Interpenetrating polymer network ion exchange membranes and method for preparing same
Alexandratos, Spiro D.; Danesi, Pier R.; Horwitz, E. Philip
1989-01-01
Interpenetrating polymer network ion exchange membranes include a microporous polymeric support film interpenetrated by an ion exchange polymer and are produced by absorbing and polymerizing monomers within the support film. The ion exchange polymer provides ion exchange ligands at the surface of and throughout the support film which have sufficient ligand mobility to extract and transport ions across the membrane.
NASA Technical Reports Server (NTRS)
Rembaum, A.; Wallace, C. J. (Inventor)
1978-01-01
An ion exchange membrane was formed from a solution containing dissolved matrix polymer and a set of monomers which are capable of reacting to form a polyquaternary ion exchange material; for example vinyl pyride and a dihalo hydrocarbon. After casting solution and evaporation of the volatile component's, a relatively strong ion exchange membrane was obtained which is capable of removing anions, such as nitrate or chromate from water. The ion exchange polymer forms an interpenetrating network with the chains of the matrix polymer.
Roelofs, Mark Gerrit; Yang, Zhen-Yu; Han, Amy Qi
2010-06-15
A fluorinated ion exchange polymer is prepared by grafting at least one grafting monomer derived from trifluorostyrene on to at least one base polymer in a organic solvent/water mixture. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.
Ion Exchange Polymeric Coatings for Selective Capacitive Deionization
NASA Astrophysics Data System (ADS)
Jain, Amit; Kim, Jun; Li, Qilin; Verduzco, Rafael
Capacitive deionization (CDI) is an energy-efficient technology for adsorbing and removing scalants and foulants from water by utilizing electric potential between porous carbon electrodes. Currently, industrial application of CDI is limited to low salinity waters due to the limited absorption capacities of carbon electrodes. However, CDI can potentially be used as a low-cost approach to selectively remove divalent ions from high salinity water. Divalent ions such as sulfonates and carbonates cause scaling and thus performance deterioration of membrane-based desalination systems. In this work, we investigated ion-exchange polymer coatings for use in a membrane capacitive deionization (MCDI) process for selective removal of divalent ions. Poly-Vinyl Alcohol (PVA) base polymer was crosslinked and charged using sulfo-succinic acid (SSA) to give a cation exchange layer. 50 um thick standalone polymer films had a permeability of 4.25*10-7 cm2/s for 10mM NaCl feed. Experiments on electrodes with as low as 10 υm thick coating of cation exchange polymer are under progress and will be evaluated on the basis of their selective salt removal efficiency and charge efficiency, and in future we will extend this work to sulfonated block copolymers and anion exchange polymers.
Polymers in separation processes
NASA Astrophysics Data System (ADS)
Wieszczycka, Karolina; Staszak, Katarzyna
2017-05-01
Application of polymer materials as membranes and ion-exchange resins was presented with a focus on their use for the recovery of metal ions from aqueous solutions. Several membrane techniques were described including reverse osmosis, nanofiltration, ultrafiltration, diffusion and Donnan dialysis, electrodialysis and membrane extraction system (polymer inclusion and supported membranes). Moreover, the examples of using ion-exchange resins in metal recovery were presented. The possibility of modification of the resin was discussed, including hybrid system with metal cation or metal oxide immobilized on polymer matrices or solvent impregnated resin.
Kurniawan, Andi; Tsuchiya, Yuki; Eda, Shima; Morisaki, Hisao
2015-12-01
Biofilm polymers contain both electrically positively and negatively charged sites. These charged sites enable the biofilm to trap and retain ions leading to an important role of biofilm such as nutrient recycling and pollutant purification. Much work has focused on the ion-exchange capacity of biofilms, and they are known to adsorb ions through an exchange mechanism between the ions in solution and the ions adsorbed to the charged sites on the biofilm polymer. However, recent studies suggest that the adsorption/desorption behavior of ions in a biofilm cannot be explained solely by this ion exchange mechanism. To examine the possibility that a substantial amount of ions are held in the interstitial region of the biofilm polymer by an electrostatic interaction, intact biofilms formed in a natural environment were immersed in distilled water and ion desorption was investigated. All of the detected ion species were released from the biofilms over a short period of time, and very few ions were subsequently released over more time, indicating that the interstitial region of biofilm polymers is another ion reserve. The extent of ion retention in the interstitial region of biofilms for each ion can be determined largely by charge density, |Z|/r, where |Z| is the ion valence as absolute value and r is the ion radius. The higher |Z|/r value an ion has, the stronger it is retained in the interstitial region of biofilms. Ion shape is also a key determinant of ion retention. Spherical and non-spherical ions have different correlations between the condensation ratio and |Z|/r. The generality of these findings were assured by various biofilm samples. Thus, the internal regions of biofilms exchange ions dynamically with the outside environment. Copyright © 2015 Elsevier B.V. All rights reserved.
Patents on Membranes Based on Non-Fluorinated Polymers for Vanadium Redox Flow Batteries.
Choi, So-Won; Kim, Tae-Ho; Cha, Sang-Ho
2017-07-10
Vanadium redox flow batteries (VRFBs) have received considerable attention as large-scale electrochemical energy storage systems. In particular, VRFBs offer a higher power and energy density than other RFBs and mitigate undesirable performance fading, such as inevitable ion crossover, because of the unique advantage that only the vanadium ion is employed as the active species in the two electrolytes. The key constituent of VRFBs is a separator to conduct protons and prevent cross-mixing of the positive and negative electrolytes. For this purpose, ion exchange membranes like sulfonated polymer membranes can be used. Although this type of membrane does not have ion exchange groups, it can achieve an ion exchange capacity by the formation of pores. This review highlights the patents on the preparation of non-fluorinated membranes (sulfonated aromatic polymer membranes and porous membranes) as alternatives to high-cost perfluorinated polymers and their VRFB performance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Aqueous-Processed, High-Capacity Electrodes for Membrane Capacitive Deionization.
Jain, Amit; Kim, Jun; Owoseni, Oluwaseye M; Weathers, Cierra; Caña, Daniel; Zuo, Kuichang; Walker, W Shane; Li, Qilin; Verduzco, Rafael
2018-05-15
Membrane capacitive deionization (MCDI) is a low-cost technology for desalination. Typically, MCDI electrodes are fabricated using a slurry of nanoparticles in an organic solvent along with polyvinylidene fluoride (PVDF) polymeric binder. Recent studies of the environmental impact of CDI have pointed to the organic solvents used in the fabrication of CDI electrodes as key contributors to the overall environmental impact of the technology. Here, we report a scalable, aqueous processing approach to prepare MCDI electrodes using water-soluble polymer poly(vinyl alcohol) (PVA) as a binder and ion-exchange polymer. Electrodes are prepared by depositing aqueous slurry of activated carbon and PVA binder followed by coating with a thin layer of PVA-based cation- or anion-exchange polymer. When coated with ion-exchange layers, the PVA-bound electrodes exhibit salt adsorption capacities up to 14.4 mg/g and charge efficiencies up to 86.3%, higher than typically achieved for activated carbon electrodes with a hydrophobic polymer binder and ion-exchange membranes (5-13 mg/g). Furthermore, when paired with low-resistance commercial ion-exchange membranes, salt adsorption capacities exceed 18 mg/g. Our overall approach demonstrates a simple, environmentally friendly, cost-effective, and scalable method for the fabrication of high-capacity MCDI electrodes.
Developing a polymeric sensor to monitor intracellular conditions
NASA Astrophysics Data System (ADS)
Mudarri, Timothy C.; Leo, Donald J.; Wood, Brett C.; Shires, Peter K.
2004-07-01
Ionic electroactive polymers have been developed as mechanical sensors or actuators, taking advantage of the electromechanical coupling of the materials. This research attempts to take advantage of the chemomechanical and chemoelectrical coupling by characterizing the transient response as the polymer undergoes an ion exchange, thus using the polymer for ionic sensing. Nafion is a biocompatible material, and an implantable polymeric ion sensor which has applications in the biomedical field for bone healing research. An ion sensor and a strain gauge could determine the effects of motion allowed at the fracture site, thus improving rehabilitation procedures for bone fractures. The charge sensitivity of the material and the capacitance of the material were analyzed to determine the transient response. Both measures indicate a change when immersed in ionic salt solutions. It is demonstrated that measuring the capacitance is the best indicator of an ion exchange. Relative to a flat response in deionized water (+/-2%), the capacitance of the polymer exhibits an exponential decay of ~25% of its peak when placed in a salt solution. A linear correlation between the time constant of the decay and the ionic size of the exchanging ion was developed that could reasonably predict a diffusing ion. Tests using an energy dispersive spectrometer (EDS) indicate that 90% of the exchange occurs in the first 20 minutes, shown by both capacitance decay and an atomic level scan. The diffusion rate time constant was found to within 0.3% of the capacitance time constant, confirming the ability of capacitance to measure ion exchange.
Synthesis of polymer ion-exchange hydrogels under γ - irradiation 60Co
NASA Astrophysics Data System (ADS)
Le, V. M.; Zhevnyak, V. D.; Pak, V. Kh; Ananev, V. A.; Borodin, U. V.
2015-04-01
We have reported earlier about the modification of ion-exchange hydrogel under the influence of gamma radiation. The optimal absorbed dose of irradiation had been choosen for radiation modification of polymer hydrogels by ionits to produce products with a high content of the gel - fractions and sufficient mechanical properties. The dependence of the static exchange capacity of hydrogels on the type of ionit and its fractional composition had been studied. The dependence of the static exchange capacity of the quantitative composition of the ionit in the volume of the hydrogel had been investigated. The ion-exchange medical eye lenses had been made under selected conditions of synthesis. Their sorption properties had been studied.
ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS
Kennedy, J.
1959-04-14
An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.
Nanostructured Ion-Exchange Membranes for Fuel Cells: Recent Advances and Perspectives.
He, Guangwei; Li, Zhen; Zhao, Jing; Wang, Shaofei; Wu, Hong; Guiver, Michael D; Jiang, Zhongyi
2015-09-23
Polymer-based materials with tunable nanoscale structures and associated microenvironments hold great promise as next-generation ion-exchange membranes (IEMs) for acid or alkaline fuel cells. Understanding the relationships between nanostructure, physical and chemical microenvironment, and ion-transport properties are critical to the rational design and development of IEMs. These matters are addressed here by discussing representative and important advances since 2011, with particular emphasis on aromatic-polymer-based nanostructured IEMs, which are broadly divided into nanostructured polymer membranes and nanostructured polymer-filler composite membranes. For each category of membrane, the core factors that influence the physical and chemical microenvironments of the ion nanochannels are summarized. In addition, a brief perspective on the possible future directions of nanostructured IEMs is presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Insoluble polyelectrolyte and ion-exchange hollow fiber impregnated therewith
NASA Technical Reports Server (NTRS)
Rembaum, A. (Inventor)
1977-01-01
The number of quaternary sites and ion exchange capacity of a polyquaternary, cross linked, insoluble copolymer of a vinyl pyridine and a dihalo organic compound is increased by about 15-35% by reaction of the polymer with an amine followed by quaternization, if required. The polymer forms spontaneously in the presence of a substrate such as within the pores of a hollow fiber. The improved resin impregnated fiber may be utilized to remove ions from waste or process steams.
Ion exchange polymers and method for making
NASA Technical Reports Server (NTRS)
Philipp, Warren H. (Inventor); Street, Kenneth W., Jr. (Inventor)
1994-01-01
An ion exchange polymer comprised of an alkali metal or alkaline earth metal salt of a poly(carboxylic acid) in a poly(vinyl acetal) matrix is described. The polymer is made by treating a mixture made of poly(vinyl alcohol) and poly(acrylic acid) with a suitable aldehyde and an acid catalyst to cause acetalization with some cross-linking. The material is then subjected to an alkaline aqueous solution of an alkali metal salt or an alkali earth metal salt. All of the film forming and cross-linking steps can be carried out simultaneously, if desired.
Modifying Silicates for Better Dispersion in Nanocomposites
NASA Technical Reports Server (NTRS)
Campbell, Sandi
2005-01-01
An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces, the co-ion exchange strengthens the polymer/silicate interface and ensures irreversible separation of the silicate layers. One way in which it does this is to essentially tether one amine of each diamine molecule to a silicate surface, leaving the second amine free for reaction with monomers during the synthesis of a polymer. In addition, the incorporation of alkyl ammonium ions into the galleries at low concentration helps to keep low the melt viscosity of the oligomer formed during synthesis of the polymer and associated processing - a consideration that is particularly important in the case of a highly cross-linked, thermosetting polymer. Because of the chemical bonding between the surface-modifying amines and the monomers, even when the alkyl ammonium ions become degraded at high processing temperature, the silicate layers do not aggregate and, hence, nanometer-level dispersion is maintained.
Lee, Woo-Hyung; Park, Eun Joo; Han, Junyoung; ...
2017-05-05
A new design concept for ion-conducting polymers in anion exchange membranes (AEMs) fuel cells is proposed based on structural studies and conformational analysis of polymers and their effect on the properties of AEMs. Thermally, chemically, and mechanically stable terphenyl-based polymers with pendant quaternary ammonium alkyl groups were synthesized to investigate the effect of varying the arrangement of the polymer backbone and cation-tethered alkyl chains. The results demonstrate that the microstructure and morphology of these polymeric membranes significantly influence ion conductivity and fuel cell performance. Finally, the results of this study provide new insights that will guide the molecular design ofmore » polymer electrolyte materials to improve fuel cell performance.« less
Preparation of Ion Exchange Films for Solid-Phase Spectrophotometry and Solid-Phase Fluorometry
NASA Technical Reports Server (NTRS)
Hill, Carol M.; Street, Kenneth W.; Tanner, Stephen P.; Philipp, Warren H.
2000-01-01
Atomic spectroscopy has dominated the field of trace inorganic analysis because of its high sensitivity and selectivity. The advantages gained by the atomic spectroscopies come with the disadvantage of expensive and often complicated instrumentation. Solid-phase spectroscopy, in which the analyte is preconcentrated on a solid medium followed by conventional spectrophotometry or fluorometry, requires less expensive instrumentation and has considerable sensitivity and selectivity. The sensitivity gains come from preconcentration and the use of chromophore (or fluorophore) developers and the selectivity is achieved by use of ion exchange conditions that favor the analyte in combination with speciative chromophores. Little work has been done to optimize the ion exchange medium (IEM) associated with these techniques. In this report we present a method for making ion exchange polymer films, which considerably simplify the solid-phase spectroscopic techniques. The polymer consists of formaldehyde-crosslinked polyvinyl alcohol with polyacrylic acid entrapped therein. The films are a carboxylate weak cation exchanger in the calcium form. They are mechanically sturdy and optically transparent in the ultraviolet and visible portion of the spectrum, which makes them suitable for spectrophotometry and fluorometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murrray, George M.; Uy, O. Manuel
The purpose of this research is to develop polymeric extractants for the selective complexation of uranyl ions (and subsequently other actinyl and actinide ions) from aqueous solutions. Selectivity for a specific actinide ion is obtained by providing the polymers with cavities lined with complexing ligands so arranged as to match the charge, coordination number, coordination geometry, and size of the actinide ion. These cavity-containing polymers are produced by using a specific actinide ion (or surrogate) as a template around which monomeric complexing ligands are polymerized. The polymers provide useful sequestering agents for removing actinide ions from wastes and will formmore » the basis for a variety of analytical techniques for actinide determination.« less
The use of fibrous ion exchangers in gold hydrometallurgy
NASA Astrophysics Data System (ADS)
Kautzmann, R. M.; Sampaio, C. H.; Cortina, J. L.; Soldatov, V.; Shunkevich, A.
2002-10-01
This article examines a family of ion-exchange fibers, FIBAN, containing primary and secondary amine groups. These ion exchangers have a fiber diameter of 20 40 Μm, high osmotic and mechanic stability, a high rate of adsorption and regeneration, and excellent dynamic characteristics as filtering media. Inparticular, this article discusses the use of FIBAN fibrous ion exchangers in the recovery of gold cyanide andbase-metal cyanides (copper and mercury) from mineral-leaching solutions. The influence of polymer structure and water content on their extraction ability is described, along with key parameters of gold hydrometallurgy such as extraction efficiency, selectivity, pH dependence, gold cyanide loading, kinetics, and stripping.
Cesium-specific phenolic ion exchange resin
Bibler, J.P.; Wallace, R.M.
1995-08-15
A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio. 2 figs.
Cesium-specific phenolic ion exchange resin
Bibler, Jane P.; Wallace, Richard M.
1995-01-01
A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio.
