluxes of Ca and Mg from weathering.

  16. Anion-exchange separations of metal ions in thiocyanate media.

    PubMed

    Fritz, J S; Kaminski, E E

    1971-05-01

    The analytical potential of a weak-base macroreticular anion-exchange resin for the quantitative separation of metal ions in thiocyanate media is investigated and demonstrated. Distribution data are given for the sorption of some 25 metal ions from aqueous mixtures of potassium thiocyanate (1.0M or less) and 0.5M hydrochloric acid. The magnitude of the distribution data suggests many possible separations, some of which were quantitatively performed by procedures which are fast, simple and require only mild conditions. Representative separations are removal of traces of iron(III) and copper(II) from water samples prior to the determination of water hardness (calcium and magnesium), separation of nickel(II) from vanadium(IV) and the separation of thorium(IV) from titanium(IV). Some multicomponent separations are the separation of rare earths(III) and thorium(IV) from scandium(III) and the separation of rare earths(III) from iron(III) and uranium(VI). PMID:18960914

  17. Remediation of groundwater containing radionuclides and heavy metals using ion exchange and the AlgaSORB[reg sign] biosorbent system

    SciTech Connect

    Feiler, H.D. ); Darnall, D.W. )

    1991-11-07

    Bio-Recovery Systems, Inc. (BRS) studied the application of an immobilized algal biomass, termed AlgaSORB[reg sign], which has high affinity for heavy metal ions to DOE-contaminated groundwaters. The material can be packed into columns similar to commercial ion exchange resins. Dilute solutions containing heavy metals are passed through columns where metals are absorbed by the AlgaSORB[reg sign] resins. Once saturated, metal ions can be stripped from the resin biomass in a highly concentrated solution. Groundwaters contaminated with heavy metal ions from three different Department of Energy (DOE) sites: Savannah River, Hanford and the Oak Ridge Y-12 Plant were studied. The objective was to perform bench-scale treatability studies to establish treatment protocols and to optimize an AlgaSORB[reg sign]/ion exchange technology system to remove and recover toxic metal ions from these contaminated groundwaters. The specialty ion exchange/AlgaSORB[reg sign] resins tested in these studies show promise for selectively removing chromium, mercury and uranium from contaminated groundwater at DOE sites. The data show that effluents which satisfy the allowable metal ion limits are possible and most likely achievable. The use of these highly selective resins also offer advantages in terms of cost/benefit, risk and scheduling. Their high selectivity allows for high capacity and opportunities for recovery of removed constituents due to high pollutant concentration possible (3 to 4 orders of magnitude). Ion exchange is a proven technology which is easily automated and can be cost-effective, depending on the application.

  18. An Evaluation of Solution Algorithms and Numerical Approximation Methods for Modeling an Ion Exchange Process

    PubMed Central

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.

    2010-01-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications. PMID:20577570

  19. An evaluation of solution algorithms and numerical approximation methods for modeling an ion exchange process

    NASA Astrophysics Data System (ADS)

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  20. An Evaluation of Solution Algorithms and Numerical Approximation Methods for Modeling an Ion Exchange Process.

    PubMed

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H; Miller, Cass T

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  1. The Award for the Development of Ion Exchange Systems for Food Processing

    NASA Astrophysics Data System (ADS)

    Yao, Eiya

    In the food industry, ion exchange resins have been used not only for water treatment, but also for the purification of foodstuff itself. Here I will introduce some topics in the development and improvement of ion exchange systems for food proccssing that I have worked on.

  2. Modeling of Crystalline Silicotitanate Ion Exchange Columns Using Experimental Data from SRS Simulated Waste

    SciTech Connect

    Walker, D.D.

    1999-03-15

    Non-elutable ion exchange using crystalline silicotitanate is being considered for removing cesium from Savannah River Site radioactive waste. The construction cost of this process depends strongly on the size of the ion exchange column required to meet product specifications.

  3. Anion exchange resins: Structure, formulation, and applications. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect

    Not Available

    1994-07-01

    The bibliography contains citations concerning the formulation and synthesis of anion exchange resins based on such resins as amides, polyethylenes, and styrenes. Osmotic, sorption, and electrical properties; exchange kinetics behavior; structure studies; and temperature related performance effects on anion exchange resins are considered. Anion exchange chromatography of liquids, and applications in water purification, pollution control, and protein and metallic ion separation are included. (Contains a minimum of 222 citations and includes a subject term index and title list.)

  4. Selective ion exchange recovery of rare earth elements from uranium mining solutions

    NASA Astrophysics Data System (ADS)

    Rychkov, Vladimir N.; Kirillov, Evgeny V.; Kirillov, Sergey V.; Bunkov, Grigory M.; Mashkovtsev, Maxim A.; Botalov, Maxim S.; Semenishchev, Vladimir S.; Volkovich, Vladimir A.

    2016-09-01

    A comparative study of rare earth, ferric and aluminum ions ion exchange behavior on gel sulfonated p;olystyrene cation exchange resins depending on the degree of the matrix cross-linking and pH of the solution is presented. Selective ion exchange of REEs is possible at the pH range of 1.5-2.0 using strongly acidic cation exchange resins containing more than 8 % of DVB. The preliminary results of testing the efficiency of REEs recovery from the industrial uranium underground leaching solutions are also presented.

  5. Nanomaterials-Enhanced Electrically Switched Ion Exchange Process for Water Treatment

    SciTech Connect

    Lin, Yuehe; Choi, Daiwon; Wang, Jun; Bontha, Jagannadha R.

    2009-01-01

    The objective of our work is to develop an electrically switched ion exchange (ESIX) system based on conducting polymer/carbon nanotube (CNT) nanocomposites as a new and cost-effective approach for removal of radioactive cesium, chromate, and perchlorate from contaminated groundwater. The ESIX technology combines ion exchange and electrochemistry to provide a selective, reversible method for the removal of target species from wastewater. In this technique, an electroactive ion exchange layer is deposited on a conducting substrate, and ion uptake and elution are controlled directly by modulation of the potential of the layer. ESIX offers the advantages of highly-efficient use of electrical energy combined with no secondary waste generation. Recently, we have improved upon the ESIX process by modifying the conducting substrate with carbon nanotubes prior to the deposition of the electroactive ion exchanger. The nanomaterial-based electroactive ion exchange technology will remove cesium-137, chromate, and perchlorate rapidly from wastewater. The high porosity and high surface area of the electroactive ion exchange nanocomposites results in high loading capacity and minimize interferences for non-target species. Since the ion adsorption/desorption is controlled electrically without generating a secondary waste, this electrically active ion exchange process is a green process technology that will greatly reduce operating costs.

  6. Ceramic heat-exchanger applications study

    SciTech Connect

    McFarlin, D.J.; Sgamboti, C.T.; Lessard, R.D.

    1982-10-01

    To put the potential benefits of ceramic heat exchangers (CHX) applications into quantitative perspective, several industrial cogeneration and electric utiity power generation systems were surveyed and evaluated. This study was focused on coal-based fuel fired applications, for which system performance and economic assessments were made. Seven CHX applications in the industrial cogeneration sector were selected for evaluation. These include (1) Gasified Coal-Fired Gas Turbine, (2) Pressurized Fluidized Bed Combustor (PFBC)-Gas Turbine, (3) Atmospheric Fluidized Bed Combustor (AFBC)-Gas Turbine, (4 and 5) AFBC Combined Cycle with and without reheat and (6 and 7) Indirect Coal-Fired Gas Turbine and Combined Cycle. The performance and economics of these cogeneration systems were evaluated and compared with other competing systems (both advanced and State-of-the-Art). For the electric utility power generation sector five applications utilizing a CHX were selected and evaluated; their performance and cost factors were compared to those of a reference pulverized coal-fired steam plant with flue gas desulfurization. These five applications included (1) PFBC-Combined Cycle, (2) AFBC-Combined Cycle, (3) Industrial Coal Gasifier-Combined Cycle, (4) Indirect Coal-Fired Combined Cycle, and (5) Indirect Coal-Fired Simple Cycle. Of the five CHX applications evaluated in the power generation sector, only the AFBC system showed a clear gain over the reference pulverized coal system.

  7. Ion Exchange Media for Reduction of Liquid Radwaste in Commercial Power Plants

    SciTech Connect

    Yarnell, P.A.; Tavares, A.

    2008-07-01

    Ion exchange resins currently make up as much as one-half of all radioactive waste generated by commercial nuclear power plants. A major challenge is reduction of the quantity of ion exchange media requiring disposal. Although the amount of spent ion exchange resins disposed has decreased year after year, a new urgency has arisen with the pending closure of a major disposal site in 2008. This paper explores whether ion exchange resins also can be used to potentially reduce radioactive liquid waste volumes and / or limit them to Class A wastes only. Source term reduction and minimization of manpower exposure to radioactivity are other important goals. Specialty ion exchange products may help to achieve source term reduction of certain radionuclides. Some established operations, data, and process concepts are presented to address these critical issues encountered in liquid radwaste management. (authors)

  8. Ion-exchange selectivities of periderm and cuticular membranes toward alkali cations

    SciTech Connect

    Ersoz, M.; Duncan, H.J.

    1994-08-01

    The ion-exchange selectivities of lithium, sodium, potassium, and cesium on isolated potato periderm (Solanum tuberosum) and pear fruit cuticular membranes were investigated; the general order of preference both for cation selectivities and ion-exchange capacities was lithium > sodium > potassium > cesium. The potato periderm and pear fruit cuticular membranes exhibited a behavior typical of ion-exchange resins of the weak acid type. At constant pH 7, the ion-exchange capacities of periderm and cuticular membranes increased with hydrated ionic radius, and also with increasing pH and neutral salt concentration, and decreased with crystal ionic radius. Counterion selectivities also exhibited the same behavior. The ion-exchange properties are discussed in terms of the structure and function of potato periderm and pear fruit cuticular membranes.

  9. Revised Thermal Analysis of LANL Ion Exchange Column

    SciTech Connect

    Laurinat, J

    2006-04-11

    This document updates a previous calculation of the temperature distributions in a Los Alamos National Laboratory (LANL) ion exchange column.1 LANL operates two laboratory-scale anion exchange columns, in series, to extract Pu-238 from nitric acid solutions. The Defense Nuclear Facilities Safety Board has requested an updated analysis to calculate maximum temperatures for higher resin loading capacities obtained with a new formulation of the Reillex HPQ anion exchange resin. The increased resin loading capacity will not exceed 118 g plutonium per L of resin bed. Calculations were requested for normal operation of the resin bed at the minimum allowable solution feed rate of 30 mL/min and after an interruption of flow at the end of the feed stage, when one of the columns is fully loaded. The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades. At low temperatures, resin bed temperatures increase primarily due to decay heat. At {approx}70 C a Low Temperature Exotherm (LTE) resulting from the reaction between 8-12 M HNO{sub 3} and the resin has been observed. The LTE has been attributed to an irreversible oxidation of pendant ethyl benzene groups at the termini of the resin polymer chains by nitric acid. The ethyl benzene groups are converted to benzoic acid moities. The resin can be treated to permanently remove the LTE by heating a resin suspension in 8M HNO{sub 3} for 30-45 minutes. No degradation of the resin performance is observed after the LTE removal treatment. In fact, heating the resin in boiling ({approx}115-120 C) 12 M HNO{sub 3} for 3 hr displays thermal stability analogous to resin that has been treated to remove the LTE. The analysis is based on a previous study of the SRS Frames Waste Recovery (FWR) column, performed in support of the Pu-238 production campaign for NASA's Cassini mission. In that study, temperature transients

  10. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 1. Peptides to Proteins

    NASA Astrophysics Data System (ADS)

    Donohoe, Gregory C.; Khakinejad, Mahdiar; Valentine, Stephen J.

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  11. The Ion Funnel: Theory, Implementations, and Applications

    PubMed Central

    Kelly, Ryan T.; Tolmachev, Aleksey V.; Page, Jason S.; Tang, Keqi; Smith, Richard D.

    2009-01-01

    The electrodynamic ion funnel has enabled the manipulation and focusing of ions in a pressure regime (0.1 to 30 Torr) that has challenged traditional approaches, providing the basis for much greater mass spectrometer ion transmission efficiencies. The initial ion funnel implementations aimed to efficiently capture ions in the expanding gas jet of an electrospray ionization source and radially focus them for efficient transfer through a conductance limiting orifice. We review the improvements in fundamental understanding of ion motion in ion funnels, the evolution in its implementations that have brought the ion funnel to its current state of refinement, as well as applications of the ion funnel for purposes such as ion trapping, ion cooling, low pressure electrospray, and ion mobility spectrometry. PMID:19391099

  12. THERMAL MODELING OF ION EXCHANGE COLUMNS WITH SPHERICAL RF RESIN

    SciTech Connect

    Lee, S.; King, W.

    2009-12-30

    Models have been developed to simulate the thermal performance of RF columns fully loaded with radioactive cesium. Temperature distributions and maximum temperatures across the column were calculated during Small Column Ion Exchange (SCIX) process upset conditions with a focus on implementation at Hanford. A two-dimensional computational modeling approach was taken to include conservative, bounding estimates for key parameters such that the results will provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on RF. The current full-scale design for the SCIX system includes a central cooling tube, and one objective of these calculations was to examine its elimination to simplify the design. Results confirmed that a column design without a central cooling tube is feasible for RF, allowing for the possibility of significant design simplifications if it can be assumed that the columns are always filled with liquid. With active cooling through the four outer tubes, the maximum column diameter expected to maintain the temperature below the assumed media and safety limits is 26 inches, which is comparable to the current design diameter. Additional analysis was conducted to predict the maximum column temperatures for the previously unevaluated accident scenario involving inadvertent drainage of liquid from a cesium-saturated column, with retention of the ion exchange media and cesium in the column. As expected, much higher maximum temperatures are observed in this case due to the poor heat transfer properties of air versus liquid. For this hypothetical accident scenario involving inadvertent and complete drainage of liquid from a cesium-saturated column, the modeling results indicate that the maximum temperature within a 28 inch diameter RF column with external cooling is expected to exceed 250 C within 2 days, while the maximum temperature of a 12 inch column is maintained below

  13. The effect of electron beam irradiation on silver-sodium ion exchange in silicate glasses

    NASA Astrophysics Data System (ADS)

    Sidorov, Alexander I.; Prosnikov, Mikhail A.

    2016-04-01

    It is shown experimentally that electron irradiation of sodium-silicate glasses makes possible the control of the subsequent ion exchange Ag+ ↔ Na+ process in a salt melt. The reason of this effect is the negatively charged regions formation in a glass volume during electron irradiation. The electric field, produced by these regions in glass volume, results in positive Na+ ions field migration into them. The spatial redistribution of Na+ ions results in the decrease of the ion exchange efficiency, or the ion exchange can be even blocked. This led to the decrease of the luminescence intensity of neutral silver molecular clusters in the irradiated zone, and effect on the silver nanoparticles formation during the subsequent thermal treatment. The observed effects can be used for the control of ion exchange processes during integrated optics devices fabrication, and for the electron-beam recording of optical information.

  14. The effect of surface modification on the ion-exchange properties of layered aluminosilicates

    SciTech Connect

    Yuchs, S.E.; Wasserman, S.R.

    1996-10-01

    Layered aluminosilicates and clay type minerals have been shown to have varying degrees of ion-exchange capacity. In this paper, the ion-exchange capacities of untreated and surface modified montmorillonite clays will be discussed. The effects of extent of surface modification, type of modifier, and type of exchangeable ion will also be discussed. Physical properties, including X-ray diffraction, surface area measurements, XAS and EXAFS, of the modified and native materials will be compared. These surface modification reactions have been shown to yield novel materials with very low ion leachability. Various leach test results from several encapsulated metal ion-exchanged materials will be detailed. This surface modification method may yield materials suitable for intermediate-term storage of hazardous metal ions.

  15. Mercury removal from water streams through the ion exchange membrane bioreactor concept.

    PubMed

    Oehmen, Adrian; Vergel, Dario; Fradinho, Joana; Reis, Maria A M; Crespo, João G; Velizarov, Svetlozar

    2014-01-15

    Mercury is a highly toxic heavy metal that causes human health problems and environmental contamination. In this study, an ion exchange membrane bioreactor (IEMB) process was developed to achieve Hg(II) removal from drinking water and industrial effluents. Hg(II) transport through a cation exchange membrane was coupled with its bioreduction to Hg(0) in order to achieve Hg removal from concentrated streams, with minimal production of contaminated by-products observed. This study involves (1) membrane selection, (2) demonstration of process effectiveness for removing Hg from drinking water to below the 1ppb recommended limit, and (3) process application for treatment of concentrated water streams, where >98% of the Hg was removed, and the throughput of contaminated water was optimised through membrane pre-treatment. The IEMB process represents a novel mercury treatment technology with minimal generation of contaminated waste, thereby reducing the overall environmental impact of the process.

  16. Evaluation of selected ion exchangers for the removal of cesium from MVST W-25 supernate

    SciTech Connect

    Collins, J.L.; Egan, B.Z.; Anderson, K.K.; Chase, C.W.; Mrochek, J.E.; Bell, J.T.; Jernigan, G.E.

    1995-04-01

    The goal of this batch-test equilibration study was to evaluate the effectiveness of certain ion exchangers for removing cesium from supernate taken from tank W-25 of the Melton Valley Storage Tank (MVST) Facility located at the Oak Ridge National Laboratory (ORNL). These exchangers were selective for removing cesium from alkaline supernatant solutions with high salt concentrations. Since the supernates of evaporator concentrates stored in tanks at the MVST facility have compositions similar to some of those stored in tanks at Hanford, the data generated in this study should prove useful in the overall evaluation of the ion exchangers for applications to Hanford and other US Department of Energy (USDOE) sites. A goal of the waste processing effort at Hanford is to remove enough cesium to ensure that the resulting LLW will meet the Nuclear Regulatory Commission (NRC) 10 CFR 61 class A limit for {sup 137}Cs (1 Ci/m{sup 3} or 1 {mu}Ci/mL). The separated cesium may be concentrated and vitrified for disposal in the high-level waste repository. The decontaminated effluent would be solidified for near-surface disposal.

  17. Coupled acoustic-gravity field for dynamic evaluation of ion exchange with a single resin bead.

    PubMed

    Kanazaki, Takahiro; Hirawa, Shungo; Harada, Makoto; Okada, Tetsuo

    2010-06-01

    A coupled acoustic-gravity field is efficient for entrapping a particle at the position determined by its acoustic properties rather than its size. This field has been applied to the dynamic observation of ion-exchange reactions occurring in a single resin bead. The replacement of counterions in an ion-exchange resin induces changes in its acoustic properties, such as density and compressibility. Therefore, we can visually trace the advancement of an ion-exchange reaction as a time change in the levitation position of a resin bead entrapped in the field. Cation-exchange reactions occurring in resin beads with diameters of 40-120 microm are typically completed within 100-200 s. Ion-exchange equilibrium or kinetics is often evaluated with off-line chemical analyses, which require a batch amount of ion exchangers. Measurements with a single resin particle allow us to evaluate ion-exchange dynamics and kinetics of ions including those that are difficult to measure by usual off-line analyses. The diffusion properties of ions in resins have been successfully evaluated from the time change in the levitation positions of resin beads. PMID:20462180

  18. Ion-exchange and hydrophobic interactions affecting selectivity for neutral and charged solutes on three structurally similar agglomerated ion-exchange and mixed-mode stationary phases.

    PubMed

    Kazarian, Artaches A; Taylor, Mark R; Haddad, Paul R; Nesterenko, Pavel N; Paull, Brett

    2013-11-25

    The nature and extent of mixed-mode retention mechanisms evident for three structurally related, agglomerated, particle-based stationary phases were evaluated. These three agglomerated phases were Thermo Fisher ScientificIon PacAS11-HC - strong anion exchange, Thermo Fisher Scientific IonPac CS10--strong cation-exchange PS-DVB, and the Thermo Fisher Scientific Acclaim Trinity P1silica-based substrate, which is commercially marketed as a mixed-mode stationary phase. All studied phases can exhibit zwitterionic and hydrophobic properties, which contribute to the retention of charged organic analytes. A systematic approach was devised to investigate the relative ion-exchange capacities and hydrophobicities for each of the three phases, together with the effect of eluent pH upon selectivity, using a specifically selected range of anionic, cationic and neutral aromatic compounds. Investigation of the strong anion-exchange column and the Trinity P1 mixed-mode substrate, in relation to ion-exchange capacity and pH effects, demonstrated similar retention behaviour for both the anionic and ampholytic solutes, as expected from the structurally related phases. Further evaluation revealed that the ion-exchange selectivity of the mixed-mode phase exhibited properties similar to that of the strong anion-exchange column, with secondary cation-exchange selectivity, albeit with medium to high anion-exchange and cation-exchange capacities, allowing selective retention for each of the anionic, cationic and ampholytic solutes. Observed mixed-mode retention upon the examined phases was found to be a sum of anion- and cation-exchange interactions, secondary ion-exchange and hydrophobic interactions, with possible additional hydrogen bonding. Hydrophobic evaluation of the three phases revealed logP values of 0.38-0.48, suggesting low to medium hydrophobicity. These stationary phases were also benchmarked against traditional reversed-phase substrates namely, octadecylsilica YMC-Pac Pro C18

  19. Enhanced performance of anion exchange membranes via crosslinking of ion cluster regions for fuel cells

    NASA Astrophysics Data System (ADS)

    Lai, Ao Nan; Guo, Dong; Lin, Chen Xiao; Zhang, Qiu Gen; Zhu, Ai Mei; Ye, Mei Ling; Liu, Qing Lin

    2016-09-01

    Development of anion exchange membranes (AEMs) with high hydroxide conductivity, good dimensional and alkaline stabilities is still a challenge for the practical application of AEM fuel cells. In this study, we report a new strategy to prepare high-performance AEMs with crosslinked ionic regions. A series of phenolphthalein-containing poly(arylene ether sulfone)s crosslinked AEMs was synthesized by grafting ion groups selectively and densely on the phenolphthalein units to form ion clusters that are further crosslinked to generate the hydrophilic ionic regions. The crosslinking reaction not only improved the dimensional stability of the AEMs, but also increased the aggregation of the ion clusters leading to the formation of hydrophilic/hydrophobic phase-separated morphology and ion-conducting channels. As a result, enhancements in both ion conductivity and dimensional stability can be achieved. The crosslinked AEMs showed high hydroxide conductivities in the range of 52.2-143.4 mS cm-1 from 30 to 80 °C and a superb ratio of relative conductivity to relative swelling at 80 °C. Furthermore, the crosslinked AEMs also exhibited good mechanical properties, thermal and alkaline stabilities and desirable single cell performance. This work presents a promising strategy for the synthesis of high-performance AEMs for fuel cells.

  20. A surface complexation and ion exchange model of Pb and Cd competitive sorption on natural soils

    NASA Astrophysics Data System (ADS)

    Serrano, Susana; O'Day, Peggy A.; Vlassopoulos, Dimitri; García-González, Maria Teresa; Garrido, Fernando

    2009-02-01

    The bioavailability and fate of heavy metals in the environment are often controlled by sorption reactions on the reactive surfaces of soil minerals. We have developed a non-electrostatic equilibrium model (NEM) with both surface complexation and ion exchange reactions to describe the sorption of Pb and Cd in single- and binary-metal systems over a range of pH and metal concentration. Mineralogical and exchange properties of three different acidic soils were used to constrain surface reactions in the model and to estimate surface densities for sorption sites, rather than treating them as adjustable parameters. Soil heterogeneity was modeled with >FeOH and >SOH functional groups, representing Fe- and Al-oxyhydroxide minerals and phyllosilicate clay mineral edge sites, and two ion exchange sites (X - and Y -), representing clay mineral exchange. An optimization process was carried out using the entire experimental sorption data set to determine the binding constants for Pb and Cd surface complexation and ion exchange reactions. Modeling results showed that the adsorption of Pb and Cd was distributed between ion exchange sites at low pH values and specific adsorption sites at higher pH values, mainly associated with >FeOH sites. Modeling results confirmed the greater tendency of Cd to be retained on exchange sites compared to Pb, which had a higher affinity than Cd for specific adsorption on >FeOH sites. Lead retention on >FeOH occurred at lower pH than for Cd, suggesting that Pb sorbs to surface hydroxyl groups at pH values at which Cd interacts only with exchange sites. The results from the binary system (both Pb and Cd present) showed that Cd retained in >FeOH sites decreased significantly in the presence of Pb, while the occupancy of Pb in these sites did not change in the presence of Cd. As a consequence of this competition, Cd was shifted to ion exchange sites, where it competes with Pb and possibly Ca (from the background electrolyte). Sorption on >SOH

  1. Enhanced electrokinetic extraction of heavy metals from soils assisted by ion exchange membranes.

    PubMed

    Kim, Won-Seok; Kim, Soon-Oh; Kim, Kyoung-Woong

    2005-02-14

    The potential of electrokinetic remediation technology has been successfully demonstrated for the remediation of heavy metal contaminated fine-grained soils through laboratory scale and field application studies. Various enhancement techniques have been proposed and used in order to further improve the remediation process. However, it has been reported that such enhancement schemes can create other obstacles, such as the introduction of non-target ions into the system and thereby decrease the efficiency of the remediation process. Electrokinetic soil remediation technology enhanced by an ion exchange membrane (IEM), IEM-enhanced EK processing, was experimentally evaluated for the purpose of overcoming these obstacles. In particular, this study focused on observations of a fouling problem and its settlement using an auxiliary solution cell (ASC). In addition, the efficacies of two different types of electrode configurations, rectangular and cylindrical, were investigated. The experimental results indicate that the effectiveness of the technology was increased by an enhancement scheme using an IEM. This may be explained by the prevention of metal precipitation in the region near the cathode originating from hydroxide ions generated by the electrolysis of water in the cathode. The experimental results also imply that placement of the ASC can nullify the fouling problem within the cation exchange membranes used in IEM-enhanced EK processing, and thus improve the overall effectiveness of the process. The experimental results indicate that the cylindrical electrode configuration can be implemented in practical situations to improve the treatability of cathode effluent containing a high level of contaminants after processing. PMID:15721533

  2. Ion-exchange aspects of toxic metal uptake by Indian mustard.

    PubMed

    Crist, Ray H; Martin, J Robert; Crist, DeLanson R

    2004-01-01

    Uptake of lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd) as +2 ions by excised roots of Indian mustard was demonstrated to be an ion-exchange process with existing Ca or protons released to the solution. This initial reaction at the root-aqueous interface is important in the uptake of these toxic metals from contaminated soil. Ethylene diamine tetraacetic acid (EDTA)-amended soil for phytoremediation has Pb in anionic form as [Pb-EDTA]2-, which was not taken up by excised roots. In nonliving B. juncea, Pb2+ was translocated from a solution through a cut stem to petiole and leaves much more quickly than anionic [Pb-EDTA]2-. However, in living plants [Pb-EDTA]2- was more quickly translocated from a solution through roots and petiole to leaves than Pb2+. The final amount of uptake on roots of the living plants was the same for both forms of Pb. The present results are important toward understanding the mechanism of phytoremediation of toxic metal-contaminated soil for two reasons: 1) the initial process, uptake of metal ions by roots, was shown to occur by cation exchange and 2) since [Pb-EDTA]2- was not sorbed by excised roots, other factors such as transpiration and active transport are important in applications using EDTA-amended soils contaminated by Pb. PMID:15224777

  3. Highly selective inorganic crystalline ion-exchange material for Sr{sup 2+} in acidic solutions

    SciTech Connect

    Nenoff, T.M.; Miller, J.E.; Thoma, S.G.; Trudell, D.E.

