Science.gov

Sample records for ion exchange applications

  1. Pharmaceutical Applications of Ion-Exchange Resins

    ERIC Educational Resources Information Center

    Elder, David

    2005-01-01

    The historical uses of ion-exchanged resins and a summary of the basic chemical principles involved in the ion-exchanged process are discussed. Specific applications of ion-exchange are provided that include drug stabilization, pharmaceutical excipients, taste-masking agents, oral sustained-release products, topical products for local application…

  2. Pharmaceutical Applications of Ion-Exchange Resins

    ERIC Educational Resources Information Center

    Elder, David

    2005-01-01

    The historical uses of ion-exchanged resins and a summary of the basic chemical principles involved in the ion-exchanged process are discussed. Specific applications of ion-exchange are provided that include drug stabilization, pharmaceutical excipients, taste-masking agents, oral sustained-release products, topical products for local application…

  3. Ion exchanges in apatites for biomedical application.

    PubMed

    Cazalbou, S; Eichert, D; Ranz, X; Drouet, C; Combes, C; Harmand, M F; Rey, C

    2005-05-01

    The modification of the composition of apatite materials can be made by several processes corresponding to ion exchange reactions which can conveniently be adapted to current coatings and ceramics and are an alternative to setting up of new synthesis methods. In addition to high temperature thermal treatments, which can partly or almost totally replace the monovalent OH- anion of stoichiometric hydroxyapatite by any halogen ion or carbonate, aqueous processes corresponding to dissolution-reprecipitation reactions have also been proposed and used. However, the most interesting possibilities are provided by aqueous ion exchange reactions involving nanocrystalline apatites. These apatites are characterised by the existence on the crystal surface of a hydrated layer of loosely bound mineral ions which can be easily exchanged in solution. This layer offers a possibility to trap mineral ions and possibly active molecules which can modify the apatite properties. Such processes are involved in mineralised tissues and could be used in biomaterials for the release of active mineral species.

  4. Ion-Exchange Chromatography: Basic Principles and Application.

    PubMed

    Cummins, Philip M; Rochfort, Keith D; O'Connor, Brendan F

    2017-01-01

    Ion-Exchange Chromatography (IEC) allows for the separation of ionizable molecules on the basis of differences in charge properties. Its large sample-handling capacity, broad applicability (particularly to proteins and enzymes), moderate cost, powerful resolving ability, and ease of scale-up and automation have led to it becoming one of the most versatile and widely used of all liquid chromatography (LC) techniques. In this chapter, we review the basic principles of IEC, as well as the broader criteria for selecting IEC conditions. By way of further illustration, we outline basic laboratory protocols to partially purify a soluble serine peptidase from bovine whole brain tissue, covering crude tissue extract preparation through to partial purification of the target enzyme using anion-exchange chromatography. Protocols for assaying total protein and enzyme activity in both pre- and post-IEC fractions are also described.

  5. TECHNICAL COMPARISON OF CANDIDATE ION EXCHANGE MEDIA FOR SMALL COLUMN ION EXCHANGE (SCIX) APPLICATIONS IN SUPPORT OF SUPPLEMENTAL LAW PRETREATMENT

    SciTech Connect

    RAMSEY AA; THORSON MR

    2010-12-28

    At-tank supplemental pretreatment including both filtration and small column ion exchange is currently under evaluation to facilitate salt waste retrieval and processing in the Hanford tank farms. Spherical resorcinol formaldehyde (sRF) resin is the baseline ion exchange resin for use in the Waste Treatment and Immobilization Plant (WTP). This document provides background and technical rationale to assist in determining whether spherical resorcinol formaldehyde (sRF) is also the appropriate ion exchange resin for supplemental LAW pretreatment processes and compares sRF with crystalline silicotitanate (CST) as potential supplemental pretreatment ion exchange media.

  6. Recent progress and applications of ion-exclusion/ion-exchange chromatography for simultaneous determination of inorganic anions and cations.

    PubMed

    Nakatani, Nobutake; Kozaki, Daisuke; Mori, Masanobu; Tanaka, Kazuhiko

    2012-01-01

    One of the ultimate goals of ion chromatography is to determine both anions and cations found in samples with a single chromatographic run. In the present article, recent progress in ion-exclusion/ion-exchange chromatography for the simultaneous determinations of inorganic anions and cations are reviewed. Firstly, the principle and the control for the simultaneous separation and detection of analyte ions using ion-exclusion/cation-exchange chromatography with a weakly acidic cation-exchange column are outlined. Then, advanced chromatographic techniques in terms of analytical time, selectively and sensitivity are summarized. As a related method, ion-exclusion/anion-exchange chromatography with an anion-exchange column could be used for the simultaneous determination of inorganic nitrogen species, such as ammonium, nitrite and nitrate ions. Their usefulness and applications to water-quality monitoring and related techniques are also described.

  7. Adsorption and ion exchange: basic principles and their application in food processing.

    PubMed

    Kammerer, Judith; Carle, Reinhold; Kammerer, Dietmar R

    2011-01-12

    A comprehensive overview of adsorption and ion exchange technology applied for food and nutraceutical production purposes is given in the present paper. Emanating from these fields of application, the main adsorbent and ion-exchange resin materials, their historical development, industrial production, and the main parameters characterizing these sorbents are covered. Furthermore, adsorption and ion exchange processes are detailed, also providing profound insights into kinetics, thermodynamics, and equilibrium model assumptions. In addition, the most important industrial adsorber and ion exchange processes making use of vessels and columns are summarized. Finally, an extensive overview of selected industrial applications of these technologies is provided, which is divided into general applications, food production applications, and the recovery of valuable bio- and technofunctional compounds from the byproducts of plant food processing, which may be used as natural food additives or for their potential health-beneficial effects in functional or enriched foods and nutraceuticals.

  8. Conversion of ion exchange resin to various functional resins and the application in the field of pharmaceutical sciences

    NASA Astrophysics Data System (ADS)

    Nakayama, Morio

    Ion exchange resins are widely used for separating ions in the solution, desalination, removal of impurities, and etc. Giving a new function to these ion exchange resins enables the application in more various fields. Until now, we carried out the research work about the following 5 project.: (1) Conversion of ion exchange resins into selective adsorbents by using low molecular reagents, which possess capabilities of a selective reaction with target ions, ion exchange reaction with the ion exchange resin and strong physical adsorption to the ion exchange resin. (2) Synthesis of resins for ion exchange high performance liquid chromatography (IEHPLC) and the analysis of biomaterials. (3) Development of insoluble macromolecular Sn(II) complex based on the aminophosphonic acid type ion exchange resin and its application to the 99mTc labeling of proteins. (4) Development of a new 68Ge-68Ga generator using N-methylglucamine type organic polymer as the adsorbent for 68Ge and production of 68Ga for PET. (5) Preparation of an ion-exchangeable polymer bead wrapped with bilayer membrane structures. In this paper, the application of various functional resins prepared based on ion exchange resin in the field of pharmaceutical sciences has been summarized.

  9. Ion exchange technology assessment report

    SciTech Connect

    Duhn, E.F.

    1992-01-01

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

  10. Ion exchange technology assessment report

    SciTech Connect

    Duhn, E.F.

    1992-12-31

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW`s. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

  11. Synthesis and Ion-Exchange Properties of Graphene Th(IV) Phosphate Composite Cation Exchanger: Its Applications in the Selective Separation of Lead Metal Ions.

    PubMed

    Rangreez, Tauseef Ahmad; Asiri, Abdullah M; Alhogbi, Basma G; Naushad, Mu

    2017-07-24

    In this study, graphene Th(IV) phosphate was prepared by sol-gel precipitation method. The ion-exchange behavior of this cation-exchanger was studied by investigating properties like ion-exchange capacity for various metal ions, the effect of eluent concentration, elution behavior, and thermal effect on ion-exchange capacity (IEC). Several physicochemical properties as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) study, thermal studies, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies were also carried out. The material possessed an IEC of 1.56 meq·dry·g(-1) of the exchanger and was found to be nano-composite. The selectivity studies showed that the material is selective towards Pb(II) ions. The selectivity of this cation-exchanger was demonstrated in the binary separation of Pb(II) ions from mixture with other metal ions. The recovery was found to be both quantitative and reproducible.

  12. Ion Exchange Equilibrium and Kinetic Properties of Polyacrylate Films and Applications to Chemical Analysis and Environmental Decontamination

    NASA Technical Reports Server (NTRS)

    Tanner, Stephen P.

    1997-01-01

    One of the goals of the original proposal was to study how cross-linking affects the properties of an ion exchange material(IEM) developed at Lewis Research Center. However, prior to the start of this work, other workers at LERC investigated the effect of cross-linking on the properties of this material. Other than variation in the ion exchange capacity, the chemical characteristics were shown to be independent of the cross-linking agent, and the degree of cross-linking. New physical forms of the film were developed (film, supported film, various sizes of beads, and powder). All showed similar properties with respect to ion exchange equilibria but the kinetics of ion exchange depended on the surface area per unit mass; the powder form of the IEM exchanging much more rapidly than the other forms. The research performed under this grant was directed towards the application of the IEM to the analysis of metal ions at environmental concentrations.

  13. Ion exchange phenomena

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  14. Systematic generation of buffer systems for pH gradient ion exchange chromatography and their application.

    PubMed

    Kröner, Frieder; Hubbuch, Jürgen

    2013-04-12

    pH gradient protein separations are widely used techniques in the field of protein analytics, of which isoelectric focusing is the most well known application. The chromatographic variant, based on the formation of pH gradients in ion exchange columns is only rarely applied due to the difficulties to form controllable, linear pH gradients over a broad pH range. This work describes a method for the systematic generation of buffer compositions with linear titration curves, resulting in well controllable pH gradients. To generate buffer compositions with linear titration curves an in silico method was successfully developed. With this tool, buffer compositions for pH gradient ion exchange chromatography with pH ranges spanning up to 7.5 pH units were established and successfully validated. Subsequently, the buffer systems were used to characterize the elution behavior of 22 different model proteins in cation and anion exchange pH gradient chromatography. The results of both chromatographic modes as well as isoelectric focusing were compared to describe differences in between the methods.

  15. Composite ion exchange materials

    SciTech Connect

    Amarasinghe, S.; Zook, L.; Leddy, J.

    1994-12-31

    Composite ion exchange materials can be formed by sorbing ion exchange polymers on inert, high surface area substrates. In general, the flux of ions and molecules through these composites, as measured electrochemically, increases as the ratio of the surface area of the substrate increases relative to the volume of the ion exchanger. This suggests that fields and gradients established at the interface between the ion exchanger and substrate are important in determining the transport characteristics of the composites. Here, the authors will focus on composites formed with a cation exchange polymer, Nafion, and two different types of microbeads: polystyrene microspheres and polystyrene coated magnetic microbeads. For the polystyrene microbeads, scanning electron micrographs suggest the beads cluster in a self-similar manner, independent of the bead diameter. Flux of Ru(NH3)63+ through the composites was studied as a function of bead fraction, bead radii, and fixed surface area with mixed bead sizes. Flux was well modeled by surface diffusion along a fractal interface. Magnetic composites were formed with columns of magnetic microbeads normal to the electrode surface. Flux of Ru(NH3)63+ through these composites increased exponentially with bead fraction. For electrolyses, the difference in the molar magnetic susceptibility of the products and reactants, Dcm, tends to be non-zero. For seven redox reactions, the ratio of the flux through the magnetic composites to the flux through a Nafion film increases monotonically with {vert_bar}Dcm{vert_bar}, with enhancements as large as thirty-fold. For reversible species, the electrolysis potential through the magnetic composites is 35 mV positive of that for the Nafion films.

  16. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  17. Synthesis and Ion-Exchange Properties of Graphene Th(IV) Phosphate Composite Cation Exchanger: Its Applications in the Selective Separation of Lead Metal Ions

    PubMed Central

    Rangreez, Tauseef Ahmad; Alhogbi, Basma G.; Naushad, Mu.

    2017-01-01

    In this study, graphene Th(IV) phosphate was prepared by sol–gel precipitation method. The ion-exchange behavior of this cation-exchanger was studied by investigating properties like ion-exchange capacity for various metal ions, the effect of eluent concentration, elution behavior, and thermal effect on ion-exchange capacity (IEC). Several physicochemical properties as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) study, thermal studies, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies were also carried out. The material possessed an IEC of 1.56 meq·dry·g−1 of the exchanger and was found to be nano-composite. The selectivity studies showed that the material is selective towards Pb(II) ions. The selectivity of this cation-exchanger was demonstrated in the binary separation of Pb(II) ions from mixture with other metal ions. The recovery was found to be both quantitative and reproducible. PMID:28737717

  18. The application of ion-exchanged clay as corrosion inhibiting pigments in organic coatings

    NASA Astrophysics Data System (ADS)

    Chrisanti, Santi

    High strength aluminum alloys are used in aerospace industry and are normally coated to prevent corrosion. The corrosion protection of the coatings is mainly provided by pigmented-primer layer. Strontium chromate pigments are widely used, but they are toxic and carcinogenic. The objective of the current study is to develop and characterize the ion exchange compounds bentonite and hydrotalcite as corrosion inhibiting pigments. These compounds were synthesized with different cations and anions, and were used either alone or in mixtures as particulate additive in organic coatings. In coating applications as well as bulk solution, the inhibitor release mechanism is based on ion exchange. To evaluate corrosion inhibition, pigments extract solutions were used in potentiodynamic polarization as well as electrochemical impedance spectroscopy (EIS) experiments on bare aluminum alloy 2024-T3. Cathodic polarization showed that zinc- and cerium-containing filtrate solutions modestly inhibited cathodic current density. These solutions also decreased the extent of pitting damage formed on the surface, as compared to uninhibited 0.5 M NaCl solution. Pigments were also added as primer additives, and painted on AA2024-T3. The coated panels were then subjected to salt spray exposure testing. The possibility of sensing inhibitor exhaustion by means of X-ray diffraction interrogation of the pigment in a coating is demonstrated and discussed on cerium bentonite-pigmented coatings. Although cerium bentonite-pigmented coatings did not show behavior indicative of self-healing, the combination of bentonite and hydrotalcite that released Ce3+, Zn 2+, and PO43- showed potent scribe protection even after 3000 h exposure in salt spray. Promising self-healing was also demonstrated by pigments that consisted of decavanadate-hydrotalcite and zinc pyrovanadate, as indicated by a shiny scribed area after 1000h exposure in salt spray. When these pigments are used, blistering is minimized.

  19. Biological Ion Exchanger Resins

    PubMed Central

    Damadian, Raymond; Goldsmith, Michael; Zaner, K. S.

    1971-01-01

    Biological selectivity is shown to vary with medium osmotic strength and temperature. Selectivity reversals occur at 4°C and at an external osmolality of 0.800 indicating that intracellular hydration and endosolvent (intracellular water) structure are important determinants in selectivity. Magnetic resonance measurements of line width by steady-state nuclear magnetic resonance (NMR) indicate a difference in the intracellular water signal of 16 Hz between the K form and Na form of Escherichia coli, providing additional evidence that changes in the ionic composition of cells are accompanied by changes in endosolvent structure. The changes were found to be consistent with the thermodynamic and magnetic resonance properties of aqueous electrolyte solutions. Calculation of the dependence of ion-pairing forces on medium dielectric reinforces the role of endosolvent structure in determining ion exchange selectivity. PMID:4943653

  20. Macroreticular chelating ion-exchangers.

    PubMed

    Hirsch, R F; E Gancher, R; Russo, F R

    1970-06-01

    Two macroreticular chelating ion-exchangers have been prepared and characterized. One contains the iminodiacetate group and the second contains the arsonate group as the ion-exchanging site. The macroreticular resins show selectivities among metal ions similar to those of the commercially available naicroreticular chelating resins. Chromatographie separations on the new resins are rapid and sharp.

  1. Ion-Exchanged Waveguides for Signal Processing Applications - A Novel Electrolytic Process.

    DTIC Science & Technology

    1987-03-07

    1986 . 3] R. K. Lagu and V. Ramaswamy, "Fabrication of Single Mode Glass Waveguide by Electrolytic Release of Silver Ions," Appl. Phys. Lett., 45, pp...Quantum Electron., QE-22, pp. 883-891, 1986 . 7 [111] P. Chludzinski, R. V. Ramaswamy, and T. J. Anderson, "Ion-Fxchange Between Sode-Lime Silicate Glass and...Parameter Relationships for the Design of Planar, Silver Ion-Exchanged Glass Waveguide," IEEE J. Lightwave Tech., LT-4, pp. 176-131, 1986 . [20] R. K. Lagu

  2. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1977-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  3. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Yen, S. P. S.; Klein, E. (Inventor)

    1976-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, crosslinked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  4. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1980-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  5. Application of immobilized metal ion chelate complexes as pseudocation exchange adsorbents for protein separation.

    PubMed

    Zachariou, M; Hearn, M T

    1996-01-09

    The interactions of horse muscle myoglobin (MYO), tuna heart cytochrome c (CYT), and hen egg white lysozyme (LYS) with three different immobilized metal ion affinity (IMAC) adsorbents involving the chelated complexes of the hard Lewis metal ions Al3+, Ca2+, Fe3+, and Yb3+ and the borderline Lewis metal ion Cu2+ have been investigated in the presence of low- and high-ionic strength buffers and at two different pH values. In contrast to the selectivity behavior noted with buffers of high ionic strength, with low-ionic strength buffers, these three proteins interact with the hard metal ion IMAC adsorbents in a manner more characteristic of cation exchange behavior, although in contrast to the cation exchange chromatography of these proteins, as the pH value of the elution buffer was increased, the retention also increased. The selectivity differences observed under these conditions appear to be due to the formation of hydrolytic complexes of these immobilized metal ion chelate systems involving a change in the coordination geometry of the im-M(n+)-chelate at higher pH values. The experimental observations have been evaluated in terms of the effective charge on the immobilized metal ion chelate complex and the charge characteristics of the specific proteins.

  6. On the semiclassical approach in the theory of ion-diatomic exchange interaction: its application to charge exchange reactions

    NASA Astrophysics Data System (ADS)

    Khoma, M. V.; Karbovanets, O. M.; Karbovanets, M. I.; Buenker, R. J.

    2008-12-01

    An analytic study is presented of asymptotic properties of the three-center quasimolecular system A2(Za- 1)++BZb+ consisting of a homonuclear diatomic molecule and a highly charged atomic ion. The potential of the one-electron exchange interaction of this system is calculated asymptotically correctly (for large distances R between interacting particles) in the framework of the non-perturbative semiclassical and the Landau-Herring approaches. The total and state-selective n- and ell-resolved cross sections of the electron capture in H2+Arq+ (q=6, 8, 14, 16) collisions in the energy region from 5.0 to 2×103 eV amu-1 were calculated and compared with available experimental and theoretical data. It is shown that with increasing projectile (atomic ion Arq+) charge, use of the semiclassical expression describing such an electron exchange interaction provides noticeably better (than with use of the Landau-Herring one) agreement between the calculated cross sections and experimental data.

  7. Electrically switched ion exchange

    SciTech Connect

    Lilga, M.A.; Schwartz, D.T.; Genders, D.

    1997-10-01

    A variety of waste types containing radioactive {sup 137}Cs are found throughout the DOE complex. These waste types include water in reactor cooling basins, radioactive high-level waste (HLW) in underground storage tanks, and groundwater. Safety and regulatory requirements and economics require the removal of radiocesium before these wastes can be permanently disposed of. Electrically Switched Ion Exchange (ESIX) is an approach for radioactive cesium separation that combines IX and electrochemistry to provide a selective, reversible, and economic separation method that also produces little or no secondary waste. In the ESIX process, an electroactive IX film is deposited electrochemically onto a high-surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. For cesium, the electroactive films under investigation are ferrocyanides, which are well known to have high selectivities for cesium in concentrated sodium solutions. When a cathode potential is applied to the film, Fe{sup +3} is reduced to the Fe{sup +2} state, and a cation must be intercalated into the film to maintain charge neutrality (i.e., Cs{sup +} is loaded). Conversely, if an anodic potential is applied, a cation must be released from the film (i.e., Cs{sup +} is unloaded). Therefore, to load the film with cesium, the film is simply reduced; to unload cesium, the film is oxidized.

  8. Ion exchange membranes as novel passive sampling material for organic ions: application for the determination of freely dissolved concentrations.

    PubMed

    Oemisch, Luise; Goss, Kai-Uwe; Endo, Satoshi

    2014-11-28

    Many studies in pharmacology, toxicology and environmental science require a method for determining the freely dissolved concentration of a target substance. A recently developed tool for this purpose is equilibrium passive sampling with polymeric materials. However, this method has rarely been applied to ionic organic substances, primarily due to limited availability of convenient sorption materials. This study introduces ion exchange membranes (IEMs) as a novel passive sampling material for organic ions. The partitioning of 4-ethylbenzene-1-sulfonate, 2,4-dichlorophenoxyacetic acid and pentachlorophenol to one anion exchange membrane (FAS) and of difenzoquat, nicotine and verapamil to one cation exchange membrane (FKS) was investigated. All test substances exhibited a sufficiently high affinity for the respective IEM with logarithmic IEM-water partition coefficients >2.3. Sorption equilibrium was established quickly, within several hours for the FAS membrane and within 1-3 days for the FKS membrane. For permanently charged substances the partitioning to the IEMs was independent of pH, but was influenced by the salt composition of the test solution. For all test substances sorption to IEM was dependent on the substance concentration. Bovine serum albumin-water partition coefficients determined by passive sampling with IEMs agree well with those determined by the conventional dialysis method. The results of this study indicate that IEMs exhibit the potential to measure freely dissolved concentrations of organic ions in a simple and time-saving manner. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Development and properties of crystalline silicotitanate (CST) ion exchangers for radioactive waste applications

    SciTech Connect

    Miller, J.E.; Brown, N.E.

    1997-04-01

    Crystalline silicotitanates (CSTs) are a new class of ion exchangers that were jointly invented by researchers at Sandia National Laboratories and Texas A&M University. One particular CST, known as TAM-5, is remarkable for its ability to separate parts-per-million concentrations of cesium from highly alkaline solutions (pH> 14) containing high sodium concentrations (>5M). It is also highly effective for removing cesium from neutral and acidic solutions, and for removing strontium from basic and neutral solutions. Cesium isotopes are fission products that account for a large portion of the radioactivity in waste streams generated during weapons material production. Tests performed at numerous locations with early lab-scale TAM-5 samples established the material as a leading candidate for treating radioactive waste volumes such as those found at the Hanford site in Washington. Thus Sandia developed a Cooperative Research and Development Agreement (CRADA) partnership with UOP, a world leader in developing, commercializing, and supplying adsorbents and associated process technology to commercialize and further develop the material. CSTs are now commercially available from UOP in a powder (UOP IONSIV{reg_sign} IE-910 ion exchanger) and granular form suitable for column ion exchange operations (UOP IONSIV{reg_sign} IE-911 ion exchanger). These materials exhibit a high capacity for cesium in a wide variety of solutions of interest to the Department of Energy, and they are chemically, thermally, and radiation stable. They have performed well in tests at numerous sites with actual radioactive waste solutions, and are being demonstrated in the 100,000 liter Cesium Removal Demonstration taking place at Oak Ridge National Laboratory with Melton Valley Storage Tank waste. It has been estimated that applying CSTs to the Hanford cleanup alone will result in a savings of more than $300 million over baseline technologies.

  10. Synthesis and Characterization of Perfluoro Quaternary Ammonium Ion Exchange Membranes for Fuel Cell Applications

    DTIC Science & Technology

    2012-01-01

    TERMS Perfluoroinated polymer; anion exchange membrane; morphology; base stability Mellisa A. Vandiver, Soenke Seifert, Matthew W. Liberatore, Andrew...humidities. Better understanding of the role of water and polymer morphology on the ion conduction and stability of AEMs is necessary for practical AEM fuel...sufficient chemical and mechanical stability (5, 10) For these reasons PFSAs remain the benchmark comparison for all new PEMs and AEMs (1, 11). The

  11. Ion-Exchange Interdiffusion Model with Potential Application to Long-Term Nuclear Waste Glass Performance

    SciTech Connect

    Neeway, James Joseph; Kerisit, Sebastien N.; Liu, Jia; Zhang, Jiandong; Zhu, Zihua; Riley, Brian Joseph; Ryan, Joseph Vincent

    2016-05-05

    Abstract: Ion exchange is an integral mechanism influencing the corrosion of glasses. Due to the formation of alteration layers in aqueous conditions, it is difficult to conclusively deconvolute the process of ion exchange from other processes, principally dissolution of the glass matrix. Therefore, we have developed a method to isolate alkali diffusion that involves contacting glass coupons with a solution of 6LiCl dissolved in functionally inert dimethyl sulfoxide. We employ the method at temperatures ranging from 25 to 150 °C with various glass formulations. Glass compositions include simulant nuclear waste glasses, such as SON68 and the international simple glass (ISG), glasses in which the nature of the alkali element was varied, and glasses that contained more than one alkali element. An interdiffusion model based on Fick’s second law was developed and applied to all experiments to extract diffusion coefficients. The model expands established models of interdiffusion to the case where multiple types of alkali sites are present in the glass. Activation energies for alkali ion exchange were calculated and the results are in agreement with those obtained in glass strengthening experiments but are nearly five times higher than values reported for diffusion-controlled processes in nuclear waste glass corrosion experiments. A discussion of the root causes for this apparent discrepancy is provided. The interdiffusion model derived from laboratory experiments is expected to be useful for modeling glass corrosion in a geological repository when the silicon concentration is high.

  12. Engineering study for the treatment of spent ion exchange resin resulting from nuclear process applications

    SciTech Connect

    Place, B.G.

    1990-09-01

    This document is an engineering study of spent ion exchange resin treatment processes with the purpose of identifying one or more suitable treatment technologies. Classifications of waste considered include all classes of low-level waste (LLW), mixed LLW, transuranic (TRU) waste, and mixed TRU waste. A total of 29 process alternatives have been evaluated. Evaluation parameters have included economic parameters (both total life-cycle costs and capital costs), demonstrated operability, environmental permitting, operational availability, waste volume reduction, programmatic consistency, and multiple utilization. The results of this study suggest that there are a number of alternative process configurations that are suitable for the treatment of spent ion exchange resin. The determinative evaluation parameters were economic variables (total life-cycle cost or capital cost) and waste volume reduction. Immobilization processes are generally poor in volume reduction. Thermal volume reduction processes tend to have high capital costs. There are immobilization processes and thermal volume reduction processes that can treat all classifications of spent ion exchange resin likely to be encountered. 40 refs., 19 figs., 17 tabs.

  13. Ion exchange - Simulation and experiment

    NASA Technical Reports Server (NTRS)

    Herrmann, Cal C.; Finn, John E.

    1991-01-01

    A FORTRAN program for simulating multicomponent adsorption by ion-exchange resins was adapted for use as both an ASPEN-callable module and as a free-standing simulator of the ion-exchange bed. Four polystyrene-divinylbenzene sulfonic acid resins have been characterized for three principal ions. It is concluded that a chelating resin appears appropriate as a heavy-metal trap. The same ASPEN-callable module is used to model this resin when Wilson parameters can be obtained.

  14. Ion exchange - Simulation and experiment

    NASA Technical Reports Server (NTRS)

    Herrmann, Cal C.; Finn, John E.

    1991-01-01

    A FORTRAN program for simulating multicomponent adsorption by ion-exchange resins was adapted for use as both an ASPEN-callable module and as a free-standing simulator of the ion-exchange bed. Four polystyrene-divinylbenzene sulfonic acid resins have been characterized for three principal ions. It is concluded that a chelating resin appears appropriate as a heavy-metal trap. The same ASPEN-callable module is used to model this resin when Wilson parameters can be obtained.

  15. Studies on the application of temperature-responsive ion exchange polymers with whey proteins.

    PubMed

    Maharjan, Pankaj; Campi, Eva M; De Silva, Kirthi; Woonton, Brad W; Jackson, W Roy; Hearn, Milton T W

    2016-03-18

    Several new types of temperature-responsive ion exchange resins of different polymer composition have been prepared by grafting the products from the co-polymerisation of N-phenylacrylamide, N-iso-propylacrylamide and acrylic acid derivatives onto cross-linked agarose. Analysis of the binding isotherms for these different resins obtained under batch adsorption conditions indicated that the resin based on N-iso-propylacrylamide containing 5% (w/w) N-phenylacrylamide and 5% (w/w) acrylic acid resulted in the highest adsorption capacity, Bmax, for the whey protein, bovine lactoferrin, e.g. 14 mg bovine lactoferrin/mL resin at 4 °C and 62 mg bovine lactoferrin/mL resin at 40 °C, respectively. Under dynamic loading conditions at 40 °C, 94% of the loaded bovine lactoferrin on a normalised mg protein per mL resin basis was adsorbed by this new temperature-responsive ion-exchanger, and 76% was eluted by a single cycle temperature shift to 4 °C without varying the composition of the 10mM sodium dihydrogen phosphate buffer, pH 6.5, or the flow rate. The binding characteristics of these different ion exchange resins with bovine lactoferrin were also compared to results obtained using other resins based on N-isopropylacrylamide but contained N-tert-butylacrylamide rather than N-phenylacrylamide, where the corresponding dynamic capture and release properties for bovine lactoferrin required different temperature conditions of 20 °C and 50 °C, respectively for optimal desorption/adsorption. The cationic protein, bovine lactoperoxidase, was also adsorbed and desorbed with these temperature-responsive resins under similar conditions of changing temperature, whereas the anionic protein, bovine β-lactoglobulin, was not adsorbed under this regime of temperature conditions but instead eluted in the flow-through.

  16. Vitrification of ion exchange resins

    DOEpatents

    Cicero-Herman, Connie A.; Workman, Rhonda Jackson

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  17. Electrically Switched Cesium Ion Exchange

    SciTech Connect

    JPH Sukamto; ML Lilga; RK Orth

    1998-10-23

    This report discusses the results of work to develop Electrically Switched Ion Exchange (ESIX) for separations of ions from waste streams relevant to DOE site clean-up. ESIX combines ion exchange and electrochemistry to provide a selective, reversible method for radionuclide separation that lowers costs and minimizes secondary waste generation typically associated with conventional ion exchange. In the ESIX process, an electroactive ion exchange film is deposited onto. a high surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. As a result, the production of secondary waste is minimized, since the large volumes of solution associated with elution, wash, and regeneration cycles typical of standard ion exchange are not needed for the ESIX process. The document is presented in two parts: Part I, the Summary Report, discusses the objectives of the project, describes the ESIX concept and the approach taken, and summarizes the major results; Part II, the Technology Description, provides a technical description of the experimental procedures and in-depth discussions on modeling, case studies, and cost comparisons between ESIX and currently used technologies.

  18. Solute transport with equilibrium aqueous complexation and either sorption or ion exchange: Simulation methodology and applications

    USGS Publications Warehouse

    Lewis, F.M.; Voss, C.I.; Rubin, J.

    1987-01-01

    Methodologies that account for specific types of chemical reactions in the simulation of solute transport can be developed so they are compatible with solution algorithms employed in existing transport codes. This enables the simulation of reactive transport in complex multidimensional flow regimes, and provides a means for existing codes to account for some of the fundamental chemical processes that occur among transported solutes. Two equilibrium-controlled reaction systems demonstrate a methodology for accommodating chemical interaction into models of solute transport. One system involves the sorption of a given chemical species, as well as two aqueous complexations in which the sorbing species is a participant. The other reaction set involves binary ion exchange coupled with aqueous complexation involving one of the exchanging species. The methodology accommodates these reaction systems through the addition of nonlinear terms to the transport equations for the sorbing species. Example simulation results show (1) the effect equilibrium chemical parameters have on the spatial distributions of concentration for complexing solutes; (2) that an interrelationship exists between mechanical dispersion and the various reaction processes; (3) that dispersive parameters of the porous media cannot be determined from reactive concentration distributions unless the reaction is accounted for or the influence of the reaction is negligible; (4) how the concentration of a chemical species may be significantly affected by its participation in an aqueous complex with a second species which also sorbs; and (5) that these coupled chemical processes influencing reactive transport can be demonstrated in two-dimensional flow regimes. ?? 1987.

  19. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.

    1981-01-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  20. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.

    1981-01-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  1. Inorganic ion exchangers for nuclear waste remediation

    SciTech Connect

    Clearfield, A.; Bortun, A.; Bortun, L.; Behrens, E.

    1997-10-01

    The objective of this work is to provide a broad spectrum of inorganic ion exchangers that can be used for a range of applications and separations involving remediation of groundwater and tank wastes. The authors intend to scale-up the most promising exchangers, through partnership with AlliedSignal Inc., to provide samples for testing at various DOE sites. While much of the focus is on exchangers for removal of Cs{sup +} and Sr{sup 2+} from highly alkaline tank wastes, especially at Hanford, the authors have also synthesized exchangers for acid wastes, alkaline wastes, groundwater, and mercury, cobalt, and chromium removal. These exchangers are now available for use at DOE sites. Many of the ion exchangers described here are new, and others are improved versions of previously known exchangers. They are generally one of three types: (1) layered compounds, (2) framework or tunnel compounds, and (3) amorphous exchangers in which a gel exchanger is used to bind a fine powder into a bead for column use. Most of these exchangers can be regenerated and used again.

  2. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  3. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  4. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  5. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  6. DIVALENT ION EXCHANGE WITH ALKALI

    SciTech Connect

    Bunge, A.L.; Klein, G.; Radke, C.J.

    1980-05-01

    Exchange of hardness ions is important in enhanced oil recovery with chemical additives. In both micellar-polymer and caustic flooding processes, multivalent ions released from rock surfaces can interact with anionic surfactants, rendering them preferentially oil soluble and/or insoluble in water. Because hardness cations are sparingly soluble and precipitate in alkaline solutions, such solutions may be more efficient as surfactant flood preflushes than are softened brines. Multivalent ion precipitation may also occur in alkaline waterflooding. To permit design of such processes, this paper presents a chromatographic theory for simultaneous ion exchange with precipitation of divalent ions. Theoretical effluent histories and concentration profiles are presented for the cases of finite pulses and continuous injection of hydroxide ions into linear cores. Complete capture of the insoluble salt particles is assumed. Results are given for the case of instantaneous equilibration of the solution with the precipitate, as well for the case of complete nonequilibrium, in which the solid precipitate does not redissolve. The efficiency of alklaine preflushing is shown to depend on the exchange isotherm, initial divalent loading of the rock, injected pH and salinity, the solubility product of the precipitated salt, and pulse size. The effect of slug size on complete equilibrium removal of hardness ions is reduced efficiency with increasing size until a critical volume approximating continuous injection is reached. Increasing injected pH and salinity provides a more favorable response. Experimental data for Berea sandstone and an argillaceous sand compare favorably with the proposed theory.

  7. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1997-01-01

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  8. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1998-01-27

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange-resin are also disclosed.

  9. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, A.W.; Gatrone, R.C.; Alexandratos, S.; Horwitz, E.P.

    1997-04-08

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorus. The pendent groups have the formula as shown in the patent wherein R is hydrogen, a cation or mixtures thereof; and R{sup 1} is hydrogen or an C{sub 1}-C{sub 2} alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  10. Ionic Polymer-Metal Composites (IPMCs) with Various Ion Exchange Membranes and Their Potential Use in IPMC Applications

    NASA Astrophysics Data System (ADS)

    Park, Jiyeon

    Ionic polymer metal composites (IPMCs) have been widely studied and drawn great attention for the last several years in robotics and medical fields due to their great potential as actuators, artificial muscles, and more. Each part of an IPMC is important, but the role of ionic exchange membrane should be emphasized because, after all, it is where ions migrate when voltage is applied to produce motion. So far, most researches have been done on IPMCs made with commercially available ionic exchange membranes such as Nafion or Flemion. In this thesis, the research is mainly focused on fabricating IPMCs with several other ionic exchange membranes that are commercially available and characterization of optical, physical, and electromechanical properties of those IPMCs. Five different ion exchange membranes of DuPont (N115), Golden Energy Fuel Cells Inc (GEFC-700)., fuMA Tech (F-14100), Membranes International Inc. (CMI-7000S) and University of Nevada Las Vegas (19-PSU-S1) are the chosen membranes. N115, GEFC-700, and F-14100 have the same structure. CMI-7000S is a reinforced membrane by mixing fibers with the ion exchange membrane. 19-PSU-S1 is a membrane that was made at UNLV for fuel cell application. The physical properties of the ionic exchange membranes were studied by examining water uptake. The thermal analysis also was carried out with Differential Scanning Calorimetry (DSC). Water uptake and ion exchange capacities were measured to confirm the physical properties of IPMCs. The structure of the IPMCs was observed under Scanning Electron Microscopy (SEM). The structures of fabricated IPMCs were observed by SEM and DSC. Capacitance was also measured by drawing impedance curves. Young's modulus (E) was measured to determine the stiffness of each IPMC. Lastly, bending actuation test was carried out to observe the actual performance of each IPMC in water. The water uptake of all IPMCs is less than 40%. 19-PSU-S1 absorbed the most water (35.2 %) and CMI-7000S absorbed

  11. Radiation Studies with Argentine Ion Exchange Material

    SciTech Connect

    Crawford, C.L.

    2002-06-28

    A recent technology exchange between Argentina Nuclear Energy Commission (CNEA) and the US Department of Energy involved vitrification studies of ion exchange resins. Details of the spent ion exchange resins currently stored at two Argentine nuclear power plants, Atucha I and Embalse, have been presented in earlier reports. The present study examines irradiation of simulant samples of ion exchange resins.

  12. Ion Exchange and Liquid Column Chromatography.

    ERIC Educational Resources Information Center

    Walton, Harold F.

    1980-01-01

    Emphasizes recent advances in principles and methodology in ion exchange and chromatography. Two tables list representative examples for inorganic ions and organic compounds. Cites 544 references. (CS)

  13. Ion Exchange and Liquid Column Chromatography.

    ERIC Educational Resources Information Center

    Walton, Harold F.

    1980-01-01

    Emphasizes recent advances in principles and methodology in ion exchange and chromatography. Two tables list representative examples for inorganic ions and organic compounds. Cites 544 references. (CS)

  14. Ion exchange purification of scandium

    DOEpatents

    Herchenroeder, L.A.; Burkholder, H.R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity. 2 figs.

  15. Ion exchange purification of scandium

    DOEpatents

    Herchenroeder, Laurie A.; Burkholder, Harvey R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity.

  16. Contamination weeping: A chemical ion exchange model

    SciTech Connect

    Chambers, W.B.; Doughty, D.H.; Jones, H.D.T.; Martinez, S.L.; Bennett, P.C.

    1991-01-01

    Experiments have been conducted to determine the applicability of a chemical ion-exchange model to characterize the problem of nuclear fuel transportation cask contamination and release ( weeping''). Surface charge characteristics of Cr{sub 2}O{sub 3} and stainless steel (304) powders have been measured to determine the potential for ion exchange at metal oxide -- aqueous interfaces. The solubility of pool contaminant Co and Cs electrolytes at varying pH and the adsorption characteristics of these ions on Cr{sub 2}O{sub 3} and stainless steel powders in aqueous slurries have been studied. Experiments show that Co ions do reversibly adsorb on these powder surfaces and, more specifically, that adsorption occurs in the nominal pH range (pH = 4--6) of a boric acid-moderated spent fuel pool. Desorption has been demonstrated to occur at pH {le} 3. Cs ions also have been shown to have an affinity for these surfaces although the reversibility of Cs{sup +} bonding by H{sup +} ion exchange has not been fully demonstrated. These results have significant implications for effective decontamination and coating processes used on nuclear fuel transportation casks. 9 refs., 5 figs., 1 tab.

  17. Electrically controlled cesium ion exchange

    SciTech Connect

    Lilga, M.

    1996-10-01

    Several sites within the DOE complex (Savannah River, Idaho, Oak Ridge and Hanford) have underground storage tanks containing high-level waste resulting from nuclear engineering activities. To facilitate final disposal of the tank waste, it is advantageous to separate and concentrate the radionuclides for final immobilization in a vitrified glass matrix. This task proposes a new approach for radionuclide separation by combining ion exchange (IX) and electrochemistry to provide a selective and economic separation method.

  18. Ion-exchange chromatography: basic principles and application to the partial purification of soluble mammalian prolyl oligopeptidase.

    PubMed

    Cummins, Philip M; Dowling, Oonagh; O'Connor, Brendan F

    2011-01-01

    Ion-exchange chromatography (IEC) allows for the separation of ionizable molecules on the basis of differences in charge properties. Its large sample-handling capacity, broad applicability (particularly to proteins and enzymes), moderate cost, powerful resolving ability, and ease of scale-up and automation have led to it becoming one of the most versatile and widely used of all liquid chromatography (LC) techniques. In this chapter, we review the basic principles of IEC, as well as the broader criteria for selecting IEC conditions. By way of further illustration, we outline protocols necessary to partially purify a serine peptidase from bovine whole brain cytosolic fraction, covering crude tissue extract preparation through to partial purification of the target enzyme using anion-exchange chromatography. Protocols for assaying total protein and enzyme activity in both pre- and post-IEC fractions are also described. The target serine peptidase, prolyl oligopeptidase (POP, EC3.4.21.26), is an 80-kDa enzyme with endopeptidase activity towards peptide substrates of ≤30 amino acids. POP is a ubiquitous post-proline cleaving enzyme with particularly high expression levels in the mammalian brain, where it participates in the metabolism of neuroactive peptides and peptide-like hormones (e.g. thyroliberin, gonadotropin-releasing hormone).

  19. Evidence of ammonium ion-exchange properties of natural bentonite and application to ammonium detection.

    PubMed

    Zazoua, A; Kazane, I; Khedimallah, N; Dernane, C; Errachid, A; Jaffrezic-Renault, N

    2013-12-01

    Ammonium exchange with hybrid PVC-bentonite (mineral montmorillonite clay) thin film was revealed using FTIR spectroscopy, EDX, cyclic voltammetry and electrochemical impedance spectroscopy. The effect of ammonium exchange on the charge transfer resistance of PVC-bentonite hybrid thin film was attributed to a modification of the intersheet distance and hydration of bentonite crystals. The obtained impedimetric ammonium sensor shows a linear range of detection from 10(-4)M to 1M and a detection limit around 10(-6)M. © 2013.

  20. Synthesis, characterization and application of ion exchange resin as a slow-release fertilizer for wheat cultivation in space

    NASA Astrophysics Data System (ADS)

    Li, Bowei; Dong, Chen; Chu, Zhengpei; Zhang, Weizhe; Wang, Minjuan; Liu, Hong; Xie, Beizhen

    2016-10-01

    In addition to the bio-regenerative air revitalization, water recycling and waste management systems and their associated challenges, enhancing the crop yield with less fertilizer input for sustainable food production in space is also a challenge that needs to be overcome. The purpose of this study is to investigate the feasibility of applying ion exchange resin as a slow-release fertilizer for wheat cultivation in space. Strong-acid cationic exchange resins and weak-base anion exchange resins soaked in 1X, 5X, 10X and 15X Hoagland nutrient solutions, respectively, were used as fertilizers in clinoptilolite to cultivate wheat plants, and the morphological and physiological characteristics of the wheat plants were studied and compared with that of the wheat planted in vermiculite and nutrient solutions. The results showed that more ions were attached on the surface of the ion exchange resins as the solution concentration increased. After 14 days, the fresh weight of wheat planted in the ion exchange resin-clinoptilolite (IER-clinoptilolite) treated with 10X and 15X solutions were 190% and 192% higher than that of wheat planted in nutrient solution with the same concentration. Chlorophyll content of wheat plants cultivated in the two kinds of solid medium is significantly higher than that of liquid cultivation. The lowest peroxidase (POD) activity and malondialdehyde (MDA) contents of wheat plants cultivated in the IER-clinoptilolite appeared on the 14th day. According to all the experimental data, it's promising to produce slow-release nutrient fertilizer by using strong-acid cationic exchange resins and weak-base anion exchange resins for wheat cultivation in space.

  1. Effects of ionizing radiation on modern ion exchange materials

    SciTech Connect

    Marsh, S.F.; Pillay, K.K.S.

    1993-10-01

    We review published studies of the effects of ionizing radiation on ion exchange materials, emphasizing those published in recent years. A brief overview is followed by a more detailed examination of recent developments. Our review includes styrene/divinylbenzene copolymers with cation-exchange or anion-exchange functional groups, polyvinylpyridine anion exchangers, chelating resins, multifunctional resins, and inorganic exchangers. In general, strong-acid cation exchange resins are more resistant to radiation than are strong-base anion exchange resins, and polyvinylpyridine resins are more resistant than polystyrene resins. Cross-linkage, salt form, moisture content, and the surrounding medium all affect the radiation stability of a specific exchanger. Inorganic exchangers usually, but not always, exhibit high radiation resistance. Liquid ion exchangers, which have been used so extensively in nuclear processing applications, also are included.

  2. Facility produced charge-exchange ions

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1981-01-01

    These facility produced ions are created by charge-exchange collisions between neutral atoms and energetic thruster beam ions. The result of the electron transfer is an energetic neutral atom and an ion of only thermal energy. There are true charge-exchange ions produced by collisions with neutrals escaping from the ion thruster and being charge-exchange ionized before the neutral intercepts the tank wall. The facility produced charge-exchange ions will not exist in space and therefore, represent a source of error where measurements involving ion thruster plasmas and their density are involved. The quantity of facility produced ions in a test chamber with a 30 cm mercury ion thruster was determined.

  3. Cellulosic ion-exchange membranes for hemodialysis.

    PubMed

    Mollison, A N; Graydon, W F

    1977-07-01

    The application of cellulosic ion-exchange membranes to hemodialysis was studied in vitro. The membranes were prepared by radiation-grafting methacrylic acid and vinylpyridine to films of DuPont cellophane PD-215 to produce cation-exchange and anion-exchange membranes, respectively. Solutions of urea, creatinine, glucose, and uric acid were studied for their interactions with and diffusion through the membranes. Ultrafiltration rates were also determined. Cuprophane and PD-215 cellophane were studied as controls. Dialysis plots for the membranes revealed a mechanism of "assisted transport." Initially, the solutes were removed from solution by a sorption/adsorption mechanism followed by a steady-state diffusion process. The calculated diffusivities for these later steady-state regions increased linearly with capacity for urea, creatinine, and uric acid, while for glucose the reverse was true. The combined processes involved provided considerably greater mass transport per unit thickness than either DuPont PD-215 cellophane or Cupropane.

  4. Electrostatic model for protein adsorption in ion-exchange chromatography and application to monoclonal antibodies, lysozyme and chymotrypsinogen A.

    PubMed

    Guélat, Bertrand; Ströhlein, Guido; Lattuada, Marco; Morbidelli, Massimo

    2010-08-27

    A model for the adsorption equilibrium of proteins in ion-exchange chromatography explicitly accounting for the effect of pH and salt concentration in the limit of highly diluted systems was developed. It is based on the use of DLVO theory to estimate the electrostatic interactions between the charged surface of the ion-exchanger and the proteins. The corresponding charge distributions were evaluated as a function of pH and salt concentration using a molecular approach. The model was verified for the adsorption equilibrium of lysozyme, chymotrypsinogen A and four industrial monoclonal antibodies on two strong cation-exchangers. The adsorption equilibrium constants of these proteins were determined experimentally at various pH values and salt concentrations and the model was fitted with a good agreement using three adjustable parameters for each protein in the whole range of experimental conditions. Despite the simplifications of the model regarding the geometry of the protein-ion-exchanger system, the physical meaning of the parameters was retained.

  5. A nano-silver composite based on the ion-exchange response for the intelligent antibacterial applications.

    PubMed

    Wang, Chan; Huang, Xiaobo; Deng, Weilin; Chang, Chengliang; Hang, Ruiqiang; Tang, Bin

    2014-08-01

    As a kind of antimicrobial agent, nano-silver composites have attracted a great deal of interest in biomedical applications. However, the typical loadings of silver nanoparticles (AgNPs) in such composites could result in dose-related cytotoxicity. In this study, a nano-silver composite leading to antimicrobial activity without cytotoxicity was fabricated by loading AgNPs into a dried alginate hydrogel. The biological performance of this composite mainly depended on the release of AgNPs, which needed to be triggered by the ion-exchange response and was further influenced by the loadings of AgNPs in the composite. The antimicrobial activity against E. coli and S. aureus demonstrated that the released silver no less than 678 ppb in the medium caused a reduction of 7log10CFU/mL (100%) bacteria. Significantly, the dose (~1.10×10(3) ppb) of released silver was not toxic and allowed attachment, and growth of MC3T3-E1 pre-osteoblast cells. These results supported that the composite was compatible with in vitro mammalian cells yet exhibited antimicrobial activity by carefully designing the loadings of AgNPs within the alginate. Thus, it indicated that the performance of this composite might permit management of bacterial infection in wound beds without impairment of wound healing.

  6. Novel silica-based ion exchange resin

    SciTech Connect

    1997-11-01

    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  7. Method of uranium reclamation from aqueous systems by reactive ion exchange. [US DOE patent application; anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands

    DOEpatents

    Maya, L.

    1981-11-05

    A reactive ion exchange method for separation and recovery of values of uranium, neptunium, plutonium, or americium from substantially neutral aqueous systems of said metals comprises contacting said system with an effective amount of a basic anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands to achieve nearly 100% sorption of said actinyl ion onto said resin and an aqueous system practically free of said actinyl ions. The method is operational over an extensive range of concentrations from about 10/sup -6/ M to 1.0 M actinyl ion and a pH range of about 4 to 7. The method has particulr application to treatment of waste streams from Purex-type nuclear fuel reprocessing facilities and hydrometallurgical processes involving U, Np, P, or Am.

  8. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    ERIC Educational Resources Information Center

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  9. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    ERIC Educational Resources Information Center

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  10. Ion-exchanged glass waveguide technology: a review

    NASA Astrophysics Data System (ADS)

    Tervonen, Ari; West, Brian R.; Honkanen, Seppo

    2011-07-01

    We review the history and current status of ion exchanged glass waveguide technology. The background of ion exchange in glass and key developments in the first years of research are briefly described. An overview of fabrication, characterization and modeling of waveguides is given and the most important waveguide devices and their applications are discussed. Ion exchanged waveguide technology has served as an available platform for studies of general waveguide properties, integrated optics structures and devices, as well as applications. It is also a commercial fabrication technology for both passive and active wave-guide components.

  11. Ion Exchange Formation via Sulfonated Bicomponent Nonwovens

    NASA Astrophysics Data System (ADS)

    Stoughton, Hannah L.

    For many years ion exchange resins were used to: remove heavy metals from water, recover materials from wastewater, and eliminate harmful gases from the air. While use of these resin beads dominates the ion exchange industry, the beads have limitations that should be considered when decisions are made to employ them. For instance, officials must balance the inherent zero sum surface area and porosity of the materials. This series of studies investigates the use of bicomponent nonwovens as a base substrate for producing high surface area ion exchange materials for the removal of heavy metal ions. Functionalized materials were produced in a two-step process: (1) PET/PE spunbond bicomponent fibers were fractured completely, producing the high surface area nonwoven to be used as the base ion exchange material, and (2) the conditions for functionalizing the PET fibers of the nonwoven webs were investigated where an epoxy containing monomer was grafted to the surface followed by sulfonation of the monomer. The functionalization reactions of the PET fibers were monitored based on: weight gain, FTIR, TOF-SIMS, and SEM. Ion exchange properties were evaluated using titration and copper ion removal capacity from test solutions. The relationship between web structure and removal efficiency of the metal ions was defined through a comparison of the bicomponent and homocomponent nonwovens for copper ion removal efficiency. The investigation revealed that utilizing the high surface area, fractured bicomponent nonwoven ion exchange materials with capacities comparable to commercially available ion exchange resins could be produced.

  12. Ion exchange properties of novel hydrous metal oxide materials

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.

    1996-12-31

    Hydrous metal oxide (HMO) materials are inorganic ion exchangers which have many desirable characteristics for catalyst support applications, including high cation exchange capacity, anion exchange capability, high surface area, ease of adjustment of acidity and basicity, bulk or thin film preparation, and similar chemistry for preparation of various transition metal oxides. Cation exchange capacity is engineered into these materials through the uniform incorporation of alkali cations via manipulation of alkoxide chemistry. Specific examples of the effects of Na stoichiometry and the addition of SiO{sub 2} to hydrous titanium oxide (HTO) on ion exchange behavior will be given. Acid titration and cationic metal precursor complex exchange will be used to characterize the ion exchange behavior of these novel materials.

  13. [Ion specificity during ion exchange equilibrium in natural clinoptilolite].

    PubMed

    He, Yun-Hua; Li, Hang; Liu, Xin-Min; Xiong, Hai-Ling

    2015-03-01

    Zeolites have been widely applied in soil improvement and environment protection. The study on ion specificity during ion exchange equilibrium is of important significance for better use of zeolites. The maximum adsorption capacities of alkali ions during ion exchange equilibrium in the clinoptilolite showed obvious specificity. For alkali metal ions with equivalent valence, the differences in adsorption capacity increased with the decrease of ionic concentration. These results cannot be well explained by the classical theories including coulomb force, ionic size, hydration, dispersion force, classic induction force and surface complexation. We found that the coupling of polarization effects resulted from the quantum fluctuation of diverse alkali metal ions and electric field near the zeolite surface should be the primary reason for specific ion effect during ion exchange in zeolite. The result of this coupling effect was that the difference in the ion dipole moment increased with the increase of surface potential, which further expanded the difference in the adsorption ability between zeolite surface and ions, resulting in different ion exchange adsorption ability at the solid/liquid interface. Due to the high surface charge density of zeolite, ionic size also played an important role in the distribution of ions in the double diffuse layer, which led to an interesting result that distinct differences in exchange adsorption ability of various alkali metal ions were only detected at high surface potential (the absolute value was greater than 0.2 V), which was different from the ion exchange equilibrium result on the surface with low charge density.

  14. Regulation of protein multipoint adsorption on ion-exchange adsorbent and its application to the purification of macromolecules.

    PubMed

    Huang, Yongdong; Bi, Jingxiu; Zhao, Lan; Ma, Guanghui; Su, Zhiguo

    2010-12-01

    Ion-exchange chromatography (IEC) using commercial ionic absorbents is a widely used technique for protein purification. Protein adsorption onto ion-exchange adsorbents often involves a multipoint adsorption. In IEC of multimeric proteins or "soft" proteins, the intense multipoint binding would make the further desorption difficult, even lead to the destruction of protein structure and the loss of its biological activity. In this paper, DEAE Sepharose FF adsorbents with controllable ligand densities from 0.020 to 0.183 mmol/ml were synthesized, and then the effect of ligand density on the static ion-exchange adsorption of bovine serum albumin (BSA) onto DEAE Sepharose FF was studied by batch adsorption technique. Steric mass-action (SMA) model was employed to analyze the static adsorption behavior. The results showed that the SMA model parameters, equilibrium constant (K(a)), characteristic number of binding sites (υ) and steric factor (σ), increased gradually with ligand density. Thus, it was feasible to regulate BSA multipoint adsorption by modulating the ligand density of ion-exchange adsorbent. Furthermore, IEC of hepatitis B surface antigen (HBsAg) using DEAE Sepharose FF adsorbents with different ligand densities was carried out, and the activity recovery of HBsAg was improved from 42% to 67% when the ligand density was decreased from 0.183 to 0.020 mmol/ml. Taking the activity recovery of HBsAg, the purification factor and the binding capacity into account, DEAE Sepharose FF with a ligand density of 0.041 mmol/ml was most effective for the purification of HBsAg. Such a strategy may also be beneficial for the purification of macromolecules and multimeric proteins.

  15. Development of a multicomponent film diffusion controlled mixed bed ion exchange column model applicable to variable influent systems

    NASA Astrophysics Data System (ADS)

    Hussey, Dennis Frank

    2000-10-01

    Scope and method of study. The purpose of this study was to develop a generalized rate model to handle multicomponent mixed-bed ion exchange (MBIE) with multivalent dissociative species and variable influent conditions. To achieve this goal, mass transfer mechanisms of weak electrolytes in ion exchange column have been studied; and based on which, rate expressions for weak electrolyte transfer have been proposed. In addition, the column material balance has been derived in terms of the constituent species concentrations only. Finally, generalized dissociation equilibrium equations for several types of weak electrolyte constituents were implemented, and the effluent concentrations were determined by solving column material balance equations along with the rate expressions. Findings and conclusions. The mixed bed ion exchange column model has been successfully programmed into a computer program and is capable of predicting the effluent concentration histories, dynamic resin loading, solution, and rate profiles. The column material balance has been satisfied to within 1% for all chemistries studied. The model is capable of simulating variable influent contaminant concentrations and flow rates by sequentially using the loading profiles of previous simulations. The model maintains electroneutrality at all times. Dissociative species transfer is adequate for many systems, but additional work is required to incorporate molecular constituent mass transfer.

  16. Ion Exchange and Adsorption of Inorganic Contaminants

    EPA Science Inventory

    In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...