Magosso, H A; Panteleimonov, A V; Kholin, Y V; Gushikem, Y
2006-11-01
The preparation and anion exchange properties of 3-n-propyl(4-methylpyridinium) silsesquioxane chloride polymer are described. This new polymer was prepared by the sol-gel processing method and is designated as SiPic+Cl-. It is insoluble in water and showed an anion exchange capacity of 1.46x10(-3) mol g-1. The adsorption isotherms of ZnCl2, CdCl2 and HgCl2 were determined from aqueous solutions and the adsorption equilibria simulations fit the model of fixed bidentate centers with the absence of lateral interactions and energetic heterogeneity between them. The metal ions diffuse into the solid solution interface and are dominantly present as MCl2-(4) species for Zn(II), MCl(2-)4 and MCl-3 species for Cd(II) and MCl-3 species for Hg(II).
Synthesis and characterization of aminated perfluoro polymer electrolytes
NASA Astrophysics Data System (ADS)
Page-Belknap, Zachary Stephan Glenn
Polymer electrolytes have been developed for use in anion exchange membrane fuel cells for years. However, due to the highly corrosive environment within these fuel cells, poor chemical stability of the polymers and low ion conductivity have led to high development costs and thus prevention from widespread commercialization. The work in this study aims to provide a solution to these problems through the synthesis and characterization of a novel polymer electrolyte. The 800 EW 3M PFSA sulfonyl fluoride precursor was aminated with 3-(dimethylamino)-1-propylamine to yield a functional polymer electrolyte following quaternization, referred to in this work as PFSa-PTMa. 1 M solutions of LiPF6, HCL, KOH, NaOH, CsOH, NaHCO3 and Na2CO3 were used to exchange the polymer to alternate counterion forms. Chemical structure analysis was performed using both FT and ATR infrared spectroscopy to confirm sulfonyl fluoride replacement and the absence of sulfonic acid sites. Mechanical testing of the polymer, following counterion exchange with KOH, at saturated conditions and 60 ºC exhibited a tensile strength of 13 +/- 2.0 MPa, a Young's modulus of 87 +/- 16 MPa and a degree of elongation reaching 75% +/- 9.1%, which indicated no mechanical degradation following exposure to a highly basic environment. Conductivities of the polymer in the Cl- and OH- counterion forms at saturated conditions and 90 ºC were observed at 26 +/- 8.0 mS cm-1 and 1.1 +/- 0.1 mS cm-1, respectively. OH- conductivities were slightly above those observed for CO32- and HCO 3- counterions at the same conditions, 0.63 +/- 0.18 and 0.66 +/- 0.21 mS cm-1 respectively. The ion exchange capacity (IEC) of the polymer in the Cl- counterion form was measured via titration at 0.57 meq g-1 which correlated to 11.2 +/- 0.10 water molecules per ion site when at 60ºC and 95% relative humidity. The IEC of the polymer in the OH- counterion form following titration expressed nearly negligible charge density, less than 0.01 meq g -1. The low OH- conductivities and IEC were attributed to the formation of a predominately zwitterionic polymer when exposed to a strong base. Removal of the sulfonamide proton following counterion exchange with a strong base and formation of a zwitterion was confirmed by FTIR with the absence of a primary amine stretch between 3000-3600 cm-1. 1H NMR analysis of small molecule analogues established that the sulfonamide site was not methylated during quaternization as evident by the exclusion of a strong singlet around 2.9 ppm. pH indication tests with Thymolphthalein illuminated the slight presence of free OH- ions within the polymer following counterion exchange thus validating the low IEC and formation of a predominately zwitterionic polymer. Recommended future work with this polymer electrolyte consists of fine tuning the polymer to be less or completely zwitterionic, pKa analysis of the sulfonamide linkage with small molecule analogues, implementation into microbial fuel cell and biological separation processes for pH regulation, and development as a support infrastructure for ionic liquids.
Fox, Douglas M; Rodriguez, Rebeca S; Devilbiss, Mackenzie N; Woodcock, Jeremiah; Davis, Chelsea S; Sinko, Robert; Keten, Sinan; Gilman, Jeffrey W
2016-10-12
Cellulose nanocrystals (CNCs) have great potential as sustainable reinforcing materials for polymers, but there are a number of obstacles to commercialization that must first be overcome. High levels of water absorption, low thermal stabilities, poor miscibility with nonpolar polymers, and irreversible aggregation of the dried CNCs are among the greatest challenges to producing cellulose nanocrystal-polymer nanocomposites. A simple, scalable technique to modify sulfated cellulose nanocrystals (Na-CNCs) has been developed to address all of these issues. By using an ion exchange process to replace Na + with imidazolium or phosphonium cations, the surface energy is altered, the thermal stability is increased, and the miscibility of dried CNCs with a nonpolar polymer (epoxy and polystyrene) is enhanced. Characterization of the resulting ion exchanged CNCs (IE-CNCs) using potentiometry, inverse gas chromatography, dynamic vapor sorption, and laser scanning confocal microscopy reveals that the IE-CNCs have lower surface energies, adsorb less water, and have thermal stabilities of up to 100 °C higher than those of prepared protonated cellulose nanocrystals (H-CNCs) and 40 °C higher than that of neutralized Na-CNC. Methyl(triphenyl)phosphonium exchanged cellulose nanocrystals (MePh 3 P-CNC) adsorbed 30% less water than Na-CNC, retained less water during desorption, and were used to prepare well-dispersed epoxy composites without the aid of a solvent and well-dispersed polystyrene nanocomposites using a melt blending technique at 195 °C. Predictions of dispersion quality and glass transition temperatures from molecular modeling experiments match experimental observations. These fiber-reinforced polymers can be used as lightweight composites in transportation, infrastructure, and renewable energy applications.
NASA Technical Reports Server (NTRS)
Liang, Maggie
2004-01-01
Polymer-clay nanocomposites have exhibited superior strength and thermo- oxidative properties as compared to pure polymers for use in air and space craft; however, there has often been difficulty completely dispersing the clay within the matrices of the polymer. In order to improve this process, the cation exchange capacity of lithium clay is first lowered using twenty-four hour heat treatments of no heat, 130 C, 150 C, or 170 C to fixate the lithium ions within the clay layers so that they are unexchangeable. Generally, higher temperatures have generated lower cation exchange capacities. An ion exchange involving dodecylamine, octadecylamine, or dimethyl benzidine (DMBZ) is then employed to actually expand the clay galleries. X-ray diffraction and transmission electron microscopy can be used to determine whether the clay has been successfully exfoliated. Finally, resins of DMBZ with clay are then pressed into disks for characterization using dynamic mechanical analyzer and oven- aging techniques in order to evaluate their glass transition, modulus strength, and thermal-oxidative stability in comparison to neat DMBZ. In the future, they may also be tested as composites for flexural and laminar shear strength.
Sun, Gongchen; Senapati, Satyajyoti; Chang, Hsueh-Chia
2016-04-07
A microfluidic ion exchange membrane hybrid chip is fabricated using polymer-based, lithography-free methods to achieve ionic diode, transistor and amplifier functionalities with the same four-terminal design. The high ionic flux (>100 μA) feature of the chip can enable a scalable integrated ionic circuit platform for micro-total-analytical systems.
NASA Astrophysics Data System (ADS)
Jho, Jae Y.; Han, Man J.; Park, Jong H.; Lee, Jang Y.; Wang, Hyuck S.
2005-05-01
On purpose to overcome the limit of conventional ionic polymer-metal composites (IPMC) using the commercial ionic membranes, novel IPMCs with radiation-grafted ion-exchange membranes were prepared. Poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-co-HFP) and poly(ethylene-co-tetrafluoroethylene) (ETFE) were radiation-grafted with styrene, and then sulfonated. The properties of the membranes were modulated by controlling the amount of polystyrene sulfonic acid (PSSA) groups in the membranes. The amount of PSSA groups were tuned by controlling the total absorbed dose of γ-ray. The membranes were characterized by measuring the water-uptake, the ion-exchange capacity, and the ion conductivity. The performance of the IPMCs using these membranes were analyzed with laser displacement meter. They exhibited much larger bending displacement in comparison with Nafion-based IPMC. With increasing the amount of PSSA groups, the maximum displacement and the bending speed were remarkably increased. The results made sure that the property of ion-exchange membrane was the key element affecting the actuation performance of IPMC.
Kadam, A. U.; Sakarkar, D. M.; Kawtikwar, P. S.
2008-01-01
An oral controlled release suspension of chlorpheniramine maleate was prepared using ion-exchange resin technology. A strong cation exchange resin Indion 244 was utilized for the sorption of the drug and the drug resinates was evaluated for various physical and chemical parameters. The drug-resinate complex was microencapsulated with a polymer Eudragit RS 100 to further retard the release characteristics. Both the drug-resinate complex and microencapsulated drug resinate were suspended in a palatable aqueous suspension base and were evaluated for controlled release characteristic. Stability study indicated that elevated temperature did not alter the sustained release nature of the dosage form indicating that polymer membrane surrounding the core material remained intact throughout the storage period. PMID:20046790
Sun, Gongchen; Senapati, Satyajyoti
2016-01-01
A microfluidic-ion exchange membrane hybrid chip is fabricated by polymer-based, lithography-free methods to achieve ionic diode, transistor and amplifier functionalities with the same four-terminal design. The high ionic flux (> 100 μA) feature of the chip can enable a scalable integrated ionic circuit platform for micro-total-analytical systems. PMID:26960551
Trifluorostyrene containing compounds, and their use in polymer electrolyte membranes
Choudhury, Biswajit [Kingston, CA; Roelofs, Mark Gerrit [Hockessin, DE; Yang,; Zhen-Yu, [Hockessin, DE
2009-07-21
A fluorinated ion exchange polymer is prepared by grafting a monomer onto a base polymer, wherein the grafting monomer is selected from the group consisting of structure 1a, 1b and mixture thereof; ##STR00001## wherein Y is selected from the group consisting of --R.sub.FSO.sub.2F, --R.sub.FSO.sub.3M, --R.sub.SO.sub.2NH.sub.2 and --R.sub.FSO.sub.2N(M)SO.sub.2R.sup.2.sub.F, where in M is hydrogen, an alkali cation or ammonium; and R.sub.F and R.sup.2.sub.F are perfluorinated or partially fluorinated, and may optionally include ether oxygens; and n is between 1 and 2 for 1a, or n is between 1 and 3 for 1b. These ion exchange polymers are useful is preparing catalyst coated membranes and membrane electrode assemblies for fuel cells.
Code of Federal Regulations, 2011 CFR
2011-01-01
... contactors employed in the separation cascade can be liquid-liquid exchange columns (such as pulsed columns.... Plastic, plastic-lined (including use of fluorocarbon polymers) and/or glass-lined columns and piping are therefore used. (1) Liquid-liquid exchange columns. Countercurrent liquid-liquid exchange columns having...
Code of Federal Regulations, 2013 CFR
2013-01-01
... contactors employed in the separation cascade can be liquid-liquid exchange columns (such as pulsed columns.... Plastic, plastic-lined (including use of fluorocarbon polymers) and/or glass-lined columns and piping are therefore used. (1) Liquid-liquid exchange columns. Countercurrent liquid-liquid exchange columns having...
Code of Federal Regulations, 2014 CFR
2014-01-01
... contactors employed in the separation cascade can be liquid-liquid exchange columns (such as pulsed columns.... Plastic, plastic-lined (including use of fluorocarbon polymers) and/or glass-lined columns and piping are therefore used. (1) Liquid-liquid exchange columns. Countercurrent liquid-liquid exchange columns having...
Basconi, Joseph E; Carta, Giorgio; Shirts, Michael R
2015-04-14
Multiscale simulation is used to study the adsorption of lysozyme onto ion exchangers obtained by grafting charged polymers into a porous matrix, in systems with various polymer properties and strengths of electrostatic interaction. Molecular dynamics simulations show that protein partitioning into the polymer-filled pore space increases with the overall charge content of the polymers, while the diffusivity in the pore space decreases. However, the combination of greatly increased partitioning and modestly decreased diffusion results in macroscopic transport rates that increase as a function of charge content, as the large concentration driving force due to enhanced pore space partitioning outweighs the reduction in the pore space diffusivity. Matrices having greater charge associated with the grafted polymers also exhibit more diffuse intraparticle concentration profiles during transient adsorption. In systems with a high charge content per polymer and a low protein loading, the polymers preferentially partition toward the surface due to favorable interactions with the surface-bound protein. These results demonstrate the potential of multiscale modeling to illuminate qualitative trends between molecular properties and the adsorption equilibria and kinetic properties observable on macroscopic scales.
Polymer useful for an ion exchange membrane
Liang, Siwei; Lynd, Nathaniel A.
2017-03-14
The present invention provides for a polymer formed by reacting a first reactant polymer, or a mixture of first reactant polymers comprising different chemical structures, comprising a substituent comprising two or more nitrogen atoms (or a functional group/sidechain comprising a two or more nitrogen atoms) with a second reactant polymer, or a mixture of second reactant polymers comprising different chemical structures, comprising a halogen substituent (or a functional group/sidechain comprising a halogen).
Material Removes Heavy Metal Ions From Water
NASA Technical Reports Server (NTRS)
Philipp, Warren H., Jr.; Street, Kenneth W.; Hill, Carol; Savino, Joseph M.
1995-01-01
New high capacity ion-exchange polymer material removes toxic metal cations from contaminated water. Offers several advantages. High sensitivities for such heavy metals as lead, cadmium, and copper and capable of reducing concentrations in aqueous solutions to parts-per-billion range. Removes cations even when calcium present. Material made into variety of forms, such as thin films, coatings, pellets, and fibers. As result, adapted to many applications to purify contaminated water, usually hard wherever found, whether in wastewater-treatment systems, lakes, ponds, industrial plants, or homes. Another important feature that adsorbed metals easily reclaimed by either destructive or nondestructive process. Other tests show ion-exchange polymer made inexpensively; easy to use; strong, flexible, not easily torn; and chemically stable in storage, in aqueous solutions, and in acidic or basic solution.
Salmi, Zakaria; Benzarti, Karim; Chehimi, Mohamed M
2013-11-05
We describe a simple, off-the-beaten-path strategy for making clay/polymer nanocomposites through tandem diazonium salt interface chemistry and radical photopolymerization. Prior to photopolymerization, sodium montmorillonite (MMT) was ion exchanged with N,N'-dimethylbenzenediazonium cation (DMA) from the tetrafluoroborate salt precursor. DMA acts as a hydrogen donor for benzophenone in solution; this pair of co-initiators permits us to photopolymerize glycidyl methacrylate (GMA) between the lamellae of the diazonium-modified clay, therefore providing intercalated MMT-PGMA nanocomposites with an onset of exfoliation. This work conclusively provides a new approach for bridging reactive and functional polymers to layered nanomaterials via aryl diazonium salts in a simple, fast, efficient cation-exchange approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ertem, S. Piril; Caire, Benjamin R.; Tsai, Tsung-Han
Anion exchange membranes (AEMs) are a promising class of materials for applications that require selective ion transport, such as fuel cells, water purification, and electrolysis devices. Studies of structure–morphology–property relationships of ion-exchange membranes revealed that block copolymers exhibit improved ion conductivity and mechanical properties due to their microphase-separated morphologies with well-defined ionic domains. While most studies focused on symmetric diblock or triblock copolymers, here, the first example of a midblock quaternized pentablock AEM is presented. A symmetric ABCBA pentablock copolymer was functionalized to obtain a midblock brominated polymer. Solution cast films were then quaternized to obtain AEMs with resulting ionmore » exchange capacities (IEC) ranging from 0.4 to 0.9 mmol/g. Despite the relatively low IEC, the polymers were highly conductive (up to 60 mS/cm Br2 at 90 8C and 95%RH) with low water absorption (<25 wt %) and maintained adequate mechanical properties in both dry and hydrated conditions. Xray scattering and transmission electron microscopy (TEM) revealed formation of cylindrical non-ionic domains in a connected ionic phase.« less
Lim, Jungho; Lee, Eun Ji; Choi, Jae Sun; Jeong, Nak Cheon
2018-01-31
Ionic polymers that possess ion-exchangeable sites have been shown to be a greatly useful platform to fabricate mixed matrices (MMs) where metal-organic frameworks (MOFs) can be in situ synthesized, although the in situ synthesis of MOF has been rarely studied. In this study, alginate (ALG), an anionic green polymer that possesses metal-ion-exchangeable sites, is employed as a platform of MMs for the in situ synthesis of iconic MOFs, HKUST-1, and MOF-74(Zn). We demonstrate for the first time that the sequential order of supplying MOF ingredients (metal ion and deprotonated ligand) into the alginate matrix leads to substantially different results because of a difference in the diffusion of the MOF components. For the examples examined, whereas the infusion of BTC 3- ligand into Cu 2+ -exchanged ALG engendered the eggshell-shaped HKUST-1 layers on the surface of MM spheres, the infusion of Cu 2+ ions into BTC 3- -included alginate engendered the high dispersivity and junction contact of HKUST-1 crystals in the alginate matrix. This fundamental property has been exploited to fabricate a flexible MOF-containing mixed matrix membrane by coincorporating poly(vinyl alcohol). Using two molecular dyes, namely, methylene blue and rhodamine 6G, further, we show that this in situ strategy is suitable for fabricating an MOF-MM that exhibits size-selective molecular uptake.