    1996-12-01

    We report a novel antimony titanate ion exchange material, stable in highly acidic conditions and selective to strontium against competing cations, with possible applications at Defense Waste Sites. Its development was based on good selectivity for Cs and Sr by the CSTs and literature information on the ion exchange properties of antimony compounds. This new material has been tested for the selective removal of parts per million level concentrations of Sr{sup 2+} ions from solutions with a pH in the range of 1 M HNO{sub 3} tO 5.7 M Na{sup +}/0.6 M OH{sup -} (with the most important results in the highly acidic regimes). This doped titanate has been characterized with an array of techniques, including equilibrium distribution coefficient (K{sub d}) determinations over a wide pH range, power X-ray diffraction, TEM, BET, direct-current plasma (DCP), and thermal analyses. 13 refs., 2 figs., 2 tabs.

  4. Ion exchange pretreatment of alkaline radwaste for cesium removal

    SciTech Connect

    Bibler, J.P.

    1994-08-01

    A cation exchange resin has been tested for its ability to remove the Cs ion from simulants of highly alkaline liquid nuclear wastes found at the Savannah River Site, Oak Ridge, and Hanford. The resin is a condensation polymer of the K salt of resorcinol and formaldehyde. It removes milli- and micromolar amounts of Cs{sup +} from solutions that contain as high as 11 molar Na{sup +}. Small column tests indicate that approximately 200 column volumes of SRS simulant and 205 column volumes of OR Tank 25 supernatant simulant can be processed before the resin requires regeneration. For these two wastes, a carousel arrangement of two columns in series and a third in reserve can be used effectively in a process. Hanford 101-AW simulant generates a less sharp breakthrough profile with this resin, though an operation using a maximum of three columns in series with another column off-line for regeneration would be effective if the resin beds are allowed to reach about 90% breakthrough before taking them out of service. Parameters that effect the performance of the resin with a particular feed solution are the concentrations of the two primary ions of interest, Cs{sup +} and Na{sup +}, as well as the concentrations of K{sup +} and OH{sup {minus}}. A further ramification of the hydroxide ion concentration is its role in assisting oxidation of the resin, thereby destroying its usefulness in cesium removal. Although the performance of the resin is unaffected at doses of 1 E+8 rad ionizing radiation, it shows noticeable degradation after storage for 100 hours in alkaline solutions, generating quinone and ketone groups, as determined from C-13 NMR and by an increase in total organic C content of the contacting solution. Gases detected from the radiolysis of the resin/simulant mixture are CO{sub 2} from the resin, N{sub 2}O from nitrate in the simulant, and H{sub 2} possibly from resin and simulant. Oxygen depletion in the mixture results from radiolysis and chemical degradation.

  5. Nondiffusive mechanisms enhance protein uptake rates in ion exchange particles

    PubMed Central

    Dziennik, S. R.; Belcher, E. B.; Barker, G. A.; DeBergalis, M. J.; Fernandez, S. E.; Lenhoff, A. M.

    2003-01-01

    Scanning confocal fluorescence microscopy and multiphoton fluorescence microscopy were used to image the uptake of the protein lysozyme into individual ion exchange chromatography particles in a packed bed in real time. Self-sharpening concentration fronts penetrating into the particles were observed at low salt concentrations in all of the adsorbents studied, but persisted to 100 mM ionic strength only in some materials. In other adsorbents, diffuse profiles were seen at these higher salt concentrations, with the transition region exhibiting a pronounced fluorescence peak at the front at intermediate salt concentrations. These patterns in the uptake profiles are accompanied by significant increases in protein uptake rates that are also seen macroscopically in batch uptake experiments. The fluorescence peak appears to be a concentration overshoot that may develop, in part, from an electrokinetic contribution to transport that also enhances the uptake rate. Further evidence for an electrokinetic origin is that the effect is correlated with high adsorbent surface charge densities. Predictions of a mathematical model incorporating the electrokinetic effect are in qualitative agreement with the observations. These findings indicate that mechanisms other than diffusion contribute to protein transport in oppositely charged porous materials and may be exploited to achieve rapid uptake in process chromatography. PMID:12522150

  6. Crystalline Silicotitanate Ion Exchange Support for Salt-Alternatives

    SciTech Connect

    Fondeur, F.F.

    2001-02-23

    The current version of crystalline silicotitanate (TAM5) is commercially available from UOP under the trade name IONSIV IE-911. TAM5 was extensively tested by several researchers and was determined as the best currently available material for removing radioisotopes from various types of nuclear wastes salt solutions stored at various DOE sites. The studies at Savannah River Technology Center (SRTC) indicated that the CST granules tend to leach into the nuclear waste simulants as it is processed by the ion exchange columns that is packed with CST granules from UOP. We, at Texas A and M University, agreed to conduct research to compliment the efforts at SRTC so that IONSIV IE-911 could be used for the treatment of nuclear waste stored at the DOE Savannah River facility. After consultation, we developed a Task Plan in January 2000. According to the agreement between Westinghouse Savannah River Company, Savannah River Technology Center, Aiken SC 29808 and, College Station, TX 77843, synthesis and the performance evaluations of crystalline silicotitanates (CST) were performed the during period of April 1 - September 30, 2000. Our main goals were delivery of a kilogram of CST (TAM5-4) synthesized at Texas A and M University in July to SRTC, performance evaluation of CST in nuclear waste simulants, and consultation mainly by telephone.

  7. Ion Exchange Resin and Clay Vitrification by Plasma Discharges

    NASA Astrophysics Data System (ADS)

    Díaz A., Laura V.; Pacheco S., Joel O.; Pacheco P., Marquidia; Monroy G., Fabiola; Emeterio H., Miguel; Ramos F., Fidel

    2006-12-01

    The lack of treatment of a low and intermediate level radioactive waste (LILRW) lead us to propose a vitrification process based on a plasma discharge; this technique incorporates LILRW into a matrix glass composed of ceramic clays material. The Mexican Institute of Nuclear Research (ININ), uses an ion exchange resin IRN 150 (styrene-divinilbence copolymer) in the TRIGA MARK III nuclear reactor. The principal objective of this resin is to absorb particles containing heavy metals and low-level radioactive particles. Once the IRN 150 resin filter capacity has been exceeded, it should be replaced and treated as LILRW. In this work, a transferred plasma system was realized to vitrify this resin taking advantage of its high power density, enthalpy and chemical reactivity as well as its rapid quenching and high operation temperatures. In order to characterize the morphological structure of these clay samples, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Thermogravimetric analysis (TGA) techniques were applied before and after the plasma treatment.

  8. Selectivity of ion exchangers in extracting cesium and rubidium from alkaline solutions

    NASA Astrophysics Data System (ADS)

    Shelkovnikova, L. A.; Kargov, S. I.; Gavlina, O. T.; Ivanov, V. A.; Al'tshuler, G. N.

    2013-01-01

    We compare the ion exchange selectivity of phenol-type sorbents based on phenol formaldehyde resins, products of condensation of diatomic phenols with formaldehyde, and crosslinked polymer based on C-phenyl[4]resorcinarene resin, for cesium and rubidium ions. It is shown that phenol formaldehyde sorbents are the ones most selective. The interaction of alkali metal cations with the anion of calix[4]arene is investigated via quantum-chemical modeling. It is shown that the selectivity toward cesium and rubidium ions in ion exchangers of the phenolic type is not due to specific interactions of ions with phenolic groups.

  9. A Novel Ion Exchange System to Purify Mixed ISS Waste Water Brines for Chemical Production and Enhanced Water Recovery

    NASA Technical Reports Server (NTRS)

    Lunn, Griffin Michael; Spencer, LaShelle E.; Ruby, Anna Maria; McCaskill, Andrew

    2014-01-01

    Current International Space Station water recovery regimes produce a sizable portion of waste water brine. This brine is highly toxic and water recovery is poor: a highly wasteful proposition. With new biological techniques that do not require waste water chemical pretreatment, the resulting brine would be chromium-free and nitrate rich which can allow possible fertilizer recovery for future plant systems. Using a system of ion exchange resins we can remove hardness, sulfate, phosphate and nitrate from these brines to leave only sodium and potassium chloride. At this point modern chlor-alkali cells can be utilized to produce a low salt stream as well as an acid and base stream. The first stream can be used to gain higher water recovery through recycle to the water separation stage while the last two streams can be used to regenerate the ion exchange beds used here, as well as other ion exchange beds in the ISS. Conveniently these waste products from ion exchange regeneration would be suitable as plant fertilizer. In this report we go over the performance of state of the art resins designed for high selectivity of target ions under brine conditions. Using ersatz ISS waste water we can evaluate the performance of specific resins and calculate mass balances to determine resin effectiveness and process viability. If this system is feasible then we will be one step closer to closed loop environmental control and life support systems (ECLSS) for current or future applications.

  10. Validity of the second Fick's law for modeling ion-exchange diffusion in non-crystalline viscoelastic media (glasses)

    NASA Astrophysics Data System (ADS)

    Tagantsev, D. K.; Ivanenko, D. V.

    2016-04-01

    It is shown that, in general case, the diffusion equation (or the second Fick's law) does not provide an adequate description of ion-exchange transport phenomena in viscoelastic media, including glassy or any other non-crystalline media. In this connection the general phenomenological model of ion-exchange diffusion in viscoelastic media has been developed. A theoretical analysis of the model shows that, in the case of a linear dependence of medium density on the concentration of diffusing ions, the necessary and sufficient condition of the absolute validity of the diffusion equation in viscoelastic media is Φ ≫ 1, where Φ = τD/τR is the dimensionless value (or criterion of similarity), with τD = L2/D being the characteristic time of diffusion and τR = η/G being the characteristic time of stress relaxation, where L, D, η, and G are the characteristic length of diffusion, the diffusivity, the viscosity, and the shear modulus, respectively. The value of 1/Φ characterizes the accuracy which is provided if the second Fick's law is used in the simulation of ion-exchange diffusion in viscoelastic media. We have demonstrated the applicability of this criterion experimentally. Our experimental studies on ion-exchange diffusion in an oxide glass (typical viscoelastic media) have shown that under the condition the Φ > 105 the experimental concentration profiles are close to those predicted by the second Fick's law to within an accuracy of 1%.

  11. Lysozyme-immobilized electrospun PAMA/PVA and PSSA-MA/PVA ion-exchange nanofiber for wound healing.

    PubMed

    Tonglairoum, Prasopchai; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Opanasopit, Praneet

    2014-08-27

    Abstract This research was aimed to develop the lysozyme immobilized ion-exchange nanofiber mats for wound healing. To promote the healing process, the PSSA-MA/PVA and PAMA ion-exchange nanofiber mats were fabricated to mimic the extracellular matrix structure using electrospinning process followed by thermally crosslinked. Lysozyme was immobilized on the ion-exchane nanofibers by an adsorption method. The ion-exchange nanofibers were investigated using SEM, FTIR and XRPD. Moreover, the lysozyme-immobilized ion-exchange nanofibers were further investigated for lysozyme content and activity, lysozyme release and wound healing activity. The fiber diameters of the mats were in the nanometer range. Lysozyme was gradually absorbed into the PSSA-MA/PVA nanofiber with higher extend than that is absorbed on the PAMA/PVA nanofiber and exhibited higher activity than lysozyme-immobilized PAMA/PVA nanofiber. The total contents of lysozyme on the PSSA-MA/PVA and PAMA/PVA nanofiber were 648 and 166 µg/g, respectively. FTIR and lysozyme activity results confirmed the presence of lysozyme on the nanofiber mats. The lysozyme was released from the PSSA-MA/PVA and PAMA/PVA nanofiber in the same manner. The lysozyme-immobilized PSSA-MA/PVA nanofiber mats and lysozyme-immobilized PAMA/PVA nanofiber mats exhibited significantly faster healing rate than gauze and similar to the commercial antibacterial gauze dressing. These results suggest that these nanofiber mats could provide the promising candidate for wound healing application.

  12. Ion-beam technology and applications

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Robson, R. R.; Sovey, J. S.

    1977-01-01

    Ion propulsion research and development yields a mature technology that is transferable to a wide range of nonpropulsive applications, including terrestrial and space manufacturing. A xenon ion source was used for an investigation into potential ion-beam applications. The results of cathode tests and discharge-chamber experiments are presented. A series of experiments encompassing a wide range of potential applications is discussed. Two types of processes, sputter deposition, and erosion were studied. Some of the potential applications are thin-film Teflon capacitor fabrication, lubrication applications, ion-beam cleaning and polishing, and surface texturing.

  13. Stabilization of copper nanoparticles with volume- and surface-distribution inside ion-exchange matrices

    NASA Astrophysics Data System (ADS)

    Kravchenko, T. A.; Sakardina, E. A.; Kalinichev, A. I.; Zolotukhina, E. V.

    2015-09-01

    Nanocomposites characterized by the surface and volume distributions of deposited copper nanoparticles are obtained via the chemical deposition of copper onto sulfonic acid and carboxylic cation exchanger and strongly basic anion exchanger matrices. The electrode behavior of the synthesized composites in CuSO4 solution is studied by open-circuit chronopotentiometry. The effect the nature of the fixed centers of the ion-exchange matrix has on the initial state of metallic particles and the processes that occur in solutions of their metal ions is established from the deviation of the nanocomposites' electrode potential from the potential of a compact electrode and the nature of its change over time. It is shown that the mechanism behind the interaction of the matrix and metal ions (ion exchange, non-exchange absorption, complexation) determines not only the initial size and distribution of metal particles, but also the rate at which they achieve aggregative stability.

  14. Use of petroleum reside for production of ion exchangers

    SciTech Connect

    Pokonova, Y.V.

    1995-03-10

    Weakly acidic commercial cation exchangers with a static exchange capacity of 4.8-6.7 meq{center_dot}{sup -1} and a mechanical strength of 90% have been synthesized from petroleum asphaltites, resorcinol, and furfural.

  15. Charge-exchange plasma environment for an ion drive spacecraft

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Carruth, M. R., Jr.

    1981-01-01

    A model was reviewed which describes the propagation of the mercury charge-exchange plasma and extended to describe the flow of the molybdenum component of the charge-exchange plasma. The uncertainties in the models for various conditions are discussed. Such topics as current drain to the solar array, charge-exchange plasma material deposition, and the effects of space plasma on the charge-exchange plasma propagation are addressed.

  16. ION EXCHANGE MODELING FOR REMOVAL OF CESIUM FROM HANFORD WASTE USING SUPERLIG 644 RESIN

    SciTech Connect

    Hamm, L

    2004-05-01

    The expected performance of a proposed ion exchange column using SuperLig{reg_sign} 644 resin for the removal of cesium from Hanford high level radioactive alkaline waste is discussed. This report represents a final report on the ability and knowledge with regard to modeling the Cesium-SuperLig{reg_sign} 644 resin ion exchange system. Only the loading phase of the cycle process is addressed within this report. Pertinent bench-scale column tests and batch equilibrium experiments are addressed. The methodology employed and sensitivity analyses are also included (i.e., existing methodology employed is referenced to prior developmental efforts while updated methodology is discussed). Pilot-scale testing is not assessed since no pilot-scale testing was available at the time of this report. Column performance predictions are made considering three selected feed compositions under nominal operating conditions. The sensitivity analyses provided help to identify key parameters that aid in resin procurement acceptance criteria. The methodology and application presented within this report reflect the expected behavior of SuperLig{reg_sign} 644 resin manufactured at the production-scale (i.e, 250 gallon batch size level). The primary objective of this work was, through modeling and verification based on experimental assessments, to predict the cesium removal performance of SuperLig{reg_sign} 644 resin for application in the RPP pretreatment facility.

  17. Selective preconcentration of uranyl ion by silica gel phases modified with chelating compounds as inorganic polymeric ion exchangers.

    PubMed

    Mahmoud, Mohamed E; Kenawy, Ibrahim M M; Soliman, Ezzat M; Hafez, Medhat A; Akl, Magda A A; Lashein, Rabab R A

    2008-03-01

    Four chemically modified chelating silica gel phases (I - IV) with ion exchange groups were tested for their potential capability to selectively bind, extract and preconcentrate uranyl ions (UO(2)(2+)) from different aqueous solutions as well as ore samples. Factors affecting such determination processes were studied and optimized. These included the pH of the contact solution, the mass of the silica gel phase extractant, the stirring time during the application of a static technique and the eluent concentration for desorption of the surface-bound uranyl ion and interfering anions and cations. All these factors were evaluated on the basis of determinations of the distribution coefficient value (K(d)) and the percent recovery (R%). Percent recovery values of 91% for silica phase (II) and 93% for silica phase (IV) were identified in the optimum conditions. The proposed preconcentration method was further applied to uranium ore samples as well as granite samples. The determined percentage and ppm values are in good agreement with the standard assigned ones. The structure of the synthesized silica gel phases (I - IV) and their uranyl bound complexes were identified and characterized by means of infrared analysis, thermal analysis (TGA) and potentiometric titration.

  18. Selective preconcentration of uranyl ion by silica gel phases modified with chelating compounds as inorganic polymeric ion exchangers.

    PubMed

    Mahmoud, Mohamed E; Kenawy, Ibrahim M M; Soliman, Ezzat M; Hafez, Medhat A; Akl, Magda A A; Lashein, Rabab R A

    2008-03-01

    Four chemically modified chelating silica gel phases (I - IV) with ion exchange groups were tested for their potential capability to selectively bind, extract and preconcentrate uranyl ions (UO(2)(2+)) from different aqueous solutions as well as ore samples. Factors affecting such determination processes were studied and optimized. These included the pH of the contact solution, the mass of the silica gel phase extractant, the stirring time during the application of a static technique and the eluent concentration for desorption of the surface-bound uranyl ion and interfering anions and cations. All these factors were evaluated on the basis of determinations of the distribution coefficient value (K(d)) and the percent recovery (R%). Percent recovery values of 91% for silica phase (II) and 93% for silica phase (IV) were identified in the optimum conditions. The proposed preconcentration method was further applied to uranium ore samples as well as granite samples. The determined percentage and ppm values are in good agreement with the standard assigned ones. The structure of the synthesized silica gel phases (I - IV) and their uranyl bound complexes were identified and characterized by means of infrared analysis, thermal analysis (TGA) and potentiometric titration. PMID:18332547

  19. Ion Exchange Technology Development in Support of the Urine Processor Assembly

    NASA Technical Reports Server (NTRS)

    Mitchell, Julie; Broyan, James; Pickering, Karen

    2013-01-01

    exchange resins has demonstrated that the most effective implementation for an ion exchange resin is a cartridge, or column, in which the resin is contained. Based on the results of equilibrium and sub-scale dynamic column testing, a possible solution for mitigating the calcium precipitation issue on the ISS has been identified. From an original pool of 13 ion exchange resins, two candidates have been identified that demonstrate substantial calcium removal on the sub-scale. The dramatic reduction in resin performance from published calcium uptake demonstrates the need for thorough evaluation of resins at the low pH and strong oxidizing environment present in the UPA. Chemical variations in the influent (calcium concentrations and pretreatment dosing) appear to have a noticeable impact on the calcium capacity of the resin. Low calcium concentrations and high pretreatment dosing will likely result in a decrease in calcium capacity. Conversely, low pre trea t - ment dosing will likely result in an increase in calcium capacity. In contrast, investigations at a variety of flow rates, length-to-diameter ratios, resin volumes, and flow regimes (continuous versus pulsed) show that changes in physical parameters do not have substantial impacts on resin performance in the very low specific velocity ranges of interest. This result is particularly useful because most commercial applications at higher specific velocities do show a relatively strong relationship between flow and capacity. The lack of a strong relationship will allow more flexibility in the implementation of an ion exchange bed for flight. Verification of subscale tests with flight-scale resin beds is recommended prior to implementation in the on-orbit UPA.

  20. ION-EXCHANGE METHOD FOR SEPARATING RADIUM FROM RADIUM-BARIUM MIXTURES

    DOEpatents

    Fuentevilla, M.E.

    1959-06-30

    An improved process is presented for separating radium from an aqueous feed solution containing radium and barium values and a complexing agent for these metals. In this process a feed solutlon containing radium and barium ions and a complexing agent for said ions ls cycled through an exchange zone in resins. The radiumenriched resin is then stripped of radium values to form a regeneration liquid, a portion of which is collected as an enriched product, the remaining portion being recycled to the exchange zone to further enrich the ion exchange resin in radium.

  1. Ion exchange in the atomic energy industry with particular reference to actinide and fission product separation

    SciTech Connect

    Jenkins, I.L.

    1984-01-01

    Reviewed are some of the uses of ion exchange processes used by the nuclear industry for the period April, 1978 to April, 1983. The topics dealt with are: thorium, protactinium, uranium, neptunium, plutonium, americium, cesium and actinide-lanthanide separations; the higher actinides - Cm, Bk, Cf, Es and Fm; fission products; ion exchange in the geological disposal of radioactive waste. Consideration is given to safety in the use of ion exchangers and in safe methods of disposal of such materials. Full scale and pilot plant process descriptions are included as well as summaries of laboratory studies. 130 references.

  2. Preliminary Ion Exchange Modeling for Removal of Cesium from Hanford Waste Using Hydrous Crystalline Silicotitanate Material

    SciTech Connect

    HAMM, LUTHER L.

    2004-07-27

    For the current pretreatment facility design of the River Protection Project (RPP) Waste Treatment Plant (WTP), the removal of cesium from low activity waste (LAW) is achieved by ion-exchange technology based on SuperLig(R) 644 resin. Due to recent concerns over potential radiological and chemical degradation of SuperLig(R) 644 resin and increased pressure drops observed during pilot-scale column studies, an increased interest in developing a potential backup ion-exchanger material has resulted. Ideally, a backup ion-exchanger material would replace the SuperLig(R) 644 resin and have no other major impacts on the pretreatment facility flowsheet. Such an ideal exchanger has not been identified to date. However, Crystalline Silicotitanate (CST) ion-exchanger materials have been studied for the removal of cesium from a variety of DOE wastes over the last decade. CST ion-exchanger materials demonstrate a high affinity for cesium under high alkalinity conditions and have been under investigation for cesium removal specifically at Hanford and SRS during the last six years. Since CST is an inorganic based material (with excellent properties in regard to chemical, radiological, and thermal stability) that is considered to be practically non-elutable (while SuperLig(R) 644 is an organic based elutable resin), the overall pretreatment facility flowsheet would be impacted in various ways. However, the CST material is still being considered as a potential backup ion-exchanger material. The performance of a proposed backup ion-exchange column using IONSIV IE-911 (CST in its engineered-form) material for the removal of cesium from Hanford high level radioactive alkaline waste is discussed. This report focuses attention on the ion-exchange aspects and addresses the loading phase of the process cycle.