  17. Titania bound sodium titanate ion exchanger

    DOEpatents

    DeFilippi, Irene C. G.; Yates, Stephen Frederic; Shen, Jian-Kun; Gaita, Romulus; Sedath, Robert Henry; Seminara, Gary Joseph; Straszewski, Michael Peter; Anderson, David Joseph

    1999-03-23

    This invention is method for preparing a titania bound ion exchange composition comprising admixing crystalline sodium titanate and a hydrolyzable titanium compound and, thereafter drying the titania bound crystalline sodium titanate and subjecting the dried titania bound ion exchange composition to optional compaction and calcination steps to improve the physical strength of the titania bound composition.

  18. Ion Exchange and Adsorption of Inorganic Contaminants

    EPA Science Inventory

    In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...

  19. Ion exchange in the nuclear industry

    SciTech Connect

    Bibler, J.P.

    1990-01-01

    Ion exchange is used in nearly every part of the nuclear fuel cycle -- from the purification of uranium from its ore to the final recovery of uranium and transmutation products. Ion exchange also plays a valuable role in the management of nuclear wastes generated in the fuel cycle.

  20. Ion exchange in the nuclear industry

    SciTech Connect

    Bibler, J.P.

    1990-12-31

    Ion exchange is used in nearly every part of the nuclear fuel cycle -- from the purification of uranium from its ore to the final recovery of uranium and transmutation products. Ion exchange also plays a valuable role in the management of nuclear wastes generated in the fuel cycle.

  1. Ion-exchange chromatographic protein refolding.

    PubMed

    Freydell, Esteban J; van der Wielen, Luuk; Eppink, Michel; Ottens, Marcel

    2010-11-12

    The application of ion-exchange (IEX) chromatography to protein refolding (IExR) has been successfully proven, as supported by various studies using different model proteins, ion-exchange media and flow configurations. Ion-exchange refolding offers a relatively high degree of process intensification, represented by the possibility of performing protein refolding, product purification and product concentration, in one unit operation. Besides its high degree of process intensification, IExR offers an additional set of key advantages including: spatial isolation of the bound protein molecules and the controllable change in chemical composition using gradients. Despite of the acknowledgement of the former advantages, the lack of mechanistic understanding on how they influence the process performance of the ion-exchange refolding reactor, limits the ability to exploit them in order to optimize the performance of the unit. This paper presents a quantitative analysis that assesses the effect that the spatial isolation and the urea gradient, have on the IExR performance, judged on the basis of the refolding yield (Y(N)) and the fractional mass recovery (f(Prot,Rec)). Additionally, this work discusses the effect of the protein load, the protein loading state (i.e., native, denatured, denatured and reduced (D&R)) and the adsorbent type on f(Prot,Rec). The presented work shows: (1) that the protein load has a direct effect on f(Prot,Rec), and the magnitude of this effect depends on the loading state of the protein solution and the adsorbent type; (2) that irrespectively of the type of adsorbent used, the saturation capacity of a denatured protein is less than the native protein and that this difference can be linked to differences in accessible binding surface area; (3) that there is a clear correlation between fractional surface coverage (θ) and f(Prot,Rec), indicating that the former could serve as a good descriptor to assess spatial isolation, and (4) that the urea

  2. Application of a Re-Pd bimetallic catalyst for treatment of perchlorate in waste ion-exchange regenerant brine.

    PubMed

    Liu, Jinyong; Choe, Jong Kwon; Sasnow, Zachary; Werth, Charles J; Strathmann, Timothy J

    2013-01-01

    Concentrated sodium chloride (NaCl) brines are often used to regenerate ion-exchange (IX) resins applied to treat drinking water sources contaminated with perchlorate (ClO(4)(-)), generating large volumes of contaminated waste brine. Chemical and biological processes for ClO(4)(-) reduction are often inhibited severely by high salt levels, making it difficult to recycle waste brines. Recent work demonstrated that novel rhenium-palladium bimetallic catalysts on activated carbon support (Re-Pd/C) can efficiently reduce ClO(4)(-) to chloride (Cl(-)) under acidic conditions, and here the applicability of the process for treating waste IX brines was examined. Experiments conducted in synthetic NaCl-only brine (6-12 wt%) showed higher Re-Pd/C catalyst activity than in comparable freshwater solutions, but the rate constant for ClO(4)(-) reduction measured in a real IX waste brine was found to be 65 times lower than in the synthetic NaCl brine. Through a series of experiments, co-contamination of the IX waste brine by excess NO(3)(-) (which the catalyst reduces principally to NH(4)(+)) was found to be the primary cause for deactivation of the Re-Pd/C catalyst, most likely by altering the immobilized Re component. Pre-treatment of NO(3)(-) using a different bimetallic catalyst (In-Pd/Al(2)O(3)) improved selectivity for N(2) over NH(4)(+) and enabled facile ClO(4)(-) reduction by the Re-Pd/C catalyst. Thus, sequential catalytic treatment may be a promising strategy for enabling reuse of waste IX brine containing NO(3)(-) and ClO(4)(-).

  3. Quaternary Ammonium Salts Immobilized on Silica Gel: Exchange Properties and Application as Potentiometric Sensor for Perchlorate Ions.

    PubMed

    de Campos, Elvio A.; da Silva Alfaya, Antonio A.; Ferrari, Rosilene T.; Costa, Creusa Maieru M.

    2001-08-01

    Ammonium chlorides immobilized on silica gel, SA(+)/Cl(-) and SE(+)/Cl(-), were obtained from silica previously modified with 3-aminopropyltriethoxysilane and N-[3-(trimethoxysilyl)-propyl]ethylenediamine, respectively. Both materials showed potential use as an anion exchanger: they are thermically stable (up to 413 K), achieve equilibrium rapidly in the presence of suitable exchanger ions, and are easily recovered. The exchange capacities observed for SA(+)/Cl(-) and SE(+)/Cl(-) are 0.70 and 1.19 mmol Cl(-) g(-1), respectively. Through the exchange isotherms and competitive Cl(-)-X(-) exchange (X(-)=F(-), Br(-), I(-), N(3)(-), NO(3)(-), SCN(-), ClO(4)(-)) it was observed that: (i) SE(+)/Cl(-) exchanges the counterion Cl(-) more easily than SA(+)/Cl(-); (ii) SA(+)/Cl(-) presents higher selectivity than SE(+)/Cl(-); and (iii) SA(+)/Cl(-) presents high affinity for ClO(4)(-). Because of these two latter properties presented by the SA(+)/Cl(-), the derivative SA(+)/ClO(4)(-) was used as a potentiometric sensor for this anion, prepared from the supported material on a mixture of graphite powder with epoxy resin. The electrode showed a nernstian behavior and a limit of response of 0.13 mmol L(-1). Potentiometric selectivity coefficients, K(pot)(A, B), were obtained for some interfering anions, and the following interference order was observed: F(-) > SCN(-) > NO(3)(-) > Br(-) > Cl(-) > CH(3)COO(-). The electrode showed fast and stable responses and was useful for approximately 200 measures. Copyright 2001 Academic Press.

  4. Ion exchange in hydroxyapatite with lanthanides.

    PubMed

    Cawthray, Jacqueline F; Creagh, A Louise; Haynes, Charles A; Orvig, Chris

    2015-02-16

    Naturally occurring hydroxyapatite, Ca5(PO4)3(OH) (HAP), is the main inorganic component of bone matrix, with synthetic analogues finding applications in bioceramics and catalysis. An interesting and valuable property of both natural and synthetic HAP is the ability to undergo cationic and anionic substitution. The lanthanides are well-suited for substitution for the Ca(2+) sites within HAP, because of their similarities in ionic radii, donor atom requirements, and coordination geometries. We have used isothermal titration calorimetry (ITC) to investigate the thermodynamics of ion exchange in HAP with a representative series of lanthanide ions, La(3+), Sm(3+), Gd(3+), Ho(3+), Yb(3+) and Lu(3+), reporting the association constant (Ka), ion-exchange thermodynamic parameters (ΔH, ΔS, ΔG), and binding stoichiometry (n). We also probe the nature of the La(3+):HAP interaction by solid-state nuclear magnetic resonance ((31)P NMR), X-ray diffraction (XRD), and inductively coupled plasma-optical emission spectroscopy (ICP-OES), in support of the ITC results.

  5. Application of the Nernst-Planck approach to lead ion exchange in Ca-loaded Pelvetia canaliculata.

    PubMed

    Costa, Joana F de Sá S; Vilar, Vítor J P; Botelho, Cidália M S; da Silva, Eduardo A B; Boaventura, Rui A R

    2010-07-01

    Ca-loaded Pelvetia canaliculata biomass was used to remove Pb(2+) in aqueous solution from batch and continuous systems. The physicochemical characterization of algae Pelvetia particles by potentiometric titration and FTIR analysis has shown a gel structure with two major binding groups - carboxylic (2.8 mmol g(-1)) and hydroxyl (0.8 mmol g(-1)), with an affinity constant distribution for hydrogen ions well described by a Quasi-Gaussian distribution. Equilibrium adsorption (pH 3 and 5) and desorption (eluents: HNO(3) and CaCl(2)) experiments were performed, showing that the biosorption mechanism was attributed to ion exchange among calcium, lead and hydrogen ions with stoichiometry 1:1 (Ca:Pb) and 1:2 (Ca:H and Pb:H). The uptake capacity of lead ions decreased with pH, suggesting that there is a competition between H(+) and Pb(2+) for the same binding sites. A mass action law for the ternary mixture was able to predict the equilibrium data, with the selectivity constants alpha(Ca)(H)=9+/-1 and alpha(Ca)(Pb)=44+/-5, revealing a higher affinity of the biomass towards lead ions. Adsorption (initial solution pH 4.5 and 2.5) and desorption (0.3M HNO(3)) kinetics were performed in batch and continuous systems. A mass transfer model using the Nernst-Planck approximation for the ionic flux of each counter-ion was used for the prediction of the ions profiles in batch systems and packed bed columns. The intraparticle effective diffusion constants were determined as 3.73x10(-7)cm(2)s(-1) for H(+), 7.56x10(-8)cm(2)s(-1) for Pb(2+) and 6.37x10(-8)cm(2)s(-1) for Ca(2+). Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Ion Exchange Membrane Influence on Ohmic Resistance

    USDA-ARS?s Scientific Manuscript database

    Selection of the proper ion exchange membrane can have a significant influence on bioelectrochemical system (BES) power densities. Because ions move across the membrane to achieve electroneutrality, the ion transport resistance (ohmic loss) needs to be minimized to increase power densities. Ohmic ...

  7. Ion momentum and energy transfer rates for charge exchange collisions

    NASA Technical Reports Server (NTRS)

    Horwitz, J.; Banks, P. M.

    1973-01-01

    The rates of momentum and energy transfer have been obtained for charge exchange collisions between ion and neutral gases having arbitrary Maxwellian temperatures and bulk transport velocities. The results are directly applicable to the F-region of the ionosphere where 0+ - 0 charge is the dominant mechanism affecting ion momentum and energy transfer.

  8. RECENT ADVANCES IN ION EXCHANGE MATERIALS AND PROCESSES FOR POLLUTION PREVENTION

    EPA Science Inventory

    The goal of this article was to summarize the recent advances in ion exchange technology for the metal finishing industry. Even though the ion exchange technology is mature and is widely employed in the industry, new applications, approaches and ion exchange materials are emergi...

  9. RECENT ADVANCES IN ION EXCHANGE MATERIALS AND PROCESSES FOR POLLUTION PREVENTION

    EPA Science Inventory

    The goal of this article was to summarize the recent advances in ion exchange technology for the metal finishing industry. Even though the ion exchange technology is mature and is widely employed in the industry, new applications, approaches and ion exchange materials are emergi...

  10. Ibuprofen ion-exchange fiber complex: improved dissolution and gastric tolerance based on ion exchange.

    PubMed

    Che, Xin; Wang, Li-hong; Yang, Yang; Yuan, Yue; Wang, Qi-fang; Wang, Yan; Li, San-ming

    2013-05-01

    The purpose of the present study is to develop a novel method to improve the dissolution of water-insoluble drug ibuprofen and the gastric tolerance of this non-steroidal anti-inflammatory drug which has potentially serious gastrointestinal side effects. This method is based on ion exchange of ion-exchange fibers. Water-insoluble drug ibuprofen was dispersed in deionized water, and then the ion-exchange fibers in OH(-) type was immersed in it. Ibuprofen and the active groups of the ion-exchange fibers combined into ion pairs based on the acid-base reaction. This drug carrier did not release drugs in deionized water, but in water solution containing other ions it would release the drugs into the solution by ion exchange. Confirmed by the X-ray diffraction and the scanning electron microscopy, the ibuprofen combined onto the ion-exchange fibers was in a highly molecular level dispersed state. The improved dissolution of ibuprofen ion-exchange fiber complexes is likely to originate from this ibuprofen's highly dispersed state. Due to this, ibuprofen's highly dispersed state, ibuprofen ion-exchange fiber complexes significantly decreases the gastrointestinal side effects of ibuprofen by avoiding the solid ibuprofen's educing. The present study showed that ibuprofen ion-exchange fiber complexes have the two-fold advantages. One is to improve the dissolution of ibuprofen. The other is to decrease the ibuprofen's gastrointestinal toxicity.

  11. Spectroscopic Studies on Physicochemical Natures of Ion Exchangers and Highly Functional Polymers and Their Application to Analytical Chemistry

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kazuhisa

    The absorption spectra or NMR spectra of chemical species adsorbed on ion exchangers and highly functional polymers such as crosslinked dextran could be directly measured by the corresponding solution methods. Spectrophotometric measurements of a target species in the solid phase have been extended to solid phase spectrometry (SPS), based on the direct measurement of light-absorption by the solid phase, which has adsorbed the target analyte. SPS has employed two different procedures; i.e., batch and flow methods. The Lambert-Beer law could be applicable to the solid particle layer system. The sensitivity was proportional to the volume ratio of the solid and sample solution, giving more than 100 times the sensitivity obtainable with the combination of a 0.1 cm3 solid and a 10-100 cm3 sample for the batch method. An online measurement of the light attenuation by the adsorbed species in the flow-through cell made it possible to both significantly reduce the sample solution volume and to simplify the respective procedures for the derivatization of the analyte and packing the solid particles into the cell. Because the cross-linked dextran and similar glucopyranoside-based gels have polyol moieties in their gel matrix, they could be used as oxo acid-selective adsorbents without introducing any special functional groups. Especially, in the case of boric acid, 11B NMR spectroscopy was one of the best tools for elucidating the nature of the interaction between boric acid/borate and polyols. Its combination with other methods enabled basic understanding of the chemical reactions. Reaction paths for 1:1 complexation are in general divided into two groups, i.e., neutral polyols that directly react with tetrahedral borate, and acidic polyols that react with trigonal boric acid in a 1:1 complexation. Both of the reactions produce tetrahedral anionic complexes, followed by a condensation reaction between the 1:1 monochelate complex and the undissociated diols to yield the 1

  12. Ion Exchange in Glass-Ceramics

    NASA Astrophysics Data System (ADS)

    Beall, George; Comte, Monique; Deneka, Matthew; Marques, Paulo; Pradeau, Philippe; Smith, Charlene

    2016-08-01

    In the past few years ion-exchange in glasses has found a renewed interest with a lot of new development and research in industrial and academic labs and the commercialization of materials with outstanding mechanical properties. These glasses are now widely used in many electronic devices including hand-held displays and tablets. The exchange is generally conducted in a bath of molten salt below the transition temperature of the glass. The exchange at the surface of an alkali ion by a bigger one brings compressive stress at the surface. The mechanical properties are dependent on the stress level at the surface and the depth of penetration of the bigger ion. As compared to glasses, glass-ceramics have the interest to display a wide range of aspects (transparent to opaque) and different mechanical properties (especially higher modulus and toughness). There has been little research on ion-exchange in glass-ceramics. In these materials the mechanisms are much more complex than in glasses because of their polyphasic nature: ion-exchange generally takes place mostly in one phase (crystalline phase or residual glass). The mechanism can be similar to what is observed in glasses with the replacement of an ion by another in the structure. But in some cases this ion-exchange leads to microstructural modifications (for example amorphisation or phase change). This article reviews these ion-exchange mechanisms using several transparent and opaque alumino-silicate glass-ceramics as examples. The effect of the ion exchange in the various glass-ceramics will be described, with particular emphasis on flexural strength.

  13. Ion-exchange voltammetry with nafion/poly(sodium 4-styrenesulfonate) mixed coatings on mercury film electrodes: characterization studies and application to the determination of trace metals.

    PubMed

    Rocha, Luciana S; Pinheiro, José Paulo; Carapuça, Helena M

    2006-09-12

    This work aimed to produce improved polymer coatings for the modification of thin mercury film electrodes (TMFEs). The goal is to obtain sensitive, reproducible, mechanically stable and antifouling devices suitable for the determination of trace metal cations in complex media. Therefore, novel mixed coatings of two sulfonated cation-exchange polymers of dissimilar characteristics-Nafion (NA) and poly(sodium 4-styrenesulfonate) (PSS)-were produced by solvent evaporation onto glassy carbon electrodes. The effect of the mass ratio (NA:PSS) on the film morphology was studied by scanning electron microscopy, revealing the formation of biphasic polymer systems, where PSS bead-shaped clusters appeared randomly dispersed into a uniform and compact NA environment. The permselectivity/ion-exchange features of the mixed films onto glassy carbon were evaluated using cathecol, urate, and dopamine. To allow trace metal analysis, thin mercury films were plated through the NA/PSS coatings, being the reproducibility and ion-exchange features of the mixed coatings-TMFE evaluated using lead ions. The best NA/PSS coating was found for the mass ratio of 5.3. Analytical performance of the NA/PSS-TMFE yielded a detection limit of 5.5 nM (3sigma), and the application of this modified electrode to an untreated polluted estuarine water sample produced significant improvements in the quality of the signal compared with that for a bare TMFE.

  14. Porous Ceramic Spheres from Ion Exchange Resin

    NASA Technical Reports Server (NTRS)

    Dynys, Fred

    2005-01-01

    A commercial cation ion exchange resin, cross-linked polystyrene, has been successfully used as a template to fabricate 20 to 50 micron porous ceramic spheres. Ion exchange resins have dual template capabilities. Pore architecture of the ceramic spheres can be altered by changing the template pattern. Templating can be achieved by utilizing the internal porous structure or the external surface of the resin beads. Synthesis methods and chemical/physical characteristics of the ceramic spheres will be reported.

  15. ION EXCHANGE SOFTENING: EFFECTS ON METAL CONCENTRATIONS

    EPA Science Inventory

    A corrosion control pipe loop study to evaluate the effect of ion exchange water softening on metal leaching from household plumbing materials was conducted on two different water qualities having different pH's and hardness levels. The results showed that removing hardness ions ...

  16. ION EXCHANGE SOFTENING: EFFECTS ON METAL CONCENTRATIONS

    EPA Science Inventory

    A corrosion control pipe loop study to evaluate the effect of ion exchange water softening on metal leaching from household plumbing materials was conducted on two different water qualities having different pH's and hardness levels. The results showed that removing hardness ions ...

  17. Closed cycle ion exchange method for regenerating acids, bases and salts

    DOEpatents

    Dreyfuss, Robert M.

    1976-01-01

    A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.

  18. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ion-exchange membranes. 173.20 Section 173.20 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange... ion-exchange membrane is prepared by subjecting a polyethylene base conforming to § 177.1520 of...

  19. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ion-exchange membranes. 173.20 Section 173.20 Food... for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange membranes may be safely used in the processing of food under the following prescribed conditions: (a) The ion-exchange membrane is prepared...

  20. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ion-exchange membranes. 173.20 Section 173.20 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange... ion-exchange membrane is prepared by subjecting a polyethylene base conforming to § 177.1520 of...

  1. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ion-exchange membranes. 173.20 Section 173.20 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange... ion-exchange membrane is prepared by subjecting a polyethylene base conforming to § 177.1520 of...

  2. Quantitative ion-exchange separation of plutonium from impurities

    SciTech Connect

    Pietri, C.E.; Freeman, B.P.; Weiss, J.R.

    1981-09-01

    The methods used at the New Brunswick Laboratory for the quantitative ion exchange separation of plutonium from impurities prior to plutonium assay are described. Other ion exchange separation procedures for impurity determination and for isotopic abundance measurements are given. The primary technique used consists of sorption of plutonium(IV) in 8N HNO/sub 3/ on Dowex-1 anion exchange resin and elution of the purified plutonium with 0.3N HCl-0.01N HF. Other methods consist of the anion exchange separation of plutonium(IV) in 12N HCl and the cation exchange separation of plutonium(III) in 0.2 N HNO/sub 3/. The application of these procedures to the subsequent assay of plutonium, isotopic analysis, and impurity determination is described.

  3. Waste treatment by selective mineral ion exchanger

    SciTech Connect

    Polito, Aurelie

    2007-07-01

    STMI, subsidiary company of the AREVA Group with over 40 years in the D and D business, has been continuously innovating and developing new decontamination techniques, with the objectives of achieving more efficient decontaminations on a growing spectrum of media. In the field of liquid waste treatment, STMI manufactures uses and commercialises selective inorganic ion exchangers (RAN). These are hydrated synthetic inorganic compounds prepared from very pure raw materials. Different types of RANs (POLYAN, OXTAIN, Fe-Cu, Fe-CoK, Si-Fe-CoK) can be used to trap a large number of radioactive elements in contaminated effluents. Different implementations could be applied depending on technical conditions. STMI's offers consist in building global solution and preliminary design of installation either in dispersed form (batch) or in column (cartridge filtration). Those products are used all over the world not only in the nuclear business (Canada, US, Belgium, France...) but also in other fields. Indeed, it provides competitive solutions to many domains of application especially water pollution control, liquid waste treatment in the nuclear business by decreasing the activity level of waste. The following paper will focus on the theoretical principle of the mineral exchanger, its implementation and the feed back collected by STMI. (author)

  4. Properties of a Novel Ion-Exchange Film

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.; Hill, Carol M.; Philipp, Warren H.; Tanner, Stephen P.; Gorse, Joseph; Lusk, Amy; Taylor, Jason; Dickens, Jason

    2002-01-01

    A new ion-exchange material (based on polyacrylic acid) and some of its analytical applications have been reported. This paper contains data on the ion-exchange properties of the film form of the material and its potential application to the decontamination of waste water and drinking water. The film has a high exchange capacity of 5 to 6 meq/g and a pK(sub a) of 5.7. The calcium form is the most effective for removing metal ions from solution, and the optimum pH range is between 5 and 7. The exchange rates are slower for the film than for bead and powder forms of the ion-exchange material; otherwise, the properties are similar. The film is effective when hard water solutions are employed and also when metal ions are in the complex matrix of waste water from electroplating. The film can be used in flow systems having a flow channel large enough to allow passage of turbid solutions.

  5. Properties of a Novel Ion-Exchange Film

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.; Hill, Carol M.; Philipp, Warren H.; Tanner, Stephen P.; Gorse, Joseph; Lusk, Amy; Taylor, Jason; Dickens, Jason

    2004-01-01

    A new ion-exchange material (based on polyacrylic acid) and some of its analytical applications have been reported. This paper contains data on the ion-exchange properties of the film form of the material and its potential application to the decontamination of waste water and drinking water. The film has a high exchange capacity of 5 to 6 meq/g and a pK(sub a) of 5.7. The calcium form is the most effective for removing metal ions from solution, and the optimum pH range is between 5 and 7. The exchange rates are slower for the film than for bead and powder forms of the ion-exchange material; otherwise, the properties are similar. The film is effective when hard water solutions are employed and also when metal ions are in the complex matrix of waste water from electroplating. The film can be used in flow systems having a flow channel large enough to allow passage of turbid solutions.

  6. Ion thruster charge-exchange plasma flow

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Gabriel, S. B.; Kitamura, S.

    1982-01-01

    The electron bombardment ion thruster has been under development for a number of years and during this time, studies of the plasmas produced by the thrusters and their interactions with spacecraft have been evaluated, based on available data. Due to diagnostic techniques used and facility effects, there is uncertainty as to the reliability of data from these early studies. This paper presents data on the flow of the charge-exchange plasma produced just downstream of the thruster's ion optics. The 'end-effect' of a cylindrical Langmuir probe is used to determine ion density and directed ion velocity. Results are compared with data obtained from a retarding potential analyzer-Faraday cup.

  7. Effect of polyamine reagents on exchange capacity in ion exchangers

    NASA Astrophysics Data System (ADS)

    Petrova, T. I.; Dyachenko, F. V.; Bogatyreva, Yu. V.; Borodastov, A. K.; Ershova, I. S.

    2016-05-01

    Effect of compounds involved in complex reagents is described using Helamin 906H reagent as an example. The working exchange capacity of KU-2-8chs cation exchanger in hydrogen form and Amberlite IRA 900Cl anion exchanger in OH form remained almost unchanged when they were used repeatedly to purify water that contained Helamin 906H reagent; in addition, this capacity was the same upon filtration of water that did not contain this reagent. Leakage of total organic carbon was observed earlier than that of calcium ions upon filtration of the solution through the cation exchanger layer. The test results obtained in industrial conditions indicated that using H-OH filters to purify turbine condensate enables the decrease of the concentration of organic and other impurities therein.

  8. Modeling of Crystalline Silicotitanate Ion Exchange Columns

    SciTech Connect

    Walker, D.D.

    1999-03-09

    Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R. G. Anthony, Department of Chemical Engineering, Texas A&038;M University, and Professor S. W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports.

  9. Organic ion exchange resin separation methods evaluation

    SciTech Connect

    Witwer, K.S.

    1998-05-27

    This document describes testing to find effective methods to separate Organic Ion Exchange Resin (OIER) from a sludge simulant. This task supports a comprehensive strategy for treatment and processing of K-Basin sludge. The simulant to be used resembles sludge that has accumulated in the 105KE and 105KW Basins in the 1OOK area of the Hanford Site. The sludge is an accumulation of fuel element corrosion products, organic and inorganic ion exchange materials, canister gasket materials, iron and aluminum corrosion products, sand, dirt, and other minor amounts of organic matter.

  10. Ion exchange tempering of glass ophthalmic lenses.

    PubMed

    Keeney, A H; Duerson, H L

    1975-08-01

    We performed low velocity drop-ball tests using 5/8-, 7/8-, and 1-inch diameter steel balls on ophthalmic crown glass lenses chemically tempered by the ion exchange process. Four representative dioptric strengths (+ 2.50 spherical, - 2.50 spherical, -2.50 cylindrical, and plano) were studied with the isolated lenses mounted, convex side up, on the American National Standards Institute Z80 test block. New ion exchange lenses exhibited a 100 to 350% greater capacity for attenuation of energy from low velocity, large size missiles than matched lenses of similar strength prepared by the conventional heat-treating and air-quenching process.

  11. Cesium-specific phenolic ion exchange resin

    DOEpatents

    Bibler, J.P.; Wallace, R.M.

    1995-08-15

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio. 2 figs.

  12. Cesium-specific phenolic ion exchange resin

    DOEpatents

    Bibler, Jane P.; Wallace, Richard M.

    1995-01-01

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio.

  13. Determination of boron in silicates after ion exchange separation

    USGS Publications Warehouse

    Kramer, H.

    1955-01-01

    Existing methods for the determination of boron in silicates are not entirely satisfactory. Separation as the methyl ester is lengthy and frequently erratic. An accurate and rapid method applicable to glass, mineral, ore, and water samples uses ion exchange to remove interfering cations, and boron is determined titrimetrically in the presence of mannitol, using a pH meter to indicate the end point.

  14. Thermal Analysis of LANL Ion Exchange Column

    SciTech Connect

    Laurinat, J.E.

    1999-06-16

    This document reports results from an ion exchange column heat transfer analysis requested by Los Alamos National Laboratory (LANL). The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades.

  15. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    PubMed

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability

  16. Simultaneously Tailoring Surface Energies and Thermal Stabilities of Cellulose Nanocrystals Using Ion Exchange: Effects on Polymer Composite Properties for Transportation, Infrastructure, and Renewable Energy Applications.

    PubMed

    Fox, Douglas M; Rodriguez, Rebeca S; Devilbiss, Mackenzie N; Woodcock, Jeremiah; Davis, Chelsea S; Sinko, Robert; Keten, Sinan; Gilman, Jeffrey W

    2016-10-12

    Cellulose nanocrystals (CNCs) have great potential as sustainable reinforcing materials for polymers, but there are a number of obstacles to commercialization that must first be overcome. High levels of water absorption, low thermal stabilities, poor miscibility with nonpolar polymers, and irreversible aggregation of the dried CNCs are among the greatest challenges to producing cellulose nanocrystal-polymer nanocomposites. A simple, scalable technique to modify sulfated cellulose nanocrystals (Na-CNCs) has been developed to address all of these issues. By using an ion exchange process to replace Na(+) with imidazolium or phosphonium cations, the surface energy is altered, the thermal stability is increased, and the miscibility of dried CNCs with a nonpolar polymer (epoxy and polystyrene) is enhanced. Characterization of the resulting ion exchanged CNCs (IE-CNCs) using potentiometry, inverse gas chromatography, dynamic vapor sorption, and laser scanning confocal microscopy reveals that the IE-CNCs have lower surface energies, adsorb less water, and have thermal stabilities of up to 100 °C higher than those of prepared protonated cellulose nanocrystals (H-CNCs) and 40 °C higher than that of neutralized Na-CNC. Methyl(triphenyl)phosphonium exchanged cellulose nanocrystals (MePh3P-CNC) adsorbed 30% less water than Na-CNC, retained less water during desorption, and were used to prepare well-dispersed epoxy composites without the aid of a solvent and well-dispersed polystyrene nanocomposites using a melt blending technique at 195 °C. Predictions of dispersion quality and glass transition temperatures from molecular modeling experiments match experimental observations. These fiber-reinforced polymers can be used as lightweight composites in transportation, infrastructure, and renewable energy applications.

  17. Application of the electron nuclear dynamics method to hydrogen abstraction and exchange reactions of hydrogen + HOD and deuterium + ammonium ion

    NASA Astrophysics Data System (ADS)

    Coutinho Neto, Mauricio Domingues

    2001-07-01

    The field of quantum molecular dynamics have flourished in the last 20 years. Methods that propose the solution of the time dependent Schrodinger equation for a molecular reactive process abound in the literature. However the majority of these methods focus on solving the nuclear Schrodinger equation subject to a known electronic potential. The electron nuclear dynamics (END) method proposes a framework of a hierarchy of approximations to the Schrodinger equation based on the time dependent variational Principle (TDVP). A general approach is sought to solve the electronic and nuclear problem simultaneously without making use of the Born-Oppenheimer approximation. The purpose of this work is to apply the minimal END to areas where its unique qualities can give new insight into the relevant dynamics of a chemical or physical process. Minimal END is a method for direct non-adiabatic dynamics. It describes the electrons with a family of complex determinantal wave-functions in terms of non-orthogonal spin orbitals and treats the nuclei as classical particles. In the first two studies, we apply the END method to hydrogen abstraction and exchange reactions at hyper-thermal collision energies. We investigate the D2+ NH+3 reaction at collision energies ranging from 6 to 16 eV and the H + HOD reaction at a collision energy of 1.575 eV. Collision energies refer to center of mass energies. Emphasis is put on the details of the abstraction and exchange reaction mechanisms for ground state reactants. In a final application we use minimal END to study the interaction of a strong laser field with the diatomic molecules HF and LiH. Effects of the polarization of the electronic potential on the dynamics are investigated. Emphasis is also placed on the development of a general method for interpreting the final time dependent wave-function of the product fragments. The purpose is to analyze the final state wave-function in terms of charge transfer channels as well as individual

  18. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1989-01-01

    This invention relates to a method for improving the performance of liquid embrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selected for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  19. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1988-01-01

    This invention relates to a method for improving the performance of liquid membrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selective for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  20. An Empirical Formula From Ion Exchange Chromatography and Colorimetry.

    ERIC Educational Resources Information Center

    Johnson, Steven D.

    1996-01-01

    Presents a detailed procedure for finding an empirical formula from ion exchange chromatography and colorimetry. Introduces students to more varied techniques including volumetric manipulation, titration, ion-exchange, preparation of a calibration curve, and the use of colorimetry. (JRH)

  1. An Empirical Formula From Ion Exchange Chromatography and Colorimetry.

    ERIC Educational Resources Information Center

    Johnson, Steven D.

    1996-01-01

    Presents a detailed procedure for finding an empirical formula from ion exchange chromatography and colorimetry. Introduces students to more varied techniques including volumetric manipulation, titration, ion-exchange, preparation of a calibration curve, and the use of colorimetry. (JRH)

  2. Multi-modal applicability of a reversed-phase/weak-anion exchange material in reversed-phase, anion-exchange, ion-exclusion, hydrophilic interaction and hydrophobic interaction chromatography modes.

    PubMed

    Lämmerhofer, Michael; Nogueira, Raquel; Lindner, Wolfgang

    2011-06-01

    We recently introduced a mixed-mode reversed-phase/weak anion-exchange type separation material based on silica particles which consisted of a hydrophobic alkyl strand with polar embedded groups (thioether and amide functionalities) and a terminal weak anion-exchange-type quinuclidine moiety. This stationary phase was designed to separate molecules by lipophilicity and charge differences and was mainly devised for peptide separations with hydroorganic reversed-phase type elution conditions. Herein, we demonstrate the extraordinary flexibility of this RP/WAX phase, in particular for peptide separations, by illustrating its applicability in various chromatographic modes. The column packed with this material can, depending on the solute character and employed elution conditions, exploit attractive or repulsive electrostatic interactions, and/or hydrophobic or hydrophilic interactions as retention and selectivity increments. As a consequence, the column can be operated in a reversed-phase mode (neutral compounds), anion-exchange mode (acidic compounds), ion-exclusion chromatography mode (cationic solutes), hydrophilic interaction chromatography mode (polar compounds), and hydrophobic interaction chromatography mode (e.g., hydrophobic peptides). Mixed-modes of these chromatographic retention principles may be materialized as well. This allows an exceptionally flexible adjustment of retention and selectivity by tuning experimental conditions. The distinct separation mechanisms will be outlined by selected examples of peptide separations in the different modes.

  3. ION EXCHANGE ADSORPTION PROCESS FOR PLUTONIUM SEPARATION

    DOEpatents

    Boyd, G.E.; Russell, E.R.; Taylor, M.D.

    1961-07-11

    Ion exchange processes for the separation of plutonium from fission products are described. In accordance with these processes an aqueous solution containing plutonium and fission products is contacted with a cation exchange resin under conditions favoring adsorption of plutonium and fission products on the resin. A portion of the fission product is then eluted with a solution containing 0.05 to 1% by weight of a carboxylic acid. Plutonium is next eluted with a solution containing 2 to 8 per cent by weight of the same carboxylic acid, and the remaining fission products on the resin are eluted with an aqueous solution containing over 10 per cent by weight of sodium bisulfate.

  4. Porous solid ion exchange wafer for immobilizing biomolecules

    DOEpatents

    Arora, Michelle B.; Hestekin, Jamie A.; Lin, YuPo J.; St. Martin, Edward J.; Snyder, Seth W.

    2007-12-11

    A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.

  5. Charge exchange lifetimes for ions in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Bewtra, N. K.

    1977-01-01

    Latest and best measurements of physical quantities involved in complete calculation of the charge exchange lifetime of mirroring magnetospheric ions are coalesced and summarized. It is critical that the charge exchange lifetimes for ions be known as accurately as possible in order to apply the charge exchange mechanism to ion phenomena within the earth's magnetosphere.

  6. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Perfluorinated ion exchange membranes. 173.21... Polymer Adjuvants for Food Treatment § 173.21 Perfluorinated ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in...

  7. 21 CFR 173.25 - Ion-exchange resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ion-exchange resins. 173.25 Section 173.25 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.25 Ion-exchange resins. Ion-exchange resins may be safely used in the treatment of food under the following prescribed conditions: (a) The...

  8. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Perfluorinated ion exchange membranes. 173.21... ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in the treatment of bulk quantities of liquid food under...

  9. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Perfluorinated ion exchange membranes. 173.21... ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in the treatment of bulk quantities of liquid food under...

  10. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Perfluorinated ion exchange membranes. 173.21... ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in the treatment of bulk quantities of liquid food under...

  11. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Perfluorinated ion exchange membranes. 173.21... ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in the treatment of bulk quantities of liquid food under...

  12. Cesium and strontium ion specific exchangers

    SciTech Connect

    Yates, S.

    1996-10-01

    This work is one of two parallel projects that are part of an ESP task to develop high-capacity, selective, solid extractants for cesium, strontium, and technetium from nuclear wastes. In this subtask, Pacific Northwest National Laboratory (PNNL) is collaborating with AlliedSignal, Inc. (Des Plaines, Illinois) to develop inorganic ion exchangers that are selective for strontium and cesium from alkaline high-level waste and groundwater streams.

  13. PRTR ion exchange vault water removal

    SciTech Connect

    Ham, J.E.

    1995-11-01

    This report documents the removal of radiologically contaminated water from the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. Approximately 57,000 liters (15,000 gallons) of water had accumulated in the vault due to the absence of a rain cover. The water was removed and the vault inspected for signs of leakage. No evidence of leakage was found. The removal and disposal of the radiologically contaminated water decreased the risk of environmental contamination.

  14. The rapid and direct determination of ATPase activity by ion exchange chromatography and the application to the activity of heat shock protein-90.

    PubMed

    Bartolini, Manuela; Wainer, Irving W; Bertucci, Carlo; Andrisano, Vincenza

    2013-01-25

    Adenosine nucleotides are involved as substrates or co-factors in several biochemical reactions, catalyzed by enzymes, which modulate energy production, signal transduction and cell proliferation. We here report the development and optimization of an ion exchange liquid chromatography (LC) method for the determination of ATP, ADP and AMP. This method is specifically aimed at the determination of the ATP-ase activity of human heat shock protein 90 (Hsp90), a molecular chaperone that has emerged as target enzyme in cancer therapy. Separation of the three nucleotides was achieved in a 15-min run by using a disk shaped monolithic ethylene diamine stationary phase of small dimensions (2mm×6mm i.d.), under a three-solvent gradient elution mode and UV detection at 256nm. The described direct LC method resulted highly specific as a consequence of the baseline separation of the three adenosine nucleotides and could be applied to the determination of the enzymatic activity of ADP/ATP generating or consuming enzymes (such as kinases). Furthermore, comparison of the LOD and LOQ values of the LC method with those obtained with the malachite green assay, which is one of the most used indirect screening methodologies for ATP-ase activity, showed that the LC method has a similar range of application without presenting the drawbacks related to contamination by inorganic phosphate ions and glycerol, which are present in Hsp90 commercial samples.

  15. Electrically switched cesium ion exchange. FY 1997 annual report

    SciTech Connect

    Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H.

    1997-09-01

    This paper describes the Electrically Switched Ion Exchange (ESIX) separation technology being developed as an alternative to ion exchange for removing radionuclides from high-level waste. Progress in FY 1997 for specific applications of ESIX is also outlined. The ESIX technology, which combines ion exchange and electrochemistry, is geared toward producing electroactive films that are highly selective, regenerable, and long lasting. During the process, ion uptake and elution can be controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto a high surface area electrode. This method adds little sodium to the waste stream and minimizes the secondary wastes associated with traditional ion exchange techniques. Development of the ESIX process is well underway for cesium removal using ferrocyanides as the electroactive films. Films having selectivity for perrhenate (a pertechnetate surrogate) over nitrate also have been deposited and tested. Based on the ferrocyanide film capacity, stability, rate of uptake, and selectivity shown during performance testing, it appears possible to retain a consistent rate of removal and elute cesium into the same elution solution over several load/unload cycles. In batch experiments, metal hexacyanoferrate films showed high selectivities for cesium in concentrated sodium solutions. Cesium uptake was unaffected by Na/Cs molar ratios of up to 2 x 10{sup 4} , and reached equilibrium within 18 hours. During engineering design tests using 60 pores per inch, high surface area nickel electrodes, nickel ferrocyanide films displayed continued durability. losing less than 20% of their capacity after 1500 load/unload cycles. Bench-scale flow system studies showed no change in capacity or performance of the ESIX films at a flow rate up to 13 BV/h, the maximum flow rate tested, and breakthrough curves further supported once-through waste processing. 9 refs., 24 figs.

  16. Adsorption of fluoride, phosphate, and arsenate ions on a new type of ion exchange fiber.

    PubMed

    Ruixia, Liu; Jinlong, Guo; Hongxiao, Tang

    2002-04-15

    A new type of ion exchange fiber for the removal of fluoride, phosphate, and arsenate ions has been developed. A batch adsorption technique for investigating adsorption kinetic and equilibrium parameters and determining pH adsorption edges is applied. It is shown that the adsorption properties of the ion exchange fiber for fluoride, phosphate, and arsenate ions depend on the pH value and anion concentration. The adsorption of arsenate on the sorbent reaches a maximum of 97.9% in the pH value range of 3.5 to 7.0. The adsorption percentage of phosphate is more than 99% in the pH range of 3.0 to 5.5. The adsorption of fluoride on the ion exchange fiber is found to be 90.4% at pH 3.0. The Freundlich model can describe the adsorption equilibrium data of fluoride, arsenate, and phosphate anions. The sorption of the three anions on the ion exchange fiber is a rapid process, and the adsorption kinetic data can be simulated very well by the pseudo-second-order rate equation. The column performance is carried out to assess the applicability of the ion exchange fiber for the removal of fluoride, phosphate, and arsenate ions from synthetic wastewaters with satisfactory removal efficiency. The desorption experiment shows that fluoride ion sorbed by the fiber column can be quantitatively desorbed with 5 mL of 0.50 mol/L NaOH at elution rate of 1 mL/min, and 30 mL of NaOH is necessary for the quantitative recovery of phosphate and arsenate ions.

  17. Preparation and adsorption properties of. lambda. -MnO sub 2 -cellulose hybrid-type ion-exchanger for lithium ion. Application to the enrichment of lithium ion from seawater

    SciTech Connect

    Sagara, Fumio; Ning, Wang Bao; Yoshida, Isao; Ueno, Keihei )

    1989-11-01

    Spherical beads of a hybrid-type ion-exchange (HIE) have been prepared by dispersing microcrystalline {lambda}-MnO{sub 2} in macroporous cellulose gel beads. The beads were 0.1 to 0.3 mm in diameter and contained 0.71 g {lambda}-MnO{sub 2}/g dry HIE. The ion-exchange behaviors of HIE for lithium and sodium ions were investigated by batch and column methods. The uptakes for lithium and sodium ions were 2.8 and 0.1 mmol/g dry HIE, respectively, at pH 12.3 by the batch method and 1.0 and 0.1 mmol/g dry HIE at pH 11.6-11.8, respectively, by the column method. When 1.52 L seawater was passed through a column containing 0.05 g wet HIE at a flow rate of 0.3 mL/min, 2.0 mg lithium/g dry HIE was recovered.

  18. Using ion exchange chromatography to purify a recombinantly expressed protein.

    PubMed

    Duong-Ly, Krisna C; Gabelli, Sandra B

    2014-01-01

    Ion exchange chromatography (IEX) separates molecules by their surface charge, a property that can vary vastly between different proteins. There are two types of IEX, cation exhange and anion exchange chromatography. The protocol that follows was designed by the authors for anion exchange chromatography of a recombinantly expressed protein having a pI of 4.9 and containing two cysteine residues and one tryptophan residue, using an FPLC system. Prior to anion exchange, the protein had been salted out using ammonium sulfate precipitation and partially purified via hydrophobic interaction chromatography (see Salting out of proteins using ammonium sulfate precipitation and Use and Application of Hydrophobic Interaction Chromatography for Protein Purification). Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment.

  19. Features of ion transport in perfluorinated ion-exchange membranes

    SciTech Connect

    Timashev, S.F.

    1986-02-01

    The conditions for functioning for various systems and devices electrolyzers for ''chlorate'' electrolysis, current sources, etc.) with perfluorinated ion-exchange membranes and septums are determined to a considerable degree by the physicochemical properties of the perfluorinated materials. In this work, on the basis of concepts developed in streaming theory as to the topology of the ''infinite clusters'' (ICs), the author defines more precisely the form of the preexponential dependence of ion transport coefficients and draws conclusions on the character of heat evolution in a perfluorinated membrane when an electric current is passed through the membrane.

  20. High speed ion exchange techniques for neptunium, plutonium, and uranium impurity assays

    SciTech Connect

    Maxwell, III, S L

    1988-01-01

    Rapid, efficient ion exchange separations can be performed 10 to 15 times faster than conventional flow rates by using a modified commercial vacuum extraction system and small particle resins. At the Savannah River Plant (SRP), these techniques are being applied to make ion exchange separation techniques more rapid and thus more practical for routine laboratory applications.

  1. Anion exchangers with branched functional ion exchange layers of different hydrophilicity for ion chromatography.

    PubMed

    Shchukina, O I; Zatirakha, A V; Smolenkov, A D; Nesterenko, P N; Shpigun, O A

    2015-08-21

    Novel polystyrene-divinylbenzene (PS-DVB) based anion exchangers differing from each other in the structure of the branched functional ion exchange layer are prepared to investigate the role of linker and functional site on ion exchange selectivity. The proposed method of synthesis includes the obtaining of aminated PS-DVB particles by means of their acylation with following reductive amination with methylamine. Further modification of the obtained secondary aminogroups is provided by the alkylation with either 1,4-butanediol diglycidyl ether (1,4-BDDGE) or resorcinol diglycidyl ether (RDGE), which form the linkers of different hydrophobicity, and amination of terminal epoxide rings with trimethylamine (TMA), dimethylethanolamine (DMEA), methyldiethanolamine (MDEA) or triethanolamine (TEA). The variation of the structure and hydrophobicity of the linker and terminal quaternary ammonium sites in the functional layer allows the alteration of selectivity and separation efficiency of the obtained adsorbents. The ion exchange selectivity and separation efficiency of the anion exchangers are evaluated using the model mixtures of anions (F(-), HCOO(-), Cl(-), NO2(-), Br(-), NO3(-), HPO4(2-) and SO4(2-)) in potassium hydroxide eluents. The adsorbents show the decrease of selectivity with increasing the hydrophilicity of the terminal functional site. The anion exchangers having more flexible and hydrophilic 1,4-BDDGE linker provide smaller separation factors for most of the analytes as compared with RDGE-containing adsorbents with the same terminal ion exchange sites, but are characterized with higher column efficiencies and better peak symmetry for polarizable anions. In case of 1,4-BDDGE-modified anion exchangers of the particle size of 3.3μm functionalized with DMEA and MDEA the calculated values of column efficiencies for polarizable NO3(-) and Br(-) are up to 49,000 and 53,000N/m, respectively, which is almost twice higher than the values obtained for the RDGE

  2. Application of linear pH gradients for the modeling of ion exchange chromatography: Separation of monoclonal antibody monomer from aggregates.

    PubMed

    Kluters, Simon; Wittkopp, Felix; Jöhnck, Matthias; Frech, Christian

    2016-02-01

    The mobile phase pH is a key parameter of every ion exchange chromatography process. However, mechanistic insights into the pH influence on the ion exchange chromatography equilibrium are rare. This work describes a mechanistic model capturing salt and pH influence in ion exchange chromatography. The pH dependence of the characteristic protein charge and the equilibrium constant is introduced to the steric mass action model based on a protein net charge model considering the number of amino acids interacting with the stationary phase. This allows the description of the adsorption equilibrium of the chromatographed proteins as a function of pH. The model parameters were determined for a monoclonal antibody monomer, dimer, and a higher aggregated species based on a manageable set of pH gradient experiments. Without further modification of the model parameters the transfer to salt gradient elution at fixed pH is demonstrated. A lumped rate model was used to predict the separation of the monoclonal antibody monomer/aggregate mixture in pH gradient elution and for a pH step elution procedure-also at increased protein loadings up to 48 g/L packed resin. The presented model combines both salt and pH influence and may be useful for the development and deeper understanding of an ion exchange chromatography separation.

  3. Synthesis and ion-exchange properties of lanthanum tungstate, a new inorganic ion exchanger

    SciTech Connect

    Husain, S.W.; Rasheedzad, S.; Manzoori, J.L.; Jabbari, Y.

    1982-01-01

    Amorphous samples of a new inorganic ion exchanger, lanthanum tungstate, have been prepared under varying conditions. The material prepared by mixing 0.05 M lanthanum nitrate and 0.05 M sodium tungstate in a ratio of 1:2 was studied in detail for its ion-exchange capacity, chemical stability, ir, thermogravimetry, and K/sub d/ values. Its columns have been used for the separation of C/sup 2 +/ from Pd/sup 2 +/, Mn/sup 2 +/, and Cu/sup 2 +/, and Ni/sup 2 +/ from Pd/sup 2 +/. 3 figures, 4 tables.

  4. Ion exchange materials, method of forming ion exchange materials, and methods of treating liquids

    DOEpatents

    Wertsching, Alan K.; Peterson, Eric S.; Wey, John E.

    2007-12-25

    The invention includes an ion affinity material having an organic component which is sulfonated and which is chemically bonded to an inorganic substrate component. The invention includes a method of forming a metal binding material. A solid support material comprising surface oxide groups is provided and an organic component having at least one alkyl halide is covalently linked to at least some of the surface oxide groups to form a modified support material. The at least one alkyl halide is subsequently converted into an alkyl sulfonate. The invention further includes a method and system for extracting ions from a liquid. An ion exchange material having a sulfonated alkyl silane component covalently bonded to a metal oxide support material is provided and a liquid is exposed to the ion exchange material.

  5. Solidification of ion exchange resin wastes

    SciTech Connect

    Not Available

    1982-08-01

    Solidification media investigated included portland type I, portland type III and high alumina cements, a proprietary gypsum-based polymer modified cement, and a vinyl ester-styrene thermosetting plastic. Samples formulated with hydraulic cement were analyzed to investigate the effects of resin type, resin loading, waste-to-cement ratio, and water-to-cement ratio. The solidification of cation resin wastes with portland cement was characterized by excessive swelling and cracking of waste forms, both after curing and during immersion testing. Mixed bed resin waste formulations were limited by their cation component. Additives to improve the mechanical properties of portland cement-ion exchange resin waste forms were evaluated. High alumina cement formulations dislayed a resistance to deterioration of mechanical integrity during immersion testing, thus providing a significant advantage over portland cements for the solidification of resin wastes. Properties of cement-ion exchange resin waste forms were examined. An experiment was conducted to study the leachability of /sup 137/Cs, /sup 85/Sr, and /sup 60/Co from resins modified in portland type III and high alumina cements. The cumulative /sup 137/Cs fraction release was at least an order of magnitude greater than that of either /sup 85/Sr or /sup 60/Co. Release rates of /sup 137/Cs in high alumina cement were greater than those in portland III cement by a factor of two.Compressive strength and leach testing were conducted for resin wastes solidified with polymer-modified gypsum based cement. /sup 137/Cs, /sup 85/Sr, and /sup 60/Co fraction releases were about one, two and three orders of magnitude higher, respectively, than in equivalent portland type III cement formulations. As much as 28.6 wt % dry ion exchange resin was successfully solidified using vinyl ester-styrene compared with a maximum of 25 wt % in both portland and gypsum-based cement.

  6. Biodegradation of ion-exchange media

    SciTech Connect

    Bowerman, B.S.; Clinton, J.H.; Cowdery, S.R.

    1988-01-01

    The purpose of this study was to investigate further the potential for ion-exchange media (resin beads or powdered filter media) to support biological growth. A mixed microbial culture was grown from resin wastes obtained from the BNL HFBR by mixing the resin with a nutrient salt solution containing peptone and yeast extract. Bacterial and fungal growths appeared in the solution and on the resins after 7 to 10 days incubation at 337)degree)C. The mixed microbial cultures were used to inoculate several resin types, both irradiated and unirradiated. 12 refs., 5 tabs.

  7. Ion exchange polymers and method for making

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H. (Inventor); Street, Kenneth W., Jr. (Inventor)

    1994-01-01

    An ion exchange polymer comprised of an alkali metal or alkaline earth metal salt of a poly(carboxylic acid) in a poly(vinyl acetal) matrix is described. The polymer is made by treating a mixture made of poly(vinyl alcohol) and poly(acrylic acid) with a suitable aldehyde and an acid catalyst to cause acetalization with some cross-linking. The material is then subjected to an alkaline aqueous solution of an alkali metal salt or an alkali earth metal salt. All of the film forming and cross-linking steps can be carried out simultaneously, if desired.

  8. Trivalent Ion Exchange in Beta’ Alumina.

    DTIC Science & Technology

    1984-07-06

    halide salt. required higher aticmp I We hew fotat t bet ain synthesis tempratures then wm usned for the are apale f mqporingtrivlen caion divalent...s a dni Table I . Trivalent, Zen Exchngeondiion ion Halt Coqoition ToW (OC) time(h) lexcdwmge Gd3 Gda1 615 5 100 Nd3+ dr 2 . 95 i1d3 45 MM /AS umcl...properties The fluorescence spectra of kUd’* exchanged Ita mtdctivity for Gd3 + beta" aluina Wben" alumina are ganerally similar to that of was masurd

  9. Fixation of radioactive ions in porous media with ion exchange gels

    DOEpatents

    Mercer, Jr., Basil W.; Godfrey, Wesley L.

    1979-01-01

    A method is provided for fixing radioactive ions in porous media by injecting into the porous media water-soluble organic monomers which are polymerizable to gel structures with ion exchange sites and polymerizing the monomers to form ion exchange gels. The ions and the particles of the porous media are thereby physically fixed in place by the gel structure and, in addition, the ions are chemically fixed by the ion exchange properties of the resulting gel.

  10. Grafted megaporous materials as ion-exchangers for bioproduct adsorption.

    PubMed

    Bibi, Noor Shad; Fernández-Lahore, Marcelo

    2013-01-01

    Megaporous chromatographic materials were manufactured by a three-step procedure, including backbone synthesis, chemical grafting, and introduction of ion-exchange functionality. The backbone of the adsorbent cylindrical bodies was prepared by polymerization of methacrylic acid and poly(ethylene glycol) diacrylate at sub-zero temperatures. Grafting was performed employing glycidyl methacrylate and a chemical initiator, cerium ammonium nitrate. The degree of grafting was adjusted by modifying the concentration of the initiator in the reaction mixture to a range of values (23, 39, 62, 89, and 105%). Further, the pendant epoxy-groups generated by the previous step were reacted to cation- and anion-exchanging moieties utilizing known chemical routes. Infrared spectroscopy studies confirmed the incorporation of epoxy and ion-exchanger groups to the backbone material. Optimized materials were tested for chromatography applications with model proteins; the dynamic binding capacity, as recorded at 10% breakthrough and 2.0 × 10(-4) m/s superficial velocity, were 350 and 58 mg/g for the cation-exchanger and the anion-exchanger material, respectively. These results may indicate that long tentacle-type polymer brushes were formed during grafting therefore increasing the ability of the megaporous body to efficiently capture macromolecules.

  11. Potentiometric sensors with ion-exchange Donnan exclusion membranes.

    PubMed

    Grygolowicz-Pawlak, Ewa; Crespo, Gastón A; Ghahraman Afshar, Majid; Mistlberger, Günter; Bakker, Eric

    2013-07-02

    Potentiometric sensors that exhibit a non-Hofmeister selectivity sequence are normally designed by selective chemical recognition elements in the membrane. In other situations, when used as detectors in separation science, for example, membranes that respond equally to most ions are preferred. With so-called liquid membranes, a low selectivity is difficult to accomplish since these membranes are intrinsically responsive to lipophilic species. Instead, the high solubility of sample lipids in an ionophore-free sensing matrix results in a deterioration of the response. We explore here potentiometric sensors on the basis of ion-exchange membranes commonly used in fuel cell applications and electrodialysis, which have so far not found their way into the field of ion-selective electrodes. These membranes act as Donnan exclusion membranes as the ions are not stripped of their hydration shell as they interact with the membrane. Because of this, lipophilic ions are no longer preferred over hydrophilic ones, making them promising candidates for the detection of abundant ions in the presence of lipophilic ones or as detectors in separation science. Two types of cation-exchanger membranes and one anion-exchange membrane were characterized, and potentiometric measuring ranges were found to be Nernstian over a wide range down to about 10 μM concentrations. Depending on the specific membrane, lipophilic ions gave equal response to hydrophilic ones or were even somewhat discriminated. The medium and long-term stability and reproducibility of the electrode signals were found to be promising when evaluated in synthetic and whole blood samples.

  12. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, Dwayne; Babcock, Walter C.; Tuttle, Mark

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets.

  13. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, D.; Babcock, W.C.; Tuttle, M.

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets. 5 figs.

  14. Ion Exchange Chromatography and Spectrophotometry: An Introductory Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Foster, N.; And Others

    1985-01-01

    Describes an experiment in which students use ion exchange chromatography to separate a mixture of chloro complexes of transition metal ions and then use spectrophotometry to define qualitatively the efficiency of the ion exchange columns. Background information, materials needed, and procedures used are included. (JN)

  15. Ion Exchange Chromatography and Spectrophotometry: An Introductory Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Foster, N.; And Others

    1985-01-01

    Describes an experiment in which students use ion exchange chromatography to separate a mixture of chloro complexes of transition metal ions and then use spectrophotometry to define qualitatively the efficiency of the ion exchange columns. Background information, materials needed, and procedures used are included. (JN)

  16. Design software for ion-exchanged glass waveguide devices

    NASA Astrophysics Data System (ADS)

    Tervonen, Ari; Honkanen, Seppo; Poyhonen, Pekka; Tahkokorpi, Markku T.