Horkay, Ferenc; Basser, Peter J; Hecht, Anne-Marie; Geissler, Erik
2015-12-01
We discuss the main findings of a long-term research program exploring the consequences of sodium/calcium ion exchange on the macroscopic osmotic and elastic properties, and the microscopic structure of representative synthetic polyelectrolyte (sodium polyacrylate, (polyacrylic acid)) and biopolymer gels (DNA). A common feature of these gels is that above a threshold calcium ion concentration, they exhibit a reversible volume phase transition. At the macroscopic level, the concentration dependence of the osmotic pressure shows that calcium ions influence primarily the third-order interaction term in the Flory-Huggins model of polymer solutions. Mechanical tests reveal that the elastic modulus is practically unaffected by the presence of calcium ions, indicating that ion bridging does not create permanent cross-links. At the microscopic level, small-angle neutron scattering shows that polyacrylic acid and DNA gels exhibit qualitatively similar structural features in spite of important differences (e.g. chain flexibility and chemical composition) between the two polymers. The main effect of calcium ions is that the neutron scattering intensity increases due to the decrease in the osmotic modulus. At the level of the counterion cloud around dissolved macroions, anomalous small-angle X-ray scattering measurements made on DNA indicate that divalent ions form a cylindrical sheath enveloping the chain, but they are not localized. Small-angle neutron scattering and small-angle X-ray scattering provide complementary information on the structure and interactions in polymer solutions and gels. © IMechE 2015.
Triboelectric, Corona, and Induction Charging of Insulators as a Function of Pressure
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Mucciolo, Eduardo R.; Calle, Carlos I.
2006-01-01
Theoretical and experimental research has been performed that shows that the surface charge on an insulator after triboelectric charging with another insulator is rapidly dissipated with lowered atmospheric pressure. This pressure discharge is consistent with surface ions being evaporated off the surface once their vapor pressure is attained. In this paper we will report on the results of three different charging techniques (triboelectric, corona, and induction) performed on selected polymers with varying atmospheric pressure. This data will show that ion exchange between the polymer samples is the mechanism responsible for most of the surface charge on the polymer surfaces.
Eltron Research & Development, Inc. (Eltron) proposes to develop an ion-selective, polymer membrane electrode capable of detecting perchlorate in water at low parts per billion (ppb) concentrations. With the discovery of perchlorate contamination in an increasing number of...
pH- and ion-sensitive polymers for drug delivery
Yoshida, Takayuki; Lai, Tsz Chung; Kwon, Glen S; Sako, Kazuhiro
2013-01-01
Introduction Drug delivery systems (DDSs) are important for effective, safe, and convenient administration of drugs. pH- and ion-responsive polymers have been widely employed in DDS for site-specific drug release due to their abilities to exploit specific pH- or ion-gradients in the human body. Areas covered Having pH-sensitivity, cationic polymers can mask the taste of drugs and release drugs in the stomach by responding to gastric low pH. Anionic polymers responsive to intestinal high pH are used for preventing gastric degradation of drug, colon drug delivery and achieving high bioavailability of weak basic drugs. Tumor-targeted DDSs have been developed based on polymers with imidazole groups or poly(β-amino ester) responsive to tumoral low pH. Polymers with pH-sensitive chemical linkages, such as hydrazone, acetal, ortho ester and vinyl ester, pH-sensitive cell-penetrating peptides and cationic polymers undergoing pH-dependent protonation have been studied to utilize the pH gradient along the endocytic pathway for intracellular drug delivery. As ion-sensitive polymers, ion-exchange resins are frequently used for taste-masking, counterion-responsive drug release and sustained drug release. Polymers responding to ions in the saliva and gastrointestinal fluids are also used for controlled drug release in oral drug formulations. Expert opinion Stimuli-responsive DDSs are important for achieving site-specific and controlled drug release; however, intraindividual, interindividual and intercellular variations of pH should be considered when designing DDSs or drug products. Combination of polymers and other components, and deeper understanding of human physiology are important for development of pH- and ion-sensitive polymeric DDS products for patients. PMID:23930949
Aoyagi, Wataru; Omiya, Masaki
2016-01-01
An ionic polymer-metal composite (IPMC) actuator composed of a thin perfluorinated ionomer membrane with electrodes plated on both surfaces undergoes a large bending motion when a low electric field is applied across its thickness. Such actuators are soft, lightweight, and able to operate in solutions and thus show promise with regard to a wide range of applications, including MEMS sensors, artificial muscles, biomimetic systems, and medical devices. However, the variations induced by changing the type of anion on the device deformation properties are not well understood; therefore, the present study investigated the effects of different anions on the ion exchange process and the deformation behavior of IPMC actuators with palladium electrodes. Ion exchange was carried out in solutions incorporating various anions and the actuator tip displacement in deionized water was subsequently measured while applying a step voltage. In the step voltage response measurements, larger anions such as nitrate or sulfate led to a more pronounced tip displacement compared to that obtained with smaller anions such as hydroxide or chloride. In AC impedance measurements, larger anions generated greater ion conductivity and a larger double-layer capacitance at the cathode. Based on these mechanical and electrochemical measurements, it is concluded that the presence of larger anions in the ion exchange solution induces a greater degree of double-layer capacitance at the cathode and results in enhanced tip deformation of the IPMC actuators. PMID:28773599
Ferraz, Natalia; Carlsson, Daniel O.; Hong, Jaan; Larsson, Rolf; Fellström, Bengt; Nyholm, Leif; Strømme, Maria; Mihranyan, Albert
2012-01-01
Composites of nanocellulose and the conductive polymer polypyrrole (PPy) are presented as candidates for a new generation of haemodialysis membranes. The composites may combine active ion exchange with passive ultrafiltration, and the large surface area (about 80 m2 g−1) could potentially provide compact dialysers. Herein, the haemocompatibility of the novel membranes and the feasibility of effectively removing small uraemic toxins by potential-controlled ion exchange were studied. The thrombogenic properties of the composites were improved by applying a stable heparin coating. In terms of platelet adhesion and thrombin generation, the composites were comparable with haemocompatible polymer polysulphone, and regarding complement activation, the composites were more biocompatible than commercially available membranes. It was possible to extract phosphate and oxalate ions from solutions with physiological pH and the same tonicity as that of the blood. The exchange capacity of the materials was found to be 600 ± 26 and 706 ± 31 μmol g−1 in a 0.1 M solution (pH 7.4) and in an isotonic solution of phosphate, respectively. The corresponding values with oxalate were 523 ± 5 in a 0.1 M solution (pH 7.4) and 610 ± 1 μmol g−1 in an isotonic solution. The heparinized PPy–cellulose composite is consequently a promising haemodialysis material, with respect to both potential-controlled extraction of small uraemic toxins and haemocompatibility. PMID:22298813
Ion exchange polymers for anion separations
Jarvinen, Gordon D.; Marsh, S. Fredric; Bartsch, Richard A.
1997-01-01
Anion exchange resins including at least two positively charged sites and a ell-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.
Ion exchange polymers for anion separations
Jarvinen, G.D.; Marsh, S.F.; Bartsch, R.A.
1997-09-23
Anion exchange resins including at least two positively charged sites and a well-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Daiwon; Zhu, Chengzhou; Fu, Shaofang
2016-09-15
The electrochemically controlled ion-exchange properties of multi-wall carbon nanotube (MWNT)/electronically conductive polypyrrole (PPy) polymer composite in the various electrolyte solutions have been investigated. The ion-exchange behavior, rate and capacity of the electrochemically deposited polypyrrole with and without carbon nanotube (CNT) were compared and characterized using cyclic voltammetry (CV), chronoamperometry (CA), electrochemical quartz crystal microbalance (EQCM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It has been found that the presence of carbon nanotube backbone resulted in improvement in ion-exchange rate, stability of polypyrrole, and higher anion loading capacity per PPy due to higher surface area, electronic conductivity, porous structuremore » of thin film, and thinner film thickness providing shorter diffusion path. Chronoamperometric studies show that electrically switched anion exchange could be completed more than 10 times faster than pure PPy thin film. The anion selectivity of CNT/PPy film is demonstrated using X-ray photoelectron spectroscopy (XPS).« less
Cationic Polymers Developed for Alkaline Fuel Cell Applications
2015-01-20
into five categories: proton exchange membrane fuel cell ( PEMFC ), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), solid oxide fuel...SOFC and PAFC belong to high temperature fuel cell, which can be applied in stationary power generation. PEMFC and AFC belong to low temperature fuel...function of the polymer electrolyte is to serve as electrolyte to transport ions between electrodes. PEMFC uses a polymer as electrolyte and works
Porous polymer networks and ion-exchange media and metal-polymer composites made therefrom
Kanatzidis, Mercouri G; Katsoulidis, Alexandros
2015-03-10
Porous polymeric networks and composite materials comprising metal nanoparticles distributed in the polymeric networks are provided. Also provided are methods for using the polymeric networks and the composite materials in liquid- and vapor-phase waste remediation applications. The porous polymeric networks, are highly porous, three-dimensional structures characterized by high surface areas. The polymeric networks comprise polymers polymerized from aldehydes and phenolic molecules.
Porous polymer networks and ion-exchange media and metal-polymer composites made therefrom
Kanatzidis, Mercouri G.; Katsoulidis, Alexandros
2016-10-18
Porous polymeric networks and composite materials comprising metal nanoparticles distributed in the polymeric networks are provided. Also provided are methods for using the polymeric networks and the composite materials in liquid- and vapor-phase waste remediation applications. The porous polymeric networks, are highly porous, three-dimensional structures characterized by high surface areas. The polymeric networks comprise polymers polymerized from aldehydes and phenolic molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonggo, Siang Tandi, E-mail: standigonggo@yahoo.com
2015-09-30
The new type of electrolyte membrane materials has been prepared by blend sulfonated polystyrene (SPS), lignosulfonate (LS), and alumina (SPS-LS-Al{sub 2}O{sub 3}) by casting polymer solution. The resulting polymer electrolyte membranes were then characterized by functional groups analysis, mechanical properties, water uptake, ion exchange capacity, and proton conductivity. SPS-LS-Al{sub 2}O{sub 3} membranes with alumina composition various have been proven qualitatively by analysis of functional groups. Increasing the Al{sub 2}O{sub 3} ratio resulted in higher ion exchange capacity (IEC), mechanical strength and proton conductivity, but water uptake decreased. The SPS-LS-Al{sub 2}O{sub 3} blend showed higher proton conductivity than Nafion 117.
Application of Novel Anion-Exchange Blend Membranes (AEBMs) to Vanadium Redox Flow Batteries.
Cho, Hyeongrae; Krieg, Henning M; Kerres, Jochen A
2018-06-19
Both cation-exchange membranes and anion-exchange membranes are used as ion conducting membranes in vanadium redox flow batteries (VRFBs). Anion-exchange membranes (AEMs) are applied in vanadium redox flow batteries due to the high blocking property of vanadium ions via the Donnan exclusion effect. In this study, novel anion-exchange blend membranes (AEBMs) were prepared, characterized, and applied in VRFBs. Bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide), poly[(1-(4,4′-diphenylether)-5-oxybenzimidazole)-benzimidazole] (PBI-OO) and sulfonated polyether sulfone polymer were combined to prepare 3-component AEBMs with 1,2,4,5-tetramethylimidazole (TMIm) for quaternization. 3-component AEBMs showed significantly enhanced chemical and mechanical properties compared with those of 2-component AEBMs, resulting in an improved performance in VRFBs. The compositions of the anion-exchange polymers in 3-component AEBMs were systematically varied to optimize the AEBMs for the redox-flow battery application. While the 3-component AEBMs showed comparable efficiencies with Nafion ® 212 membranes, they displayed improved vanadium ions cross-over as was confirmed by open circuit voltage tests and capacity fade tests conducted in VRFBs. In addition, one of the synthesized 3-component AEBM had a superior coulombic efficiency and capacity retention in a charging⁻discharging test over 300 cycles at a current density of 40 mA/cm². It can thus be concluded that 3-component AEBMs are promising candidates for long-term operation in VRFBs.
Utilization of Methacrylates and Polymer Matrices for the Synthesis of Ion Specific Resins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czerwinski, Kenneth
2013-10-29
Disposal, storage, and/or transmutation of actinides such as americium (Am) will require the development of specific separation schemes. Existing efforts focus on solvent extraction systems for achieving suitable separation of actinide from lanthanides. However, previous work has shown the feasibility of ion-imprinting polymer-based resins for use in ion-exchange-type separations with metal ion recognition. Phenolic-based resins have been shown to function well for Am-Eu separations, but these resins exhibited slow kinetics and difficulties in the imprinting process. This project addresses the need for new and innovative methods for the selective separation of actinides through novel ion-imprinted resins. The project team willmore » explore incorporation of metals into extended frameworks, including the possibility of 3D polymerized matrices that can serve as a solid-state template for specific resin preparation. For example, an anhydrous trivalent f-element chain can be formed directly from a metal carbonate, and methacrylic acid from water. From these simple coordination complexes, molecules of discrete size or shape can be formed via the utilization of coordinating ligands or by use of an anionic multi-ligand system incorporating methacrylate. Additionally, alkyl methyl methacrylates have been used successfully to create template nanospaces, which underscores their potential utility as 3D polymerized matrices. This evidence provides a unique route for the preparation of a specific metal ion template for the basis of ion-exchange separations. Such separations may prove to be excellent discriminators of metal ions, even between f-elements. Resins were prepared and evaluated for sorption behavior, column properties, and proton exchange capacity.« less
Sulfonated polystyrene and its characterization as a material of electrolyte polymer
NASA Astrophysics Data System (ADS)
Ngadiwiyana; Ismiyarto; Gunawan; Purbowatiningrum, RS; Prasetya, N. B. A.; Kusworo, T. D.; Susanto, H.
2018-05-01
The research of polystyrene modification from Styrofoam waste and its application as a main material of electrolyte polymer had been done. The sulfonation reaction of polystyrene was conducted using sulfuric acid as sufonation agent and the reactions were done with variation times of 1, 2, 3, 4 and 5 h. The characterization of the sulfonated products covered analysis of functional groups using FT-IR spectrophotometer, sulfonation degree, measurements of ion exchange capacity, conductivity and swelling degree. The sulfonated polystyrene product was white solid as confirmed by the spectra of FT-IR with the presence of wide band absorption of O=S=O at the wavenumber of 1080-1411 cm-1 as indication. The research showed the best sulfonated polystyrene prepared in 4 h as a material of electrolyte polymer, since it had the highest degree of sulfonation, ion exchange capacity, conductivity and swelling degree with the values were 28.52 %, 1.550 meg/g, 15,924.10-6 Ω-1cm-1 and 332.4 %, respectively.
Application of the zeta potential for stationary phase characterization in ion chromatography.
Buszewski, Bogusław; Jaćkowska, Magdalena; Bocian, Szymon; Dziubakiewicz, Ewelina
2013-01-01
Two series of homemade stationary bonded phases for ion chromatography were investigated according to their zeta potential. One set of dendrimer anion exchanger was synthesized on the polymer support whereas the second material was prepared on the silica gel. The zeta potential data in water environment as well as buffered water solution were obtained. The influence of the length of anion-exchanger chains, the type of the support of the modified surface, and charge distribution on these data was investigated. Additionally, the zeta potential was correlated with retention factor of inorganic ions to describe their influence on the retention mechanism in ion chromatography. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Byeol-Nim; Son, Tae Yang; Park, Chi Hoon; Kim, Tae Hyun; Nam, Sang Yong
2018-09-01
In this study, various poly(ether ether ketone) were synthesized using three different monomers and the imidazolium group was introduced into synthesized poly(ether ether ketone)s by using substitution reaction. Synthesized polymers were used to prepare anion exchange membranes and to evaluate its properties. Thermal, chemical and structural properties were carried out using thermogravimetric analysis, nuclear magnetic resonance. The anion exchange membranes with different imidazolium moieties were characterized by several different analytical techniques such as water up take, ion exchange capacity, hydroxide conductivity for checking the possibility to apply the anion exchange membrane fuel cell. Consequently, results of characterization were studied to understand the correlation between stabilities of the membrane and functional group and polymer backbone structures. And we confirm membrane performance was improved by increasing imidazolium cation groups.