  3. Understanding ion and solvent transport in anion exchange membranes under humidified conditions

    NASA Astrophysics Data System (ADS)

    Sarode, Himanshu

    Anion exchange membranes (AEM) have been studied for more than a decade for potential applications in low temperature fuel cells and other electrochemical devices. They offer the advantage of faster reaction kinetics under alkaline conditions and ability to perform without costly platinum catalyst. Inherently slow diffusion of hydroxide ions compared to protons is a primary reason for synthesizing and studying the ion transport properties in AEMs. The aim of this thesis is to understand ion transport in novel AEMs using Pulse Gradient stimulated Spin Echo Nuclear Magnetic Resonance technique (PGSE NMR), water uptake, ionic conductivity, Small Angle X-ray Scattering (SAXS) etc. All experiments were performed under humidified conditions (80--95% relative humidity) and fuel cell operating temperatures of 30--90°C. In this work, the NMR tube design was modified for humidifying the entire NMR tube evenly from our previous design. We have developed a new protocol for replacing caustic hydroxide with harmless fluoride or bicarbonate ions for 19F and 13 C NMR diffusion experiments. After performing these NMR experiments, we have obtained in-depth understanding of the morphology linked ion transport in AEMs. We have obtained the highest fluoride self-diffusion coefficient of > 1 x 10-5 cm2/sec ( 55°C) for ETFE-g-PVBTMA membrane which is a result of low tortuosity of 1 obtained for the membrane. This faster fluoride transport combined with low tortuosity of the membrane resulted in > 100mS/cm hydroxide conductivity for the membrane. Polycyclooctene (PCOE) based triblock copolymers are also studied for in-depth understanding of molecular weight, IEC, mechanical and transport properties. Effect of melting temperature of PCOE has favorable effect on increasing ion conductivity and lowering activation energy. Mechanical properties of these types of membranes were studied showing detrimental effect of water plasticization which results in unsuitable mechanical properties

  4. Tramadol loading, release and iontophoretic characteristics of ion-exchange fiber.

    PubMed

    Gao, Yanan; Yuan, Jing; Liu, Hongzhuo; Yang, Yang; Hou, Yanlong; Li, Sanming

    2014-04-25

    The objective of this study was to investigate the drug loading, release and iontophoretic characteristics of strong acidic ion-exchange fiber, using tramadol hydrochloride as a model drug. The complex of charged model drug and ion-exchange fiber was studied as a new approach to achieve controlled drug delivery. Structural characterization of the fiber was elucidated through different approaches including differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), scanning electron microscope (SEM) and infrared spectroscopy (IR). And the mechanism of drug binding into ion-exchange fibers was validated to be ion-exchange. The drug loading into and release from ion-exchange fiber were affected by the concentration, volume and valence of the counter-ions in the external solution. Iontophoresis could significantly increase the delivery rate and amount of transdermal drug, and the iontophoretic dose could be easily controlled by adjusting the current intensity and the amount of release medium. The tramadol could be steadily released both from the drug-loaded fiber and drug solution when applied the iontophoretic method, which was in disagreement with the previous publications. As a drug reservoir, ion-exchange fiber has good regularity of drug loading, release and iontophoretic characteristics.

  5. The TFTR E Parallel B Spectrometer for Mass and Energy Resolved Multi-Ion Charge Exchange Diagnostics

    SciTech Connect

    A.L. Roquemore; S.S. Medley

    1998-01-01

    The Charge Exchange Neutral Analyzer diagnostic for the Tokamak Fusion Test Reactor was designed to measure the energy distributions of both the thermal ions and the supra thermal populations arising from neutral-beam injection and ion cyclotron radio-frequency heating. These measurements yield the plasma ion temperature, as well as several other plasma parameters necessary to provide an understanding of the plasma condition and the performance of the auxiliary heating methods. For this application, a novel charge-exchange spectrometer using a dee-shaped region of parallel electric and magnetic fields was developed at the Princeton Plasma Physics Laboratory. The design and performance of this spectrometer is described in detail, including the effects of exposure of the microchannel plate detector to magnetic fields, neutrons, and tritium.

  6. Tuning a High Transmission Ion Guide to Prevent Gas-Phase Proton Exchange During H/D Exchange MS Analysis

    NASA Astrophysics Data System (ADS)

    Guttman, Miklos; Wales, Thomas E.; Whittington, Dale; Engen, John R.; Brown, Jeffery M.; Lee, Kelly K.

    2016-04-01

    Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for protein structural analysis has been adopted for many purposes, including biopharmaceutical development. One of the benefits of examining amide proton exchange by mass spectrometry is that it can readily resolve different exchange regimes, as evidenced by either binomial or bimodal isotope patterns. By careful analysis of the isotope pattern during exchange, more insight can be obtained on protein behavior in solution. However, one must be sure that any observed bimodal isotope patterns are not artifacts of analysis and are reflective of the true behavior in solution. Sample carryover and certain stationary phases are known as potential sources of bimodal artifacts. Here, we describe an additional undocumented source of deuterium loss resulting in artificial bimodal patterns for certain highly charged peptides. We demonstrate that this phenomenon is predominantly due to gas-phase proton exchange between peptides and bulk solvent within the initial stages of high-transmission conjoined ion guides. Minor adjustments of the ion guide settings, as reported here, eliminate the phenomenon without sacrificing signal intensity. Such gas-phase deuterium loss should be appreciated for all HDX-MS studies using such ion optics, even for routine studies not focused on interpreting bimodal spectra.

  7. Experimental Findings On Minor Actinide And Lanthanide Separations Using Ion Exchange

    SciTech Connect

    Hobbs, D. T.; Shehee, T. C.; Clearfield, A.

    2013-09-17

    This project seeks to determine if inorganic or hybrid inorganic ion-exchange materials can be exploited to provide effective americium and curium separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of the tested ion-exchange materials for actinide and lanthanide ions. During FY13, experimental work focused in the following areas: (1) investigating methods to oxidize americium in dilute nitric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium and (2) synthesis, characterization and testing of ion-exchange materials. Ion-exchange materials tested included alkali titanates, alkali titanosilicates, carbon nanotubes and group(IV) metal phosphonates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of Am(III). Experimental findings indicated that Pu(IV) is oxidized to Pu(VI) by peroxydisulfate, but there are no indications that the presence of plutonium affects the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used. Tests also explored the influence of nitrite on the oxidation of Am(III). Given the formation of Am(V) and Am(VI) in the presence of nitrite, it appears that nitrite is not a strong deterrent to the oxidation of Am(III), but may be limiting Am(VI) by quickly reducing Am(VI) to Am(V). Interestingly, additional absorbance peaks were observed in the UV-Vis spectra at 524 and 544 nm in both nitric acid and perchloric acid solutions when the peroxydisulfate was added as a solution. These peaks have not been previously observed and do not correspond to the expected peak locations for oxidized americium in solution. Additional studies are in progress to identify these unknown peaks. Three titanosilicate ion exchangers were synthesized using a microwave-accelerated reaction system (MARS) and determined to have high affinities

  8. Negligible birefringence in dual-mode ion-exchanged glass waveguide gratings

    NASA Astrophysics Data System (ADS)

    Yliniemi, Sanna; Albert, Jacques; Laronche, Albane; Castro, Jose M.; Geraghty, David; Honkanen, Seppo

    2006-09-01

    Polarization dependence of UV-written Bragg gratings in buried ion-exchanged glass waveguides is investigated. A polarization-dependent shift in Bragg wavelength of less than 0.02 nm is measured, both for the even and the odd modes of a laterally dual-mode waveguide. The measured wavelength shift corresponds to a waveguide birefringence of the order of 10-5, which is negligible for most applications in optical communications. It is observed that the UV-induced birefringence is small, within the limits of the measurement accuracy. The thermal stability of the fabricated gratings is also very good. The results are of particular importance for devices considered here since they require a polarization-independent mode-converting waveguide Bragg grating. Polarization-independent performance of these gratings enables the fabrication of a new class of integrated optical devices for telecommunication applications.

  9. Polymer modification of Resorcinol-Formaldehyde (R-F) ion-exchange resin

    SciTech Connect

    Hubler, T.L.; Franz, J.A.; Yang, J.J.; Shreeve, J.M.

    1997-12-31

    Resorcinol-Formaldehyde (R-F) resin is a candidate regenerable ion-exchange resin for removal of radioactive cesium from highly alkaline waste tank supernates at both the Hanford and Savannah River sites. Previous investigations into the structure/function relationships of R-F resin have shown that the R-F resin undergoes facile oxidation to produce para-quinones, with loss of ion-exchange sites, hence lowered performance of the resin for cesium ion-exchange. In this report, we give the results of our studies into polymer resins prepared using 4-methylresorcinol and 4-fluororesorcinol. The reaction of 4-methylresorcinol with formaldehyde formed oligomeric structures, while a mixture of 4-fluororesorcinol, phenol, and formaldehyde produced a non-soluble resin in aqueous/alkaline conditions. The 4-fluororesorcinol resin underwent significant nucleophilic displacement of the fluorine substituent to give oxidized resins with lower ion-exchange performance.

  10. The Determination of Calcium in Dietary Supplement Tablets by Ion-Exchange.

    ERIC Educational Resources Information Center

    Dietz, Mark L.

    1986-01-01

    An experimental simple ion-exchange experiment in which the amount of calcium present in dietary supplement tablets has been developed is described and some typical student results for several brands of tablets are presented. (JN)

  11. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    SciTech Connect

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  12. Method of detecting defects in ion exchange membranes of electrochemical cells by chemochromic sensors

    DOEpatents

    Brooker, Robert Paul; Mohajeri, Nahid

    2016-01-05

    A method of detecting defects in membranes such as ion exchange membranes of electrochemical cells. The electrochemical cell includes an assembly having an anode side and a cathode side with the ion exchange membrane in between. In a configuration step a chemochromic sensor is placed above the cathode and flow isolation hardware lateral to the ion exchange membrane which prevents a flow of hydrogen (H.sub.2) between the cathode and anode side. The anode side is exposed to a first reactant fluid including hydrogen. The chemochromic sensor is examined after the exposing for a color change. A color change evidences the ion exchange membrane has at least one defect that permits H.sub.2 transmission therethrough.

  13. Equilibrium data for cesium ion exchange of Hanford CC and NCAW tank waste

    SciTech Connect

    Bray, L.A.; Carson, K.J.; Elovich, R.J.; Kurath, D.E.

    1996-04-01

    Hanford alkaline waste storage-tank contents will be processed to remove the soluble salts. A major fraction of these solutions will require cesium recovery to produce a low-level waste (LLW). The technology for decontamination of high-level alkaline waste and sludge wash waters is being developed. At the request of Westinghouse Hanford Company (WHC), the Pacific Northwest Laboratory (PNL) has studied several ion exchange materials for the recovery of cesium from Hanford waste tanks. The WHC program was divided into tow main tasks, (1) to obtain equilibrium data for cesium ion exchange, and (2) to evaluate ion exchange column performance. The subject of this letter report is the measurement of batch distribution coefficients for several ion exchange media for a range of operating conditions for two types of waste; complexant concentrate (CC) and neutralized current acid waste (NCAW).

  14. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    SciTech Connect

    King, W

    2007-11-30

    This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials have been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA

  15. Biomineralization of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using simulated body fluid.

    PubMed

    Kaur, Balwinder; Srivastava, Rajendra; Satpati, Biswarup; Kondepudi, Kanthi Kiran; Bishnoi, Mahendra

    2015-11-01

    Silver ion-exchanged nanocrystalline zeolite (Ag-Nano-ZSM-5) and silver ion-exchanged conventional zeolite (Ag-ZSM-5) were synthesized. Zeolites were incubated in simulated body fluid at 310K for different time periods to grow hydroxyapatite in their matrixes. Significant large amount of hydroxyapatite was grown in Ag-Nano-ZSM-5 matrix after incubation in simulated body fluid when compared to Ag-ZSM-5. The resultant material was characterized using X-ray diffraction, N2-adsorption, scanning/transmission electron microscopy, energy dispersive X-ray, and inductively coupled plasma analysis. Mechanical properties such as compressive modulus, compressive strength, and strain at failure of the parent materials were evaluated. Biocompatibility assays suggested that Ag-Nano-ZSM-5 and hydroxyapatite grown in Ag-Nano-ZSM-5 were compatible and did not impose any toxicity to RAW 264.7 cells macrophase and Caco2 cells suggesting considerable potential for biomedical applications such as bone implants.

  16. A self-regulating antimicrobial model based on the ion-exchange stimuli.

    PubMed

    Huang, Xiaobo; Liu, Yinping; Chang, Chengliang; Jiao, Longan; Hang, Ruiqiang; Tang, Bin

    2015-07-01

    In this study, a novel intelligent antimicrobial model was constructed based on the antibiotic properties of nano-silver and the ion-exchange response of dehydrated alginate (Alg) gel. Through the process of reducing reaction, hydrogel formation and dehydration, the model composed of Alg and nano-silver was fabricated. The distinguished feature of this model lies in its antimicrobial properties and biocompatibility. In this model, the releasing level of nano-silver is determined by the outside-in swelling of Alg composites, which is further self-regulated by the volume of wound exudates. The results showed that the released nano-silver was intelligently maintained within a constant concentration range, so that it could be further designed to exhibit antimicrobial activity without cytotoxicity. Furthermore, the murine wound infection model conducted with these composites resulted in a significant decrease of bacteria number. The self-regulating swelling feature based on the ion-exchange response of Alg along with the controlled release of nano-silver made this composite a promising intelligent model for antimicrobial wound dressing applications.

  17. Ion Exchange Modeling Of Cesium Removal From Hanford Waste Using Spherical Resorcinol-Formaldehyde Resin

    SciTech Connect

    Aleman, S.; Hamm, L.; Smith, F.

    2007-06-27

    This report discusses the expected performance of spherical Resorcinol-Formaldehyde (RF) ion exchange resin for the removal of cesium from alkaline Hanford radioactive waste. Predictions of full scale column performance in a carousel mode are made for the Hot Commissioning, Envelope B, and Subsequent Operations waste compositions under nominal operating conditions and for perturbations from the nominal. Only the loading phase of the process cycle is addressed in this report. Pertinent bench-scale column tests, kinetic experiments, and batch equilibrium experiments are used to estimate model parameters and to benchmark the ion-exchange model. The methodology and application presented in this report reflect the expected behavior of spherical RF resin manufactured at the intermediate-scale (i.e., approximately 100 gallon batch size; batch 5E-370/641). It is generally believed that scale-up to production-scale in resin manufacturing will result in similarly behaving resin batches whose chemical selectivity is unaffected while total capacity per gram of resin may vary some. As such, the full-scale facility predictions provided within this report should provide reasonable estimates of production-scale column performance.

  18. Biomineralization of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using simulated body fluid.

    PubMed

    Kaur, Balwinder; Srivastava, Rajendra; Satpati, Biswarup; Kondepudi, Kanthi Kiran; Bishnoi, Mahendra

    2015-11-01

    Silver ion-exchanged nanocrystalline zeolite (Ag-Nano-ZSM-5) and silver ion-exchanged conventional zeolite (Ag-ZSM-5) were synthesized. Zeolites were incubated in simulated body fluid at 310K for different time periods to grow hydroxyapatite in their matrixes. Significant large amount of hydroxyapatite was grown in Ag-Nano-ZSM-5 matrix after incubation in simulated body fluid when compared to Ag-ZSM-5. The resultant material was characterized using X-ray diffraction, N2-adsorption, scanning/transmission electron microscopy, energy dispersive X-ray, and inductively coupled plasma analysis. Mechanical properties such as compressive modulus, compressive strength, and strain at failure of the parent materials were evaluated. Biocompatibility assays suggested that Ag-Nano-ZSM-5 and hydroxyapatite grown in Ag-Nano-ZSM-5 were compatible and did not impose any toxicity to RAW 264.7 cells macrophase and Caco2 cells suggesting considerable potential for biomedical applications such as bone implants. PMID:26255163

  19. Design and performance of a new continuous-flow sample-introduction system for flame infrared-emission spectrometry: Applications in process analysis, flow injection analysis, and ion-exchange high-performance liquid chromatography.

    PubMed

    Lam, C K; Zhang, Y; Busch, M A; Busch, K W

    1993-06-01

    A new sample introduction system for the analysis of continuously flowing liquid streams by flame infrared-emission (FIRE) spectrometry has been developed. The system uses a specially designed purge cell to strip dissolved CO(2) from solution into a hydrogen gas stream that serves as the fuel for a hydrogen/air flame. Vibrationally excited CO(2) molecules present in the flame are monitored with a simple infrared filter (4.4 mum) photometer. The new system can be used to introduce analytes as a continuous liquid stream (process analysis mode) or on a discrete basis by sample injection (flow injection analysis mode). The key to the success of the method is the new purge-cell design. The small internal volume of the cell minimizes problems associated with purge-cell clean-out and produces sharp, reproducible signals. Spent analytical solution is continuously drained from the cell, making cell disconnection and cleaning between samples unnecessary. Under the conditions employed in this study, samples could be analyzed at a maximum rate of approximately 60/h. The new sample introduction system was successfully tested in both a process analysis- and a flow injection analysis mode for the determination of total inorganic carbon in Waco tap water. For the first time, flame infrared-emission spectrometry was successfully extended to non-volatile organic compounds by using chemical pretreatment with peroxydisulfate in the presence of silver ion to convert the analytes into dissolved carbon dioxide, prior to purging and detection by the FIRE radiometer. A test of the peroxydisulfate/Ag(+) reaction using six organic acids and five sugars indicated that all 11 compounds were oxidized to nearly the same extent. Finally, the new sample introduction system was used in conjunction with a simple filter FIRE radiometer as a detection system in ion-exchange high-performance liquid chromatography. Ion-exchange chromatograms are shown for two aqueous mixtures, one containing six organic

  20. Combining Ion Mobility Spectrometry with Hydrogen-Deuterium Exchange and Top-Down MS for Peptide Ion Structure Analysis

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Maleki, Hossein; Arndt, James R.; Donohoe, Gregory C.; Valentine, Stephen J.

    2014-12-01

    The gas-phase conformations of electrosprayed ions of the model peptide KKDDDDIIKIIK have been examined by ion mobility spectrometry (IMS) and hydrogen deuterium exchange (HDX)-tandem mass spectrometry (MS/MS) techniques. [M+4H]4+ ions exhibit two conformers with collision cross sections of 418 Å2 and 471 Å2. [M+3H]3+ ions exhibit a predominant conformer with a collision cross section of 340 Å2 as well as an unresolved conformer (shoulder) with a collision cross section of ~367 Å2. Maximum HDX levels for the more compact [M+4H]4+ ions and the compact and partially-folded [M+3H]3+ ions are ~12.9, ~15.5, and ~14.9, respectively. Ion structures obtained from molecular dynamics simulations (MDS) suggest that this ordering of HDX level results from increased charge-site/exchange-site density for the more compact ions of lower charge. Additionally, a new model that includes two distance calculations (charge site to carbonyl group and carbonyl group to exchange site) for the computer-generated structures is shown to better correlate to the experimentally determined per-residue deuterium uptake. Future comparisons of IMS-HDX-MS data with structures obtained from MDS are discussed with respect to novel experiments that will reveal the HDX rates of individual residues.

  1. Knowledge based system for runtime controlling of multiscale model of ion-exchange solvent extraction

    NASA Astrophysics Data System (ADS)

    Macioł, Piotr; Gotfryd, Leszek; Macioł, Andrzej

    2012-09-01

    The hereby paper concerns the issue of solution of runtime controlling of multiscale model of ion-exchange solvent extraction. It is based on cooperation of a framework applying Agile Multiscale Modeling Methodology (AM3), and the REBIT Knowledge Based System. Ion-exchange solvent extraction has been shortly introduced. Design assumptions of AM3 and theoretical basis of REBIT have been described. Designed workflows and rules for simple laminar/ turbulent flow and extraction processes have been shown.

  2. Experimental Ion Exchange Column With SuperLig 639 And Simulant Formulation

    SciTech Connect

    Morse, Megan; Nash, C.

    2013-08-26

    SuperLig®639 ion exchange resin was tested as a retrieval mechanism for pertechnetate, through decontamination of a perrhenate spiked 5M Simple Average Na{sup +} Mass Based Simulant. Testing included batch contacts and a three-column ion exchange campaign. A decontamination of perrhenate exceeding 99% from the liquid feed was demonstrated. Analysis of the first formulation of a SBS/WESP simulant found unexpectedly low concentrations of soluble aluminum. Follow-on work will complete the formulation.

  3. Technology transfer: Ion exchange resins for Technetium-99 removal from X-705 raffinates

    SciTech Connect

    Deacon, L.E.; Greiner, M.J.

    1982-12-03

    An ion exchange process will be used at Portsmouth to remove Technetium-99 from uranium recovery waste solutions (raffinates). Subsequent treatment will then remove nitrates from the raffinates by a biodenitrification process prior to discharge to receiving streams to meet environmental standards for liquid wastes. Ion exchange process parameters affecting safe and efficient raffinate treatment have been examined in the laboratory, and results are described in this report. 4 refs., 3 figs., 6 tabs.

  4. High temperature heat exchange: nuclear process heat applications

    SciTech Connect

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment.

  5. Ion exchange selectivity for cross-linked polyacrylic acid

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.

    1983-01-01

    The ion separation factors for 21 common metal ions with cross-linked polyacrylic acid were determined as a function of pH and the percent of the cross-linked polyacrylic acid neutralized. The calcium ion was used as a reference. At a pH of 5 the decreasing order of affinity of the ions for the cross-linked polyacrylic acid was found to be: Hg++, Fe+++, Pb++, Cr+++, Cu++, Cd++, Al+++, Ag+, Zn++, Ni++, Mn++, Co++, Ca++, Sr++, Ba++, Mg++, K+, Rb+, Cs+, Na+, and Li+. Members of a chemical family exhibited similar selectivities. The Hg++ ion appeared to be about a million times more strongly bound than the alkali metal ions. The relative binding of most of the metal ions varied with pH; the very tightly and very weakly bound ions showed the largest variations with pH. The calcium ion-hydrogen ion equilibrium was perturbed very little by the presence of the other ions. The separation factors and selectivity coefficients are discussed in terms of equilibrium and thermodynamic significance.

  6. Ion-exchange material and method of storing radioactive wastes

    DOEpatents

    Komarneni, S.; Roy, D.M.

    1983-10-31

    A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt, and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatible with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

  7. Ion exchange chromatographic conditions for obtaining individual subunits of soybean beta-conglycinin.

    PubMed

    Amigo-Benavent, Miryam; Athanasopoulos, Vasileios I; del Castillo, M Dolores

    2010-09-15

    Soybean beta-conglycinin is a complex protein possessing health-promoting properties. beta-Conglycinin is a trimeric glycoprotein. Little information related to methods for separation of the individual chains forming beta-conglycinin has been so far published and it is of great interest. As a consequence, less data on the bioactivities of alpha, alpha' and beta subunits of this glycoprotein have been published. The present research aimed to find out new alternative chromatographic conditions to obtain beta-conglycinin subunits that are free of contaminating proteins. In the present short communication, we propose the use of a two-step ion exchange chromatographic protocol to achieve this goal. Firstly, beta subunit was separated by means of anionic exchange fast protein liquid chromatography. Secondly, alpha and alpha' chains were separated from each other by cationic exchange. Our data indicated the feasibility of proposed fractionation protocol to separate soybean beta-conglycinin alpha and alpha' subunits from other contaminating proteins and to obtain enough amounts of the three individual chains forming this glycoprotein for further characterization and application. The procedure may be easily up-scaled.

  8. Radium separation through complexation by aqueous crown ethers and ion exchange or solvent extraction

    SciTech Connect

    Chiarizia, R.; Dietz, M.L.; Horwitz, E.P.; Burnett, W.C.

    1997-11-01

    The effect of three water-soluble, unsubstituted crown ethers (15-crown-5 (15C5), 18-crown-6 (18C6) and 21-crown-7 (21C7)) on the uptake of Ca, Sr, Ba and Ra cations by a sulfonic acid cation exchange resin, and on the extraction of the same cations by xylene solutions of dinonylnaphthalenesulfonic acid (HDNNS) from aqueous hydrochloric acid solutions has been investigated. The crown ethers enhance the sorption of the larger cations by the ion exchange resin, thereby improving the resin selectivity over calcium, a result of a synergistic interaction between the crown ether and the ionic functional groups of the resin. Similarly, the extraction of the larger alkaline earth cations into xylene by HDNNS is strongly synergized by the presence of the crown ethers in the aqueous phase. Promising results for intra-Group IIa cation separations have been obtained using each of the three crown ethers as the aqueous ligands and the sulfonic acid cation exchange resin. Even greater separation factors for the radium-calcium couple have been measured with the crown-ethers and HDNNS solutions in the solvent extraction mode. The application of the uptake and extraction results to the development of radium separation schemes is discussed and a possible flowchart for the determination of {sup 226}Ra/{sup 228}Ra in natural waters is presented.

  9. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    SciTech Connect

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  10. ROTARY FILTER FINES TESTING FOR SMALL COLUMN ION EXCHANGE

    SciTech Connect

    Herman, D.

    2011-08-03

    SRNL was requested to quantify the amount of 'fines passage' through the 0.5 micron membranes currently used for the rotary microfilter (RMF). Testing was also completed to determine if there is any additional benefit to utilizing a 0.1 micron filter to reduce the amount of fines that could pass through the filter. Quantifying of the amount of fines that passed through the two sets of membranes that were tested was accomplished by analyzing the filtrate by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) for titanium. Even with preparations to isolate the titanium, all samples returned results of less than the instrument's detection limit of 0.184 mg/L. Test results show that the 0.5 micron filters produced a significantly higher flux while showing a negligible difference in filtrate clarity measured by turbidity. The first targeted deployment of the RMF is with the Small Column Ion Exchange (SCIX) at the Savannah River Site (SRS). SCIX uses crystalline silicotitanate (CST) to sorb cesium to decontaminate a clarified salt solution. The passage of fine particles through the filter membranes in sufficient quantities has the potential to impact the downstream facilities. To determine the amount of fines passage, a contract was established with SpinTek Filtration to operate a 3-disk pilot scale unit with prototypic filter disk and various feeds and two different filter disk membranes. SpinTek evaluated a set of the baseline 0.5 micron filter disks as well as a set of 0.1 micron filter disks to determine the amount of fine particles that would pass the membrane and to determine the flux each set produced. The membrane on both disk sets is manufactured by the Pall Corporation (PMM 050). Each set of disks was run with three feed combinations: prototypically ground CST, CST plus monosodium titanate (MST), and CST, MST, plus Sludge Batch 6 (SB6) simulant. Throughout the testing, samples of the filtrate were collected, measured for turbidity, and sent back

  11. CHARACTERIZATION OF CYCLED SPHERICAL RESORCINOL-FORMALDEHYDE ION EXCHANGE RESIN

    SciTech Connect

    Nash, C.; Duignan, M.