    1993-04-01

    Software tools for design of passive integrated optical components based on ion-exchanged glass waveguides have been developed. All design programs have been implemented on personal computers. A general simulation program for ion exchange processes is used for optimization of waveguide fabrication. The optical propagation in the calculated channel waveguide profiles is modelled with various methods. A user-friendly user's interface has been included in this modelling software. On the basis of the calculated propagation properties, performance of channel waveguide circuits can be modelled and thus devices for different applications may be designed. From the design parameters, the lithography mask pattern to be used is generated for a commercial CAD program for final mask design. Examples of designed and manufactured guided-wave devices are described. These include 1- to-n splitters and asymmetric Mach-Zehnder interferometers for wavelength division multiplexing.

  17. ION EXCHANGE PROCESS FOR THE RECOVERY AND PURIFICATION OF MATERIALS

    DOEpatents

    Long, R.S.; Bailes, R.H.

    1958-04-15

    A process for the recovery of certain metallic ions from aqueous solutions by ion exchange techniques is described. It is applicable to elements such as vanadium, chromium, nnanganese, and the like, which are capable of forming lower valent cations soluble in aqueous solutions and which also form ldgher valent anions soluble in aqueous acidic solutions. For example, small amounts of vanadium occurring in phosphoric acid prepared from phosphate rock may be recovered by reducing the vanadium to a trivalent cation adsorbing; the vanadium in a cationic exchange resin, then treating the resin with a suitable oxidizing agent to convert the adsorbed vanadium to a higher valent state, and finally eluting; the vanadium as an anion from the resin by means of an aqueous acidic solution.

  18. Taenia saginata metacestode antigenic fractions obtained by ion-exchange chromatography: potential source of immunodominant markers applicable in the immunodiagnosis of human neurocysticercosis.

    PubMed

    Nunes, Daniela da Silva; Gonzaga, Henrique Tomaz; Ribeiro, Vanessa da Silva; da Cunha, Jair Pereira; Costa-Cruz, Julia Maria

    2013-05-01

    The aim of this study was to fractionate and partially characterize fractions obtained from the total saline extract (SE) of Taenia saginata metacestodes after ion-exchange procedure in carboxymethyl sepharose (CM) and diethylaminoethyl sepharose (DEAE) resins, as a source of antigenic markers applicable in the immunodiagnosis of neurocysticercosis (NCC). For IgG detection by enzyme-linked immunosorbent assay (ELISA) and immunoblotting, 140 serum samples were analyzed: 45 from patients with NCC (G1), 50 from patients with other parasitic infections (G2), and 45 from healthy individuals. Sensitivity (Se), specificity (Sp), area under curve (AUC), and likelihood ratios (LR) were calculated. CM S2 and DEAE S2 fractions provided high diagnostic values (Se 88.8% and 93.4%; Sp 93.7% and 92.6%; AUC 0.965 and 0.987; LR+ 14.07 and 12.67; LR- 0.11 and 0.07, respectively). In conclusion, CM S2 and DEAE S2 fractions are important sources of specific peptides, with high efficiency to diagnose NCC.

  19. Development of a perfusion ion-exchange chromatography method for the separation of soybean proteins and its application to cultivar characterization.

    PubMed

    Heras, J M; Marina, M L; García, M C

    2007-06-15

    A perfusion ion-exchange chromatography method has been designed, for the first time, for the separation of soybean proteins and its application to the characterization of soybean cultivars. For that purpose, the gradient, the mobile phase composition (buffer concentration, buffer pH, and elution salt), and the temperature were optimized. The method consisted of a two-step gradient (0% B for 2 min and from 0 to 50% B in 10 min) being mobile phase A a 2 0mM borate buffer (pH 9) and mobile phase B a 20 mM borate buffer (pH 9) containing 1M sodium chloride. The procedure used for the preparation of sample solutions was significantly simpler than that proposed by other authors and basically consisted of dissolving in water. This method enabled the separation of soybean proteins from a soybean protein isolate in 11 peaks in about 9 min. The method was used to separate soybean proteins in different commercial soybeans. In general, the 11 peaks yielded by the soybean protein isolate were also observed in the chromatograms of all soybeans. However, the area percentages of every peak in every soybean enabled the differentiation between soybeans. Moreover, the method was also used to separate soybean proteins in the proteic fractions obtained from every soybean. Multivariate methods were used for patterns recognition and the classification of samples.

  20. Radionuclide Leaching from Organic Ion Exchange Resin

    SciTech Connect

    Delegard, C.H.; Rinehart, D.E.

    1999-04-02

    Laboratory tests were performed to examine the efficacy of leach treatments for decontaminating organic ion exchange resins (OIER), which have been found in a number of samples retrieved from K East Basin sludge. Based on process records, the OIER found in the K Basins is a mixed-bet strong acid/strong base material marketed as Purolite{trademark} NRW-037. Radionuclides sorbed or associated with the OIER can restrict its disposal to the Environmental Restoration Disposal Facility (ERDF). The need for testing to support development of a treatment process for K Basin sludge has been described in Section 4.2 of ''Testing Strategy to Support the Development of K Basins Sludge Treatment Process'' (Flament 1998). To help understand the effects of anticipated OIER elutriation and washing, tests were performed with well-rinsed OIER material from K East Basin floor sludge (sample H-08 BEAD G) and with well-rinsed OIER having approximately 5% added K East canister composite sludge (sample KECOMP). The rinsed resin-bearing material also contained the inorganic ion exchanger Zeolon-900{trademark}, a zeolite primarily composed of the mineral mordenite. The zeolite was estimated to comprise 27 weight percent of the dry H-08 BEAD G material.

  1. Multicomponent liquid ion exchange with chabazite zeolites

    SciTech Connect

    Robinson, S.M.; Arnold, W.D. Jr.; Byers, C.W.

    1993-10-01

    In spite of the increasing commercial use of zeolites for binary and multicomponent sorption, the understanding of the basic mass-transfer processes associated with multicomponent zeolite ion-exchange systems is quite limited. This study was undertaken to evaluate Na-Ca-Mg-Cs-Sr ion exchange from an aqueous solution using a chabazite zeolite. Mass-transfer coefficients and equilibrium equations were determined from experimental batch-reactor data for single and multicomponent systems. The Langmuir isotherm was used to represent the equilibrium relationship for binary systems, and a modified Dubinin-Polyani model was used for the multicomponent systems. The experimental data indicate that diffusion through the microporous zeolite crystals is the primary diffusional resistance. Macropore diffusion also significantly contributes to the mass-transfer resistance. Various mass-transfer models were compared to the experimental data to determine mass-transfer coefficients. Effective diffusivities were obtained which accurately predicted experimental data using a variety of models. Only the model which accounts for micropore and macropore diffusion occurring in series accurately predicted multicomponent data using single-component diffusivities. Liquid and surface diffusion both contribute to macropore diffusion. Surface and micropore diffusivities were determined to be concentration dependent.

  2. Lead Removal From Synthetic Leachate Matrices by a Novel Ion-Exchange Material

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W., Jr.; Hovanitz, Edward S.; Chi, Sulan

    2002-01-01

    This report discusses the application of a novel polyacrylate-based ion-exchange material (IEM) for the removal of lead (Pb) ions from water. Preliminary testing includes the establishment of the operating pH range, capacity information, and the effect of calcium and anions in the matrix. Batch testing with powder indicates slightly different optimal operational conditions from those used for column testing. The ion exchanger is excellent for removing lead from aqueous solutions.

  3. Brown coals as natural electron-ion-exchangers

    SciTech Connect

    Kossov, I.I.; Aleksandrov, I.V.; Kamneva, A.I.

    1984-01-01

    The existence of electron-ion-exchange properties in brown coals has been established. The influence of the redox properties of the organic and mineral fractions of the coals on their capacity for electron exchange has been shown.

  4. Ion exchange of cesium by crystalline silico-titanates

    SciTech Connect

    Zheng, Zhixin; Anthony, R.G.; Miller, J.E.; Trudell, D.

    1995-12-01

    The crystalline silico-titanates developed by the Department of Chemical Engineering at Texas A&M University, Sandia National Laboratories and UOP exhibits extremely high ion exchange selectivity for removing cesium from aqueous defense wastes. Based on experimental data and structure studies, a competitive ion exchange model was proposed to predict the ion exchange performance in different simulated waste solutions. The predicted distribution coefficients were within 10% of the experimentally determined values.

  5. Mineral Separation in a CELSS by Ion-exchange Chromatography

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1982-01-01

    Operational parameters pertinent to ion exchange chromatography separation were identified. The experiments were performed with 9 mm diameter ion exchange columns and conventional column accessories. The cation separation beds were packed with AG 50W-X2 strong acid cation exchange resin in H(+) form and 200-400 dry mesh particle size. The stripper beds used in some experiments were packed with AG 1-XB strong base cation exchange resin in OH(-) form and 200-400 dry mesh particle size.

  6. Ion-exchange reactions on clay minerals coupled with advection/dispersion processes. Application to Na+/Ca2+ exchange on vermiculite: Reactive-transport modeling, batch and stirred flow-through reactor experiments

    NASA Astrophysics Data System (ADS)

    Tertre, E.; Hubert, F.; Bruzac, S.; Pacreau, M.; Ferrage, E.; Prêt, D.

    2013-07-01

    The present study aims at testing the validity of using an Na+/Ca2+ ion-exchange model, derived from batch data to interpret experimental Ca2+-for-Na+ exchange breakthrough curves obtained on vermiculite (a common swelling clay mineral in surface environments). The ion-exchange model was constructed considering the multi-site nature of the vermiculite surface as well as the exchange of all aqueous species (Mg2+ derived from the dissolution of the solid and H+). The proposed ion-exchange model was then coupled with a transport model, and the predicted breakthrough curves were compared with the experimental ones obtained using a well stirred flow-through reactor. For a given solute residence time in the reactor (typically 50 min), our thermodynamic model based on instantaneous equilibrium was found to accurately reproduce several of the experimental breakthrough curves, depending on the Na+ and Ca2+ concentrations of the influents pumped through the reactor. However the model failed to reproduce experimental breakthrough curves obtained at high flow rates and low chemical gradient between the exchanger phase and the solution. An alternative model based on a hybrid equilibrium/kinetic approach was thus used and allowed predicting experimental data. Based on these results, we show that a simple parameter can be used to differentiate between thermodynamic and kinetic control of the exchange reaction with water flow. The results of this study are relevant for natural systems where two aquatic environments having contrasted chemistries interact. Indeed, the question regarding the attainment of a full equilibrium in such a system during the contact time of the aqueous phase with the particle/colloid remains most often open. In this context, we show that when a river (a flow of fresh water) encounters marine colloids, a systematic full equilibrium can be assumed (i.e., the absence of kinetic effects) when the residence time of the solute in 1 m3 of the system is ⩾6200 h.

  7. Zeolitic ammonium ion exchange for portable hemodialysis dialysate regeneration.

    PubMed

    Patzer, J F; Yao, S J; Wolfson, S K

    1995-01-01

    Ammonia removal from a recirculating dialysate stream is a major challenge in developing a truly portable, regenerable hemodialysis system. Three zeolites, type F, type W, and clinoptilolite, were found to have good ammonia ion exchange capacity with linear equilibrium ion exchange coefficients of 0.908, 0.488, and 0.075 L/g, respectively. The linear equilibrium ion exchange coefficient relates dialysate ammonia concentration (mumol/L) to the amount of ammonia absorbed by zeolite (mumol/g) at equilibrium. Ammonia uptake by zeolite powders was fast, with equilibrium reached within 15 sec. Zeolite ammonia ion exchange and regeneration through multiple cycles was studied using an ion exchange column containing clinoptilolite pellets. Zeolite ion exchange capability was regenerated by flushing the column with 2 mol/L sodium chloride after an ion exchange run. The column maintained ammonia ion exchange capacity through six ion exchange/regeneration cycles, demonstrating multiple dialysis use possibilities. Atomic absorption spectroscopy of the column effluent showed no detectible (< 1 part per million) Si or Al leached from the zeolite.

  8. An investigation of the applicability of the new ion exchange resin, Reillex{trademark}-HPQ, in ATW separations. Milestone 4, Final report

    SciTech Connect

    Ashley, K.R.; Ball, J.; Grissom, M.; Williamson, M.; Cobb, S.; Young, D.; Wu, Yen-Yuan J.

    1993-09-07

    The investigations with the anion exchange resin Reillex{trademark}-HPQ is continuing along several different paths. The topics of current investigations that are reported here are: The sorption behavior of chromium(VI) on Reillex{trademark}-HPQ from nitric acid solutions and from sodium hydroxide/sodium nitrate solutions; sorption behavior of F{sup {minus}} on Reillex{trademark}-HPQ resin in acidic sodium nitrate solution; sorption behavior of Cl{sup {minus}} on Reillex{trademark}-HPQ resin in acidic sodium nitrate solution; sorption behavior of Br{sup {minus}} on Reillex{trademark}-HPQ resin in acidic sodium nitrate solution; and the Honors thesis by one of the students is attached as Appendix II (on ion exchange properties of a new macroperous resin using bromide as the model ion in aqueous nitrate solutions).

  9. The use of Diphonix{sup {trademark}} ion exchange resin as a preconcentration step for the lanthanides and actinides in analytical applications

    SciTech Connect

    Rollins, A.N.; Thakkar, A.H.; Fern, M.J.

    1995-12-01

    Diphonix ion exchange resin is a chelating ion exchange resin containing sulfonic and gemdiphosphonic acid groups. This resin has a high specificity for the lanthanides and actinides, especially at acidities below pH = 3. Currently, we are investigating new ways to use Diphonix resin as a preconcentration step to separate the lanthanides and actinides from interfering elements present in a variety of environmental matrices. Once the lanthanides and actinides have been separated from the interfering matrix constituents, the elements are removed from the resin and passed through subsequent separation schemes. This presentation will outline the use of Diphonix resin with a variety of problem matrices, and demonstrate its usefulness for analysis of the lanthanides and actinides.

  10. Complexation ion-exchange chromatography of some metal ions on papers impregnated with Ti(IV)-based inorganic ion exchangers.

    PubMed

    Sharma, S D; Gupta, R

    2000-02-01

    The chromatographic behavior of 40 metal ions is studied on titanium (IV) arsenate, titanium (IV) phosphate-, titanium (IV) molybdate-, titanium(IV) tungstate-, and titanium(IV) selenite-impregnated papers in 0.1M oxalic, citric, and tartaric acid as mobile phases. Similar studies are carried out on Whatman No. 1 papers for comparison. The ion-exchange capacity of these papers is determined, and their selectivity for different cations is discussed. The mechanism of migration is explained in terms of ion-exchange, precipitation, and adsorption. The prediction of elution sequence from RF values is also checked. The average Ri is found to be almost linearly dependent on the charge of the metal ions. The effect of the pKa of complexing acids on average RF values of 3d series metal ions is explained. A number of binary and ternary separations are achieved.

  11. PARAFAC analysis of IBIL spectra from silver ion exchanged glasses

    NASA Astrophysics Data System (ADS)

    Valotto, G.; Cattaruzza, E.; Mardegan, M.; Quaranta, A.

    2017-01-01

    In this work we present for the first time an application of PARAllel FACtor (PARAFAC) analysis to the investigation of Ion Beam Induced Luminescence (IBIL) spectra of Ag+ ↔ Na+ ion exchanged silicate glasses, in order to check the possibility to obtain additional information on the formation of silver aggregates under ion irradiation by a proper statistical rearrangement of experimental spectra. We decomposed the data by PARAFAC taking into account both IBIL emission features and their evolution as a function of the time. Shape and trend under irradiation of the extracted components were correlated to silver concentration and aggregates in the investigated systems. Strength and weakness of this statistical approach applied to IBIL spectra recorded as a function of time were evidenced and discussed.

  12. Ion exchange extraction of heavy metals from wastewater sludges.

    PubMed

    Al-Enezi, G; Hamoda, M F; Fawzi, N

    2004-01-01

    Heavy metals are common contaminants of some industrial wastewater. They find their way to municipal wastewaters due to industrial discharges into the sewerage system or through household chemicals. The most common heavy metals found in wastewaters are lead, copper, nickel, cadmium, zinc, mercury, arsenic, and chromium. Such metals are toxic and pose serious threats to the environment and public health. In recent years, the ion exchange process has been increasingly used for the removal of heavy metals or the recovery of precious metals. It is a versatile separation process with the potential for broad applications in the water and wastewater treatment field. This article summarizes the results obtained from a laboratory study on the removal of heavy metals from municipal wastewater sludges obtained from Ardhiya plant in Kuwait. Data on heavy metal content of the wastewater and sludge samples collected from the plant are presented. The results obtained from laboratory experiments using a commercially available ion exchange resin to remove heavy metals from sludge were discussed. A technique was developed to solubilize such heavy metals from the sludge for subsequent treatment by the ion exchange process. The results showed high efficiency of extraction, almost 99.9%, of heavy metals in the concentration range bound in wastewater effluents and sludges. Selective removal of heavy metals from a contaminated wastewater/sludge combines the benefits of being economically prudent and providing the possibility of reuse/recycle of the treated wastewater effluents and sludges.

  13. Solid Phase Luminescence of Several Rare Earth Ions on Ion-Exchange Films

    NASA Technical Reports Server (NTRS)

    Tanner, Stephen P.; Street, Kenneth W., Jr.

    1999-01-01

    The development and characterization of a novel ion-exchange film for solid-phase fluorometry and phosphorimetry is reported. This new cation-exchange material is suitable for spectroscopic applications in the ultraviolet and visible regions. It is advantageous because it, as a single entity, is easily recovered from solution and mounted in the spectrofluorometers. After preconcentration on the film, the luminescence intensity of lanthanide ions is several orders of magnitude greater than that of the corresponding solution, depending on the volume of solution and the amount of film. This procedure allows emission spectral measurements and determination of lanthanide ions at solution concentrations of < 5 (micro)g/L. The film may be stored for subsequent reuse or as a permanent record of the analysis. The major drawback to the use of the film is slow uptake of analyte due to diffusion limitations.

  14. Scintillating 99Tc Selective Ion Exchange Resins

    SciTech Connect

    Mitchell Greenhalgh; Richard D. Tillotson

    2012-07-01

    Scintillating technetium (99Tc) selective ion exchange resins have been developed and evaluated for equilibrium capacities and detection efficiencies. These resins can be utilized for the in-situ concentration and detection of low levels of pertechnetate anions (99TcO4-) in natural waters. Three different polystyrene type resin support materials were impregnated with varying amounts of tricaprylmethylammonium chloride (Aliquat 336) extractant, several different scintillating fluors and wavelength shifters. The prepared resins were contacted batch-wise to equilibrium over a wide range of 99TcO4- concentrations in natural water. The measured capacities were used to develop Langmuir adsorption isotherms for each resin. 99Tc detection efficiencies were determined and up to 71.4 ± 2.6% was achieved with some resins. The results demonstrate that a low level detection limit for 99TcO4- in natural waters can be realized.

  15. Pyrolysis of Spent Ion Exchange Resins - 12210

    SciTech Connect

    Braehler, Georg; Slametschka, Rainer

    2012-07-01

    Organic ion exchangers (IEX) play a major and increasing role in the reactor coolant and other water purification processes. During their operation time they receive significant amounts of radioactivity, making their disposal, together with their organic nature, as medium active waste challenging. Processes applied so far do not eliminate the organic matter, which is unwanted in disposal facilities, or, if high temperatures are applied, raise problems with volatile radionuclides. NUKEM Technologies offers their well introduces process for the destruction of spent solvent (TBP), the pebble bed pyrolysis, now for the treatment of spent IEX (and other problematic waste), with the following benefits: the pyrolysis product is free of organic matter, and the operation temperature with approx. 500 deg. C keeps Cs radionuclides completely in the solid residue. (authors)

  16. 25th anniversary article: Ion exchange in colloidal nanocrystals.

    PubMed

    Gupta, Shuchi; Kershaw, Stephen V; Rogach, Andrey L

    2013-12-23

    outlook for the field in terms of the emerging applications and the ion exchange derived materials that will enable them. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Partitioning of mobile ions between ion exchange polymers and aqueous salt solutions: importance of counter-ion condensation.

    PubMed

    Kamcev, Jovan; Galizia, Michele; Benedetti, Francesco M; Jang, Eui-Soung; Paul, Donald R; Freeman, Benny D; Manning, Gerald S

    2016-02-17

    Equilibrium partitioning of ions between a membrane and a contiguous external solution strongly influences transport properties of polymeric membranes used for water purification and energy generation applications. This study presents a theoretical framework to quantitatively predict ion sorption from aqueous electrolytes (e.g., NaCl, MgCl2) into charged (i.e., ion exchange) polymers. The model was compared with experimental NaCl, MgCl2, and CaCl2 sorption data in commercial cation and anion exchange membranes. Ion sorption in charged polymers was modeled using a thermodynamic approach based on Donnan theory coupled with Manning's counter-ion condensation theory to describe non-ideal behavior of ions in the membrane. Ion activity coefficients in solution were calculated using the Pitzer model. The resulting model, with no adjustable parameters, provides remarkably good agreement with experimental values of membrane mobile salt concentration. The generality of the model was further demonstrated using literature data for ion sorption of various electrolytes in charged polymers, including HCl sorption in Nafion.

  18. Radiation testing of organic ion exchange resins

    SciTech Connect

    Carlson, C.D.; Bray, L.A.; Bryan, S.A.

    1995-09-01

    A number of ion exchange materials are being evaluated as part of the Tank Waste Remediation System (TWRS) Pacific Northwest Laboratory (PNL) Pretreatment Project for the removal of {sup 137}Cs from aqueous tank wastes. Two of these materials are organic resins; a phenol-formaldehyde resin (Duolite CS-100) produced by Rohm and Haas Co. (Philadelphia, Pennsylvania) and a resorcinol-formaldehyde (RF) resin produced by Boulder Scientific Co. (Mead, Colorado). One of the key parameters in the assessment of the organic based ion exchange materials is its useful lifetime in the radioactive and chemical environment that will be encountered during waste processing. The focus of the work presented in this report is the radiation stability of the CS-100 and the RF resins. The scope of the testing included one test with a sample of the CS-100 resin and testing of two batches of the RF resin (BSC-187 and BSC-210). Samples of the exchangers were irradiated with a {sup 60}Co source to a total absorbed dose of 10{sup 9} R over a period of 5 months in a static (no flow) and a flowing configuration with neutralized current acid waste (NCAW) simulant as a feed. Based on a maximum concentration of {sup 137}Cs on the resin that would result from processing NCAW, this dose represents an operational period of at least 150 days for the RF resin and at least 1260 days for the CS-100 resin. Gas generation in the static experiment was continuously monitored and G values (molecules of gas per 100 eV) were determined for each species. Resin samples were obtained periodically and the equilibrium behavior of the resins was assessed by determining the distribution coefficients (K{sub d}s). Structural information was also obtained by {sup 13}C cross polarization magic angle (CPMAS) nuclear magnetic resonance (NMR) spectrometry and Fourier Transform Infrared (FTIR) spectroscopy so that changes to the chemical structure could be correlated with changes in K{sub d}.

  19. Ion-exchange chromatography separation applied to mineral recycle in closed systems

    NASA Technical Reports Server (NTRS)

    Ballou, E.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1981-01-01

    As part of the controlled ecological life support system (CELSS) program, a study is being made of mineral separation on ion-exchange columns. The purpose of the mineral separation step is to allow minerals to be recycled from the oxidized waste products of plants, man, and animals for hydroponic food production. In the CELSS application, relatively large quantities of minerals in a broad concentration range must be recovered by the desired system, rather than the trace quantities and very low concentrations treated in analytical applications of ion-exchange chromatography. Experiments have been carried out to assess the parameters pertinent to the scale-up of ion-exchange chromatography and to determine feasibility. Preliminary conclusions are that the column scale-up is in a reasonable size range for the CELSS application. The recycling of a suitable eluent, however, remains a major challenge to the suitability of using ion exchange chromatography in closed systems.

  20. ION EXCHANGE IN FUSED SALTS. II. THE DISTRIBUTION OF ALKALI METAL AND ALKALINE EARTH IONS BETWEEN CHABAZITE AND FUSED LINO3, NANO3, AND KNO3,

    DTIC Science & Technology

    ION EXCHANGE, SALTS ), (*ALKALI METALS, ION EXCHANGE), (*ALKALINE EARTH METALS, ION EXCHANGE), (*NITRATES, ION EXCHANGE), SODIUM , CALCIUM, POTASSIUM...BARIUM, RUBIDIUM, CESIUM, LITHIUM COMPOUNDS, SODIUM COMPOUNDS, POTASSIUM COMPOUNDS, DISTRIBUTION, MINERALS, IONS

  1. Rupture Loop Annex (RLA) ion exchange vault entry and characterization

    SciTech Connect

    Ham, J.E.

    1996-01-04

    This engineering report documents the entry and characterization of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located near the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns were found in the vault. Some of which contained transuranics, Cs 137, and Co 60. The characterization information is necessary for future vault cleanout and column disposal.

  2. Multiple metal ion exchange equilibria with humic acid

    NASA Astrophysics Data System (ADS)

    Gamble, Donald S.; Schnitzer, M.; Kerndorff, H.; Langford, C. H.

    1983-07-01

    A theoretical description is presented for multiple metal ion-humic acid cation exchange experiments. A law of mass action formalism and mole fraction relationships have been adapted to the simultaneous ion exchange equilibria of twelve cations with humic acid. The formal description relates the number of degrees of freedom of the system to the number of metal ions, identifies the independent variables, and accounts for cation interactions in the exchange equilibrium. A recalculation of experimental results reveals an Irving-Williams type of series for divalent metal ions. The implications of this for agriculture and add rain problems are discussed.

  3. Local structures of ions at ion-exchange resin/solution interface.

    PubMed

    Harada, Makoto; Okada, Tetsuo

    2005-08-26

    The local structures of Cl- and Br- in anion-exchange resins have been studied by X-ray absorption fine structure (XAFS), and separation selectivity is discussed on the basis of results. When two different anion-exchange resins having trimethylammonium and dimethylammonium groups as anion-exchange groups are employed for ion-exchange experiments, slightly higher Br- selectivity has been obtained with the former. XAFS has indicated that the average hydration numbers for a given anion is not affected by the structure of the ion-exchange group, but that the extent of ion-association between the anion and the ion-exchange groups depends on the type of the ion-exchange group. Shorter interaction distance (and in turn stronger ion-association) has been confirmed for the dimethylammonium-type resin, and is consistent with lower Br- selectivity of this resin.

  4. Ion exchange and adsorption on low rank coals for liquefaction

    SciTech Connect

    Vorres, K.S.

    1994-09-01

    The objectives of this program are to study the application of catalysts and the catalysis of liquefaction of low rank coals. Ion exchange and adsorption techniques are being used or modified to incorporate catalytically active metals (Fe, Co, Ni and Mo) in relatively small (100-2000 ppM) quantities into coal samples. Relative oil yields are being determined by PETC and Auburn University workers as collaborators to establish the effectiveness of the catalyst incorporation techniques. It is hoped that these techniques will provide highly active forms of the catalyst in low concentrations to minimize the need for metals recovery. A two step preparation of the coal is used to (1) remove material which both limits oil conversion and prepares for the addition of exchangeable catalyst, and (2) add catalytically active material which enhances the conversion of the coal matter to the oil fraction in the processing.

  5. Removal of heavy metals from oil sludge using ion exchange textiles.

    PubMed

    Elektorowicz, M; Muslat, Z

    2008-04-01

    Development of a new simple and economic method for heavy-metal removal from oil sludge using ion exchange textiles was the main objective of this research. Three experimental stages were developed for this purpose using the bottom tank oil sludge from the Shell Canada refinery in Montreal, Canada. The first stage consisted of the direct application of ion exchange to oil sludge. The second stage included the pretreatment of oil sludge with organic solvents prior to the application of ion exchange process. The third stage included the pretreatment of oil sludge with an aqueous solution in order to extract heavy metals to the aqueous phase and then apply ion exchange textiles to the aqueous phase. Best results were obtained when acetone was used as an organic solvent leading to a total removal of vanadium while cadmium, zinc, nickel, iron, copper by 99%; 96%; 94%; 92% and 89%, respectively.

  6. Ion exchange defines the biological activity of titanate nanotubes.

    PubMed

    Rónavári, Andrea; Kovács, Dávid; Vágvölgyi, Csaba; Kónya, Zoltán; Kiricsi, Mónika; Pfeiffer, Ilona

    2016-05-01

    One-dimensional titanate nanotubes (TiONTs) were subjected to systematic ion exchange to determine the impact of these modifications on biological activities. Ion exchanged TiONTs (with Ag, Mg, Bi, Sb, Ca, K, Sr, Fe, and Cu ions) were successfully synthesized and the presence of the substituted ions was verified by energy dispersive X-ray spectroscopy (EDS). A complex screening was carried out to reveal differences in toxicity to human cells, as well as in antibacterial, antifungal, and antiviral activities between the various modified nanotubes. Our results demonstrated that Ag ion exchanged TiONTs exerted potent antibacterial and antifungal effects against all examined microbial species but were ineffective on viruses. Surprisingly, the antibacterial activity of Cu/TiONTs was restricted to Micrococcus luteus. Most ion exchanged TiONTs did not show antimicrobial activity against the tested bacterial and fungal species. Incorporation of various ions into nanotube architectures lead to mild, moderate, or even to a massive loss of human cell viability; therefore, this type of biological effect exerted by TiONTs can be greatly modulated by ion exchange. These findings further emphasize the contribution of ion exchange in determining not only the physical and chemical characteristics but also the bioactivity of TiONT against different types of living cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Influence of Ionic Liquids on the Selectivity of Ion Exchange-Based Polymer Membrane Sensing Layers.

    PubMed

    Mendecki, Lukasz; Callan, Nicole; Ahern, Meghan; Schazmann, Benjamin; Radu, Aleksandar

    2016-07-16

    The applicability of ion exchange membranes is mainly defined by their permselectivity towards specific ions. For instance, the needed selectivity can be sought by modifying some of the components required for the preparation of such membranes. In this study, a new class of materials -trihexyl(tetradecyl)phosphonium based ionic liquids (ILs) were used to modify the properties of ion exchange membranes. We determined selectivity coefficients for iodide as model ion utilizing six phosphonium-based ILs and compared the selectivity with two classical plasticizers. The dielectric properties of membranes plasticized with ionic liquids and their response characteristics towards ten different anions were investigated using potentiometric and impedance measurements. In this large set of data, deviations of obtained selectivity coefficients from the well-established Hofmeister series were observed on many occasions thus indicating a multitude of applications for these ion-exchanging systems.

  8. Influence of Ionic Liquids on the Selectivity of Ion Exchange-Based Polymer Membrane Sensing Layers

    PubMed Central

    Mendecki, Lukasz; Callan, Nicole; Ahern, Meghan; Schazmann, Benjamin; Radu, Aleksandar

    2016-01-01

    The applicability of ion exchange membranes is mainly defined by their permselectivity towards specific ions. For instance, the needed selectivity can be sought by modifying some of the components required for the preparation of such membranes. In this study, a new class of materials –trihexyl(tetradecyl)phosphonium based ionic liquids (ILs) were used to modify the properties of ion exchange membranes. We determined selectivity coefficients for iodide as model ion utilizing six phosphonium-based ILs and compared the selectivity with two classical plasticizers. The dielectric properties of membranes plasticized with ionic liquids and their response characteristics towards ten different anions were investigated using potentiometric and impedance measurements. In this large set of data, deviations of obtained selectivity coefficients from the well-established Hofmeister series were observed on many occasions thus indicating a multitude of applications for these ion-exchanging systems. PMID:27438837

  9. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    SciTech Connect

    Tawfic, A.F.; Dickson, S.E.; Kim, Y.; Mekky, W.

    2015-03-15

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  10. Gadolinium-hydrogen ion exchange of zirconium phosphate

    NASA Technical Reports Server (NTRS)

    Liu, D. C.; Power, J. L.

    1972-01-01

    The Gd(+3)/H(+) ion exchange on a commercial zirconium phosphate ion exchanger was investigated in chloride, sulfate, and phosphate solutions of Gd(+3) at gadolinium concentrations of 0.001 to 1 millimole per cc and in the pH range of 0 to 3.5. Relatively low Gd(+3) capacities, in the range of 0.01 to 0.1 millimole per g of ion exchanger were found at room temperature. A significant difference in Gd(+3) sorption was observed, depending on whether the ion exchanger was converted from initial conditions of greater or lesser Gd(+3) sorption than the specific final conditions. Correlations were found between decrease in Gd(+3) capacity and loss of exchanger phosphate groups due to hydrolysis during washing and between increase in capacity and treatment with H3PO4. Fitting of the experimental data to ideal ion exchange equilibrium expressions indicated that each Gd(+3) ion is sorbed on only one site of the ion exchanger. The selectivity quotient was determined to be 2.5 + or - 0.4 at room temperature on gadolinium desorption in chloride solutions.

  11. Anion exchangers with negatively charged functionalities in hyperbranched ion-exchange layers for ion chromatography.

    PubMed

    Uzhel, Anna S; Zatirakha, Alexandra V; Smirnov, Konstantin N; Smolenkov, Alexandr D; Shpigun, Oleg A

    2017-01-27

    Novel pellicular poly(styrene-divinylbenzene)-based (PS-DVB) anion exchangers with covalently-bonded hyperbranched functional ion-exchange layers containing negatively charged functionalities are obtained and examined. The hyperbranched coating is created on the surface of aminated PS-DVB substrate by repeating the modification cycles including alkylation with 1,4-butanediol diglycidyl ether (1,4-BDDGE), and amination of the terminal epoxide rings with methylamine (MA) or glycine (Gly). The influence of the position and the number of the layers with glycine, as well as of the total number of the layers of amine in the coating on the chromatographic properties of the obtained stationary phases is investigated. Chromatographic performance of the obtained stationary phases is evaluated using the model mixtures of inorganic and organic anions with hydroxide eluent. It is shown that the best selectivity toward weakly retained organic acids and oxyhalides is possessed by the anion exchanger obtained after 5 modification cycles, with glycine being used in the first one. Such anion exchanger packed in 25-cm long column is capable of separating 22 anions in 58min including 7 standard anions, mono-, di- and trivalent organic acids, oxyhalides, and some other double- and triple-charged anions.

  12. Hydrolyzed Poly(acrylonitrile) Electrospun Ion-Exchange Fibers

    PubMed Central

    Jassal, Manisha; Bhowmick, Sankha; Sengupta, Sukalyan; Patra, Prabir K.; Walker, Douglas I.

    2014-01-01

    Abstract A potential ion-exchange material was developed from poly(acrylonitrile) fibers that were prepared by electrospinning followed by alkaline hydrolysis (to convert the nitrile group to the carboxylate functional group). Characterization studies performed on this material using X-ray photoelectron spectroscopy, scanning electron microscopy, Fourier-Transform infra-red spectroscopy, and ion chromatography confirmed the presence of ion-exchange functional group (carboxylate). Optimum hydrolysis conditions resulted in an ion-exchange capacity of 2.39 meq/g. Ion-exchange fibers were used in a packed-bed column to selectively remove heavy-metal cation from the background of a benign, competing cation at a much higher concentration. The material can be efficiently regenerated and used for multiple cycles of exhaustion and regeneration. PMID:24963270

  13. Application of a chromatography model with linear gradient elution experimental data to the rapid scale-up in ion-exchange process chromatography of proteins.

    PubMed

    Ishihara, Takashi; Kadoya, Toshihiko; Yamamoto, Shuichi

    2007-08-24

    We applied the model described in our previous paper to the rapid scale-up in the ion exchange chromatography of proteins, in which linear flow velocity, column length and gradient slope were changed. We carried out linear gradient elution experiments, and obtained data for the peak salt concentration and peak width. From these data, the plate height (HETP) was calculated as a function of the mobile phase velocity and iso-resolution curve (the separation time and elution volume relationship for the same resolution) was calculated. The scale-up chromatography conditions were determined by the iso-resolution curve. The scale-up of the linear gradient elution from 5 to 100mL and 2.5L column sizes was performed both by the separation of beta-lactoglobulin A and beta-lactoglobulin B with anion-exchange chromatography and by the purification of a recombinant protein with cation-exchange chromatography. Resolution, recovery and purity were examined in order to verify the proposed method.

  14. Process parameters optimization in ion exchange 238Pu aqueous processing

    NASA Astrophysics Data System (ADS)

    Pansoy-Hjelvik, M. E.; Nixon, J.; Laurinat, J.; Brock, J.; Silver, G.; Reimus, M.; Ramsey, K. B.

    2000-07-01

    This paper describes bench-scale efforts (5-7 grams of 238Pu) to optimize the ion exchange process for 234U separation with minimal 238Pu losses to the effluent and wash liquids. The bench-scale experiments also determine the methodology to be used for the full-scale process: 5 kg238Pu annual throughput. Heat transfer calculations used to determine the thermal gradients expected during ion exchange processing are also described. The calculations were performed in collaboration with Westinghouse Savannah River Technology Center (WSRTC) and provide information for the design of the full-scale ion exchange equipment.

  15. Ion exchange properties of Japanese natural zeolites in seawater.

    PubMed

    Wajima, Takaaki

    2013-01-01

    Ion exchange properties of five different Japanese natural zeolites in seawater were examined. Sodium ions could be reduced by all zeolites, although anions, Cl(-) and SO(4)(2-), in seawater showed barely changes. Natural zeolite desalination treatment mainly depends on the ion exchange between Na(+), K(+) and Mg(2+) in seawater and Ca(2+) in natural zeolite. This study found that mordenite is superior to clinoptilolite for use in Na(+) reduction. Mordenite with high cation exchange capacity containing Ca(2+) resulted in the highest Na(+) reduction from seawater.

  16. Ion Exchange Testing with SRF Resin FY2012

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2013-06-11

    Ion exchange using spherical resorcinol-formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection (DOE-ORP) for use in the Pretreatment Facility (PTF) of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in at-tank deployment. Numerous studies have shown SRF resin to be effective for removing 137Cs from a wide variety of actual and simulated tank waste supernatants (Adamson et al. 2006; Blanchard et al. 2008; Burgeson et al. 2004; Duignan and Nash 2009; Fiskum et al. 2006a; Fiskum et al. 2006b; Fiskum et al. 2006c; Fiskum et al. 2007; Hassan and Adu-Wusu 2003; King et al. 2004; Nash et al. 2006). Prior work at the Pacific Northwest National Laboratory (PNNL) has focused primarily on the loading behavior for 4 to 6 M Na solutions at 25 to 45°C. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (0.1 to 8 M) and higher temperatures (50°C) to alleviate post-filtration precipitation issues. This report discusses ion exchange loading kinetics testing activities performed in accordance with Test Plan TP-WTPSP-002, Rev. 3.0 , which was prepared and approved in response to the Test Specification 24590 PTF-TSP-RT-09-002, Rev. 0 (Lehrman 2010) and Test Exception 24590 PTF TEF RT-11-00003, Rev. 0 (Meehan 2011). This testing focused on column tests evaluating the impact of elevated temperature on resin degradation over an extended period of time and batch contacts evaluating the impact on Cs loading over a broad range of sodium concentrations (0.1 to 5 M). These changes may be required to alleviate post-filtration precipitation issues and broaden the data range of SRF resin loading under the conditions expected with the new equipment and process changes.

  17. Tc-99 Ion Exchange Resin Testing

    SciTech Connect

    Valenta, Michelle M.; Parker, Kent E.; Pierce, Eric M.

    2010-08-01

    Pacific Northwest National Laboratory was contracted by CHPRC to evaluate the release of 99Tc from spent resin used to treat water from well 299-W15-765 and stored for several years. The key questions to be answered are: 1) does 99Tc readily release from the spent ion exchange resin after being in storage for several years; 2) if hot water stripping is used to remove the co-contaminant carbon tetrachloride, will 99Tc that has been sequestered by the resin be released; and 3) can spent resin be encapsulated into a cementitious waste form; if so, how much 99Tc would be released from the weathering of the monolith waste form? The results from the long term stability leach test results confirm that the resin is not releasing a significant amount of the sequestered 99Tc, evident by the less than 0.02% of the total 99Tc loaded being identified in the solution. Furthermore, it is possible that the measured 99Tc concentration is the result of 99Tc contained in the pore spaces of the resin. In addition to these results, analyses conducted to examine the impact of hot water on the release of 99Tc suggest that only a small percentage of the total is being released. This suggest that hot water stripping to remove carbon tetrachloride will not have a significant affect on the resin’s ability to hold-on to sequestered 99Tc. Finally, encapsulation of spent resin in a cementitious material may be a viable disposal option, but additional tests are needed to examine the extent of physical degradation caused by moisture loss and the effect this degradation process can have on the release of 99Tc.

  18. Hydrogen/deuterium exchange of myoglobin ions in a linear quadrupole ion trap.

    PubMed

    Mao, Dunmin; Ding, Chuanfan; Douglas, D J

    2002-01-01

    The hydrogen/deuterium (H/D) exchange of gas-phase ions of holo- and apo-myoglobin has been studied by confining the ions in a linear quadrupole ion trap with D(2)O or CD(3)OD at a pressure of several mTorr. Apo-myoglobin ions were formed by collision-induced dissociation of holo-myoglobin ions between the orifice and skimmer of the ion sampling system. The exchange takes place on a time scale of seconds. Earlier cross section measurements have shown that holo-myoglobin ions can have more compact structures than apo-myoglobin. Despite this, both holo-myoglobin and apo-myoglobin in charge states +8 to +14 are found to exchange nearly the same number of hydrogens (ca. 103) in 4 s. It is possible the ions fold or unfold to new conformations on the much longer time scale of the exchange experiment compared with the cross section measurements.

  19. Enhanced DOC removal using anion and cation ion exchange resins.

    PubMed

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes.

  20. Interpenetrating polymer network ion exchange membranes and method for preparing same

    DOEpatents

    Alexandratos, Spiro D.; Danesi, Pier R.; Horwitz, E. Philip

    1989-01-01

    Interpenetrating polymer network ion exchange membranes include a microporous polymeric support film interpenetrated by an ion exchange polymer and are produced by absorbing and polymerizing monomers within the support film. The ion exchange polymer provides ion exchange ligands at the surface of and throughout the support film which have sufficient ligand mobility to extract and transport ions across the membrane.

  1. Removal of uranium, arsenic, and nitrate by continuously regenerated ion exchange process

    SciTech Connect

    Chang, D.; Awad, J.; Panahi, Z.

    1996-11-01

    Groundwater is the major source of water supply for the City of Riverside (the City). Groundwater from some of the local wells contains high levels of uranium, arsenic, and nitrate. The City is evaluating treatment technologies that can remove these contaminants, in order to be prepared to select appropriate treatment technologies when groundwater treatment is required. Treatment technologies identified by the USEPA as best available technology (BAT) for uranium and arsenic removal are coagulation/filtration, lime softening, ion exchange, and reverse osmosis. Among these technologies, ion exchange is the most cost-effective and suitable for wellhead treatment applications. Ion exchange is also effective for nitrate removal. An ion exchange pilot study was conducted for the removal of uranium, arsenic and nitrate from groundwater. This paper presents a summary of the tests results, conceptual design criteria, and preliminary cost estimate for a full-scale facility.

  2. Recent developments on ion-exchange membranes and electro-membrane processes.

    PubMed

    Nagarale, R K; Gohil, G S; Shahi, Vinod K

    2006-02-28

    Rapid growth of chemical and biotechnology in diversified areas fuels the demand for the need of reliable green technologies for the down stream processes, which include separation, purification and isolation of the molecules. Ion-exchange membrane technologies are non-hazardous in nature and being widely used not only for separation and purification but their application also extended towards energy conversion devices, storage batteries and sensors etc. Now there is a quite demand for the ion-exchange membrane with better selectivities, less electrical resistance, high chemical, mechanical and thermal stability as well as good durability. A lot of work has been done for the development of these types of ion-exchange membranes during the past twenty-five years. Herein we have reviewed the preparation of various types of ion-exchange membranes, their characterization and applications for different electro-membrane processes. Primary attention has been given to the chemical route used for the membrane preparation. Several general reactions used for the preparation of ion-exchange membranes were described. Methodologies used for the characterization of these membranes and their applications were also reviewed for the benefit of readers, so that they can get all information about the ion-exchange membranes at one platform. Although there are large number of reports available regarding preparations and applications of ion-exchange membranes more emphasis were predicted for the usefulness of these membranes or processes for solving certain type of industrial or social problems. More efforts are needed to bring many products or processes to pilot scale and extent their applications.

  3. XAFS Studies of Silver Environments in Ion-Exchanged Glasses

    SciTech Connect

    Yang, X. C.; Dubiel, M.

    2007-02-02

    The X-ray absorption fine structure (XAFS) technique was used to analyze the structural geometry of Ag atoms introduced into soda-lime silicate glass and soda aluminosilicate glass by ion-exchange methods. The results show that Ag+ ions in aluminosilicate glass are coordinated by about two oxygens and the nearest-neighbor Ag-O distance increases when the Ag+-for-Na+ ion-exchange ratio is larger than 0.47. When the exchange ratio is low, the introduced Ag+ ions are stabilized at the non-bridge oxygen (NBO) site with a Ag-O distance of 2.20 A, and the Na+ ions in the AlO4 site are exchanged by Ag+ ions after full replacement of the NBO sites with a Ag-O distance of 2.28 A. The disorder of Ag-O coordination increases with increasing ion-exchange ratio in aluminosilicate glass where Ag+ ions are coordinated by NBO and bridge oxygen (BO)

  4. Ion Exchange Separation of the Oxidation State of Vanadium.

    ERIC Educational Resources Information Center

    Cornelius, Richard

    1980-01-01

    Describes an experiment that emphasizes the discrete nature of the different oxidation states of vanadium by the separation of ammonium metavanadate into all four species by ion exchange chromatography. (CS)

  5. Ion Exchange Separation of the Oxidation State of Vanadium.

    ERIC Educational Resources Information Center

    Cornelius, Richard

    1980-01-01

    Describes an experiment that emphasizes the discrete nature of the different oxidation states of vanadium by the separation of ammonium metavanadate into all four species by ion exchange chromatography. (CS)

  6. Ion exchange at TNX using the SKID unit

    SciTech Connect

    Meyer, M.L.; Bibler, J.P.

    1993-10-21

    An ion exchange unit has been manufactured for WSRC by British Nuclear Fuels, Ltd. This unit consists of three columns, ancillary valving, pumps, lines, and computer controls. It has been delivered to TNX for use in testing a cesium-specific ion exchange resin, developed at WSRC as a potential second generation process for the decontamination of Defense Waste Processing Facility (DWPF) supernate. This resin also has Department of Energy applications at both Oak Ridge and Hanford. Oak Ridge is interested in decontaminating the Melton Valley storage tank supernate, while Hanford is interested in decontaminating the 101-AW and 101-SY supernate streams. Another potential developmental interest is the Savannah River Site (SRS) DWPF recycle stream. The three primary waste streams of interest are the Oak Ridge, Hanford, and SRS, SWPF supernate streams. For these three waste streams, the cesium decontamination factor (DF) will be measured for a non-radioactive, simulated, high-level waste solution. The test objectives, process outlines, and broad characterization of the waste streams are described.

  7. Ion Exchanged, Glass Laminates that Exhibit a Threshold Strength

    DTIC Science & Technology

    2006-07-10

    tests. The glass was then annealed at 550 ’C for 8hr to remove any residual stress. The ion exchange process was accomplished in a vertical clam ...bonded together (described below) before the ion exchange. Hence, when the bilayer plate was separated using a razor blade (described below), each...strain energy release rate for the bonded interface using the double cantilever beam test configuration. As detailed by Maszara et. al., 19 a razor blade

  8. Samarium Ion Exchanged Montmorillonite for High Temperature Cumene Cracking Reaction

    NASA Astrophysics Data System (ADS)

    Binitha, N. N.; Silija, P. P.; Suraj, V.; Yaakob, Z.; Sugunan, S.

    2011-02-01

    Montmorillonite clay is cation exchanged with samarium and its catalytic influence in cumene cracking reaction is investigated. Effect of exchange with sodium ions on further exchange with samarium ions is also noted. Acidity measurements are done using Temperature Programmed Desorption (TPD) of ammonia. The retention of basic structure is proved from FTIR spectra and XRD patterns. Elemental analysis result shows that samarium exchange has occurred, which is responsible for the higher catalytic activity. Surface area and pore volume remains more or less unaffected upon exchange. Thermogravimetric analysis indicates the enhanced thermal stability on exchanging. Cumene cracking reaction is carried out at atmospheric pressure in a fixed bed glass reactor at 673 K. The predominance of Brønsted acidity is confirmed from high selectivity to benzene.

  9. Degradation mechanism of sulfonated poly(ether ether ketone) (SPEEK) ion exchange membranes under vanadium flow battery medium.

    PubMed

    Yuan, Zhizhang; Li, Xianfeng; Hu, Jinbo; Xu, Wanxing; Cao, Jingyu; Zhang, Huamin

    2014-10-07

    The degradation mechanism of hydrocarbon ion exchange membranes under vanadium flow battery (VFB) medium was investigated and clarified for the first time. This work will be highly beneficial for improving the chemical stability of hydrocarbon ion exchange membranes, which is one of the most challenging issues for VFB application.

  10. MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS

    SciTech Connect

    Nash, C.; Hang, T.; Aleman, S.

    2011-01-03

    Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.

  11. Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater.

    PubMed

    Rozendal, R A; Sleutels, T H J A; Hamelers, H V M; Buisman, C J N

    2008-01-01

    Previous studies have shown that the application of cation exchange membranes (CEMs) in bioelectrochemical systems running on wastewater can cause operational problems. In this paper the effect of alternative types of ion exchange membrane is studied in biocatalyzed electrolysis cells. Four types of ion exchange membranes are used: (i) a CEM, (ii) an anion exchange membrane (AEM), (iii) a bipolar membrane (BPM), and (iv) a charge mosaic membrane (CMM). With respect to the electrochemical performance of the four biocatalyzed electrolysis configurations, the ion exchange membranes are rated in the order AEM > CEM > CMM > BPM. However, with respect to the transport numbers for protons and/or hydroxyl ions (t(H/OH)) and the ability to prevent pH increase in the cathode chamber, the ion exchange membranes are rated in the order BPM > AEM > CMM > CEM.

  12. Water softening by combination of ultrasound and ion exchange.

    PubMed

    Entezari, M H; Tahmasbi, M

    2009-03-01

    Ion exchange resin used in this work was styrene-divinylbenzene co-polymer with sulfonic acid group as a strong acid cation resin. This resin is particularly well suited for the removal of water hardness. In water treatment, commonly used softening processes are chemical precipitation and ion exchange. In this study, a combination of ultrasound and ion exchange was applied for reducing the hardness of water. The rate of exchange or kinetics of ion exchange is governed by several parameters. Therefore, important variables such as intensity of ultrasound, amount of resin, concentration of ions and contact time were investigated. The experimental data related to the removal of magnesium and calcium ions were fitted properly with Langmuir model. The kinetic of removal for both ions was pseudo-first-order. In point of mechanism, the internal porous and film diffusion were both effective in the process. The capacity of sorption and the velocity of removal were higher in the presence of ultrasound than control method and this is related to the cavitation process.

  13. Microsecond pulsed hydrogen/deuterium exchange of electrosprayed ubiquitin ions stored in a linear ion trap.

    PubMed

    Rajabi, Khadijeh

    2015-02-07

    A pulse of D2O vapour on the order of microseconds is allowed to react with the +6 to +9 charge states of ubiquitin confined in a linear ion trap (LIT). Two envelopes of peaks are detected for the ions of ubiquitin, corresponding to the ions that exchange more quickly and more slowly. The deuterium uptake of the protonated sites on ubiquitin ions accounts for the ion population with the fast exchange. The hydrogen/deuterium exchange (HDX) kinetics of ubiquitin ions trapped in the LIT for 200 ms showed comparable structural transitions to those trapped for 300 ms. When ions are trapped for longer, i.e. up to 2000 ms, mainly the slow exchanging ion population is detected. In all experiments the +7 ions exchange the most, suggesting a short distance between the surface protonated sites and nearby charged sites, and concomitantly high accessibility of surface protonated sites towards D2O. The +6 ions are more compact than the +7 ions but have one fewer protonated site, therefore fewer surface availabilities for D2O attack. The data suggest that the +6 ions keep most of their solution-phase contacts intact while the hydrophobic core is slightly interrupted in the +7 ions, possibly due to the exposure of charged His68 that is normally buried in the hydrophobic pocket. The +8 and +9 ions have more protonated sites but are less compact than the +7 ions because of Coulombic repulsion, resulting in a larger distance between the protonated sites and the basic sites. The data indicate that the HDX mechanism of ions with the slower exchange corresponding to the second envelope of peaks is primarily governed via a relay mechanism. The results suggest that the pulsed HDX MS method is sampling a population of ubiquitin ions with a similar backbone fold to the solution.

  14. ELUTION OF URANIUM VALUES FROM ION EXCHANGE RESINS

    DOEpatents

    Kennedy, R.H.

    1959-11-24

    A process is described for eluting complex uranium ions absorbed on ion exchange resins. The resin is subjected to the action of an aqueous eluting solution contuining sulfuric acid and an alkali metal, ammonium, or magnesium chloride or nitrate, the elution being carried out until the desired amount of the uranium is removed from the resin.

  15. Metal ion-exchange on the muscovite mica surface

    NASA Astrophysics Data System (ADS)

    de Poel, Wester; Vaessen, Sarah L.; Drnec, Jakub; Engwerda, Anthonius H. J.; Townsend, Eleanor R.; Pintea, Stelian; de Jong, Aryan E. F.; Jankowski, Maciej; Carlà, Francesco; Felici, Roberto; Elemans, Johannes A. A. W.; van Enckevort, Willem J. P.; Rowan, Alan E.; Vlieg, Elias

    2017-11-01

    The surface potassium ions of muscovite mica were exchanged for several different metal ions from aqueous solution (Ag, Ca, V, Mn, Fe, Ni, Cu, Zn, Co, and Cd). The surfaces were rinsed in water, dried under nitrogen atmosphere, and subsequently analysed using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and, for half the systems, surface X-ray diffraction (SXRD). XPS and SXRD confirmed the presence of the different metal ions at the muscovite mica surface, with a partial monolayer of the monovalent and divalent ions present on the surface. No counter ions from the used salts were detected. AFM revealed that Ni-, and Fe-terminated muscovite mica surfaces were partially covered by nanoparticles, most likely consisting of metal (hydr)oxide. The exchanged ions remained on the surface after rinsing with ultra pure water three times. SXRD showed that Cd and Ag have a lower affinity for the muscovite mica surface than Cu, Ca, and Mn.

  16. Desalination of brackish waters using ion exchange media.

    SciTech Connect

    Pless, Jason D.; Krumhansl, James Lee; Nenoff, Tina Maria; Voigt, James A.; Phillips, Mark L. F.; Axness, Marlene; Moore, Diana Lynn

    2005-01-01

    An environmentally friendly method and materials study for desalinating inland brackish waters (i.e., coal bed methane produced waters) using a set of ion-exchange materials is presented. This desalination process effectively removes anions and cations in separate steps with minimal caustic waste generation. The anion-exchange material, hydrotalcite (HTC), exhibits an ion-exchange capacity (IEC) of {approx} 3 mequiv g{sup -1}. The cation-exchange material, an amorphous aluminosilicate permutite-like material, (Na{sub x+2y}Al{sub x}Si{sub 1-x}O{sub 2+y}), has an IEC of {approx}2.5 mequiv g{sup -1}. These ion-exchange materials were studied and optimized because of their specific ion-exchange capacity for the ions of interest and their ability to function in the temperature and pH regions necessary for cost and energy effectiveness. Room temperature, minimum pressure column studies (once-pass through) on simulant brackish water (total dissolved solids (TDS) = 2222 ppm) resulted in water containing TDS = 25 ppm. A second once-pass through column study on actual produced water (TDS = {approx}11,000) with a high carbonate concentration used an additional lime softening step and resulted in a decreased TDS of 600 ppm.

  17. Desalination of brackish waters using ion-exchange media

    SciTech Connect

    Pless, J.D.; Philips, M.L.F.; Voigt, J.A.; Moore, D.; Axness, M.; Krumhansl, J.L.; Nenoff, T.M.