Ion-Responsive Drug Delivery Systems.
Yoshida, Takayuki; Shakushiro, Kohsuke; Sako, Kazuhiro
2018-02-08
Some kinds of cations and anions are contained in body fluids such as blood, interstitial fluid, gastrointestinal juice, and tears at relatively high concentration. Ionresponsive drug delivery is available to design the unique dosage formulations which provide optimized drug therapy with effective, safe and convenient dosing of drugs. The objective of the present review was to collect, summarize, and categorize recent research findings on ion-responsive drug delivery systems. Ions in body fluid/formulations caused structural changes of polymers/molecules contained in the formulations, allow formulations exhibit functions. The polymers/molecules responding to ions were ion-exchange resins/fibers, anionic or cationic polymers, polymers exhibiting transition at lower critical solution temperature, self-assemble supramolecular systems, peptides, and metalorganic frameworks. The functions of ion-responsive drug delivery systems were categorized to controlled drug release, site-specific drug release, in situ gelation, prolonged retention at the target sites, and enhancement of drug permeation. Administration of the formulations via oral, ophthalmic, transdermal, and nasal routes has showed significant advantages in the recent literatures. Many kinds of drug delivery systems responding to ions have been reported recently for several administration routes. Improvement and advancement of these systems can maximize drugs potential and contribute to patients in the world. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Weiber, E Annika; Jannasch, Patric
2014-09-01
A series of copoly(arylene ether sulfone)s that have precisely two, three, or four quaternary ammonium (QA) groups clustered directly on single phenylene rings along the backbone are studied as anion-exchange membranes. The copolymers are synthesized by condensation polymerizations that involve either di-, tri-, or tetramethylhydroquinone followed by virtually complete benzylic bromination using N-bromosuccinimide and quaternization with trimethylamine. This synthetic strategy allows excellent control and systematic variation of the local density and distribution of QA groups along the backbone. Small-angle X-ray scattering of these copolymers shows extensive ionic clustering, promoted by an increasing density of QA on the single phenylene rings. At an ion-exchange capacity (IEC) of 2.1 meq g(-1), the water uptake decreases with the increasing local density of QA groups. Moreover, at moderate IECs at 20 °C, the Br(-) conductivity of the densely functionalized copolymers is higher than a corresponding randomly functionalized polymer, despite the significantly higher water uptake of the latter. Thus, the location of multiple cations on single aromatic rings in the polymers facilitates the formation of a distinct percolating hydrophilic phase domain with a high ionic concentration to promote efficient anion transport, despite probable limitations by reduced ion dissociation. These findings imply a viable strategy to improve the performance of alkaline membrane fuel cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dunn, L; Abouelezz, M; Cummings, L; Navvab, M; Ordunez, C; Siebert, C J; Talmadge, K W
1991-07-12
Three ion-exchange materials and one hydrophobic-interaction chromatography packing, based on a rigid macroporous polymer with large, relatively uniform pores, have been evaluated for low-pressure liquid chromatography of antibodies. These sorbents have high capacities for both small and large proteins and are mechanically, chemically, and thermally stable. Macro-Prep 50 S. CM and Q ion-exchange materials are strongly acidic, weakly acidic, and strongly basic, respectively. Protein binding and recovery, pressure-flow properties, and chemical and thermal stability were determined for each sorbent. A rapid, two-step method for the purification of anti-Klenow antibodies from goat serum was developed, based on the Macro-Prep 50 S strong-acid cation-exchange material and the Econo-Pac HIC prepacked hydrophobic-interaction cartridge.
Fang, Chunliu; Julius, David; Tay, Siok Wei; Hong, Liang; Lee, Jim Yang
2012-06-07
This paper describes the synthesis of ion-pair-reinforced semi-interpenetrating polymer networks (SIPNs) as proton exchange membranes (PEMs) for the direct methanol fuel cells (DMFCs). Specifically, sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO), a linear polymer proton source, was immobilized in a brominated PPO (BPPO) network covalently cross-linked by ethylenediamine (EDA). The immobilization of SPPO in the SIPN network was accomplished not only by the usual means of mechanical interlocking but also by ion pair formation between the sulfonic acid groups of SPPO and the amine moieties formed during the cross-linking reaction of BPPO with EDA. Through the ion pair interactions, the immobilization of SPPO polymer in the BPPO network was made more effective, resulting in a greater uniformity of sulfonic acid cluster distribution in the membrane. The hydrophilic amine-containing cross-links also compensated for some of the decrease in proton conductivity caused by ion pair formation. The SIPN membranes prepared as such showed good proton conductivity, low methanol permeability, good mechanical properties, and dimensional stability. Consequently, the PPO based SIPN membranes were able to deliver a higher maximum power density than Nafion, demonstrating the potential of the SIPN structure for PEM designs.
Domènech, Berta; Ziegler, Kharla K; Carrillo, Fernando; Muñoz, Maria; Muraviev, Dimitri N; Macanás, Jorge
2013-05-16
In this paper, we report the intermatrix synthesis of Ag nanoparticles in different polymeric matrices such as polyurethane foams and polyacrylonitrile or polyamide fibers. To apply this technique, the polymer must bear functional groups able to bind and retain the nanoparticle ion precursors while ions should diffuse through the matrix. Taking into account the nature of some of the chosen matrices, it was essential to try to activate the support material to obtain an acceptable value of ion exchange capacity. To evaluate the catalytic activity of the developed nanocomposites, a model catalytic reaction was carried out in batch experiments: the reduction of p-nitrophenol by sodium borohydride.
NASA Technical Reports Server (NTRS)
Hodgdon, R. B.; Waite, W. A.; Alexander, S. S.
1984-01-01
Two polymer ion exchange membranes were synthesized to fulfill the needs of both electrical resistivity and anolyte/catholyte separation for utility load leveling utilizing the DOE/NASA mixed electrolyte REDOX battery. Both membranes were shown to meet mixed electrolyte utility load leveling criteria. Several modifications of an anion exchange membrane failed to meet utility load leveling REDOX battery criteria using the unmixed electrolyte REDOX cell.
Predicting Salt Permeability Coefficients in Highly Swollen, Highly Charged Ion Exchange Membranes.
Kamcev, Jovan; Paul, Donald R; Manning, Gerald S; Freeman, Benny D
2017-02-01
This study presents a framework for predicting salt permeability coefficients in ion exchange membranes in contact with an aqueous salt solution. The model, based on the solution-diffusion mechanism, was tested using experimental salt permeability data for a series of commercial ion exchange membranes. Equilibrium salt partition coefficients were calculated using a thermodynamic framework (i.e., Donnan theory), incorporating Manning's counterion condensation theory to calculate ion activity coefficients in the membrane phase and the Pitzer model to calculate ion activity coefficients in the solution phase. The model predicted NaCl partition coefficients in a cation exchange membrane and two anion exchange membranes, as well as MgCl 2 partition coefficients in a cation exchange membrane, remarkably well at higher external salt concentrations (>0.1 M) and reasonably well at lower external salt concentrations (<0.1 M) with no adjustable parameters. Membrane ion diffusion coefficients were calculated using a combination of the Mackie and Meares model, which assumes ion diffusion in water-swollen polymers is affected by a tortuosity factor, and a model developed by Manning to account for electrostatic effects. Agreement between experimental and predicted salt diffusion coefficients was good with no adjustable parameters. Calculated salt partition and diffusion coefficients were combined within the framework of the solution-diffusion model to predict salt permeability coefficients. Agreement between model and experimental data was remarkably good. Additionally, a simplified version of the model was used to elucidate connections between membrane structure (e.g., fixed charge group concentration) and salt transport properties.
Ran, Jin; Wu, Liang; Wei, Bing; Chen, Yaoyao; Xu, Tongwen
2014-01-01
Polymeric materials as anion exchange membranes (AEMs) play an essential role in the field of energy and environment. The achievement of high performance AEMs by the precise manipulation of macromolecular architecture remains a daunting challenge. Herein, we firstly report a novel rod-coil graft copolymer AEM, possessing rigid hydrophobic main chains and soft hydrophilic graft chains. The low graft density, which can alleviate the adverse influences of ioinc graft chains on the main chains, was obtained by using the living polymerization technique. Consequently, the grafted ionic groups which result in the degradation of polymer backbone was decreased to a small degree. Moreover, the relatively long graft chains induced the nanophase separation between the hydrophobic polymer chains and hydrophilic graft chains, which creates a convinient pathway for high hydroxide ion mobility. Such an accurate molecular design simultaneously improves the hydroxide ion conductivity and alkaline stability as well as dimensional stability. PMID:25255843
NASA Astrophysics Data System (ADS)
Ran, Jin; Wu, Liang; Wei, Bing; Chen, Yaoyao; Xu, Tongwen
2014-09-01
Polymeric materials as anion exchange membranes (AEMs) play an essential role in the field of energy and environment. The achievement of high performance AEMs by the precise manipulation of macromolecular architecture remains a daunting challenge. Herein, we firstly report a novel rod-coil graft copolymer AEM, possessing rigid hydrophobic main chains and soft hydrophilic graft chains. The low graft density, which can alleviate the adverse influences of ioinc graft chains on the main chains, was obtained by using the living polymerization technique. Consequently, the grafted ionic groups which result in the degradation of polymer backbone was decreased to a small degree. Moreover, the relatively long graft chains induced the nanophase separation between the hydrophobic polymer chains and hydrophilic graft chains, which creates a convinient pathway for high hydroxide ion mobility. Such an accurate molecular design simultaneously improves the hydroxide ion conductivity and alkaline stability as well as dimensional stability.
NASA Astrophysics Data System (ADS)
Middleton, Luri Robert
Acid- and ion-containing polymers have interchain interactions that alter polymer behavior at the nano, micro, and bulk length scales. Strong secondary-bonds act as thermo-reversible physical crosslinks between chains which drive self-assembly. Tuning theses interactions can modify bulk polymer properties including stiffness, toughness, melt viscosity, resilience, clarity, abrasion resistance and puncture resistance. Furthermore, understanding and improving the relevant factors that control transport properties would have vast implications on developing solid polymer electrolytes (SPEs) for technologically important applications including water desalination, ion exchange membranes and microelectronics. This thesis explores the structure - processing - morphology - property relationships of acid and ionic functionalized polymers. Improvements in synthetic techniques and advancements in characterization methods have enabled new studies of associating polymer systems. Synthesis of entangled, high molecular weight, linear polyethylene (PE) chains functionalized with interacting pendant groups (acidic or ionic) placed periodically along the polymer backbone represent a new class of associating polymers. These polymers with periodic distributions of acid groups are much more homogenous than the commercially available polymers. Previous studies of these polymers with greater structural homogeneity revealed great variety in morphologies of the nano-aggregated polar groups within the non-polar polymer matrix. This thesis correlated the morphologies with bulk properties through real-time X-ray scattering and tensile deformation at a range of temperatures and sample compositions. New, transient morphologies and hierarchical morphologies were observed which coincided with unusual tensile strain hardening. These results indicate that improvements in synthetic control of polymers can enhance physical properties such as tensile strain-hardening, through cooperative bonding between chains. The structural regularity of precise polyethylenes also enables robust comparisons between experiments and computer simulations. At pico- to nano-seconds time scales and length scales of polymer and aggregate dynamics, neutron scattering and molecular dynamics simulations were combined to extend the knowledge of the molecular-level aggregated polymer dynamics. These experiments provide a baseline for future studies of ion-conduction in associating polymer melts.
Yang, Zhen-Yu; Roelofs, Mark Gerrit
2010-11-09
A fluorinated ion exchange polymer prepared by grafting at least one grafting monomer on to at least one base polymer, wherein the grafting monomer comprises structure 1a or 1b: wherein Z comprises S, SO.sub.2, or POR wherein R comprises a linear or branched perfluoroalkyl group of 1 to 14 carbon atoms optionally containing oxygen or chlorine, an alkyl group of 1 to 8 carbon atoms, an aryl group of 6 to 12 carbon atoms or a substituted aryl group of 6 to 12 carbon atoms; RF comprises a linear or branched perfluoroalkene group of 1 to 20 carbon atoms, optionally containing oxygen or chlorine; Q is chosen from F, --OM, NH.sub.2, --N(M)SO.sub.2R.sup.2.sub.F, and C(M)(SO.sub.2R.sup.2.sub.F).sub.2, wherein M comprises H, an alkali cation, or ammonium; R.sup.2.sub.F groups comprises alkyl of 1 to 14 carbon atoms which may optionally include ether oxygens or aryl of 6 to 12 carbon atoms where the alkyl or aryl groups may be perfluorinated or partially fluorinated; and n is 1 or 2 for 1a, and n is 1, 2, or 3 for 1b. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.
Adsorption of four perfluorinated acids on non ion exchange polymer sorbents.
Senevirathna, S T M L D; Tanaka, S; Fujii, S; Kunacheva, C; Harada, H; Shivakoti, B R; Dinh, H; Ariyadasa, T
2011-01-01
Perfluorinated compounds (PFCs) have attracted global concern due to their ubiquitous distribution and properties of persistence, bio accumulation and toxicity. The process of adsorption has been identified as an effective technique to remove PFCs in water. Different non ion-exchange polymeric adsorbents were tested with regard to their sorption kinetics and isotherms at low PFCs concentrations. Selected PFCs were perfluorobutanoic acid (PFBA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) and the tested polymers were three types of Dowex optopores (V-493, V503, and L493), Amberlite XAD-4, and Filtrasorb 400 (Granular Activated Carbon-GAC). We observed the selective adsorption of PFCs on synthetic polymers. For PFDA, Amberlite XAD-4 gave the Freundlich adsorption constant of 2,965 (microg PFCs/g sorbent)(microg PFCs/L)(-n), which was higher than that of GAC (121.89 (microg PFCs/g sorbent) (microg PFCS/L)(-n)). In the case of PFBA, GAC showed better performance (13.36) (microg PFCs/g sorbent) microg PFCS/L)(-n) than synthetic polymers (0.62-5.23) (microg PFCs/g sorbent) (microg PFCS/L)(-n). Adsorption kinetics of all adsorbents were well described (R2 = 0.85-1) by pseudo-second order kinetic model. Sorption capacity was influenced by initial PFCs concentration for all adsorbents. GAC reached the equilibrium concentration within 4 hours, Amberlite XAD 4 reached it within 10 hours and other polymers took more than 70 hours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhen-Yu; Roelofs, Mark Gerrit
2010-11-09
A fluorinated ion exchange polymer prepared by grafting at least one grafting monomer on to at least one base polymer, wherein the grafting monomer comprises structure 1a or 1b: wherein Z comprises S, SO.sub.2, or POR wherein R comprises a linear or branched perfluoroalkyl group of 1 to 14 carbon atoms optionally containing oxygen or chlorine, an alkyl group of 1 to 8 carbon atoms, an aryl group of 6 to 12 carbon atoms or a substituted aryl group of 6 to 12 carbon atoms; RF comprises a linear or branched perfluoroalkene group of 1 to 20 carbon atoms, optionallymore » containing oxygen or chlorine; Q is chosen from F, --OM, NH.sub.2, --N(M)SO.sub.2R.sup.2.sub.F, and C(M)(SO.sub.2R.sup.2.sub.F).sub.2, wherein M comprises H, an alkali cation, or ammonium; R.sup.2.sub.F groups comprises alkyl of 1 to 14 carbon atoms which may optionally include ether oxygens or aryl of 6 to 12 carbon atoms where the alkyl or aryl groups may be perfluorinated or partially fluorinated; and n is 1 or 2 for 1a, and n is 1, 2, or 3 for 1b. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.« less
21 CFR 173.21 - Perfluorinated ion exchange membranes.
Code of Federal Regulations, 2010 CFR
2010-04-01
... sulfonic acid. The Chemical Abstracts Service name of this polymer is ethane-sulfonic acid, 2-[1-[difluoro... temperatures not exceeding 70° (158 °F). (2) Maximum thickness of the copolymer membrane is 0.007 inch (0.017...
21 CFR 173.21 - Perfluorinated ion exchange membranes.
Code of Federal Regulations, 2013 CFR
2013-04-01
... sulfonic acid. The Chemical Abstracts Service name of this polymer is ethane-sulfonic acid, 2-[1-[difluoro... temperatures not exceeding 70° (158 °F). (2) Maximum thickness of the copolymer membrane is 0.007 inch (0.017...