    2010-02-23

    This report presents characterization data for two spherical resorcinol-formaldehyde (sRF) resin beds that had processed cesium in non-radioactive and radioactive cycles. All column cycle operations for the resin beds including loading, displacements, elution, regeneration, breakthroughs, and solution analyses are reported in Nash and Duignan, 2009a. That report covered four ion exchange (IX) campaigns using the two {approx}11 mL beds in columns in a lead-lag arrangement. The first two campaigns used Savannah River Site (SRS) Tank 2F nonradioactive simulant while the latter two were fed with actual dissolved salt in the Savannah River National Laboratory (SRNL) Shielded Cells. Both radioactive cycles ran to cesium breakthrough of the lead column. The resin beds saw in excess of 400 bed volumes of feed in each cycle. Resin disposal plans in tank farm processing depend on characterizations of resin used with actual tank feed. Following a final 30 bed volume (BV) elution with nitric acid, the resin beds were found to contain detectable chromium, barium, boron, aluminum, iron, sodium, sulfur, plutonium, cesium, and mercury. Resin affinity for plutonium is important in criticality safety considerations. Cesium-137 was found to be less than 10E+7 dpm/g of resin, similar to past work with sRF resin. Sulfur levels are reasonably consistent with other work and are expected to represent sulfur chemistry used in the resin manufacture. There were low but detectable levels of technetium, americium, and curium. Toxicity Characteristic Leaching Procedure (TCLP) work on the used (eluted) resin samples showed significant contents of mercury, barium, and chromium. One resin sample exceeded the TCLP level for mercury while the other metals were below TCLP levels. TCLP organics measurements indicated measurable benzene in one case, though the source was unknown. Results of this work were compared with other work on similar sRF resin characterizations in this report. This is the first

  12. Equilibrium Model for Ion Exchange Between Multivalent Cations and Zeolite-A in a Molten Salt

    SciTech Connect

    Supathorn Phongikaroon; Michael Simpson

    2005-10-01

    A two-site equilibrium model that previously only accommodated monovalent cations has been extended to include divalent and trivalent cations for ion exchange between zeolite-A and molten chloride salts, a process being considered for concentrating nuclear fission products into high level waste forms. Equilibrium constants were determined by fitting the model to equilibrium data sets for ion exchange between zeolite-A and Cs ternary salt (CsCl-LiCl-KCl), Rb ternary salt (RbCl-LiCl-KCl), Na ternary salt (NaCl-LiCl-KCl), Sr ternary salt (SrCl2-LiCl-KCl), and U ternary salt (UCl3-LiCl-KCl). The results reveal a good fit between the experimental data sets and the model. The two ion exchange sites, framework sites and occluded sites, demonstrate different relative selectivities for the cations. It was found that Sr2_ is the preferred cation in the ion exchange site, and Cs_ is the preferred cation in the occlusion site. Meanwhile, Li_ has the highest combined selectivity when both ion exchange and occlusion sites are considered. Interestingly, divalent and trivalent species are more preferred in the ion exchange site than the monovalent species with the exception of Li_.

  13. [Ion-exchange hemosorption in the intensive therapy of liver insufficiency in patients with obstructive jaundice].

    PubMed

    Minina, K Z; Kurapov, E P; Goncharov, V V; Leĭkin, Iu A; Tarasova, T I; Treushnikova, N Iu

    1989-01-01

    Hemosorption on thromboresistant ion-exchange resins synthetized at D. I. Mendeleev Moscow Chemical Technological Institute (MCTI) was used in combined therapy of hepatic failure. Use was made of anion-exchange resin A-I-II MCTI, catonit C-I-II MCTI, polyampholit. Stability of hemodynamic parameters, absence of blood element disturbances, effective sampling of anionic and cationic metabolites have been observed.

  14. Negative Ions for Emerging Interdisciplinary Applications

    SciTech Connect

    Guharay, Samar K.

    2011-09-26

    In many applications related to ion beam-materials interactions negative ions are particularly desirable due to its merit to yield a very low surface charge-up voltage, {approx} a few volts, for both electrically isolated surfaces and insulators. Some important applications pertaining to ion beam-material interactions include surface analysis by secondary ion mass spectrometry (SIMS), voltage-contrast microscopy for semiconductor device inspection, materials processing, and ion beam lithography. These applications primarily require vacuum environments. On the other hand, a distinct area of activities constitutes formation of ions and ion transport in ambient environmental conditions, i.e., at atmospheric pressures. In this context, ion mobility spectrometry (IMS) is an important analytical device that uses negative ions and operates at ambient conditions. IMS is widely used in both physical and biological sciences including monitoring environmental conditions, security screening and disease detection. This article highlights several critical issues related to the ionization sources and ion transport in IMS. Additionally, the critical issues related to ion sources, transport and focusing are discussed in the context of SIMS with sub-micrometer spatial resolution.

  15. A review of studies on ion thruster beam and charge-exchange plasmas

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1982-01-01

    Various experimental and analytical studies of the primary beam and charge-exchange plasmas of ion thrusters are reviewed. The history of plasma beam research is recounted, emphasizing experiments on beam neutralization, expansion of the beam, and determination of beam parameters such as electron temperature, plasma density, and plasma potential. The development of modern electron bombardment ion thrusters is treated, detailing experimental results. Studies on charge-exchange plasma are discussed, showing results such as the relationship between neutralizer emission current and plasma beam potential, ion energies as a function of neutralizer bias, charge-exchange ion current collected by an axially moving Faraday cup-RPA for 8-cm and 30-cm ion thrusters, beam density and potential data from a 15-cm ion thruster, and charge-exchange ion flow around a 30-cm thruster. A 20-cm thruster electrical configuration is depicted and facility effects are discussed. Finally, plasma modeling is covered in detail for plasma beam and charge-exchange plasma.

  16. Neutral atomic oxygen beam produced by ion charge exchange for Low Earth Orbital (LEO) simulation

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Rutledge, Sharon; Brdar, Marko; Olen, Carl; Stidham, Curt

    1987-01-01

    A low energy neutral atomic oxygen beam system was designed and is currently being assembled at the Lewis Research Center. The system utilizes a 15 cm diameter Kaufman ion source to produce positive oxygen ions which are charge exchange neutralized to produce low energy (variable from 5 to 150 eV) oxygen atoms at a flux simulating real time low Earth orbital conditions. An electromagnet is used to direct only the singly charged oxygen ions from the ion source into the charge exchange cell. A retarding potential grid is used to slow down the oxygen ions to desired energies prior to their charge exchange. Cryogenically cooled diatomic oxygen gas in the charge exchange cell is then used to transfer charge to the oxygen ions to produce a neutral atomic oxygen beam. Remaining non-charge exchanged oxygen ions are then swept from the beam by electromagnetic or electrostatic deflection depending upon the desired experiment configuration. The resulting neutral oxygen beam of 5 to 10 cm in diameter impinges upon target materials within a sample holder fixture that can also provide for simultaneous heating and UV exposure during the atomic oxygen bombardment.

  17. Recent Excitation, Charge Exchange, and Lifetime Results in Highly Charged Ions Relevant to Stellar, Interstellar, Solar and Comet Phenomena

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Hossain, S.; Mawhorter, R. J.; Smith, S. J.

    2006-01-01

    Recent JPL absolute excitation and charge exchange cross sections, and measurements of lifetimes of metastable levels in highly-charged ions (HCIs) are reported. These data provide benchmark comparisons to results of theoretical calculations. Theoretical approaches can then be used to calculate the vast array of data which cannot be measured due to experimental constraints. Applications to the X-ray emission from comets are given.

  18. Water exchange dynamics around H3O+ and OH- ions

    NASA Astrophysics Data System (ADS)

    Roy, Santanu; Dang, Liem X.

    2015-05-01

    In this letter, we report the first computer simulation of the dynamics of water exchanging between the first and second solvation shells of H3O+. Employing different rate theories for chemical reactions such as the transition state theory, the Grote-Hynes theory, the reactive flux method, and the Impey-Madden-McDonald method, we calculate the solvent exchange rates from molecular dynamics simulations that account for explicit polarization effects. In addition, we also study water exchanges around OH- and find that the corresponding time scale is much smaller than that for H3O+.

  19. Ion exchange membrane cathodes for scalable microbial fuel cells.

    PubMed

    Zuo, Yi; Cheng, Shaoan; Logan, Bruce E

    2008-09-15

    One of the main challenges for using microbial fuel cells (MFCs) is developing materials and architectures that are economical and generate high power densities. The performance of two cathodes constructed from two low-cost anion (AEM) and cation (CEM) exchange membranes was compared to that achieved using an ultrafiltration (UF) cathode, when the membranes were made electrically conductive using graphite paint and a nonprecious metal catalyst (CoTMPP). The best performance in single-chamber MFCs using graphite fiber brush anodes was achieved using an AEM cathode with the conductive coating facing the solution, at a catalyst loading of 0.5 mg/cm2 CoTMPP. The maximum power densitywas 449 mW/ m2 (normalized to the projected cathode surface area) or 13.1 W/m3 (total reactor volume), with a Coulombic efficiency up to 70% in a 50 mM phosphate buffer solution (PBS) using acetate. Decreasing the CoTMPP loading by 40-80% reduced power by 28-56%, with only 16% of the power (72 mW/m2) generated using an AEM cathode lacking a catalyst. Using a current collector (a stainless steel mesh) pressed against the inside surface of the AEM cathode and 200 mM PBS, the maximum power produced was further increased to 728 mW/m2 (21.2 W/m3). The use of AEM cathodes and brush anodes provides comparable performance to similar systems that use materials costing nearly an order of magnitude more (carbon paper electrodes) and thus represent more useful materials for reducing the costs of MFCs for wastewater treatment applications. PMID:18853817

  20. Ion exchange membrane cathodes for scalable microbial fuel cells.

    PubMed

    Zuo, Yi; Cheng, Shaoan; Logan, Bruce E

    2008-09-15

    One of the main challenges for using microbial fuel cells (MFCs) is developing materials and architectures that are economical and generate high power densities. The performance of two cathodes constructed from two low-cost anion (AEM) and cation (CEM) exchange membranes was compared to that achieved using an ultrafiltration (UF) cathode, when the membranes were made electrically conductive using graphite paint and a nonprecious metal catalyst (CoTMPP). The best performance in single-chamber MFCs using graphite fiber brush anodes was achieved using an AEM cathode with the conductive coating facing the solution, at a catalyst loading of 0.5 mg/cm2 CoTMPP. The maximum power densitywas 449 mW/ m2 (normalized to the projected cathode surface area) or 13.1 W/m3 (total reactor volume), with a Coulombic efficiency up to 70% in a 50 mM phosphate buffer solution (PBS) using acetate. Decreasing the CoTMPP loading by 40-80% reduced power by 28-56%, with only 16% of the power (72 mW/m2) generated using an AEM cathode lacking a catalyst. Using a current collector (a stainless steel mesh) pressed against the inside surface of the AEM cathode and 200 mM PBS, the maximum power produced was further increased to 728 mW/m2 (21.2 W/m3). The use of AEM cathodes and brush anodes provides comparable performance to similar systems that use materials costing nearly an order of magnitude more (carbon paper electrodes) and thus represent more useful materials for reducing the costs of MFCs for wastewater treatment applications.

  1. Donnan dialysis of transition metal ions using anion exchange membrane modified with Xylenol Orange

    SciTech Connect

    Sawicka, B.; Brajter, K.; Trojanowicz, M.; Kado, B. )

    1991-01-01

    A chelating ion-exchange membrane was obtained by modification of a PTFE-based anion-exchange membrane with Xylenol Orange. Its utility for dialysis of Cu(II), Ni(II), Mn(II), and Zn(II) was investigated by using receiver solutions without and with iminodiacetate. 1,2-diaminocyclohexanetetraacetic acid, and tetraethylenepentamine. In comparison to commercial PTFE cation-exchange membranes, modified chelating membranes exhibit for the metal ions investigated a larger differentiation of retention in the membrane phase and transport-to-receiver solution depending on the modifier used and the composition of the receiver solution.

  2. Quantifying exchange coupling in f-ion pairs using the diamagnetic substitution method

    SciTech Connect

    Lukens, Wayne W.; Walter, Marc D.

    2010-04-01

    One of the challenges in the chemistry of actinide and lanthanide (f-ion) is quantifying exchange coupling between f-ions. While qualitative information about exchange coupling may be readily obtained using the diamagnetic substitution approach, obtaining quantitative information is much more difficult. This article describes how exchange coupling may be quantified using the susceptibility of a magnetically isolated analog, as in the diamagnetic substitution approach, along with the anisotropy of the ground state as determined by EPR spectroscopy. Several examples are used to illustrate and test this approach.

  3. Metal-air cell with ion exchange material

    SciTech Connect

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2015-08-25

    Embodiments of the invention are related to anion exchange membranes used in electrochemical metal-air cells in which the membranes function as the electrolyte material, or are used in conjunction with electrolytes such as ionic liquid electrolytes.

  4. Ion exchange phase transitions in water-filled channels with charged walls.

    PubMed

    Zhang, J; Kamenev, A; Shklovskii, B I

    2006-05-01

    Ion transport through narrow water-filled channels is impeded by a high electrostatic barrier. The latter originates from the large ratio of the dielectric constants of the water and the surrounding media. We show that "doping," i.e., immobile charges attached to the walls of the channel, substantially reduces the barrier. This explains why most of the biological ion channels are "doped." We show that at rather generic conditions the channels may undergo ion exchange phase transitions (typically of the first order). Upon such a transition a finite latent concentration of ions may either enter or leave the channel, or be exchanged between the ions of different valences. We discuss possible implications of these transitions for the Ca-vs-Na selectivity of biological Ca channels. We also show that transport of divalent Ca ions is assisted by their fractionalization into two separate excitations.

  5. Combined ion exchange treatment for removal of dissolved organic matter and hardness.

    PubMed

    Apell, Jennifer N; Boyer, Treavor H

    2010-04-01

    Dissolved organic matter (DOM) and hardness cations are two common constituents of natural waters that substantially impact water treatment processes. Anion exchange treatment, and in particular magnetic ion exchange (MIEX), has been shown to effectively remove DOM from natural waters. An important advantage of the MIEX process is that it is used as a slurry in a completely mixed flow reactor at the beginning of the treatment train. Hardness ions can be removed with cation exchange resins, although typically using a fixed bed reactor at the end of a treatment train. In this research, the feasibility of combining anion and cation exchange treatment in a single completely mixed reactor for treatment of raw water was investigated. The sequence of anion and cation exchange treatment, the number of regeneration cycles, and the chemistry of the regeneration solution were systematically explored. Simultaneous removal of DOM (70% as dissolved organic carbon) and hardness (>55% as total hardness) was achieved by combined ion exchange treatment. Combined ion exchange is expected to be useful as a pre-treatment for membrane systems because both DOM and divalent cations are major foulants of membranes.

  6. Acoustic and optical properties of thallium ion-exchanged KTiOPO4

    NASA Astrophysics Data System (ADS)

    Chu, David K. T.

    1994-10-01

    Both acoustic and optical properties of thallium ion-exchanged KTiOPO4 (Tl:KTP) plates were examined. Surface acoustic wave (SAW) velocity of the thallium-exchanged z-cut KTP possesses a reduction of 13% from the unchanged KTP. Temperature stability of SAW resonance (1/f0 df/dT) changed from ≊-81 ppm of an untreated z-cut KTP substrate to ≊-121 ppm of a z-cut Tl:KTP substrate. Large optical refractive indices changes at the Tl ion-exchanged surface were observed [Δneff(TE)≊0.3, Δneff(TM)≊0.22]. Tl ion concentration profile from the crystal surface into substrate was also studied using electron beam microscopy and the optical index m-line measurement. Tl-exchanged KTP, therefore, possesses both acoustic and optical waveguiding properties.

  7. Separation of hemicellulose-derived saccharides from wood hydrolysate by lime and ion exchange resin.

    PubMed

    Wang, Xiaojun; Zhuang, Jingshun; Fu, Yingjuan; Tian, Guoyu; Wang, Zhaojiang; Qin, Menghua

    2016-04-01

    A combined process of lime treatment and mixed bed ion exchange was proposed to separate hemicellulose-derived saccharides (HDS) from prehydrolysis liquor (PHL) of lignocellulose as value added products. The optimization of lime treatment achieved up to 44.2% removal of non-saccharide organic compounds (NSOC), mainly colloidal substances, with negligible HDS degradation at 0.5% lime level and subsequent neutralization by phosphoric acid. The residual NSOC and calcium ions in lime-treated PHL were eliminated by mixed bed ion exchange. The breakthrough curves of HDS and NSOC showed selective retention toward NSOC, leading to 75% HDS recovery with 95% purity at 17 bed volumes of exchange capacity. In addition, macroporous resin showed higher exchange capacity than gel resin as indicated by the triple processing volume. The remarkable selectivity of the combined process suggested the feasibility for HDS separation from PHL. PMID:26859331

  8. Evolution of ion-exchange: from Moses to the Manhattan Project to modern times.

    PubMed

    Lucy, Charles A

    2003-06-01

    This article explores the history of ion-exchange from records of desalination in the Old Testament and the writings of Aristotle, to the identification of the phenomenon of ion-exchange by two English agricultural chemists, to the invention of suppressed conductivity by Small et al. [Anal. Chem. 54 (1975) 462]. It then focuses on the characteristics of the gradual and continuous evolution of ion chromatography with suppressed conductivity to its current state, with an emphasis on those discoveries that punctuated or revolutionized this evolution.

  9. Improvement in both giant magnetoresistance and exchange bias through hydrogen ion irradiation at low energy

    SciTech Connect

    Shim, Jaechul; Han, Yoonsung; Lee, Jinwon; Hong, Jongill

    2008-09-01

    Irradiation of IrMn-based spin valves with 550 eV hydrogen ions increased their giant magnetoresistance and exchange bias by 20% and 60%, respectively. This significant enhancement stems from the strong (111) texture and small mosaic spread of the IrMn antiferromagnet that resulted from the microstructural reconstruction caused by the energy transfer during the bombardment by hydrogen ions, as well as by the narrow dispersion in the exchange bias. Irradiation with the hydrogen ion at low energy can improve the properties of spin valves without resulting in undue degradation in the performance or the microstructure.

  10. Extraction of steroidal glucosiduronic acids from aqueous solutions by anionic liquid ion-exchangers

    PubMed Central

    Mattox, Vernon R.; Litwiller, Robert D.; Goodrich, June E.

    1972-01-01

    A pilot study on the extraction of three steroidal glucosiduronic acids from water into organic solutions of liquid ion-exchangers is reported. A single extraction of a 0.5mm aqueous solution of either 11-deoxycorticosterone 21-glucosiduronic acid or cortisone 21-glucosiduronic acid with 0.1m-tetraheptylammonium chloride in chloroform took more than 99% of the conjugate into the organic phase; under the same conditions, the very polar conjugate, β-cortol 3-glucosiduronic acid, was extracted to the extent of 43%. The presence of a small amount of chloride, acetate, or sulphate ion in the aqueous phase inhibited extraction, but making the aqueous phase 4.0m with ammonium sulphate promoted extraction strongly. An increase in the concentration of ion-exchanger in the organic phase also promoted extraction. The amount of cortisone 21-glucosiduronic acid extracted by tetraheptylammonium chloride over the pH range of 3.9 to 10.7 was essentially constant. Chloroform solutions of a tertiary, a secondary, or a primary amine hydrochloride also will extract cortisone 21-glucosiduronic acid from water. The various liquid ion exchangers will extract steroidal glucosiduronic acid methyl esters from water into chloroform, although less completely than the corresponding free acids. The extraction of the glucosiduronic acids from water by tetraheptylammonium chloride occurs by an ion-exchange process; extraction of the esters does not involve ion exchange. PMID:5075264

  11. Effect of modulator sorption on gradient shape in ion-exchange chromatography

    NASA Technical Reports Server (NTRS)

    Velayudhan, A.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    Mobile phase additives, or modulators, are used in gradient elution chromatography to facilitate separation and reduce separation time. The modulators are usually assumed to be linearly adsorbed or unadsorbed. Here, the consequences of nonlinear modulator adsorption are examined for ion-exchange gradient elution through a series of simulations. Even when the buffer salt is identical to the modulator salt, gradient deformation is observed; the extent of deformation increases as the volume of the feed is increased. When the modulator salt is different from the buffer salt, unusual effects are observed, and the chromatograms are quite different from those predicted by classical gradient elution theory. In particular, local increases in the buffer concentration are found between feed bands, and serve to improve the separation. These effects become more pronounced as the feed volume increases, and could therefore prove valuable in preparative applications.

  12. Mathematical modeling and remote monitoring of ion-exchange separation of transplutonium elements

    SciTech Connect

    Tselishchev, I.V.; Elesin, A.A.

    1988-07-01

    A mathematical model and calculational algorithms for the elution curves for ion-exchange separation of transplutonium elements (TPE) and the limits of optimal fractionation of the substances being separated, based on indicators of the process (yield, purification), are presented. The calculational programs are part of the programming provision of a small informational-calculational system based on the microcomputer Elektronika DZ-28, intended for remote monitoring of TPE separation. The elaborated programs can be implemented in the preliminary choice of necessary conditions of the TPE separation process, and also during and after the separation process for comparison of calculated results with the results of continuous, on-line remote monitoring and with the results of laboratory sample analysis. The possible application of the programs has been checked in the instance of the separation of curium and americium, and einsteinium and californium, the results of which are in satisfactory agreement with the results of remote and laboratory-analytical monitoring.

  13. Fouling on ion-exchange membranes: Classification, characterization and strategies of prevention and control.

    PubMed

    Mikhaylin, Sergey; Bazinet, Laurent

    2016-03-01

    The environmentally friendly ion-exchange membrane (IEM) processes find more and more applications in the modern industries in order to demineralize, concentrate and modify products. Moreover, these processes may be applied for the energy conversion and storage. However, the main drawback of the IEM processes is a formation of fouling, which significantly decreases the process efficiency and increases the process cost. The present review is dedicated to the problematic of IEM fouling phenomena. Firstly, the major types of IEM fouling such as colloidal fouling, organic fouling, scaling and biofouling are discussed along with consideration of the main factors affecting fouling formation and development. Secondly, the review of the possible methods of IEM fouling characterization is provided. This section includes the methods of fouling visualization and characterization as well as methods allowing investigations of characteristics of the fouled IEMs. Eventually, the reader will find the conventional and modern strategies of prevention and control of different fouling types.

  14. Dynamics of oxygen sorption from water by copper-containing fibrous porous redox ion-exchangers

    SciTech Connect

    Ul'eva, L.S.; Burinskii, S.V.; Grebennikov, S.F.

    1985-08-10

    A most important field of practical application of oxidation-reduction (redox) polymers is the sorption of dissolved oxygen from water in order to prevent corrosion of power equipment. Copper-containing redox polymers, which have fairly high capacity and good swelling characteristics were used. Values of the dynamic exchange capacity (DEC) for copper ions, the redox capacity (ROC) for the reducing metal, and the dynamic reduction capacity for oxygen are given. It can be seen from these data that fibrous porous reactive materials (FPRM) in which the mass fiber content is 60% have somewhat better characteristics. The authors conclude that despite the fibrous porous material's considerably lower coefficient of internal diffusion, it is superior to granular EI-21 in the length of the masstransfer zone and in the coefficient of utilization of capacity, in consequence of the low linear density of the fibers. Their mass transfer zone is shorter by a factor of about 5.

  15. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis

    USGS Publications Warehouse

    Ball, J.W.; Bassett, R.L.

    2000-01-01

    A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.

  16. THERMAL PERFORMANCE ANALYSIS FOR SMALL ION-EXCHANGE CESIUM REMOVAL PROCESS

    SciTech Connect

    Lee, S.; King, W.

    2009-12-29

    The In-Riser Ion Exchange program focuses on the development of in-tank systems to decontaminate high level waste (HLW) salt solutions at the Savannah River Site (SRS) and the Hanford Site. Small Column Ion Exchange (SCIX) treatment for cesium removal is a primary in-riser technology for decontamination prior to final waste immobilization in Saltstone. Through this process, radioactive cesium from the salt solution is adsorbed onto the ion exchange media which is packed within a flow-through column. Spherical Resorcinol-Formaldehyde (RF) is being considered as the ion exchange media for the application of this technology at both sites. A packed column loaded with media containing radioactive cesium generates significant heat from radiolytic decay. Under normal operating conditions, process fluid flow through the column can provide adequate heat removal from the columns. However, in the unexpected event of loss of fluid flow or fluid drainage from the column, the design must be adequate to handle the thermal load to avoid unacceptable temperature excursions. Otherwise, hot spots may develop locally which could degrade the performance of the ion-exchange media or the temperature could rise above column safety limits. Data exists which indicates that performance degradation with regard to cesium removal occurs with RF at 65C. In addition, the waste supernate solution will boil around 130C. As a result, two temperature limits have been assumed for this analysis. An additional upset scenario was considered involving the loss of the supernate solution due to inadvertent fluid drainage through the column boundary. In this case, the column containing the loaded media could be completely dry. This event is expected to result in high temperatures that could damage the column or cause the RF sorbent material to undergo undesired physical changes. One objective of these calculations is to determine the range of temperatures that should be evaluated during testing with the RF

  17. Process calculation for ion-exchanger regeneration in apparatus with stationary layer

    SciTech Connect

    Zen'kevich, L.A.; Konstantinov, V.A.; Volzhinskii, A.I.; Smirnov, N.N.