    2006-06-21

    An environmentally friendly method and materials study for desalinating inland brackish waters (i.e., coal bed methane produced waters) using a set of ion-exchange materials is presented. This desalination process effectively removes anions and cations in separate steps with minimal caustic waste generation. The anion-exchange material, hydrotalcite (HTC), exhibits an ion-exchange capacity (IEC) of around 3 mequiv g{sup -1}. The cation-exchange material, an amorphous aluminosilicate permutite-like material, (Na{sub x}+2yAl{sub x}Si{sub 1}-xO{sub 2+y}), has an IEC of around to 2.5 mequiv g{sup -1}. These ion-exchange materials were studied and optimized because of their specific ion-exchange capacity for the ions of interest and their ability to function in the temperature and pH regions necessary for cost and energy effectiveness. Room temperature, minimum pressure column studies (once-pass through) on simulant brackish water (total dissolved solids (TDS) = 2222 ppm) resulted in water containing TDS = 25 ppm. A second once-pass through column study on actual produced water (TDS = similar to 11 000) with a high carbonate concentration used an additional lime softening step and resulted in a decreased TDS of 600 ppm.

  18. Rate theory on water exchange in aqueous uranyl ion

    NASA Astrophysics Data System (ADS)

    Dang, Liem X.; Vo, Quynh N.; Nilsson, Mikael; Nguyen, Hung D.

    2017-03-01

    We report a classical rate theory approach to predict the exchange mechanism that occurs between water and aqueous uranyl ion. Using our water and ion-water polarizable force field and molecular dynamics techniques, we computed the potentials of mean force for the uranyl ion-water pair as a function of different pressures at ambient temperature. These potentials of mean force were used to calculate rate constants using transition rate theory; the transmission coefficients also were examined using the reactive flux method and Grote-Hynes approach. The computed activation volumes are positive; thus, the mechanism of this particular water-exchange is a dissociative process.

  19. Exchange and reduction of Cu(2+) ions in clinoptilolite.

    PubMed

    Iznaga, I Rodríguez; Petranovskii, V; Fuentes, G Rodríguez; Mendoza, C; Aguilar, A Benítez

    2007-12-15

    The ion-exchange and reduction processes for Cu(2+) ions in clinoptilolite from the Caimanes deposit (Moa, Cuba) were studied at different temperatures. The ion-exchange studies were done to determine the kinetic parameters of Cu(2+) removal from solution by this clinoptilolite modified previously to NH(+)(4) form, and thermodynamic parameters of Cu(2+) elution from zeolite using NH(4)Cl solution. The results show that temperature increase favors the exchange and that it is a reversible process. The external diffusion rate appreciably increases with temperature, while, the internal diffusion coefficient rises relatively little. This means that besides ion exchange other processes (such as precipitation of the low-solubility phase and/or salt adsorption) occur, which cause copper removal from solution and affect the intracrystalline diffusion of the ions. For steric reasons the exchange of [Cu(H(2)O)(6)](2+) ions from a solution must occur with a number of water molecules n smaller than 6 (6 > n > or = 0). Cu(2+) reduction by hydrogen and the formation of Cu-particles in the clinoptilolite were verified. The Cu(2+) reduction mechanism is complex, indirect, and sensitive to reduction temperature; consequently, Cu(+)(n) states intermediate between Cu(2+) and Cu(0) should be present in the reduced samples.

  20. The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation.

    PubMed

    Hassanvand, Armineh; Wei, Kajia; Talebi, Sahar; Chen, George Q; Kentish, Sandra E

    2017-09-14

    Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange membranes act as selective gates allowing the transport of counter-ions toward carbon electrodes. This article provides a summary of recent developments in the preparation, characterization, and performance of ion exchange membranes in the MCDI field. In some parts of this review, the most relevant literature in the area of electrodialysis (ED) is also discussed to better elucidate the role of the ion exchange membranes. We conclude that more work is required to better define the desalination performance of the proposed novel materials and cell designs for MCDI in treating a wide range of feed waters. The extent of fouling, the development of cleaning strategies, and further techno-economic studies, will add value to this emerging technique.

  1. The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation

    PubMed Central

    Hassanvand, Armineh; Wei, Kajia; Talebi, Sahar

    2017-01-01

    Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange membranes act as selective gates allowing the transport of counter-ions toward carbon electrodes. This article provides a summary of recent developments in the preparation, characterization, and performance of ion exchange membranes in the MCDI field. In some parts of this review, the most relevant literature in the area of electrodialysis (ED) is also discussed to better elucidate the role of the ion exchange membranes. We conclude that more work is required to better define the desalination performance of the proposed novel materials and cell designs for MCDI in treating a wide range of feed waters. The extent of fouling, the development of cleaning strategies, and further techno-economic studies, will add value to this emerging technique. PMID:28906442

  2. Studying ion exchange in solution and at biological membranes by FCS.

    PubMed

    Widengren, Jerker

    2013-01-01

    By FCS, a wide range of processes can be studied, covering time ranges from subnanoseconds to seconds. In principle, any process at equilibrium conditions can be measured, which reflects itself by a change in the detected fluorescence intensity. In this review, it is described how FCS and variants thereof can be used to monitor ion exchange, in solution and along biological membranes. Analyzing fluorescence fluctuations of ion-sensitive fluorophores by FCS offers selective advantages over other techniques for measuring local ion concentrations, and, in particular, for studying exchange kinetics of ions on a very local scale. This opens for several areas of application. The FCS approach was used to investigate fundamental aspects of proton exchange at and along biological membranes. The protonation relaxation rate, as measured by FCS for a pH-sensitive dye, can also provide information about local accessibility/interaction of a particular labeling site and conformational states of biomolecules, in a similar fashion as in a fluorescence quenching experiment. The same FCS concept can also be applied to ion exchange studies using other ion-sensitive fluorophores, and by use of dyes sensitive to other ambient conditions the concept can be extended also beyond ion exchange studies. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Electrical and magnetic properties of ion-exchangeable layered ruthenates

    SciTech Connect

    Sugimoto, Wataru . E-mail: wsugi@shinshu-u.ac.jp; Omoto, Masashi; Yokoshima, Katsunori; Murakami, Yasushi; Takasu, Yoshio

    2004-12-01

    An ion-exchangeable ruthenate with a layered structure, K{sub 0.2}RuO{sub 2.1}, was prepared by solid-state reactions. The interlayer cation was exchanged with H{sup +}, C{sub 2}H{sub 5}NH{sub 3}{sup +}, and ((C{sub 4}H{sub 9}){sub 4}N{sup +}) through proton-exchange, ion-exchange, and guest-exchange reactions. The electrical and magnetic properties of the products were characterized by DC resistivity and susceptibility measurements. Layered K{sub 0.2}RuO{sub 2.1} exhibited metallic conduction between 300 and 13K. The products exhibited similar magnetic behavior despite the differences in the type of interlayer cation, suggesting that the ruthenate sheet in the protonated form and the intercalation compounds possesses metallic nature.

  4. ION EXCHANGE PERFORMANCE OF TITANOSILICATES, GERMANATES AND CARBON NANOTUBES

    SciTech Connect

    Alsobrook, A. N.; Hobbs, D. T.

    2013-04-24

    This report presents a summary of testing the affinity of titanosilicates (TSP), germanium-substituted titanosilicates (Ge-TSP) and multiwall carbon nanotubes (MWCNT) for lanthanide ions in dilute nitric acid solution. The K-TSP ion exchanger exhibited the highest affinity for lanthanides in dilute nitric acid solutions. The Ge-TSP ion exchanger shows promise as a material with high affinity, but additional tests are needed to confirm the preliminary results. The MWCNT exhibited much lower affinities than the K-TSP in dilute nitric acid solutions. However, the MWCNT are much more chemically stable to concentrated nitric acid solutions and, therefore, may candidates for ion exchange in more concentrated nitric acid solutions. This technical report serves as the deliverable documenting completion of the FY13 research milestone, M4FT-13SR0303061 – measure actinide and lanthanide distribution values in nitric acid solutions with sodium and potassium titanosilicate materials.

  5. Influence of ion bombardment induced patterning of exchange bias in pinned artificial ferrimagnets on the interlayer exchange coupling

    SciTech Connect

    Hoeink, V.; Schmalhorst, J.; Reiss, G.; Weis, T.; Lengemann, D.; Engel, D.; Ehresmann, A.

    2008-06-15

    Artificial ferrimagnets have many applications as, e.g., pinned reference electrodes in magnetic tunnel junctions. It is known that the application of ion bombardment (IB) induced patterning of the exchange bias coupling of a single layer reference electrode in magnetic tunnel junctions with He ions is possible. For applications as, e.g., special types of magnetic logic, a combination of the IB induced patterning of the exchange bias coupling and the implementation of an artificial ferrimagnet as reference electrode is desirable. Here, investigations for a pinned artificial ferrimagnet with a Ru interlayer, which is frequently used in magnetic tunnel junctions, are presented. It is shown that in this kind of samples the exchange bias can be increased or rotated by IB induced magnetic patterning with 10 keV He ions without a destruction of the antiferromagnetic interlayer exchange coupling. An IrMn/Py/Co/Cu/Co stack turned out to be more sensitive to the influence of IB than the Ru based artificial ferrimagnet.

  6. H/D exchange of gas phase bradykinin ions in a linear quadrupole ion trap.

    PubMed

    Mao, Dunmin; Douglas, D J

    2003-02-01

    The gas phase H/D exchange reaction of bradykinin ions, as well as fragment ions of bradykinin generated through collisions in an orifice skimmer region, have been studied with a linear quadrupole ion trap (LIT) reflectron time-of-flight (rTOF) mass spectrometer system. The reaction in the trap takes only tens of seconds at a pressure of few mTorr of D2O or CD3OD. The exchange rate and hydrogen exchange level are not sensitive to the trapping q value over a broad range, provided q is not close to the stability boundary (q = 0.908). The relative rates and hydrogen exchange levels of protonated and sodiated +1 and +2 ions are similar to those observed previously by others with a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer system. The doubly and triply protonated ions show multimodal isotopic distributions, suggesting the presence of several different conformations. The y fragment ions show greater exchange rates and levels than a or b ions, and when water or ammonia is lost from the fragment ions, no exchange is observed.

  7. Automated resource-saving technology of ion-exchange water treatment

    NASA Astrophysics Data System (ADS)

    Livshits, M.

    2015-01-01

    Stable high quality of the purified water can be provided by adaptive control of water-treatment installations with the observer in a loop of the control system on the basis of observer of ion exchange processes. To obtain this goal the following problems have been solved: the hierarchic structure of water treatment system is developed; the system of water treatment quality criteria for ion exchange processes is developed; the created mathematical model of ionic exchange processes is functionally oriented to application in control system as an observer; methodologies of identification of a mathematical model of ionic exchange processes is developed; verification of the mathematical model of ionic exchange is performed on experimental-industrial basis; automatic control system of water treatment with observer in the loop is developed for low-waste installation of a heat supply system.

  8. In Situ Investigations of Ion Exchange Processes in Microporous Materials

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Parise, J. B.; Hanson, J. C.

    2001-12-01

    The mechanism by which ions exchange in microporous and layered solids, such as zeolites and clays for example, has important implications in areas as diverse as soil fertility and environmental remediation. A detailed characterization of the ion-exchange pathway, the structural consequences of ion exchange and the specific sites involved in the course of exchange, is desirable. A probe that is both time- and structure-sensitive allows resolution of which specific sites are involved, along with the effects of different cation types on the uptake and release of ions. In order to discern the mechanism of ion exchange, it is necessary not only to observe the course of the reaction, which can now be done routinely using energy dispersive X-ray diffraction at synchrotron sources, but also to collect dynamic diffraction data of sufficient quality to allow structure refinement using Rietveld structure refinement techniques. This at present requires the collection of monochromatic data. Tradeoffs between time-resolution, peak-to-background discrimination and structural resolution are often required and depend on the problem at hand. We have developed a number of strategies for in situ ion exchange techniques that probe both structural and kinetic information from dynamic solid media. Examples include investigations of the site-specific ion-exchange mechanism in zeolite LSX using a combination of ex situ and in situ time-resolved synchrotron X-ray powder diffraction, Iterative Target Transformation Factor Analysis (ITTFA) and Rietveld structural refinements. Measurement of competitive ion depletion curves showed that the newly synthesized gallosilicate TsG-1 is more selective for Sr than mineral clinoptilolite, and the structural pathway of Sr-exchange in TsG-1 was monitored by in situ and ex situ synchrotron X-ray powder diffraction. In those cases where full structure refinement is desirable using less than optimal powder diffraction data, we found it necessary to first

  9. Cementation of residue ion exchange resins at Rocky Flats

    SciTech Connect

    Dustin, D.F.; Beckman, T.D.; Madore, C.M.

    1998-03-03

    Ion exchange resins have been used to purify nitric acid solutions of plutonium at Rocky Flats since the 1950s. Spent ion exchange resins were retained for eventual recovery of residual plutonium, typically by incineration followed by the aqueous extraction of plutonium from the resultant ash. The elimination of incineration as a recovery process in the late 1980s and the absence of a suitable alternative process for plutonium recovery from resins led to a situation where spent ion exchange resins were simply placed into temporary storage. This report describes the method that Rocky Flats is currently using to stabilize residue ion exchange resins. The objective of the resin stabilization program is: (1) to ensure their safety during interim storage at the site, and (2) to prepare them for ultimate shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. Included in the discussion is a description of the safety concerns associated with ion exchange resins, alternatives considered for their stabilization, the selection of the preferred treatment method, the means of implementing the preferred option, and the progress to date.

  10. Ion exchange in KTiOPO4 crystals irradiated by copper and hydrogen ions.

    PubMed

    Zhang, Ruifeng; Lu, Fei; Lian, Jie; Liu, Hanping; Liu, Xiangzhi; Lu, Qingming; Ma, Hongji

    2008-05-12

    Cs(+)-K+ ion exchanges were produced on KTiOPO4 crystals which is prior irradiated by Cu+ can H+ ions. The energy and dose of implanted Cu+ ions are 1.5 MeV and 0.5 x 10(14) ions/cm2, and that of H+ are 300 keV and 1 x 10(16) ions/cm2, respectively. The temperature of ions exchange is 430 degrees C, and the time range from 15 minutes to 30 minutes. The prism coupling method is used to measure the dark mode spectra of the samples. Compared with results of ion exchange on the sample without irradiations, both the number of guided mode and its corresponding effective refractive index are decreased. The experimental results indicate that the ion exchange rate closely related with the lattice damage and the damage layers formed in the depth of maximum nuclear energy deposition act as a barrier to block the ions diffuse into the sample and the concentration of defects can modify the speed of ion exchange..

  11. Ion Exchange Testing with SRF Resin FY 2012

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-07-02

    Ion exchange using spherical resorcinol-formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection (DOE-ORP) for use in the Pretreatment Facility (PTF) of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in at-tank deployment. Numerous studies have shown SRF resin to be effective for removing 137Cs from a wide variety of actual and simulated tank waste supernatants (Adamson et al. 2006; Blanchard et al. 2008; Burgeson et al. 2004; Duignan and Nash 2009; Fiskum et al. 2006a; Fiskum et al. 2006b; Fiskum et al. 2006c; Fiskum et al. 2007; Hassan and Adu-Wusu 2003; King et al. 2004; Nash et al. 2006). Prior work at the Pacific Northwest National Laboratory (PNNL) has focused primarily on the loading behavior for 4 to 6 M Na solutions at 25 to 45°C. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (0.1 to 8 M) and higher temperatures (50°C) to alleviate post-filtration precipitation issues. This report discusses ion exchange loading kinetics testing activities performed in accordance with Test Plan TP-WTPSP-002, Rev. 3.01, which was prepared and approved in response to the Test Specification 24590-PTF-TSP-RT-09-002, Rev. 0 (Lehrman 2010) and Test Exception 24590-PTF-TEF-RT-11-00003, Rev. 0 (Meehan 2011). This testing focused on column tests evaluating the impact of elevated temperature on resin degradation over an extended period of time and batch contacts evaluating the impact on Cs loading over a broad range of sodium concentrations (0.1 to 5 M). These changes may be required to alleviate post-filtration precipitation issues and broaden the data range of SRF resin loading under the conditions expected with the new equipment and process changes.

  12. Small Column Ion Exchange Design and Safety Strategy

    SciTech Connect

    Huff, T.; Rios-Armstrong, M.; Edwards, R.; Herman, D.

    2011-02-07

    Small Column Ion Exchange (SCIX) is a transformational technology originally developed by the Department of Energy (DOE) Environmental Management (EM-30) office and is now being deployed at the Savannah River Site (SRS) to significantly increase overall salt processing capacity and accelerate the Liquid Waste System life-cycle. The process combines strontium and actinide removal using Monosodium Titanate (MST), Rotary Microfiltration, and cesium removal using Crystalline Silicotitanate (CST, specifically UOP IONSIV{reg_sign}IE-911 ion exchanger) to create a low level waste stream to be disposed in grout and a high level waste stream to be vitrified. The process also includes preparation of the streams for disposal, e.g., grinding of the loaded CST material. These waste processing components are technically mature and flowsheet integration studies are being performed including glass formulations studies, application specific thermal modeling, and mixing studies. The deployment program includes design and fabrication of the Rotary Microfilter (RMF) assembly, ion-exchange columns (IXCs), and grinder module, utilizing an integrated system safety design approach. The design concept is to install the process inside an existing waste tank, Tank 41H. The process consists of a feed pump with a set of four RMFs, two IXCs, a media grinder, three Submersible Mixer Pumps (SMPs), and all supporting infrastructure including media receipt and preparation facilities. The design addresses MST mixing to achieve the required strontium and actinide removal and to prevent future retrieval problems. CST achieves very high cesium loadings (up to 1,100 curies per gallon (Ci/gal) bed volume). The design addresses the hazards associated with this material including heat management (in column and in-tank), as detailed in the thermal modeling. The CST must be size reduced for compatibility with downstream processes. The design addresses material transport into and out of the grinder and

  13. Cesium Ion Exchange Loading Kinetics Testing with SRF Resin

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Brown, Garrett N.; Peterson, Reid A.

    2012-11-02

    Ion exchange using the Spherical Resorcinol-Formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection for use in the Pretreatment Facility of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in an at-tank deployment for removing 137Cs. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (2 to 8 M) due to caustic leaching and higher temperatures (50°C) to alleviate post-filtration precipitation issues prior to reaching the ion exchange columns. Therefore, it is important to understand the behavior of SRF resin performance under the conditions expected with the new equipment and process changes. This research examined the impact of linear load velocity (4, 6, 8 cm/min), initial sodium concentration (2, 5, 8 M), initial sodium-to-cesium ratio (1.4E+05, 2.1E+05, 2.8E+05 mol/mol), initial sodium-to-hydroxide ratio (2.0, 3.0, 4.0 mol/mol), and resin degradation during extended solution flow using elevated temperature (45°, 50°, 55°, 60°, 65°, 75°C). Testing was performed using a~2mL column packed with SRF resin with feed flowing through it in an up-flow pattern. Samples were taken at set intervals and the data analyzed to help understand the impact of these conditions on the SRF resin performance. It was found that the loading kinetics were not significantly impacted by the sodium concentration over the range tested. However, the loading kinetics were impacted by the linear load velocity. These results indicated that at the test temperature, the adsorption of cesium is strongly dependent on mass transfer through the film and not significantly impacted by interparticle diffusion. Testing for extended times at elevated temperatures showed that the resin does degrade and loading capacity is reduced at and above 45°C. Above 60°C the resin appears to not load at all.

  14. The electrochemical investigation of salts partition with ion exchange membranes.

    PubMed

    Ata, Nejla; Yazicigil, Zafer; Oztekin, Yasemin

    2008-12-15

    The regenaration of acid and base from the solutions containing metallic salts was achieved by salt splitting method (SSM) using not only anion-exchange membranes (AEM) but also cation-exchange membrane (CEM). In these experiments, while the ion exchange membrane was anion-exchange membrane, acid solutions were used as an anolyte and different salts of potassium were used as a catholyte. In addition to these experiments, while the ion exchange membrane was cation-exchange membrane, base solutions were used as a catholyte and different salts of potassium were used as an anolyte. The effects of current density, initial concentrations of anolyte and catholyte solutions, the type of salt solution and the type of the ion-exchange membranes on the recovery ratio of bases and acids were investigated. The results of the experiments were investigated with the Statistical Package for Social Sciences (SPSS) program. The obtained results show that this technique can be used not only for recovering the acid and base wastes of industry but also for removing the impurities in order to obtain pure acids and bases in laboratory conditions.

  15. THERMODYNAMICS OF ION-EXCHANGED NATURAL CLINOPTILOLITE

    EPA Science Inventory

    Natural clinoptilolite from Castle Creek, Idaho, and its cation-exchanged variants (Na-Cpt, NaK-Cpt, K-Cpt, and Ca-Cpt) were studied by high-temperature calorimetry. The hydration enthalpy for all clinoptilolites is about -30 kJ/mol H2O (liquid water reference state) at 25 C. T...

  16. Hydrous oxide ion-exchange compound catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1990-01-01

    A catalytic material of improved activity which comprises a hydrous, alkali metal or alkaline earth metal or quaternary ammonium titanate, zirconate, niobate, or tantalate, in which the metal or ammonium cations have been exchange with a catalytically effective quantity of a catalyst metal, and which has been subsequently treated with a solution of a Bronsted acid.

  17. THERMODYNAMICS OF ION-EXCHANGED NATURAL CLINOPTILOLITE

    EPA Science Inventory

    Natural clinoptilolite from Castle Creek, Idaho, and its cation-exchanged variants (Na-Cpt, NaK-Cpt, K-Cpt, and Ca-Cpt) were studied by high-temperature calorimetry. The hydration enthalpy for all clinoptilolites is about -30 kJ/mol H2O (liquid water reference state) at 25 C. T...

  18. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, Gordon D.; Marsh, S. Fredric; Bartsch, Richard A.

    1997-01-01

    Anion exchange resins including at least two positively charged sites and a ell-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  19. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, G.D.; Marsh, S.F.; Bartsch, R.A.

    1997-09-23

    Anion exchange resins including at least two positively charged sites and a well-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  20. Intensification of ammonia removal from waste water in biologically active zeolitic ion exchange columns.

    PubMed

    Almutairi, Azel; Weatherley, Laurence R

    2015-09-01

    The use of nitrification filters for the removal of ammonium ion from waste-water is an established technology deployed extensively in municipal water treatment, in industrial water treatment and in applications such as fish farming. The process involves the development of immobilized bacterial films on a solid packing support, which is designed to provide a suitable host for the film, and allow supply of oxygen to promote aerobic action. Removal of ammonia and nitrite is increasingly necessary to meet drinking water and discharge standards being applied in the US, Europe and other places. Ion-exchange techniques are also effective for removal of ammonia (as the ammonium ion) from waste water and have the advantage of fast start-up times compared to biological filtration which in some cases may take several weeks to be fully operational. Here we explore the performance of ion exchange columns in which nitrifying bacteria are cultivated, with the goal of a "combined" process involving simultaneous ion-exchange and nitrification, intensified by in-situ aeration with a novel membrane module. There were three experimental goals. Firstly, ion exchange zeolites were characterized and prepared for comparative column breakthrough studies for ammonia removal. Secondly effective in-situ aeration for promotion of nitrifying bacterial growth was studied using a number of different membranes including polyethersulfone (PES), polypropylene (PP), nylon, and polytetra-fluoroethylene (PTFE). Thirdly the breakthrough performance of ion exchange columns filled with zeolite in the presence of aeration and in the presence of nitrifying bacteria was determined to establish the influence of biomass, and aeration upon breakthrough during ammonium ion uptake. The methodology adopted included screening of two types of the naturally occuring zeolite clinoptilolite for effective ammonia removal in continuous ion-exchange columns. Next, the performance of fixed beds of clinoptilolite in the

  1. MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS

    SciTech Connect

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-09-20

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  2. Salt Processing Through Ion Exchange at the Savannah River Site Selection of Exchange Media and Column Configuration - 9198

    SciTech Connect

    Spires, Renee; Punch, Timothy; McCabe, Daniel

    2009-02-11

    The Department of Energy (DOE) has developed, modeled, and tested several different ion exchange media and column designs for cesium removal. One elutable resin and one non-elutable resin were considered for this salt processing application. Deployment of non-elutable Crystalline Silicotitanate and elutable Resorcinol Formaldehyde in several different column configurations were assessed in a formal Systems Engineering Evaluation (SEE). Salt solutions were selected that would allow a grouping of non-compliant tanks to be closed. Tests were run with the elutable resin to determine compatibility with the resin configuration required for an in-tank ion exchange system. Models were run to estimate the ion exchange cycles required with the two resins in several column configurations. Material balance calculations were performed to estimate the impact on the High Level Waste (HLW) system at the Savannah River Site (SRS). Conceptual process diagrams were used to support the hazard analysis. Data from the hazard analysis was used to determine the relative impact on safety. This report will discuss the technical inputs, SEE methods, results and path forward to complete the technical maturation of ion exchange.

  3. CoMOR zeolite catalyst prepared by buffered ion exchange for effective decomposition of nitrous oxide.

    PubMed

    Zhang, Xinyan; Shen, Qun; He, Chi; Wang, Yufei; Cheng, Jie; Hao, Zhengping

    2011-09-15

    Co contained MOR zeolite catalysts with high Co loadings were successfully synthesized by buffered ion exchange at pH 8, and were tested for N(2)O catalytic decomposition. The high exchange level of synthesized CoMOR(x)-BIE catalysts probably benefits from the maximizing hydroxycomplexes Co(OH)(+) ion in the buffered solution, which is more preferred for the ion exchange with the zeolites. It has been found that the novel CoMOR(x)-BIE catalysts exhibit excellent catalytic activities, which is attributed to the large population of isolated Co(2+) ions on ion exchange positions. The most active CoMOR(130)-BIE catalyst shows high resistance to the inhibition of oxygen, NO and water vapor. Furthermore, stability tests indicate that the CoMOR(130)-BIE catalyst has no obvious deactivation under simulated emission conditions after reaction for more than 100 h. This extraordinary durability could be related to its high Co(2+) content and low Brönsted acidity sites in the catalyst, which facilitate the stability of active isolated Co(2+) on ion exchange positions. Thus, the CoMOR(130)-BIE catalyst shows a great potential as a cost-effective catalyst for N(2)O elimination in future applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Development of a transparent, non-cytotoxic, silver ion-exchanged glass with antimicrobial activity and low ion elution.

    PubMed

    Shim, Gyu-In; Kim, Seong-Hwan; Eom, Hyung-Woo; Kim, Kwang-Mahn; Choi, Se-Young

    2015-05-01

    We investigated the antimicrobial, cytotoxicity, skin irritation, and ion elution behaviors of glass doped with silver ions with respect to its application to electronic equipment such as phones and tablet screens. The microbes tested were Escherichia coli, Staphylococcus aureus, and Penicillium funiculosum. AgNO3 powder was spread on both sides of aluminosilicate glass, and it was heated to 250-280°C for 10min. Under optimized heating conditions (260°C, 10min), the antimicrobial activity of ion-exchanged glass against bacteria and fungi was over 99.9% after 24 weeks. The glass failed to irritate the skin of experimental animals and was considered non-cytotoxic. The maximum amount of Ag ions that were eluted from the ion-exchanged glass into drinking water was measured at 0.037±0.003μgL(-1), an amount which is several orders of magnitude below the standard limit of 0.1mgL(-1) in drinking water. Ag ion-exchanged glass had characteristics suitable for use as a display screen, such as a light transmittance of 90% and a surface roughness of 0.704nm. Our findings suggest that glass doped with silver ions is more hygienic than non-doped glass is, and should be applied to display screens and glassware. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The use of fibrous ion exchangers in gold hydrometallurgy

    NASA Astrophysics Data System (ADS)

    Kautzmann, R. M.; Sampaio, C. H.; Cortina, J. L.; Soldatov, V.; Shunkevich, A.

    2002-10-01

    This article examines a family of ion-exchange fibers, FIBAN, containing primary and secondary amine groups. These ion exchangers have a fiber diameter of 20 40 Μm, high osmotic and mechanic stability, a high rate of adsorption and regeneration, and excellent dynamic characteristics as filtering media. Inparticular, this article discusses the use of FIBAN fibrous ion exchangers in the recovery of gold cyanide andbase-metal cyanides (copper and mercury) from mineral-leaching solutions. The influence of polymer structure and water content on their extraction ability is described, along with key parameters of gold hydrometallurgy such as extraction efficiency, selectivity, pH dependence, gold cyanide loading, kinetics, and stripping.

  6. Evaluation of electrochemical ion exchange for cesium elution

    SciTech Connect

    Bontha, J.D.; Kurath, D.E.; Surma, J.E.; Buehler, M.F.

    1996-04-01

    Electrochemical elution was investigated as an alternative method to acid elution for the desorption of cesium from loaded ion exchange resins. The approach was found to have several potential advantages over existing technologies, in particular, electrochemical elution eliminates the need for addition of chemicals to elute cesium from the ion exchange resin. Also, since, in the electrochemical elution process the eluting solution is not in direct contact with the ion exchange material, very small volumes of the eluting solution can be used in a complete recycle mode in order to minimize the total volume of the cesium elute. In addition, the cesium is eluted as an alkaline solution that does not require neutralization with caustic to meet the tank farm specifications. Other advantages include easy incorporation of the electrochemical elution process into the present cesium recovery schemes.

  7. Development and evaluation of ion exchange hollow fibers. [vinyl copolymers

    NASA Technical Reports Server (NTRS)

    Smith, J. K.

    1975-01-01

    An ion exchange hollow fiber impregnated with a vinylpyridine base was developed. The basic exchange resin used to impart the necessary permselectivity to the hollow fiber is a copolymer of vinylpyridine and dibromoethane prepared according to Rembaum. A slight pressure was used to impregnate the exchange monomer mixture into the void structure of the fiber wall, and with maintenance of subambient temperatures, the rate of cross-linking is slow enough to allow the growing polymer to permeate the wall structure before significant increase in polymer molecular weight. These ion exchange fibers are produced from polyacrylonitrile hollow fibers with an appropriate wall structure that enables the impregnating vinylpyridine monomer mixture to form a truly semipermeable anion barrier after curing.

  8. ION EXCHANGE IN FUSED SALTS. IV. DISTRIBUTION OF SELECTED TRANSITION ELEMENTS IN THE CHABAZITE-MOLTEN NANO3 SYSTEM,

    DTIC Science & Technology

    MINERALS, ION EXCHANGE, ION EXCHANGE, FUEL CELLS, LANTHANUM, DECOMPOSITION, EUROPIUM, IONS, EQUILIBRIUM(PHYSIOLOGY), NITRATES, COBALT, DISTRIBUTION, CERIUM, SILICATES, TRANSITION METALS, MOLTEN SALT NUCLEAR REACTORS.

  9. Catalysis using hydrous metal oxide ion exchangers

    DOEpatents

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  10. Recovery of boric acid from ion exchangers

    DOEpatents

    Pollock, Charles W.

    1976-01-01

    The recovery of boric acid from an anion exchange resin is improved by eluting the boric acid with an aqueous solution of ammonium bicarbonate. The boric acid can be readily purified and concentrated by distilling off the water and ammonium bicarbonate. This process is especially useful for the recovery of boric acid containing a high percentage of .sup.10 B which may be found in some nuclear reactor coolant solutions.

  11. Catalysis using hydrous metal oxide ion exchanges

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  12. Nonpropulsive applications of ion beams

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.

    1976-01-01

    Eight centimeter ion beam sources utilizing xenon and argon have been developed that operate over a wide range of beam energies and currents. Three types of processes have been studied: sputter deposition, ion beam machining, and ion beam surface texturing. The broad range of source operating conditions allows optimum sputter deposition of various materials. An ion beam source was used to ion mill laser reflection holograms using photoresist patterns on silicon. Ion beam texturing was tried with many materials and has a multitude of potential applications.

  13. Charge-exchange plasma generated by an ion thruster

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1977-01-01

    The charge exchange plasma generated by an ion thruster was investigated experimentally using both 5 cm and 15 cm thrusters. Results are shown for wide ranges of radial distance from the thruster and angle from the beam direction. Considerations of test environment, as well as distance from the thruster, indicate that a valid simulation of a thruster on a spacecraft was obtained. A calculation procedure and a sample calculation of charge exchange plasma density and saturation electron current density are included.

  14. Rupture loop annex ion exchange RLAIX vault deactivation

    SciTech Connect

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    1996-08-01

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  15. Bench-Scale Studies with Argentine Ion Exchange Material

    SciTech Connect

    Cicero-Herman, C.A.

    2002-06-28

    The United States Department of Energy (DOE), as well as international atomic energy commission, facilities use ion exchange materials for purification of aqueous streams in the nuclear industry. Unfortunately, the use of the ion exchange materials creates a waste stream that can be very high in both organic and radioactive constituents. Therefore, disposal of the spent resins often becomes an economic problem because of the large volumes of resin produced and the relatively few technologies that are capable of economically stabilizing this waste. Vitrification of this waste stream presents a reasonable disposable alternative because of its inherent destruction capabilities, the volume reductions obtainable, and the durable product that it produces.

  16. Ion exchange with natural zeolites: an alternative for water softening?

    PubMed

    Cinar, S; Beler-Baykal, B

    2005-01-01

    Possibility of using natural zeolites for water softening was investigated. Quantitative data regarding separation of calcium from water at various levels of hardness through ion exchange with the ammonium selective natural zeolite clinoptilolite is reported. Capacity of the zeolite towards calcium removal in the presence of ammonium at low concentrations and calcium at higher concentrations, and breakthrough characteristics are presented. The results have revealed that removal of calcium, and hence hardness, through ion exchange with clinoptilolite under those circumstances is a promising alternative, with surface capacities reaching 11 mg calcium/g clinoptilolite.

  17. Waste separation and pretreatment using crystalline silicotitanate ion exchangers

    SciTech Connect

    Tadros, M.E.; Miller, J.E.; Anthony, R.G.

    1997-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CSTs) has been developed jointly by Sandia National Laboratories and Texas A&M University to selectively remove Cs and other radionuclides from a wide spectrum of radioactive defense wastes. The CST exhibits high selectivity and affinity for Cs and Sr under a wide range of conditions. Tests show it can remove part-per-million concentrations of Cs{sup +} from highly alkaline, high-sodium simulated radioactive waste solutions modeled after those at Hanford, Oak Ridge, and Savannah River. The materials exhibit ion exchange properties based on ionic size selectivity. Specifically, crystalline lattice spacing is controlled to be highly selective for Cs ions even in waste streams containing very high (5 to 10 M) concentrations of sodium. The CST technology is being demonstrated with actual waste at several DOE facilities. The use of inorganic ion exchangers. The inorganics are more resistant to chemical, thermal, and radiation degradation. Their high selectivities result in more efficient operations offering the possibility of a simple single-pass operation. In contrast, regenerable organic ion exchangers require additional processing equipment to handle the regeneration liquids and the eluant with the dissolved Cs.

  18. Ion exchange chromatography of proteins and clearance of aggregates.

    PubMed

    Yigzaw, Y; Hinckley, P; Hewig, A; Vedantham, G

    2009-06-01

    Clearance of product related aggregates in therapeutic proteins is a major focus of purification process development. A typical purification process will have one or two chromatographic steps that remove these product related aggregates to an acceptable level. Both cation exchange and anion exchange chromatography can provide robust clearance of aggregates. The primary factors that are critical for aggregate clearance are: resin chemistry, binding and elution condition, peak collection and column load factor. This review covers how these factors can be optimized to increase the effectiveness of ion exchange chromatography in removing aggregates.

  19. Insoluble polyelectrolyte and ion-exchange hollow fiber impregnated therewith

    NASA Technical Reports Server (NTRS)

    Rembaum, A. (Inventor)

    1977-01-01

    The number of quaternary sites and ion exchange capacity of a polyquaternary, cross linked, insoluble copolymer of a vinyl pyridine and a dihalo organic compound is increased by about 15-35% by reaction of the polymer with an amine followed by quaternization, if required. The polymer forms spontaneously in the presence of a substrate such as within the pores of a hollow fiber. The improved resin impregnated fiber may be utilized to remove ions from waste or process steams.

  20. Microspheres aided introduction of ionophore and ion-exchanger to the ion-selective membrane.

    PubMed

    Wojciechowski, Marcin; Kisiel, Anna; Bulska, Ewa; Michalska, Agata

    2012-01-15

    In this work a novel method for introduction of ionophore and ion-exchanger to the ion-selective polyacrylate based membrane is proposed. These compounds (and optionally primary ions) are introduced to polyacrylate microspheres, used to prepare ion-selective membrane. The approach proposed here can be used to prepare membranes containing primary ions equally distributed through the receptor phase, i.e. membranes that do not require conditioning in primary ions solution and are free from problems related to slow diffusion of primary ions. Thus obtained sensors were characterized with linear responses (also at relatively high activities) and high selectivities, despite considerable reduction of ionophore and ion-exchanger amount introduced to the membrane. To be able to prepare ion-selective membranes using this approach, a method for quantification of ionophore and ion-exchanger introduced into microspheres is required. In this work a novel method utilizing high performance liquid chromatography (HPLC) with DAD or FLD detection is proposed. Incorporation of ionophore and ion-exchanger into the microspheres was achieved either by absorption into ready spheres or in course of photopolymerization of polymeric beads. The obtained results have proven that both procedures led to incorporation of ionophore/ion-exchanger into polymeric spheres, however, the content of the compounds in the spheres post process is different from their ratio in solution from which they had been introduced. These effects need to be considered/compensated while preparing microspheres containing ion-selective membranes. As a model system poly(n-butyl acrylate) spheres, silver selective ionophore and sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate were chosen, resulting ultimately in silver-selective electrodes. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Ion-exchange of monovalent and bivalent cations with NaA zeolite membranes : a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Murad, S.; Jia, W.; Krishnamurthy, M.

    2004-01-01

    Molecular simulations using the method of molecular dynamics have been carried out to study the dynamics and energetics of ion exchanges between monovalent and bivalent cations in supercritical and subcritical (liquid) electrolyte solutions (here Li+, and Ca++ in aqueous solutions of LiCl and CaCl2) and an ion exchange membrane (NaA zeolite) using direct simulations of up to a nanosecond or more. NaA zeolites are widely used in many commercial ion-exchange processes including detergents. Results show that with appropriate driving forces, such ion exchange processes can be clearly witnessed and investigated using molecular simulations at these timescales, especially for supercritical solutions. An attempt is made to understand the phenomenon of ion exchange at the molecular level. Results have shown that the ion-exchange process is primarily energetically driven and entropic forces do not appear to be playing a significant role in the exchanges observed. For supercritical LiCl solutions, small differences were found between the energy of the Li+ inside and outside the membrane. In contrast, for Na+ there was a considerable energetic advantage in being outside the membrane, making the overall exchange process energetically favourable. In subcritical (liquid) LiCl solutions an exchange was found to be more favourable energetically than supercritical solutions. For Ca++ similar trends were observed, except the differences in the energies were much larger (compared to the corresponding Li+ exchanges), making them more energetically efficient, as has also been observed experimentally. In addition to clarifying the molecular basis for these exchanges, simulations can also potentially be very useful to determine the behaviour (e.g. state dependence, etc.) of hydrodynamic parameters commonly used to characterize ion-exchange processes at a fundamental molecular level, and to determine if the hydrodynamic equations used for ion-exchange processes are applicable to nano

  2. New Metal Niobate and Silicotitanate Ion Exchangers: Development and Characterization

    SciTech Connect

    Alexandra Navrotsky; Mary Lou Balmer; Tina M. Nenoff; Yali Su

    2003-12-05

    This renewal proposal outlines our current progress and future research plans for ion exchangers: novel metal niobate and silicotitanate ion exchangers and their ultimate deployment in the DOE complex. In our original study several forms (including Cs exchanged) of the heat treated Crystalline Silicotitanates (CSTs) were fully characterized by a combination of high temperature synthesis and phase identification, low temperature synthesis and phase identification, and thermodynamics. This renewal proposal is predicated on work completed in our current EMSP program: we have shown preliminary data of a novel class of niobate-based molecular sieves (Na/Nb/M/O, M = transition metals), which show exceptionally high selectivity for divalent cations under extreme conditions (acid solutions, competing cations), in addition to novel silicotitanate phases which are also selective for divalent cations. Furthermore, these materials are easily converted by a high temperature in-situ heat treatment into a refractory ceramic waste form with low cation leachability. The new waste form is a perovskite phase, which is also a major component of Synroc, a titanate ceramic waste form used for sequestration of HLW wastes from reprocessed, spent nuclear fuel. These new niobate ion exchangers also shown orders of magnitude better selectivity for Sr2+ under acid conditions than any other material. The goal of the program is to reduce the costs associated with divalent cation waste removal and disposal, to minimize the risk of contamination to the environment during ion exchanger processing, and to provide DOE with materials for near-term lab-bench stimulant testing, and eventual deployment. The proposed work will provide information on the structure/property relationship between ion exchanger frameworks and selectivity for specific ions, allowing for the eventual ''tuning'' of framework for specific ion exchange needs. To date, DOE sites have become interested in on-site testing of these

  3. Concentration profiles in heterogeneous ion-exchange membranes

    SciTech Connect

    Smirnova, N.M.; Glazkova, I.N.; Glukhova, L.P.; Murzinov, V.I.; Komarova, N.I.; Kvaratskheli, Yu.K.

    1982-05-10

    Concentration profiles of uranium and SO/sub 4//sup -2/ ions were determined in MKK-1 (based on KU-2 cation-exchange resin) and MAK-2 (based on AM anion-exchange resin) heterogeneous membranes in the course of diffusion and electrodialysis. The method employed for locating the position and determining the concentration of ions in a particular region of an ion-exchange material was local x-ray spectrochemical analysis with the aid of an electron probe. A solution containing 10g of U per liter and 0.5 N/sub 2/SO/sub 4/ was used as the ''transferring'' solution. Uranium is present in this solution in the form of UO/sub 2//sup 2 +/ cations and (UO/sub 2/(SO/sub 4/)/sub 2/)/sup 2 -/ and (UO/sub 2/(SO/sub 4/)/sub 3/)/sup 4 -/ anionic complexes, so that it is transported both through the cation-exchange and the anion-exchange membranes. The ''receiving'' solution was 0.1N H/sub 2/SO/sub 4/. The REMP-2 electron probe microanalyzer was used for recording the concentration profiles. The uranium L..cap alpha../sub 1/ line (lambda = 9.1 x 10/sup -11/m) and the sulfur K..cap alpha../sub 1,2/ line (lambda = 53.7 x 10/sup -11/m) were used as the analytical lines. The membrane conductivities, and the amount of uranium sorbed were determined at the same time. This investigation confirmed that the method of local x-ray spectrochemical analysis in conjunction with physicochemical investigations of the properties of ion-exchange membranes is a promising, reliable, and rapid method for studying the mechanism of ion transport in comparison with the use of multiplet devices. It can make mathematical modelling of transport processes considerably easier and more precise, as introduction of various assumptions is obviated.

  4. Recycling asymmetric hydrogenation catalysts by their immobilization onto ion-exchange resins.

    PubMed

    Barbaro, Pierluigi

    2006-07-24

    Ion-exchange resins can be used as supports for the preparation of single-site, heterogenised asymmetric hydrogenation catalysts. The immobilised catalysts obtained can be efficiently and conveniently recovered and recycled. This article reviews the significant contributions in the field including the main concepts behind the design and the applications of this type of catalyst.

  5. Speciation of Trace Di- and Triorganotins in Water by Ion Exchange HPLC-GFAA.

    DTIC Science & Technology

    1980-08-05

    automated slement- specific detectors for high prssure liquid chromatography (iPLC): the determination of arsenite, arsenate, methylarsonic acid, arid...Furnace Atomic Absorption, High -Pressure Liquid Chromatography , Ion Exchange, Leaching, Nanogram Sensitivityk Organotin Cations, Speciation, Triorganoti n...organosiloxanea offers nearly unlimited applications for high performance liquid chromatography . Not only do such chemically bonded column packings resist a

  6. Improved reliability of leucite reinforced glass by ion exchange.

    PubMed

    Fischer, H; Maier, H R; Marx, R

    2000-03-01

    The aim of this study was to develop an adequate process-, proof- and calculation technique for the chemical strengthening of dental ceramic materials in order to evaluate the efficiency of this method from the engineering point of view. Ion exchange examinations below glass temperature have been done for the dental all ceramic system IPS-Empress (Ivoclar). In addition experiments on specimens were undertaken, which were stored in artificial saliva for the period of one month after the ion exchange treatment. The efficiency of the ion-exchange treatments has been evaluated based on the chemical composition of the surface layer, the residual stress distribution, the flexural- and the burst-strength and surface hardness. In addition, Weibull statistical analysis of the four-point bending and burst test data provides new information about the failure mechanisms of chemically strengthened dental ceramics. The ion-exchange process with a potassium salt increases the reliability of the dental ceramic material "IPS-Empress". By the KNO3 or Tuf-Coat ion exchange treatment potassium ions will be implanted as clusters directly into the crystal lattice which results in an increase of the binding energy and hence, in a pronounced increase in the surface hardness. In particular the stress bearing capabilities of dental all ceramic restorations, which are subject to high bending stresses, i.e. dental crowns and dental bridges, are largely improved by the induced residual stresses. This increase of residual stresses did not relax significantly after a one month storage in artificial saliva. Enhanced load limits and a more narrow strength distribution spectrum is considered desirable for increasing the clinical longevity of all ceramics.

  7. Adsorption of three pharmaceuticals on two magnetic ion-exchange resins.

    PubMed

    Jiang, Miao; Yang, Weiben; Zhang, Ziwei; Yang, Zhen; Wang, Yuping

    2015-05-01

    The presence of pharmaceuticals in aquatic environments poses potential risks to the ecology and human health. This study investigated the removal of three widely detected and abundant pharmaceuticals, namely, ibuprofen (IBU), diclofenac (DC), and sulfadiazine (SDZ), by two magnetic ion-exchange resins. The adsorption kinetics of the three adsorbates onto both resins was relatively fast and followed pseudo-second-order kinetics. Despite the different pore structures of the two resins, similar adsorption patterns of DC and SDZ were observed, implying the existence of an ion-exchange mechanism. IBU demonstrated a combination of interactions during the adsorption process. These interactions were dependent on the specific surface area and functional groups of the resin. The adsorption isotherm fittings verified the differences in the behavior of the three pharmaceuticals on the two magnetic ion-exchange resins. The presence of Cl- and SO4(2-) suppressed the adsorption amount, but with different inhibition levels for different adsorbates. This work facilitates the understanding of the adsorption behavior and mechanism of pharmaceuticals on magnetic ion-exchange resins. The results will expand the application of magnetic ion-exchange resins to the removal of pharmaceuticals in waters.

  8. Charge Exchange with Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Glick, Jeremy; Ferri, Kevin; Schmitt, Jaclyn; Hanson, Joshua; Marler, Joan

    2016-05-01

    A detailed study of the physics of highly charged ions (HCIs) is critical for a deep understanding of observed phenomena resulting from interactions of HCIs with neutral atoms in astrophysical and fusion environments. Specifically the charge transfer rates and spectroscopy of the subsequent decay fluorescence are of great interest to these communities. Results from a laboratory based investigation of these rates will be presented. The experiment takes advantage of an energy and charge state selected beam of HCIs from the recently on-line Clemson University EBIT (CUEBIT). Progress towards an experimental apparatus for retrapping HCIs towards precision spectroscopy of HCIs will also be presented.

  9. Film model approximation for particle-diffusion-controlled binary ion exchange

    SciTech Connect

    Carta, G.; Cincotti, A.; Cao, G.

    1999-01-01

    A new rate expression for particle-diffusion-controlled ion exchange, based on an equivalent pseudosteady-state film resistance model, is developed. The rate expression approximates the electric field effects on intraparticle diffusion in spherical ion-exchangers. With regard to the prediction of batch exchange and column breakthrough curves for both irreversible and reversible processes, the model captures the essential traits of the coupled diffusion phenomenon described by the Nernst-Planck equation with results of accuracy comparable to that obtained when using the linear driving force approximation for systems with constant diffusivity. Numerical results for the exchange of two counterions of equal valence are presented as application examples for different mobility ratios and selectivity coefficients.

  10. Development of a High-Throughput Ion-Exchange Resin Characterization Workflow.

    PubMed

    Liu, Chun; Dermody, Daniel; Harris, Keith; Boomgaard, Thomas; Sweeney, Jeff; Gisch, Daryl; Goltz, Bob

    2017-06-12

    A novel high-throughout (HTR) ion-exchange (IEX) resin workflow has been developed for characterizing ion exchange equilibrium of commercial and experimental IEX resins against a range of different applications where water environment differs from site to site. Because of its much higher throughput, design of experiment (DOE) methodology can be easily applied for studying the effects of multiple factors on resin performance. Two case studies will be presented to illustrate the efficacy of the combined HTR workflow and DOE method. In case study one, a series of anion exchange resins have been screened for selective removal of NO3(-) and NO2(-) in water environments consisting of multiple other anions, varied pH, and ionic strength. The response surface model (RSM) is developed to statistically correlate the resin performance with the water composition and predict the best resin candidate. In case study two, the same HTR workflow and DOE method have been applied for screening different cation exchange resins in terms of the selective removal of Mg(2+), Ca(2+), and Ba(2+) from high total dissolved salt (TDS) water. A master DOE model including all of the cation exchange resins is created to predict divalent cation removal by different IEX resins under specific conditions, from which the best resin candidates can be identified. The successful adoption of HTR workflow and DOE method for studying the ion exchange of IEX resins can significantly reduce the resources and time to address industry and application needs.

  11. ATPases, ion exchangers and human sperm motility.

    PubMed

    Peralta-Arias, Rubén D; Vívenes, Carmen Y; Camejo, María I; Piñero, Sandy; Proverbio, Teresa; Martínez, Elizabeth; Marín, Reinaldo; Proverbio, Fulgencio

    2015-05-01

    Human sperm has several mechanisms to control its ionic milieu, such as the Na,K-ATPase (NKA), the Ca-ATPase of the plasma membrane (PMCA), the Na(+)/Ca(2) (+)-exchanger (NCX) and the Na(+)/H(+)-exchanger (NHE). On the other hand, the dynein-ATPase is the intracellular motor for sperm motility. In this work, we evaluated NKA, PMCA, NHE, NCX and dynein-ATPase activities in human sperm and investigated their correlation with sperm motility. Sperm motility was measured by Computer Assisted Semen Analysis. It was found that the NKA activity is inhibited by ouabain with two Ki (7.9 × 10(-9) and 9.8 × 10(-5) M), which is consistent with the presence of two isoforms of α subunit of the NKA in the sperm plasma membranes (α1 and α4), being α4 more sensitive to ouabain. The decrease in NKA activity is associated with a reduction in sperm motility. In addition, sperm motility was evaluated in the presence of known inhibitors of NHE, PMCA and NCX, such as amiloride, eosin, and KB-R7943, respectively, as well as in the presence of nigericin after incubation with ouabain. Amiloride, eosin and KB-R7943 significantly reduced sperm motility. Nigericin reversed the effect of ouabain and amiloride on sperm motility. Dynein-ATPase activity was inhibited by acidic pH and micromolar concentrations of Ca(2) (+). We explain our results in terms of inhibition of the dynein-ATPase in the presence of higher cytosolic H(+) and Ca(2) (+), and therefore inhibition of sperm motility. © 2015 Society for Reproduction and Fertility.

  12. Charge-exchange born He(+) ions in the solar wind

    NASA Technical Reports Server (NTRS)

    Gruntman, Michael A.

    1992-01-01

    The effect of charge transfer between solar wind alpha-particles and hydrogen atoms of interstellar origin is revisited. Singly-charged helium ions born in the charge transfer carry important information on processes in the solar wind and the heliosphere. The velocity distribution of such He(+) ions is substantially different from that of He(+) pick-up ions due to ionization of the interstellar helium atoms. Estimates of the expected abundances of the charge-exchange born He(+) in the solar wind are presented, and the possibility of measuring this plasma component on deep space missions is discussed.

  13. Fluorescent nanosensors for intracellular chemical analysis: decyl methacrylate liquid polymer matrix and ion-exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells.

    PubMed

    Brasuel, M; Kopelman, R; Miller, T J; Tjalkens, R; Philbert, M A

    2001-05-15

    Fluorescent spherical nanosensors, or PEBBLEs (probes encapsulated by biologically localized embedding), in the 500 nm-1 microm size range have been developed using decyl methacrylate as a matrix. A general scheme for the polymerization and introduction of sensing components creates a matrix that allows for the utilization of the highly selective ionophores used in poly(vinyl chloride) and decyl methacrylate ion-selective electrodes. We have applied these optically silent ionophores to fluorescence-based sensing by using ion-exchange and highly selective pH chromoionophores. This allows the tailoring of selective submicrometer sensors for use in intracellular measurements of important analytes for which selective enough fluorescent probes do not exist. The protocol for sensor development has been worked out for potassium sensing. It is based on the BME-44 ionophore (2-dodecyl-2-methyl-1,3-propanediylbis[N-[5'nitro(benzo-15-crown-5)-4'-yl]carbamate]). The general scheme should work for any available ionophore used in PVC or decyl methacrylate ion-selective electrodes, with minor adjustments to account for differences in ionophore charge and analyte binding constant. The reversible and highly selective sensors developed have a subsecond response time and an adjustable dynamic range. Applications to live C6 glioma cells demonstrate their utility; the intracellular potassium activity is followed in real time upon extracellular administration of kainic acid.

  14. Thermal Analysis for Ion-Exchange Column System

    SciTech Connect

    Lee, Si Y.; King, William D.

    2012-12-20

    Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models were used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.

  15. Method and solvent composition for regenerating an ion exchange resin

    SciTech Connect

    Even, William R.; Irvin, David J.; Irvin, Jennifer A.; Tarver, Edward E.; Brown, Gilbert M.; Wang, James C. F.

    2002-01-01

    A method and composition for removing perchlorate from a highly selective ion exchange resin is disclosed. The disclosed approach comprises treating the resin in a solution of super critical or liquid carbon dioxide and one or more quaternary ammonium chloride surfactant compounds.

  16. EVALUATING ION EXCHANGE FOR REMOVING RADIUM FROM GROUNDWATER

    EPA Science Inventory

    This article, the second in a series, focuses on the results of bench- and pilot-scale studies of ion exchange processes for radium removal from groundwater in Lemont, Ill. Batch and column studies indicated a very high resin selectivity for radium compared with common cations. E...

  17. 21 CFR 173.25 - Ion-exchange resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-methyl-amino-propyl-amine and quaternized with methyl chloride. (19) Epichlorohydrin cross-linked with ammonia and then quaternized with methyl chloride to contain not more than 18 percent strong base capacity..., sodium, and sulfate except that: The ion-exchange resin identified in paragraph (a)(12) of this section...

  18. EVALUATING ION EXCHANGE FOR REMOVING RADIUM FROM GROUNDWATER

    EPA Science Inventory

    This article, the second in a series, focuses on the results of bench- and pilot-scale studies of ion exchange processes for radium removal from groundwater in Lemont, Ill. Batch and column studies indicated a very high resin selectivity for radium compared with common cations. E...

  19. Copper Removal from A-01 Outfall by Ion Exchange

    SciTech Connect

    Oji, L.N.

    1999-02-17

    Chelex100, a commercially available ion exchange resin, has been identified in this study as having a significant affinity for copper and zinc in the A-01 outfall water. Removal of copper and zinc from A-01 outfall water will ensure that the outfall meets the state of South Carolina's limit on these heavy metals.

  20. Cesium Ion Exchange Using Tank 241-AN-104 Supernate

    SciTech Connect

    Adu-Wusu, K.

    2003-12-22

    The River Protection Project is to design and build a high level nuclear waste treatment facility. The waste treatment plant is to process millions of gallons of radioactive waste stored in tanks at the Hanford Site. The high level nuclear waste treatment process includes various unit operations, such as ultrafiltration, precipitation, evaporation, ion exchange, and vitrification. Ion exchange is identified as the optimal treatment method for removal of cesium-137 and Tc-99 from the waste. Extensive ion exchange testing was performed using small-scale columns with actual waste samples. The objectives of this study were to: demonstrate SuperLig 644 ion exchange performance and process steps for the removal of cesium from actual AN-104 tank waste; pretreat actual AN-104 tank waste to reduce the concentration of cesium-137 in the waste below LAW vitrification limit; produce and characterize cesium eluate solutions for use in eluate evaporation tests. The experiments consisted of batch contact and small-scale column tests. The batch contact tests measured sorption partition coefficients Kds. The Kds were used to predict the effective resin capacity. The small-scale column tests, which closely mimic plant conditions, generated loading and elution profile data used to determine whether removal targets and design requirements were met.

  1. Ion-exchanged glass waveguide amplifiers and lasers

    NASA Astrophysics Data System (ADS)

    Kevorkian, Antoine P.

    1998-04-01

    Planar devices made by ion-exchange provide efficient active or active/passive functions. Compact amplifiers with 24 dB single pass gain for a single 980 nm laser diode pumping are presented, as well as 1535 nm lasers with 27% slope efficiency.