21 CFR 173.21 - Perfluorinated ion exchange membranes.
Code of Federal Regulations, 2011 CFR
2011-04-01
... sulfonic acid. The Chemical Abstracts Service name of this polymer is ethane-sulfonic acid, 2-[1-[difluoro... temperatures not exceeding 70° (158 °F). (2) Maximum thickness of the copolymer membrane is 0.007 inch (0.017...
21 CFR 173.21 - Perfluorinated ion exchange membranes.
Code of Federal Regulations, 2012 CFR
2012-04-01
... sulfonic acid. The Chemical Abstracts Service name of this polymer is ethane-sulfonic acid, 2-[1-[difluoro... temperatures not exceeding 70° (158 °F). (2) Maximum thickness of the copolymer membrane is 0.007 inch (0.017...
Möller, Kristina; Crescenzi, Carlo; Nilsson, Ulrika
2004-01-01
Diphenyl phosphate is a hydrolysis product and possible metabolite of the flame retardant and plasticiser additive triphenyl phosphate. A molecularly imprinted polymer solid-phase extraction (MISPE) method for extracting diphenyl phosphate from aqueous solutions has been developed and compared with SPE using a commercially available mixed-mode anion exchanger. The imprinted polymer was prepared using 2-vinylpyridine (2-Vpy) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, and a structural analogue of the analyte as the template molecule. The imprinted polymer was evaluated for use as a SPE sorbent, in tests with both aqueous standards and spiked urine samples, by comparing recovery and breakthrough data obtained using the imprinted form of the polymer and a non-imprinted form (NIP). Extraction from aqueous solutions resulted in more than 80% recovery. Adsorption by the molecularly imprinted polymer (MIP) was non-selective, but selectivity was achieved by selective desorption in the wash steps. Diphenyl phosphate could also be selectively extracted from urine samples, although the urine matrix reduced the capacity of the MISPE cartridges. Recoveries from urine extraction were higher than 70%. It was important to control pH during sample loading. The MISPE method was found to yield a less complex LC-ESI-MS chromatogram of the urine extracts compared with the mixed-mode anion-exchanger method. An LC-ESI-MS method using a Hypercarb LC column with a graphitised carbon stationary phase was also evaluated for organophosphate diesters. LC-ESI-MS using negative-ion detection in selected ion monitoring (SIM) mode was shown to be linear for diphenyl phosphate in the range 0.08-20 ng microL(-1).
New Gel-Like Polymers as Selective Weak-Base Anion Exchangers
Gierczyk, Błażej; Cegłowski, Michał; Zalas, Maciej
2015-01-01
A group of new anion exchangers, based on polyamine podands and of excellent ion-binding capacity, were synthesized. The materials were obtained in reactions between various poly(ethyleneamines) with glycidyl derivatives of cyclotetrasiloxane. The final polymeric, strongly cross-linked materials form gel-like solids. Their structures and interactions with anions adsorbed were studied by spectroscopic methods (CP-MAS NMR, FR-IR, UV-Vis). The sorption isotherms and kinetic parameters were determined for 29 anions. Materials studied show high ion capacity and selectivity towards some important anions, e.g., selenate(VI) or perrhenate. PMID:25946220
NASA Astrophysics Data System (ADS)
Nykaza, Jacob Richard
In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk electrode (RDE) experiments determined the interfacial resistance imposed during cell assembly between the AEM, catalyst, and ionomer was a factor in fuel cell performance. Further RDE studies investigated the electrochemical stability of the PIL block copolymer ionomer under applied potentials, where it was determined that potential cycling increased the degradation compared to constant voltage or open circuit voltage studies. The PIL diblock copolymer was then anion exchanged to the bis(trifluoromethane)sulfonamide (TFSI-) anion form and imbibed with a lithium salt and ionic liquid solution for use as a SPE in lithium-ion batteries resulting in a maximum discharge capacity of 112 mAh g-1 at 0.1 C with a Coulombic efficiency greater than 94% over 100 cycles. PIL block copolymers have promising mechanical properties and transport properties (i.e., ion conductivity) in both the hydrated (hydrophilic anions; Br-, OH-) and dry (hydrophobic anions; TFSI-) states resulting in highly conductive, chemically/thermally stable, and mechanically robust solid-state polymer separators for use as AEMs in AFCs and as SPEs in lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Li, Yongqiang
Sulfopropyl dextran sulfate (SP-DS) microspheres and polymer-lipid hybrid nanoparticles (PLN) for the delivery of water-soluble anticancer drugs and P-glycoprotein inhibitors were developed by our group recently and demonstrated effectiveness in local chemotherapy. To optimize the delivery performance of these particulate systems, particularly PLN, an integrated multidisciplinary approach was developed, based on an in-depth understanding of drug-excipient interactions, internal structure, drug loading and release mechanisms, and application of advanced modeling/optimization techniques. An artificial neural networks (ANN) simulator capable of formulation optimization and drug release prediction was developed. In vitro drug release kinetics of SP-DS microspheres, with various drug loading and in different release media, were predicted by ANN. The effects of independent variables on drug release were evaluated. Good modeling performance suggested that ANN is a useful tool to predict drug release from ion-exchange microspheres. To further improve the performance of PLN, drug-polymer-lipid interactions were characterized theoretically and experimentally using verapamil hydrochloride (VRP) as a model drug and dextran sulfate sodium (DS) as a counter-ion polymer. VRP-DS complexation followed a stoichiometric rule and solid-state transformation of VRP were observed. Dodecanoic acid (DA) was identified as the lead lipid carrier material. Based upon the optimized drug-polymer-lipid interactions, PLN with high drug loading capacity (36%, w/w) and sustained release without initial burst release were achieved. VRP remained amorphous and was molecularly dispersed within PLN. H-bonding contributed to the miscibility between the VRP-DS complex and DA. Drug release from PLN was mainly controlled by diffusion and ion-exchange processes. Drug loading capacity and particle size of PLN depend on the formulation factors of the weight ratio of drug to lipid and concentrations of surfactants applied. A three-factor spherical composite experimental design was used to map the cause-and-effect relationship. PLN with high drug loading efficiency (92%) and small particle size (100 nm) were predicted by ANN and confirmed by experiment. The roles of various factors on the properties of PLN were also investigated. In summary, this thesis demonstrates that an integrated multidisciplinary strategy ranging from preformulation to formulation to optimization is suitable for the rational design of SP-DS microspheres and PLN with desired properties.
Guo, Dong-Jie; Liu, Rui; Cheng, Yu; Zhang, Hao; Zhou, Li-Ming; Fang, Shao-Ming; Elliott, Winston Howard; Tan, Wei
2015-03-11
Inspired by how geckos abduct, rotate, and adduct their setal foot toes to adhere to different surfaces, we have developed an artificial muscle material called ion-exchange polymer-metal composite (IPMC), which, as a synthetic adhesive, is capable of changing its adhesion properties. The synthetic adhesive was cast from a Si template through a sticky colloid precursor of poly(methylvinylsiloxane) (PMVS). The PMVS array of setal micropillars had a high density of pillars (3.8 × 10(3) pillars/mm(2)) with a mean diameter of 3 μm and a pore thickness of 10 μm. A graphene oxide monolayer containing Ag globular nanoparticles (GO/Ag NPs) with diameters of 5-30 nm was fabricated and doped in an ion-exchanging Nafion membrane to improve its carrier transfer, water-saving, and ion-exchange capabilities, which thus enhanced the electromechanical response of IPMC. After being attached to PMVS micropillars, IPMC was actuated by square wave inputs at 1.0, 1.5, or 2.0 V to bend back and forth, driving the micropillars to actively grip or release the surface. To determine the adhesion of the micropillars, the normal adsorption and desorption forces were measured as the IPMC drives the setal micropillars to grip and release, respectively. Adhesion results demonstrated that the normal adsorption forces were 5.54-, 14.20-, and 23.13-fold higher than the normal desorption forces under 1.0, 1.5, or 2.0 V, respectively. In addition, shear adhesion or friction increased by 98, 219, and 245%, respectively. Our new technique provides advanced design strategies for reversible gecko-inspired synthetic adhesives, which might be used for spiderman-like wall-climbing devices with unprecedented performance.
Studies on the application of temperature-responsive ion exchange polymers with whey proteins.
Maharjan, Pankaj; Campi, Eva M; De Silva, Kirthi; Woonton, Brad W; Jackson, W Roy; Hearn, Milton T W
2016-03-18
Several new types of temperature-responsive ion exchange resins of different polymer composition have been prepared by grafting the products from the co-polymerisation of N-phenylacrylamide, N-iso-propylacrylamide and acrylic acid derivatives onto cross-linked agarose. Analysis of the binding isotherms for these different resins obtained under batch adsorption conditions indicated that the resin based on N-iso-propylacrylamide containing 5% (w/w) N-phenylacrylamide and 5% (w/w) acrylic acid resulted in the highest adsorption capacity, Bmax, for the whey protein, bovine lactoferrin, e.g. 14 mg bovine lactoferrin/mL resin at 4 °C and 62 mg bovine lactoferrin/mL resin at 40 °C, respectively. Under dynamic loading conditions at 40 °C, 94% of the loaded bovine lactoferrin on a normalised mg protein per mL resin basis was adsorbed by this new temperature-responsive ion-exchanger, and 76% was eluted by a single cycle temperature shift to 4 °C without varying the composition of the 10mM sodium dihydrogen phosphate buffer, pH 6.5, or the flow rate. The binding characteristics of these different ion exchange resins with bovine lactoferrin were also compared to results obtained using other resins based on N-isopropylacrylamide but contained N-tert-butylacrylamide rather than N-phenylacrylamide, where the corresponding dynamic capture and release properties for bovine lactoferrin required different temperature conditions of 20 °C and 50 °C, respectively for optimal desorption/adsorption. The cationic protein, bovine lactoperoxidase, was also adsorbed and desorbed with these temperature-responsive resins under similar conditions of changing temperature, whereas the anionic protein, bovine β-lactoglobulin, was not adsorbed under this regime of temperature conditions but instead eluted in the flow-through. Copyright © 2016 Elsevier B.V. All rights reserved.
High temperature polymers for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Einsla, Brian Russel
Novel proton exchange membranes (PEMs) were investigated that show potential for operating at higher temperatures in both direct methanol (DMFC) and H 2/air PEM fuel cells. The need for thermally stable polymers immediately suggests the possibility of heterocyclic polymers bearing appropriate ion conducting sites. Accordingly, monomers and random disulfonated poly(arylene ether) copolymers containing either naphthalimide, benzoxazole or benzimidazole moieties were synthesized via direct copolymerization. The ion exchange capacity (IEC) was varied by simply changing the ratio of disulfonated monomer to nonsulfonated monomer in the copolymerization step. Water uptake and proton conductivity of cast membranes increased with IEC. The water uptake of these heterocyclic copolymers was lower than that of comparable disulfonated poly(arylene ether) systems, which is a desirable improvement for PEMs. Membrane electrode assemblies were prepared and the initial fuel cell performance of the disulfonated polyimide and polybenzoxazole (PBO) copolymers was very promising at 80°C compared to the state-of-the-art PEM (NafionRTM); nevertheless these membranes became brittle under operating conditions. Several series of poly(arylene ether)s based on disodium-3,3'-disulfonate-4,4 '-dichlorodiphenylsulfone (S-DCDPS) and a benzimidazole-containing bisphenol were synthesized and afforded copolymers with enhanced stability. Selected properties of these membranes were compared to separately prepared miscible blends of disulfonated poly(arylene ether sulfone) copolymers and polybenzimidazole (PBI). Complexation of the sulfonic acid groups with the PBI structure reduced water swelling and proton conductivity. The enhanced proton conductivity of NafionRTM membranes has been proposed to be due to the aggregation of the highly acidic side-chain sulfonic acid sites to form ion channels. A series of side-chain sulfonated poly(arylene ether sulfone) copolymers based on methoxyhydroquinone was synthesized in order to investigate this possible advantage and to couple this with the excellent hydrolytic stability of poly(arylene ether)s. The methoxy groups were deprotected to afford reactive phenolic sites and nucleophilic substitution reactions with functional aryl sulfonates were used to prepare simple aryl or highly acidic fluorinated sulfonated copolymers. The proton conductivity and water sorption of the resulting copolymers increased with the ion exchange capacity, but changing the acidity of the sulfonic acid had no apparent effect.
Angelo, James M; Cvetkovic, Aleksandar; Gantier, Rene; Lenhoff, Abraham M
2016-03-18
Adsorption behavior in the HyperCel family of cellulosic ion-exchange materials (Pall Corporation) was characterized using methods to assess, quantitatively and qualitatively, the dynamics of protein uptake as well as static adsorption as a function of ionic strength and protein concentration using several model proteins. The three exchangers studied all presented relatively high adsorptive capacities under low ionic strength conditions, comparable to commercially available resins containing polymer functionalization aimed at increasing that particular characteristic. The strong cation- and anion-exchange moieties showed higher sensitivity to increasing salt concentrations, but protein affinity on the salt-tolerant STAR AX HyperCel exchanger remained strong at ionic strengths normally used in downstream processing to elute material fully during ion-exchange chromatography. Very high uptake rates were observed in both batch kinetics experiments and time-series confocal laser scanning microscopy, suggesting low intraparticle transport resistances relative to external film resistance, even at higher bulk protein concentrations where the opposite is typically observed. Electron microscopy imaging of protein adsorbed phases provided additional insight into particle structure that could not be resolved in previous work on the bare resins. Copyright © 2016 Elsevier B.V. All rights reserved.
Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.
Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A
2014-10-21
Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability of the co-ions also appeared to influence permselectivity leading to ion-specific effects; co-ions that are charge dense and have low polarizability tended to result in high membrane permselectivity.
Lee, Jang Yeol; Wang, Hyuck Sik; Yoon, Bye Ri; Han, Man Jae; Jho, Jae Young
2010-11-01
On purpose to develop a polymer actuator with high stability in air-operation as well as large bending displacement, a series of ionic polymer-metal composites (IPMC) was constructed with poly(styrene sulfonate)-grafted fluoropolymers as ionomeric matrix and immidazolium-based ionic liquids (IL) as inner solvent. The prepared IPMC actuators exhibited greatly enhanced bending displacement compared to Nafion-based actuators. The actuators were stable in air-operation, maintaining initial displacement for up to 10(4) cycles or 24 h. Investigating the material parameters and morphology of the IPMCs, high ion exchange capacity of the ionomers resulted in high ion conductivity and robust electrode of IPMC, which synergistically contributed to the high bending performance. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cast and 3D printed ion exchange membranes for monolithic microbial fuel cell fabrication
NASA Astrophysics Data System (ADS)
Philamore, Hemma; Rossiter, Jonathan; Walters, Peter; Winfield, Jonathan; Ieropoulos, Ioannis
2015-09-01
We present novel solutions to a key challenge in microbial fuel cell (MFC) technology; greater power density through increased relative surface area of the ion exchange membrane that separates the anode and cathode electrodes. The first use of a 3D printed polymer and a cast latex membrane are compared to a conventionally used cation exchange membrane. These new techniques significantly expand the geometric versatility available to ion exchange membranes in MFCs, which may be instrumental in answering challenges in the design of MFCs including miniaturisation, cost and ease of fabrication. Under electrical load conditions selected for optimal power transfer, peak power production (mean 10 batch feeds) was 11.39 μW (CEM), 10.51 μW (latex) and 0.92 μW (Tangoplus). Change in conductivity and pH of anolyte were correlated with MFC power production. Digital and environmental scanning electron microscopy show structural changes to and biological precipitation on membrane materials following long term use in an MFC. The cost of the novel membranes was lower than the conventional CEM. The efficacy of two novel membranes for ion exchange indicates that further characterisation of these materials and their fabrication techniques, shows great potential to significantly increase the range and type of MFCs that can be produced.
Abdel-Haleem, F M; Madbouly, Adel; El Nashar, R M; Abdel-Ghani, N T
2016-11-15
We report here for the first time on the use of Molecularly Imprinted Polymers as modifiers in bulk optodes, Miptode, for the determination of a pharmaceutical compound, itopride hydrochloride as an example in a concentration range of 1×10(-1)-1×10(-4)molL(-1). In comparison to the optode containing the ion exchanger only (Miptode 3), the optode containing the ion exchanger and the MIP particles (Miptode 2) showed improved selectivity over the most lipophilic species, Na(+) and K(+), by more than two orders of magnitude. For instance, the optical selectivity coefficients using Miptode 2, [Formula: see text] , were as follow: NH4(+)˂-6; Na(+)=-4.0, which were greatly enhanced in comparison with that obtained by Miptode 3. This work opens a new avenue for using miptodes for the determination of all the pharmaceutical preparations without the need for the development of new ionophores. Copyright © 2016 Elsevier B.V. All rights reserved.