    1986-09-20

    Ion exchange is widely used in various branches of chemical technology, including water treatment and waste water purification. The economic efficiency of an ion exchange process is determined mainly by the cost of exchanger regeneration. In order to reduce this cost it is necessary to accurately determine the technological parameters of the process: reagent concentration, flow rate, and amount of reagent needed to achieve the desired degree of exchange resin purity. The present work presents a study of the effect of concentration and hydrodynamic conditions on the kinetics of the regeneration of the leading industrial strong-acid cation-exchanger KU-2-ich from Cu/sup 2 +/, Ni/sup 2 +/, Co/sup 2 +/, and Fe/sup 3 +/. On the basis of the experimental data an effective diffusion coefficients was calculated for various regenerant concentrations. The results of the calculation are evidence for a significant change of diffusion coefficient with acid concentration.

  18. Ion temperatures in HIP-1 and SUMMA from charge-exchange neutral optical emission spectra

    NASA Technical Reports Server (NTRS)

    Patch, R. W.; Lauver, M. R.

    1976-01-01

    Ion temperatures were obtained from observations of the H sub alpha, D sub alpha, and He 587.6 nm lines emitted from hydrogen, deuterium, and helium plasmas in the SUMMA and HIP-1 mirror devices at Lewis Research Center. Steady state discharges were formed by applying a radially inward dc electric field between cylindrical or annular anodes and hollow cathodes located at the peaks of the mirrors. The ion temperatures were found from the Doppler broadening of the charge-exchange components of spectral lines. A statistical method was developed for obtaining scaling relations of ion temperature as a function of current, voltage, and magnetic flux density. Derivations are given that take into account triangular monochromator slit functions, loss cones, and superimposed charge-exchange processes. In addition, the Doppler broadening was found to be sensitive to the influence of drift on charge-exchange cross section. The effects of finite ion-cyclotron radius, cascading, and delayed emission are reviewed.

  19. Stability of phenol-formaldehyde ion-exchange sorbents in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shelkovnikova, L. A.; Gavlina, O. T.; Ivanov, V. A.

    2011-09-01

    It is shown that ion-exchange sorbents based on phenol-formaldehyde resins can be used for a long time for isolating and separating rare alkali metals without any significant changes in the ion-exchange selectivity and capacity. When the phenol sorbents were used in alkaline solutions at elevated temperatures, carboxyl groups gradually accumulated in them as a result of the oxidation of methylol groups with oxygen dissolved in the solution. This led to a considerable increase in the ion-exchange capacity of the sorbents and a simultaneous decrease in the selectivity with respect to Cs+-Rb+ and Rb+-K+ ions (it is desirable to avoid the drying of phenol ionites in air by storing them in a swelled state in closed vessels).

  20. Influence of hydrophobicity on the ion exchange selectivity coefficients for aromatic amines.

    PubMed

    Kril, M B; Fung, H L

    1990-05-01

    Hydrophobic effects could play an important role in determining the selectivity of organic ions for ion-exchange resins in aqueous solutions. We used the octanol-water partition coefficient (P) and the chromatographic capacity factor (K') as indices of hydrophobicity of a series of primary and secondary amines, and examined their relationships with the amine selectivity coefficient (K) in binding to the Amberlite IRP-69 ion-exchange resin. Good correlations were found between log K versus log P and log K versus log K', but the relationship appears to be dependent on the degree of substitution at the amino nitrogen. These relationships may be useful for the estimation of selectivity coefficients of various amine drug candidates when they are considered for incorporation with ion-exchange resins in potential controlled-release systems.

  1. Negative Halogen Ions for Fusion Applications

    SciTech Connect

    Grisham, L.R.; Kwan, J.W.; Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Westenskow, G.

    2006-01-01

    Over the past quarter century, advances in hydrogen negative ion sources have extended the usable range of hydrogen isotope neutral beams to energies suitable for large magnetically confined fusion devices. Recently, drawing upon this experience, negative halogen ions have been proposed as an alternative to positive ions for heavy ion fusion drivers in inertial confinement fusion, because electron accumulation would be prevented in negative ion beams, and if desired, the beams could be photo-detached to neutrals. This paper reports the results of an experiment comparing the current density and beam emittance of Cl+ and Cl- extracted from substantially ion-ion plasmas with that of Ar+ extracted from an ordinary electron-ion plasma, all using the same source, extractor, and emittance scanner. At similar discharge conditions, the Cl- current was typically 85 – 90% of the positive chlorine current, with an e-/ Cl- ratio as low as seven without grid magnets. The Cl- was as much as 76% of the Ar+ current from a discharge with the same RF drive. The minimum normalized beam emittance and inferred ion temperatures of Cl+, Cl-, and Ar+ were all similar, so the current density and optical quality of Cl- appear as suitable for heavy ion fusion driver applications as a positive noble gas ion of similar mass. Since F, I, and Br should all behave similarly in an ion source, they should also be suitable as driver beams.

  2. Biocompatibility Research of a Novel pH Sensitive Ion Exchange Resin Microsphere

    PubMed Central

    Liu, Hongfei; Shi, Shuangshuang; Pan, Weisan; Sun, Changshan; Zou, Xiaomian; Fu, Min; Feng, Yingshu; Ding, Hui

    2014-01-01

    The main objective of this study was to investigate biocompatibility and provide in-vivo pharmacological and toxicological evidence for further investigation of the possibility of pH sensitive ion exchange resin microsphere for clinical utilizations. Acute toxicity study and general pharmacological studies were conducted on the pH sensitive ion exchange resin microsphere we prepared. The general pharmacological studies consist of the effects of the pH sensitive ion exchange resin microsphere on the nervous system of mice, the functional coordination of mice, the hypnosis of mice treated with nembutal at subliminal dose, the autonomic activities of tested mice, and the heart rate, blood pressure, ECG and breathing of the anesthetic cats. The LD50 of pH sensitive ion exchange resin microsphere after oral administration was more than 18.84 g·Kg-1. Mice were orally administered with 16 mg·Kg-1, 32 mg·Kg-1 and 64 mg·Kg-1 of pH sensitive ion exchange resin microsphere and there was no significant influence on mice nervous system, general behavior, function coordination, hypnotic effect treated with nembutal at subliminal dose and frequency of autonomic activities. Within the 90 min after 5 mg·Kg-1, 10 mg·Kg-1, 20 mg·Kg-1 pH sensitive ion exchange resin microsphere was injected to cat duodenum, the heart rate, blood pressure, breathing and ECG of the cats didn’t make significant changes in each experimental group compared with the control group. The desirable pharmacological and toxicological behaviors of the pH sensitive ion exchange resin microsphere exhibited that it has safe biocompatibility and is possible for clinical use. PMID:25276183

  3. Biocompatibility Research of a Novel pH Sensitive Ion Exchange Resin Microsphere.

    PubMed

    Liu, Hongfei; Shi, Shuangshuang; Pan, Weisan; Sun, Changshan; Zou, Xiaomian; Fu, Min; Feng, Yingshu; Ding, Hui

    2014-01-01

    The main objective of this study was to investigate biocompatibility and provide in-vivo pharmacological and toxicological evidence for further investigation of the possibility of pH sensitive ion exchange resin microsphere for clinical utilizations. Acute toxicity study and general pharmacological studies were conducted on the pH sensitive ion exchange resin microsphere we prepared. The general pharmacological studies consist of the effects of the pH sensitive ion exchange resin microsphere on the nervous system of mice, the functional coordination of mice, the hypnosis of mice treated with nembutal at subliminal dose, the autonomic activities of tested mice, and the heart rate, blood pressure, ECG and breathing of the anesthetic cats. The LD50 of pH sensitive ion exchange resin microsphere after oral administration was more than 18.84 g·Kg(-1). Mice were orally administered with 16 mg·Kg(-1), 32 mg·Kg(-1) and 64 mg·Kg(-1) of pH sensitive ion exchange resin microsphere and there was no significant influence on mice nervous system, general behavior, function coordination, hypnotic effect treated with nembutal at subliminal dose and frequency of autonomic activities. Within the 90 min after 5 mg·Kg(-1), 10 mg·Kg(-1), 20 mg·Kg(-1) pH sensitive ion exchange resin microsphere was injected to cat duodenum, the heart rate, blood pressure, breathing and ECG of the cats didn't make significant changes in each experimental group compared with the control group. The desirable pharmacological and toxicological behaviors of the pH sensitive ion exchange resin microsphere exhibited that it has safe biocompatibility and is possible for clinical use.

  4. Charge exchange of metastable 2D oxygen ions with molecular oxygen - A new source of thermospheric O2/+/ ions

    NASA Technical Reports Server (NTRS)

    Torr, D. G.; Torr, M. R.; Rusch, D. W.; Nier, A. O.; Kayser, D.; Hanson, W. B.; Hoffman, J. H.; Donahue, K.

    1979-01-01

    Reactions involving metastable ions are difficult to study in the laboratory. Much new information on these reactions has been derived from satellite measurements of aeronomic parameters. In this paper, Atmosphere Explorer D data are used to study charge exchange of metastable O(+)(2D) ions with O2. Using direct measurements of the O2 at 200 km to compute O2 densities at 300 km and supporting ionic concentrations and temperature observations, we find the rate coefficient for this reaction to be 1 + or - 0.6 times 10 to the minus 9th cu cm/sec. The process constitutes a significant source of O2(+) ions in the F2 layer at times when the N2 and O2 densities are enhanced. This finding leads to the conclusion that charge exchange with O2 must be a major sink for O(+)(2D) and an important source of O2(+) ions in the E region, because of the increase in the O2 concentration/N2 concentration ratio with decreasing altitude. The results imply that 80% of all O(+) ions formed in the E region are converted to O2(+) and that only about 20% of the metastable O(+) ions are converted into N2(+) through charge exchange with N2.

  5. Central metal ion exchange in a coordination polymer based on lanthanide ions and di(2-ethylhexyl)phosphoric acid: exchange rate and tunable affinity.

    PubMed

    Tasaki-Handa, Yuiko; Abe, Yukie; Ooi, Kenta; Tanaka, Mikiya; Wakisaka, Akihiro

    2014-01-01

    In this paper the exchange of lanthanide(III) ions (Ln(3+)) between a solution and a coordination polymer (CP) of di(2-ethylhexyl)phosphoric acid (Hdehp), [Ln(dehp)3], is studied. Kinetic and selectivity studies suggest that a polymeric network of [Ln(dehp)3] has different characteristics than the corresponding monomeric complex. The reaction rate is remarkably slow and requires over 600 h to reach in nearly equilibrium, and this can be explained by the polymeric crystalline structure and high valency of Ln(3+). The affinity of the exchange reaction reaches a maximum with the Ln(3+) possessing an ionic radius 7% smaller than that of the central Ln(3+), therefore, the affinity of the [Ln(dehp)3] is tunable based on the choice of the central metal ion. Such unique affinity, which differs from the monomeric complex, can be explained by two factors: the coordination preference and steric strain caused by the polymeric structure. The latter likely becomes predominant for Ln(3+) exchange when the ionic radius of the ion in solution is smaller than the original Ln(3+) by more than 7%. Structural studies suggest that the incoming Ln(3+) forms a new phase though an exchange reaction, and this could plausibly cause the structural strain.

  6. Ion exchange determines iodine-131 concentration in aqueous samples

    NASA Technical Reports Server (NTRS)

    Fairman, W. D.; Sedlet, J.

    1967-01-01

    Inorganic radioiodide in aqueous media is analyzed by separating the radioactive iodine-131 as the iodide ion on a silver chloride column. The activity in the final precipitate may be determined by beta or gamma counting.

  7. Selective separation of sodium ions from a mixture with phenylalanine by Donnan dialysis with a profiled sulfogroup cation exchange membrane

    NASA Astrophysics Data System (ADS)

    Vasil'eva, V. I.; Goleva, E. A.

    2013-11-01

    The possibility of separating ions of metal from a mixture with ampholyte (an amino acid) by Donnan dialysis with an MK-40 sulfogroup cation exchange membrane is demonstrated. Conditions ensuring the selectivity and intensity of the mass transfer of sodium ions from a mixture with bipolar phenylalanine ions into a diffusate containing hydrochloric acid through a cation exchange membrane are found.

  8. Applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Gelerinter, E.; Spielberg, N.

    1980-01-01

    Wire adhesion in steel belted radial tires; carbon fibers and composite; cold welding, brazing, and fabrication; hydrogen production, separation, and storage; membrane use; catalysis; sputtering and texture; and ion beam implantation are discussed.

  9. Ion-exchange method in the collection of nitrate from freshwater ecosystems for nitrogen and oxygen isotope analysis: a review.

    PubMed

    Li, Wen-Bing; Song, Yao-Bin; Xu, Hong-Ke; Chen, Ling-Yun; Dai, Wen-Hong; Dong, Ming

    2015-07-01

    Nitrate (NO3(-)) contamination of freshwater is considered one of the most prevalent global environmental problems. Dual stable isotopic compositions (δ(15)N and δ(18)O) of NO3(-) can provide helpful information and have been well documented as being a powerful tool to track the source of NO3(-) in freshwater ecosystems. The ion-exchange method is a reliable and precise technique for measuring the δ(15)N and δ(18)O of NO3(-) and has been widely employed to collect NO3(-) from freshwater ecosystems. This review summarizes and presents the principles, affecting factors and corresponding significant improvements of the ion-exchange method. Finally, potential improvements and perspectives for the applicability of this method are also discussed, as are suggestions for further research and development drawn from the overall conclusions.

  10. In-ESI source hydrogen/deuterium exchange of carbohydrate ions.

    PubMed

    Kostyukevich, Yury; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2014-03-01

    We present the investigation of hydrogen/deuterium (H/D) exchange of carbohydrates ions occurring in the electrospray ion source. The shape of the deuterium distribution was observed to be considerably dependent on the temperature of the ion transfer tube and the solvent used. If deuterated alcohol (EtOD or MeOD) or D2O/deuterated alcohol is used as an electrospray solvent, then for high temperatures (>350 °C), intensive back exchange is observed, resulting in ∼30% depth of the deuterium exchange. At low temperatures (<150 °C), the back exchange is weaker and the depth of the deuterium exchange is ∼70%. In the intermediate temperature region (∼250 °C), the deuterium distribution is unusually wide for methanol and bimodal for ethanol. The addition of 1% formic acid results in low (∼30%) depth of the deuterium exchange for any temperature in the operating region. The bimodal distribution for the ethanol can be possibly explained by the presence of differently folded gas-phase ions of carbohydrates.

  11. The chemical precipitation of nickel on ion exchangers and active carbons

    NASA Astrophysics Data System (ADS)

    Khorol'Skaya, S. V.; Zolotukhina, E. V.; Polyanskii, L. N.; Peshkov, S. V.; Kravchenko, T. A.; Krysanov, V. A.

    2010-12-01

    The chemical precipitation of nickel in the form of poorly soluble precipitates in ion exchanger matrices and on active carbons from solutions of nickel chloride and chemical nickel plating electrolytes was studied. The sorption of nickel ions from a solution of nickel chloride occurs most effectively on Purolite D24002 macroporous chelate forming ion exchanger, KU-23-15/100 sulfo cation exchanger, and KU-2-8 gel sulfo cation exchanger. Nickel enters sulfo cation exchangers in the form of counterions, and is adsorbed on Purolite D24002 largely because of complex formation. The subsequent precipitation of nickel in the solid state in matrix pores liberates ionogenic centers, which allows repeated sorption cycles to be performed. After three chemical precipitation cycles under static conditions, the amount of nickel is higher by 170-250% than the ion exchange capacity of the sorbents. The electrolyte of chemical nickel plating contains nickel predominantly in the form of negatively charged and neutral complexes with glycine, which cannot form bonds with the matrices under study. It is therefore reasonable to perform sorption at decreased solution pH values.

  12. Properties of nickel-cadmium separators. [ion exchange membrances

    NASA Technical Reports Server (NTRS)

    Lee, J.

    1977-01-01

    The thickness, moisture content, exchange capacity, tensile strength, diffusion characteristics, stability, and electrical properties are discussed for the 2291 radiation-grafted separator used in military vented nickel cadmium aircraft batteries. A regression analysis of separator resistance as a function of temperature and KOH concentration is included.

  13. Preparation of catalysts via ion-exchangeable coatings on supports

    DOEpatents

    Dosch, R.G.; Stephens, H.P.

    1986-04-09

    Disclosed are: new catalytic compositions which comprise an inert support coated with a hydrous alkali metal, alkaline earth metal, or quaternary ammonium titanate, niobate, zirconate, or tantalate, in which the alkali or alkaline earth metal or quaternary ammonium cations have been exchanged for a catalytically effective quantity of a catalytically effective metal.

  14. Improved hydrous oxide ion-exchange compound catalysts

    DOEpatents

    Dosch, R.G.; Stephens, H.P.

    1986-04-09

    Disclosed is a catalytic material of improved activity which comprises a hydrous, alkali metal or alkaline earth metal or quaternary ammonium titanate, zirconate, niobate, or tantalate, in which the metal or ammonium cations have been exchanged with a catalytically effective quantity of a catalyst metal, and which has been subsequently treated with a solution of a Bronsted acid.

  15. Partition Coefficients of Selected Compounds Using Ion Exchange Separation of Cesium From High Level Waste

    SciTech Connect

    Toth, James J.; Blanchard, David L.; Arm, Stuart T.; Urie, Michael W.

    2004-04-24

    The removal of cesium radioisotope (137Cs) from the High Level Waste stored in underground storage tanks at the Hanford site is a formidable chemical separations challenge for the Waste Treatment Plant. An eluatable organic-based ion exchange resin was selected as the baseline technology (1). The baseline technology design employs a proprietary macrocyclic weak-acid ion exchange resin to adsorb the cesium (137Cs) during the process loading cycle in a fixed bed column design. Following loading, the cesium is eluted from the resin using a nitric acid eluant. Previous work provided limited understanding of the performance of the resin, processed with actual wastes, and under multiple load and elute conditions, which are required for the ion exchange technology to be underpinned sufficiently for resolution of all process-related design issues before flowsheet and construction drawings can be released. By performing multiple ion exchange column tests with waste feeds, and measuring the chemical and radionuclide compositions of the waste feeds, column effluents and column eluants, ion exchange stream composition information can be provided for supporting resolution of selected design issues.

  16. A comparison of experimental and computer model results on the charge-exchange plasma flow from a 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Gabriel, S. B.; Kaufman, H. R.

    1982-01-01

    Ion thrusters can be used in a variety of primary and auxiliary space-propulsion applications. A thruster produces a charge-exchange plasma which can interact with various systems on the spacecraft. The propagation of the charge-exchange plasma is crucial in determining the interaction of that plasma with the spacecraft. This paper compares experimental measurements with computer model predictions of the propagation of the charge-exchange plasma from a 30 cm mercury ion thruster. The plasma potentials, and ion densities, and directed energies are discussed. Good agreement is found in a region upstream of, and close to, the ion thruster optics. Outside of this region the agreement is reasonable in view of the modeling difficulties.

  17. Potential biomedical applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Babbush, C. A.; Vankampen, C. L.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic pros-thesis fixtion, and dental implants.

  18. Potential biomedical applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Van Kampen, C. L.; Babbush, C. A.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic prosthesis fixation, and dental implants.

  19. Small-Column Ion Exchange Testing of Spherical Resorcinol-Formaldehyde

    SciTech Connect

    Brown, Garrett N.; Russell, Renee L.; Peterson, Reid A.

    2011-03-03

    Ion exchange using the Spherical Resorcinol-Formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection (DOE-ORP) for use in the Pretreatment Facility (PTF) of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in an at-tank deployment. Numerous studies have shown the SRF resin to be effective for removing Cs-137 from a wide variety of actual and simulated tank waste supernatants. Prior work focused primarily on the loading behavior for 5 M sodium (Na) solutions at 25°C and the eluting behavior of the loaded SRF resin with virgin 0.5 M HNO3. Recent proposed changes to the process baseline indicate that loading may include a broader range of sodium molarities (2 to 8 M) and higher temperatures (50°C) to alleviate post-filtration precipitation issues. In addition, elution will likely utilize variable-strength recycled nitric acid containing trace amounts of Cs-137. Cesium ion exchange loading and elution curves were generated for a 5 M Na, 2.4E-05 M Cs loading solution traced with Cs-134 followed by elution with variable HNO3 (0.02, 0.07, 0.15, 0.23, and 0.28 M) containing variable CsNO3 (5.0E-09, 5.0E-08, and 5.0E-07 M) and traced with Cs-137. The ion exchange system consisted of a pump, tubing, process solutions, and a single, small (~15 mL) bed of SRF resin with a water-jacketed column for temperature-control. The columns were loaded with approximately 250 bed volumes (BVs) of feed solution at 45°C and at 1.5 to 12 BV per hour (0.15 to 1.2 cm/min). The columns were then eluted with approximately 25 BVs of HNO3 processed at 25°C and at 1.4 BV/hr. The two independent tracers allowed analysis of the on-column cesium interaction between the loading and elution solutions. The objective of these tests was to improve the correlation between the spent resin cesium content and cesium leached out of the resin in subsequent loading cycles (cesium bleed), to help establish acid

  20. Silicene for Na-ion battery applications

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajie; Schwingenschlögl, Udo

    2016-09-01

    Na-ion batteries are promising candidates to replace Li-ion batteries in large scale applications because of the advantages in natural abundance and cost of Na. Silicene has potential as the anode in Li-ion batteries but so far has not received attention with respect to Na-ion batteries. In this context, freestanding silicene, a graphene-silicene-graphene heterostructure, and a graphene-silicene superlattice are investigated for possible application in Na-ion batteries, using first-principles calculations. The calculated Na capacities of 954 mAh/g for freestanding silicene and 730 mAh/g for the graphene-silicene superlattice (10% biaxial tensile strain) are highly competitive and potentials of \\gt 0.3 {{V}} against the Na{}+/Na potential exceed the corresponding value of graphite. In addition, the diffusion barriers are predicted to be \\lt 0.3 {eV}.

  1. Magnetic exchange interaction between rare-earth and Mn ions in multiferroic hexagonal manganites

    SciTech Connect

    Talbayev, Diyar; Trugman, Stuart A; Taylor, Antoinette J; Averitt, Richard D; Namjung, Hur; Andrew, Laforge D; Dimitri, Basov N

    2008-01-01

    The authors report a study of magnetic dynamics in multiferroic hexagonal manganite HoMnO{sub 3} by far-infrared spectroscopy. Low-temperature magnetic excitation spectrum of HoMnO{sub 3} consists of magnetic-dipole transitions of Ho ions within the crystal-field split J = 8 manifold and of the triangular antiferromagnetic resonance of Mn ions. They determine the effective spin Hamiltonian for the Ho ion ground state. The magnetic-field splitting of the Mn antiferromagnetic resonance allows us to measure the magnetic exchange coupling between the rare-earth and Mn ions.

  2. Index variation from field-assisted ion exchange.

    PubMed

    Cooper, A R; El-Leil, M A

    1980-04-01

    Concentration distributions produced from the combined effect of a unidirectional electric field and diffusion are presented for a slab and for a hollow cylinder. A field in the direction such that slow ions follow fast ones results in a stationary distribution that moves with a constant or nearly constant velocity. If the field is in the opposite direction, it tends to mix the ions, and an entirely different distribution that never reaches a steady state is obtained. These results are discussed in the context of the production of graded-index optical materials. PMID:20220990

  3. METHOD OF SEPARATING RARE EARTHS BY ION EXCHANGE

    DOEpatents

    Spedding, F.H.; Powell, J.E.

    1960-10-18

    A process is given for separating yttrium and rare earth values having atomic numbers of from 57 through 60 and 68 through 71 from an aqueous solution whose pH value can range from 1 to 9. All rare earths and yttrium are first adsorbed on a cation exchange resin, and they are then eluted with a solution of N-hydroxyethylethylenediaminetriacetic acid (HEDTA) in the order of decreasing atomic number, yttrium behaving like element 61; the effluents are collected in fractions. The HEDTA is recovered by elution with ammonia solution and the resin is regenerated with sulfuric acid. Rare earths are precipitated from the various effluents with oxalic acid, and each supernatant is passed over cation exchange resin for adsorption of HEDTA and nonprecipitated rare earths: the oxalic acid is not retained by the resin.

  4. Building 579 waste ion exchange facility characterization report

    SciTech Connect

    Sholeen, C.M.; Geraghty, D.C.