  2. Ion-exchange selectivity of diclofenac, ibuprofen, ketoprofen, and naproxen in ureolyzed human urine.

    PubMed

    Landry, Kelly A; Sun, Peizhe; Huang, Ching-Hua; Boyer, Treavor H

    2015-01-01

    This research advances the knowledge of ion-exchange of four non-steroidal anti-inflammatory drugs (NSAIDs) - diclofenac (DCF), ibuprofen (IBP), ketoprofen (KTP), and naproxen (NPX) - and one analgesic drug-paracetamol (PCM) - by strong-base anion exchange resin (AER) in synthetic ureolyzed urine. Freundlich, Langmuir, Dubinin-Astakhov, and Dubinin-Radushkevich isotherm models were fit to experimental equilibrium data using nonlinear least squares method. Favorable ion-exchange was observed for DCF, KTP, and NPX, whereas unfavorable ion-exchange was observed for IBP and PCM. The ion-exchange selectivity of the AER was enhanced by van der Waals interactions between the pharmaceutical and AER as well as the hydrophobicity of the pharmaceutical. For instance, the high selectivity of the AER for DCF was due to the combination of Coulombic interactions between quaternary ammonium functional group of resin and carboxylate functional group of DCF, van der Waals interactions between polystyrene resin matrix and benzene rings of DCF, and possibly hydrogen bonding between dimethylethanol amine functional group side chain and carboxylate and amine functional groups of DCF. Based on analysis of covariance, the presence of multiple pharmaceuticals did not have a significant effect on ion-exchange removal when the NSAIDs were combined in solution. The AER reached saturation of the pharmaceuticals in a continuous-flow column at varying bed volumes following a decreasing order of DCF > NPX ≈ KTP > IBP. Complete regeneration of the column was achieved using a 5% (m/m) NaCl, equal-volume water-methanol solution. Results from multiple treatment and regeneration cycles provide insight into the practical application of pharmaceutical ion-exchange in ureolyzed urine using AER.

  3. Chromium removal from ground water by Ion exchange resins

    SciTech Connect

    Skiadas, P.

    1994-05-06

    The ground water at several monitoring wells at LLNL has been found to exceed the Surface Water Discharge Limits for Cr(VI). Ion exchange resins have been selected for its removal. A research study is underway to determine which commercial resin is preferred for LLNL`s ground water. The choice of an appropriate resin will be based on Cr(VI) exchange capacity, regeneration efficiency, and pH stabilization. A sequestering agent must also be selected to be used for the elimination of scaling at the treatment facilities. The chemistry of ion exchange resins, and instrumentation and procedures are explained and described in the following paper. Comparison of the different resins tested lead us to the selection of the most effective one to be used in the treatment facilities.

  4. Systematics of heavy-ion charge-exchange straggling

    NASA Astrophysics Data System (ADS)

    Sigmund, P.; Schinner, A.

    2016-10-01

    The dependence of heavy-ion charge-exchange straggling on the beam energy has been studied theoretically for several ion-target combinations. Our previous work addressed ions up to krypton, while the present study focuses on heavier ions, especially uranium. Particular attention has been paid to a multiple-peak structure which has been predicted theoretically in our previous work. For high-Z1 and high-Z2 systems, exemplified by U in Au, we identify three maxima in the energy dependence of charge-exchange straggling, while the overall magnitude is comparable with that of collisional straggling. Conversely, for U in C, charge-exchange straggling dominates, but only two peaks lie in the energy range where we presently are able to produce credible predictions. For U-Al we find good agreement with experiment in the energy range around the high-energy maximum. The position of the high-energy peak - which is related to processes in the projectile K shell - is found to scale as Z12, in contrast to the semi-empirical Z13/2 dependence proposed by Yang et al. Measurements for heavy ions in heavy targets are suggested in order to reconcile a major discrepancy between the present calculations and the frequently-used formula by Yang et al.

  5. Barcoded materials based on photoluminescent hybrid system of lanthanide ions-doped metal organic framework and silica via ion exchange.

    PubMed

    Shen, Xiang; Yan, Bing

    2016-04-15

    A multicolored photoluminescent hybrid system based on lanthanide ions-doped metal organic frameworks/silica composite host has potential in display and barcode applications. By controlling the stoichiometry of the lanthanides via cation exchange, proportional various lanthanide ions are successfully introduced into metal organic frameworks, whose emission intensity is correspondingly proportional to its amount. The resulting luminescent barcodes depend on the lanthanide ions ratios and compositions. Subsequently, the lanthanide ions located in the channels of metal organic frameworks are protected from any interaction with the environment after the modification of silica on the surface. The optical and thermal stability of the hybrid materials are improved for technological application. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Modeling and analysis of ion-exchanged photonic devices

    NASA Astrophysics Data System (ADS)

    West, Brian Robert

    Photonic devices fabricated by ion exchange in glass have evolved to the point where conventional assumptions of waveguide symmetry and mutual independence are no longer valid. For example, during field-assisted ion exchange processes, the nonhomogeneity of ionic conductivity in the vicinity of the waveguide results in a time-dependent perturbation of the electric field. Previous studies have shown that the depth and vertical symmetry of buried waveguides are noticeably affected by the field perturbation. This Dissertation describes an advanced modeling tool for guided-wave devices based on ion-exchanged glass waveguides. A genetic algorithm is proposed to determine the physical parameters that drive the ion exchange process. The diffusion equation describing binary ion exchange is solved numerically. The effect of field perturbation, due not only to the conductivity profile, but also to the proximity of adjacent waveguides or partial masking during a field-assisted burial, is accounted for. A semivectorial finite difference method is then employed to determine the modal properties of the waveguide structures. The model is validated by comparison with a fabricated waveguide containing a Bragg grating. The modeled waveguides are utilized in the design of a multimode interference (MMI) device. A novel genetic algorithm-based design methodology is developed to circumvent issues with the commonly used self-imaging theory that arise when the MMI device operates in the regime of weak guiding. A combination of semivectorial finite difference modeling in two transverse dimensions and mode propagation analysis (MPA) in the propagation direction is used to evaluate the merit of each trial design. Two examples are provided of a 1 x 4 power splitter, which show considerable improvement in power imbalance and polarization dependent loss over that obtained by self-imaging theory.

  7. Graphene/Ionic Liquid Composite Films and Ion Exchange

    PubMed Central

    Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan

    2014-01-01

    Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force. PMID:24970602

  8. Ion-exchange behavior of alkali metals on treated carbons

    SciTech Connect

    Mohiuddin, G.; Hata, W.Y.; Tolan, J.S.

    1983-01-01

    The ion-exchange behavior of trace quantities of the alkali-metal ions sodium and cesium, on activated carbon impregnated with zirconium phosphate (referred to here as ZrP), was studied. Impregnated carbon had twice as much ion-exchange activity as unimpregnated, oxidized carbon, and 10 times as much as commercial activated carbons. The distribution coefficient of sodium increased with increasing pH; the distribution coefficient of cesium decreased with increasing pH. Sodium and cesium were separated with an electrolytic solution of 0.1 M HCl. Preliminary studies indicated that 0.2 M potassium and cesium can also be separated. Distribution coefficients of the supported ZrP were determined by the elution technique and agreed within 20% of the values for pure ZrP calculated from the literature.

  9. Separation of americium from curium by oxidation and ion exchange.

    PubMed

    Burns, Jonathan D; Shehee, Thomas C; Clearfield, Abraham; Hobbs, David T

    2012-08-21

    Nuclear energy has the potential to be a clean alternative to fossil fuels, but in order for it to play a major role in the US, many questions about the back end of the fuel cycle must be addressed. One of these questions is the difficult separation of americium from curium. Here, we report the oxidation of Am in two systems, perchloric acid and nitric acid and the affect of changing the acid has on the oxidation. K(d) values were observed and a direct separation factor was calculated and was seen to be as high as 20 for four metal(IV) pillared phosphate phosphonate inorganic organic hybrid ion exchange materials. These ion exchangers are characterized by very low selectivity for cations with low charge but extremely high uptake of ions of high charge.

  10. Oxygen-isotope exchange rates for three isostructural polyoxometalate ions.

    PubMed

    Villa, Eric M; Ohlin, C André; Casey, William H

    2010-04-14

    We compare oxygen-isotope exchange rates for all structural oxygens in three polyoxoniobate ions that differ by systematic metal substitutions of Ti(IV) --> Nb(V). The [H(x)Nb(10)O(28)]((6-x)-), [H(x)TiNb(9)O(28)]((7-x)-), and [H(x)Ti(2)Nb(8)O(28)]((8-x)-) ions are all isostructural yet have different Brønsted properties. Rates for sites within a particular molecule in the series differ by at least approximately 10(4), but the relative reactivities of the oxygen sites rank in nearly the same relative order for all ions in the series. Within a single ion, most structural oxygens exhibit rates of isotopic exchange that vary similarly with pH, indicating that each structure responds as a whole to changes in pH. Across the series of molecules, however, the pH dependencies for isotope exchanges and dissociation are distinctly different, reflecting different contributions from proton- or base-enhanced pathways. The proton-enhanced pathway for isotope exchange dominates at most pH conditions for the [H(x)Ti(2)Nb(8)O(28)]((8-x)-) ion, but the base-enhanced pathways are increasingly important for the [H(x)TiNb(9)O(28)]((7-x)-) and [H(x)Nb(10)O(28)]((6-x)-) structures at higher pH. The local effect of Ti(IV) substitution could be assessed by comparing rates for structurally similar oxygens on each side of the [H(x)TiNb(9)O(28)]((7-x)-) ion and is surprisingly small. Interestingly, these nanometer-size structures seem to manifest the same general averaged amphoteric chemistry that is familiar for other reactions affecting oxides in water, including interface dissolution by proton- and hydroxyl-enhanced pathways.

  11. Highly sensitive determination of hydrazine ion by ion-exclusion chromatography with ion-exchange enhancement of conductivity detection.

    PubMed

    Mori, Masanobu; Tanaka, Kazuhiko; Xu, Qun; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi

    2004-06-11

    An ion-exclusion chromatography method with ion-exchange enhancement of conductivity was developed for the selective separation and sensitive determination of hydrazine ion from alkali/alkaline earth metal cations and ammonium ion. Hydrazine ion was separated by ion-exclusion/penetration effect from other cations on a weakly basic anion-exchange column in the OH- form (TSKgel DEAE-5PW). Moreover, two different ion-exchange resin columns were inserted between the separating column and conductimetric detector in order to improve the sensitivity of hydrazine ion. The first enhancement column packed with a strongly basic anion-exchange resin in the SO4(2-) form (TSKgel SAX) for hydrazine ion can convert from N2H5OH to (N2H5)2SO4. Moreover, the second enhancement column packed with a strongly acidic cation-change resin in the H+ form (TSKgel SCX) can convert to H2SO4. As a result, the sensitivity of hydrazine ion using two conductivity enhancement columns could be 26.8-times greater than using the separating column alone. This method was effectiveness also for the enhancement of ammonium ion (6.1-times) and sodium ion (1.2-times). The calibration graph of hydrazine ion detected as H2SO4 was linear over the concentration range of 0.001-100 ppm (r2 = 0.9988). The detection limit of hydrazine ion in this system was 0.64 ppb. Therefore, hydrazine ion in real boiler water sample could be accurately determined, avoiding the interference of other cations.

  12. Studies on the solid-state ion exchange of nickel ions into zeolites using DRS technique

    NASA Astrophysics Data System (ADS)

    Zanjanchi, M. A.; Ebrahimian, A.

    2004-05-01

    The coordination of Ni 2+ ions in the dehydrated nickel-exchanged zeolites was investigated from the analysis of diffuse reflectance spectra. Solid-state ion exchange method was used to prepare nickel-containing mordenite, Y, L and mazzite zeolites. In the dehydrated mordenite and zeolite Y, nickel cations are presented in both forms of tetrahedral and distorted tetrahedral symmetries. The relative amount of tetrahedral and distorted tetrahedral nickel species are related to the heating temperature and heating time used for calcinations. In the dehydrated zeolite L and mazzite, Ni 2+ ions are mainly in the distorted octahedral symmetries.

  13. The role of ion-exchange membrane in energy conversion

    NASA Astrophysics Data System (ADS)

    Khoiruddin, Aryanti, Putu T. P.; Hakim, Ahmad N.; Wenten, I. Gede

    2017-05-01

    Ion-exchange membrane (IEM) may play an important role in the future of electrical energy generation which is considered as renewable and clean energy. Fell cell (FC) is one of the promising technologies for solving energy issues in the future owing to the interesting features such as high electrical efficiency, low emissions, low noise level, and modularity. IEM-based processes, such as microbial fuel cell (MFC) and reverse electrodialysis (RED) may be combined with water or wastewater treatment into an integrated system. By using the integrated system, water and energy could be produced simultaneously. The IEM-based processes can be used for direct electricity generation or long term energy storage such as by harnessing surplus electricity from an existing renewable energy system to be converted into hydrogen gas via electrolysis or stored into chemical energy via redox flow battery (RFB). In this paper, recent development and applications of IEM-based processes in energy conversion are reviewed. In addition, perspective and challenges of IEM-based processes in energy conversion are pointed out.

  14. Ion-exchange chromatography for the characterization of biopharmaceuticals.

    PubMed

    Fekete, Szabolcs; Beck, Alain; Veuthey, Jean-Luc; Guillarme, Davy

    2015-09-10

    Ion-exchange chromatography (IEX) is a historical technique widely used for the detailed characterization of therapeutic proteins and can be considered as a reference and powerful technique for the qualitative and quantitative evaluation of charge heterogeneity. The goal of this review is to provide an overview of theoretical and practical aspects of modern IEX applied for the characterization of therapeutic proteins including monoclonal antibodies (Mabs) and antibody drug conjugates (ADCs). The section on method development describes how to select a suitable stationary phase chemistry and dimensions, the mobile phase conditions (pH, nature and concentration of salt), as well as the temperature and flow rate, considering proteins isoelectric point (pI). In addition, both salt-gradient and pH-gradient approaches were critically reviewed and benefits as well as limitations of these two strategies were provided. Finally, several applications, mostly from pharmaceutical industries, illustrate the potential of IEX for the characterization of charge variants of various types of biopharmaceutical products.

  15. Porous metal oxide microspheres from ion exchange resin

    NASA Astrophysics Data System (ADS)

    Picart, S.; Parant, P.; Caisso, M.; Remy, E.; Mokhtari, H.; Jobelin, I.; Bayle, J. P.; Martin, C. L.; Blanchart, P.; Ayral, A.; Delahaye, T.

    2015-07-01

    This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700-800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.

  16. Mechanism of extracellular ion exchange and binding-site occlusion in a sodium/calcium exchanger

    DOE PAGES

    Liao, Jun; Marinelli, Fabrizio; Lee, Changkeun; ...

    2016-05-16

    Na+/Ca2+ exchangers utilize the Na+ electrochemical gradient across the plasma membrane to extrude intracellular Ca2+, and play a central role in Ca2+ homeostasis. Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na+, Ca2+ or Sr2+ in various occupancies and in an apo state. This analysis defines the binding mode and relative affinity of these ions, establishes the structural basis for the anticipated 3:1Na+/Ca2+ exchange stoichiometry, and reveals the conformational changes at the onset of the alternating-access transport mechanism. An independent analysis of the dynamicsmore » and conformational free-energy landscape of NCX_Mj in different ion-occupancy states, based on enhanced-sampling molecular-dynamics simulations, demonstrates that the crystal structures reflect mechanistically relevant, interconverting conformations. Lastly, these calculations also reveal the mechanism by which the outward-to-inward transition is controlled by the ion-occupancy state, thereby explaining the emergence of strictly-coupled Na+/Ca2+ antiport.« less

  17. Mechanism of extracellular ion exchange and binding-site occlusion in the sodium-calcium exchanger

    PubMed Central

    Lee, ChangKeun; Huang, Yihe; Faraldo-Gómez, José D.; Jiang, Youxing

    2016-01-01

    Na+/Ca2+ exchangers utilize the Na+ electrochemical gradient across the plasma membrane to extrude intracellular Ca2+, and play a central role in Ca2+ homeostasis. Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na+, Ca2+ or Sr2+ in various occupancies and in an apo state. This analysis defines the binding mode and relative affinity of these ions, establishes the structural basis for the anticipated 3Na+:1Ca2+ exchange stoichiometry, and reveals the conformational changes at the onset of the alternating-access transport mechanism. An independent analysis of the dynamics and conformational free-energy landscape of NCX_Mj in different ion-occupancy states, based on enhanced-sampling molecular-dynamics simulations, demonstrates that the crystal structures reflect mechanistically relevant, interconverting conformations. These calculations also reveal the mechanism by which the outward-to-inward transition is controlled by the ion-occupancy state, thereby explaining the emergence of strictly-coupled Na+/Ca2+ antiport. PMID:27183196

  18. Mechanism of extracellular ion exchange and binding-site occlusion in a sodium/calcium exchanger

    SciTech Connect

    Liao, Jun; Marinelli, Fabrizio; Lee, Changkeun; Huang, Yihe; Faraldo-Gomez, Jose D.; Jiang, Youxing

    2016-05-16

    Na+/Ca2+ exchangers utilize the Na+ electrochemical gradient across the plasma membrane to extrude intracellular Ca2+, and play a central role in Ca2+ homeostasis. Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na+, Ca2+ or Sr2+ in various occupancies and in an apo state. This analysis defines the binding mode and relative affinity of these ions, establishes the structural basis for the anticipated 3:1Na+/Ca2+ exchange stoichiometry, and reveals the conformational changes at the onset of the alternating-access transport mechanism. An independent analysis of the dynamics and conformational free-energy landscape of NCX_Mj in different ion-occupancy states, based on enhanced-sampling molecular-dynamics simulations, demonstrates that the crystal structures reflect mechanistically relevant, interconverting conformations. Lastly, these calculations also reveal the mechanism by which the outward-to-inward transition is controlled by the ion-occupancy state, thereby explaining the emergence of strictly-coupled Na+/Ca2+ antiport.

  19. Mechanism of extracellular ion exchange and binding-site occlusion in a sodium/calcium exchanger

    SciTech Connect

    Liao, Jun; Marinelli, Fabrizio; Lee, Changkeun; Huang, Yihe; Faraldo-Gomez, Jose D.; Jiang, Youxing

    2016-05-16

    Na+/Ca2+ exchangers utilize the Na+ electrochemical gradient across the plasma membrane to extrude intracellular Ca2+, and play a central role in Ca2+ homeostasis. Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na+, Ca2+ or Sr2+ in various occupancies and in an apo state. This analysis defines the binding mode and relative affinity of these ions, establishes the structural basis for the anticipated 3:1Na+/Ca2+ exchange stoichiometry, and reveals the conformational changes at the onset of the alternating-access transport mechanism. An independent analysis of the dynamics and conformational free-energy landscape of NCX_Mj in different ion-occupancy states, based on enhanced-sampling molecular-dynamics simulations, demonstrates that the crystal structures reflect mechanistically relevant, interconverting conformations. Lastly, these calculations also reveal the mechanism by which the outward-to-inward transition is controlled by the ion-occupancy state, thereby explaining the emergence of strictly-coupled Na+/Ca2+ antiport.

  20. Field performance of GCL under ion exchange conditions

    SciTech Connect

    James, A.N.; Fullerton, D.; Drake, R.

    1997-10-01

    Five Victorian reservoirs of brick pillar and arch construction were renovated using geosynthetic clay liners (also called bentonite/geosynthetic composites) (GCL) as roof sealing materials. The GCL was predominantly sodium bentonite and contained some 2% of calcite. GCLs were laid on leveled, original puddled clay packed between and above the brick arches. There was an overlying gravel layer connected to a drainage system that, in turn, was covered with soil and seeded with grass. Leaks through roofs into stored potable water were discovered. Excavation and exposure of the GCL showed that they were finely cracked in many places. Samples of the GCL bentonite from several locations at each of five sites had a high moisture content. Also, the GCL had a much reduced exchangeable sodium and increased exchangeable calcium content when compared to the dry unused GCL. Laboratory experiments, lasting for a limited period, were carried out to simulate operating conditions of the GCL whereby water falling on the ground and reaching the GCL flowed across the GCL in the overlying gravel layer to collector drains. Similar but less extensive ion exchange, calcium for sodium, was found here also. The evidence demonstrates that calcium from calcite, contained in the GCL bentonite, exchanged with sodium and, in so doing, contributed to shrinkage and cracking. Supplementary sources of calcium for ion exchange probably came from overlying calcareous soil and water from firehoses used to field test the integrity of the GCL.

  1. Ion-exchange chromatographic analysis of peroxynitric acid.

    PubMed

    Nakashima, Yoichi; Ikawa, Satoshi; Tani, Atsushi; Kitano, Katsuhisa

    2016-01-29

    Ion-exchange chromatographic analysis of peroxynitric acid (O2NOOH) was performed by combining an acidic eluate with an UV-vis detector and immersing the separation column in an ice-water bath. The decomposition behavior of peroxynitric acid in the solution was also studied using this system. The fraction for the peroxynitric acid peak was collected. Ion-exchange chromatographic analysis of this fraction, after standing at room temperature for 24h, showed that the decomposition products were mainly nitrate ions with a very small amount of nitrous acid. The peroxynitric acid peak area correlated perfectly with the total amount of decomposition products. The ion-exchange chromatographic isolation allowed us to evaluate the molar extinction coefficient of peroxynitric acid precisely in a wider wavelength range than previous reports. The value decreases monotonically from 1729±26M(-1)cm(-1) at 200nm to 12.0±0.5M(-1)cm(-1) at 290nm. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Charge-exchange plasma generated by an ion thruster

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1975-01-01

    The use of high voltage solar arrays greatly reduces or eliminates power processing requirements in space electric propulsion systems. This use also requires substantial areas of solar array to be at high positive potential relative to space and most of the spacecraft. The charge exchange plasma conducts electrons from the ion beam to such positive surfaces, and thereby electrically load the high voltage solar array. To evaluate this problem, the charge-exchange plasma generated by an ion beam was investigated experimentally. Based upon the experimental data, a simple model was derived for the charge-exchange plasma. This model is conservative in the sense that both the electron/ion density and the electron current density should be equal to, or less than, the preducted value for all directions in the hemisphere upstream of the ion beam direction. Increasing the distance between a positive potential surface (such as a high voltage solar array) and the thruster is the simplest way to control interactions. Both densities and currents vary as the inverse square of this distance.

  3. The suitability of monopolar and bipolar ion exchange membranes as separators for biological fuel cells.

    PubMed

    Harnisch, Falk; Schröder, Uwe; Scholz, Fritz

    2008-03-01

    A proton exchange (Nafion-117), a cation exchange (Ultrex CMI7000), an anion exchange (Fumasep FAD), and a bipolar (FumasepFBM) membrane have been studied to evaluate the principle suitability of ion exchange membranes as separators between the anode and the cathode compartment of biological fuel cells. The applicability of these membranes is severely affected by the neutral pH, and the usually low ionic strength of the electrolyte solutions. Thus, the ohmic resistance of the monopolar membranes was found to greatly increase at neutral pH and at decreasing electrolyte concentrations. None of the studied membranes can prevent the acidification of the anode and the alkalization of the cathode compartment, which occurs in the course of the fuel cell operation. Bipolar membranes are shown to be least suitable for biofuel cell application since they show the highest polarization without being able to prevent pH splitting between the anode and cathode compartments.

  4. Demonstration of an Ion Exchange Resin Addition/Removal System with Superlig 659

    SciTech Connect

    Norato, M.A.

    2000-12-19

    A pilot facility was designed and built in the Thermal Fluids Laboratory at the Savannah River Technology Center to demonstrate the slurry transport of ion exchange resins in and out of ion exchange columns.

  5. Ion exchange membrane textile bioreactor as a new alternative for drinking water denitrification.

    PubMed

    Berdous, Dalila; Akretche, Djamal-Eddine; Abderahmani, Ahmed; Berdous, Sakina; Meknaci, Rima

    2014-06-01

    This work enters in the optics of the denitrification of a polluted water by two membrane techniques, the Donnan dialysis (DD) and the ion exchange membrane bioreactor (IEMB), using a conventional barrier, composed by an anion exchange membrane (AEM), and a hybrid barrier, where the AEM is combined to an anion exchange textile (AET). The effects of the hydrodynamic factor and the nature of the carbon source on the transfer and the reduction of nitrate ions were studied. The study results obtained through the DD showed the effectiveness of the hybrid barrier in the recovery and concentration of nitrate ions. This was also recorded during denitrification by the hybrid process, called the ion exchange membrane textile bioreactor (IEMTB), with a significant reduction of nitrates, compared to IEMB, due to the efficiency of the Pseudomonas aeruginosa biofilm formed at the surface of the AET. Here, the permselectivity of the membrane and the good bioreduction of the pollutants are no longer major conditions to the better performance of the process. The application of IEMTB in the denitrification of groundwater, having a nitrate concentration of 96.67 ppm, shows a total reduction of nitrate ions without changing the quality of the water. Indeed, the analysis of the recovered water, or yet the treated water, shows the absence of the bacterium by-products and concentrations in the nitrates and nitrites which are, respectively, equal to 0.02±0.01 ppm, and inferiors to the detection limit (<0.02 ppm).

  6. Trends in Effective Diffusion Coefficients for Ion-exchange Strengthening of Soda Lime Silicate Glasses

    NASA Astrophysics Data System (ADS)

    Karlsson, Stefan; Wondraczek, Lothar; Ali, Sharafat; Jonson, Bo

    2017-04-01

    Monovalent cations enable efficient ion exchange processes due to their high mobility in silicate glasses. Numerous properties can be modified in this way, e.g., mechanical, optical, electrical or chemical performance. In particular, alkali cation exchange has received significant attention, primarily with respect to introducing compressive stress into the surface region of a glass, which increases mechanical durability. However, most of the present applications rely on specifically tailored matrix compositions in which the cation mobility is enhanced. This largely excludes the major area of soda lime silicates (SLS) such as are commodity in almost all large-scale applications of glasses. Basic understanding of the relations between structural parameters and the effective diffusion coefficients may help to improve ion-exchanged SLS glass products, on the one hand in terms of obtainable strength and on the other in terms of cost. In the present paper, we discuss the trends in the effective diffusion coefficients when exchanging Na+ for various monovalent cations (K+, Cu+, Ag+, Rb+ and Cs+) by drawing relations to physico-chemical properties. Correlations of effective diffusion coefficients were found for the bond dissociation energy and the electronic cation polarizability, indicating that localization and rupture of bonds are of importance for the ion exchange rate.

  7. Thermodynamics of overequivalent sorption in multicomponent ion-exchange systems with amino acids

    NASA Astrophysics Data System (ADS)

    Khokhlova, O. N.; Khokhlov, V. Yu.; Bashlykova, O. Yu.; Trunaeva, E. S.

    2017-04-01

    Ion exchange and overoverequivalent sorption in the AV-17-2P-OH-Cl-tryptophan anion-exchange system are studied. It is established that the ion exchange of tryptophan against the background of the exchange of mineral ions (OH--Cl-) is better accomplished from alkaline solutions on the Cl- form of the adsorbent and the overequivalent adsorption of an amino acid from a salt-containing solution on the OH- form of the anion exchange resin. The results from calculating and analyzing the thermodynamic constants of ion exchange and non-exchange absorption are given.

  8. Syntesis of lanthanum zirconate hydrosols by the ion exchange method

    NASA Astrophysics Data System (ADS)

    Bovina, E. A.; Tarasova, J. V.; Chibirova, F. Kh

    2011-04-01

    Ion exchange of LaCl3 and ZrOCl2 aqueous solutions with anion-exchanger AV-17-8 was used to synthesize finely dispersed hydrosol of amorphous lanthanum zirconate La2Zr2O7. Heat treatment of dried La2Zr2O7 hydrosols at 700°C and 1100°C resulted in the formation of powders with fluorite and pyrochlore type structures, respectively. Epitaxial La2Zr2O7 films were obtained on SrTiO3 (001) single crystals. The substrate has an influence on the lanthanum zirconate crystal orientation, as well as strong inhibitory effect on sintering processes.

  9. 78 FR 46622 - Application of Topaz Exchange, LLC for Registration as a National Securities Exchange; Findings...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Application of Topaz Exchange, LLC for Registration as a National Securities Exchange; Findings, Opinion, and Order of the Commission July 26, 2013. I. Introduction On July 3, 2012, Topaz Exchange, LLC (``Topaz Exchange'' or ``Exchange'')...

  10. Membrane consisting of polyquaternary amine ion exchange polymer network interpenetrating the chains of thermoplastic matrix polymer

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Wallace, C. J. (Inventor)

    1978-01-01

    An ion exchange membrane was formed from a solution containing dissolved matrix polymer and a set of monomers which are capable of reacting to form a polyquaternary ion exchange material; for example vinyl pyride and a dihalo hydrocarbon. After casting solution and evaporation of the volatile component's, a relatively strong ion exchange membrane was obtained which is capable of removing anions, such as nitrate or chromate from water. The ion exchange polymer forms an interpenetrating network with the chains of the matrix polymer.

  11. Synergistic integration of ion-exchange and catalytic reduction for complete decomposition of perchlorate in waste water.

    PubMed

    Kim, You-Na; Choi, Minkee

    2014-07-01

    Ion-exchange has been frequently used for the treatment of perchlorate (ClO4(-)), but disposal or regeneration of the spent resins has been the major hurdle for field application. Here we demonstrate a synergistic integration of ion-exchange and catalytic decomposition by using Pd-supported ion-exchange resin as an adsorption/catalysis bifunctional material. The ion-exchange capability of the resin did not change after generation of the Pd clusters via mild ethanol reduction, and thus showed very high ion-exchange selectivity and capacity toward ClO4(-). After the resin was saturated with ClO4(-) in an adsorption mode, it was possible to fully decompose the adsorbed ClO4(-) into nontoxic Cl(-) by the catalytic function of the Pd catalysts under H2 atmosphere. It was demonstrated that prewetting the ion-exchange resin with ethanol significantly accelerate the decomposition of ClO4(-) due to the weaker association of ClO4(-) with the ion-exchange sites of the resin, which allows more facile access of ClO4(-) to the catalytically active Pd-resin interface. In the presence of ethanol, >90% of the adsorbed ClO4(-) could be decomposed within 24 h at 10 bar H2 and 373 K. The ClO4(-) adsorption-catalytic decomposition cycle could be repeated up to five times without loss of ClO4(-) adsorption capacity and selectivity.

  12. Mechanism Exploration of Ion Transport in Nanocomposite Cation Exchange Membranes.

    PubMed

    Tong, Xin; Zhang, Bopeng; Fan, Yilin; Chen, Yongsheng

    2017-04-19

    The origin of property enhancement of nanocomposite ion exchange membranes (IEMs) is far from being fully understood. By combining experimental work and computational modeling analysis, we could determine the influence of nanomaterials on the ion transport properties of nanocomposite cation exchange membranes (CEMs). We synthesized and characterized a series of nanocomposite CEMs by using SPPO as polymer materials and silica nanoparticles (NPs) (unsulfonated or sulfonated) as nanomaterials. We found that with the increase of NP loading, measured CEM permselectivity and swelling degree first increased and then decreased. We also found the ion exchange capacity (IEC) and ionic resistance of nanocomposite CEMs tend to be the same, regardless what type of NPs are incorporated into the membrane. Modeling analysis suggests that the change of membrane properties is related to the change in membrane microstructure. With the addition of silica NPs, membrane porosity (volume fraction of intergel phase) increases so that membranes can absorb more water. Also, volume fraction of sulfonated polymer segments increases, which can allow membranes to retain more counterions, causing membrane IEC to increase. By calculating the effective ion diffusion coefficients and membrane tortuosity factors of all the silica-NP-based CEMs synthesized in this study, along with nanocomposite CEMs from previous studies, we conclude that membrane ion transport efficiency tends to increase with the incorporation of nanomaterials. In addition, this paper presents a simulation model, which explains how the membrane property changes upon nanomaterial aggregation; the simulation results are in good agreement with the experimental data. Simulation results indicate that membrane properties are related to nanomaterial number concentration in the membrane matrices; thus, a plateau is reached for membrane ion diffusion coefficients due to the severe influence of aggregation on the increase of nanomaterial

  13. Enigmatic ion-exchange behavior of myo-inositol phosphates.

    PubMed

    Shelor, C Phillip; Liao, Hongzhu; Kadjo, Akinde Florence; Dasgupta, Purnendu K

    2015-05-05

    The separation of myo-inositol mono-, di-, tri-, tetra-, pentakis-, and hexakisphosphate (InsP1, InsP2, InsP3, InsP4, InsP5, InsP6) was carried out using hydroxide eluent ion chromatography. Acid hydrolysis of InsP6 (phytate) was used to prepare a distribution of InsPs, ranging from InsP1 to InsP5's and including unhydrolyzed InsP6. Counting all possible positional isomers (many of which have stereoisomers that will not be separable by conventional ion exchange), 40 chromatographically separable peaks are possible; up to 22 were separated and identified by mass spectrometry. InsPs show unusual ion-exchange behavior in two respects: (a) the retention order is not monotonically related with the charge on the ion and (b) at the same hydroxide eluent concentration, retention is greatly dependent on the eluent metal cation. The retention of InsP3-InsP6 was determined to be controlled by steric factors while elution was influenced by eluent cation complexation. These highly phosphorylated InsPs have a much greater affinity for alkali metals (Li(+) > Na(+) > K(+)) than quaternary ammonium ions. This difference in cation affinity was exploited to improve separation through the use of a tetramethylammonium hydroxide-sodium hydroxide gradient.

  14. Ion exchange at the critical point of solution.

    PubMed

    Savoy, J D; Baird, J K; Lang, J R

    2016-03-11

    A mixture of isobutyric acid (IBA)+water has an upper critical point of solution at 26.7°C and an IBA concentration of 4.40M. We have determined the Langmuir isotherms for the hydroxide form of Amberlite IRN-78 resin in contact with mixtures of IBA+water at temperatures, 27.0, 29.0, 31.0 and 38.0°C, respectively. The Langmuir plot at 38.0°C forms a straight line. At the three lower temperatures, however, a peak in the Langmuir plot is observed for IBA concentrations in the vicinity of 4.40M. We regard this peak to be a critical effect not only because it is located close to 4.40M, but also because its height becomes more pronounced as the temperature of the isotherm approaches the critical temperature. For concentrations in the vicinity of the peak, the data indicate that the larger isobutyrate ion is rejected by the resin in favor of the smaller hydroxide ion. This reversal of the expected ion exchange reaction might be used to separate ions according to size. Using the Donnan theory of ion exchange equilibrium, we link the swelling pressure to the osmotic pressure. We show that the peak in the Langmuir plot is associated with a maximum in the "osmotic" energy. This maximum has its origin in the concentration derivative of the osmotic pressure, which goes to zero as the critical point is approached.

  15. Isotope effects of neodymium in different ligands exchange systems studied by ion exchange displacement chromatography

    PubMed Central

    Ismail, Ibrahim; Fawzy, Ahmed S.; Ahmad, Mohammad I.; Aly, Hisham F.; Nomura, Masao; Fujii, Yasuhiko

    2012-01-01

    The isotope effects of neodymium in Nd-glycolate ligand exchange system were studied by using ion exchange chromatography. The separation coefficients of neodymium isotopes, ε’s, were calculated from the observed isotopic ratios at the front and rear boundaries of the neodymium adsorption band. The values of separation coefficients of neodymium isotopes, ε’s, for the Nd-glycolate ligand exchange system were compared with those of Nd-malate and Nd-citrate, which indicated that the isotope effects of neodymium as studied by the three ligands takes the following direction Malate > Citrate > Glycolate. This order agrees with the number of available sites for complexation of each ligand. The values of the plate height, HETP of Nd in Nd-ligand exchange systems were also calculated. PMID:25685410

  16. Novel tetrazole-functionalized ion exchanger for weak cation-exchange chromatography of proteins.

    PubMed

    Lei, Genhu; Xiong, Xiaohu; Wei, Yinmao; Zheng, Xiaohui; Zheng, Jianbin

    2008-04-11

    A new type of weak cation exchanger, tetrazole-functionalized silica, was developed for bioseparation. It was prepared conveniently by modifying silica gel initially with gamma-glycidoxypropyltrimethoxysilane, then with 3-hydroxypropionitrile and finally with ammonium-catalyzed (3+2) azide-nitrile cycloaddition, which is an element of click chemistry. The prepared stationary phase was characterized and evaluated for its separation performance, protein retention behavior, loading capacity, protein recovery and chemical stability. The results show that the stationary phase developed has excellent performance for protein separations with high mass recoveries, and has long-term stability. Some remarkable differences were observed between this new exchanger and a carboxylic methyl-functionalized ion exchanger, which is typically used in weak cation-exchange chromatography of proteins. The obtained column was also used for the purification of lysozyme from chicken egg white, and the purity and specific bioactivity of the obtained lysozyme were about 90% and 67 IU/mg, respectively.

  17. Isotope effects of neodymium in different ligands exchange systems studied by ion exchange displacement chromatography.

    PubMed

    Ismail, Ibrahim; Fawzy, Ahmed S; Ahmad, Mohammad I; Aly, Hisham F; Nomura, Masao; Fujii, Yasuhiko

    2013-03-01

    The isotope effects of neodymium in Nd-glycolate ligand exchange system were studied by using ion exchange chromatography. The separation coefficients of neodymium isotopes, ε's, were calculated from the observed isotopic ratios at the front and rear boundaries of the neodymium adsorption band. The values of separation coefficients of neodymium isotopes, ε's, for the Nd-glycolate ligand exchange system were compared with those of Nd-malate and Nd-citrate, which indicated that the isotope effects of neodymium as studied by the three ligands takes the following direction Malate > Citrate > Glycolate. This order agrees with the number of available sites for complexation of each ligand. The values of the plate height, HETP of Nd in Nd-ligand exchange systems were also calculated.

  18. Brine reuse in ion-exchange softening: salt discharge, hardness leakage, and capacity tradeoffs.

    PubMed

    Flodman, Hunter R; Dvorak, Bruce I

    2012-06-01

    Ion-exchange water softening results in the discharge of excess sodium chloride to the aquatic environment during the regeneration cycle. In order to reduce sodium chloride use and subsequent discharge from ion-exchange processes, either brine reclaim operations can be implemented or salt application during regeneration can be reduced. Both result in tradeoffs related to loss of bed volumes treated per cycle and increased hardness leakage. An experimentally validated model was used to compare concurrent water softening operations at various salt application quantities with and without the direct reuse of waste brine for treated tap water of typical midwestern water quality. Both approaches were able to reduce salt use and subsequent discharge. Reducing salt use and discharge by lowering the salt application rate during regeneration consequently increased hardness leakage and decreased treatment capacity. Single or two tank brine recycling systems are capable of reducing salt use and discharge without increasing hardness leakage, although treatment capacity is reduced.

  19. Radiation degradation in EPICOR-2 ion exchange resins

    SciTech Connect

    McConnell, J.W. Jr.; Johnson, D.A.; Sanders, R.D. Sr.

    1990-09-01

    The Low-Level Waste Data base Development -- EPICOR-II Resin/Liner Investigation Program funded by the US Nuclear Regulatory Commission is investigating chemical and physical conditions for organic ion exchange resins contained in several EPICOR-II prefilters. Those prefilters were used during cleanup of contaminated water from the Three Mile Island Nuclear Power Station after the March 1979 accident. The work was performed by EG G Idaho, Inc. at the Idaho Engineering Laboratory. This is the final report of this task and summarizes results and analyses of three samplings of ion exchange resins from prefilters PF-8 and -20. Results are compared with baseline data from tests performed on unirradiated resins supplied by Epicor, Inc. to determine the extent of degradation due to the high internal radiation dose received by the organic resins. Results also are compared with those of other researchers. 18 refs., 23 figs., 7 tabs.

  20. Hybrid metallic ion-exchanged waveguides for SPR biological sensing

    NASA Astrophysics Data System (ADS)

    de Bonnault, S.; Bucci, D.; Zermatten, P.. J.; Charette, P. G.; Broquin, J. E.

    2015-02-01

    Glass substrates have been used for decades to create biosensors due to their biocompatibility, low thermal conductivity, and limited fluorescence. Among the different types of sensors, those based on surface plasmon resonance (SPR) allow exploitation of the sensing lightwave at the vicinity of the sensor surface where small entities such as DNA or proteins are located. In this paper, ion-exchanged waveguides and SPR are combined to create a multianalyte optical sensor integrated onto glass. First the principle of operation is introduced, then the theoretical analysis and design of the sensing element. Simulations have been carried out using the Aperiodic Fourier Modal Method (AFMM) and a custom software that handles ion-exchange index-profiles. Fabrication and characterization processes are also presented. Finally the first experimental spectra are displayed and discussed. The sensor presents a bulk sensibility of 5000nm/RIU.

  1. Quantitative description of ion transport in Donnan ion exchange membrane systems

    SciTech Connect

    Rush, W.E.; Baker, B.L.

    1980-05-01

    Presented are simplified mass transfer techniques describing the transfer of ions in continuous ion selective membrane systems in which the resistance to ion transport through the membrane is small in relation to the resistance to ion transport in the solution phase. Methods are developed through the application of the transfer unit concept to the Donnan equilibrium. This equilibrium describes the equilibrium ion concentration on either side of an ion selective membrane. Data from one cation selection system is presented as evidence of the validity of these methods. Further techniques are shown that will allow the determination of ion transport given only equipment parameters and solution diffusivities. Supporting data are shown.

  2. Removal of chromium from electroplating industry effluents by ion exchange resins.

    PubMed

    Cavaco, Sofia A; Fernandes, Sandra; Quina, Margarida M; Ferreira, Licínio M

    2007-06-18

    Effluent discharged from the chromium electroplating industry contains a large number of metals, including chromium, copper, nickel, zinc, manganese and lead. The ion exchange process is an alternative technique for application in the treatment of industrial wastewater containing heavy metals and indeed it has proven to be very promising in the removal and recovery of valuable species. The main objective of the present work is to evaluate the performance of commercial ion exchange resins for removing chromium trivalent from industrial effluents, and for this purpose two resins were tested: a chelating exchange resin (Diaion CR11) and a weak cationic resin (Amberlite IRC86). In order to evaluate the sorption capacity of the resins some equilibrium experiments were carried out, being the temperature and pH the main variables considered. The chromium solutions employed in the experiments were synthetic solutions and industrial effluents. In addition, a transient test was also performed as an attempt to understand the kinetic behaviour of the process.

  3. Momentum transfer in relativistic heavy ion charge-exchange reactions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  4. Electrodeposition of microparticles on polarized ion exchange membranes

    SciTech Connect

    Verbich, S.V.; Ponomarev, M.I.; Grebenyuk, V.D.; Dukhin, S.S.

    1986-11-01

    The use of ion exchange membranes to extract microparticles from an aqueous solution is considered. The efficiency of removing negatively charged aerosil particles depends substantially on the nature of the membrane located at the anode. It has been established that besides an increase in the electric field intensity the principal factor ensuring an increase in the efficiency of purifying a solution by electrodeposition of microparticles on a membrane surface is a reduction in the flowrate relative to the membrane surface.

  5. Separation of organic ion exchange resins from sludge -- engineering study

    SciTech Connect

    Duncan, J.B.

    1998-08-25

    This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation.

  6. Integrated optic broadband duplexer made by ion exchange

    NASA Astrophysics Data System (ADS)

    Ghibaudo, E.; Broquin, J.-E.; Benech, P.

    2003-02-01

    The development of optical amplification and bidirectional traffic in local and wide area networks requires broadband multiplexers which are able to treat the signal of an entire telecommunication window. A device made by ion exchange and answering to these needs is proposed in this letter. Its working principle, based on a leaky structure is first explained. An experimental result confirming a good broadband spectral behavior is then presented. Its spectral response displays two duplexing bands of at least 100 nm.

  7. Ion exchange and adsorption on low rank coals for liquefaction

    SciTech Connect

    Vorres, K.S.

    1995-08-01

    The objectives of this program involve the study of the catalysis of liquefaction of low rank coals. Ion exchange and adsorption techniques are being used or modified to incorporate catalytically active metals into coal samples. Relative oil yields will be determined by Sandia National Laboratory and PETC collaborators to establish the effectiveness of the catalyst incorporation techniques. This report describes work done over the past 12 months of an on-going project.

  8. Water Exchange Rates and Molecular Mechanism around Aqueous Halide Ions

    SciTech Connect

    Annapureddy, Harsha V.; Dang, Liem X.

    2014-07-17

    Molecular dynamics simulations were performed to systematically study the water-exchange mechanism around aqueous chloride, bromide, and iodide ions. Transition state theory, Grote-Hynes theory, and the reactive flux method were employed to compute water exchange rates. We computed the pressure dependence of rate constants and the corresponding activation volumes to investigate the mechanism of the solvent exchange event. The activation volumes obtained using the transition state theory rate constants are negative for all the three anions, thus indicating an associative mechanism. Contrary to the transition state theory results, activation volumes obtained using rate constants from Grote-Hynes theory and the reactive flux method are positive, thus indicating a dissociative mechanism. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the U.S. Department of Energy (DOE) funded this work. Battelle operates Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES.

  9. Thermal analysis for ion-exchange column system

    SciTech Connect

    Lee, S. Y.; King, W. D.

    2012-07-01

    Models have been developed to simulate the thermal characteristics of Crystalline Silico-titanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. A primary objective of these calculations was to estimate temperature distributions across packed CST beds immersed in waste supernate or filled with dry air under various accident scenarios. Accident scenarios evaluated included loss of salt solution flow through the bed, inadvertent column drainage, and loss of active cooling in the column. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. (authors)

  10. Evaluation of Elution Parameters for Cesium Ion Exchange Resins

    SciTech Connect

    Burgeson, Ingrid E.; Deschane, Jaquetta R.; Cook, Bryan J.; Blanchard, David L.; Weier, Dennis R.

    2006-08-28

    Cesium ion exchange is one of the planned processes for treating and disposing of waste at the U.S. Department of Energy Hanford Site. Radioactive supernatant liquids from the waste tanks will undergo ultrafiltration, followed by cesium ion exchange using a regenerable organic ion exchange resin. Two resins, SuperLig?644 and a Resorcinol-formaldehyde resin are being evaluated for cesium removal and cesium elution characteristics. The main purpose of this study is to optimize the cesium elution to provide a resin which after undergoing elution would meet the U.S. Department of Energy/Office of River Protection Project-Waste Treatment Plant processing and resin disposal criteria. Columns of each resin type were loaded to greater or equal to 90% breakthrough with a Hanford waste stimulant and eluted with nitric acid. The temperature, flow rate and nitric acid concentration were varied to determine the optimal elution conditions. Temperature and eluant flow rate were the most important elution parameters. As would be predicted based upon kinetic consideration alone, decreasing the eluant flow rate and increasing the temperature provided the optimal elution conditions. Varying the nitric acid concentration did not have a significant effect on the elution; however, elutions performed using both high acid concentration (1M) and elevated temperature (45 C) resulted in resin degradation, causing gas generation and resin bed disruption.

  11. Separation of phycocyanin from Spirulina platensis using ion exchange chromatography.

    PubMed

    Silveira, Silvana Terra; Quines, Luci Kelin de Menezes; Burkert, Carlos André Veiga; Kalil, Susana Juliano

    2008-08-01

    This paper presents the evaluation of some important parameters for the purification of phycocyanin using ion exchange chromatography. The influences of pH and temperature on the equilibrium partition coefficient were investigated to establish the best conditions for phycocyanin adsorption. The equilibrium isotherm for the phycocyanin-resin system was also determined. The separation of phycocyanin using the Q-Sepharose ion exchange resin was evaluated in terms of the pH and elution volume that improved the increase in purity and recovery. The highest partition coefficients were obtained in the pH range from 7.5 to 8.0 at 25 degrees C. Under these conditions the equilibrium isotherm for phycocyanin adsorption was well described by the Langmuir model, attaining a Q (m) of 22.7 mg/mL and K (d) of 3.1 x 10(-2) mg/mL. The best conditions for phycocyanin purification using the ion exchange column were at pH 7.5 with an elution volume of 36 mL, obtaining 77.3% recovery and a 3.4-fold increase in purity.

  12. [Research on removal of copper, manganese and zinc ions using cation exchange membrane based on Donnan dialysis].

    PubMed

    Xie, De-Hua; Shi, Zhou; Chen, Shi-Yang; Xie, Peng; Song, Yong

    2010-09-01

    Based on Donnan dialysis technique, the mechanism that influences the exchange capacity of the membrane and the interaction mechanism between two co-existing ions are investigated in this paper, where the cation exchange membrane is applied to remove the heavy metal ions such as copper, manganese, zinc. The following results were obtained: It is applicable to use the cation exchange membrane to remove copper, manganese and zinc ions and 75%-85% of removal efficiency can be obtained; when the concentration and charge number are the same, the smaller the radius of hydrated heavy metal, the quicker the ion diffuse and consequently the higher removal efficiency the membrane can achieve, which is the main factor; when the radius of the hydrated heavy metals are approximately same, the membrane will have higher removal efficiency to the ion with lower atomic number; when the ions with same charge number and concentration co-exist, both of them are removed but with different removal speeds for existing of disturbance between them and there exist diffusion competition, i.e. those who are more prone to be exchanged will be more competitive and more likely to low the removal rate of the other ion seriously; if the total concentration of the ions is far lower than the exchange capacity of the membrane, the removal efficiency when the ions coexist is not lower too much than that of the case when they exist lonely.

  13. High-speed ion-exchange separations prior to neptunium, plutonium, and impurity assays

    SciTech Connect

    Maxwell, S.L. III; Forrest, M.H.

    1986-01-01

    Separation of actinides and/or impurities prior to assay is required when sample matrix components interfere with the assay method. Separations frequently must be performed in glove boxes or shielded and analytical cells due to high levels of alpha/beta-gamma radioactivity. Conventional ion-exchange separations are typically more effective and quantitative than solvent extraction, but are prohibitively slow for routine application. At the Savannah River Plant, effective ion-exchange purifications of process samples are now performed with a modified commercial vacuum extraction system. The combination of relatively small-size ion-exchange resin particles and applied vacuum provides rapid, efficient, quantitative separations. High-speed ion exchange has been successfully applied at SRP to the separation of neptunium from plutonium and to the separation of trace impurities from uranium product solutions prior to neptunium and impurity assays by direct current argon plasma (DCAP) emission spectrometry. This paper will describe several separations and will present details of developed procedures and subsequent assays.

  14. The load and release characteristics on a strong cationic ion-exchange fiber: kinetics, thermodynamics, and influences.

    PubMed

    Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming

    2014-01-01

    Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug-fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug-fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid.

  15. Proton/calcium ion exchange behavior of calcite.

    PubMed

    Villegas-Jiménez, Adrián; Mucci, Alfonso; Paquette, Jeanne

    2009-10-21

    The characterization of the proton sorptive properties of calcite in aqueous solutions at 25 +/- 1 degrees C over a relatively wide range of chemical conditions (7.16 ions is consistently observed, greatly exceeding the theoretical number of reactive surface sites. These observations are interpreted as a fast proton/calcium exchange equilibrium between the solution and "exchangeable cation sites" (e.g., lattice positions) at and/or beneath the calcite surface (species identified by "(exc)"), , that leads to a transient, "apparent" incongruent dissolution regime and the formation of a stable calcium-deficient, proton-enriched layer within the calcite lattice under circum-neutral and alkaline regimes at standard conditions. The 2H(+)/Ca(2+) ion exchange is quantitatively described by the Langmuir-power exchange function under the Vanselow convention: where n = 1 and log(10)K(ex) = 13.0 +/- 0.3. This calcite behavior, never reported before, masks surface equilibria and directly impacts the aqueous speciation of carbonate-rock systems with poor CO(2)(g) ventilation (e.g., aquifers, pore and deep sea waters, industrial reactors) via the buffering of pH and calcite dissolution. In contrast, at fixed pCO(2) conditions, aqueous speciation remains unaffected upon CO(2)(g) sequestration resulting from ion exchange-induced calcite precipitation: ([triple bond]CaCO3)2(exc) + CO2(g) + H2O <==> [triple bond]Ca(HCO3)2(exc) + CaCO3(s). Accordingly, reliable predictions of aqueous speciation in natural or engineered calcite-containing systems at variable pCO(2) conditions must consider this exchange reaction and the associated K(ex). The postulated proton/calcium exchange may have far

  16. Porous structure of ion exchange membranes investigated by various techniques.

    PubMed

    Kononenko, N; Nikonenko, V; Grande, D; Larchet, C; Dammak, L; Fomenko, M; Volfkovich, Yu

    2017-08-01

    A comparative review of various techniques is provided: mercury intrusion porosimetry, nitrogen sorption porosimetry, differential scanning calorimetry (DSC)-based thermoporosimetry, and standard contact porosimetry (SCP), which allows determining pore volume distribution versus pore radius/water binding energy in ion-exchange membranes (IEMs). IEMs in the swollen state have a labile structure involving micro-, meso- and macropores, whose size is a function of the external water vapor pressure. For such materials, the most appropriate methods for quantifying their porosity are DSC and SCP. Especially significant information is given by the SCP method allowing measuring porosimetric curves in a very large pore size range from 1 to 10(5)nm. Experimental results of water distribution in homogeneous and heterogeneous commercial and modified IEMs are presented. The effect of various factors on water distribution is reviewed, i.e. nature of polymeric matrix and functional groups, method for membrane preparation, membrane ageing. A special attention is given to the effect of membrane modification by embedding nanoparticles in their structure. The porosimetric curves are considered along with the results of electrochemical characterization involving the measurements of membrane conductivity, as well as diffusion and electroosmotic permeability. It is shown that addition of nanoparticles may lead to either increase or decrease of water content in IEMs, different ranges of pore size being affected. Hybrid membranes modified with hydrated zirconium dioxide exhibit much higher permselectivity in comparison with the pristine membranes. The diversity of the responses of membrane properties to their modification allows for formation of membranes suitable for fuel cells, electrodialysis or other applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Transport Properties of Sulfonated Poly (Styrene-b-isobutylene-b-styrene) Triblock Copolymers at High Ion-Exchange Capacities

    DTIC Science & Technology

    2005-10-20

    strong acidic groups (e.g., sulfonic acid ) are of interest for a variety of applications, such as sensors, actuators, ion-exchange membranes, and fuel...Increasing ion or sulfonic acid content in the polymer transforms the polymer from an insulator to an ion conductor (percolation threshold), whereby...33.50 © 2006 American Chemical Society Published on Web 12/01/2005 copolymer of polystyrene and poly(styrenesulfonic acid ) (i.e., sulfonated polystyrene

  18. Donnan dialysis with ion-exchange membranes. 3: Diffusion coefficients using ions of different valence

    SciTech Connect

    Miyoshi, Hirofumi

    1999-01-01

    Donnan dialysis with ion-exchange membranes was studied under various kinds of experimental conditions using ions of different valences. The diffusion coefficients (D{sub d}) of various kinds of ions in the ion-exchange membrane were obtained by curve fitting an equation derived from the mass balance to three kinds of Donnan dialytic experiments. It was found that the value of D{sub d}/D{sub s} using D{sub d} of monovalent ions in Donnan dialysis with a set of monovalent feed ions and bivalent driving ions was 1/175, where D{sub s} represents a diffusion coefficient in solution. D{sub s} was calculated from the Nernst-Einstein equation substituted by the ionic conductance of ions at infinite dilution in water. Using D{sub d} of bivalent ions in Donnan dialysis with the same set led to a D{sub d}/D{sub s} value of 1/438. Moreover, using D{sub d} in Donnan dialysis with the same set, the value of D{sub d}/D{sub e} was kept constant at 0.4 (D{sub e} expresses the diffusion coefficient in the membrane when the valences of the feed and driving ions are equal). On the other hand, both D{sub d}/D{sub s} and D{sub d}/D{sub e} using D{sub d} in Donnan dialysis with a set of bivalent feed ions and monovalent driving ions were not constant.

  19. Structural Insight into the Ion-Exchange Mechanism of the Sodium/Calcium Exchanger

    SciTech Connect

    Liao, Jun; Li, Hua; Zeng, Weizhong; Sauer, David B.; Belmares, Ricardo; Jiang, Youxing

    2012-06-19

    Sodium/calcium (Na{sup +}/Ca{sup 2+}) exchangers (NCX) are membrane transporters that play an essential role in maintaining the homeostasis of cytosolic Ca{sup 2+} for cell signaling. We demonstrated the Na{sup +}/Ca{sup 2+}-exchange function of an NCX from Methanococcus jannaschii (NCX{_}Mj) and report its 1.9 angstrom crystal structure in an outward-facing conformation. Containing 10 transmembrane helices, the two halves of NCX{_}Mj share a similar structure with opposite orientation. Four ion-binding sites cluster at the center of the protein: one specific for Ca{sup 2+} and three that likely bind Na{sup +}. Two passageways allow for Na{sup +} and Ca{sup 2+} access to the central ion-binding sites from the extracellular side. Based on the symmetry of NCX{_}Mj and its ability to catalyze bidirectional ion-exchange reactions, we propose a structure model for the inward-facing NCX{_}Mj.

  20. Continuous ion exchange separation of zirconium and hafnium

    SciTech Connect

    Begovich, J.M.; Sisson, W.G.