Method for regenerating magnetic polyamine-epichlorohydrin resin
Kochen, Robert L.; Navratil, James D.
1997-07-29
Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.
Method for regenerating magnetic polyamine-epichlorohydrin resin
Kochen, R.L.; Navratil, J.D.
1997-07-29
Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately. 9 figs.
The Alginate Demonstration: Polymers, Food Science, and Ion Exchange
NASA Astrophysics Data System (ADS)
Waldman, Amy Sue; Schechinger, Linda; Govindarajoo, Geeta; Nowick, James S.; Pignolet, Louis H.
1998-11-01
We have recently devised a polymer demonstration involving the crosslinking and decrosslinking of alginate, a polysaccharide isolated from seaweed. The polymer is composed of D-mannuronic acid and L-guluronic acid subunits and is a component of cell walls. It is commonly used as a thickener in foods such as ice cream and fruit-filled snacks. For the demonstration, a 2% solution of sodium alginate is poured into a 1% solution of calcium chloride. Nontoxic calcium alginate "worms" form due to crosslinking of the polymer. Alternatively, the commercially available antacid Gaviscon can be used as a source of sodium alginate. The crosslinks can then be broken by shaking the worms in brine. The demonstration is a fine addition to any chemical educator's repertoire of polymer experiments.
Electrolyte transport in neutral polymer gels embedded with charged inclusions
NASA Astrophysics Data System (ADS)
Hill, Reghan
2005-11-01
Ion permeable membranes are the basis of a variety of molecular separation technologies, including ion exchange, gel electrophoresis and dialysis. This work presents a theoretical model of electrolyte transport in membranes comprised of a continuous polymer gel embedded with charged spherical inclusions, e.g., biological cells and synthetic colloids. The microstructure mimics immobilized cell cultures, where electric fields have been used to promote nutrient transport. Because several important characteristics can, in principle, be carefully controlled, the theory provides a quantitative framework to help tailor the bulk properties for enhanced molecular transport, microfluidic pumping, and physicochemical sensing applications. This talk focuses on the electroosmotic flow driven by weak electric fields and electrolyte concentration gradients. Also of importance is the influence of charge on the effective ion diffusion coefficients, bulk electrical conductivity, and membrane diffusion potential.
NASA Astrophysics Data System (ADS)
Shin, Dongwon; Han, Myungseong; Shul, Yong-Gun; Lee, Hyejin; Bae, Byungchan
2018-02-01
The oxidative stability of membranes constructed from a composite of pristine sulfonated poly(arylene ether sulfone) and cerium was investigated by conducting an accelerated oxidative-stability test at the open-circuit voltage (OCV). The membranes were analyzed in situ through OCV and impedance measurements, cyclic voltammetry, and linear-sweep voltammetry to monitor the electrochemical properties during the stability test. Although the high-frequency resistance of a composite membrane was slightly higher than that of a pristine membrane because of the exchange of protons from the sulfonic acid with cerium ions, the composite membrane maintained its potential for much longer than the pristine membrane. The effect of the cerium ions as radical scavengers was confirmed by analyzing the drain water and chemical structure after operation. These post-operation analyses confirmed that cerium ions improved the oxidative stability of the hydrocarbon-based polymer during fuel-cell operation. It is clear that the cerium-based radical scavengers prevented chemical degradation of the polymer membrane as well as the electrode in terms of hydrogen cross-over, polymer-chain scission, and the electrochemical surface area, while they rarely diffused outward from the membrane.
Removal of radioactive materials and heavy metals from water using magnetic resin
Kochen, R.L.; Navratil, J.D.
1997-01-21
Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately. 9 figs.
Removal of radioactive materials and heavy metals from water using magnetic resin
Kochen, Robert L.; Navratil, James D.
1997-01-21
Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.
2011-10-05
anion exchange mem - branes (AEM) are an attractive alternative to proton exchange mem - brane (PEM) fuel cells.1, 2 From electrocatalysts standpoint...gener- ally broken down into three distinct regions: the inner Helmholtz plane (IHP), the outer Helmholtz plane ( OHP ), and the diffuse layer. Figure 11...closest approach and is defined as OHP at a distance, x2. Nonspecifically adsorbed ions are distributed in a three dimensional region, called diffuse layer
Li, Xiuhua; Nie, Guanghui; Tao, Jinxiong; Wu, Wenjun; Wang, Liuchan; Liao, Shijun
2014-05-28
3,3'-Di(4″-methyl-phenyl)-4,4'-difluorodiphenyl sulfone (DMPDFPS), a new monomer with two pendent benzyl groups, was easily prepared by Suzuki coupling reaction in high yield. A series of side-chain type ionomers (PAES-Qs) containing pendant side-chain benzyltrimethylammonium groups, which linked to the backbone by alkaline resisting conjugated C-C bonds, were synthesized via polycondensation, bromination, followed by quaternization and alkalization. To assess the influence of side-chain and main-chain aromatic benzyltrimethylammonium on anion exchange membranes (AEMs), the main-chain type ionomers (MPAES-Qs) with the same backbone were synthesized following the similar procedure. GPC and (1)H NMR results indicate that the bromination shows no reaction selectivity of polymer configurations and ionizations of the side-chain type polymers display higher conversions than that of the main-chain type ones do. These two kinds of AEMs were evaluated in terms of ion exchange capacity (IEC), water uptake, swelling ratio, λ, volumetric ion exchange capacity (IECVwet), hydroxide conductivity, mechanical and thermal properties, and chemical stability, respectively. The side-chain type structure endows AEMs with lower water uptake, swelling ratio and λ, higher IECVwet, much higher hydroxide conductivity, more robust dimensional stability, mechanical and thermal properties, and higher stability in hot alkaline solution. The side-chain type cationic groups containing molecular configurations have the distinction of being practical AEMs and membrane electrode assemblies of AEMFCs.
The mechanisms of antibody¯antigen (Ab¯Ag) interactions at conducting polypyrrole electrodes have been investigated using impedance spectroscopy techniques. The effects of the variation in ion exchange, solution composition, and...
Polyimide-Clay Composite Materials for Space Application
NASA Technical Reports Server (NTRS)
Orwoll, Robert A.; Connell, John W. (Technical Monitor)
2005-01-01
The introduction of nanometer-sized clay particles into a polyimide matrix has been shown to enhance the physical properties of specific polymer systems. The clay comprises large stacked platelets of the oxides of aluminum and silicon. These sheets have long dimensions on the order of tenths of a micrometer and thicknesses of several nanometers. Homogeneous dispersion of the clay platelets in the polymer matrix is necessary to achieve those enhancements in polymer properties. Natural montmorillonite with the empirical formula Na0.33Mg0.33Al1.67(OH)2(Si4O10) contains exchangeable inorganic cations. The clay lamellae stack together with the positive sodium ions situated between the surfaces of the individual sheets to balance negatively charged oxygen atoms that are on the surfaces of the sheets. These surface charges contribute to strong electrostatic forces which hold the sheets together tightly. Exfoliation can be accomplished only with unusual measures. In preparing clay nanocomposites, we have taken two steps to try to reduce these interlamellar forces in order to promote the separation (exfoliation) of the sheets and the dispersion of the individual clay particles throughout the organic polymer matrix. In the first step, some of the surface Na(+) ions are replaced with Li(+) ions. Unlike sodium cations, the lithium cations migrate into the interior of the lamellae when the system is heated. Their departure from the surface reduces the surface charge and therefore the attractive forces between the sheets. The loss of alkali metal cations from the surface can be measured as the cation exchange capacity (CEC) of the clay. For example, we found that the CEC of montmorillonite clay was reduced by almost two thirds by treating it with lithium ions and heating to 250 C for 24 hr. Lesser heating has a smaller effect on the CEC. X-ray diffraction measurements show that the d-spacing decreased from ca. 1.34 to 0.97 nm, apparently a consequence of a collapse of the clay layers. We observed that the d-spacing can be varied by altering the heat treatment. In the second part of our effort to reduce the interlamellar forces, the remaining inorganic surface cations were replaced by the trimethylphenylammonium ion (TMPA), the biphenyltrimethylammonium ion (BTMA), or the tetraphenylphosphonium ion (TPP).
Perpendicularly Aligned, Anion Conducting Nanochannels in Block Copolymer Electrolyte Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arges, Christopher G.; Kambe, Yu; Suh, Hyo Seon
Connecting structure and morphology to bulk transport properties, such as ionic conductivity, in nanostructured polymer electrolyte materials is a difficult proposition because of the challenge to precisely and accurately control order and the orientation of the ionic domains in such polymeric films. In this work, poly(styrene-block-2-vinylpyridine) (PSbP2VP) block copolymers were assembled perpendicularly to a substrate surface over large areas through chemical surface modification at the substrate and utilizing a versatile solvent vapor annealing (SVA) technique. After block copolymer assembly, a novel chemical vapor infiltration reaction (CVIR) technique selectively converted the 2-vinylpyridine block to 2-vinyl n-methylpyridinium (NMP+ X-) groups, which aremore » anion charge carriers. The prepared block copolymer electrolytes maintained their orientation and ordered nanostructure upon the selective introduction of ion moieties into the P2VP block and post ion-exchange to other counterion forms (X- = chloride, hydroxide, etc.). The prepared block copolymer electrolyte films demonstrated high chloride ion conductivities, 45 mS cm(-1) at 20 degrees C in deionized water, the highest chloride ion conductivity for anion conducting polymer electrolyte films. Additionally, straight-line lamellae of block copolymer electrolytes were realized using chemoepitaxy and density multiplication. The devised scheme allowed for precise and accurate control of orientation of ionic domains in nanostructured polymer electrolyte films and enables a platform for future studies that examines the relationship between polymer electrolyte structure and ion transport.« less
Chemically durable polymer electrolytes for solid-state alkaline water electrolysis
NASA Astrophysics Data System (ADS)
Park, Eun Joo; Capuano, Christopher B.; Ayers, Katherine E.; Bae, Chulsung
2018-01-01
Generation of high purity hydrogen using electrochemical splitting of water is one of the most promising methods for sustainable fuel production. The materials to be used as solid-state electrolytes for alkaline water electrolyzer require high thermochemical stability against hydroxide ion attack in alkaline environment during the operation of electrolysis. In this study, two quaternary ammonium-tethered aromatic polymers were synthesized and investigated for anion exchange membrane (AEM)-based alkaline water electrolyzer. The membranes properties including ion exchange capacity (IEC), water uptake, swelling degree, and anion conductivity were studied. The membranes composed of all C-C bond polymer backbones and flexible side chain terminated by cation head groups exhibited remarkably good chemical stability by maintaining structural integrity in 1 M NaOH solution at 95 °C for 60 days. Initial electrochemical performance and steady-state operation performance were evaluated, and both membranes showed a good stabilization of the cell voltage during the steady-state operation at the constant current density at 200 mA/cm2. Although both membranes in current form require improvement in mechanical stability to afford better durability in electrolysis operation, the next generation AEMs based on this report could lead to potentially viable AEM candidates which can provide high electrolysis performance under alkaline operating condition.
The Development for Polymer Actuator Active Catheter System
Sewa, S.; Onishi, K.; Oguro, K.; Asaka, K.; Taki, W.; Toma, N.
2001-01-01
Summary Electric stimuli polymer-metal composite actuator material has been developed for active catheter system and other widely new applications. The polymer actuator is made of ion exchange polymer and gold as electrode, and a pulse voltage of 3 volts on the actuator gave a quick bend 90 degree angle. This composite material is possible to make small size, light and soft actuator. So now we can actually develop an active catheter for the interventional radiology surgery. The prototype polymer actuator active catheter has been developed by using polymer actuator technology and Micro Electronics Mechanical System (MEMS) technologies. The active catheter is controllable from the outside of the body by electric signal. The tip part of the catheter is made of the polymer actuator tube and bends 90 degree angles. The animal tests (dog) showed good actuator performance to control right direction and bending angle at bifurcation of blood vessel and aneurysms. PMID:20663388
Schuricht, Falk; Borovinskaya, Ekaterina S; Reschetilowski, Wladimir
2017-04-01
Perfluorooctane sulfonate (PFOS) has attracted increasing concern in recent years due to its world-wide distribution, persistence, bioaccumulation and potential toxicity. The influence of sorbent properties on the adsorptive elimination of PFOS from wastewater by activated carbons, polymer adsorbents and anion exchange resins was investigated with regard to their isotherms and kinetics. The batch and column tests were combined with physicochemical characterization methods, e.g., N 2 physisorption, mercury porosimetry, infrared spectroscopy, differential scanning calorimetry, titrations, as well as modeling. Sorption kinetics was successfully modelled applying the linear driving force (LDF) approach for surface diffusion after introducing a load dependency of the mass transfer coefficient β s . The big difference in the initial mass transfer coefficient β s,0 , when non-functionalized adsorbents and ion-exchange resins are compared, suggests that the presence of functional groups impedes the intraparticle mass transport. The more functional groups a resin possesses and the longer the alkyl moieties are the bigger is the decrease in sorption rate. But the selectivity for PFOS sorption is increasing when the character of the functional groups becomes more hydrophobic. Accordingly, ion exchange and hydrophobic interaction were found to be involved in the sorption processes on resins, while PFOS is only physisorptively bound to activated carbons and polymer adsorbents. In agreement with the different adsorption mechanisms, resins possess higher total sorption capacities than adsorbents. Hence, the latter ones are rendered more effective in PFOS elimination at concentrations in the low μg/L range, due to a less pronounced convex curvature of the sorption isotherm in this concentration range. Copyright © 2016. Published by Elsevier B.V.
Feasibility study of custom manufacturing methods of ionic polymer-metal composite sensors
NASA Astrophysics Data System (ADS)
Nelson, Shelby E.
The ability to create an ion exchange membrane with any shape or thickness through custom manufacturing techniques is highly desirable in ionic polymer-metal composite (IPMC) research. This is caused by the poor selection and limited availability of certain thicknesses of commercial ion exchange membranes. The objective of this study is to determine the feasibility of manufacturing custom ion exchange membranes for IPMC sensors. The manufacturing methods used in this study are extrusion, injection molding, and hot pressing. A commercial membrane from Golden Energy Fuel Cells (GEFC) is used as a comparison. After the membranes are fabricated, certain properties of the membranes are tested throughout each processing stage to determine if they are suitable to be developed into IPMCs. The three processing stages are pre-activation, activation (hydrated and dehydrated), and IPMC. It was observed that the stiffness of the membranes increased from pre-activation to activation and decreased from activation to IPMC. A more flexible membrane in an IPMC allows for larger cation displacement within the membrane. The extruded and injection molded membranes showed the most potential with having the lowest stiffness of all the samples; however, they were not able to be made into IPMCs due to repeated membrane failures in the primary plating process. Gas accumulated between the layers that formed in the membranes due to the extrusion and injection molding cooling process during manufacturing. The hot pressed membrane was the only custom manufactured membrane to be fully processed into an IPMC. The hot pressed and GEFC IPMC sensors were operated at 1 Hz, 5 Hz, and 10 Hz frequencies with the GEFC IPMC producing the strongest output voltage signal. While the extruded and injection molded membranes showed potential to become IPMCs with their high water uptake percentage, high ion exchange capacity, and low stiffness, more development is needed within the manufacturing process to make a uniform sample that does not fail during chemical processing.
2012-01-01
complex fuels (2, 4-6). Current research on alkali fuel cells is primarily focused on the development of a solid polymer anion exchange membrane ( AEM ...a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a...research focus the last few decades due to their high power density and low emissions when operating with hydrogen fuel (1-3). Recently however
21 CFR 173.21 - Perfluorinated ion exchange membranes.
Code of Federal Regulations, 2014 CFR
2014-04-01
... treated to hydrolyze the sulfonyl fluoride group to the sulfonic acid. The Chemical Abstracts Service name of this polymer is ethane-sulfonic acid, 2-[1-[difluoro-[(tri-fluoro-ethenyl)oxy]-methyl]-1,2,2,2... used in contact with all types of liquid foods at temperatures not exceeding 70° (158 °F). (2) Maximum...