    1997-03-01

    External direct surveys were performed for elevated {gamma} levels with a PG2 portable detector connected to a PRM 5-3 meter and for elevated {alpha} and {beta} levels with an NE portable detector. No {gamma} activity above background was detected. Several locations, the floor and west wall of building 579 and the manhole, had low levels of {beta} activity, up to 87 {+-} 49 dis/min. These values are below the allowable residual surface contamination limits for removable beta activity. There is water in the Mixed Bed Exchange Vessel, the Cation Exchange Vessel, the Closed Drain Tank, the manhole and some of the pipes. The accessible internal surfaces of the pipes, tanks and columns had higher levels of {beta} activity up to 172 {+-} 52 dis/min and some {alpha} activity up to 106 {+-} 29 dis/min. After the water is removed from the vessels, tanks, and lines, they should be surveyed to determine whether the areas accessible for smear surveys are representative of the general inside contamination levels. There are elevated levels of radionuclides in the resin from the Cation Exchange Vessel and in the water from the manhole. Since the radionuclide concentrations in the manhole water are less than ten times the site release criteria, it does not need any processing before it is released to the onsite drains. Although there are RCRA metals on the resin in the Cation Exchange Vessel, the amount that is removed during a leaching analysis is below the toxicity Characteristic level. Therefore, the resin is a radioactive waste not a mixed waste.

  5. SEPARATION OF PLUTONIUM FROM AQUEOUS SOLUTIONS BY ION-EXCHANGE

    DOEpatents

    Schubert, J.

    1958-06-01

    A process is described for the separation of plutonium from an aqueous solution of a plutonium salt, which comprises adding to the solution an acid of the group consisting of sulfuric acid, phosphoric acid, and oxalic acid, and mixtures thereof to provide an acid concentration between 0.0001 and 1 M, contacting the resultant solution with a synthetic organic anion exchange resin, and separating the aqueous phase and the resin which contains the plutonium.

  6. Ignition calculations using a reduced coupled-mode electron- ion energy exchange model*

    NASA Astrophysics Data System (ADS)

    Garbett, W. J.; Chapman, D. A.

    2016-03-01

    Coupled-mode models for electron-ion energy exchange can predict large deviations from standard binary collision models in some regimes. A recently developed reduced coupled-mode model for electron-ion energy exchange, which accurately reproduces full numerical results over a wide range of density and temperature space, has been implemented in the Nym hydrocode and used to assess the impact on ICF capsule fuel assembly and performance. Simulations show a lack of sensitivity to the model, consistent with results from a range of simpler alternative models. Since the coupled-mode model is conceptually distinct to models based on binary collision theory, this result provides increased confidence that uncertainty in electron-ion energy exchange will not impact ignition attempts.

  7. Ion exchange chromatography and radioimmunoassay procedure for measuring opioid peptides and substance P

    SciTech Connect

    Bergstroem, L.; Christensson, I.; Folkesson, R.; Stenstroem, B.; Terenius, L.

    1983-10-01

    The measurements of peptides of the enkephalin, dynorphin and substance P systems is complicated by the number of possible precursor fragments and degradation products that might cross-react with the antisera. By using an ion-exchanger step before radioimmunoassay one can reduce the possibility that observed peptide levels are due to precursors or metabolites. The ion-exchanger method runs with good recovery and its main advantage is that many samples can be run in parallel. The recovery from the ion-exchanger was similar using two different homogenizing media, whereas the measured endogenous levels of (Met) and (Leu)enkephalin were 3-4 fold higher with 1M acetic acid than when a 1:1 MeOH/HCl mixture was used for tissue extraction.

  8. 21 CFR 173.25 - Ion-exchange resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... hydrogen peroxide whereby the resin contains not more than 15 percent by weight of vinyl N,N-di-methyl..., carbonate, chloride, hydrogen, hydroxyl, magnesium, potassium, sodium, and sulfate except that: The ion... resins in the hydrogen form identified in paragraphs (a) (1), (2), and (11) of this section; or (ii)...

  9. 21 CFR 173.25 - Ion-exchange resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... oxidized with hydrogen peroxide whereby the resin contains not more than 15 percent by weight of vinyl N,N..., carbonate, chloride, hydrogen, hydroxyl, magnesium, potassium, sodium, and sulfate except that: The ion... resins in the hydrogen form identified in paragraphs (a) (1), (2), and (11) of this section; or (ii)...

  10. 21 CFR 173.25 - Ion-exchange resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... hydrogen peroxide whereby the resin contains not more than 15 percent by weight of vinyl N,N-di-methyl..., carbonate, chloride, hydrogen, hydroxyl, magnesium, potassium, sodium, and sulfate except that: The ion... resins in the hydrogen form identified in paragraphs (a) (1), (2), and (11) of this section; or (ii)...

  11. 21 CFR 173.25 - Ion-exchange resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... hydrogen peroxide whereby the resin contains not more than 15 percent by weight of vinyl N,N-di-methyl..., carbonate, chloride, hydrogen, hydroxyl, magnesium, potassium, sodium, and sulfate except that: The ion... resins in the hydrogen form identified in paragraphs (a) (1), (2), and (11) of this section; or (ii)...

  12. 21 CFR 173.25 - Ion-exchange resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... hydrogen peroxide whereby the resin contains not more than 15 percent by weight of vinyl N,N-di-methyl..., carbonate, chloride, hydrogen, hydroxyl, magnesium, potassium, sodium, and sulfate except that: The ion... resins in the hydrogen form identified in paragraphs (a) (1), (2), and (11) of this section; or (ii)...

  13. Ion-exchange and selectivity behavior of thermally treated and. gamma. -irradiated phases of zirconium(IV) arsenophosphate cation exchanger: separation of Al(III) from some metal ions and removal of cations from water

    SciTech Connect

    Varshney, K.G.; Varshney, K.; Agrawal, S.

    1983-01-01

    Ion-exchange and selectivity behavior of zirconium(IV) arsenophosphate (ZAP) has been studied systematically after thermal and irradiation treatments. As a result, an increase in the ion-exchange capacity and a complete reversal in the selectivity sequence for some common metal ions has been observed on heating. The modified phase of ZAP has been utilized successfully for the quantitative separation of aluminum from numerous metal ions and for the removal of cations from water. 5 figures, 3 tables.

  14. Electrochemical Ion-Exchange Regeneration and Fluidized Bed Crystallization for Zero-Liquid-Discharge Water Softening.

    PubMed

    Chen, Yingying; Davis, Jake R; Nguyen, Chi H; Baygents, James C; Farrell, James

    2016-06-01

    This research investigated the use of an electrochemical system for regenerating ion-exchange media and for promoting the crystallization of hardness minerals in a fluidized bed crystallization reactor (FBCR). The closed-loop process eliminates the creation of waste brine solutions that are normally produced when regenerating ion-exchange media. A bipolar membrane electrodialysis stack was used to generate acids and bases from 100 mM salt solutions. The acid was used to regenerate weak acid cation (WAC) ion-exchange media used for water softening. The base solutions were used to absorb CO2 gas and to provide a source of alkalinity for removing noncarbonate hardness by WAC media operated in H(+) form. The base solutions were also used to promote the crystallization of CaCO3 and Mg(OH)2 in a FBCR. The overall process removes hardness ions from the water being softened and replaces them with H(+) ions, slightly decreasing the pH value of the softened water. The current utilization efficiency for acid and base production was ∼75% over the operational range of interest, and the energy costs for producing acids and bases were an order of magnitude lower than the costs for purchasing acid and base in bulk quantities. Ion balances indicate that the closed-loop system will accumulate SO4(2-), Cl(-), and alkali metal ions. Acid and base balances indicate that for a typical water, small amounts of base will be accumulated. PMID:27161852

  15. Electrochemical Ion-Exchange Regeneration and Fluidized Bed Crystallization for Zero-Liquid-Discharge Water Softening.

    PubMed

    Chen, Yingying; Davis, Jake R; Nguyen, Chi H; Baygents, James C; Farrell, James

    2016-06-01

    This research investigated the use of an electrochemical system for regenerating ion-exchange media and for promoting the crystallization of hardness minerals in a fluidized bed crystallization reactor (FBCR). The closed-loop process eliminates the creation of waste brine solutions that are normally produced when regenerating ion-exchange media. A bipolar membrane electrodialysis stack was used to generate acids and bases from 100 mM salt solutions. The acid was used to regenerate weak acid cation (WAC) ion-exchange media used for water softening. The base solutions were used to absorb CO2 gas and to provide a source of alkalinity for removing noncarbonate hardness by WAC media operated in H(+) form. The base solutions were also used to promote the crystallization of CaCO3 and Mg(OH)2 in a FBCR. The overall process removes hardness ions from the water being softened and replaces them with H(+) ions, slightly decreasing the pH value of the softened water. The current utilization efficiency for acid and base production was ∼75% over the operational range of interest, and the energy costs for producing acids and bases were an order of magnitude lower than the costs for purchasing acid and base in bulk quantities. Ion balances indicate that the closed-loop system will accumulate SO4(2-), Cl(-), and alkali metal ions. Acid and base balances indicate that for a typical water, small amounts of base will be accumulated.

  16. High performance ion chromatography of haloacetic acids on macrocyclic cryptand anion exchanger.

    PubMed

    Bruzzoniti, Maria Concetta; De Carlo, Rosa Maria; Horvath, Krisztian; Perrachon, Daniela; Prelle, Ambra; Tófalvi, Renáta; Sarzanini, Corrado; Hajós, Péter

    2008-04-11

    A new high performance ion chromatographic method has been developed for the separation of the nine chlorinated-brominated haloacetic acids (HAAs) that are the disinfection by-products of chlorination of drinking water, using a macrocycle-based adjustable-capacity anion-exchange separator column (IonPac Cryptand A1). A gradient method based on theoretical and experimental considerations has been optimized in which 10 mM NaOH-LiOH step gradient was performed at the third minute of the analysis. The optimized method allowed us to separate the nine HAAs and seven possibly interfering inorganic anions in less than 25 min with acceptable resolution. The minimum concentrations detectable for HAAs were between 8.0 (MBA) and 210 (TBA) microg L(-1), with linearity included between 0.9947 (TBA) and 0.9998 (MBA). To increase sensitivity, a 25-fold preconcentration step on a reversed phase substrate (LiChrolut EN) has been coupled. Application of this method to the analysis of haloacetic acids in real tap water samples is illustrated.

  17. Corrosion of steel drums containing cemented ion-exchange resins as intermediate level nuclear waste

    NASA Astrophysics Data System (ADS)

    Duffó, G. S.; Farina, S. B.; Schulz, F. M.

    2013-07-01

    Exhausted ion-exchange resins used in nuclear reactors are immobilized by cementation before being stored. They are contained in steel drums that may undergo internal corrosion depending on the presence of certain contaminants. The objective of this work is to evaluate the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins with different aggressive species. The corrosion potential and the corrosion rate of the steel, and the electrical resistivity of the matrix were monitored for 900 days. Results show that the cementation of ion-exchange resins seems not to pose special risks regarding the corrosion of the steel drums. The corrosion rate of the steel in contact with cemented ion-exchange resins in the absence of contaminants or in the presence of 2.3 wt.% sulphate content remains low (less than 0.1 μm/year) during the whole period of the study (900 days). The presence of chloride ions increases the corrosion rate of the steel at the beginning of the exposure but, after 1 year, the corrosion rate drops abruptly reaching a value close to 0.1 μm/year. This is probably due to the lack of water to sustain the corrosion process. When applying the results obtained in the present work to estimate the corrosion depth of the steel drums containing the cemented radioactive waste after a period of 300 years, it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. Cementation of ion-exchange resins does not seem to pose special risks regarding the corrosion of the steel drums that contained them; even in the case the matrix is highly contaminated with chloride ions.

  18. Simulation of charge exchange plasma propagation near an ion thruster propelled spacecraft

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Kaufman, H. R.; Winder, D. R.

    1981-01-01

    A model describing the charge exchange plasma and its propagation is discussed, along with a computer code based on the model. The geometry of an idealized spacecraft having an ion thruster is outlined, with attention given to the assumptions used in modeling the ion beam. Also presented is the distribution function describing charge exchange production. The barometric equation is used in relating the variation in plasma potential to the variation in plasma density. The numerical methods and approximations employed in the calculations are discussed, and comparisons are made between the computer simulation and experimental data. An analytical solution of a simple configuration is also used in verifying the model.

  19. Channel waveguides on RbTiOPO4 by Cs+ ion exchange.

    PubMed

    Cugat, J; Solé, R; Carvajal, J J; Mateos, X; Massons, J; Lifante, G; Díaz, F; Aguiló, M

    2013-02-01

    In this Letter we report Cs(+) ion exchange channel waveguides on RbTiOPO(4) (RTP) for what we believe is the first time. A Ti channel mask was fabricated on an RTP substrate by conventional photolithography. The ion exchange process was carried out in a CsNO(3) melt, and the channels produced ranged from 6 to 11 μm in width. The near-field pattern of the modes was recorded, and type II second harmonic generation in waveguide regime was obtained, producing 512.5 nm green light. The optical characterization shows optical losses of 3.8 dB/cm.

  20. Fractionation of Aspergillus niger cellulases by combined ion exchange affinity chromatography

    SciTech Connect

    Boyer, R.F.; Allen, T.L.; Dykema, P.A.

    1987-02-05

    Eight chemically modified cellulose supports were tested for their ability to adsorb components of the Aspergillus niger cellulase system. At least two of the most effective adsorbents, aminoethyl cellulose and carboxymethyl cellulose, were shown to be useful for the fractionation of cellulases. These supports apparently owe their resolving capacity to both ion exchange and biospecific binding effects; however, the relative importance of each effect is unknown. These observations form the basis for a new cellulase fractionation technique, combined ion exchange-affinity chromatography. 22 references.

  1. Features of the sorption of phenylalanine by profiled ion-exchange membranes

    NASA Astrophysics Data System (ADS)

    Vasil'eva, V. I.; Goleva, E. A.; Selemenev, V. F.

    2016-10-01

    Features of the equilibrium sorption of phenylalanine from neutral media by profiled ion-exchange membranes in a wide range of concentrations is studied under static conditions. The mechanism of phenylalanine sorption by ion-exchange membranes with profiled and smooth surfaces is discussed. It is shown that phenylalanine sorption is accompanied by the formation of spatial associative structures of the aminoacid in an external equilibrium solution, and in a solution of the membrane's pore spaces or on its surface. The increased sorption capacity of the profiled membranes is explained by features of the microstructure of their surface and volume.

  2. Summary of Testing of SuperLig 639 at the TFL Ion Exchange Facility

    SciTech Connect

    Steimke, J.L.

    2000-12-19

    A pilot scale facility was designed and built in the Thermal Fluids Laboratory at the Savannah River Technology Center to test ion exchange resins for removing technetium and cesium from simulated Hanford Low Activity Waste (LAW). The facility supports the design of the Hanford River Protection Project for BNFL, Inc. The pilot scale system mimics the full-length of the columns and the operational scenario of the planned ion exchange system. Purposes of the testing include confirmation of the design, evaluation of methods for process optimization and developing methods for waste volume minimization. This report documents the performance of the technetium removal resin.

  3. RESORCINOL-FORMALDEHYDE ION EXCHANGE RESIN CHEMISTRY FOR HIGH LEVEL WASTE TREATMENT

    SciTech Connect

    Nash, C.; Duignan, M.

    2010-01-14

    A principal goal at the Savannah River Site is to safely dispose of the large volume of liquid nuclear waste held in many storage tanks. In-tank ion exchange technology is being considered for cesium removal using a polymer resin made of resorcinol formaldehyde that has been engineered into microspheres. The waste under study is generally lower in potassium and organic components than Hanford waste; therefore, the resin performance was evaluated with actual dissolved salt waste. The ion exchange performance and resin chemistry results are discussed.

  4. Impact of anionic ion exchange resins on NOM fractions: Effect on N-DBPs and C-DBPs precursors.

    PubMed

    Bazri, Mohammad Mahdi; Martijn, Bram; Kroesbergen, Jan; Mohseni, Madjid

    2016-02-01

    The formation potential of carbonaceous and nitrogenous disinfection by-products (C-DBPs, N-DBPs) after ion exchange treatment (IEX) of three different water types in multiple consecutive loading cycles was investigated. Liquid chromatography with organic carbon detector (LC-OCD) was employed to gauge the impact of IEX on different natural organic matter (NOM) fractions and data obtained were used to correlate these changes to DBPs Formation Potential (FP) under chlorination. Humic (-like) substances fractions of NOM were mainly targeted by ion exchange resins (40-67% removal), whereas hydrophilic, non-ionic fractions such as neutrals and building blocks were poorly removed during the treatment (12-33% removal). Application of ion exchange resins removed 13-20% of total carbonaceous DBPs FP and 3-50% of total nitrogenous DBPs FP. Effect of the inorganic nitrogen (i.e., Nitrate) presence on N-DBPs FP was insignificant while the presence of dissolved organic nitrogen (DON) was found to be a key parameter affecting the formation of N-DBPs. DON especially the portion affiliated with humic substances fraction, was reduced effectively (∼77%) as a result of IEX treatment. PMID:26547880

  5. Impact of anionic ion exchange resins on NOM fractions: Effect on N-DBPs and C-DBPs precursors.

    PubMed

    Bazri, Mohammad Mahdi; Martijn, Bram; Kroesbergen, Jan; Mohseni, Madjid

    2016-02-01

    The formation potential of carbonaceous and nitrogenous disinfection by-products (C-DBPs, N-DBPs) after ion exchange treatment (IEX) of three different water types in multiple consecutive loading cycles was investigated. Liquid chromatography with organic carbon detector (LC-OCD) was employed to gauge the impact of IEX on different natural organic matter (NOM) fractions and data obtained were used to correlate these changes to DBPs Formation Potential (FP) under chlorination. Humic (-like) substances fractions of NOM were mainly targeted by ion exchange resins (40-67% removal), whereas hydrophilic, non-ionic fractions such as neutrals and building blocks were poorly removed during the treatment (12-33% removal). Application of ion exchange resins removed 13-20% of total carbonaceous DBPs FP and 3-50% of total nitrogenous DBPs FP. Effect of the inorganic nitrogen (i.e., Nitrate) presence on N-DBPs FP was insignificant while the presence of dissolved organic nitrogen (DON) was found to be a key parameter affecting the formation of N-DBPs. DON especially the portion affiliated with humic substances fraction, was reduced effectively (∼77%) as a result of IEX treatment.

  6. Effect of Mono- and Poly-CH/P Exchange(s) on the Aromaticity of the Tropylium Ion.

    PubMed

    Puri, Ankita; Gupta, Raakhi

    2016-01-01

    In view of the fact that the phosphorus atom in its low co-ordination state (coordination numbers 1 and 2) has been termed as the carbon copy, there have been attempts to investigate, theoretically as well as experimentally, the effect of the exchange(s) of CH- moiety with phosphorus atom(s) (CH/P) on the structural and other aspects of the classical carbocyclic and heterocyclic systems. Tropylium ion is a well-known non-benzenoid aromatic system and has been studied extensively for its aromatic character. We have now investigated the effect of mono- and poly-CH/P exchange(s) on the aromaticity of the tropylium ion. For this purpose, the parameters based on the geometry and magnetic properties, namely bond equalization, aromatic stabilization energies (ASE), Nucleus-Independent Chemical Shift (NICS) values, (NICS(0), NICS(1), NICS(1)zz), proton nucleus magnetic resonance (¹H-NMR) chemical shifts, magnetic susceptibility exaltation and magnetic anisotropic values of mono-, di-, tri- and tetra-phosphatropylium ions have been determined at the Density Functional Theory (DFT) (B3LYP/6-31+G(d)) level. Geometry optimization reveals bond length equalization. ASEs range from -46.3 kcal/mol to -6.2 kcal/mol in mono- and diphospha-analogues which are planar. However, the ions having three and four phosphorus atoms lose planarity and their ASE values approach the values typical for non-aromatic structures. Of the three NICS values, the NICS(1)zz is consistently negative showing aromatic character of all the systems studied. It is also supported by the magnetic susceptibility exaltations and magnetic anisotropic values. Furthermore, ¹H-NMR chemical shifts also fall in the aromatic region. The conclusion that mono-, di-, tri- and tetra-phosphatropylium ions are aromatic in nature has been further corroborated by determining the energy gap between the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) (HOMO - LUMO gap), which falls in the

  7. Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-103

    SciTech Connect

    Hassan, N.M.

    2000-07-27

    The pretreatment process for BNFL, Inc.'s Hanford River Protection Project is to provide decontaminated low activity waste and concentrated eluate streams for vitrification into low activity and high level waste glass, respectively. The pretreatment includes sludge washing, filtration, precipitation, and ion exchange processes to remove entrained solids, cesium, transuranics, technetium, and strontium. The ion exchange removal of cesium (Cs) and technetium (Tc) ions is accomplished by using SuperLig 644, and 639 resins from IBC Advanced Technologies, American Fork, Utah. The resins were shown to selectively remove cesium and technetium (as pertechnetate), from alkaline salt solutions. The efficiency of ion exchange column loading and elution is a complex function involving feed compositions, equilibrium and kinetic behavior of ion exchange resins, diffusion, and the ionic strength and pH of the aqueous solution. A previous experimental program completed at the Savannah River Technology Center demonstrated the conceptualized flow sheet parameters with a similar Hanford tank sample (241-AW-101). Those experiments included determination of Cs and Tc batch distribution coefficients by SuperLig 644 and 639 resins and demonstration of small-scale column breakthrough and elution. The experimental findings were used in support of preliminary design bases and pretreatment flow sheet development by BNFL, Inc.

  8. Resolution of the exchange anomaly in triplet exciton ion radical salts

    NASA Astrophysics Data System (ADS)

    Chesnut, D. B.; Meinholtz, Dore C.

    1984-04-01

    The temperature dependence of the D and E zero-field splitting parameters in the triplet-exciton-containing ion radical salt (φ3AsCH+3)(TCNQ)-2 has been measured at low temperatures and used to correct observed splittings at higher temperatures where triplet-triplet exchange is present. Analysis of the exchange effects from the thermally corrected splittings leads to an exchange activation energy (0.110 eV) and frequency factor (1.4×1011 Hz) in good agreement with those obtained from previous width measurements.

  9. Properties of radioactive wastes and waste containers. Quarterly progress report, July-September 1980. [Resin/bitumen composites; cement/ion exchange resin

    SciTech Connect

    Morcos, N.; Weiss, A.J.

    1981-01-01

    A study was initiated to evaluate the leachability and integrity of bitumen/organic ion exchange resin composites. Mixtures of anionic and cationic resins in the SO/sub 4//sup -2/, H/sup +/, Cs/sup +/, and Sr/sup +2/ forms were used. The leachability of sodium and cesium from the bitumen/organic ion exchange resin composites was observed to increase when anionic resins in the sulfate form were incorporated in the composite. Topical application of a coat of bitumen on these composites decreased Na leachability by sixfold. The leachability of cesium-137 from cement waste forms and cement/organic ion exchange resin (H/sup +/ form) was studied. Portland II and lumnite cements were used in making the forms. Cesium-137 was leached at a faster rate from portland II/ion exchange resin composites that contained the higher ratio of cement to resins, and also from portland II cement waste forms than from that were made with lumnite cement. An experiment was initiated to study the volumetric changes of organic ion exchange resin beds in aquwous media as a function of ionic species and their concentrations in an aqueous milieu. The species studied were cesium, strontium, and aluminum. The resin volumes were observed to decrease when the solute ionic concentration increased, and a hysteresis effect was observed when the solute concentration was then decreased. The resin bed volumes were observed to increase as the solute concentrations decreased, but the resin volumes did not return to their original values. This observed shrinking and swelling is used to explain the disintegration of cement/organic ion exchange resin composites when immersed in water. The paper on ''Radiation effects on ion exchangers used in radioactive waste management'' in Appendix A has been processed separately for inclusion in the Energy Data Base. 18 refs., 15 figs., 13 tabs.

  10. Ion Beam Analysis Techniques in Interdisciplinary Applications

    SciTech Connect

    Respaldiza, Miguel A.; Ager, Francisco J.

    1999-12-31

    The ion beam analysis techniques emerge in the last years as one of the main applications of electrostatic accelerators. A short summary of the most used IBA techniques will be given as well as some examples of applications in interdisciplinary sciences.

  11. Ion beam analysis techniques in interdisciplinary applications

    SciTech Connect

    Respaldiza, Miguel A.; Ager, Francisco J.

    1999-11-16

    The ion beam analysis techniques emerge in the last years as one of the main applications of electrostatic accelerators. A short summary of the most used IBA techniques will be given as well as some examples of applications in interdisciplinary sciences.

  12. Denitration of Rocky Flats Ion-Exchange Resins: Recommendation of Denitration Processes, October 19, 1995

    SciTech Connect

    Jacob Espinoza; Mary Barr; Wayne Smith

    1998-12-01

    Resin denitration via anion-exchange is an implementable process that can effectively mitigate the hazards associated with stored resins in which the bulk of the nitrate consists of an "exchangeable nitrate" ionically bound to the cationic sites of the anion-exchange resins. Salicylate has been selected as the exchange anion of choice because of its superior selectivity for the Rocky Flats resins and its unique potential for comprehensive recovery and recycle. This report outlines a single recommended resin denigration procedure that is reasonably independent of the resin composition and the current stored form. This procedure is not optimized but rather seeks to `over-treat' the resins so that a single procedure works for the variety of stored resins. The recommended treatment with sodium salicylate reduces resins by 95-99+% the measured exothermic behavior of the ion-exchange.

  13. Charge-exchange Induced Modulation of the Heliosheath Ion Distribution Downstream of the Termination Shock

    NASA Astrophysics Data System (ADS)

    Fahr, H. J.; Fichtner, H.; Scherer, K.