    1981-01-01

    A pressurized continuous annular chromatograph (CAC) has been developed for truly continuous ion exchange preparative separations. This device utilizes a slowly rotating annular bed of sorbent material, fixed multiple feed points, and fixed withdrawal locations. Most of our investigations have been performed with a 28-cm-diam by 60-cm-long CAC, but a larger model has recently been designed and constructed. A detailed study has been made of the separation of copper, nickel, and cobalt components from a simulated carbonate leach liquor of the Caron process for recovering nickel and cobalt from laterite ores. Recent studies have investigated the ion exchange separation of zirconium and hafnium from a sulfate feed solution. Nuclear reactor-grade zirconium, containing < 0.01 wt % hafnium, and hafnium, containing < 1% zirconium, have been continuously prepared using cation exchange resin in the pressurized CAC. This device, because of its continuous feed and product withdrawal, its adaptability to largescale operations, and its ability to separate many components, is expected to make chromatography a more competitive process in the industrial sector.

  1. Ion exchange substrates for plant cultivation in extraterrestrial stations and space crafts

    NASA Astrophysics Data System (ADS)

    Soldatov, Vladimir

    2012-07-01

    Ion exchange substrates Biona were specially designed at the Belarus Academy of Sciences for plants cultivation in spacecrafts and extraterrestrial stations. The first versions of such substrates have been successfully used in several space experiments and in a long-term experiment in which three soviet test-spacemen spent a full year in hermetic cabin imitating a lunar station cabin (1067-1968). In this experiment the life support system included a section with about one ton of the ion exchange substrate, which was used to grow ten vegetations of different green cultures used in the food of the test persons. Due to failure of a number of Soviet space experiments, decay of the Soviet Union and the following economic crisis the research in this field carried out in Belarus were re-directed to the needs of usual agriculture, such as adaptation of cell cultures, growing seedlings, rootage of cuttings etc. At present ion exchange substrate Biona are produced in limited amounts at the experimental production plant of the Institute of Physical Organic Chemistry and used in a number of agricultural enterprises. New advanced substrates and technologies for their production have been developed during that time. In the presentation scientific principles of preparation and functioning of ion exchange substrates as well as results of their application for cultivation different plants are described. The ion exchange substrate is a mixture of cation and anion exchangers saturated in a certain proportions with all ions of macro and micro elements. These chemically bound ions are not released to water and become available for plants in exchange to their root metabolites. The substrates contain about 5% mass of nutrient elements far exceeding any other nutrient media for plants. They allow generating 3-5 kg of green biomass per kilogram of substrate without adding any fertilizers; they are sterile by the way of production and can be sterilized by usual methods; allow regeneration

  2. Treatment of chromium plating process effluents with ion exchange resins.

    PubMed

    Tenório, J A; Espinosa, D C

    2001-01-01

    The surface treatment industry deals with various heavy metals, including the elements Cr, Zn, Ni, Cd, and Cu. Conventional treatments of effluents generate class I solid residue. The aim of this investigation was to study the viability of ion exchange as an alternative process for treatment of rinse water and to determine the efficacy of two ion exchange systems, System 1: "strong" cationic resin-"strong" anionic resin and System 2: "strong" cationic resin-"weak" anionic resin. Commercial resins and solutions taken from rinse tanks of chromium plating companies were used in this investigation. A two-column system, one for the cationic resin and another for the anionic resin, both with 150 ml capacity was mounted. The solution was percolated at a rate of 10 ml/min. The following solutions were used for regeneration of the resins: 2% H2SO4 for the cationic and 4% NaOH for the anionic. The percolated solutions revealed chromium contents of less than 0.25 mg/l, independent of the system used. The "strong" cationic resin-"weak" anionic resin gave excellent regeneration results. The "strong" cationic-"strong" anionic resin presented problems during regeneration, and did not release the retained ions after percolation of 2000 ml of 4% NaOH solution. It is concluded that for this type of treatment, the system composed of "strong" cationic resin and "weak" anionic resin is more appropriate.

  3. Design of high efficiency fibers for ion exchange and heavy metal removal

    NASA Astrophysics Data System (ADS)

    Dominguez, Lourdes

    Ion exchange materials coated on glass fiber substrates have a number of advantages over the conventional ion exchange beads. These include simplification of the overall synthesis including faster more efficient functionalization and elimination of toxic solvents. Other benefits include the ability to be fabricated in the form of felts, papers, or fabrics, improving media contact efficiency and enhancing both the rates of reaction and regeneration. In addition, physical and mechanical requirements of strength and dimensional stability are achieved by use of glass fiber substrates. Investigations were focused on design of: (1) polymeric cationic exchange fibers and their application for lead and mercury removal, (2) polymeric anionic exchange fibers and their application for arsenate removal, (3) enhancement of anionic fiber selectivity for monovalent ions over divalent ions through bulkier triaklylamine functional groups, and (4) polymeric mercaptyl fibers for the application of arsenite removal. The design and characterization of a cationic exchange fiber is described. Dynamic mode (breakthrough) experiments for calcium, lead, and mercury ion solutions are also presented. The second system consists of the preparation and characterization of anionic exchange fibers with equilibrium adsorption isotherms and dynamic mode kinetic experiments for arsenate removal. Modification of the resin with bulkier functional groups (trimethylamine, triethylamine, tripropylamine, tributylanmine), thereby effecting a change in the selectivity from divalent species to monovalent species, is considered in the separation of nitrates from sulfates. The ability of a thiol group to bind to the highly toxic arsenite ion (as is done in proteins and enzymes) provided the model used to chemically modify and characterize a polyvinyl alcohol mercaptyl fibrous system, coated on a fiberglass substrate, for the purpose of arsenite (As3+) removal from water. Physical/chemical aspects of naturally

  4. Ion Exchange and Solvent Extraction: Supramolecular Aspects of Solvent Exchange Volume 21

    SciTech Connect

    Gloe, Karsten; Tasker, Peter A; Oshima, Tatsuya; Watarai, Hitoshi; Nilsson, Mikael

    2013-01-01

    Preface The theme of supramolecular chemistry (SC), entailing the organization of multiple species through noncovalent interactions, has permeated virtually all aspects of chemical endeavor over the past several decades. Given that the observed behavior of discrete molecular species depends upon their weak interactions with one another and with matrix components, one would have to conclude that SC must indeed form part of the fabric of chemistry itself. A vast literature now serves to categorize SC phenomena within a body of consistent terminology. The word supramolecular itself appears in the titles of dozens of books, several journals, and a dedicated encyclopedia. Not surprisingly, the theme of SC also permeates the field of solvent extraction (SX), inspiring the framework for this volume of Ion Exchange and Solvent Extraction. It is attempted in the six chapters of this volume to identify both how supramolecular behavior occurs and is studied in the context of SX and how SC is influencing the current direction of SX. Researchers and practitioners have long dealt with supramolecular interactions in SX. Indeed, the use of polar extractant molecules in nonpolar media virtually assures that aggregative interactions will dominate the solution behavior of SX. Analytical chemists working in the 1930s to the 1950s with simple mono- and bidentate chelating ligands as extractants noted that extraction of metal ions obeyed complicated mass-action equilibria involving complex stoichiometries. As chemists and engineers developed processes for nuclear and hydrometallurgical applications in the 1950s and 1960s, the preference for aliphatic diluents only enhanced the complexity and supramolecular nature of extraction chemistry. Use of physical techniques such as light scattering and vapor-pressure measurements together with various spectroscopic methods revealed organic-phase aggregates from well-defined dimers to small aggregates containing a few extractant molecules to large

  5. Nitrate and Perchlorate removal from groundwater by ion exchange

    SciTech Connect

    Burge, S; Halden, R

    1999-09-15

    This study was conducted to evaluate the performance of a small scale ion exchange unit (Krudico, Inc of Auborn, IA) for removal of nitrate and perchlorate from groundwater at Lawrence Livermore National Laboratory's Site 300. The unit was able to treat 3,600 gallons of Site 300 groundwater, at an average influent concentration of 100 mg/L NO{sub 3}{sup -} before breakthrough occurred. The unit contained 2.5 ft{sup 3} of Sybron SR-7 resin. Seventy gallons of regeneration waste were generated (water treated to waste ratio of 51:1). The effluent concentration was about 20 mg/L NO{sub 3}{sup -}, which is equivalent to a treatment efficiency of at least 80%. There are several options for implementing this technology at Site 300. A target well, in the 817 area, has been selected. It has a 3 to 4 gpm flow rate, and concentrations of 90 mg/L NO{sub 3}{sup -} and 40 {micro}g/L perchlorate. The different treatment options include ion exchange treatment of nitrate only, nitrate and perchlorate, or perchlorate only. Option 1: For the treatment of nitrate only, this unit will be able to treat 3,700 gallons of water before regeneration is required. If both columns of the ion exchange unit are used, 7,400 gallons could be treated before the columns will need to be regenerated (producing 140 gallons of waste, per cycle or every 1.5 days). The effluent nitrate concentration is expected to be about 17 mg/L. Annual operation and maintenance costs are estimated to be $0.14 per gallon of water treated. Option 2: If only perchlorate is to be removed with ion exchange at the 817 area, a smaller unit should be considered. A 55 gallon canister filled with ion exchange resin should be able to reduce perchlorate concentrations in the groundwater from 40 {micro}g/L to non-detect levels for three years before the resin would need to be replaced. The contaminant-laden resin would be disposed of as hazardous waste. It is not practical to regenerate the resin because of the extreme difficulty of

  6. Ion-exchange equilibrium of N-acetyl-D-neuraminic acid on a strong anionic exchanger.

    PubMed

    Wu, Jinglan; Ke, Xu; Zhang, Xudong; Zhuang, Wei; Zhou, Jingwei; Ying, Hanjie

    2015-09-15

    N-acetyl-D-neuraminic acid (Neu5Ac) is a high value-added product widely applied in the food industry. A suitable equilibrium model is required for purification of Neu5Ac based on ion-exchange chromatography. Hence, the equilibrium uptake of Neu5Ac on a strong anion exchanger, AD-1 was investigated experimentally and theoretically. The uptake of Neu5Ac by the hydroxyl form of the resin occurred primarily by a stoichiometric exchange of Neu5Ac(-) and OH(-). The experimental data showed that the selectivity coefficient for the exchange of Neu5Ac(-) with OH(-) was a non-constant quantity. Subsequently, the Saunders' model, which took into account the dissociation reactions of Neu5Ac and the condition of electroneutrality, was used to correlate the Neu5Ac sorption isotherms at various solution pHs and Neu5Ac concentrations. The model provided an excellent fit to the binary exchange data for Cl(-)/OH(-) and Neu5Ac(-)/OH(-), and an approximate prediction of equilibrium in the ternary system Cl(-)/Neu5Ac(-)/OH(-). This basic information combined with the general mass transfer model could lay the foundation for the prediction of dynamic behavior of fixed bed separation process afterwards.

  7. HEAT TRANSFER ANALYSIS FOR ION-EXCHANGE COLUMN SYSTEM

    SciTech Connect

    Lee, S.; King, W.

    2011-05-23

    Models have been developed to simulate the thermal characteristics of Crystalline Silicotitanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. The SCIX design includes CST columns inserted and supported in the tank top risers for cesium removal. Temperature distributions and maximum temperatures across the column were calculated with a focus on process upset conditions. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. The current full-scale design for the CST column includes one central cooling pipe and four outer cooling tubes. Most calculations assumed that the fluid within the column was stagnant (i.e. no buoyancy-induced flow) for a conservative estimate. A primary objective of these calculations was to estimate temperature distributions across packed CST beds immersed in waste supernate or filled with dry air under various accident scenarios. Accident scenarios evaluated included loss of salt solution flow through the bed, inadvertent column drainage, and loss of active cooling in the column. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature.

  8. The modification of ion exchange heterogeneous catalysts for biodiesel synthesis

    NASA Astrophysics Data System (ADS)

    Hartono, R.; Mulia, B.; Sahlan, M.; Utami, T. S.; Wijanarko, Anondho; Hermansyah, Heri

    2017-03-01

    Conventionally, biodiesel is produced by using the homogeneous catalyst which has difficulty in high cost of the separation process. The heterogeneous catalysts ion exchange resin by its Solid phase can make an easier separation process, able to be reactivated and used repeatedly. In this research, the heterogeneous catalyst from various source such as Lewatit macro porous resin, Amberlite gel resin and natural zeolite bayah was investigated their performance to produced biodiesel from used cooking oil. Initially, the preparation of the ion exchange process with variations in time, temperature, the concentration of HCl and NaOH solution was investigated. Then, the activity of heterogeneous catalyst to produced biodiesel under the variation of stirring rate, zeolite particle size, and comparison of different ion exchange catalysts were also investigated. Finally, the stability test and regeneration treatment were also investigated. The optimum operating conditions of biodiesel synthesis process is at the temperature of 60 °C for 2 h with a stirring speed of 700 rpm. Natural zeolite Bayah with 6 M of NaOH solution produced 16.19%, Amberlite gel with 6 M HCL produced 65.22% of biodiesel yield and material Lewatit macro porous with 6 M of NaOH solution produced 85.94% as the maximum result. As the best result, Material Lewatit macro porous selected as the material which was used in the variation of stirring speed, temperature, and reaction time, the concentration of base and stability test. According to the results of analysis, calculations yield methyl oleic HPLC produced by Lewatit macro porous with 6 M NaOH at 62.95%.

  9. Vitrification of cesium-contaminated organic ion exchange resin

    SciTech Connect

    Sargent, Jr., Thomas N.

    1994-08-01

    Vitrification has been declared by the Environmental Protection Agency (USEPA) as the Best Demonstrated Available Technology (BDAT) for the permanent disposal of high-level radioactive waste. Savannah River Site currently uses a sodium tetraphenylborate (NaTPB) precipitation process to remove Cs-137 from a wastewater solution created from the processing of nuclear fuel. This process has several disadvantages such as the formation of a benzene waste stream. It has been proposed to replace the precipitation process with an ion exchange process using a new resorcinol-formaldehyde resin developed by Savannah River Technical Center (SRTC). Preliminary tests, however, showed that problems such as crust formation and a reduced final glass wasteform exist when the resin is placed in the melter environment. The newly developed stirred melter could be capable of overcoming these problems. This research explored the operational feasibility of using the stirred tank melter to vitrify an organic ion exchange resin. Preliminary tests included crucible studies to determine the reducing potential of the resin and the extent of oxygen consuming reactions and oxygen transfer tests to approximate the extent of oxygen transfer into the molten glass using an impeller and a combination of the impeller and an external oxygen transfer system. These preliminary studies were used as a basis for the final test which was using the stirred tank melter to vitrify nonradioactive cesium loaded organic ion exchange resin. Results from this test included a cesium mass balance, a characterization of the semi-volatile organic compounds present in the off gas as products of incomplete combustion (PIC), a qualitative analysis of other volatile metals, and observations relating to the effect the resin had on the final redox state of the glass.

  10. Molecular simulations of ion exchange in NaA zeolite membranes

    NASA Astrophysics Data System (ADS)

    Murad, S.; Jia, W.; Krishnamurthy, M.

    2003-02-01

    Molecular simulations using the method of molecular dynamics have been carried out to determine the possibility of studying ion exchanges between electrolyte solutions (here an aqueous LiCl solution) and an ion-exchange membrane (NaA zeolite) using direct simulations of upto a nanosecond. Our results show that with appropriate driving forces, such ion-exchange processes can be clearly witnessed and investigated using molecular simulations. We have also attempted to understand the phenomenon at the molecular level. Our results have shown that the ion-exchange process is energetically driven and entropic forces are not playing any significant role in the exchanges observed.

  11. Multistep ion exchange processes of gradient refractive index rod lens.

    PubMed

    Lv, Hao; Liu, Aimei; Tong, Jufang; Yi, Xunong; Li, Qianguang; Wang, Xinmin; Ding, Yaoming

    2011-01-01

    A mathematical model for research on the refractive index profile (RIP) of multistep ion exchange processes (IEPs) of gradient refractive index rod lenses (GRINs) is established by the different initial condition and boundary condition, based on the Fickian diffusion equation. GRIN rod lenses have been fabricated using the three-step IEPs. Research results indicate that the experimental deviations of refractive index (DRI) are in good agreement with the theoretical data. The DRI of three-step IEPs is superior to the one- and two-step IEPs and smaller than 10(-5).

  12. Extraction of hexavalent chromium from groundwater using ion exchange resins

    SciTech Connect

    Cottrell, D.; Ridley, M.

    1994-04-01

    A bench top experiment was performed to determine the hexavalent chromium (Cr{sup +6}) absorption capacity of three ion exchange resins. The resin types tested were Purolite A300, A500, and A600 which are commercially available. This experiment is part of an effort to better characterize resin efficiencies at removing Cr{sup +6} from ground water extracted from wells at the Lawrence Livermore National Laboratory. The information obtained from these laboratory scale tests will aid in the determination of the preferred resin for an onsite ground water treatment facility.

  13. Ion exchange of ammonium in natural and synthesized zeolites.

    PubMed

    Wang, Yifei; Lin, Feng; Pang, Wenqin

    2008-12-30

    In this study, zeolite Na-P and Na-Y was prepared by hydrothermal treatment of the Chinese natural clinoptilolite with NaOH. The ion exchange of NH4+ into the three zeolites in the temperature range of 288-333K was also investigated, and the thermodynamic parameters were calculated. The selectivity sequence for NH4+ entering the sodium form of the three materials was Na-clinoptilolite>Na-Y>Na-P, as indicated by values of DeltaG degrees . The results demonstrated that the Si/Al molar ratio of zeolites determined the selectivity for NH4+.

  14. Ion-exchange polymer artificial muscle and actuating system

    NASA Astrophysics Data System (ADS)

    Vial, Dominique; Tondu, Bertrand; Lopez, Pierre; Aurelle, Yves; Ricard, Alain

    1996-04-01

    Chemomechanical transformations are used to produce a mechanical force from a reversible chemical reaction in order to generate artificial muscular contraction, on the model of the biological muscle. The design and experimentation of an original artificial muscle using an ion-exchange polymer which reacts inside a soft envelope, derived from research on pneumatic artificial McKibben muscle, is presented. Then a chemomechanical actuator constituted of two artificial muscles has been conceived: first results are shown on position control in open-loop mode.

  15. ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS

    DOEpatents

    Kennedy, J.

    1959-04-14

    An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.

  16. FDM study of ion exchange diffusion equation in glass

    NASA Astrophysics Data System (ADS)

    Zhou, Zigang; Yang, Yongjia; Wang, Qiang; Sun, Guangchun

    2009-05-01

    Ion-exchange technique in glass was developed to fabricate gradient refractive index optical devices. In this paper, the Finite Difference Method(FDM), which is used for the solution of ion-diffusion equation, is reported. This method transforms continual diffusion equation to separate difference equation. It unitizes the matrix of MATLAB program to solve the iteration process. The collation results under square boundary condition show that it gets a more accurate numerical solution. Compared to experiment data, the relative error is less than 0.2%. Furthermore, it has simply operation and kinds of output solutions. This method can provide better results for border-proliferation of the hexagonal and the channel devices too.

  17. Extraction and ion-exchange behavior of mendelevium (II)

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.; Buklanov, G.V.; Pkhar, Z.Z.; Lebedev, I.A.; Katargin, N.V.; Myasoedov, B.F.

    1988-09-01

    Medelevium-256 was obtained via multinucleon transfer reactions upon irradiation of /sup 249/Bk by /sup 22/Ne ions from the extracted beam of a U-300 cyclotron. In order to extract mendelevium and separate it from the products of nuclear reactions, an express ion-exchange method using one column with cationite and zinc amalgam in a solution of 1 mole/liter HCl as the eluent was developed. It was shown that under these conditions mendelevium is reduced and washes out as an alkaline earth element. On the basis of the location of the peaks of the elution curves of Sr/sup 2+/, Eu/sup 2+/, and Md/sup 2+/, the value of the ionic radium of Md/sup 2+/ is estimated and is used to estimate the heat of hydration.

  18. New Charge Exchange Calculations for Lowly-Charged Ions

    NASA Astrophysics Data System (ADS)

    Stancil, P. C.

    2005-05-01

    The process of charge exchange, which occurs during the collision of an ion with a neutral species, is important in a variety of astrophysical and atmospheric environments. It can have an influence on the ionization and thermal balances of the plasma and may also contribute to the emission spectrum. The charge exchange of multiply-charged ions (q>2) usually proceeds at a fast rate with rate coefficients typically of 10-10 to 10-9 cm3s-1. Therefore, highly-charged ions, which are created in UV or x-ray ionized gas, quickly recombine to smaller charges. However, the rate coefficients for singly- and doubly-charged ions can vary over five orders of magnitude depending on the ion species, the neutral target, and the temperature. In particular, the rate coefficients depend sensitively on the dominant mechanism which may be due to radial, rotational, radiative, or spin-orbit coupling and the corresponding quasi-molecular curves can be very complicated. Measurements of such processes are complicated by metastable contamination and uncertainties in target purity and estimates of empirical values inferred from astrophysical modeling are typically suspect. Therefore, the state of knowledge of lowly-charged electron transfer processes is generally poor, but these reactions can be critical in determining the state of the plasma. If, for example, the rate coefficient for a q=2 ion is very small, the process would result in a bottle-neck in the recombination cascade from higer charges. In an effort to address these problems, quantum-mechanical calculations have been carried out for a number of singly- and doubly-charged ions and benchmarked to measurements when available. I will present a summary of these results which reveal significant differences from values adopted in rate coefficient compilations used by various modeling packages. This work was performed in collaboration with L. B. Zhao, C. Y. Lin, J. P. Gu, H. P. Liebermann, R. J. Buenker, and M. Kimura. Support from NASA

  19. Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes.

    PubMed

    Radchenko, V; Engle, J W; Wilson, J J; Maassen, J R; Nortier, F M; Taylor, W A; Birnbaum, E R; Hudston, L A; John, K D; Fassbender, M E

    2015-02-06

    Actinium-225 (t1/2=9.92d) is an α-emitting radionuclide with nuclear properties well-suited for use in targeted alpha therapy (TAT), a powerful treatment method for malignant tumors. Actinium-225 can also be utilized as a generator for (213)Bi (t1/2 45.6 min), which is another valuable candidate for TAT. Actinium-225 can be produced via proton irradiation of thorium metal; however, long-lived (227)Ac (t1/2=21.8a, 99% β(-), 1% α) is co-produced during this process and will impact the quality of the final product. Thus, accurate assays are needed to determine the (225)Ac/(227)Ac ratio, which is dependent on beam energy, irradiation time and target design. Accurate actinium assays, in turn, require efficient separation of actinium isotopes from both the Th matrix and highly radioactive activation by-products, especially radiolanthanides formed from proton-induced fission. In this study, we introduce a novel, selective chromatographic technique for the recovery and purification of actinium isotopes from irradiated Th matrices. A two-step sequence of cation exchange and extraction chromatography was implemented. Radiolanthanides were quantitatively removed from Ac, and no non-Ac radionuclidic impurities were detected in the final Ac fraction. An (225)Ac spike added prior to separation was recovered at ≥ 98%, and Ac decontamination from Th was found to be ≥ 10(6). The purified actinium fraction allowed for highly accurate (227)Ac determination at analytical scales, i.e., at (227)Ac activities of 1-100 kBq (27 nCi to 2.7 μCi).

  20. Role of sulfonation in the stability, reactivity, and selectivity of poly(ether imide) used to develop ion exchange membranes: DFT study with application to fuel cells.

    PubMed

    López-Chávez, Ernesto; Peña-Castañeda, Yésica A; de la Portilla-Maldonado, L César; Guzmán-Pantoja, Javier; Martínez-Magadán, José Manuel; Oviedo-Roa, Raúl; de Landa Castillo-Alvarado, Fray; Cruz-Torres, Armando

    2014-07-01

    The design of polymer electrolyte membranes for fuel cells must satisfy two equally important fundamental principles: optimization of the reactivity and the selectivity in order to improve the ion transport properties of the membrane as well as its long-term stability in the hydrated state at high temperature (above 100 °C). A study utilizing density functional theory (DFT) to elucidate the effect of the degree of sulfonation on the chemical stability, reactivity, and selectivity of poly(ether imide) (PEI), which allows the ionic transport properties of the membrane to be predicted, is reported here. Sulfonated poly(ether imide) (SPEI) structures with (-SO3H) n (n = 1-6) groups were built and optimized in order to calculate the above properties as functions of the number of sulfonyl groups. A comparative study demonstrated that the SPEI with four sulfonyl groups in its backbone is the polymer with the properties best suited for use in fuel cells.

  1. An orientation sensitive approach in biomolecule interaction quantitative structure-activity relationship modeling and its application in ion-exchange chromatography.

    PubMed

    Kittelmann, Jörg; Lang, Katharina M H; Ottens, Marcel; Hubbuch, Jürgen

    2017-01-27

    Quantitative structure-activity relationship (QSAR) modeling for prediction of biomolecule parameters has become an established technique in chromatographic purification process design. Unfortunately available descriptor sets fail to describe the orientation of biomolecules and the effects of ionic strength in the mobile phase on the interaction with the stationary phase. The literature describes several special descriptors used for chromatographic retention modeling, all of these do not describe the screening of electrostatic potential by the mobile phase in use. In this work we introduce two new approaches of descriptor calculations, namely surface patches and plane projection, which capture an oriented binding to charged surfaces and steric hindrance of the interaction with chromatographic ligands with regard to electrostatic potential screening by mobile phase ions. We present the use of the developed descriptor sets for predictive modeling of Langmuir isotherms for proteins at different pH values between pH 5 and 10 and varying ionic strength in the range of 10-100mM. The resulting model has a high correlation of calculated descriptors and experimental results, with a coefficient of determination of 0.82 and a predictive coefficient of determination of 0.92 for unknown molecular structures and conditions. The agreement of calculated molecular interaction orientations with both, experimental results as well as molecular dynamic simulations from literature is shown. The developed descriptors provide the means for improved QSAR models of chromatographic processes, as they reflect the complex interactions of biomolecules with chromatographic phases.

  2. Anion selective membrane. [ion exchange resins and ion exchange membrane electrolytes for electrolytic cells

    NASA Technical Reports Server (NTRS)

    Alexander, S. S.; Geoffroy, R. R.; Hodgdon, R. B.

    1975-01-01

    Experimental anion permselective membranes were prepared and tested for their suitability as cell separators in a chemical redox power storage system being developed at NASA-Lewis Research Center. The goals of long-term (1000 hr) oxidative and thermal stability at 80 C in FeCl3 and CrCl3 electrolytes were met by most of the weak base and strong base amino exchange groups considered in the program. Good stability is exhibited by several of the membrane substrate resins. These are 'styrene' divinylbenzene copolymer and PVC film. At least four membrane systems produce strong flexible films with electrochemical properties (resistivity, cation transfer) superior to those of the 103QZL, the most promising commercial membrane. The physical and chemical properties of the resins are listed.

  3. U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads

    USGS Publications Warehouse

    Bischoff, J.L.; Wooden, J.; Murphy, F.; Williams, Ross W.

    2005-01-01

    We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ???60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few ??m deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems. Copyright ?? 2005 Elsevier Ltd.

  4. Capillary ion-exchange chromatography with nanogram sensitivity for the analysis of monoclonal antibodies.

    PubMed

    Rea, Jennifer C; Freistadt, Benny S; McDonald, Daniel; Farnan, Dell; Wang, Yajun Jennifer

    2015-12-11

    Ion-exchange chromatography (IEC) is widely used for profiling the charge heterogeneity of proteins, including monoclonal antibodies (mAbs). Despite good resolving power and robustness, ionic strength-based ion-exchange separations are generally product specific and can be time consuming to develop. In addition, conventional analytical scale ion-exchange separations require tens of micrograms of mAbs for each injection, amounts that are often unavailable in sample-limited applications. We report the development of a capillary IEC (c-IEC) methodology for the analysis of nanogram amounts of mAb charge variants. Several key modifications were made to a commercially available liquid chromatography system to perform c-IEC for charge variant analysis of mAbs with nanogram sensitivity. We demonstrate the method for multiple monoclonal antibodies, including antibody fragments, on different columns from different manufacturers. Relative standard deviations of <10% were achieved for relative peak areas of main peak, acidic and basic regions, which are common regions of interest for quantifying monoclonal antibody charge variants using IEC. The results herein demonstrate the excellent sensitivity of this c-IEC characterization method, which can be used for analyzing charge variants in sample-limited applications, such as early-stage candidate screening and in vivo studies.

  5. Impact of natural organic matter properties on the kinetics of suspended ion exchange process.

    PubMed

    Bazri, Mohammad Mahdi; Mohseni, Madjid

    2016-03-15

    Removal kinetics of four standard organic matter isolates under the application of strongly basic ion exchange resins (IEX) in suspended mode was studied under commercial application conditions. Suwannee River natural organic matter (SRNOM), SR fulvic acid (SRFA), and Pony Lake fulvic acid (PLFA) were greatly removed (>90%) and highly preferred by IEX resins (α > 5, over Cl(-), and HCO3(-)) while SR humic acid (SRHA) was the least preferred organic structure among the four isolates studied (α ≈ 1). Moreover, the efficacy of removal for fulvic acids (i.e., SRFA, PLFA) was consistent over consecutive reuse of IEX resins (i.e., loading cycles) whereas it decreased for SRNOM and SRHA over the course of operation. The stoichiometric correlation between the chloride released from the resins as a result of organic molecules uptake indicated that ion exchange was the dominant mechanism. Results obtained indicated that molecular weight and charge density of isolates played a major role in the performance of ion exchange process for organic matter removal. Furthermore, various empirical and physical models were evaluated using the experimental data and pore diffusion was found to be the rate-liming step during the uptake of organic matters; hence, it was used as the appropriate model to predict the kinetics of removal. Consequently, free liquid diffusivities and effective pore diffusion coefficients of organic molecules were estimated and findings were in agreement with the literature data that were obtained from spectrophotometric methods.

  6. Ag-doped 45S5 Bioglass®-based bone scaffolds by molten salt ion exchange: processing and characterisation.

    PubMed

    Newby, P J; El-Gendy, R; Kirkham, J; Yang, X B; Thompson, I D; Boccaccini, A R

    2011-03-01

    There is increasing interest in developing scaffolds with therapeutic and antibacterial potential for bone tissue engineering. Silver is a proven antibacterial agent which bacteria such as MRSA have little or no defense against. Using an ion exchange method, silver ions have been introduced into 45S5 Bioglass(®) based scaffolds that were fabricated using the foam replication technique. This technique allows the introduction of Ag(+) ions onto the surface of the scaffold without compromising the scaffold bioactivity and other physical properties such as porosity. Controlling the amount of Ag(+) ions introduced onto the surface of the scaffold was achieved by tailoring the ion exchange parameters to fabricate samples with repeatable and predictable Ag(+) ion release behavior. In vitro studies in simulated body fluid were carried out to ensure that the scaffolds maintained their bioactivity after the introduction of Ag(+) ions. It was also shown that the addition of low concentrations (2000:1 w/w) of silver ions supported the attachment and viability of human periodontal ligament stromal cells on the 3D scaffolds. This work has thus confirmed ion exchange as an effective technique to introduce Ag(+) ions into 45S5 Bioglass(®) scaffolds without compromising the basic properties of 45S5 Bioglass(®) which are required for applications in bone tissue engineering.

  7. The transfer behavior of different ions across anion and cation exchange membranes under vanadium flow battery medium

    NASA Astrophysics Data System (ADS)

    Sun, Jiawei; Li, Xianfeng; Xi, Xiaoli; Lai, Qinzhi; Liu, Tao; Zhang, Huamin

    2014-12-01

    The transfer behavior of different ions (V2+, V3+, VO2+, VO2+, H+, SO42-) across ion exchange membranes is investigated under vanadium flow battery (VFB) operating condition. VX-20 anion exchange membrane (AEM) and Nafion 115 cation exchange membrane (CEM) are selected to investigate the influence of fixed charged groups on the transfer behavior of different ions. The interaction between different ions and water is discussed in detail aiming to ascertain the variation of different ions in the charge-discharge process. Under the VFB medium, the transfer behavior and function of different ions are very different for the AEM and CEM. V2+ ions at the negative side accumulate when VFB is assembled with Nafion 115, while the VO2+ ions at the positive side accumulate for VX-20. The SO42- ions will transfer across Nafion 115 to balance the charges and the protons can balance the charges of VX-20. Finally the capacity fade mechanism of different membranes is investigated, showing that the capacity decay of VFB assembled with Nafion 115 mainly results from the cross mix of vanadium ions across the membrane, however, for VX-20, the side reactions can be the major reason. This paper provides important information about electrolyte for the application of VFB.

  8. Improvement of drug loading onto ion exchange resin by cyclodextrin inclusion complex.

    PubMed

    Samprasit, Wipada; Rojanarata, Theerasak; Akkaramongkolporn, Prasert; Ngawhirunpat, Tanasait; Sila-on, Warisada; Opanasopit, Praneet

    2013-11-01

    Ion exchange resins have ability to exchange their counter ions for ionized drug in the surrounding medium, yielding "drug resin complex." Cyclodextrin can be applied for enhancement of drug solubility and stability. Cyclodextrin inclusion complex of poorly water-soluble NSAIDs, i.e. meloxicam and piroxicam, was characterized and its novel application for improving drug loading onto an anionic exchange resin, i.e. Dowex® 1×2, was investigated. β-Cyclodextrin (β-CD) and hydroxypropyl β-cyclodextrin (HP-β-CD) were used for the preparation of inclusion complex with drugs in solution state at various pH. The inclusion complex was characterized by phase solubility, continuous variation, spectroscopic and electrochemistry methods. Then, the drug with and without cyclodextrin were equilibrated with resin at 1:1 and 1:2 weight ratio of drug and resin. Solubility of the drugs was found to increase with increasing cyclodextrin concentration and pH. The increased solubility was explained predominantly due to the formation of inclusion complex at low pH and the increased ionization of drug at high pH. According to characterization studies, the inclusion complex was successfully formed with a 1:1 stoichiometry. The presence of cyclodextrin in the loading solution resulted in the improvement of drug loading onto resin. Enhancing drug loading onto ion-exchange resin via the formation of cyclodextrin inclusion complex is usable in the development of ion-exchange based drug delivery systems, which will beneficially reduce the use of harmful acidic or basic and organic chemicals.

  9. Evaluation of Ion Exchange Materials in K Basin Floor Sludge and Potential Solvents for PCB Extraction from Ion Exchange Materials

    SciTech Connect

    Schmidt, A.J.; Klinger, G.S.; Bredt, P.R.

    1999-04-10

    Approximately 73 m{sup 3} of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. These small amounts are significant from a regulatory standpoint. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). Chemical pretreatment is required to address criticality issues and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Eleven technologies have been evaluated (Papp 1997) as potential pretreatment methods. Based on the evaluations and engineering studies and limited testing, Fluor Daniel Hanford recommended solvent washing of the K Basin sludge, followed by nitric acid dissolution and, potentially, peroxide addition (FDH 1997). The solvent washing (extraction) and peroxide addition would be used to facilitate PCB removal and destruction. Following solvent extraction, the PCBs could be distilled and concentrated for disposal as a low-level waste. The purpose of the work reported here was to continue investigating solvent extraction, first by better identifying the ion exchange materials in the actual sludge samples and then evaluating various solvents for removing the PCBs or possibly dissolving the resins. This report documents some of the process knowledge on ion exchange materials used and spilled in the K Basins and describes the materials identified from wet sieving KE Basin floor and canister sludge and the results of other analyses. Several photographs are included to compare materials and illustrate material behavior. A summary of previous tests on

  10. Ion exchange of several radionuclides on the hydrous crystalline silicotitanate, UOP IONSIV IE-911

    SciTech Connect

    Huckman, M.E.; Latheef, I.M.; Anthony, R.G.

    1999-04-01

    The crystalline silicotitanate, UOP IONSIV IE-911, is a proven material for removing radionuclides from a wide variety of waste streams. It is superior for removing several radionuclides from the highly alkaline solutions typical of DOE wastes. This laboratory previously developed an equilibrium model applicable to complex solutions for IE-910 (the power form of the granular IE-911), and more recently, the authors have developed several single component ion-exchange kinetic models for predicting column breakthrough curves and batch reactor concentration histories. In this paper, the authors model ion-exchange column performance using effective diffusivities determined from batch kinetic experiments. This technique is preferable because the batch experiments are easier, faster, and cheaper to perform than column experiments. They also extend these ideas to multicomponent systems. Finally, they evaluate the ability of the equilibrium model to predict data for IE-911.

  11. Ion exchangers in radioactive waste management: natural Iranian zeolites.

    PubMed

    Nilchi, A; Maalek, B; Khanchi, A; Ghanadi Maragheh, M; Bagheri, A; Savoji, K

    2006-01-01

    Five samples of natural zeolites from different parts of Iran were chosen for this study. In order to characterize and determine their structures, X-ray diffraction and infrared spectrometry were carried out for each sample. The selective absorption properties of each zeolite were found by calculating the distribution coefficient (K(d)) of various simulated wastes which were prepared by spiking the radionuclides with (131)I, (99)Mo, (153)Sm, (140)La and (147)Nd. All the zeolite samples used in this study had extremely high absorption value towards (140)La; clinoptolite from Mianeh and analsite from Ghalehkhargoshi showed good absorption for (147)Nd; clinoptolite from Semnan and clinoptolite from Firozkoh showed high absorption for (153)Sm; mesolite from Arababad Tabas showed good absorption for (99)Mo; and finally mesolite from Arababad Tabas, clinoptolite from Semnan and clinoptolite from Firozkoh could be used to selectively absorb (131)I from the stimulated waste which was prepared. The natural zeolites chosen for these studies show a similar pattern to those synthetic ion exchangers in the literature and in some cases an extremely high selectivity towards certain radioactive elements. Hence the binary separation of radioactive elements could easily be carried out. Furthermore, these zeolites, which are naturally occurring ion exchangers, are viable economically and extremely useful alternatives in this industry.

  12. Synthesis of layered sodium lanthanum selenide through ion exchange reactions

    SciTech Connect

    Butts, Laura J.; Strickland, Nicholas; Martin, Benjamin R.

    2009-04-02

    Layered hexagonal KLaSe2 ({alpha}-NaFeO{sub 2}-type) was synthesized using the reactive flux method and analyzed by powder XRD to determine its lattice constants (space group R-3m, a = 4.40508(5) A, c = 22.7838(5) A). NaLaSe{sub 2}, which normally crystallizes as a disordered rock salt structure with mixed Na+/La + 3 sites, was synthesized through a solid state ion exchange reaction at 585 deg. C from a 1:3 molar ratio mixture of KLaSe{sub 2}:NaI. The product of this reaction was hexagonally layered NaLaSe{sub 2} (space group R-3m, a = 4.3497(3) A, c = 20.808(2) A) isostructural to KLaSe{sub 2}. This product was analyzed by comparison with members of the set of solid solutions Na{sub (1-x)}K{sub (x)}LaSe{sub 2} to confirm that the extent ion exchange in this reaction was complete. Cubic (disordered) NaLaSe{sub 2} was also reacted with KI to yield the poorly crystalline hexagonally layered product with the approximate formula Na{sub 0.79}K{sub 0.21}LaSe{sub 2}.

  13. Radiation stability of sodium titanate ion exchange materials

    SciTech Connect

    Kenna, B.T.

    1980-02-01

    Sodium titanate and sodium titanate loaded macroreticular resin are being considered as ion exchangers to remove /sup 90/Sr and actinides from the large volume of defense waste stored at Hanford Site in Washington. Preliminary studies to determine the radiation effect on Sr/sup +2/ and I/sup -/ capacity of these ion-exchange materials were conducted. Samples of sodium titanate powder, sodium titanate loaded macroreticular resin, as well as the nitrate form of macroreticular anion resin were irradiated with up to 2 x 10/sup 9/ Rads of /sup 60/Co gamma rays. Sodium titanate cation capacity decreased about 50% while the sodium titanate loaded macroeticular resin displayed a dramatic decrease in cation capacity when irradiated with 10/sup 8/-10/sup 9/ Rad. The latter decrease is tentatively ascribed to radiation damage to the organic portion which subsequently inhibits interaction with the contained sodium titanate. The anion capacity of both macroreticular resin and sodium titanate loaded macroreticular resin exhibited significant decreases with increasing radiation exposure. These results suggest that consideration should be given to the potential effects of radiation degradation if column regeneration is to be used. 5 figures, 2 tables.

  14. Small Column Ion Exchange Monitor System Final Report

    SciTech Connect

    CASELLA, VITO

    2004-09-30

    A Small Column Ion Exchange (SCIX) system has been designed by the Oak Ridge and Savannah River National Laboratories (ORNL and SRNL) as a potential way to reduce Cs-137 concentrations in high-level radioactive waste at the Savannah River Site. SRNL was asked to develop gamma-ray monitors at six locations within the SCIX system. Gamma-ray monitors are required to verify the proper operation of the ion exchange system, detect cesium breakthrough, and confirm presence of cesium before and after used resin is transferred to a grinder module. The only observable gamma ray in the decay of Cs-137 is from its short-lived Ba-137m daughter. Chemical processes, such as the SCIX, may disrupt the secular equilibrium between this parent-daughter pair; meaning that measurement of Ba-137m will not necessarily yield information about Cs-137 content. While this is a complicating factor that can not be ignored, it is controllable by either: allowing sufficient time for equilibrium to be reestablished (about 20 minutes), or by making multiple measurements with sufficient statistical precision to determine the extent of disequilibrium. The present work provides a means of measuring the Cs-137 and Ba-137m by taking multiple measurements in a process isolation loop that contains the process solution of interest.

  15. UREA/ammonium ion removal system for the orbiting frog otolith experiment. [ion exchange resins for water treatment during space missions

    NASA Technical Reports Server (NTRS)

    Schulz, J. R.; Anselmi, R. T.

    1976-01-01

    The feasibility of using free urease enzyme and ANGC-101 ion exchange resin to remove urea and ammonium ion for space system waste water applications was studied. Specifically examined is the prevention of urea and ammonia toxicity in a 30-day Orbiting Frog Otolith (OFO) flight experiment. It is shown that free urease enzyme used in conjunction with ANGC-101 ion-exchange resin and pH control can control urea and amonium ion concentration in unbuffered recirculating water. In addition, the resin does not adversely effect the bullfrogs by lowering the concentration of cations below critical minimum levels. Further investigations on bioburden control, frog waste excretion on an OFO diet, a trade-off analysis of methods of automating the urea/ammonium ion removal system and fabrication and test of a semiautomated breadboard were recommended as continuing efforts. Photographs of test equipment and test animals are shown.

  16. Ammonia removal from wastewater by ion exchange in the presence of organic contaminants.

    PubMed

    Jorgensen, T C; Weatherley, L R

    2003-04-01

    The scope of this study was the removal of ammonium by ion exchange from simulated wastewater. The study looks at the effect of organics upon ammonium ion exchange equilibrium uptake. The ion exchangers included a natural zeolite clinoptilolite, and two polymeric exchangers, Dowex 50w-x8, and Purolite MN500. The organic compounds studied included citric acid and a number of proteins. The traditional method for removal of ammonium and organic pollutants from wastewater is biological treatment, but ion exchange offers a number of advantages including the ability to handle shock loadings and the ability to operate over a wider range of temperatures. The results show that in most of the cases studied, the presence of organic compounds enhances the uptake of ammonium ion onto the ion exchangers.

  17. On the influence of ion exchange on the local structure of the titanosilicate ETS-10.

    PubMed

    Pavel, Claudiu C; Zibrowius, Bodo; Löffler, Elke; Schmidt, Wolfgang

    2007-07-14

    The effect of ion exchange with different monovalent cations (NH(4)(+), K(+), Na(+) and Cs(+)) on the local structure of the titanosilicate ETS-10 has been studied by (29)Si MAS NMR and Raman spectroscopy. Although X-ray diffraction shows no significant influence of ion exchange on the long range order, ammonium exchange is found to result in substantial damage to the local structure. Ion exchange experiments with alkali cations under significantly more acidic conditions clearly show that the structural damage brought about by ammonium exchange is not caused by the low pH of the exchange solution. The exchange with potassium and caesium ions also leads to significant changes in the (29)Si NMR and Raman spectra. However, these changes can largely be reversed by sodium back-exchange.

  18. Improved chromatographic performances of glycidyl methacrylate anion-exchange monolith for fast nano-ion exchange chromatography.

    PubMed

    Bruchet, Anthony; Dugas, Vincent; Mariet, Clarisse; Goutelard, Florence; Randon, Jérôme

    2011-08-01

    An efficient and reproducible photopolymerized poly(glycidyl methacrylate-co-ethylene dimethacrylate) was synthesized in Teflon-coated fused-silica capillaries (100 μm id) and functionalized by reaction of triethylamine with reactive epoxy groups. We report here the successful transfer of a standard polymerization mixture optimized for the thermally initiated synthesis of glycidyl-based monolith to photo-induced polymerization. The monolith obtained after optimization of the photo-initiation conditions was characterized in reverse-phase chromatography evaluating its suitability in terms of efficiency, retention and hydrodynamic permeability. Reproducibility of the photo-induced procedure was satisfactory with RSD below 6% for retention and efficiency and slightly higher for hydrodynamic permeability (12%). The functionalized generic support was then used in nano-ion-exchange chromatography. Efficiencies up to 75,000 plates/m, ion-exchange capacity of 8 nano-equivalents/cm of monolithic column, with a combination of a satisfactory hydrodynamic permeability allowed to perform fast separations of five inorganic anions in <3 min maintaining baseline resolution. The efficiency of the monolith was not retention-dependent, demonstrating its wide range of possible applications for highly retained anions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fabrication and characterization planar waveguides of Na+-Ag+/K+ by ion exchange and prism coupler

    NASA Astrophysics Data System (ADS)

    Yulianto, Muchlas; Marzuki, Ahmad; Suryanti, Venty

    2017-08-01

    This paper reports about the fabrication of planar waveguides made of the ion-exchanged technique on a soda-lime glass. The process of the ion-exchanged occurs between Na+ ions from the soda-lime glass and Ag+/K+ ions from molten salt AgNO3+KNO3. Fabrication is conducted at 70 mol% of KNO3 and 30 mol% of an AgNO3 melt takes place for the realization of planar waveguides. The duration of ion-exchanged has been varied in the range of 25-900 minutes at the temperature of 350°C to diffusion processes. The purpose of our experiments is especially to study the effect of duration of the ion-exchange process to the main parameters used to characterized optical waveguides. The optical transmission spectra of the ion exchanged glasses were measured with a single beam UV/Visible Ocean Optics USB4000 Spectrometer. The refractive index change, the number of modes waveguides, and diffusion depth had been investigated. The m-lines spectroscopy with standard prism-coupling technique at 632,8 nm was used to measure the number of modes and depth of waveguides. Refractive index was measured with ABBE refractometer. The result shows that the glass refractive index change values of the ion-exchanged glasses are independent of both the ion exchange duration. The number of modes and the diffusion depth, however increase with increasing the duration of ion-exchange processes.

  20. Ion Exchange Column Tests Supporting Technetium Removal Resin Maturation

    SciTech Connect

    Nash, C.; McCabe, D.; Hamm, L.; Smith, F.; Morse, M.

    2013-12-20

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant, currently under construction. The baseline plan for this facility is to treat the waste, splitting it into High Level Waste (HLW) and Low Activity Waste (LAW). Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed on site. There are currently no plans to treat the waste to remove technetium, so its disposition path is the LAW glass. Due to the soluble properties of pertechnetate and long half-life of 99Tc, effective management of 99Tc is important. Options are being explored to immobilize the supplemental LAW portion of the tank waste, as well as to examine the volatility of 99Tc during the vitrification process. Removal of 99Tc, followed by off-site disposal has potential to reduce treatment and disposal costs. A conceptual flow sheets for supplemental LAW treatment and disposal that could benefit from technetium removal will specifically examine removing 99Tc from the LAW feed stream to supplemental immobilization. SuperLig® 639 is an elutable ion exchange resin. In the tank waste, 99Tc is predominantly found in the tank supernate as pertechnetate (TcO4-). Perrhenate (ReO4-) has been shown to be a good non-radioactive surrogate for pertechnetate in laboratory testing for this ion exchange resin. This report contains results of experimental ion exchange distribution coefficient and column resin maturation kinetics testing using the resin SuperLig® 639a to selectively remove perrhenate from simulated LAW. This revision includes results from testing to determine effective resin operating temperature range. Loading tests were performed at 45°C, and the computer modeling was updated to include the temperature effects. Equilibrium contact testing indicated that this batch of

  1. Studies of removal of palladium(II) ions from chloride solutions on weakly and strongly basic anion exchangers.

    PubMed

    Hubicki, Z; Wołowicz, A; Leszczyńska, M

    2008-11-30

    Palladium and its compounds find wide application in industry as a catalytic agent in different manufacture processes. Recovery of precious metals from industrial wastes is difficult and time consuming but in spite of these disadvantages it becomes profitable. Palladium(II) ions sorption from various chloride solutions of the composition: 0.1-6.0M HCl-0.00056 M Pd(II), 1.0M ZnCl(2)-0.1M HCl-0.00056 M Pd(II), 1.0M AlCl(3)-0.1M HCl-0.00056 M Pd(II) on the weakly and strongly basic anion exchangers (Varion ATM, Varion ADM and Varion ADAM) was discussed. The sorption research of Pd(II) ions on these resins was carried out by means of static and dynamic methods. The dynamic processes were applied in order to determine the breakthrough curves of Pd(II) ions. Moreover, the working ion-exchange capacities as well as the weight and bed distribution coefficients were determined from the Pd(II) breakthrough curves. The recovery factors of Pd(II) ions (% R) depending on the phase contact time were obtained by means of static methods. The highest ion-exchange capacities for the 0.1-6.0M HCl-0.00056 M Pd(II) systems were obtained for the weakly basic ion-exchange resin Varion ADAM.

  2. Ultra-low vanadium ion diffusion amphoteric ion-exchange membranes for all-vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Liao, J. B.; Lu, M. Z.; Chu, Y. Q.; Wang, J. L.

    2015-05-01

    An amphoteric ion-exchange membrane (AIEM) from fluoro-methyl sulfonated poly(arylene ether ketone) bearing content-controlled benzimidazole moiety, was firstly fabricated for vanadium redox flow battery (VRB). The AIEM and its covalently cross-linked membrane (AIEM-c) behave the highly suppressed vanadium-ion crossover and their tested VO2+ permeability are about 638 and 1117 times lower than that of Nafion117, respectively. This is further typically verified by the lower VO2+ concentration inside AIEM that is less than half of that inside Nafion117 detected by energy dispersive X-ray spectrometry, in addition of the nearly 3 times longer battery self-discharge time. The ultra-low vanadium ion diffusion could be ascribed to the narrower ion transporting channel originated from the acid-base interactions and the rebelling effect between the positively-charged benzimidazole structure and VO2+ ions. It is found that, VRB assembled with AIEM exhibits the equal or higher Coulombic efficiency (99.0% vs. 96.4%), voltage efficiency (90.7% vs. 90.7%) and energy efficiency (89.8% vs. 87.4%) than that with Nafion117 and keeps continuous 220 charge-discharge cycles for over 25 days, confirming that the AIEM of this type is a potentially suitable separator for VRB application.

  3. Increasing parvovirus filter throughput of monoclonal antibodies using ion exchange membrane adsorptive pre-filtration.

    PubMed

    Brown, Arick; Bechtel, Charity; Bill, Jerome; Liu, Hui; Liu, Jun; McDonald, Dan; Pai, Satyan; Radhamohan, Asha; Renslow, Ryan; Thayer, Brooke; Yohe, Stefan; Dowd, Chris

    2010-07-01

    Pre-filtration using ion exchange membrane adsorbers can improve parvovirus filter throughput of monoclonal antibodies (mAbs). The membranes work by binding trace foulants, and although some antibody product also binds, yields > or =99% are easily achieved by overloading. Results show that foulant adsorption is dependent on pH and conductivity, but independent of scale and adsorber brand. The ability to use ion exchange membranes as pre-filters is significant because it provides a clean, well defined, chemically stable option for enhancing throughput. Additionally, ion exchange membranes facilitate characterization of parvovirus filter foulants. Examination of adsorber elution samples using sedimentation velocity analysis and SEC-MALS/QELS revealed the presence of high molecular weight species ranging from 8 to 13 nm in hydrodynamic radius, which are similar in size to parvoviruses and thus would be expected to plug the pores of a parvovirus filter. A study of two identical membranes in-series supports the hypothesis that the foulants are soluble, trace level aggregates in the feed. This study's significance lies in a previously undiscovered application of membrane chromatography, leading to a more cost effective and robust approach to parvovirus filtration for the production of monoclonal antibodies.

  4. Development of the Ion Exchange-Gravimetric Method for Sodium in Serum as a Definitive Method

    PubMed Central

    Moody, John R.; Vetter, Thomas W.

    1996-01-01

    An ion exchange-gravimetric method, previously developed as a National Committee for Clinical Laboratory Standards (NCCLS) reference method for the determination of sodium in human serum, has been re-evaluated and improved. Sources of analytical error in this method have been examined more critically and the overall uncertainties decreased. Additionally, greater accuracy and repeatability have been achieved by the application of this definitive method to a sodium chloride reference material. In this method sodium in serum is ion-exchanged, selectively eluted and converted to a weighable precipitate as Na2SO4. Traces of sodium eluting before or after the main fraction, and precipitate contaminants are determined instrumentally. Co-precipitating contaminants contribute less than 0.1 % while the analyte lost to other eluted ion-exchange fractions contributes less than 0.02 % to the total precipitate mass. With improvements, the relative expanded uncertainty (k = 2) of the method, as applied to serum, is 0.3 % to 0.4 % and is less than 0.1 % when applied to a sodium chloride reference material. PMID:27805122

  5. Tailoring orthogonal proteomic routines to understand protein separation during ion exchange chromatography.

    PubMed

    Cabrera, Rosa; Zhelyazkova, Petya; Galvis, Leonardo; Fernandez-Lahore, Marcelo

    2008-07-01

    Surface charge, molecular weight, and folding state are known to influence protein chromatographic behaviour onto ion exchangers. Experimentally, information related to such factors can be gathered via 2-DE methods. The application of 2-D PAGE under denaturing/reducing conditions was already shown to reveal separation trends within a large protein population from cell extracts. However, ion-exchange chromatography normally runs under native conditions. A tailored protocol consisting in a first separation based on IEF on Immobiline strips under native conditions followed by a second dimension SDS-PAGE run was adopted. The chromatographic versus electrophoretic separation behaviours of two model proteins, thaumatin (TAU) and BSA, were compared to better understand which proteomic routine would be better suited to anticipate IEX chromatographic separations. It was observed that the information contained in the pI value obtained with the adapted 2-DE protocol showed better correlation with the IEX chromatographic behaviour. On the other hand, chromatographic separations performed in the presence of urea as a denaturant have demonstrated the potential influence of hydrodynamic radius/conformation on protein separation. Moreover, the information provided by such 2-D system correlated well with the chromatographic behaviour of an additional set of pure proteins. An initial prediction of protein ion-exchange chromatographic behaviour could be possible utilizing an experimental approach based on 2-DE running under milder chemical conditions. This technique provides information that more closely resembles the separation behaviour observed with a complex biotechnological feedstock.

  6. Determination of effective capacities of ion-exchangeable materials by measuring the equilibrium conductivity.

    PubMed

    Okabe, Toshiaki; Yokoyama, Yukio

    2010-01-01

    The effective ion-exchange capacities of ion-exchange materials were determined by measuring the change in the equilibrium conductivity of a column packed with analyte. The developed instrumental method can provide effective ion-exchange capacities for both cation and anion exchangers with simple operations. The cation-exchange capacity of a weak-acid cation-exchange resin (TSKgel SuperIC-Cation column) depended on the conditioning pH and the molar concentration of the conditioning agent. Plots of effective cation-exchange capacities over the conditioning pH exhibited three inflection points, suggesting the presence of two carboxy groups and one phenolic OH group in the resin, probably due to the inherent base polymer. This method was applied to several commercial analytical columns for ion chromatography, and could provide scientifically useful results for characterizing the resin properties.

  7. Electrodialysis-ion exchange for the separation of dissolved salts

    SciTech Connect

    Baroch, C.J.; Grant, P.J.

    1995-10-01

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. There is considerable interest in developing processes that remove or destroy the nitrate wastes. Electrodialysis-Ion Exchange (EDIX) is a possible process that should be more cost effective in treating aqueous waste steams. This report describes the EDIX process.

  8. Advanced integrated solvent extraction and ion exchange systems

    SciTech Connect

    Horwitz, P.

    1996-10-01

    Advanced integrated solvent extraction (SX) and ion exchange (IX) systems are a series of novel SX and IX processes that extract and recover uranium and transuranics (TRUs) (neptunium, plutonium, americium) and fission products {sup 90}Sr, {sup 99}Tc, and {sup 137}Cs from acidic high-level liquid waste and that sorb and recover {sup 90}Sr, {sup 99}Tc, and {sup 137}Cs from alkaline supernatant high-level waste. Each system is based on the use of new selective liquid extractants or chromatographic materials. The purpose of the integrated SX and IX processes is to minimize the quantity of waste that must be vitrified and buried in a deep geologic repository by producing raffinates (from SX) and effluent streams (from IX) that will meet the specifications of Class A low-level waste.