Mbareck, Chamekh; Nguyen, Quang Trong; Alaoui, Ouafa Tahiri; Barillier, Daniel
2009-11-15
Polysulfone (PSf)/polyacrylic acid ultrafiltration (PSf/PAA) membranes were prepared from a polymer blend in dimethylformamide by coagulation in water according to the wet phase inversion method. Immobilization of water-soluble PAA within the non-soluble PSf matrix was proven by the increase of ion exchange capacity and the intensity of the carboxyl groups' peak with the increase of PAA content as shown by Fourier transform infrared spectra. These results lead to consider that PSf and PAA form a semi-interpenetrating polymer networks. The obtained membranes showed a decrease of mean surface-pore sizes, the overall porosity and the hydraulic permeability with the increase in PAA content. Such results were imputed to the morphologic modifications of PSf film with the immobilization of increasing PAA amount. PSf/PAA membranes showed high lead, cadmium and chromium rejection which reaches 100% at pH superior to 5.7 and a low rejection at low pH. Moreover, the heavy metal rejection decreases with feed solution concentration and applied pressure increases. These behaviors were attributed to the role of carboxylic groups in ion exchange or complexation. As a matter of fact, the strong lead ion-PAA interactions were revealed by the scanning electron microscopy with energy dispersive X-rays (SEM-EDX).
Ceramic Spheres From Cation Exchange Beads
NASA Technical Reports Server (NTRS)
Dynys, F. W.
2003-01-01
Porous ZrO2 and hollow TiO2 spheres were synthesized from a strong acid cation exchange resin. Spherical cation exchange beads, polystyrene based polymer, were used as a morphological-directing template. Aqueous ion exchange reaction was used to chemically bind (ZrO)(2+) ions to the polystyrene structure. The pyrolysis of the polystyrene at 600 C produces porous ZrO2 spheres with a surface area of 24 sq m/g with a mean sphere size of 42 microns. Hollow TiO2 spheres were synthesized by using the beads as a micro-reactor. A direct surface reaction - between titanium isopropoxide and the resin beads forms a hydrous TiO2 shell around the polystyrene core. The pyrolysis of the polystyrene core at 600 C produces hollow anatase spheres with a surface area of 42 sq m/g with a mean sphere size of 38 microns. The formation of ceramic spheres was studied by XRD, SEM and B.E.T. nitrogen adsorption measurements.
Deposition of Polymer Thin Films on ZnO Nanoparticles by a Plasma Treatment
2001-11-01
exchange for removing metal ions frori water. If on the surface of these nanoparticles, an extremely thin layer of polyacrylic filr can be coated by a...plasma treatment. The polyacrylic film will react with metallic ions in water. As a result of the high surface-to-volume ratio of these narioparticles, the...experiments performed on a JEM 2010F. In FFIR experiment, potassium bromide(KBr) of 99%+ purity was obtained from Aldrich Chemical Company Inc
Counter-ion and dopant effects on charge carriers in intrinsically conductive polymer
NASA Astrophysics Data System (ADS)
Ogle, Jonathan; Yehulie, Mandefro; Boehme, Christoph; Whittaker-Brooks, Luisa
Recently, a significant amount of attention has been devoted to the optimization and applications of organic electronics. In particular, intrinsically conductive polymers have seen a strong continued interest for their use in thermoelectric and photovoltaic devices. With conductivities ranging from 10-8 to 103 S cm-1, the conductive polymer poly(3,4-ethylenedioxythiophene) -PEDOT is one of the most studied solution-processable polymer material due to its unique optical and electronic properties. While charge carriers at lower conductivities have been identified as polarons, an understanding of the electronic structure of PEDOT as its conductivity increases is not well understood. We have investigated the effect that counter-ion exchange and doping has on the polaron concentration of PEDOT via electron paramagnetic resonance, ultraviolet photoelectron spectroscopy, and X-ray absorption fine structure spectroscopy studies. Such studies have allowed us to correlate charge carriers concentrations and the real and virtual electronic states in PEDOT as a function of various dopants. As discussed in our talk, we believe our findings could be extended to the understanding of other polymeric materials.
Synthesis and characterization of ionomers as polymer electrolytes for energy conversion devices
NASA Astrophysics Data System (ADS)
Oh, Hyukkeun
Single-ion conducting electrolytes present a unique alternative to traditional binary salt conductors used in lithium-ion batteries. Secondary lithium batteries are considered as one of the leading candidates to replace the combustible engines in automotive technology, however several roadblocks are present which prevent their widespread commercialization. Power density, energy density and safety properties must be improved in order to enable the current secondary lithium battery technology to compete with existing energy technologies. It has been shown theoretically that single-ion electrolytes can eliminate the salt concentration gradient and polarization loss in the cell that develops in a binary salt system, resulting in substantial improvements in materials utilization for high power and energy densities. While attempts to utilize single-ion conducting electrolytes in lithium-ion battery systems have been made, the low ionic conductivities prevented the successful operation of the battery cells in ambient conditions. This work focuses on designing single-ion conducting electrolytes with high ionic conductivities and electrochemical and mechanical stability which enables the stable charge-discharge performance of battery cells. Perfluorosulfonate ionomers are known to possess exceptionally high ionic conductivities due to the electron-withdrawing effect caused by the C-F bonds which stabilizes the negative charge of the anion, leading to a large number of free mobile cations. The effect of perfluorinated sulfonic acid side chains on transport properties of proton exchange membrane polymers was examinated via a comparison of three ionomers, having different side chain structures and a similar polymer backbone. The three different side chain structures were aryl-, pefluoro alkyl-, and alkyl-sulfonic acid groups, respectively. All ionomers were synthesized and characterized by 1H and 19F NMR. A novel ionomer synthesized with a pendant perfluorinated sulfonic acid group and a poly(ether ether ketone) backbone showed the highest proton conductivity and proton diffusion coefficient among the three ionomers, demonstrating the effect of the perfluorinated side chains. The proton conductivity of the novel ionomer was comparable to that of Nafion over a wide humidity range and temperature. A lithium perfluorosulfonate ionomer based on aromatic poly(arylene ether)s with pendant lithium perfluoroethyl sulfonates was prepared by ion exchange of the perlfuorosulfonic acid ionomer, and subsequently incoroporated into a lithium-ion battery cell as a single-ion conducting electrolyte. The microporous polymer film saturated with organic carbonates exhibited a nearly unity Li + transfer number, high ionic conductivity (e.g. > 10-3 S m-1 at room temperature) over a wide range of temperatures, high electrochemical stability, and excellent mechanical properties. Excellent cyclability with almost identical charge and discharge capacities have been demonstrated at ambient temperature in the batteries assembled from the prepared single-ion conductors. The mechanical stability of the polymer film was attributed to the rigid polymer backbone which was largely unaffected by the presence of plasticizing organic solvents, while the porous channels with high concentration of the perfluorinated side chains resulted in high ionic conductivity. The expected high charge-rate performance was not achieved, however, due to the high interfacial impedance present between the polymer electrolyte and the electrodes. Several procedural modifications were employed in order to decrease the interfacial impedance of the battery cell. The poly(arylene ether) based ionomer was saturated with an ionic liquid mixture, in order to explore the possibility of its application as a safe, inflammable electrolyte. A low-viscosity ionic liquid with high ionic conductivity, 1-butyl-3-methylimidazolium thiocyanate which has never been successfully utilized as an electrolyte for lithium-ion batteries was incorporated into a battery cell as a solvent mixture with propylene carbonate and lithium bis(trifluoromethane)sulfonimide impregnated in a free-standing hybrid electrolyte film. Outstanding ionic conductivity was achieved and the lithium half cell comprising a LTO cathode and a lithium metal anode separated by the solid polymer electrolyte showed good cyclability at room temperature and even at 0°C. The presence of a sufficient amount of propylene carbonate, which resulted in flammability of the polymer electrolyte, was discovered to be critical in the electrochemical stability of the polymer electrolyte.
Characterization of Structure and Function of ZS-9, a K+ Selective Ion Trap
Stavros, Fiona; Yang, Alex; Leon, Alejandro; Nuttall, Mark; Rasmussen, Henrik S.
2014-01-01
Hyperkalemia, a condition in which serum potassium ions (K+) exceed 5.0 mmol/L, is a common electrolyte disorder associated with substantial morbidity. Current methods of managing hyperkalemia, including organic polymer resins such as sodium polystyrene sulfonate (SPS), are poorly tolerated and/or not effective. Sodium zirconium cyclosilicate (ZS-9) is under clinical development as an orally administered, non-absorbed, novel, inorganic microporous zirconium silicate compound that selectively removes excess K+ in vivo. The development, structure and ion exchange properties of ZS-9 and its hypothesized mechanism of action are described. Based on calculation of the interatomic distances between the atoms forming the ZS-9 micropores, the size of the pore opening was determined to be ∼3 Å (∼diameter of unhydrated K+). Unlike nonspecific organic polymer resins like SPS, the ZS-9 K+ exchange capacity (KEC) was unaffected by the presence of calcium (Ca2+) or magnesium ions (Mg2+) and showed>25-fold selectivity for K+ over either Ca2+ or Mg2+. Conversely, the selectivity of SPS for K+ was only 0.2–0.3 times its selectivity for Ca2+ or Mg2+in mixed ionic media. It is hypothesized that the high K+ specificity of ZS-9 is attributable to the chemical composition and diameter of the micropores, which possibly act in an analogous manner to the selectivity filter utilized by physiologic K+ channels. This hypothesized mechanism of action is supported by the multi-ion exchange studies. The effect of pH on the KEC of ZS-9 was tested in different media buffered to mimic different portions of the human gastrointestinal tract. Rapid K+ uptake was observed within 5 minutes - mainly in the simulated small intestinal and large intestinal fluids, an effect that was sustained for up to 1 hour. If approved, ZS-9 will represent a novel, first-in-class therapy for hyperkalemia with improved capacity, selectivity, and speed for entrapping K+ when compared to currently available options. PMID:25531770
Characterization of structure and function of ZS-9, a K+ selective ion trap.
Stavros, Fiona; Yang, Alex; Leon, Alejandro; Nuttall, Mark; Rasmussen, Henrik S
2014-01-01
Hyperkalemia, a condition in which serum potassium ions (K+) exceed 5.0 mmol/L, is a common electrolyte disorder associated with substantial morbidity. Current methods of managing hyperkalemia, including organic polymer resins such as sodium polystyrene sulfonate (SPS), are poorly tolerated and/or not effective. Sodium zirconium cyclosilicate (ZS-9) is under clinical development as an orally administered, non-absorbed, novel, inorganic microporous zirconium silicate compound that selectively removes excess K+ in vivo. The development, structure and ion exchange properties of ZS-9 and its hypothesized mechanism of action are described. Based on calculation of the interatomic distances between the atoms forming the ZS-9 micropores, the size of the pore opening was determined to be ∼ 3 Å (∼ diameter of unhydrated K+). Unlike nonspecific organic polymer resins like SPS, the ZS-9 K+ exchange capacity (KEC) was unaffected by the presence of calcium (Ca2+) or magnesium ions (Mg2+) and showed>25-fold selectivity for K+ over either Ca2+ or Mg2+. Conversely, the selectivity of SPS for K+ was only 0.2-0.3 times its selectivity for Ca2+ or Mg2+in mixed ionic media. It is hypothesized that the high K+ specificity of ZS-9 is attributable to the chemical composition and diameter of the micropores, which possibly act in an analogous manner to the selectivity filter utilized by physiologic K+ channels. This hypothesized mechanism of action is supported by the multi-ion exchange studies. The effect of pH on the KEC of ZS-9 was tested in different media buffered to mimic different portions of the human gastrointestinal tract. Rapid K+ uptake was observed within 5 minutes - mainly in the simulated small intestinal and large intestinal fluids, an effect that was sustained for up to 1 hour. If approved, ZS-9 will represent a novel, first-in-class therapy for hyperkalemia with improved capacity, selectivity, and speed for entrapping K+ when compared to currently available options.
Eeltink, Sebastiaan; Wouters, Sam; Dores-Sousa, José Luís; Svec, Frantisek
2017-05-19
This review focuses on the preparation of organic polymer-based monolithic stationary phases and their application in the separation of biomolecules, including antibodies, intact proteins and protein isoforms, oligonucleotides, and protein digests. Column and material properties, and the optimization of the macropore structure towards kinetic performance are also discussed. State-of-the-art liquid chromatography-mass spectrometry biomolecule separations are reviewed and practical aspects such as ion-pairing agent selection and carryover are presented. Finally, advances in comprehensive two-dimensional LC separations using monolithic columns, in particular ion-exchange×reversed-phase and reversed-phase×reversed-phase LC separations conducted at high and low pH, are shown. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhu, Hailiang; Wu, Zhigang; Gadi, Madhusudhan Reddy; Wang, Shuaishuai; Guo, Yuxi; Edmunds, Garrett; Guan, Wanyi; Fang, Junqiang
2017-09-15
A cation exchange assisted binding-elution (BE) strategy for enzymatic synthesis of human milk oligosaccharides (HMOs) was developed. An amino linker was used to provide the cation ion under acidic condition which can be readily bound to cation exchange resin and then eluted off by saturated ammonium bicarbonate. Ammonium bicarbonate in the collections was easily removed by vacuum evaporation. This strategy circumvented the incompatible issue between glycosyltransferases and solid support or large polymers, and no purification was needed for intermediate products. With current approach, polyLacNAc backbones of HMOs and fucosylated HMOs were synthesized smoothly. Copyright © 2017 Elsevier Ltd. All rights reserved.
Non-aqueous liquid compositions comprising ion exchange polymers
Kim, Yu Seung; Lee, Kwan-Soo; Rockward, Tommy Q. T.
2013-03-12
Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.
Non-aqueous liquid compositions comprising ion exchange polymers
Kim, Yu Seung [Los Alamos, NM; Lee, Kwan-Soo [Blacksburg, VA; Rockward, Tommy Q. T. [Rio Rancho, NM
2011-07-19
Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.
Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers
NASA Astrophysics Data System (ADS)
He, Junyong; Li, Yulian; Wang, Chengming; Zhang, Kaisheng; Lin, Dongyue; Kong, Lingtao; Liu, Jinhuai
2017-12-01
Removing heavy metals from aqueous solutions has drawn more and more attentions these years because of their serious global health challenge to human society. To develop an adsorbent with low-cost and high-efficiency for removal of heavy metals (HMs), β-cyclodextrin (β-CD) polymers crosslinked with rigid aromatic groups were prepared and used for lead (Pb), copper (Cu) and cadmium (Cd) removal for the first time. The negatively charged β-CD polymers with large BET surface area were suitable to be used in HMs adsorption. The adsorption process completed in 5 min was well fit by Freundlich isotherm model and pseudo-second-order model. The intraparticle diffusion model was also appropriate to describe the adsorption of Pb, Cu and Cd on β-CD polymer. The maximum of adsorption capacities at 25 °C for Pb, Cu and Cd were 196.42, 164.43 and 136.43 mg/g when the initial concentration was 200 mg/L. The HMs adsorption process on the surface of β-CD polymer was an endothermic and spontaneous process. Both of the electrostatic interaction and distribution of Pb, Cu and Cd species influenced the adsorption process at different pH values. The order of removal efficiencies in multi-component adsorption for the three metal ions were Pb > Cu > Cd. The adsorption mechanisms were H+ ions on hydroxyl groups exchanged with heavy metal ions and electrostatic interactions. This study indicated that β-CD polymers could be developed into effective adsorbents for rapid removal of heavy metals.