    2015-12-01

    We consider the evolution of the solar wind ion distribution function alongthe plasma flow downstream from the termination shock induced by chargeexchange processes with cold interstellar H-atoms. We start from a kineticphase space transport equation valid in the bulk frame of the plasma flowthat takes into account convective changes, cooling processes, energydiffusion and ion injection, and describes solar wind and pick-up ionsas a co-moving, isotropic, joint ion population. From this kinetic transportequation one can ascend to an equation for the pressure moment of the iondistribution function, a so-called pressure transport equation, describingthe evolution of the ion pressure in the comoving rest frame. Assuming thatthe local ion distribution can be represented by an adequate kappa functionwith a kappa parameter that varies with the streamline coordinate, weobtain an ordinary differential equation for kappa as function of thestreamline coordinate s. With this result then we gain the heliosheath iondistribution function downstream of the termination shock. The latter thencan be used to predict the Voyager-2 measured moments of the distributionfunction like ion density and ion temperature, and it can also be used topredict spectral fluxes of ENA`s originating from these ions and registeredby IBEX-Hi and IBEX-Lo.We especially analyse the solar wind ion temperature decreasemeasured by Voyager-2 between the years 2008 to 2011 and try to explain itas a charge-exchange induced cooling of the ion distribution function duringthe associated ion convection period.

  14. Ion exchanger in the brain: Quantitative analysis of perineuronally fixed anionic binding sites suggests diffusion barriers with ion sorting properties

    NASA Astrophysics Data System (ADS)

    Morawski, Markus; Reinert, Tilo; Meyer-Klaucke, Wolfram; Wagner, Friedrich E.; Tröger, Wolfgang; Reinert, Anja; Jäger, Carsten; Brückner, Gert; Arendt, Thomas

    2015-12-01

    Perineuronal nets (PNs) are a specialized form of brain extracellular matrix, consisting of negatively charged glycosaminoglycans, glycoproteins and proteoglycans in the direct microenvironment of neurons. Still, locally immobilized charges in the tissue have not been accessible so far to direct observations and quantifications. Here, we present a new approach to visualize and quantify fixed charge-densities on brain slices using a focused proton-beam microprobe in combination with ionic metallic probes. For the first time, we can provide quantitative data on the distribution and net amount of pericellularly fixed charge-densities, which, determined at 0.4-0.5 M, is much higher than previously assumed. PNs, thus, represent an immobilized ion exchanger with ion sorting properties high enough to partition mobile ions in accord with Donnan-equilibrium. We propose that fixed charge-densities in the brain are involved in regulating ion mobility, the volume fraction of extracellular space and the viscosity of matrix components.

  15. Modeling ion exchange in glass with concentration-dependent diffusion coefficients and mobilities

    NASA Astrophysics Data System (ADS)

    Lupascu, Alexandru I.; Kevorkian, Antoine P.; Boudet, Thierry; Saint-Andre, Francoise; Persegol, Dominique; Levy, Michel

    1996-06-01

    Multimode buried waveguides made in silicate glass by field-assisted ion exchange present very asymmetric profiles. We show how this phenomenon originates in the large dependence of the kinetics on the local ion concentrations. For this purpose, we derive an interdiffusion equation that includes the effects of concentration-dependent diffusion coefficients and mobilities. We show how to deduce this dependence from measurements on ion- diffused samples. The maximum concentration of the incoming ions is computed from surface equilibrium conditions and is used in the interdiffusion equation as a limiting parameter for coefficient variations. To control the model accuracy for surface as well as buried waveguides, we measure ion profiles with three independent methods: M-lines, scanning electron microscopy, and near-field refractometry. When applied to Ag+-Na+ exchange in silicate glass, the model yields theoretical estimations in good agreement with experiments. This approach underlines the fundamentally nonlinear process that takes place during ion exchange and is also valuable to properly model singlemode waveguide fabrication.

  16. Purification of a recombinant baculovirus of Autographa californica M nucleopolyhedrovirus by ion exchange membrane chromatography.

    PubMed

    Grein, Tanja A; Michalsky, Ronald; Vega López, Maria; Czermak, Peter

    2012-08-01

    Significant progress in the application of viral vectors for gene delivery into mammalian cells and the use of viruses as biopesticides requires downstream processing that can satisfy application-specific demands on performance. In the present work the stability and ion exchange membrane chromatography of a recombinant of Autographa californica M nucleopolyhedrovirus is studied. To adjust the degree of purification the effect of ionic conductivity or pH on the viral infectivity was assessed (0.77-78.00mS/cm, pH 3-8). Infectivity decreased rapidly by several orders of magnitude at below 5mS/cm (i.e., 0.49MPa osmotic pressure change) or at below pH 5.5 (rationalized with particle aggregation). The virus was concentrated and purified via adsorption (0.2-1.1×10(16)pfu/m(3) chromatographic bed volume, 0.6-1.1×10(12)pfu/m(2) membrane area facing the incident fluid flow) and elution at pH 6.1 and 6.35mS/cm from three strong anion exchange membranes. Virus recovery and concentration in accord with the volume reduction were obtained using a polyether sulfone-based membrane with quaternary ammonium ligands. The level of host cell protein (down to below the detection limit) and suspended DNA (below 93pg DNA per 10(6)pfu) are reported for each membrane employed, for the purpose of comparability, under equal adsorption or elution conditions respectively.

  17. Rapid fabrication of microfluidic polymer electrolyte membrane fuel cell in PDMS by surface patterning of perfluorinated ion-exchange resin

    NASA Astrophysics Data System (ADS)

    Song, Yong-Ak; Batista, Candy; Sarpeshkar, Rahul; Han, Jongyoon

    In this paper we demonstrate a simple and rapid fabrication method for a microfluidic polymer electrolyte membrane (PEM) fuel cell using polydimethylsiloxane (PDMS), which has become the de facto standard material in BioMEMS. Instead of integrating a Nafion sheet film between two layers of a PDMS device in a traditional "sandwich format," we pattern a perfluorinated ion-exchange resin such as a Nafion resin on a glass substrate using a reversibly bonded PDMS microchannel to generate an ion-selective membrane between the fuel-cell electrodes. After this patterning step, the assembly of the microfluidic fuel cell is accomplished by simple oxygen plasma bonding between the PDMS chip and the glass substrate. In an example implementation, the planar PEM microfluidic fuel cell generates an open circuit voltage of 600-800 mV and delivers a maximum current output of nearly 4 μA. To enhance the power output of the fuel cell we utilize self-assembled colloidal arrays as a support matrix for the Nafion resin. Such arrays allow us to increase the thickness of the ion-selective membrane to 20 μm and increase the current output by 166%. Our novel fabrication method enables rapid prototyping of microfluidic fuel cells to study various ion-exchange resins for the polymer electrolyte membrane. Our work will facilitate the development of miniature, implantable, on-chip power sources for biomedical applications.

  18. Commercial Ion Exchange Resin Vitrification in Borosilicate Glass

    SciTech Connect

    Cicero-Herman, C.A.; Workman, P.; Poole, K.; Erich, D.; Harden, J.

    1998-05-01

    Bench-scale studies were performed to determine the feasibility of vitrification treatment of six resins representative of those used in the commercial nuclear industry. Each resin was successfully immobilized using the same proprietary borosilicate glass formulation. Waste loadings varied from 38 to 70 g of resin/100 g of glass produced depending on the particular resin, with volume reductions of 28 percent to 68 percent. The bench-scale results were used to perform a melter demonstration with one of the resins at the Clemson Environmental Technologies Laboratory (CETL). The resin used was a weakly acidic meth acrylic cation exchange resin. The vitrification process utilized represented a approximately 64 percent volume reduction. Glass characterization, radionuclide retention, offgas analyses, and system compatibility results will be discussed in this paper.

  19. Neurosurgical applications of ion beams

    NASA Astrophysics Data System (ADS)

    Fabrikant, Jacob I.; Levy, Richard P.; Phillips, Mark H.; Frankel, Kenneth A.; Lyman, John T.

    1989-04-01

    The program at Donner Pavilion has applied nuclear medicine research to the diagnosis and radiosurgical treatment of life-threatening intracranial vascular disorders that affect more than half a million Americans. Stereotactic heavy-charged-particle Bragg peak radiosurgery, using narrow beams of heavy ions, demonstrates superior biological and physical characteristics in brain over X-and γ-rays, viz., improved dose distribution in the Bragg peak and sharp lateral and distal borders and less scattering of the beam. Examination of CNS tissue response and alteration of cerebral blood-flow dynamics related to heavy-ion Bragg peak radiosurgery is carried out using three-dimensional treatment planning and quantitative imaging utilizing cerebral angiography, computerized tomography (CT), magnetic resonance imaging (MRI), cine-CT, xenon X-ray CT and positron emission tomography (PET). Also under examination are the physical properties of narrow heavy-ion beams for improving methods of dose delivery and dose distribution and for establishing clinical RBE/LET and dose-response relationships for human CNS tissues. Based on the evaluation and treatment with stereotactically directed narrow beams of heavy charged particles of over 300 patients, with cerebral angiography, CT scanning and MRI and PET scanning of selected patients, plus extensive clinical and neuroradiological followup, it appears that Stereotactic charged-particle Bragg peak radiosurgery obliterates intracranial arteriovenous malformations or protects against rebleeding with reduced morbidity and no mortality. Discussion will include the method of evaluation, the clinical research protocol, the Stereotactic neuroradiological preparation, treatment planning, the radiosurgery procedure and the protocol for followup. Emphasis will be placed on the neurological results, including the neuroradiological and clinical response and early and late delayed injury in brain leading to complications (including vasogenic edema

  20. [Ion-exchange substrate as a source of nitrogen mobile forms in the conveyor method of vegetables cultivation on artificial soil].

    PubMed

    Velichko, V V; Ushakova, S A; Tikhomirov, A A

    2014-01-01

    The investigation had the objective to evaluate the applicability of ion-exchange substrate to maintaining the mobile nitrogen content in irrigation solution and artificial coil during cultivation of a mixed (in term of age) vegetable container. Objects of the investigation were radishes and leaf cabbage crops with the period of vegetation of 28 days. A 120-day experiment showed that single introduction of the ion-exchange substrate promoted nitrogen stabilization in the irrigation solution and, consequently, yielding of higher crops as compared with the control. PMID:25365879

  1. [Ion-exchange substrate as a source of nitrogen mobile forms in the conveyor method of vegetables cultivation on artificial soil].

    PubMed

    Velichko, V V; Ushakova, S A; Tikhomirov, A A

    2014-01-01

    The investigation had the objective to evaluate the applicability of ion-exchange substrate to maintaining the mobile nitrogen content in irrigation solution and artificial coil during cultivation of a mixed (in term of age) vegetable container. Objects of the investigation were radishes and leaf cabbage crops with the period of vegetation of 28 days. A 120-day experiment showed that single introduction of the ion-exchange substrate promoted nitrogen stabilization in the irrigation solution and, consequently, yielding of higher crops as compared with the control.

  2. Energy efficient reconcentration of diluted human urine using ion exchange membranes in bioelectrochemical systems.

    PubMed

    Tice, Ryan C; Kim, Younggy

    2014-11-01

    Nutrients can be recovered from source separated human urine; however, nutrient reconcentration (i.e., volume reduction of collected urine) requires energy-intensive treatment processes, making it practically difficult to utilize human urine. In this study, energy-efficient nutrient reconcentration was demonstrated using ion exchange membranes (IEMs) in a microbial electrolysis cell (MEC) where substrate oxidation at the MEC anode provides energy for the separation of nutrient ions (e.g., NH4(+), HPO4(2-)). The rate of nutrient separation was magnified with increasing number of IEM pairs and electric voltage application (Eap). Ammonia and phosphate were reconcentrated from diluted human urine by a factor of up to 4.5 and 3.0, respectively (Eap = 1.2 V; 3-IEM pairs). The concentrating factor increased with increasing degrees of volume reduction, but it remained stationary when the volume ratio between the diluate (urine solution that is diluted in the IEM stack) and concentrate (urine solution that is reconcentrated) was 6 or greater. The energy requirement normalized by the mass of nutrient reconcentrated was 6.48 MJ/kg-N (1.80 kWh/kg-N) and 117.6 MJ/kg-P (32.7 kWh/kg-P). In addition to nutrient separation, the examined MEC reactor with three IEM pairs showed 54% removal of COD (chemical oxygen demand) in 47-hr batch operation. The high sulfate concentration in human urine resulted in substantial growth of both of acetate-oxidizing and H2-oxidizing sulfate reducing bacteria, greatly diminishing the energy recovery and Coulombic efficiency. However, the high microbial activity of sulfate reducing bacteria hardly affected the rate of nutrient reconcentration. With the capability to reconcentrate nutrients at a minimal energy consumption and simultaneous COD removal, the examined bioelectrochemical treatment method with an IEM application has a potential for practical nutrient recovery and sustainable treatment of source-separated human urine.

  3. Ion exchange with the solar wind for planets with negligible intrinsic magnetic fields

    NASA Technical Reports Server (NTRS)

    Nisbet, J. S.

    1979-01-01

    The exchange of ions between the ionosphere of a planet with negligible intrinsic magnetic field, and the solar wind is examined. It is suggested that a balance exists between the outflow of ionospheric ions at the plasmapause and ions from the solar wind in a restricted region close to the subsolar point. This results in a current system towards the subsolar point on the surface of the ionopause and a toroidal magnetic field. Simple calculations are made of the current and field configuration that might result from the system for conditions similar to those encountered on the Viking 1 and 2 transits of the Mars ionosphere.

  4. Nonlinear ion acoustic dissipative shock structure with exchange-correlation effects in quantum semiconductor plasmas

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Akhtar, N.

    2016-09-01

    Ion acoustic shocks in the electron-hole-ion semiconductor plasmas have been studied. The quantum recoil effects, exchange-correlation effects and degenerate pressure of electrons and holes are included. The ion species are considered classical and their dissipation is taken into account via the dynamic viscosity. The Korteweg de Vries Burgers equation is derived by using reductive perturbation approach. The excitation of shock waves in different semiconductor plasmas is pointed out. For numerical analyses, the plasma parameters of different semiconductors are considered. The impact of variation of the plasma parameters on the strength of the shock wave in the semiconductor plasmas is discussed.

  5. Development of a Waste Water Regenerative System - Using Sphagnum Moss Ion-exchange

    NASA Astrophysics Data System (ADS)

    McKeon, M.; Wheeler, R.; Leahy, Jj

    The use of inexpensive, light weight and regenerative systems in an enclosed environment is of great importance to sustained existence in such habitats as the International Space Station, Moon or even Mars. Many systems exist which utilise various synthetic ion exchangers to complete the process of waste water clean-up. These systems do have a very good exchange rate for cations but a very low exchange rate for anions. They also have a maximum capacity before they need regeneration. This research proposes a natural alternative to these synthetic ion-exchangers that utilises one of natures greatest ion-exchangers, that of Sphagnum Moss. Sphagna can be predominantly found in the nutrient poor environment of Raised Bogs, a type of isolated wetland with characteristic low pH and little interaction with the surrounding water table. All nutrients come from precipitation. The sphagna have developed as the bog's sponges, soaking up all available nutrients (both cation & anion) from the precipitation and eventually distributing them to the surrounding flora and fauna, through the water. The goal of this research is to use this ability in the processing of waste water from systems similar to isolated microgravity environments, to produce clean water for reuse in these environments. The nutrients taken up by the sphagna will also be utilised as a growth medium for cultivar growth, such as those selected for hydroponics' systems.

  6. Synthesis of Anomeric Methyl Fructofuranosides and Their Separation on an Ion-Exchange Resin

    ERIC Educational Resources Information Center

    Nurminen, Erkki; Poijarvi, Paivi; Koskua, Katja; Hovinen, Jari

    2007-01-01

    Treatment of d-fructose with methanol in the presence of acid as a catalyst gives a mixture of methyl-[beta]-d-fructopyranoside, methyl-[alpha]-D-fructofuranoside, and methyl-[beta]-d-fructofuranoside, which were separated on an ion exchange column and characterized polarimetrically.

  7. Conceptual study of in-tank cesium removal using an inorganic ion exchange material

    SciTech Connect

    Goheen, R.S.; Kurath, D.E.

    1996-04-01

    Presently, the Hanford Site contains approximately 230,000 m{sup 3} of mixed waste stored in 177 underground tanks. Approximately 55,000 m{sup 3} of this waste is sludge, 90,000 m{sup 3} is salt cake, and 80,000 m{sup 3} is supernate. Although the pretreatment and final disposal requirements for the waste have not been entirely defined, it is likely that some supernatant pretreatment will be required to remove {sup 137}Cs and possibly {sup 90}Sr and the transuranic components. The objective of this study was to estimate the number of HLW glass canisters resulting from the use of inorganic ion exchanger materials as in-tank pretreatment technology. The variables in the study were: number of contacts between waste and ion exchange material; ion exchange material; and decontamination requirement. This conceptual study investigates a generic in-tank Cs removal flowsheet using crystalline silico-titanates and IE-96 zeolites, and the impact of each ion exchanger on the number of glass canisters produced. In determining glass formulation, data based on current reference technology was used. Sample calculations from the worksheets and summaries of final calculated results are included at the end of this report.

  8. Vitrification of Cesium-Laden Organic Ion Exchange Resin in a Stirred Melter

    SciTech Connect

    Cicero-Herman, C.A; Sargent, T.N.; Overcamp, T.J.; Bickford, D.F.

    1997-07-09

    The goal of this research was a feasibility study for vitrifying the organic ion exchange resin in a stirred-tank melter. Tests were conducted to determine the fate of cesium including the feed, exit glass, and offgas streams and to assess any impact of feeding the resin on the melter or its performance.

  9. Development and testing of ion exchangers for treatment of liquid wastes at Oak Ridge National Laboratory

    SciTech Connect

    Collins, J.L.; Davidson, D.J.; Chase, C.W.; Egan, B.Z.; Ensor, D.D.; Bright, R.M.; Glasgow, D.C.

    1993-03-01

    This report addresses three areas of waste treatment: (1) treatment of newly generated low-level liquid waste and Melton Valley Storage Tank (MVST) supernate using inorganic ion exchangers; (2) treatment of processing streams at the Radiochemical Engineering Development Center (REDC); and (3) removal of radionuclides from organic solutions. Distribution of various radionuclides between simulated waste solutions and several sorbents was determined in batch tests. Inorganic ion exchangers were prepared in the form of microspheres by an intemal gelation process. Microspheres of hydrous titania, hydrous zirconia, hydrous titania containing embedded sodium cobalt hexacyanoferrate, and the corresponding phosphate forms of these materials were prepared. Several zeolites (PDZ-140, PDZ-300, EE-96, CBV-10A) and inorganic ion exchangers (hydrous titania, hydrous zirconia, polyantimanic acid, sodium cobalt hexacyanoferrate) were tested for the removal of cesium and strontium from the acidic simulated Cleanex raffinate generated at REDC. A resorcinol-based ion-exchange resin and three types of sodium titanate were tested for removal of cesium and strontium from the REDC caustic dissolver solution. Hydrous titania, hydrous zirconia, and their corresponding phosphates were tested for the removal of Eu{sup 3+} from various solutions of di-2-ethylbexyl phosphoric acid (HDEHP) in toluene or dodecane.

  10. Spent ion exchange resin-its treatment from the point of view of safe disposal.

    PubMed

    Seshadri, K S; Raj, S S; Lal, K B

    2003-01-01

    Ion exchange process is one of the treatment methods for radioactive waste. The resin becomes no longer useful after number of cycles of usage. At the same time the regenerated resin cannot be considered as non active waste for disposal. Hence it is felt necessary that the regenerated resin is treated in a fashion so as to result in a form which can be considered as inactive material. It is possible to convert this spent resin into multivalent ionic form which are generally non leachable, thus providing the necessary properties for meeting the disposal criteria. Studies were carried out for the exchange of radioactive ions on these resins with ions like Al3+, Sn4+, Pb2+ and Fe3+ etc. The studies included leachability aspects, exchange with other active ions, thermal characteristics, compressive strength of the cement blocks loaded with the resin etc. Our studies indicated that the order of the stability of the resin with respect to properties like leachability, exchange properties etc. follow the trend as follows: Sn4+ > Pb2+ > Al3+ > Fe3+.

  11. Basic Ion Exchange Softening. Training Module 2.210.2.77.

    ERIC Educational Resources Information Center

    McMullen, L. D.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with ion exchange softening. It includes objectives, an instructor guide, student handouts, and transparency masters. This is the first level of a three module series. The module considers the principles, components, operation,…

  12. Intermediate Ion Exchange Softening. Training Module 2.211.3.77.

    ERIC Educational Resources Information Center

    McMullen, L. D.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the operation of an ion exchange softening system. It includes objectives, an instructor guide, student handouts, and transparency masters. This is the second level of a three module series. The module considers operation and…

  13. Highly-selective and Regenerable Ion Exchange for Perchlorate Remediation, Recovery, and Environmental Forensics

    NASA Astrophysics Data System (ADS)

    Gu, B.; Brown, G.

    2007-12-01

    Perchlorate (ClO4-) has recently emerged as a widespread contaminant found in drinking water and groundwater supplies in the United States and is known to disrupt thyroid function by inhibiting iodide uptake. Among various treatment technologies, the highly-selective and regenerable ion-exchange technology has recently been developed at ORNL for removing ClO4- from contaminated water. The selective ion exchange technology relies on a unique, highly specific resin to trap ClO4- from contaminated water. The treatment system is then regenerated and perchlorate is destroyed. The reaction that destroys ClO4- produces Cl- and Fe(III) that are used to regenerate the resin, resulting in practically zero secondary waste production. In comparison with conventional non-selective ion-exchange technology, this new treatment process is expected to result in not only a reduced O&M cost but also the elimination of the disposal of hazardous wastes containing perchlorate. Additionally, the selective and regenerable ion exchange technology has allowed the quantitative recovery of perchlorate from contaminated water for reuse, or from other environmental matrices such as sediment, groundwater, and salt deposits for perchlorate isotopic and source identification. Naturally-forming perchlorate has been found to contain distinct oxygen and chlorine isotope signatures or anomalies as compared with anthropogenic perchlorate and can thus provide unambiguous identification of the sources of perchlorate contamination as a powerful tool for the forensics of perchlorate in the environment.

  14. Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102

    SciTech Connect

    Hassan, N.M.

    2000-07-27

    The pretreatment process for BNFL, Inc.'s Hanford River Protection Project is to provide decontaminated low activity waste and concentrated eluate streams for vitrification into low and high activity waste glass, respectively. The pretreatment includes sludge washing, filtration, precipitation, and ion exchange processes to remove entrained solids, cesium, transuranics, technetium, and strontium. The cesium (Cs-137) and technetium (Tc-99) ion exchange removal is accomplished by using SuperLig 644, and 639 resins from IBC Advanced Technologies, American Fork, Utah. The resins were shown to selectively remove cesium and technetium (as anionic pertechnetate ) from alkaline salt solutions. The efficiency of ion exchange column loading and elution is a complex function involving feed compositions, equilibrium and kinetic behavior of ion exchange resins, diffusion, and the ionic strength and pH of the aqueous solution. A previous experimental program completed at the Savannah River Tech nology Center2 demonstrated the conceptualized flow sheet parameters with an Envelope C sample from Hanford Tank 241-AN-107. Those experiments also included determination of Cs and Tc batch distribution coefficients by SuperLig 644 and 639 resins and demonstration of small-scale column breakthrough and elution. The experimental findings were used in support of preliminary design bases and pretreatment flow sheet development by BNFL, Inc.

  15. ARSENIC REMOVAL FROM DRINKING WATER BY ION EXCHANGE AND ACTIVATED ALUMINA PLANTS

    EPA Science Inventory

    This report documents a long term performance study of two ion exchange (IE) and two activated alumina (AA) treatment plants to remove arsenic from drinking water. Performance information was collected on these systems that are located in the northeast for one full year. The stud...

  16. Advanced Ion Exchange Softening. Training Module 2.212.4.77.

    ERIC Educational Resources Information Center

    McMullen, L. D.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the operation of an ion exchange softening system. It includes objectives, an instructor guide, student handouts and transparency masters. This is the third level of a three module series. This module considers the theory of ion…

  17. Updating of sewage - purification facilities of electroplating enterprises with counterflow ion-exchange filters

    NASA Astrophysics Data System (ADS)

    Torosyan, V. F.; Torosyan, E. S.; Sorokin, P. D.; Telitsyn, A. A.

    2015-09-01

    The paper focuses on work of electroplating sewage-purification facilities of mechanical engineering production; drawbacks caused by specific features of physical and chemical processes of coagulation and technological malfunctions have been revealed. Additional equipment - ion-exchanging filters have been selected on the basis of designed methods, they make it possible for enterprises of mechanical engineering to implement conversion to water rotation systems.

  18. High-resolution determination of {sup 147}Pm in urine using dynamic ion-exchange chromatography

    SciTech Connect

    Elchuk, S.; Lucy, C.A.; Burns, K.I.

    1992-10-15

    Ion exchange preconcentration followed by HPLC purification prior to scintillation counting was used to measure the concentration of {sup 147}Pm in urine. the detection limit for this method was found to be 0.1 Bq (3 fg) of {sup 147}Pm in 500 ml of urine.