  9. Electrotransportation of aniline through a perfluorosulfonate ion-exchange membrane

    SciTech Connect

    Katakura, Katsumi . Dept. of Chemical Engineering); Inaba, Minoru; Toyama, Koji; Ogumi, Zempachi; Takehara, Zenichiro . Division of Energy and Hydrocarbon Chemistry)

    1994-07-01

    Transport phenomena of aniline through Na[sup +]-, K[sup +]-, and Cs[sup +]-form of a perfluorosulfonate ion-exchange membrane, Nafion 117, under a flow of dc current, electrotransportation, were investigated. In each form, an increase in transport number of anilinium cation was observed in the current density range from 0.3 to 1.3 mA cm[sup [minus]2]. The transport number of the anilinium cation in Cs[sup +]-form was larger than that expected from the concentration and diffusion coefficient of the anilinium cation in Cs[sup +]-form Nafion. These aniline transport phenomena may be attributable to a structural change of Nafion or a decrease in hydrophobic interaction between the anilinium cation and Nafion caused by the flow of dc current.

  10. Copper ion-exchanged channel waveguides optimization for optical trapping.

    PubMed

    Reshak, A H; Khor, K N; Shahimin, M M; Murad, S A Z

    2013-08-01

    Optical trapping of particles has become a powerful non-mechanical and non-destructive technique for precise particle positioning. The manipulation of particles in the evanescent field of a channel waveguide potentially allows for sorting and trapping of several particles and cells simultaneously. Channel waveguide designs can be further optimized to increase evanescent field prior to the fabrication process. This is crucial in order to make sure that the surface intensity is sufficient for optical trapping. Simulation configurations are explained in detail with specific simulation flow. Discussion on parameters optimization; physical geometry, optical polarization and wavelength is included in this paper. The effect of physical, optical parameters and beam spot size on evanescent field has been thoroughly discussed. These studies will continue toward the development of a novel copper ion-exchanged waveguide as a method of particle sorting, with biological cell propulsion studies presently underway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Recovery of very dilute acetic acid using ion exchange

    SciTech Connect

    Cloete, F.L.D.; Marais, A.P.

    1995-07-01

    Acetic and related acids occur in many industrial wastewaters, often mixed with several other classes of organic compounds. Acetic acid can be recovered from 1% solutions using weakly basic ion exchange resins. The acid is adsorbed by the free-base form of the resin, which can then be eluted using a slurry of lime to give a solution of calcium acetate. This solution could either be evaporated to crystallize calcium acetate or reacted with sulfuric acid to form acetic acid and gypsum. Laboratory tests of the proposed process gave product solutions of 15--20% acetic acid using pure 1% acetic acid as feed. Some measurements using a typical industrial effluent gave similar recoveries and showed that there was no initial fouling of the resins.

  12. Ion Exchange Resin Bead Decoupled High-Pressure Electroosmotic Pump

    PubMed Central

    Yang, Bingcheng; Zhang, Feifang; Liang, Xinmiao; Dasgupta, Purnendu K.; Liu, Shaorong

    2009-01-01

    We describe an electroosmotic pump (EOP) that utilizes a cation exchange resin bead as the electric field decoupler. The resin bead serves as a electrical grounding joint without fluid leakage, thus eliminating electrolytic gas interference from the flow channels. The arrangement is easy to practice from readily available components, displays a very low electrical resistance, and is capable of bearing high backpressure (at least 3200 psi). We use a silica xerogel column as the EOP element to pump water and demonstrate a complete capillary ion chromatograph (CIC), which uses a similar bead based microelectrodialytic generator (μ-EDG) to generate a KOH eluent from the pumped water. We observed good operational stability of the complete arrangement over long periods. PMID:19449862

  13. Electrodialysis-ion exchange for the separation of dissolved salts

    SciTech Connect

    Baroch, C.J.; Grant, P.J.

    1995-12-31

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. This report describes the process of electrodialysis-ion exchange (EDIX) for treating aqueous wastes streams consisting of nitrates, sodium, organics, heavy metals, and radioactive species.

  14. Effects of ion exchange on stream solute fluxes in a basin receiving highway deicing salts

    USGS Publications Warehouse

    Shanley, J.B.

    1994-01-01

    At Fever Brook, a 1260-ha forested basin in central Massachusetts, highway deicing salt application increased the solute flux in streamflow by 120% above background flux (equivalent basis) during a 2-yr period. Attempts to isolate the nonsalt component of stream solute fluxes have commonly subtracted salt contributions based on the net Cl flux (Cl output in streamflow minus Cl input in precipitation). In these studies, any net Na flux in excess of the amount needed to balance the net Cl flux has been attributed to weathering. At Fever Brook, however, the net output of Na was less than the net output of Cl, suggesting a loss of Na within the basin. The Na sink was inferred to be cation exchange of Na for Ca and Mg in the soil. A method was developed to quantify the exchange based on a Na budget, which included an independent estimate of the Na flux from weathering. The amount of exchange was apportioned to Ca and Mg based on their relative concentrations in the stream. The background fluxes of Ca and Mg (i.e., those that would occur in the absence of deicing salts) were calculated by subtracting the amounts from ion exchange plus the much smaller direct contributions in deicing salts from the observed fluxes. Ion exchange and direct salt contributions increased the net output fluxes of Ca and Mg, each by 44% above background. In basins that receive deicing salts, failure to account for cation exchange thus may result in an underestimate of the flux of Na from weathering and overestimates of the fluxes of Ca and Mg from weathering.

  15. Peptide Orientation Affects Selectivity in Ion-Exchange Chromatography

    SciTech Connect

    Alpert, Andrew J.; Petritis, Konstantinos; Kangas, Lars J.; Smith, R. D.; Mechtler, Karl; Mitulovic, Goran; Mohammed, Shabaz; Heck, Albert J.

    2010-06-15

    Here we demonstrate that separation of proteolytic peptides, having the same net charge and one basic residue, is affected by their specific orientation toward the stationary phase in ion-exchange chromatography. In electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) with an anion-exchange material, the C-terminus of the peptides is, on average, oriented toward the stationary phase. In cation exchange, the average peptide orientation is the opposite. Data with synthetic peptides, serving as orientation probes, indicate that in tryptic/ Lys-C peptides the C-terminal carboxyl group appears to be in a zwitterionic bond with the side chain of the C-terminal Lys/Arg residue. In effect, the side chain is then less basic than the N-terminus, accounting for the specific orientation of tryptic and Lys-C peptides. Analyses of larger sets of peptides, generated from lysates by either Lys-N, Lys-C, or trypsin, reveal that specific peptide orientation affects the ability of charged side chains, such as phosphate residues, to influence retention. Phosphorylated residues that are remote in the sequence from the binding site affect retention less than those that are closer. When a peptide contains multiple charged sites, then orientation is observed to be less rigid and retention tends to be governed by the peptide’s net charge rather than its sequence. These general observations could be of value in confirming a peptide’s identification and, in particular, phosphosite assignments in proteomics analyses. More generally, orientation accounts for the ability of chromatography to separate peptides of the same composition but different sequence.

  16. Peptide Orientation Affects Selectivity in Ion-Exchange Chromatography

    SciTech Connect

    Alpert, Andrew J.; Petritis, Konstantinos; Kangas, Lars J.; Smith, Richard D.; Mechtler, Karl; Mitulovic, Goran; Mohammed, Shabaz; Heck, Albert J.

    2010-06-15

    Here we demonstrate that separation of proteolytic peptides, having the same net charge and one basic residue, is affected by their specific orientation toward the stationary phase in ion-exchange chromatography. In electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) with an anion-exchange material, the C-terminus of the peptides is, on average, oriented toward the stationary phase. In cation exchange, the average peptide orientation is the opposite. Data with synthetic peptides, serving as orientation probes, indicate that in tryptic/Lys-C peptides the C-terminal carboxyl group appears to be in a zwitterionic bond with the side chain of the C-terminal Lys/Arg residue. In effect, the side chain is then less basic than the N-terminus, accounting for the specific orientation of tryptic and Lys-C peptides. Analyses of larger sets of peptides, generated from lysates by either Lys-N, Lys-C, or trypsin, reveal that specific peptide orientation affects the ability of harged side chains, such as phosphate residues, to influence retention. Phosphorylated residues that are remote in the sequence from the binding site affect retention less than those that are closer. When a peptide contains multiple charged sites, then orientation is observed to be less rigid and retention tends to be governed by the peptide’s net charge rather than its sequence. These general observations could be of value in confirming a peptide’s identification and, in particular, phosphosite assignments in proteomics analyses. More generally, orientation accounts for the ability of chromatography to separate peptides of the same compositionbut different sequence.

  17. The Ion Funnel: Theory, Implementations, and Applications

    PubMed Central

    Kelly, Ryan T.; Tolmachev, Aleksey V.; Page, Jason S.; Tang, Keqi; Smith, Richard D.

    2009-01-01

    The electrodynamic ion funnel has enabled the manipulation and focusing of ions in a pressure regime (0.1 to 30 Torr) that has challenged traditional approaches, providing the basis for much greater mass spectrometer ion transmission efficiencies. The initial ion funnel implementations aimed to efficiently capture ions in the expanding gas jet of an electrospray ionization source and radially focus them for efficient transfer through a conductance limiting orifice. We review the improvements in fundamental understanding of ion motion in ion funnels, the evolution in its implementations that have brought the ion funnel to its current state of refinement, as well as applications of the ion funnel for purposes such as ion trapping, ion cooling, low pressure electrospray, and ion mobility spectrometry. PMID:19391099

  18. A comparison study of ionic polymer-metal composites (IPMCs) fabricated with Nafion and other ion exchange membranes

    NASA Astrophysics Data System (ADS)

    Park, Jiyeon; Palmre, Viljar; Kim, Kwang; Shin, Dongsuk; Kim, Daniel H.; Yim, Woosoon; Bae, Chulsung

    2013-04-01

    Ionic polymer-metal composites (IPMCs) have been and still are one of the best candidates with great potential to be used as actuators and sensors particularly in bioengineering where the environmental conditions are in an aqueous medium. Each component of an IPMC is important. However, the ion exchange membrane should be more emphasized because it is where ions migrate when electrical stimulation is applied and eventually it produces deformation of the IPMC. So far, the most commonly used ion exchange membrane is Nafion and many studies have been conducted with it for IPMC applications. There are a number of other commercially available ion exchange membranes now, but only a few studies have been done on those membranes to be used in IPMC applications. In this study, four commercially available membranes, (1) Nafion N115 (DuPont), (2) CMI7000S (Membranes International Inc.), (3) F-14100 (fumatech), (4) GEFC-700 (Golden Energy Fuel Cell) were selected and fabricated in IPMCs and their potentials as actuators were examined by conducting various characterizations such as water uptake, ion exchange capacity, SEM, DSC, blocking force and bending displacement.

  19. An Evaluation of Solution Algorithms and Numerical Approximation Methods for Modeling an Ion Exchange Process

    PubMed Central

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.

    2010-01-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications. PMID:20577570

  20. An Evaluation of Solution Algorithms and Numerical Approximation Methods for Modeling an Ion Exchange Process.

    PubMed

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H; Miller, Cass T

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  1. An evaluation of solution algorithms and numerical approximation methods for modeling an ion exchange process

    SciTech Connect

    Bu Sunyoung Huang Jingfang Boyer, Treavor H. Miller, Cass T.

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  2. Modeling of Crystalline Silicotitanate Ion Exchange Columns Using Experimental Data from SRS Simulated Waste

    SciTech Connect

    Walker, D.D.

    1999-03-15

    Non-elutable ion exchange using crystalline silicotitanate is being considered for removing cesium from Savannah River Site radioactive waste. The construction cost of this process depends strongly on the size of the ion exchange column required to meet product specifications.

  3. Anion exchange resins: Structure, formulation, and applications. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect

    Not Available

    1994-07-01

    The bibliography contains citations concerning the formulation and synthesis of anion exchange resins based on such resins as amides, polyethylenes, and styrenes. Osmotic, sorption, and electrical properties; exchange kinetics behavior; structure studies; and temperature related performance effects on anion exchange resins are considered. Anion exchange chromatography of liquids, and applications in water purification, pollution control, and protein and metallic ion separation are included. (Contains a minimum of 222 citations and includes a subject term index and title list.)

  4. Latex-coated polymeric monolithic ion-exchange stationary phases. 2. Micro-ion chromatography.

    PubMed

    Zakaria, Philip; Hutchinson, Joseph P; Avdalovic, Nebojsa; Liu, Yan; Haddad, Paul R

    2005-01-15

    Latex-coated monolithic polymeric stationary phases are used for micro-ion chromatography (mu-IC) of inorganic anions. Monolithic columns were prepared by the in situ polymerization of butyl methacrylate, ethylene dimethacrylate, and 2-acrylamido-2-methyl-1-propanesulfonic acid within fused-silica capillaries of varying internal diameters. Introduction of ion-exchange sites was achieved by coating the anionic polymeric monolith with either Dionex AS10 or Dionex AS18 quaternary ammonium functionalized latex particles to give total ion-exchange capacities in the range 9-24 nequiv for a 30-cm column. The resultant mu-IC columns were used for the separation of anionic analytes using chloride or acetate as the eluent-competing ion and direct UV spectrophotometric detection at 195 nm or using hydroxide as the eluent-competing ion and suppressed or nonsuppressed contactless conductivity detection. Separation efficiencies of 13,000 plates/m were observed (for iodate), and separation efficiency was maintained for large increases in flow rate (up to 42 microL/min, corresponding to a linear flow velocity of 18.5 mm/s), enabling highly reproducible, rapid separations to be achieved (seven analyte anions in less than 2 min). Use of a hollow fiber micromembrane suppressor enabled effective suppression of hydroxide eluents over the range 0.5-5.0 mM, thereby permitting suppressed conductivity detection to be performed. However, the relatively large size of the suppressor resulted in reduced separation efficiencies (e.g., 5400 plates/m for iodate). Detection limits obtained with suppressed conductivity detection were in the range 0.4-1.2 microM.

  5. Chromatographic separation of certain metal ions using a bifunctional quaternary ammonium-sulfonate mixed bed ion-exchanger.

    PubMed

    Lasheen, Y F; Seliman, A F; Abdel-Rassoul, A A

    2006-12-15

    The separation behaviour of Pb(2+), Cu(2+), Cd(2+), Co(2+), Zn(2+) and Ni(2+) on bifunctional quaternary ammonium-sulfonate mixed ion-exchangers (Dionex, IonPac CS5 and CG5) was studied using different eluents including solutions of oxalic acid, potassium oxalate, sodium oxalate and ammonium oxalate. Separated metal ions were followed by using 4-(2-pyridylazo) resorcinol (PAR) as post-colouring complex. The retention factors of different ions proved to be dependent on the pH, concentration, nature of each complexing agent, and to less extent on eluent flow rate. The retention behaviour and separation mechanism of complexed metal analytes are discussed in the light of the stability of metal complexes and the ligand complexing ability of used eluent. Comparison between various mobile phases is evaluated, and both sodium and potassium oxalate can be used successfully for simultaneous separation of studied metals with good resolution within short elution periods. The method can be used in different applications including analysis of bottled water from different resources.

  6. Nanomaterials-Enhanced Electrically Switched Ion Exchange Process for Water Treatment

    SciTech Connect

    Lin, Yuehe; Choi, Daiwon; Wang, Jun; Bontha, Jagannadha R.

    2009-01-01

    The objective of our work is to develop an electrically switched ion exchange (ESIX) system based on conducting polymer/carbon nanotube (CNT) nanocomposites as a new and cost-effective approach for removal of radioactive cesium, chromate, and perchlorate from contaminated groundwater. The ESIX technology combines ion exchange and electrochemistry to provide a selective, reversible method for the removal of target species from wastewater. In this technique, an electroactive ion exchange layer is deposited on a conducting substrate, and ion uptake and elution are controlled directly by modulation of the potential of the layer. ESIX offers the advantages of highly-efficient use of electrical energy combined with no secondary waste generation. Recently, we have improved upon the ESIX process by modifying the conducting substrate with carbon nanotubes prior to the deposition of the electroactive ion exchanger. The nanomaterial-based electroactive ion exchange technology will remove cesium-137, chromate, and perchlorate rapidly from wastewater. The high porosity and high surface area of the electroactive ion exchange nanocomposites results in high loading capacity and minimize interferences for non-target species. Since the ion adsorption/desorption is controlled electrically without generating a secondary waste, this electrically active ion exchange process is a green process technology that will greatly reduce operating costs.

  7. Electrical resistance and transport numbers of ion-exchange membranes used in electrodialytic soil remediation

    SciTech Connect

    Hansen, H.K.; Ottosen, L.M.; Villumsen, A.

    1999-08-01

    Electrodialytic soil remediation is a recently developed method to decontaminate heavy metal polluted soil using ion-exchange membranes. In this method one side of the ion-exchange membrane is in direct contact with the polluted soil. It is of great importance to known if this contact with the soil causes damage to the membrane. This work presents the result of transport number and electrical resistance measurements done on four sets of ion-exchange membranes (Ionics, Inc CR67 HMR412 cation-exchange membranes and Ionics, Inc AR204 SXZR anion-exchange membranes), which have been used in four different electrodialytic soil remediation experiments. The experiments showed that after the use in electrodialytic soil remediation, the ion-exchange membranes had transport numbers in the same magnitude as new membranes. The electrical resistance for six membranes did not differ from that of new membranes, whereas two membranes showed a slightly increased resistance.

  8. Intermediate-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102

    SciTech Connect

    King, W.D.

    2001-02-15

    Ion exchange tests have been completed at the Savannah River Technology Center for British Nuclear Fuels Limited, Inc. as part of the Hanford River Protection Project. Radioactive cesium and technetium (pertechnetate form only) were removed by ion exchange from a sample of Envelope C salt solution from Hanford Tank 241-AN-102 (sample volume: approximately 17 L at 4.8 M Na plus). The original sample was diluted and subjected to strontium/transuranics (Sr/TRU) precipitation and filtration processes before ion exchange processing was performed. Batch contact and column tests for the ion exchange removal of cesium and technetium were then completed on the Sr/TRU-decontaminated product. Previous ion exchange tests were conducted on a smaller portion (0.5 L) of the Tank 241-AN-102 supernate sample, which had been similarly pretreated, and the results were reported in a separate document.

  9. Intermediate-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102

    SciTech Connect

    King, W.D.

    2001-09-10

    Ion exchange tests have been completed at the Savannah River Technology Center for British Nuclear Fuels Limited, Inc. as part of the Hanford River Protection Project. Radioactive cesium and technetium (pertechnetate form only) were removed by ion exchange from a sample of Envelope C salt solution from Hanford Tank 241-AN-102 (sample volume: approximately 18 L at 4.8 M Na plus). The original sample was diluted and subjected to strontium/transuranics (Sr/TRU) precipitation and filtration processes before ion exchange processing was performed. Batch contact and column tests for the ion exchange removal of cesium and technetium were then completed on the Sr/TRU-decontaminated product. Previous ion exchange tests were conducted on a smaller portion (0.5 L) of the Tank 241-AN-102 supernate sample, which had been similarly pretreated, and the results were reported in a separate document.

  10. Ion Exchange Media for Reduction of Liquid Radwaste in Commercial Power Plants

    SciTech Connect

    Yarnell, P.A.; Tavares, A.

    2008-07-01

    Ion exchange resins currently make up as much as one-half of all radioactive waste generated by commercial nuclear power plants. A major challenge is reduction of the quantity of ion exchange media requiring disposal. Although the amount of spent ion exchange resins disposed has decreased year after year, a new urgency has arisen with the pending closure of a major disposal site in 2008. This paper explores whether ion exchange resins also can be used to potentially reduce radioactive liquid waste volumes and / or limit them to Class A wastes only. Source term reduction and minimization of manpower exposure to radioactivity are other important goals. Specialty ion exchange products may help to achieve source term reduction of certain radionuclides. Some established operations, data, and process concepts are presented to address these critical issues encountered in liquid radwaste management. (authors)

  11. Ion-exchange selectivities of periderm and cuticular membranes toward alkali cations

    SciTech Connect

    Ersoz, M.; Duncan, H.J.

    1994-08-01

    The ion-exchange selectivities of lithium, sodium, potassium, and cesium on isolated potato periderm (Solanum tuberosum) and pear fruit cuticular membranes were investigated; the general order of preference both for cation selectivities and ion-exchange capacities was lithium > sodium > potassium > cesium. The potato periderm and pear fruit cuticular membranes exhibited a behavior typical of ion-exchange resins of the weak acid type. At constant pH 7, the ion-exchange capacities of periderm and cuticular membranes increased with hydrated ionic radius, and also with increasing pH and neutral salt concentration, and decreased with crystal ionic radius. Counterion selectivities also exhibited the same behavior. The ion-exchange properties are discussed in terms of the structure and function of potato periderm and pear fruit cuticular membranes.

  12. Comparison of monomode KTiOPO4 waveguide formed by C3+ ion implantation and Rb+ ion exchange

    NASA Astrophysics Data System (ADS)

    Cui, Xiao-Jun; Wang, Liang-Ling

    2017-02-01

    In this work, we report on the formation and characterization of monomode KTiOPO4 waveguide at 1539 nm by 6.0 MeV C3+ ion implantation with the dose of 2×1015 ions/cm2 and Rb+-K+ ion exchange, respectively. The relative intensity of light as a function of effective refractive index of TM modes at 633 nm and 1539 nm for KTiOPO4 waveguide formed by two different methods were compared with the prism coupling technique. The refractive index (nz) profile for the ion implanted waveguide was reconstructed by reflectivity calculation method, and one for the ion exchanged waveguide was by inverse Wentzel-Kramers-Brillouin. The nuclear energy loss versus penetration depth of the C3+ ions implantation into KTiOPO4 was simulated using the Stopping Range of Ions in Matter software. The Rutherford Backscattering Spectrometry spectrum of KTiOPO4 waveguide was analyzed after ions exchanged. The results showed that monomode waveguide at 1539 nm can be formed by ion implantation and Rb+ -K+ ion exchange, respectively.

  13. Preparation and characterization of (St-DVB-MAA) ion exchange resins

    NASA Astrophysics Data System (ADS)

    Jiang, Shanquan; Sun, Xiangwei; Ling, Lixing; Wang, Shumin; Wu, Wufeng; Cheng, Shihong; Hu, Yue; Zhong, Chunyan

    2017-08-01

    In this paper, used polyvinyl alcohol as dispersing agent, Benzoyl peroxide as initiator of polymerization, Divinyl benzene as cross-linking agent, Styrene and 2-Methylpropenoic acid as monomer, ion exchange resin (copolymer of St-DVB-MAA)were prepared by suspension polymerization on 80°C. The structures, components and properties of the prepared composite micro gels were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA). The experiment of ion exchange was conducted by resin to deal with copper ions in the solution. The result showed that performance of the ion exchange capacity was excellent, which impacted by pH.

  14. Ion mobility spectrometry-hydrogen deuterium exchange mass spectrometry of anions: part 1. Peptides to proteins.

    PubMed

    Donohoe, Gregory C; Khakinejad, Mahdiar; Valentine, Stephen J

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  15. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 1. Peptides to Proteins

    NASA Astrophysics Data System (ADS)

    Donohoe, Gregory C.; Khakinejad, Mahdiar; Valentine, Stephen J.

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  16. Regeneration of spent powdered activated carbon saturated with inorganic ions by cavitation united with ion exchange method.

    PubMed

    Li, Gang; Gao, Hong; Li, Yansheng; Yang, Huixin

    2011-06-01

    Using ion exchange resin as transfer media, regenerate powdered activated carbon (PAC) adsorbed inorganic ions by cavitation to enhance the transfer; we studied how the regeneration time and the mass ratio of resin and PAC influence the regeneration rate respectively through re-adsorption. The result showed that the effective regeneration of PAC saturated with inorganic ions was above 90% using ion exchange resin as media and transfer carrier, the quantity of PAC did not reduced but activated in the process. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  17. Revised Thermal Analysis of LANL Ion Exchange Column

    SciTech Connect

    Laurinat, J

    2006-04-11

    This document updates a previous calculation of the temperature distributions in a Los Alamos National Laboratory (LANL) ion exchange column.1 LANL operates two laboratory-scale anion exchange columns, in series, to extract Pu-238 from nitric acid solutions. The Defense Nuclear Facilities Safety Board has requested an updated analysis to calculate maximum temperatures for higher resin loading capacities obtained with a new formulation of the Reillex HPQ anion exchange resin. The increased resin loading capacity will not exceed 118 g plutonium per L of resin bed. Calculations were requested for normal operation of the resin bed at the minimum allowable solution feed rate of 30 mL/min and after an interruption of flow at the end of the feed stage, when one of the columns is fully loaded. The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades. At low temperatures, resin bed temperatures increase primarily due to decay heat. At {approx}70 C a Low Temperature Exotherm (LTE) resulting from the reaction between 8-12 M HNO{sub 3} and the resin has been observed. The LTE has been attributed to an irreversible oxidation of pendant ethyl benzene groups at the termini of the resin polymer chains by nitric acid. The ethyl benzene groups are converted to benzoic acid moities. The resin can be treated to permanently remove the LTE by heating a resin suspension in 8M HNO{sub 3} for 30-45 minutes. No degradation of the resin performance is observed after the LTE removal treatment. In fact, heating the resin in boiling ({approx}115-120 C) 12 M HNO{sub 3} for 3 hr displays thermal stability analogous to resin that has been treated to remove the LTE. The analysis is based on a previous study of the SRS Frames Waste Recovery (FWR) column, performed in support of the Pu-238 production campaign for NASA's Cassini mission. In that study, temperature transients

  18. The effect of electron beam irradiation on silver-sodium ion exchange in silicate glasses

    NASA Astrophysics Data System (ADS)

    Sidorov, Alexander I.; Prosnikov, Mikhail A.

    2016-04-01

    It is shown experimentally that electron irradiation of sodium-silicate glasses makes possible the control of the subsequent ion exchange Ag+ ↔ Na+ process in a salt melt. The reason of this effect is the negatively charged regions formation in a glass volume during electron irradiation. The electric field, produced by these regions in glass volume, results in positive Na+ ions field migration into them. The spatial redistribution of Na+ ions results in the decrease of the ion exchange efficiency, or the ion exchange can be even blocked. This led to the decrease of the luminescence intensity of neutral silver molecular clusters in the irradiated zone, and effect on the silver nanoparticles formation during the subsequent thermal treatment. The observed effects can be used for the control of ion exchange processes during integrated optics devices fabrication, and for the electron-beam recording of optical information.

  19. Ion-beam technology and applications

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Robson, R. R.; Sovey, J. S.

    1977-01-01

    Ion propulsion research and development yields a mature technology that is transferable to a wide range of nonpropulsive applications, including terrestrial and space manufacturing. A xenon ion source was used for an investigation into potential ion-beam applications. The results of cathode tests and discharge-chamber experiments are presented. A series of experiments encompassing a wide range of potential applications is discussed. Two types of processes, sputter deposition, and erosion were studied. Some of the potential applications are thin-film Teflon capacitor fabrication, lubrication applications, ion-beam cleaning and polishing, and surface texturing.

  20. Mercury removal from water streams through the ion exchange membrane bioreactor concept.

    PubMed

    Oehmen, Adrian; Vergel, Dario; Fradinho, Joana; Reis, Maria A M; Crespo, João G; Velizarov, Svetlozar

    2014-01-15

    Mercury is a highly toxic heavy metal that causes human health problems and environmental contamination. In this study, an ion exchange membrane bioreactor (IEMB) process was developed to achieve Hg(II) removal from drinking water and industrial effluents. Hg(II) transport through a cation exchange membrane was coupled with its bioreduction to Hg(0) in order to achieve Hg removal from concentrated streams, with minimal production of contaminated by-products observed. This study involves (1) membrane selection, (2) demonstration of process effectiveness for removing Hg from drinking water to below the 1ppb recommended limit, and (3) process application for treatment of concentrated water streams, where >98% of the Hg was removed, and the throughput of contaminated water was optimised through membrane pre-treatment. The IEMB process represents a novel mercury treatment technology with minimal generation of contaminated waste, thereby reducing the overall environmental impact of the process. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Ion exchange chromatography of monoclonal antibodies: effect of resin ligand density on dynamic binding capacity.

    PubMed

    Hardin, Ann Marie; Harinarayan, Chithkala; Malmquist, Gunnar; Axén, Andreas; van Reis, Robert

    2009-05-15

    Dynamic binding capacity (DBC) of a monoclonal antibody on agarose based strong cation exchange resins is determined as a function of resin ligand density, apparent pore size of the base matrix, and protein charge. The maximum DBC is found to be unaffected by resin ligand density, apparent pore size, or protein charge within the tested range. The critical conductivity (conductivity at maximum DBC) is seen to vary with ligand density. It is hypothesized that the maximum DBC is determined by the effective size of the proteins and the proximity to which they can approach one another. Once a certain minimum resin ligand density is supplied, additional ligand is not beneficial in terms of resin capacity. Additional ligand can provide flexibility in designing ion exchange resins for a particular application as the critical conductivity could be matched to the feedstock conductivity and it may also affect the selectivity.

  2. Evaluation of selected ion exchangers for the removal of cesium from MVST W-25 supernate

    SciTech Connect

    Collins, J.L.; Egan, B.Z.; Anderson, K.K.; Chase, C.W.; Mrochek, J.E.; Bell, J.T.; Jernigan, G.E.

    1995-04-01

    The goal of this batch-test equilibration study was to evaluate the effectiveness of certain ion exchangers for removing cesium from supernate taken from tank W-25 of the Melton Valley Storage Tank (MVST) Facility located at the Oak Ridge National Laboratory (ORNL). These exchangers were selective for removing cesium from alkaline supernatant solutions with high salt concentrations. Since the supernates of evaporator concentrates stored in tanks at the MVST facility have compositions similar to some of those stored in tanks at Hanford, the data generated in this study should prove useful in the overall evaluation of the ion exchangers for applications to Hanford and other US Department of Energy (USDOE) sites. A goal of the waste processing effort at Hanford is to remove enough cesium to ensure that the resulting LLW will meet the Nuclear Regulatory Commission (NRC) 10 CFR 61 class A limit for {sup 137}Cs (1 Ci/m{sup 3} or 1 {mu}Ci/mL). The separated cesium may be concentrated and vitrified for disposal in the high-level waste repository. The decontaminated effluent would be solidified for near-surface disposal.

  3. THERMAL MODELING OF ION EXCHANGE COLUMNS WITH SPHERICAL RF RESIN

    SciTech Connect

    Lee, S.; King, W.

    2009-12-30

    Models have been developed to simulate the thermal performance of RF columns fully loaded with radioactive cesium. Temperature distributions and maximum temperatures across the column were calculated during Small Column Ion Exchange (SCIX) process upset conditions with a focus on implementation at Hanford. A two-dimensional computational modeling approach was taken to include conservative, bounding estimates for key parameters such that the results will provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on RF. The current full-scale design for the SCIX system includes a central cooling tube, and one objective of these calculations was to examine its elimination to simplify the design. Results confirmed that a column design without a central cooling tube is feasible for RF, allowing for the possibility of significant design simplifications if it can be assumed that the columns are always filled with liquid. With active cooling through the four outer tubes, the maximum column diameter expected to maintain the temperature below the assumed media and safety limits is 26 inches, which is comparable to the current design diameter. Additional analysis was conducted to predict the maximum column temperatures for the previously unevaluated accident scenario involving inadvertent drainage of liquid from a cesium-saturated column, with retention of the ion exchange media and cesium in the column. As expected, much higher maximum temperatures are observed in this case due to the poor heat transfer properties of air versus liquid. For this hypothetical accident scenario involving inadvertent and complete drainage of liquid from a cesium-saturated column, the modeling results indicate that the maximum temperature within a 28 inch diameter RF column with external cooling is expected to exceed 250 C within 2 days, while the maximum temperature of a 12 inch column is maintained below

  4. Coupled acoustic-gravity field for dynamic evaluation of ion exchange with a single resin bead.

    PubMed

    Kanazaki, Takahiro; Hirawa, Shungo; Harada, Makoto; Okada, Tetsuo

    2010-06-01

    A coupled acoustic-gravity field is efficient for entrapping a particle at the position determined by its acoustic properties rather than its size. This field has been applied to the dynamic observation of ion-exchange reactions occurring in a single resin bead. The replacement of counterions in an ion-exchange resin induces changes in its acoustic properties, such as density and compressibility. Therefore, we can visually trace the advancement of an ion-exchange reaction as a time change in the levitation position of a resin bead entrapped in the field. Cation-exchange reactions occurring in resin beads with diameters of 40-120 microm are typically completed within 100-200 s. Ion-exchange equilibrium or kinetics is often evaluated with off-line chemical analyses, which require a batch amount of ion exchangers. Measurements with a single resin particle allow us to evaluate ion-exchange dynamics and kinetics of ions including those that are difficult to measure by usual off-line analyses. The diffusion properties of ions in resins have been successfully evaluated from the time change in the levitation positions of resin beads.

  5. Electrically controlled exchange bias for spintronic applications

    NASA Astrophysics Data System (ADS)

    He, Xi; Polisetty, Srinivas; Binek, Christian

    2006-03-01

    Electrically controlled exchange bias (EB) is proposed for novel spintronic applications [1]. Basic effects of electrically controlled EB and its magnetoelectric (ME) switching are studied in a Cr2O3(111)/(Co/Pt)3 heterostructure. Exchange coupling between the ME antiferromagnet Cr2O3 and a ferromagnetic CoPt multilayer exhibits perpendicular EB. The latter is controlled by applied axial electric fields inducing excess magnetization at the interface. The enhancement of this hitherto weak tuning effect is explored when replacing ME bulk pinning systems by epitaxal thin films. Recently, the sign of the EB field has been tuned via field cooling the system in either parallel or antiparallel axial magnetic and electric fields [2].Here, the crossover from bulk to thin film ME pinning systems is studied and spintronic applications are suggested based on the electrically controlled EB. Pure voltage control of magnetic configurations of tunneling magnetoresistance spin valves is proposed as an alternative to current-induced magnetization switching. In addition we suggest an XOR operation realized in a MEally pinned giant magneto resistance structure. [1] Ch. Binek, B.Doudin, J. Phys. Condens. Matter 17, L39 (2005). [2] P. Borisov et al., Phys. Rev. Lett. 94, 117203 (2005).

  6. Enhanced performance of anion exchange membranes via crosslinking of ion cluster regions for fuel cells

    NASA Astrophysics Data System (ADS)

    Lai, Ao Nan; Guo, Dong; Lin, Chen Xiao; Zhang, Qiu Gen; Zhu, Ai Mei; Ye, Mei Ling; Liu, Qing Lin

    2016-09-01

    Development of anion exchange membranes (AEMs) with high hydroxide conductivity, good dimensional and alkaline stabilities is still a challenge for the practical application of AEM fuel cells. In this study, we report a new strategy to prepare high-performance AEMs with crosslinked ionic regions. A series of phenolphthalein-containing poly(arylene ether sulfone)s crosslinked AEMs was synthesized by grafting ion groups selectively and densely on the phenolphthalein units to form ion clusters that are further crosslinked to generate the hydrophilic ionic regions. The crosslinking reaction not only improved the dimensional stability of the AEMs, but also increased the aggregation of the ion clusters leading to the formation of hydrophilic/hydrophobic phase-separated morphology and ion-conducting channels. As a result, enhancements in both ion conductivity and dimensional stability can be achieved. The crosslinked AEMs showed high hydroxide conductivities in the range of 52.2-143.4 mS cm-1 from 30 to 80 °C and a superb ratio of relative conductivity to relative swelling at 80 °C. Furthermore, the crosslinked AEMs also exhibited good mechanical properties, thermal and alkaline stabilities and desirable single cell performance. This work presents a promising strategy for the synthesis of high-performance AEMs for fuel cells.

  7. Improving ion-exchange membrane properties by the role of nanoparticles

    NASA Astrophysics Data System (ADS)

    Ariono, Danu; Khoiruddin

    2017-01-01

    Extensive application of synthetic ion-exchange membrane (IEM) in many areas has necessitated the improvement of their properties. Recently, the introduction of nanoparticles into polymeric membrane has attracted growing interest since the combination of both materials results in better properties. This well-known mixed-matrix membrane exhibits superior characteristics compared to an individual polymeric membrane. Properties of the nanoparticles such as electrical conductivity, hydrophilicity, and adsorption capacity can be utilized to produce the IEM with better physicochemical, electrochemical, and mechanical characteristics. The nanoparticles may also be used to achieve a specific characteristic such as an antibacterial property and monovalent ion permselectivity. In this paper, preparation, the role of inorganic materials and performance of mixed-matrix IEM are reviewed. In addition, challenges facing mixed-matrix IEM and strategies taken to overcome those challenges and future perspectives are discussed.

  8. Long-range repulsion of colloids driven by ion exchange and diffusiophoresis.

    PubMed

    Florea, Daniel; Musa, Sami; Huyghe, Jacques M R; Wyss, Hans M

    2014-05-06

    Interactions between surfaces and particles in aqueous suspension are usually limited to distances smaller than 1 μm. However, in a range of studies from different disciplines, repulsion of particles has been observed over distances of up to hundreds of micrometers, in the absence of any additional external fields. Although a range of hypotheses have been suggested to account for such behavior, the physical mechanisms responsible for the phenomenon still remain unclear. To identify and isolate these mechanisms, we perform detailed experiments on a well-defined experimental system, using a setup that minimizes the effects of gravity and convection. Our experiments clearly indicate that the observed long-range repulsion is driven by a combination of ion exchange, ion diffusion, and diffusiophoresis. We develop a simple model that accounts for our data; this description is expected to be directly applicable to a wide range of systems exhibiting similar long-range forces.

  9. A Novel Ion Exchange System to Purify Mixed ISS Waste Water Brines for Chemical Production and Enhanced Water Recovery

    NASA Technical Reports Server (NTRS)

    Lunn, Griffin Michael; Spencer, LaShelle E.; Ruby, Anna Maria; McCaskill, Andrew

    2014-01-01

    Current International Space Station water recovery regimes produce a sizable portion of waste water brine. This brine is highly toxic and water recovery is poor: a highly wasteful proposition. With new biological techniques that do not require waste water chemical pretreatment, the resulting brine would be chromium-free and nitrate rich which can allow possible fertilizer recovery for future plant systems. Using a system of ion exchange resins we can remove hardness, sulfate, phosphate and nitrate from these brines to leave only sodium and potassium chloride. At this point modern chlor-alkali cells can be utilized to produce a low salt stream as well as an acid and base stream. The first stream can be used to gain higher water recovery through recycle to the water separation stage while the last two streams can be used to regenerate the ion exchange beds used here, as well as other ion exchange beds in the ISS. Conveniently these waste products from ion exchange regeneration would be suitable as plant fertilizer. In this report we go over the performance of state of the art resins designed for high selectivity of target ions under brine conditions. Using ersatz ISS waste water we can evaluate the performance of specific resins and calculate mass balances to determine resin effectiveness and process viability. If this system is feasible then we will be one step closer to closed loop environmental control and life support systems (ECLSS) for current or future applications.

  10. Charge-exchange collisions of C 60z+ : a probe of the ion charge distribution

    NASA Astrophysics Data System (ADS)

    Cameron, Douglas B.; Parks, Joel H.

    1997-06-01

    We present Paul trap measurements of charge-exchange collisions of Li, Cs and C 60 with C 60z+ ions ( z = 1-3) at thermal energies. Surprisingly, the measured charge-exchange rates for each neutral species are not proportional to the ion charge z as would be expected for Langevin collisions involving a uniformly charged ion. The relative rates can be reproduced by a model based on a symmetric distribution of point charges that are free to move on the ion surface during the neutral trajectory. Such behavior can be attributed to static and possibly dynamic Jahn-Teller effects in C 60z+ ions.

  11. Protein-surface interaction maps for ion-exchange chromatography.

    PubMed

    Freed, Alexander S; Cramer, Steven M

    2011-04-05

    In this paper, protein-surface interaction maps were generated by performing coarse-grained protein-surface calculations. This approach allowed for the rapid determination of the protein-surface interaction energies at a range of orientations and distances. Interaction maps of lysozyme indicated that there was a contiguous series of orientations corresponding to several adjacent preferred binding regions on the protein surface. Examination of these orientations provided insight into the residues involved in surface interactions, which qualitatively agreed with the retention data for single-site mutants. Interaction maps of lysozyme single-site mutants were also generated and provided significant insight into why these variants exhibited significant differences in their chromatographic behavior. This approach was also employed to study the binding behavior of CspB and related mutants. The results indicated that, in addition to describing general trends in the data, these maps provided significant insight into retention data of the single-site mutants. In particular, subtle retention trends observed with the K12 and K13 mutants were well-described using this interaction map approach. Finally, the number of interaction points with energies stronger than -2 kcal/mol was shown to be able to semi-quantitatively predict the behavior of most of the mutants. This rapid approach for calculating protein-surface interaction maps is expected to facilitate future method development for separating closely related protein variants in ion-exchange systems.

  12. Ion Exchange Resin and Clay Vitrification by Plasma Discharges

    NASA Astrophysics Data System (ADS)

    Díaz A., Laura V.; Pacheco S., Joel O.; Pacheco P., Marquidia; Monroy G., Fabiola; Emeterio H., Miguel; Ramos F., Fidel

    2006-12-01

    The lack of treatment of a low and intermediate level radioactive waste (LILRW) lead us to propose a vitrification process based on a plasma discharge; this technique incorporates LILRW into a matrix glass composed of ceramic clays material. The Mexican Institute of Nuclear Research (ININ), uses an ion exchange resin IRN 150 (styrene-divinilbence copolymer) in the TRIGA MARK III nuclear reactor. The principal objective of this resin is to absorb particles containing heavy metals and low-level radioactive particles. Once the IRN 150 resin filter capacity has been exceeded, it should be replaced and treated as LILRW. In this work, a transferred plasma system was realized to vitrify this resin taking advantage of its high power density, enthalpy and chemical reactivity as well as its rapid quenching and high operation temperatures. In order to characterize the morphological structure of these clay samples, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Thermogravimetric analysis (TGA) techniques were applied before and after the plasma treatment.

  13. Crystalline Silicotitanate Ion Exchange Support for Salt-Alternatives

    SciTech Connect

    Fondeur, F.F.

    2001-02-23

    The current version of crystalline silicotitanate (TAM5) is commercially available from UOP under the trade name IONSIV IE-911. TAM5 was extensively tested by several researchers and was determined as the best currently available material for removing radioisotopes from various types of nuclear wastes salt solutions stored at various DOE sites. The studies at Savannah River Technology Center (SRTC) indicated that the CST granules tend to leach into the nuclear waste simulants as it is processed by the ion exchange columns that is packed with CST granules from UOP. We, at Texas A and M University, agreed to conduct research to compliment the efforts at SRTC so that IONSIV IE-911 could be used for the treatment of nuclear waste stored at the DOE Savannah River facility. After consultation, we developed a Task Plan in January 2000. According to the agreement between Westinghouse Savannah River Company, Savannah River Technology Center, Aiken SC 29808 and, College Station, TX 77843, synthesis and the performance evaluations of crystalline silicotitanates (CST) were performed the during period of April 1 - September 30, 2000. Our main goals were delivery of a kilogram of CST (TAM5-4) synthesized at Texas A and M University in July to SRTC, performance evaluation of CST in nuclear waste simulants, and consultation mainly by telephone.

  14. New ion-exchanged zeolite derivatives: antifungal and antimycotoxin properties against Aspergillus flavus and aflatoxin B1

    NASA Astrophysics Data System (ADS)

    Savi, Geovana D.; Cardoso, Willian A.; Furtado, Bianca G.; Bortolotto, Tiago; Da Agostin, Luciana O. V.; Nones, Janaína; Torres Zanoni, Elton; Montedo, Oscar R. K.; Angioletto, Elidio

    2017-08-01

    Zeolites are microporous crystalline hydrated aluminosilicates with absorbent and catalytic properties. This material can be used in many applications in stored-pest management such as: pesticide and fertilizer carriers, animal feed additives, mycotoxin binders and food packaging materials. Herein, four 4A zeolite forms were prepared by ion-exchange and their antifungal effect against Aspergillus flavus was highlighted. Additionally, the antimycotoxin activity and the aflatoxin B1 (AFB1) adsorption capacity of these zeolites as well as their toxic effects on Artemia sp. were investigated. The ion-exchanged zeolites with Li+ and Cu2+ showed the best antifungal activity against A. flavus, including effects on conidia germination and hyphae morphological alterations. Regarding to antimycotoxin activity, all zeolite samples efficiently inhibited the AFB1 production by A. flavus. However, the ion-exchanged zeolites exhibited better results than the 4A zeolite. On the other hand, the AFB1 adsorption capacity was only observed by the 4A zeolite and zeolite-Li+. Lastly, our data showed that all zeolites samples used at effective concentrations for antifungal and antimycotoxin assays (2 mg ml-1) showed no toxic effects towards Artemia sp. Results suggest that some these ion-exchanged zeolites have great potential as an effective fungicide and antimycotoxin agent for agricultural and food safety applications.

  15. Design and performance of a new continuous-flow sample-introduction system for flame infrared-emission spectrometry: Applications in process analysis, flow injection analysis, and ion-exchange high-performance liquid chromatography.

    PubMed

    Lam, C K; Zhang, Y; Busch, M A; Busch, K W

    1993-06-01

    A new sample introduction system for the analysis of continuously flowing liquid streams by flame infrared-emission (FIRE) spectrometry has been developed. The system uses a specially designed purge cell to strip dissolved CO(2) from solution into a hydrogen gas stream that serves as the fuel for a hydrogen/air flame. Vibrationally excited CO(2) molecules present in the flame are monitored with a simple infrared filter (4.4 mum) photometer. The new system can be used to introduce analytes as a continuous liquid stream (process analysis mode) or on a discrete basis by sample injection (flow injection analysis mode). The key to the success of the method is the new purge-cell design. The small internal volume of the cell minimizes problems associated with purge-cell clean-out and produces sharp, reproducible signals. Spent analytical solution is continuously drained from the cell, making cell disconnection and cleaning between samples unnecessary. Under the conditions employed in this study, samples could be analyzed at a maximum rate of approximately 60/h. The new sample introduction system was successfully tested in both a process analysis- and a flow injection analysis mode for the determination of total inorganic carbon in Waco tap water. For the first time, flame infrared-emission spectrometry was successfully extended to non-volatile organic compounds by using chemical pretreatment with peroxydisulfate in the presence of silver ion to convert the analytes into dissolved carbon dioxide, prior to purging and detection by the FIRE radiometer. A test of the peroxydisulfate/Ag(+) reaction using six organic acids and five sugars indicated that all 11 compounds were oxidized to nearly the same extent. Finally, the new sample introduction system was used in conjunction with a simple filter FIRE radiometer as a detection system in ion-exchange high-performance liquid chromatography. Ion-exchange chromatograms are shown for two aqueous mixtures, one containing six organic

  16. Design and performance evaluation of a microfluidic ion-suppression module for anion-exchange chromatography.

    PubMed

    Wouters, Sam; Wouters, Bert; Jespers, Sander; Desmet, Gert; Eghbali, Hamed; Bruggink, Cees; Eeltink, Sebastiaan

    2014-08-15

    A microfluidic membrane suppressor has been constructed to suppress ions of alkaline mobile-phases via an acid-base reaction across a sulfonated poly(tetrafluoroethylene)-based membrane and was evaluated for anion-exchange separations using conductivity detection. The membrane was clamped between two chip substrates, accommodating rectangular microchannels for the eluent and regenerant flow, respectively. Additionally, a clamp-on chip holder has been constructed which allows the alignment and stacking of different chip modules. The response and efficacy of the microfluidic chip suppressor was assessed for a wide range of eluent (KOH) concentrations, using 127 and 183μm thick membranes, while optimizing the flow rate and concentration of the regenerant solution (H2SO4). The optimal operating eluent flow rate was determined at 5μL/min, corresponding to the optimal van-Deemter flow velocity of commercially-available column technology, i.e. a 0.4mm i.d.×250mm long column packed with 7.5μm anion-exchange particles. When equilibrated at 10mM KOH, a 99% decrease in conductivity signal could be obtained within 5min when applying 10mM H2SO4 regenerant at 75μL/min. A background signal as low as 1.2μS/cm was obtained, which equals the performance of a commercially-available electrolytic hollow-fiber suppressor. When increasing the temperature of the membrane suppressor from 15 to 20°C, ion suppression was significantly improved allowing the application of 75mM KOH. The applicability of the chip suppressor has been demonstrated with an isocratic baseline separation of a mixture of seven inorganic ions, yielding plate numbers between 5300 and 10,600 and with a gradient separation of a complex ion mixture. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Assessment of some ion-exchangers for the treatment of low-level radioactive liquid waste solutions

    SciTech Connect

    El-Sourougy, M.R.; El-Dessouky, M.I.; Aly, H.F.

    1994-12-31

    Demineralization of potable water, as representative of LLLW was carried out using 8-different cationic and anionic ion-exchangers. The cationic exchangers used are: KY-2, Dowex50W-X8, Amberlite IR-120 and Chelex-100. The anionic exchangers are: AN-31, Amberlite IRA-900, Permutit and Dowex-3. Ion-exchanger dynamic capacity was calculated in terms of g.equivalent/kg of ion-exchanger. Different regeneration regimes were investigated and evaluated.

  18. Propagation of charge-exchange plasma produced by an ion thruster

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Brady, M. E.

    1980-01-01

    A charge-exchange plasma is produced downstream of ion thrusters by collisions between energetic ions and neutrals escaping through the ion optics. The charge-exchange ions flow radially from the thruster beam due to electric fields produced by its density gradient. The propagation of the charge-exchange plasma after it leaves the thruster beam is the subject of this paper. Under the proper conditions there is an 'end-effect' of a long, cylindrical Langmuir probe which allows a significant increase in collected ion current when the probe is aligned with a flowing plasma. This effect is used to determine the charge-exchange plasma flow direction at various locations relative to the ion thruster. A portion of the charge-exchange plasma flows upstream of the ion thruster and can represent a contamination source to electrically propelled spacecraft. The ion current collected by the probe as a function of its angle with respect to the plasma flow allows determination of the plasma density and plasma flow velocity at the probe's location upstream of the ion thruster optics. The density value obtained from the ion current agree to within a factor of two of density values obtained by typical voltage-current Langmuir probe characteristics.

  19. Stabilization of copper nanoparticles with volume- and surface-distribution inside ion-exchange matrices

    NASA Astrophysics Data System (ADS)

    Kravchenko, T. A.; Sakardina, E. A.; Kalinichev, A. I.; Zolotukhina, E. V.

    2015-09-01

    Nanocomposites characterized by the surface and volume distributions of deposited copper nanoparticles are obtained via the chemical deposition of copper onto sulfonic acid and carboxylic cation exchanger and strongly basic anion exchanger matrices. The electrode behavior of the synthesized composites in CuSO4 solution is studied by open-circuit chronopotentiometry. The effect the nature of the fixed centers of the ion-exchange matrix has on the initial state of metallic particles and the processes that occur in solutions of their metal ions is established from the deviation of the nanocomposites' electrode potential from the potential of a compact electrode and the nature of its change over time. It is shown that the mechanism behind the interaction of the matrix and metal ions (ion exchange, non-exchange absorption, complexation) determines not only the initial size and distribution of metal particles, but also the rate at which they achieve aggregative stability.

  20. Preparation and characterization of polysulfone/PEG heterogeneous ion exchange membrane for reverse electrodialysis (RED)

    NASA Astrophysics Data System (ADS)

    Ariono, D.; Khoiruddin; Prabandari, D.; Wulandari, R.; Wenten, I. G.

    2017-07-01

    Heterogeneous cation-exchange membrane is synthesized using solution casting method. The casting solution is prepared by dispersing finely ground cation-exchange resin particles in N,N-dimethylacetamide (DMAc) solutions of polysulfone (PSf) while polyethylene glycol (PEG400) is used as a modifier. The results show that the PEG400 can increase water uptake, conductivity, and ion-exchange capacity (IEC) of the heterogeneous cation-exchange membrane due to the hydrophilic nature of PEG400. The more hydrophilic membrane results in higher water uptake and wider access for functional sites. However, when the concentration of PEG400 is increased further, the IEC and conductivity tend to decrease. This tendency is more pronounced when the ion-exchange resin particle is increased from 50 to 60%-wt. It could be attributed to the washed out of some ion-exchange particle during membrane immersion due to lower bonding between membrane matrix and the particles.

  1. Phosphate recovery from wastewater using engineered superparamagnetic particles modified with layered double hydroxide ion exchangers.

    PubMed

    Drenkova-Tuhtan, Asya; Mandel, Karl; Paulus, Anja; Meyer, Carsten; Hutter, Frank; Gellermann, Carsten; Sextl, Gerhard; Franzreb, Matthias; Steinmetz, Heidrun

    2013-10-01

    An innovative nanocomposite material is proposed for phosphate recovery from wastewater using magnetic assistance. Superparamagnetic microparticles modified with layered double hydroxide (LDH) ion exchangers of various compositions act as phosphate adsorbers. Magnetic separation and chemical regeneration of the particles allows their reuse, leading to the successful recovery of phosphate. Based upon the preliminary screening of different LDH ion exchanger modifications for phosphate selectivity and uptake capacity, MgFe-Zr LDH coated magnetic particles were chosen for further characterization and application. The adsorption kinetics of phosphate from municipal wastewater was studied in dependence with particle concentration, contact time and pH. Adsorption isotherms were then determined for the selected particle system. Recovery of phosphate and regeneration of the particles was examined via testing a variety of desorption solutions. Reusability of the particles was demonstrated for 15 adsorption/desorption cycles. Adsorption in the range of 75-97% was achieved in each cycle after 1 h contact time. Phosphate recovery and enrichment was possible through repetitive application of the desorption solution. Finally, a pilot scale experiment was carried out by treating 125 L of wastewater with the particles in five subsequent 25 L batches. Solid-liquid separation on this scale was carried out with a high-gradient magnetic filter (HGMF).

  2. ION EXCHANGE MODELING FOR REMOVAL OF CESIUM FROM HANFORD WASTE USING SUPERLIG 644 RESIN

    SciTech Connect

    Hamm, L

    2004-05-01

    The expected performance of a proposed ion exchange column using SuperLig{reg_sign} 644 resin for the removal of cesium from Hanford high level radioactive alkaline waste is discussed. This report represents a final report on the ability and knowledge with regard to modeling the Cesium-SuperLig{reg_sign} 644 resin ion exchange system. Only the loading phase of the cycle process is addressed within this report. Pertinent bench-scale column tests and batch equilibrium experiments are addressed. The methodology employed and sensitivity analyses are also included (i.e., existing methodology employed is referenced to prior developmental efforts while updated methodology is discussed). Pilot-scale testing is not assessed since no pilot-scale testing was available at the time of this report. Column performance predictions are made considering three selected feed compositions under nominal operating conditions. The sensitivity analyses provided help to identify key parameters that aid in resin procurement acceptance criteria. The methodology and application presented within this report reflect the expected behavior of SuperLig{reg_sign} 644 resin manufactured at the production-scale (i.e, 250 gallon batch size level). The primary objective of this work was, through modeling and verification based on experimental assessments, to predict the cesium removal performance of SuperLig{reg_sign} 644 resin for application in the RPP pretreatment facility.

  3. Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides.

    PubMed

    Motoyama, Akira; Xu, Tao; Ruse, Cristian I; Wohlschlegel, James A; Yates, John R

    2007-05-15

    Shotgun proteomics typically uses multidimensional LC/MS/MS analysis of enzymatically digested proteins, where strong cation-exchange (SCX) and reversed-phase (RP) separations are coupled to increase the separation power and dynamic range of analysis. Here we report an on-line multidimensional LC method using an anion- and cation-exchange mixed bed for the first separation dimension. The mixed-bed ion-exchange resin improved peptide recovery over SCX resins alone and showed better orthogonality to RP separations in two-dimensional separations. The Donnan effect, which was enhanced by the introduction of fixed opposite charges in one column, is proposed as the mechanism responsible for improved peptide recovery by producing higher fluxes of salt cations and lower populations of salt anions proximal to the SCX phase. An increase in orthogonality was achieved by a combination of increased retention for acidic peptides and moderately reduced retention of neutral to basic peptides by the added anion-exchange resin. The combination of these effects led to approximately 100% increase in the number of identified peptides from an analysis of a tryptic digest of a yeast whole cell lysate. The application of the method to phosphopeptide-enriched samples increased by 94% phosphopeptide identifications over SCX alone. The lower pKa of phosphopeptides led to specific enrichment in a single salt step resolving acidic phosphopeptides from other phospho- and non-phosphopeptides. Unlike previous methods that use anion exchange to alter selectivity or enrich phosphopeptides, the proposed format is unique in that it works with typical acidic buffer systems used in electrospray ionization, making it feasible for online multidimensional LC/MS/MS applications.

  4. Anion and Cation Mixed-Bed Ion Exchange for Enhanced Multidimensional Separations of Peptides and Phosphopeptides

    PubMed Central

    Motoyama, Akira; Xu, Tao; Ruse, Cristian I.; Wohlschlegel, James A.; Yates, John R.

    2008-01-01

    Shotgun proteomics typically uses multidimensional LC/MS/MS analysis of enzymatically digested proteins, where strong cation-exchange (SCX) and reversed-phase (RP) separations are coupled to increase the separation power and dynamic range of analysis. Here we report an on-line multidimensional LC method using an anion- and cation-exchange (ACE) mixed-bed for the first separation dimension. The mixed-bed ion exchange resin improved peptide recovery over SCX resins alone and showed better orthogonality to RP separations in two-dimensional separations. The Donnan effect, which was enhanced by the introduction of fixed opposite charges in one column, is proposed as the mechanism responsible for improved peptide recovery by producing higher fluxes of salt cations and a lower populations of salt anions proximal to the SCX phase. An increase in orthogonality was achieved by a combination of increased retention for acidic peptides and moderately reduced retention of neutral to basic peptides by the added anion-exchange resin. The combination of these effects led to ∼100% increase in the number of identified peptides from an analysis of a tryptic digest of a yeast whole cell lysate. The application of the method to phosphopeptide-enriched samples increased by 94% phosphopeptide identifications over SCX alone. The lower pKa of phosphopeptides led to specific enrichment in a single salt step resolving acidic phosphopeptides from other phospho- and nonphospho-peptides. Unlike previous methods that use anion-exchange to alter selectivity or enrich phosphopeptides, the proposed format is unique in that it works with typical acidic buffer systems used in electrospray ionization making it feasible for online multidimensional LC/MS/MS applications. PMID:17411013

  5. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.

    PubMed

    Pehlivan, Erol; Altun, Turkan

    2007-02-09

    Removal of trace amounts of heavy metals can be achieved by means of selective ion-exchange processes. The newly developed resins offered a high resin capacity and faster sorption kinetics for the metal ions such as Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) ions. In the present study, the removal of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) ions from aqueous solutions was investigated. Experimental investigations were undertaken using the ion-exchange resin Lewatit CNP 80 (weakly acidic) and were compared with Lewatit TP 207 (weakly acidic and chelating). The optimum pH range for the ion-exchange of the above mentioned metal ions on Lewatit CNP 80 and Lewatit TP 207 were 7.0-9.0 and 4.5-5.5, respectively. The influence of pH, contact time, metal concentration and amount of ion-exchanger on the removal process was investigated. For investigations of the exchange equilibrium, different amounts of resin were contacted with a fixed volume of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) ion containing solution. The obtained sorption affinity sequence in the presented work was Ni(2+)>Cu(2+)>Cd(2+)>Zn(2+)>Pb(2+). The metal ion concentrations were measured by AAS methods. The distribution coefficient values for metal ions of 10(-3)M initial concentration at 0.1mol/L ionic strength show that the Lewatit CNP 80 was more selective for Ni(2+), Cu(2+) than it was for Cd(2+), Zn(2+) and Pb(2+). Langmuir isotherm was applicable to the ion-exchange process and its contents were calculated. The uptake of metal ions by the ion-exchange resins was reversible and thus has good potential for the removal of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) from aqueous solutions. The amount of sorbed metal ion per gram dry were calculated as 4.1, 4.6, 4.7, 4.8, and 4.7mequiv./g dry resin for Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+), respectively. Selectivity increased in the series: Cd(2+)>Pb(2+)>Cu(2+)>Ni(2+)>Zn(2+). The results obtained showed that Lewatit CNP 80 weakly acidic resin had

  6. Use of petroleum reside for production of ion exchangers

    SciTech Connect

    Pokonova, Y.V.

    1995-03-10

    Weakly acidic commercial cation exchangers with a static exchange capacity of 4.8-6.7 meq{center_dot}{sup -1} and a mechanical strength of 90% have been synthesized from petroleum asphaltites, resorcinol, and furfural.

  7. Selective preconcentration of uranyl ion by silica gel phases modified with chelating compounds as inorganic polymeric ion exchangers.

    PubMed

    Mahmoud, Mohamed E; Kenawy, Ibrahim M M; Soliman, Ezzat M; Hafez, Medhat A; Akl, Magda A A; Lashein, Rabab R A

    2008-03-01

    Four chemically modified chelating silica gel phases (I - IV) with ion exchange groups were tested for their potential capability to selectively bind, extract and preconcentrate uranyl ions (UO(2)(2+)) from different aqueous solutions as well as ore samples. Factors affecting such determination processes were studied and optimized. These included the pH of the contact solution, the mass of the silica gel phase extractant, the stirring time during the application of a static technique and the eluent concentration for desorption of the surface-bound uranyl ion and interfering anions and cations. All these factors were evaluated on the basis of determinations of the distribution coefficient value (K(d)) and the percent recovery (R%). Percent recovery values of 91% for silica phase (II) and 93% for silica phase (IV) were identified in the optimum conditions. The proposed preconcentration method was further applied to uranium ore samples as well as granite samples. The determined percentage and ppm values are in good agreement with the standard assigned ones. The structure of the synthesized silica gel phases (I - IV) and their uranyl bound complexes were identified and characterized by means of infrared analysis, thermal analysis (TGA) and potentiometric titration.

  8. Charge-exchange plasma environment for an ion drive spacecraft

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Carruth, M. R., Jr.

    1981-01-01

    A model was reviewed which describes the propagation of the mercury charge-exchange plasma and extended to describe the flow of the molybdenum component of the charge-exchange plasma. The uncertainties in the models for various conditions are discussed. Such topics as current drain to the solar array, charge-exchange plasma material deposition, and the effects of space plasma on the charge-exchange plasma propagation are addressed.

  9. Charge-exchange plasma environment for an ion drive spacecraft

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Carruth, M. R., Jr.

    1981-01-01

    A model was reviewed which describes the propagation of the mercury charge-exchange plasma and extended to describe the flow of the molybdenum component of the charge-exchange plasma. The uncertainties in the models for various conditions are discussed. Such topics as current drain to the solar array, charge-exchange plasma material deposition, and the effects of space plasma on the charge-exchange plasma propagation are addressed.

  10. Ion Exchange Technology Development in Support of the Urine Processor Assembly

    NASA Technical Reports Server (NTRS)

    Mitchell, Julie; Broyan, James; Pickering, Karen

    2013-01-01

    exchange resins has demonstrated that the most effective implementation for an ion exchange resin is a cartridge, or column, in which the resin is contained. Based on the results of equilibrium and sub-scale dynamic column testing, a possible solution for mitigating the calcium precipitation issue on the ISS has been identified. From an original pool of 13 ion exchange resins, two candidates have been identified that demonstrate substantial calcium removal on the sub-scale. The dramatic reduction in resin performance from published calcium uptake demonstrates the need for thorough evaluation of resins at the low pH and strong oxidizing environment present in the UPA. Chemical variations in the influent (calcium concentrations and pretreatment dosing) appear to have a noticeable impact on the calcium capacity of the resin. Low calcium concentrations and high pretreatment dosing will likely result in a decrease in calcium capacity. Conversely, low pre trea t - ment dosing will likely result in an increase in calcium capacity. In contrast, investigations at a variety of flow rates, length-to-diameter ratios, resin volumes, and flow regimes (continuous versus pulsed) show that changes in physical parameters do not have substantial impacts on resin performance in the very low specific velocity ranges of interest. This result is particularly useful because most commercial applications at higher specific velocities do show a relatively strong relationship between flow and capacity. The lack of a strong relationship will allow more flexibility in the implementation of an ion exchange bed for flight. Verification of subscale tests with flight-scale resin beds is recommended prior to implementation in the on-orbit UPA.

  11. A comparative study of ion exchange kinetics in zinc/lead-modified zeolite-clinoptilolite systems.

    PubMed

    Trgo, M; Perić, J; Medvidović, N Vukojević

    2006-08-25

    The kinetics of zinc and lead ions removal by modified zeolite-clinoptilolite has been investigated. The rate of the ion exchange process for lead ions is faster than for zinc ions, as well as the time needed to reach the equilibrium. The ion exchange capacity of zeolite of lead ions is doubly higher than that of zinc ions. Diffusion models according to the Vermeulen's approximation, the parabolic diffusion model and the homogeneous diffusion model have been tested with the experimental data of ion exchange for zinc and lead. For both systems examined, the best fit of the models proposed with the experimental data was shown by the Vermeulen's approximation and the homogeneous diffusion model with t-->t(infinity). The diffusion coefficients are calculated from kinetic models of lead ions they are of the order of 10(-6)cm(2)/min, constant for all examined initial concentrations and not dependent on time. The diffusion coefficients in the system of zinc ions is of the order of 10(-8)cm(2)/min, also independent of initial concentrations, but decreasing with time from the beginning of ion exchange to the equilibrium.

  12. Ion exchange in the atomic energy industry with particular reference to actinide and fission product separation

    SciTech Connect

    Jenkins, I.L.

    1984-01-01

    Reviewed are some of the uses of ion exchange processes used by the nuclear industry for the period April, 1978 to April, 1983. The topics dealt with are: thorium, protactinium, uranium, neptunium, plutonium, americium, cesium and actinide-lanthanide separations; the higher actinides - Cm, Bk, Cf, Es and Fm; fission products; ion exchange in the geological disposal of radioactive waste. Consideration is given to safety in the use of ion exchangers and in safe methods of disposal of such materials. Full scale and pilot plant process descriptions are included as well as summaries of laboratory studies. 130 references.

  13. ION-EXCHANGE METHOD FOR SEPARATING RADIUM FROM RADIUM-BARIUM MIXTURES

    DOEpatents

    Fuentevilla, M.E.

    1959-06-30

    An improved process is presented for separating radium from an aqueous feed solution containing radium and barium values and a complexing agent for these metals. In this process a feed solutlon containing radium and barium ions and a complexing agent for said ions ls cycled through an exchange zone in resins. The radiumenriched resin is then stripped of radium values to form a regeneration liquid, a portion of which is collected as an enriched product, the remaining portion being recycled to the exchange zone to further enrich the ion exchange resin in radium.

  14. Seleniranium Ions Undergo π-Ligand Exchange via an Associative Mechanism in the Gas Phase.

    PubMed

    Lim, S Fern; Harris, Benjamin L; Khairallah, George N; Bieske, E J; Maître, Philippe; da Silva, Gabriel; Adamson, Brian D; Scholz, Michael S; Coughlan, Neville J A; O'Hair, Richard A J; Rathjen, Michael; Stares, Daniel; White, Jonathan M

    2017-06-16

    Collision-induced dissociation mass spectrometry of the ammonium ions 4a and 4b results in the formation of the seleniranium ion 5, the structure and purity of which were verified using gas-phase infrared spectroscopy coupled to mass spectrometry and gas-phase ion-mobility measurements. Ion-molecule reactions between the ion 5 (m/z = 261) and cyclopentene, cyclohexene, cycloheptene, and cyclooctene resulted in the formation of the seleniranium ions 7 (m/z = 225), 6 (m/z = 239), 8 (m/z = 253), and 9 (m/z = 267), respectively. Further reaction of seleniranium 6 with cyclopentene resulted in further π-ligand exchange giving seleniranium ion 7, confirming that direct π-ligand exchange between seleniranium ion 5 and cycloalkenes occurs in the gas phase. Pseudo-first-order kinetics established relative reaction efficiencies for π-ligand exchange for cyclopentene, cyclohexene, cycloheptene. and cyclooctene as 0.20, 0.07, 0.43, and 4.32. respectively. DFT calculations at the M06/6-31+G(d) level of theory provide the following insights into the mechanism of the π-ligand exchange reactions; the cycloalkene forms a complex with the seleniranium ion 5 with binding energies of 57 and 62 kJ/mol for cyclopentene and cyclohexene, respectively, with transition states for π-ligand exchange having barriers of 17.8 and 19.3 kJ/mol for cyclopentene and cyclohexene, respectively.

  15. Ion temperature from tangential charge exchange neutral analysis on the Tokamak Fusion Test Reactor

    SciTech Connect

    Fiore, C.L.; Medley, S.S.; Hammett, G.W.; Kaita, R.; Roquemore, A.L.; Scott, S.D.

    1987-09-01

    Fokker-Planck simulations of the Tokamak Fusion Test Reactor (TFTR) energetic ion mode discharges were performed to evaluate the utility of deriving the central ion temperature, T/sub i/, from deuterium neutral beam charge exchange spectra above the neutral beam injection energy. The T/sub i/ values obtained from fitting the calculated spectra obtained from sightlines nearly tangent to the neutral beam injection radius reproduce the central ion temperature within +-10% over the full range of TFTR energetic ion mode parameters. The code simulations demonstrate that the ion temperature obtained from the high energy tangential deuterium charge exchange spectrum is insensitive to variations in the plasma density, Z/sub eff/, plasma current, loop voltage, and injected neutral beam power and energy. Use of this method to reduce charge exchange data from TFTR energetic ion mode plasmas is demonstrated. 17 refs., 22 figs., 2 tabs.

  16. Vitrification of ion exchange materials. Innovative technology summary report

    SciTech Connect

    Not Available

    1999-07-01

    Ion exchange is a process that safely and efficiently removes radionuclides from tank waste. Cesium and strontium account for a large portion of the radioactivity in waste streams from US Department of Energy (DOE) weapons production. Crystalline silicotitanate (CST) is an inorganic sorbent that strongly binds cesium, strontium, and several other radionuclides. Developed jointly by Sandia National Laboratory and Texas A and M University, CST was commercialized through a cooperative research and development agreement with an industrial partner. Both an engineered (mesh pellets) and powdered forms are commercially available. Cesium removal is a baseline in HLW treatment processing. CST is very effective at removing cesium from HLW streams and is being considered for adoption at several sites. However, CST is nonregenerable, and it presents a significant secondary waste problem. Treatment options include vitrification of the CST, vitrification of the CST coupled with HLW, direct disposal, and low-temperature processes such as grouting. The work presented in this report demonstrates that it is effective to immobilize CST using a baseline technology such as vitrification. Vitrification produces a durable waste form. CST vitrification was not demonstrated before 1996. In FY97, acceptable glass formulations were developed using cesium-loaded CST obtained from treating supernatants from Oak Ridge Reservation (ORR) tanks, and the CST was vitrified in a research melter at the Savannah River Technology Center (SRTC). In FY98, SRS decided to reevaluate the use of in-tank precipitation using tetraphenylborate to remove cesium from tank supernatant and to consider other options for cesium removal, including CST. Hanford and Idaho National Engineering and Environmental Laboratory also require radionuclide removal in their baseline flowsheets.

  17. Understanding ion and solvent transport in anion exchange membranes under humidified conditions

    NASA Astrophysics Data System (ADS)

    Sarode, Himanshu

    Anion exchange membranes (AEM) have been studied for more than a decade for potential applications in low temperature fuel cells and other electrochemical devices. They offer the advantage of faster reaction kinetics under alkaline conditions and ability to perform without costly platinum catalyst. Inherently slow diffusion of hydroxide ions compared to protons is a primary reason for synthesizing and studying the ion transport properties in AEMs. The aim of this thesis is to understand ion transport in novel AEMs using Pulse Gradient stimulated Spin Echo Nuclear Magnetic Resonance technique (PGSE NMR), water uptake, ionic conductivity, Small Angle X-ray Scattering (SAXS) etc. All experiments were performed under humidified conditions (80--95% relative humidity) and fuel cell operating temperatures of 30--90°C. In this work, the NMR tube design was modified for humidifying the entire NMR tube evenly from our previous design. We have developed a new protocol for replacing caustic hydroxide with harmless fluoride or bicarbonate ions for 19F and 13 C NMR diffusion experiments. After performing these NMR experiments, we have obtained in-depth understanding of the morphology linked ion transport in AEMs. We have obtained the highest fluoride self-diffusion coefficient of > 1 x 10-5 cm2/sec ( 55°C) for ETFE-g-PVBTMA membrane which is a result of low tortuosity of 1 obtained for the membrane. This faster fluoride transport combined with low tortuosity of the membrane resulted in > 100mS/cm hydroxide conductivity for the membrane. Polycyclooctene (PCOE) based triblock copolymers are also studied for in-depth understanding of molecular weight, IEC, mechanical and transport properties. Effect of melting temperature of PCOE has favorable effect on increasing ion conductivity and lowering activation energy. Mechanical properties of these types of membranes were studied showing detrimental effect of water plasticization which results in unsuitable mechanical properties

  18. The TFTR E Parallel B Spectrometer for Mass and Energy Resolved Multi-Ion Charge Exchange Diagnostics

    SciTech Connect

    A.L. Roquemore; S.S. Medley

    1998-01-01

    The Charge Exchange Neutral Analyzer diagnostic for the Tokamak Fusion Test Reactor was designed to measure the energy distributions of both the thermal ions and the supra thermal populations arising from neutral-beam injection and ion cyclotron radio-frequency heating. These measurements yield the plasma ion temperature, as well as several other plasma parameters necessary to provide an understanding of the plasma condition and the performance of the auxiliary heating methods. For this application, a novel charge-exchange spectrometer using a dee-shaped region of parallel electric and magnetic fields was developed at the Princeton Plasma Physics Laboratory. The design and performance of this spectrometer is described in detail, including the effects of exposure of the microchannel plate detector to magnetic fields, neutrons, and tritium.

  19. Bioactive and Antibacterial Glass Powders Doped with Copper by Ion-Exchange in Aqueous Solutions.

    PubMed

    Miola, Marta; Verné, Enrica

    2016-05-24

    In this work, two bioactive glass powders (SBA2 and SBA3) were doped with Cu by means of the ion-exchange technique in aqueous solution. SBA2 glass was subjected to the ion-exchange process by using different Cu salts (copper(II) nitrate, chloride, acetate, and sulphate) and concentrations. Structural (X-ray diffraction-XRD), morphological (Scanning Electron Microscopy-SEM), and compositional (Energy Dispersion Spectrometry-EDS) analyses evidenced the formation of crystalline phases for glasses ion-exchanged in copper(II) nitrate and chloride solutions; while the ion-exchange in copper(II) acetate solutions lead to the incorporation of higher Cu amount than the ion-exchange in copper(II) sulphate solutions. For this reason, the antibacterial test (inhibition halo towards S. aureus) was performed on SBA2 powders ion-exchanged in copper(II) acetate solutions and evidenced a limited antibacterial effect. A second glass composition (SBA3) was developed to allow a greater incorporation of Cu in the glass surface; SBA3 powders were ion-exchanged in copper(II) acetate solutions (0.01 M and 0.05 M). Cu-doped SBA3 powders showed an amorphous structure; morphological analysis evidenced a rougher surface for Cu-doped powders in comparison to the undoped glass. EDS and X-ray photoelectron spectroscopy (XPS) confirmed the Cu introduction as Cu(II) ions. Bioactivity test in simulated body fluid (SBF) showed that Cu introduction did not alter the bioactive behaviour of the glass. Finally, inhibition halo test towards S. aureus evidenced a good antimicrobial effect for glass powders ion-exchanged in copper(II) acetate solutions 0.05 M.

  20. Tramadol loading, release and iontophoretic characteristics of ion-exchange fiber.

    PubMed

    Gao, Yanan; Yuan, Jing; Liu, Hongzhuo; Yang, Yang; Hou, Yanlong; Li, Sanming

    2014-04-25

    The objective of this study was to investigate the drug loading, release and iontophoretic characteristics of strong acidic ion-exchange fiber, using tramadol hydrochloride as a model drug. The complex of charged model drug and ion-exchange fiber was studied as a new approach to achieve controlled drug delivery. Structural characterization of the fiber was elucidated through different approaches including differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), scanning electron microscope (SEM) and infrared spectroscopy (IR). And the mechanism of drug binding into ion-exchange fibers was validated to be ion-exchange. The drug loading into and release from ion-exchange fiber were affected by the concentration, volume and valence of the counter-ions in the external solution. Iontophoresis could significantly increase the delivery rate and amount of transdermal drug, and the iontophoretic dose could be easily controlled by adjusting the current intensity and the amount of release medium. The tramadol could be steadily released both from the drug-loaded fiber and drug solution when applied the iontophoretic method, which was in disagreement with the previous publications. As a drug reservoir, ion-exchange fiber has good regularity of drug loading, release and iontophoretic characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Experimental Findings On Minor Actinide And Lanthanide Separations Using Ion Exchange

    SciTech Connect

    Hobbs, D. T.; Shehee, T. C.; Clearfield, A.

    2013-09-17

    This project seeks to determine if inorganic or hybrid inorganic ion-exchange materials can be exploited to provide effective americium and curium separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of the tested ion-exchange materials for actinide and lanthanide ions. During FY13, experimental work focused in the following areas: (1) investigating methods to oxidize americium in dilute nitric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium and (2) synthesis, characterization and testing of ion-exchange materials. Ion-exchange materials tested included alkali titanates, alkali titanosilicates, carbon nanotubes and group(IV) metal phosphonates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of Am(III). Experimental findings indicated that Pu(IV) is oxidized to Pu(VI) by peroxydisulfate, but there are no indications that the presence of plutonium affects the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used. Tests also explored the influence of nitrite on the oxidation of Am(III). Given the formation of Am(V) and Am(VI) in the presence of nitrite, it appears that nitrite is not a strong deterrent to the oxidation of Am(III), but may be limiting Am(VI) by quickly reducing Am(VI) to Am(V). Interestingly, additional absorbance peaks were observed in the UV-Vis spectra at 524 and 544 nm in both nitric acid and perchloric acid solutions when the peroxydisulfate was added as a solution. These peaks have not been previously observed and do not correspond to the expected peak locations for oxidized americium in solution. Additional studies are in progress to identify these unknown peaks. Three titanosilicate ion exchangers were synthesized using a microwave-accelerated reaction system (MARS) and determined to have high affinities

  2. Simulations of the water exchange dynamics of lanthanide ions in 1-ethyl-3-methylimidazolium ethyl sulfate ([EMIm][EtSO4]) and water.

    PubMed

    Tu, Yi-Jung; Allen, Matthew J; Cisneros, G Andrés

    2016-11-09

    The dynamics of ligand exchange on lanthanide ions is important for catalysis and organic reactions. Recent (17)O-NMR experiments have shown that water-exchange rates of lanthanide ions in water/1-ethyl-3-methylimidazolium ethyl sulfate (water/[EMIm][EtSO4]) increase as a function of increasing charge density. The trend of water-exchange rates in this solvent is opposite to that observed in water. Since the lanthanide ions and ionic liquids investigated in that work were highly charged, an advanced polarizable potential is desirable for accurate simulations. To this end, we have developed atomic multipole optimized energetics for biomolecular applications (AMOEBA) parameters for all lanthanides and [EMIm][EtSO4], and molecular dynamics simulations with the optimized parameters have been carried out to provide possible explanations for these observed behaviors from the experiments. In water, the association of a water molecule with the first hydration shell can lead to water exchange. Smaller lanthanide ions exhibit slower water-exchange rates than larger ones because they form smaller aqua complexes, preventing the binding of incoming water molecules from the outer hydration shells. By contrast, smaller lanthanide ions undergo faster water exchange in water/[EMIm][EtSO4] because the dissociation of a water molecule is a key step for water-exchange events in this solvent. The first shell [EtSO4](-) anions bind closer to the smaller lanthanide ions, resulting in more steric crowding effects on the surrounding water and facilitating the release of water molecules.

  3. Tuning a High Transmission Ion Guide to Prevent Gas-Phase Proton Exchange During H/D Exchange MS Analysis.

    PubMed

    Guttman, Miklos; Wales, Thomas E; Whittington, Dale; Engen, John R; Brown, Jeffery M; Lee, Kelly K

    2016-04-01

    Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for protein structural analysis has been adopted for many purposes, including biopharmaceutical development. One of the benefits of examining amide proton exchange by mass spectrometry is that it can readily resolve different exchange regimes, as evidenced by either binomial or bimodal isotope patterns. By careful analysis of the isotope pattern during exchange, more insight can be obtained on protein behavior in solution. However, one must be sure that any observed bimodal isotope patterns are not artifacts of analysis and are reflective of the true behavior in solution. Sample carryover and certain stationary phases are known as potential sources of bimodal artifacts. Here, we describe an additional undocumented source of deuterium loss resulting in artificial bimodal patterns for certain highly charged peptides. We demonstrate that this phenomenon is predominantly due to gas-phase proton exchange between peptides and bulk solvent within the initial stages of high-transmission conjoined ion guides. Minor adjustments of the ion guide settings, as reported here, eliminate the phenomenon without sacrificing signal intensity. Such gas-phase deuterium loss should be appreciated for all HDX-MS studies using such ion optics, even for routine studies not focused on interpreting bimodal spectra. Graphical Abstract ᅟ.

  4. Tuning a High Transmission Ion Guide to Prevent Gas-Phase Proton Exchange During H/D Exchange MS Analysis

    NASA Astrophysics Data System (ADS)

    Guttman, Miklos; Wales, Thomas E.; Whittington, Dale; Engen, John R.; Brown, Jeffery M.; Lee, Kelly K.

    2016-04-01

    Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for protein structural analysis has been adopted for many purposes, including biopharmaceutical development. One of the benefits of examining amide proton exchange by mass spectrometry is that it can readily resolve different exchange regimes, as evidenced by either binomial or bimodal isotope patterns. By careful analysis of the isotope pattern during exchange, more insight can be obtained on protein behavior in solution. However, one must be sure that any observed bimodal isotope patterns are not artifacts of analysis and are reflective of the true behavior in solution. Sample carryover and certain stationary phases are known as potential sources of bimodal artifacts. Here, we describe an additional undocumented source of deuterium loss resulting in artificial bimodal patterns for certain highly charged peptides. We demonstrate that this phenomenon is predominantly due to gas-phase proton exchange between peptides and bulk solvent within the initial stages of high-transmission conjoined ion guides. Minor adjustments of the ion guide settings, as reported here, eliminate the phenomenon without sacrificing signal intensity. Such gas-phase deuterium loss should be appreciated for all HDX-MS studies using such ion optics, even for routine studies not focused on interpreting bimodal spectra.

  5. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... composite structures in any suitable form including particles or fibers. These ion exchange resins... materials such as glass, fluorocarbon polymers, polyphenyl sulfate, polyether sulfone, and resin-impregnated... resin-impregnated graphite. (4) Feed preparation systems. Especially designed or prepared systems for...

  6. Negative Ions for Emerging Interdisciplinary Applications

    NASA Astrophysics Data System (ADS)

    Guharay, Samar K.

    2011-09-01

    In many applications related to ion beam-materials interactions negative ions are particularly desirable due to its merit to yield a very low surface charge-up voltage, ˜ a few volts, for both electrically isolated surfaces and insulators. Some important applications pertaining to ion beam-material interactions include surface analysis by secondary ion mass spectrometry (SIMS), voltage-contrast microscopy for semiconductor device inspection, materials processing, and ion beam lithography. These applications primarily require vacuum environments. On the other hand, a distinct area of activities constitutes formation of ions and ion transport in ambient environmental conditions, i.e., at atmospheric pressures. In this context, ion mobility spectrometry (IMS) is an important analytical device that uses negative ions and operates at ambient conditions. IMS is widely used in both physical and biological sciences including monitoring environmental conditions, security screening and disease detection. This article highlights several critical issues related to the ionization sources and ion transport in IMS. Additionally, the critical issues related to ion sources, transport and focusing are discussed in the context of SIMS with sub-micrometer spatial resolution.

  7. The Determination of Calcium in Dietary Supplement Tablets by Ion-Exchange.

    ERIC Educational Resources Information Center

    Dietz, Mark L.

    1986-01-01

    An experimental simple ion-exchange experiment in which the amount of calcium present in dietary supplement tablets has been developed is described and some typical student results for several brands of tablets are presented. (JN)

  8. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    SciTech Connect

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  9. Equilibrium data for cesium ion exchange of Hanford CC and NCAW tank waste

    SciTech Connect

    Bray, L.A.; Carson, K.J.; Elovich, R.J.; Kurath, D.E.

    1996-04-01

    Hanford alkaline waste storage-tank contents will be processed to remove the soluble salts. A major fraction of these solutions will require cesium recovery to produce a low-level waste (LLW). The technology for decontamination of high-level alkaline waste and sludge wash waters is being developed. At the request of Westinghouse Hanford Company (WHC), the Pacific Northwest Laboratory (PNL) has studied several ion exchange materials for the recovery of cesium from Hanford waste tanks. The WHC program was divided into tow main tasks, (1) to obtain equilibrium data for cesium ion exchange, and (2) to evaluate ion exchange column performance. The subject of this letter report is the measurement of batch distribution coefficients for several ion exchange media for a range of operating conditions for two types of waste; complexant concentrate (CC) and neutralized current acid waste (NCAW).

  10. Spatial distributions of scandium in granules of different ion-exchangers

    SciTech Connect

    Komarova, N.I.; Molchanova, T.V.; Rodionov, V.V.; Vodolazov, L.I.

    1992-01-20

    Scanning electron microscopy (SEM) and electron probe microanalysis (EPM) using an electron probe with high local sensitivity in nondestructive action on the sample, which is important in the analysis of ion-exchange materials, are efficient methods for physicochemical studies. SEM and EPM make it possible to study the spatial distribution of elements, characteristics of their absorption by ion-exchange materials, and establish the mechanisms of physicochemical transformations, the composition of microsections of granules, etc.. Effective ion-exchangers for extraction of scandium from sulfuric acid solutions were selected, and the characteristics of sorption absorption of scandium and the accompanying elements on these ion-exchangers were investigated by SEM and EPM. 11 refs., 2 figs.

  11. The Determination of Calcium in Dietary Supplement Tablets by Ion-Exchange.

    ERIC Educational Resources Information Center

    Dietz, Mark L.

    1986-01-01

    An experimental simple ion-exchange experiment in which the amount of calcium present in dietary supplement tablets has been developed is described and some typical student results for several brands of tablets are presented. (JN)

  12. Method of detecting defects in ion exchange membranes of electrochemical cells by chemochromic sensors

    SciTech Connect

    Brooker, Robert Paul; Mohajeri, Nahid

    2016-01-05

    A method of detecting defects in membranes such as ion exchange membranes of electrochemical cells. The electrochemical cell includes an assembly having an anode side and a cathode side with the ion exchange membrane in between. In a configuration step a chemochromic sensor is placed above the cathode and flow isolation hardware lateral to the ion exchange membrane which prevents a flow of hydrogen (H.sub.2) between the cathode and anode side. The anode side is exposed to a first reactant fluid including hydrogen. The chemochromic sensor is examined after the exposing for a color change. A color change evidences the ion exchange membrane has at least one defect that permits H.sub.2 transmission therethrough.

  13. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    SciTech Connect

    King, W

    2007-11-30

    This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials have been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA

  14. A validated UPLC-MS/MS method coupled with protein precipitation and ion exchange solid phase extraction for the quantitation of porcine relaxin B29 in dog plasma and its application to a pharmacokinetic study.

    PubMed

    Su, Chong; Sun, Hui; Yang, Hong; Yin, Lei; Zhang, Jiwen; Fawcett, John Paul; Gu, Jingkai

    2017-09-09

    Porcine relaxin is a 6 kDa peptide hormone of pregnancy with important physiological and pharmacological effects. It contains a number of analogs of which porcine relaxin B29 is one of the most important. To support the development of porcine relaxin B29 as a new drug, we established an UPLC-MS/MS method for its quantitation in dog plasma. Sample preparation by protein precipitation and ion exchange solid phase extraction was followed by UPLC on an XBridge™ BEH300 C18 column at 40 °C in a run time of only 5.5 min. Detection was performed on a Qtrap 6500 mass spectrometer using ESI in the positive ion mode with MRM of the transitions at m/z 831.7 [M+7H](7+) → 505.4 and m/z 1162.4 [M+5H](5+) → 226 for pRLX B29 and internal standard (recombinant human insulin), respectively. The method was linear over the concentration range 30-2000 ng/mL with no matrix effects. Intra- and inter-day precisions were < 15% with accuracies in the range 98.8-100.6%. The method was successfully applied to a pharmacokinetic study in beagle dogs after administration of a 0.15 mg/kg intravenous dose. Graphical abstract Sample preparation and detection procedure.

  15. Ion Exchange Modeling Of Cesium Removal From Hanford Waste Using Spherical Resorcinol-Formaldehyde Resin

    SciTech Connect

    Aleman, S.; Hamm, L.; Smith, F.

    2007-06-27

    This report discusses the expected performance of spherical Resorcinol-Formaldehyde (RF) ion exchange resin for the removal of cesium from alkaline Hanford radioactive waste. Predictions of full scale column performance in a carousel mode are made for the Hot Commissioning, Envelope B, and Subsequent Operations waste compositions under nominal operating conditions and for perturbations from the nominal. Only the loading phase of the process cycle is addressed in this report. Pertinent bench-scale column tests, kinetic experiments, and batch equilibrium experiments are used to estimate model parameters and to benchmark the ion-exchange model. The methodology and application presented in this report reflect the expected behavior of spherical RF resin manufactured at the intermediate-scale (i.e., approximately 100 gallon batch size; batch 5E-370/641). It is generally believed that scale-up to production-scale in resin manufacturing will result in similarly behaving resin batches whose chemical selectivity is unaffected while total capacity per gram of resin may vary some. As such, the full-scale facility predictions provided within this report should provide reasonable estimates of production-scale column performance.

  16. Biomineralization of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using simulated body fluid.

    PubMed

    Kaur, Balwinder; Srivastava, Rajendra; Satpati, Biswarup; Kondepudi, Kanthi Kiran; Bishnoi, Mahendra

    2015-11-01

    Silver ion-exchanged nanocrystalline zeolite (Ag-Nano-ZSM-5) and silver ion-exchanged conventional zeolite (Ag-ZSM-5) were synthesized. Zeolites were incubated in simulated body fluid at 310K for different time periods to grow hydroxyapatite in their matrixes. Significant large amount of hydroxyapatite was grown in Ag-Nano-ZSM-5 matrix after incubation in simulated body fluid when compared to Ag-ZSM-5. The resultant material was characterized using X-ray diffraction, N2-adsorption, scanning/transmission electron microscopy, energy dispersive X-ray, and inductively coupled plasma analysis. Mechanical properties such as compressive modulus, compressive strength, and strain at failure of the parent materials were evaluated. Biocompatibility assays suggested that Ag-Nano-ZSM-5 and hydroxyapatite grown in Ag-Nano-ZSM-5 were compatible and did not impose any toxicity to RAW 264.7 cells macrophase and Caco2 cells suggesting considerable potential for biomedical applications such as bone implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Combining ion mobility spectrometry with hydrogen-deuterium exchange and top-down MS for peptide ion structure analysis.

    PubMed

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Maleki, Hossein; Arndt, James R; Donohoe, Gregory C; Valentine, Stephen J

    2014-12-01

    The gas-phase conformations of electrosprayed ions of the model peptide KKDDDDIIKIIK have been examined by ion mobility spectrometry (IMS) and hydrogen deuterium exchange (HDX)-tandem mass spectrometry (MS/MS) techniques. [M+4H](4+) ions exhibit two conformers with collision cross sections of 418 Å(2) and 471 Å(2). [M+3H](3+) ions exhibit a predominant conformer with a collision cross section of 340 Å(2) as well as an unresolved conformer (shoulder) with a collision cross section of ~367 Å(2). Maximum HDX levels for the more compact [M+4H](4+) ions and the compact and partially-folded [M+3H](3+) ions are ~12.9, ~15.5, and ~14.9, respectively. Ion structures obtained from molecular dynamics simulations (MDS) suggest that this ordering of HDX level results from increased charge-site/exchange-site density for the more compact ions of lower charge. Additionally, a new model that includes two distance calculations (charge site to carbonyl group and carbonyl group to exchange site) for the computer-generated structures is shown to better correlate to the experimentally determined per-residue deuterium uptake. Future comparisons of IMS-HDX-MS data with structures obtained from MDS are discussed with respect to novel experiments that will reveal the HDX rates of individual residues.

  18. Combining Ion Mobility Spectrometry with Hydrogen-Deuterium Exchange and Top-Down MS for Peptide Ion Structure Analysis

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Maleki, Hossein; Arndt, James R.; Donohoe, Gregory C.; Valentine, Stephen J.

    2014-12-01

    The gas-phase conformations of electrosprayed ions of the model peptide KKDDDDIIKIIK have been examined by ion mobility spectrometry (IMS) and hydrogen deuterium exchange (HDX)-tandem mass spectrometry (MS/MS) techniques. [M+4H]4+ ions exhibit two conformers with collision cross sections of 418 Å2 and 471 Å2. [M+3H]3+ ions exhibit a predominant conformer with a collision cross section of 340 Å2 as well as an unresolved conformer (shoulder) with a collision cross section of ~367 Å2. Maximum HDX levels for the more compact [M+4H]4+ ions and the compact and partially-folded [M+3H]3+ ions are ~12.9, ~15.5, and ~14.9, respectively. Ion structures obtained from molecular dynamics simulations (MDS) suggest that this ordering of HDX level results from increased charge-site/exchange-site density for the more compact ions of lower charge. Additionally, a new model that includes two distance calculations (charge site to carbonyl group and carbonyl group to exchange site) for the computer-generated structures is shown to better correlate to the experimentally determined per-residue deuterium uptake. Future comparisons of IMS-HDX-MS data with structures obtained from MDS are discussed with respect to novel experiments that will reveal the HDX rates of individual residues.

  19. Technology transfer: Ion exchange resins for Technetium-99 removal from X-705 raffinates

    SciTech Connect

    Deacon, L.E.; Greiner, M.J.

    1982-12-03

    An ion exchange process will be used at Portsmouth to remove Technetium-99 from uranium recovery waste solutions (raffinates). Subsequent treatment will then remove nitrates from the raffinates by a biodenitrification process prior to discharge to receiving streams to meet environmental standards for liquid wastes. Ion exchange process parameters affecting safe and efficient raffinate treatment have been examined in the laboratory, and results are described in this report. 4 refs., 3 figs., 6 tabs.

  20. Lawps ion exchange column gravity drain of spherical resorcinol formaldehyde resin

    SciTech Connect

    Duignan, M. R.; Herman, D. T.; Restivo, M. L.; Burket, P. R.

    2016-01-28

    Experiments at several different scales were performed to understand the removal of spherical resorcinol formaldehyde (sRF) ion exchange resin using a gravity drain system with a valve located above the resin screen in the ion exchange column (IXC). This is being considered as part of the design for the Low Activity Waste Pretreatment System (LAWPS) to be constructed at the DOE Hanford Site.

  1. Knowledge based system for runtime controlling of multiscale model of ion-exchange solvent extraction

    NASA Astrophysics Data System (ADS)

    Macioł, Piotr; Gotfryd, Leszek; Macioł, Andrzej

    2012-09-01

    The hereby paper concerns the issue of solution of runtime controlling of multiscale model of ion-exchange solvent extraction. It is based on cooperation of a framework applying Agile Multiscale Modeling Methodology (AM3), and the REBIT Knowledge Based System. Ion-exchange solvent extraction has been shortly introduced. Design assumptions of AM3 and theoretical basis of REBIT have been described. Designed workflows and rules for simple laminar/ turbulent flow and extraction processes have been shown.

  2. Experimental Ion Exchange Column With SuperLig 639 And Simulant Formulation

    SciTech Connect

    Morse, Megan; Nash, C.

    2013-08-26

    SuperLig®639 ion exchange resin was tested as a retrieval mechanism for pertechnetate, through decontamination of a perrhenate spiked 5M Simple Average Na{sup +} Mass Based Simulant. Testing included batch contacts and a three-column ion exchange campaign. A decontamination of perrhenate exceeding 99% from the liquid feed was demonstrated. Analysis of the first formulation of a SBS/WESP simulant found unexpectedly low concentrations of soluble aluminum. Follow-on work will complete the formulation.

  3. Loading and release of amine drugs by ion-exchange fibers: role of amine type.

    PubMed

    Gao, Yanan; Liu, Hongzhuo; Yuan, Jing; Yang, Yang; Che, Xin; Hou, Yanlong; Li, Sanming

    2014-04-01

    With more production and application of ion-exchange fibers (IEFs), it becomes necessary to understand the interaction between IEFs and amine compounds, an important group of organic drugs and structural components of large organic molecules in biological systems. However, so far few experimental studies have been conducted to systematically investigate the exchanging mechanism of amine compounds to IEFs. Therefore, 15 amine drugs were selected to investigate the effect of amine type on the loading and release of them from the related IEFs. Loading affinity of these drugs by IEFs decreased in the order of secondary, tertiary, and primary. The following items: basicity, aromaticity, molar volume, rotatability, and so on, were emphatically discussed to address the underlying mechanism of drug loading and releasing extent and rate of IEFs. It was evident that strong alkaline drugs strengthened the ionic bond between the amine groups and IEFs, and thus the loading affinity. These results will advance the understanding of the exchanging behavior of IEFs in the drug delivery system.

  4. Radium separation through complexation by aqueous crown ethers and ion exchange or solvent extraction

    SciTech Connect

    Chiarizia, R.; Dietz, M.L.; Horwitz, E.P.; Burnett, W.C.

    1997-11-01

    The effect of three water-soluble, unsubstituted crown ethers (15-crown-5 (15C5), 18-crown-6 (18C6) and 21-crown-7 (21C7)) on the uptake of Ca, Sr, Ba and Ra cations by a sulfonic acid cation exchange resin, and on the extraction of the same cations by xylene solutions of dinonylnaphthalenesulfonic acid (HDNNS) from aqueous hydrochloric acid solutions has been investigated. The crown ethers enhance the sorption of the larger cations by the ion exchange resin, thereby improving the resin selectivity over calcium, a result of a synergistic interaction between the crown ether and the ionic functional groups of the resin. Similarly, the extraction of the larger alkaline earth cations into xylene by HDNNS is strongly synergized by the presence of the crown ethers in the aqueous phase. Promising results for intra-Group IIa cation separations have been obtained using each of the three crown ethers as the aqueous ligands and the sulfonic acid cation exchange resin. Even greater separation factors for the radium-calcium couple have been measured with the crown-ethers and HDNNS solutions in the solvent extraction mode. The application of the uptake and extraction results to the development of radium separation schemes is discussed and a possible flowchart for the determination of {sup 226}Ra/{sup 228}Ra in natural waters is presented.

  5. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    SciTech Connect

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  6. Equilibrium Model for Ion Exchange Between Multivalent Cations and Zeolite-A in a Molten Salt

    SciTech Connect

    Supathorn Phongikaroon; Michael Simpson

    2005-10-01

    A two-site equilibrium model that previously only accommodated monovalent cations has been extended to include divalent and trivalent cations for ion exchange between zeolite-A and molten chloride salts, a process being considered for concentrating nuclear fission products into high level waste forms. Equilibrium constants were determined by fitting the model to equilibrium data sets for ion exchange between zeolite-A and Cs ternary salt (CsCl-LiCl-KCl), Rb ternary salt (RbCl-LiCl-KCl), Na ternary salt (NaCl-LiCl-KCl), Sr ternary salt (SrCl2-LiCl-KCl), and U ternary salt (UCl3-LiCl-KCl). The results reveal a good fit between the experimental data sets and the model. The two ion exchange sites, framework sites and occluded sites, demonstrate different relative selectivities for the cations. It was found that Sr2_ is the preferred cation in the ion exchange site, and Cs_ is the preferred cation in the occlusion site. Meanwhile, Li_ has the highest combined selectivity when both ion exchange and occlusion sites are considered. Interestingly, divalent and trivalent species are more preferred in the ion exchange site than the monovalent species with the exception of Li_.

  7. Ion exchange selectivity for cross-linked polyacrylic acid

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.

    1983-01-01

    The ion separation factors for 21 common metal ions with cross-linked polyacrylic acid were determined as a function of pH and the percent of the cross-linked polyacrylic acid neutralized. The calcium ion was used as a reference. At a pH of 5 the decreasing order of affinity of the ions for the cross-linked polyacrylic acid was found to be: Hg++, Fe+++, Pb++, Cr+++, Cu++, Cd++, Al+++, Ag+, Zn++, Ni++, Mn++, Co++, Ca++, Sr++, Ba++, Mg++, K+, Rb+, Cs+, Na+, and Li+. Members of a chemical family exhibited similar selectivities. The Hg++ ion appeared to be about a million times more strongly bound than the alkali metal ions. The relative binding of most of the metal ions varied with pH; the very tightly and very weakly bound ions showed the largest variations with pH. The calcium ion-hydrogen ion equilibrium was perturbed very little by the presence of the other ions. The separation factors and selectivity coefficients are discussed in terms of equilibrium and thermodynamic significance.

  8. [Ion-exchange hemosorption in the intensive therapy of liver insufficiency in patients with obstructive jaundice].

    PubMed

    Minina, K Z; Kurapov, E P; Goncharov, V V; Leĭkin, Iu A; Tarasova, T I; Treushnikova, N Iu

    1989-01-01

    Hemosorption on thromboresistant ion-exchange resins synthetized at D. I. Mendeleev Moscow Chemical Technological Institute (MCTI) was used in combined therapy of hepatic failure. Use was made of anion-exchange resin A-I-II MCTI, catonit C-I-II MCTI, polyampholit. Stability of hemodynamic parameters, absence of blood element disturbances, effective sampling of anionic and cationic metabolites have been observed.

  9. Ion-exchange material and method of storing radioactive wastes

    DOEpatents

    Komarneni, S.; Roy, D.M.

    1983-10-31

    A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt, and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatible with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

  10. CHARACTERIZATION OF CYCLED SPHERICAL RESORCINOL-FORMALDEHYDE ION EXCHANGE RESIN

    SciTech Connect

    Nash, C.; Duignan, M.

    2010-02-23

    This report presents characterization data for two spherical resorcinol-formaldehyde (sRF) resin beds that had processed cesium in non-radioactive and radioactive cycles. All column cycle operations for the resin beds including loading, displacements, elution, regeneration, breakthroughs, and solution analyses are reported in Nash and Duignan, 2009a. That report covered four ion exchange (IX) campaigns using the two {approx}11 mL beds in columns in a lead-lag arrangement. The first two campaigns used Savannah River Site (SRS) Tank 2F nonradioactive simulant while the latter two were fed with actual dissolved salt in the Savannah River National Laboratory (SRNL) Shielded Cells. Both radioactive cycles ran to cesium breakthrough of the lead column. The resin beds saw in excess of 400 bed volumes of feed in each cycle. Resin disposal plans in tank farm processing depend on characterizations of resin used with actual tank feed. Following a final 30 bed volume (BV) elution with nitric acid, the resin beds were found to contain detectable chromium, barium, boron, aluminum, iron, sodium, sulfur, plutonium, cesium, and mercury. Resin affinity for plutonium is important in criticality safety considerations. Cesium-137 was found to be less than 10E+7 dpm/g of resin, similar to past work with sRF resin. Sulfur levels are reasonably consistent with other work and are expected to represent sulfur chemistry used in the resin manufacture. There were low but detectable levels of technetium, americium, and curium. Toxicity Characteristic Leaching Procedure (TCLP) work on the used (eluted) resin samples showed significant contents of mercury, barium, and chromium. One resin sample exceeded the TCLP level for mercury while the other metals were below TCLP levels. TCLP organics measurements indicated measurable benzene in one case, though the source was unknown. Results of this work were compared with other work on similar sRF resin characterizations in this report. This is the first

  11. ROTARY FILTER FINES TESTING FOR SMALL COLUMN ION EXCHANGE

    SciTech Connect

    Herman, D.

    2011-08-03

    SRNL was requested to quantify the amount of 'fines passage' through the 0.5 micron membranes currently used for the rotary microfilter (RMF). Testing was also completed to determine if there is any additional benefit to utilizing a 0.1 micron filter to reduce the amount of fines that could pass through the filter. Quantifying of the amount of fines that passed through the two sets of membranes that were tested was accomplished by analyzing the filtrate by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) for titanium. Even with preparations to isolate the titanium, all samples returned results of less than the instrument's detection limit of 0.184 mg/L. Test results show that the 0.5 micron filters produced a significantly higher flux while showing a negligible difference in filtrate clarity measured by turbidity. The first targeted deployment of the RMF is with the Small Column Ion Exchange (SCIX) at the Savannah River Site (SRS). SCIX uses crystalline silicotitanate (CST) to sorb cesium to decontaminate a clarified salt solution. The passage of fine particles through the filter membranes in sufficient quantities has the potential to impact the downstream facilities. To determine the amount of fines passage, a contract was established with SpinTek Filtration to operate a 3-disk pilot scale unit with prototypic filter disk and various feeds and two different filter disk membranes. SpinTek evaluated a set of the baseline 0.5 micron filter disks as well as a set of 0.1 micron filter disks to determine the amount of fine particles that would pass the membrane and to determine the flux each set produced. The membrane on both disk sets is manufactured by the Pall Corporation (PMM 050). Each set of disks was run with three feed combinations: prototypically ground CST, CST plus monosodium titanate (MST), and CST, MST, plus Sludge Batch 6 (SB6) simulant. Throughout the testing, samples of the filtrate were collected, measured for turbidity, and sent back

  12. Recent Excitation, Charge Exchange, and Lifetime Results in Highly Charged Ions Relevant to Stellar, Interstellar, Solar and Comet Phenomena

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Hossain, S.; Mawhorter, R. J.; Smith, S. J.

    2006-01-01

    Recent JPL absolute excitation and charge exchange cross sections, and measurements of lifetimes of metastable levels in highly-charged ions (HCIs) are reported. These data provide benchmark comparisons to results of theoretical calculations. Theoretical approaches can then be used to calculate the vast array of data which cannot be measured due to experimental constraints. Applications to the X-ray emission from comets are given.

  13. A review of studies on ion thruster beam and charge-exchange plasmas

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1982-01-01

    Various experimental and analytical studies of the primary beam and charge-exchange plasmas of ion thrusters are reviewed. The history of plasma beam research is recounted, emphasizing experiments on beam neutralization, expansion of the beam, and determination of beam parameters such as electron temperature, plasma density, and plasma potential. The development of modern electron bombardment ion thrusters is treated, detailing experimental results. Studies on charge-exchange plasma are discussed, showing results such as the relationship between neutralizer emission current and plasma beam potential, ion energies as a function of neutralizer bias, charge-exchange ion current collected by an axially moving Faraday cup-RPA for 8-cm and 30-cm ion thrusters, beam density and potential data from a 15-cm ion thruster, and charge-exchange ion flow around a 30-cm thruster. A 20-cm thruster electrical configuration is depicted and facility effects are discussed. Finally, plasma modeling is covered in detail for plasma beam and charge-exchange plasma.

  14. Neutral atomic oxygen beam produced by ion charge exchange for Low Earth Orbital (LEO) simulation

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Rutledge, Sharon; Brdar, Marko; Olen, Carl; Stidham, Curt

    1987-01-01

    A low energy neutral atomic oxygen beam system was designed and is currently being assembled at the Lewis Research Center. The system utilizes a 15 cm diameter Kaufman ion source to produce positive oxygen ions which are charge exchange neutralized to produce low energy (variable from 5 to 150 eV) oxygen atoms at a flux simulating real time low Earth orbital conditions. An electromagnet is used to direct only the singly charged oxygen ions from the ion source into the charge exchange cell. A retarding potential grid is used to slow down the oxygen ions to desired energies prior to their charge exchange. Cryogenically cooled diatomic oxygen gas in the charge exchange cell is then used to transfer charge to the oxygen ions to produce a neutral atomic oxygen beam. Remaining non-charge exchanged oxygen ions are then swept from the beam by electromagnetic or electrostatic deflection depending upon the desired experiment configuration. The resulting neutral oxygen beam of 5 to 10 cm in diameter impinges upon target materials within a sample holder fixture that can also provide for simultaneous heating and UV exposure during the atomic oxygen bombardment.

  15. Negative Halogen Ions for Fusion Applications

    SciTech Connect

    Grisham, L.R.; Kwan, J.W.; Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Westenskow, G.

    2006-01-01

    Over the past quarter century, advances in hydrogen negative ion sources have extended the usable range of hydrogen isotope neutral beams to energies suitable for large magnetically confined fusion devices. Recently, drawing upon this experience, negative halogen ions have been proposed as an alternative to positive ions for heavy ion fusion drivers in inertial confinement fusion, because electron accumulation would be prevented in negative ion beams, and if desired, the beams could be photo-detached to neutrals. This paper reports the results of an experiment comparing the current density and beam emittance of Cl+ and Cl- extracted from substantially ion-ion plasmas with that of Ar+ extracted from an ordinary electron-ion plasma, all using the same source, extractor, and emittance scanner. At similar discharge conditions, the Cl- current was typically 85 – 90% of the positive chlorine current, with an e-/ Cl- ratio as low as seven without grid magnets. The Cl- was as much as 76% of the Ar+ current from a discharge with the same RF drive. The minimum normalized beam emittance and inferred ion temperatures of Cl+, Cl-, and Ar+ were all similar, so the current density and optical quality of Cl- appear as suitable for heavy ion fusion driver applications as a positive noble gas ion of similar mass. Since F, I, and Br should all behave similarly in an ion source, they should also be suitable as driver beams.

  16. [An ion exchange method to determine free metal concentrations, adapted for use in biological fluids: methods and determination of (Mg2+)].

    PubMed

    Achilles, W; Scheidt, B; Hoppe, H; Cumme, G A

    1977-01-01

    An ion exchange method for measuring concentrations of free (ionized) metal ions and its application to the determination of [Mg2+] is described. A surface sulfonated polystyrene material is used as the "twodimensional" cation exchanger. The sample-volume is 1 ml. About 50 determinations can be performed within 1 hr having a standard error of +/- (2-4)% in the optimal range of measurement. Advantages and disadvantages of the method compared with other ones are demonstrated and discussed. Free Mg2+ ion concentrations were measured in solutions containing pyrophosphate as well as haemoglobin and compared with those which were determined by equilibrium calculation or ultrafiltration.

  17. Donnan dialysis of transition metal ions using anion exchange membrane modified with Xylenol Orange

    SciTech Connect

    Sawicka, B.; Brajter, K.; Trojanowicz, M.; Kado, B. )

    1991-01-01

    A chelating ion-exchange membrane was obtained by modification of a PTFE-based anion-exchange membrane with Xylenol Orange. Its utility for dialysis of Cu(II), Ni(II), Mn(II), and Zn(II) was investigated by using receiver solutions without and with iminodiacetate. 1,2-diaminocyclohexanetetraacetic acid, and tetraethylenepentamine. In comparison to commercial PTFE cation-exchange membranes, modified chelating membranes exhibit for the metal ions investigated a larger differentiation of retention in the membrane phase and transport-to-receiver solution depending on the modifier used and the composition of the receiver solution.

  18. Quantifying exchange coupling in f-ion pairs using the diamagnetic substitution method

    SciTech Connect

    Lukens, Wayne W.; Walter, Marc D.

    2010-04-01

    One of the challenges in the chemistry of actinide and lanthanide (f-ion) is quantifying exchange coupling between f-ions. While qualitative information about exchange coupling may be readily obtained using the diamagnetic substitution approach, obtaining quantitative information is much more difficult. This article describes how exchange coupling may be quantified using the susceptibility of a magnetically isolated analog, as in the diamagnetic substitution approach, along with the anisotropy of the ground state as determined by EPR spectroscopy. Several examples are used to illustrate and test this approach.

  19. Quantifying exchange coupling in f-ion pairs using the diamagnetic substitution method.

    PubMed

    Lukens, Wayne W; Walter, Marc D

    2010-05-17

    One of the challenges in the chemistry of actinide and lanthanide (f-ion) complexes is quantifying exchange coupling of f-ions. While qualitative information about exchange coupling may be readily obtained using the diamagnetic substitution approach, obtaining quantitative information is much more difficult. This article describes how exchange coupling may be quantified using the susceptibility of a magnetically isolated analog, as in the diamagnetic substitution approach, along with the anisotropy of the ground state, as determined by EPR spectroscopy. Several examples are used to illustrate and test this approach.

  20. Tuning Hydrated Nanoceria Surfaces: Experimental/Theoretical Investigations of Ion Exchange and Implications in Organic and Inorganic Interactions

    PubMed Central

    Vincent, Abhilash; Inerbaev, Talgat M.; Babu, Suresh; Karakoti, Ajay S.; Self, William T.; Masunov, Artëm E.; Seal, Sudipta

    2010-01-01

    Long term stability and surface properties of colloidal nanoparticles have significance in many applications. Here, surface charge modified hydrated cerium oxide nanoparticles (CNPs, also known as nanoceria) are synthesized and their dynamic ion exchange interactions with the surrounding medium are investigated in detail. Time dependent Zeta (ζ) potential (ZP) variations of CNPs are demonstrated as a useful characteristic for optimizing their surface properties. The surface charge reversal of CNPs observed with respect to time, concentration, temperature and doping is correlated to the surface modification of CNPs in aqueous solution and the ion exchange reaction between the surface protons (H+) and the neighboring hydroxyls ions (OH−). Using density functional theory (DFT) calculations, we have demonstrated that the adsorption of H+ ions on the CNP surface is kinetically more favorable while the adsorption of OH− ions on CNPs is thermodynamically more favorable. The importance of selecting CNPs with appropriate surface charges and the implications of dynamic surface charge variations are exemplified with applications in microelectronics and biomedical.\\ PMID:20131920