  19. Controlled transdermal delivery of leuprorelin by pulsed iontophoresis and ion-exchange fiber.

    PubMed

    Malinovskaja, Kristina; Laaksonen, Timo; Hirvonen, Jouni

    2014-11-01

    Poor transport efficacy and issues related to biological variation are major concerns in the development of novel iontophoretic devices for the transdermal delivery of therapeutic peptides. The objective of this study was to examine the impact of constant and pulsed current on the transport of nonapeptide leuprorelin acetate across porcine epidermis. Also, the potential of drug delivery system combining iontophoresis and ion-exchange fibers as drug matrices for the delivery of the same peptide was tested. The present study demonstrated the benefit of pulsed current (Tn=2.59×10(-4)) over constant current (Tn=1.7×10(-4)) in terms of more efficient transdermal peptide transport. An increase in the delivery of electroosmotic marker by pulsed current was due to the combined effect of more pronounced electroosmotic transport and reduced inhibition of passive transport. We also showed a promising approach using ion-exchange fibers for controlling the release and iontophoretic transdermal delivery of peptides. Positively charged leuprorelin acetate was bound to the ion-exchange groups of cation-exchange fibers until it was gradually released by mobile counter ions in the external solution. Transdermal flux from acrylic acid grafted Smopex®-102 fibers remained higher (Jss=0.71μg/hcm(2)) than from sulfonic acid grafted Smopex®-101 fibers (Jss=0.31μg/hcm(2)) due to better drug release.

  20. Dose consequence analysis for transporting Plutonium Recycle Test Reactor (PRTR) rupture loop ion exchange columns

    SciTech Connect

    Goldberg, H.J., Westinghouse Hanford

    1996-07-03

    Ion exchange columns from the 309 Plutonium Recycle Test Reactor rupture loop must be shipped to the solid waste burial ground. The enclosed calculational note documents the calculations used to calculate the absorbed doses expected in the case of a postulated accident.

  1. HIGH ASPECT RATIO ION EXCHANGE RESIN BED - HYDRAULIC RESULTS FOR SPERICAL RESIN BEADS

    SciTech Connect

    Duignan, M; Charles Nash, C; Timothy Punch, T

    2007-09-27

    A principal role of the DOE Savannah River Site is to safely dispose of a large volume of liquid nuclear waste held in many storage tanks. An in-tank ion exchange unit is being considered for cesium removal to accelerate waste processing. This unit is planned to have a relatively high bed height to diameter ratio (10:1). Complicating the design is the need to cool the ion exchange media; therefore, the ion exchange column will have a central cooling core making the flow path annular. To separate cesium from waste the media being considered is made of resorcinol formaldehyde resin deposited on spherical plastic beads and is a substitute for a previously tested resin made of crystalline silicotitanate. This spherical media not only has an advantage of being mechanically robust, but, unlike its predecessor, it is also reusable, that is, loaded cesium can be removed through elution and regeneration. Resin regeneration leads to more efficient operation and less spent resin waste, but its hydraulic performance in the planned ion exchange column was unknown. Moreover, the recycling process of this spherical resorcinol formaldehyde causes its volume to significantly shrink and swell. To determine the spherical media's hydraulic demand a linearly scaled column was designed and tested. The waste simulant used was prototypic of the wastes' viscosity and density. This paper discusses the hydraulic performance of the media that will be used to assist in the design of a full-scale unit.

  2. Net gain demonstration with glass hybrid optical amplifiers made by ion-exchange and wafer bonding

    NASA Astrophysics Data System (ADS)

    Gardillou, Florent; Broquin, Jean-Emmanuel

    2006-02-01

    Thanks to the maturing of rare-earth highly-doped materials, erbium-doped waveguide amplifiers (EDWAs) present a compact alternative to fiber amplifiers. While ion-exchanged EDWAs implemented on glass substrates provide the best passive characteristics, EDWAs based on thin films technologies offer a higher integration and amplification efficiencies. This paper proposes the realization of EDWAs in a new configuration which combines all these advantages. Indeed, this optical amplifier consists of an erbium/ytterbium-codoped glass guiding layer reported on an ion-exchanged strip formed on a passive glass substrate. The electromagnetic principle of operation of this hybrid structure is presented as well as simulations of its behaviour. Then, the realization and characterization of two different hybrid amplifiers is presented: the first one, based on a Tl +/K + ion-exchanged strip provides a high gain coefficient of 3.66 +/- 0.25 dB/cm; whereas the second one, realized with a Ag +/Na + ion-exchanged strip, presents a good coupling efficiency with optical fibers, which allows the measurement of a 1 dB net gain.

  3. Synthesis and Characterization of Templated Ion Exchange Resins for the Selective Complexation of Actinide Ions

    SciTech Connect

    Uy, O. Manual

    2001-03-01

    The purpose of this research is to develop a polymeric extractant for the selective complexation of uranyl ions (and subsequently other actinyl and actinide ions) from aqueous solutions (lakes, streams, waste tanks and even body fluids). Chemical insights into what makes a good complexation site will be used to synthesize reagents tailor-made for the complexation of uranyl and other actinide ions. These insights, derived from studies of molecular recognition include ion coordination number and geometry, ionic size and ionic shape, as well as ion to ligand thermodynamic affinity. Selectivity for a specific actinide ion will be obtained by providing the polymers with cavities lined with complexing ligands so arranged as to match the charge, coordination number, coordination geometry, and size of the actinide metal ion. These cavity-containing polymers will be produced by using a specific ion (or surrogate) as a template around which monomeric complexing ligands will be polymerized. The complexing ligands will be ones containing functional groups known to form stable complexes with a specific ion and less stable complexes with other cations. Prior investigator's approaches for making templated resins for metal ions have had marginal success. We have extended and amended these methodologies in our work with Pb(II) and uranyl ion, by changing the order of the steps, by the inclusion of sonication, by using higher complex loading, and the selection of functional groups with better complexation constants. This has resulted in significant improvements to selectivity. The unusual shape of the uranyl ion suggests that this approach will result in even greater selectivities than already observed for Pb(II). Preliminary data obtained for uranyl templated polymers shows unprecedented selectivity and has resulted in the first ion selective electrode for uranyl ion.

  4. Separation and characterisation of beta2-microglobulin folding conformers by ion-exchange liquid chromatography and ion-exchange liquid chromatography-mass spectrometry.

    PubMed

    Bertoletti, Laura; Regazzoni, Luca; Aldini, Giancarlo; Colombo, Raffaella; Abballe, Franco; Caccialanza, Gabriele; De Lorenzi, Ersilia

    2013-04-10

    In this work we present for the first time the use of ion-exchange liquid chromatography to separate the native form and a partially structured intermediate of the folding of the amyloidogenic protein beta2-microglobulin. Using a strong anion-exchange column that accounts for the differences in charge exposure of the two conformers, a LC-UV method is initially optimised in terms of mobile phase pH, composition and temperature. The preferred mobile phase conditions that afford useful information were found to be 35 mM ammonium formate, pH 7.4 at 25°C. The dynamic equilibrium of the two species is demonstrated upon increasing the concentration of acetonitrile in the protein sample. Then, the chromatographic method is transferred to MS detection and the respective charge state distributions of the separated conformers are identified. The LC-MS results demonstrate that one of the conformers is partially unfolded, compared with the native and more compact species. The correspondence with previous results obtained in free solution by capillary electrophoresis suggest that strong ion exchange LC-MS does not alter beta2-microglobulin conformation and maintains the dynamic equilibrium already observed between the native protein and its folding intermediate. PMID:23522119

  5. Tetrabutylammonium-modified clay film electrodes: characterization and application to the detection of metal ions.

    PubMed

    Maghear, Adela; Tertiş, Mihaela; Fritea, Luminţa; Marian, Iuliu O; Indrea, Emil; Walcarius, Alain; Săndulescu, Robert

    2014-07-01

    This work describes the preparation and characterization of smectite clay partially exchanged with tetrabutylammonium ions (TBA(+)) and its subsequent deposition onto glassy carbon electrode (GCE) for application to the preconcentration electroanalysis of metal ions (Cd, Pb, and Cu). Such partial exchange of TBA(+) induces the expansion of the interlayer region between the clay sheets (as ascertained by XRD) while maintaining its ion exchange capacity, which resulted in enhanced mass transport rates (as pointed out by electrochemical monitoring of permeability properties of these thin (organo)clay films on GCE). This principle was applied here to the anodic stripping square wave voltammetric analysis of metal ions after accumulation at open circuit. Among others, detection limits as low as 3.6×10(-8)M for copper and 7.2×10(-8)M for cadmium have been achieved.

  6. Tetrabutylammonium-modified clay film electrodes: characterization and application to the detection of metal ions.

    PubMed

    Maghear, Adela; Tertiş, Mihaela; Fritea, Luminţa; Marian, Iuliu O; Indrea, Emil; Walcarius, Alain; Săndulescu, Robert

    2014-07-01

    This work describes the preparation and characterization of smectite clay partially exchanged with tetrabutylammonium ions (TBA(+)) and its subsequent deposition onto glassy carbon electrode (GCE) for application to the preconcentration electroanalysis of metal ions (Cd, Pb, and Cu). Such partial exchange of TBA(+) induces the expansion of the interlayer region between the clay sheets (as ascertained by XRD) while maintaining its ion exchange capacity, which resulted in enhanced mass transport rates (as pointed out by electrochemical monitoring of permeability properties of these thin (organo)clay films on GCE). This principle was applied here to the anodic stripping square wave voltammetric analysis of metal ions after accumulation at open circuit. Among others, detection limits as low as 3.6×10(-8)M for copper and 7.2×10(-8)M for cadmium have been achieved. PMID:24840412

  7. Remediation of groundwater containing radionuclides and heavy metals using ion exchange and the AlgaSORB{reg_sign} biosorbent system. Final report

    SciTech Connect

    Feiler, H.D.; Darnall, D.W.

    1991-11-07

    Bio-Recovery Systems, Inc. (BRS) studied the application of an immobilized algal biomass, termed AlgaSORB{reg_sign}, which has high affinity for heavy metal ions to DOE-contaminated groundwaters. The material can be packed into columns similar to commercial ion exchange resins. Dilute solutions containing heavy metals are passed through columns where metals are absorbed by the AlgaSORB{reg_sign} resins. Once saturated, metal ions can be stripped from the resin biomass in a highly concentrated solution. Groundwaters contaminated with heavy metal ions from three different Department of Energy (DOE) sites: Savannah River, Hanford and the Oak Ridge Y-12 Plant were studied. The objective was to perform bench-scale treatability studies to establish treatment protocols and to optimize an AlgaSORB{reg_sign}/ion exchange technology system to remove and recover toxic metal ions from these contaminated groundwaters. The specialty ion exchange/AlgaSORB{reg_sign} resins tested in these studies show promise for selectively removing chromium, mercury and uranium from contaminated groundwater at DOE sites. The data show that effluents which satisfy the allowable metal ion limits are possible and most likely achievable. The use of these highly selective resins also offer advantages in terms of cost/benefit, risk and scheduling. Their high selectivity allows for high capacity and opportunities for recovery of removed constituents due to high pollutant concentration possible (3 to 4 orders of magnitude). Ion exchange is a proven technology which is easily automated and can be cost-effective, depending on the application.

  8. Energy straggling of low-energy ion beam in a charge exchange cell for negative ion production

    SciTech Connect

    Takeuchi, S.; Sasao, M.; Sugawara, H.; Tanaka, N.; Kisaki, M.; Okamoto, A.; Shinto, K.; Kitajima, S.; Nishiura, M.; Wada, M.

    2008-02-15

    Energy straggling in a charge exchange cell, which is frequently used for negative ion production, was studied experimentally and compared with the results of theoretical evaluation. The change of the energy spectrum of a He{sup +} beam due to charge exchange processes in argon gas was measured in the energy range of 2-6 keV. Energy straggling by multiple collisions is expressed by the energy loss formula due to inelastic and elastic processes. The impact parameter is related to the elastic scattering angle, and the geometry of the charge exchange cell and other components of the beam transportation system determines the maximum acceptable scattering angle. The energy spread was evaluated taking the integral limit over the impact parameter into consideration. The theoretical results showed good agreement with those of actual measurement.

  9. Competitive migration behaviors of multiple ions and their impacts on ion-exchange resin packed microbial desalination cell.

    PubMed

    Zuo, Kuichang; Yuan, Lulu; Wei, Jincheng; Liang, Peng; Huang, Xia

    2013-10-01

    Mixed ion-exchange resins packed microbial desalination cell (R-MDC) could stabilize the internal resistance, however, the impacts of multiple ions on R-MDC performance was unclear. This study investigated the desalination performance, multiple ions migration behaviors and their impacts on R-MDCs fed with salt solution containing multiple anions and cations. Results showed that R-MDC removed multiple anions better than multiple cations with desalination efficiency of 99% (effluent conductivity <0.05 ms/cm) at hydraulic retention time of 50 h. Competitive migration order was SO4(2-)>NO3(-)>Cl(-) for anions and Ca(2+)≈Mg(2+)>NH4(+)>Na(+) for cations, jointly affected by both their molar conductivity and exchange selectivity on resins. After long-term operation, the existence of higher concentration Ca(2+) and Mg(2+) caused the electric conductivity of mixed resins decrease and scaling on the surface of cation-exchange membrane adjoined with cathode chamber, suggesting that R-MDC would be more suitable for desalination of water with lower hardness.

  10. In situ remediation of groundwater contaminated by heavy- and transition-metal ions by selective ion-exchange methods.

    PubMed

    Vilensky, Mark Y; Berkowitz, Brian; Warshawsky, Abraham

    2002-04-15

    Laboratory studies were conducted to investigate the feasibility of using ion-exchange resins in permeable reactive barriers (PRBs) for the remediation of groundwater contaminated by heavy and transition metals. Ion-exchange resins represent an essentially neglected class of materials which may, in addition to iron, activated carbon, and zeolites, prove effective for use in PRBs. Four resins were considered: two commercially available resins, Duolite GT-73 (Rohm and Haas) and Amberlite IRC-748 (Rohm and Haas), and two solvent-impregnated resins (SIRs). The SIRs were prepared from Amberlite IRA-96 (Rohm and Haas) and two different thiophosphoric extractants. All four resins are able to reduce cadmium, lead, and copper concentrations from 1000 microg/L (typical for contaminated groundwaters) to below 5 microg/L. Significantly, all of the resins are effective for the capture of cadmium, copper, and lead, even in the presence of CaCl2 and clay. Because of their high hydraulic conductivity, the use of these resins in clusters of wells, as an alternative to continuous walls, is considered in the design of effective PRBs. Numerical solution of the groundwater flow equations shows that, depending on the well configuration, most (or all) of the contaminated groundwater can pass through the resins. These results demonstrate the possibility of using selective ion-exchange resins as an effective, active material in PRBs for in situ groundwater remediation.

  11. Evaluation of Selective Ion Exchange Resins for Removal of Mercury from the H-Area Water Treatment Unit

    SciTech Connect

    Serkiz, S.M.

    2000-09-05

    This study investigated the ability of seven ion exchange (IX) resins, some of which were mercury specific, to remove mercury in H-Area WTU waters from three sources (Reverse Osmosis (RO) Feed, RO Permeate from Train A, and a mercury ''hot spot'' extraction well HEX 18). Seven ion exchange resins, including ResinTech CG8 and Dowex 21K (the cation and anion exchange resins currently used at the H-Area WTU) were screened against five alternative ion exchange materials plus an experimental blank. Mercury decontamination factors (DFs), mercury breakthrough, and post-test contaminant concentrations of IX resins were determined for each IX material tested.

  12. Propagation of charge-exchange plasma produced by an ion thruster

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Brady, M. E.

    1981-01-01

    Under the proper conditions there is an end-effect of a long, cylindrical Langmuir probe which allows a significant increase in collected ion current when the probe is aligned with a flowing plasma. This effect was used to determine the charge-exchange plasma flow direction at various locations relative to the ion thruster. The ion current collected by the probe as a function of its angle with respect to the plasma flow allows determination of the plasma density and plasma flow velocity at the probe's location upstream of the ion thruster optics. The density values obtained from the ion current agreed to within a factor of two of density values obtained by typical voltage-current Langmuir probe characteristics.

  13. Radon (222Rn) in ground water of fractured rocks: A diffusion/ion exchange model

    USGS Publications Warehouse

    Wood, W.W.; Kraemer, T.F.; Shapiro, A.

    2004-01-01

    Ground waters from fractured igneous and high-grade sialic metamorphic rocks frequently have elevated activity of dissolved radon (222Rn). A chemically based model is proposed whereby radium (226Ra) from the decay of uranium (238U) diffuses through the primary porosity of the rock to the water-transmitting fracture where it is sorbed on weathering products. Sorption of 226Ra on the fracture surface maintains an activity gradient in the rock matrix, ensuring a continuous supply of 226Ra to fracture surfaces. As a result of the relatively long half-life of 226Ra (1601 years), significant activity can accumulate on fracture surfaces. The proximity of this sorbed 226Ra to the active ground water flow system allows its decay progeny 222Rn to enter directly into the water. Laboratory analyses of primary porosity and diffusion coefficients of the rock matrix, radon emanation, and ion exchange at fracture surfaces are consistent with the requirements of a diffusion/ion- exchange model. A dipole-brine injection/withdrawal experiment conducted between bedrock boreholes in the high-grade metamorphic and granite rocks at the Hubbard Brook Experimental Forest, Grafton County, New Hampshire, United States (42??56???N, 71??43???W) shows a large activity of 226Ra exchanged from fracture surfaces by a magnesium brine. The 226Ra activity removed by the exchange process is 34 times greater than that of 238U activity. These observations are consistent with the diffusion/ion-exchange model. Elutriate isotopic ratios of 223Ra/226Ra and 238U/226Ra are also consistent with the proposed chemically based diffusion/ion-exchange model.

  14. Radon (222Rn) in ground water of fractured rocks: a diffusion/ion exchange model.

    PubMed

    Wood, Warren W; Kraemer, Thomas F; Shapiro, Allen

    2004-01-01

    Ground waters from fractured igneous and high-grade sialic metamorphic rocks frequently have elevated activity of dissolved radon (222Rn). A chemically based model is proposed whereby radium (226Ra) from the decay of uranium (238U) diffuses through the primary porosity of the rock to the water-transmitting fracture where it is sorbed on weathering products. Sorption of 226Ra on the fracture surface maintains an activity gradient in the rock matrix, ensuring a continuous supply of 226Ra to fracture surfaces. As a result of the relatively long half-life of 226Ra (1601 years), significant activity can accumulate on fracture surfaces. The proximity of this sorbed 226Ra to the active ground water flow system allows its decay progeny 222Rn to enter directly into the water. Laboratory analyses of primary porosity and diffusion coefficients of the rock matrix, radon emanation, and ion exchange at fracture surfaces are consistent with the requirements of a diffusion/ion-exchange model. A dipole-brine injection/withdrawal experiment conducted between bedrock boreholes in the high-grade metamorphic and granite rocks at the Hubbard Brook Experimental Forest, Grafton County, New Hampshire, United States (42 degrees 56'N, 71 degrees 43'W) shows a large activity of 226Ra exchanged from fracture surfaces by a magnesium brine. The 226Ra activity removed by the exchange process is 34 times greater than that of 238U activity. These observations are consistent with the diffusion/ion-exchange model. Elutriate isotopic ratios of 223Ra/226Ra and 238U/226Ra are also consistent with the proposed chemically based diffusion/ion-exchange model. PMID:15318778

  15. Radon (222Rn) in ground water of fractured rocks: a diffusion/ion exchange model.

    PubMed

    Wood, Warren W; Kraemer, Thomas F; Shapiro, Allen

    2004-01-01

    Ground waters from fractured igneous and high-grade sialic metamorphic rocks frequently have elevated activity of dissolved radon (222Rn). A chemically based model is proposed whereby radium (226Ra) from the decay of uranium (238U) diffuses through the primary porosity of the rock to the water-transmitting fracture where it is sorbed on weathering products. Sorption of 226Ra on the fracture surface maintains an activity gradient in the rock matrix, ensuring a continuous supply of 226Ra to fracture surfaces. As a result of the relatively long half-life of 226Ra (1601 years), significant activity can accumulate on fracture surfaces. The proximity of this sorbed 226Ra to the active ground water flow system allows its decay progeny 222Rn to enter directly into the water. Laboratory analyses of primary porosity and diffusion coefficients of the rock matrix, radon emanation, and ion exchange at fracture surfaces are consistent with the requirements of a diffusion/ion-exchange model. A dipole-brine injection/withdrawal experiment conducted between bedrock boreholes in the high-grade metamorphic and granite rocks at the Hubbard Brook Experimental Forest, Grafton County, New Hampshire, United States (42 degrees 56'N, 71 degrees 43'W) shows a large activity of 226Ra exchanged from fracture surfaces by a magnesium brine. The 226Ra activity removed by the exchange process is 34 times greater than that of 238U activity. These observations are consistent with the diffusion/ion-exchange model. Elutriate isotopic ratios of 223Ra/226Ra and 238U/226Ra are also consistent with the proposed chemically based diffusion/ion-exchange model.

  16. Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes.

    PubMed

    Li, Haibo; Gao, Yang; Pan, Likun; Zhang, Yanping; Chen, Yiwei; Sun, Zhuo

    2008-12-01

    A novel membrane capacitive deionization (MCDI) device, integrating both the advantages of carbon nanotubes and carbon nanofibers (CNTs-CNFs) composite film and ion-exchange membrane, was proposed with high removal efficiency, low energy consumption and low cost. The CNTs-CNFs film was synthesized by low pressure and low temperature thermal chemical vapor deposition. Several experiments were conducted to compare desalination performance of MCDI with capacitive deionization (CDI), showing that salt removal of the MCDI system was 49.2% higher than that of the CDI system. The electrosorption isotherms of MCDI and CDI show both of them follow Langmuir adsorption, indicating no change in adsorption behavior when ion-exchange membranes are introduced into CDI system. The better desalination performance of MCDI than that of CDI is due to the minimized ion desorption during electrosorption. PMID:18929385

  17. Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes.

    PubMed

    Li, Haibo; Gao, Yang; Pan, Likun; Zhang, Yanping; Chen, Yiwei; Sun, Zhuo

    2008-12-01

    A novel membrane capacitive deionization (MCDI) device, integrating both the advantages of carbon nanotubes and carbon nanofibers (CNTs-CNFs) composite film and ion-exchange membrane, was proposed with high removal efficiency, low energy consumption and low cost. The CNTs-CNFs film was synthesized by low pressure and low temperature thermal chemical vapor deposition. Several experiments were conducted to compare desalination performance of MCDI with capacitive deionization (CDI), showing that salt removal of the MCDI system was 49.2% higher than that of the CDI system. The electrosorption isotherms of MCDI and CDI show both of them follow Langmuir adsorption, indicating no change in adsorption behavior when ion-exchange membranes are introduced into CDI system. The better desalination performance of MCDI than that of CDI is due to the minimized ion desorption during electrosorption.

  18. Charge exchange and ionization in hydrogen atom-fully stripped ion collisions in Debye plasmas

    SciTech Connect

    Zhang, H.; Wang, J. G.; He, B.; Qiu, Y. B.; Janev, R. K.

    2007-05-15

    The processes of charge exchange and ionization in collisions of ground state hydrogen atom with fully stripped ions in a weakly coupled plasma are studied by the classical trajectory Monte Carlo method in the collision energy range 10-900 keV/amu. The interparticle interactions are described by the Debye-Hueckel model with inclusion of dynamical effects associated with the projectile velocity. The microcanonical distribution of initial state electronic coordinates and momenta has been determined by inclusion of plasma screening effects. The cross section dependencies on plasma parameters and ion charge and velocity are investigated. It is shown that plasma effects on charge exchange and ionization cross sections are significant and particularly pronounced at low collision velocities. The results of systematic cross section calculations for different values of Debye screening length (in the range 1-50a{sub 0}) and ion charges (in the range 1-14) are presented.

  19. DEVELOPMENT OF AN APPROACH TO MODELING LOADING AND ELUTION OF SPHERICAL RESORCINOL FORMALDEHYDE ION-EXCHANGE RESIN

    SciTech Connect

    Aleman, S.; Hamm, L.; Smith, F.

    2011-10-03

    fixed ionogenic groups that make up sRF. Recent literature reviews and scoping titration tests strongly indicate that sRF is a polyfunctional cation exchange resin with at least three dominant types of ring groups playing a role in its isotherm behavior over the wide pH range of operations. Also three types of fixed ionogenic acid groups are present: sulfonic (SO{sub 3}H{sup -}) groups; carboxylic (COOH{sup -}) groups, and resorcylic (OH{sup -}) groups. It is this premise that we are working under in the development of a robust isotherm model for sRF over its entire planned pH operating range. The application of prototypic isotherms for modeling ion-exchange column behavior is demonstrated in Section 3 of this report. This preliminary work served to focus the development effort on the use of a mass-action based isotherm. In Section 4 of this report, the foundational material required to develop a robust isotherm model for sRF is provided. The paths taken, and choices made, are given for the reader to better understand our current status with respect to this goal and to highlight our most recent understanding of sRF exchange equilibria. Our ultimate goal is to update the CERMOD code (Aleman and Hamm, 2007) with a robust isotherm model for sRF that spans the entire pH and concentration ranges of planned operations. The isotherm model will then be used in the VERSE-LC code to model an entire ion-exchange cycle.

  20. 78 FR 34410 - First Trust Exchange-Traded Fund, et al.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... COMMISSION First Trust Exchange-Traded Fund, et al.; Notice of Application June 3, 2013. AGENCY: Securities... disclosure requirements. Applicants: First Trust Exchange-Traded Fund, First Trust Exchange- Traded Fund II, First Trust Exchange-Traded Fund III, First Trust Exchange-Traded Fund IV, First Trust...