Synthesis and characterizations of novel polymer electrolytes
NASA Astrophysics Data System (ADS)
Chanthad, Chalathorn
Polymer electrolytes are an important component of many electrochemical devices. The ability to control the structures, properties, and functions of polymer electrolytes remains a key subject for the development of next generation functional polymers. Taking advantage of synthetic strategies is a promising approach to achieve the desired chemical structures, morphologies, thermal, mechanical, and electrochemical properties. Therefore, the major goal of this thesis is to develop synthetic methods for of novel proton exchange membranes and ion conductive membranes. In Chapter 2, new classes of fluorinated polymer- polysilsesquioxane nanocomposites have been designed and synthesized. The synthetic method employed includes radical polymerization using the functional benzoyl peroxide initiator for the telechelic fluorinated polymers with perfluorosulfonic acids in the side chains and a subsequent in-situ sol-gel condensation of the prepared triethoxylsilane-terminated fluorinated polymers with alkoxide precursors. The properties of the composite membranes have been studied as a function of the content and structure of the fillers. The proton conductivity of the prepared membranes increases steadily with the addition of small amounts of the polysilsesquioxane fillers. In particular, the sulfopropylated polysilsesquioxane based nanocomposites display proton conductivities greater than Nafion. This is attributed to the presence of pendant sulfonic acids in the fillers, which increases ion-exchange capacity and offers continuous proton transport channels between the fillers and the polymer matrix. The methanol permeability of the prepared membranes has also been examined. Lower methanol permeability and higher electrochemical selectivity than those of Nafion have been demonstrated in the polysilsesquioxane based nanocomposites. In Chapter 3, the synthesis of a new class of ionic liquid-containing triblock copolymers with fluoropolymer mid-block and imidazolium methacrylate end-blocks is described for the first time. The synthetic strategy involves the preparation of the telechelic fluoropolymers using a functional benzoyl peroxide initiator as the macro-chain transfer agent for subsequent RAFT polymerization of the imidazolium methacrylate monomer. As revealed in DSC, SAXS and dielectric relaxation spectroscopy (DRS) measurements, there was no microphase separation in the triblock copolymers, likely due to solubility of ionic liquid moieties in the fluoropolymer matrix. The anionic counterion has direct impact on the thermal properties, ionic conductivity and segmental dynamics of the polymers. The temperature dependence of the ionic conductivity is well described by the Vogel-Tamman-Fulcher model, suggesting that ion motion is closely coupled to segmental motion. In Chapter 4 and 5, new solid electrolytes for lithium cations have been synthesized by catalyzed hydrosilylation reaction involving hydrogen atoms of polysiloxane and polyhedral oligomeric silsesquioxane (POSS) and double bonds of vinyl tris17-bromo-3,6,9,12,15- pentaoxaheptadecan-1-ol silane. The obtained structures are based on branched or dendritic with ionic liquid-ethylene oxide oligomer. High room temperature ionic conductivities have been obtained in the range of 10-4-10-5 can be regarded as solid electrolytes. This is attributed to the high concentration of ions from ionic liquid moieties in the tripodand molecule, high segmental mobility, and high ion dissociation from ethylene oxide spacers. The influence of anion structures and lithium salts and concentration has been investigated.
Diclofenac removal in urine using strong-base anion exchange polymer resins.
Landry, Kelly A; Boyer, Treavor H
2013-11-01
One of the major sources of pharmaceuticals in the environment is wastewater effluent of which human urine contributes the majority of pharmaceuticals. Urine source separation has the potential to isolate pharmaceuticals at a higher concentration for efficient removal as well as produce a nutrient byproduct. This research investigated the efficacy of using strong-base anion exchange polymer resins to remove the widely detected and abundant pharmaceutical, diclofenac, from synthetic human urine under fresh and ureolyzed conditions. The majority of experiments were conducted using a strong-base, macroporous, polystyrene resin (Purolite A520E). Ion-exchange followed a two-step removal rate with rapid removal in 1 h and equilibrium removal in 24 h. Diclofenac removal was >90% at a resin dose of 8 mL/L in both fresh and ureolyzed urine. Sorption of diclofenac onto A520E resin was concurrent with desorption of an equivalent amount of chloride, which indicates the ion-exchange mechanism is occurring. The presence of competing ions such as phosphate and citrate did not significantly impact diclofenac removal. Comparisons of three polystyrene resins (A520E, Dowex 22, Dowex Marathon 11) as well as one polyacrylic resin (IRA958) were conducted to determine the major interactions between anion exchange resin and diclofenac. The results showed that polystyrene resins provide the highest level of diclofenac removal due to electrostatic interactions between quaternary ammonium functional groups of resin and carboxylic acid of diclofenac and non-electrostatic interactions between resin matrix and benzene rings of diclofenac. Diclofenac was effectively desorbed from A520E resin using a regeneration solution that contained 4.5% (m/m) NaCl in an equal-volume mixture of methanol and water. The greater regeneration efficiency of the NaCl/methanol-water mixture over the aqueous NaCl solution supports the importance of non-electrostatic interactions between resin matrix and benzene rings of diclofenac. Experiments with ketoprofen, in addition to diclofenac, suggest that polystyrene anion exchange resins can be used to selectively remove other acidic pharmaceuticals from urine. Copyright © 2013 Elsevier Ltd. All rights reserved.
Conducting polymer actuators: From basic concepts to proprioceptive systems
NASA Astrophysics Data System (ADS)
Martinez Gil, Jose Gabriel
Designers and engineers have been dreaming for decades of motors sensing, by themselves, working and surrounding conditions, as biological muscles do originating proprioception. Here bilayer full polymeric artificial muscles were checked up to very high cathodic potential limits (-2.5 V) in aqueous solution by cyclic voltammetry. The electrochemical driven exchange of ions from the conducting polymer film, and the concomitant Faradaic bending movement of the muscle, takes place in the full studied potential range. The presence of trapped counterion after deep reduction was corroborated by EDX determinations giving quite high electronic conductivity to the device. The large bending movement was used as a tool to quantify the amount of water exchanged per reaction unit (exchanged electron or ion). The potential evolutions of self-supported films of conducting polymers or conducting polymers (polypyrrole, polyaniline) coating different microfibers, during its oxidation/reduction senses working mechanical, thermal, chemical or electrical variables. The evolution of the muscle potential from electrochemical artificial muscles based on electroactive materials such as intrinsically conducting polymers and driven by constant currents senses, while working, any variation of the mechanical (trailed mass, obstacles, pressure, strain or stress), thermal or chemical conditions of work. One physically uniform artificial muscle includes one electrochemical motor and several sensors working simultaneously under the same driving reaction. Actuating (current and charge) and sensing (potential and energy) magnitudes are present, simultaneously, in the only two connecting wires and can be read by the computer at any time. From basic polymeric, mechanical and electrochemical principles a physicochemical equation describing artificial proprioception has been developed. It includes and describes, simultaneously, the evolution of the muscle potential during actuation as a function of the motor characteristics (rate and sense of the movement, relative position, and required energy) and the working variables (temperature, electrolyte concentration, mechanical conditions and driving current). By changing working conditions experimental results overlap theoretical predictions. The ensemble computer-generator-muscle-theoretical equation constitutes and describes artificial mechanical, thermal and chemical proprioception of the system. Proprioceptive tools and most intelligent zoomorphic or anthropomorphic soft robots can be envisaged.
An experimental study on PEO polymer electrolyte based all-solid-state supercapacitor
NASA Astrophysics Data System (ADS)
Yijing, Yin
Supercapacitors are one of the most important electrochemical energy storage and conversion devices, however low ionic conductivity of solid state polymer electrolytes and the poor accessibility of the ions to the active sites in the porous electrode will cause low performance for all-solid-state supercapacitors and will limit their application. The objective of the dissertation is to improve the performance of all-solid-state supercapactor by improving electrolyte conductivity and solving accessibility problem of the ions to the active sites. The low ionic conductivity (10-8 S/cm) of poly(ethylene oxide) (PEO) limits its application as an electrolyte. Since PEO is a semicrystal polymer and the ion conduction take place mainly in the amorphous regions of the PEO/Lithium salt complex, improvements in the percentage of amorphous phase in PEO or increasing the charge carrier concentration and mobility could increase the ionic conductivity of PEO electrolyte. Hot pressing along with the additions of different lithium salts, inorganic fillers and plasticizers were applied to improve the ionic conductivity of PEO polymer electrolytes. Four electrode methods were used to evaluate the conductivity of PEO based polymer electrolytes. Results show that adding certain lithium salts, inorganic fillers, and plasticizers could improve the ionic conductivity of PEO electrolytes up 10-4 S/cm. Further hot pressing treatment could improve the ionic conductivity of PEO electrolytes up to 10-3 S/cm. The conductivity improvement after hot pressing treatment is elucidated as that the spherulite crystal phase is convert into the fringed micelle crystal phase or the amorphous phase of PEO electrolytes. PEO electrolytes were added into active carbon as a binder and an ion conductor, so as to provide electrodes with not only ion conduction, but also the accessibility of ion to the active sites of electrodes. The NaI/I 2 mediator was added to improve the conductivity of PEO electrolyte and provide pseudocapacitance for all-solid-state supercapacitors. Impedance, cyclic voltammetry, and gavalnostatic charge/discharge measurements were conducted to evaluate the electrochemical performance of PEO polymer electrolytes based all-solid-state supercapacitors. Results demonstrate that the conductivity of PEO electrolyte could be improved to 0.1 S/cm with a mediator concentration of 50wt%. A high conductivity in the PEO electrolyte with mediator is an indication of a high electron exchange rate between the mediator and mediator. The high electron exchange rates at mediator carbon interface and between mediator and mediator are essential in order to obtain a high response rate and high power. This automatically solves the accessibility problem. With the addition of NaI/I2 mediator, the specific capacitance increased more than 30 folds, specific power increased almost 20 folds, and specific energy increased around 10 folds. Further addition of filler to the electrodes along with the mediator could double the specific capacitor and specific power of the all-solid-state supercapacitor. The stability of the corresponded supercapacitor is good within 2000 cycles.
1987-03-01
contact angle with water frin the initial va: e 蕫b to the final value ’:,)3@, follows KinetiCs tnat suggest trit -no polar functional groups lisappear...PE-CO 2H in contact with liquiJs such as water and perfluorodecalin suggest that reconstruction is driven initially by ;iinimization of the...distance from the polymer- water interface can exchange ions with bulk water . Thermally reconstructed PE-CO2H is thus a new type of thin-film ion
Fuel cell ion-exchange membrane investigation
NASA Technical Reports Server (NTRS)
Toy, M. S.
1972-01-01
The present deficiencies in the fluorocarbon sulfonic acid membrane used as the solid polymer electrolyte in the H2/O2 fuel cell are studied. Considered are: Adhesives selection, elastomeric formulations, scavenger exploration, and membrane characterization. The significant data are interpreted and recommendations are given for both short and long range further investigations in two of the four major areas: membrane adhesives and membrane stabilization.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Computer Laboratory for Multi-scale Simulations of Novel Nanomaterials
2014-09-15
schemes for multiscale modeling of polymers. Permselective ion-exchange membranes for protective clothing, fuel cells , and batteries are of special...polyelectrolyte membranes ( PEM ) with chemical warfare agents (CWA) and their simulants and (2) development of new simulation methods and computational...chemical potential using gauge cell method and calculation of density profiles. However, the code does not run in parallel environments. For mesoscale
Non-aqueous liquid compositions comprising ion exchange polymers reference to related application
Kim,; Yu Seung, Lee [Los Alamos, NM; Kwan-Soo, Rockward [Los Alamos, NM; T, Tommy Q [Rio Rancho, NM
2012-08-07
Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.
NASA Astrophysics Data System (ADS)
Shershnev, I. V.; Cherkasova, A. V.; Kopylov, A. S.; Glagolev, N. N.; Bragina, N. A.; Solov'eva, A. B.
2017-07-01
The immobilization of fluorinated tetraphenylporphyrins (FTPPs) into tetrafluoroethylene copolymers (fluoroplast F-42 and MF-4SK, a perfluorinated sulfonic acid cation exchanger in H+-form) is conducted in supercritical CO2 (scCO2). The effects the conditions of immobilization (the temperature and pressure of scCO2, reaction time, and the addition of cosolvents) and the structure of the carrier polymer have on the content of porphyrin in these polymers is studied. The porphyrin-loaded polymer systems are shown to exhibit photosensitizing activity in anthracene and cholesterol oxidation in scCO2. Under conditions of photocatalysis, chemical and functional stability is a feature of only MF-4SK polymer systems; this is attributed to the formation of protonated forms of the porphyrins and their interaction with SO3 --groups of the polymer (an ion exchange process), which prevents leaching of the FTPP from the polymer matrix. The photocatalytic process actually occurs inside the matrix of the perfluorinated copolymer, with the protonated form of the porphyrin acting as a photosensitizer. The rate constant of anthracene photooxidation in the presence of FTPP-loaded MF-4SK films in scCO2 is found to pass through a maximum as a function of the porphyrin content and the polymer film thickness. The use of such catalytic systems for cholesterol photooxidation in scCO2 is shown to produce a virtual monoproduct (yield, 10%): 6-formyl-B-norcholestane-3,5-diol, a compound with high biological activity.
Antibacterial properties of Ag-exchanged Philippine natural zeolite-chitosan composites
NASA Astrophysics Data System (ADS)
Taaca, Kathrina Lois M.; Olegario, Eleanor M.; Vasquez, Magdaleno R.
2017-12-01
Zeolites are microporous minerals composed of silicon, aluminum and oxygen. These aluminosilicates consist of tetrahedral units which produce open framework structures to generate a system of pores and cavities of molecular dimensions. Zeolites are naturally abundant and can be mined in most parts of the world. In this study, natural zeolites (NaZ) which are locally-sourced here in the Philippines were investigated to determine its properties. An ion-exchange process was utilized, using the zeolite to silver (Ag) solution ratio of 1:20 (w/v), to incorporate Ag into the zeolite framework. Characterizations such as XRD, AAS, and Agar diffusion assay were used to evaluate the properties of the synthesized Ag-exchanged zeolites (AgZ). X-ray diffraction revealed that both NaZ and AgZ have peaks mostly corresponding to the clinoptilolite structure, with some trace peaks of the mordenite and quartz. Absorption spectroscopy revealed that the ion exchange process added about 0.61188g of silver into the zeolite structure. This Ag content was seen to be enough to make the AgZ sample exhibit an antibacterial effect where clearing zones against E. coli and S. aureus were observed in the agar diffusion assay, respectively. The AgZ sample was also tested as ceramic filler to a polymer matrix-chitosan. The diffusion assay revealed presence of antibacterial activity to the polymer composite with AgZ fillers. These results indicate that the Philippine natural zeolite, incorporated with metals such as Ag, can be used as an antibacterial agent and can be developed as a ceramic filler to improve the antibacterial property of composite materials for biomedical application.
Nuclear quantum effects in water exchange around lithium and fluoride ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, David M.; Manolopoulos, David E.; Dang, Liem X.
2015-02-14
We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell ismore » found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the exchange processes are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium.« less
Al-Jubouri, Sama M; Curry, Nicholas A; Holmes, Stuart M
2016-12-15
A hierarchical structured composite made from clinoptilolite supported on date stones carbon is synthesized using two techniques. The composites are manufactured by fixing a natural zeolite (clinoptilolite) to the porous surface of date stones carbon or by direct hydrothermal synthesis on to the surface to provide a supported high surface area ion-exchange material for metal ion removal from aqueous streams. The fixing of the clinoptilolite is achieved using sucrose and citric acid as a binder. The composites and pure clinoptilolite were compared to test the efficacy for the removal of Sr 2+ ions from an aqueous phase. The encapsulation of the Sr 2+ using either vitrification or a geo-polymer addition was tested to ensure that the hazardous waste can be made safe for disposal. The hierarchical structured composites were shown to achieve a higher ion exchange capacity per gram of zeolite than the pure clinoptilolite (65mg/g for the pure natural clinoptilolite and 72mg/g for the pure synthesized clinoptilolite) with the synthesized composite (160mg/g) having higher capacity than the natural clinoptilolite composite (95mg/g). The rate at which the equilibria were established followed the same trend showing the composite structure facilitates diffusion to the ion-exchange sites in the zeolite. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Min-Uk; Kim, Do-Hyang; Han, Seung-hee; Fleury, Eric; Seok, Hyun-Kwang; Cha, Pil-Ryung; Kim, Yu-Chan
2011-04-01
Ni-based amorphous alloys with surface modification by carbon ion implantation are proposed as an alternative bipolar plate material for polymer electrolyte membrane fuel cells (PEMFCs). Both Ni60Nb20Ti10Zr10 alloys with and without carbon ion implantation have corrosion resistance as good as graphite as well as much lower contact resistance than 316L stainless steel in the PEMFC environment. The formation of conductive surface carbide due to carbon ion implantation results in a decrease in the contact resistance to a level comparable to that of graphite. This combination of excellent properties indicates that carbon ion implanted Ni-based amorphous alloys can be potential candidate materials for bipolar plates in PEMFCs.
Carbon Redox-Polymer-Gel Hybrid Supercapacitors.
Vlad, A; Singh, N; Melinte, S; Gohy, J-F; Ajayan, P M
2016-02-26
Energy storage devices that provide high specific power without compromising on specific energy are highly desirable for many electric-powered applications. Here, we demonstrate that polymer organic radical gel materials support fast bulk-redox charge storage, commensurate to surface double layer ion exchange at carbon electrodes. When integrated with a carbon-based electrical double layer capacitor, nearly ideal electrode properties such as high electrical and ionic conductivity, fast bulk redox and surface charge storage as well as excellent cycling stability are attained. Such hybrid carbon redox-polymer-gel electrodes support unprecedented discharge rate of 1,000C with 50% of the nominal capacity delivered in less than 2 seconds. Devices made with such electrodes hold the potential for battery-scale energy storage while attaining supercapacitor-like power performances.
Soft actuator based on Kraton with GO/Ag/Pani composite electrodes for robotic applications
NASA Astrophysics Data System (ADS)
Khan, Ajahar; Kant Jain, Ravi; Banerjee, Priyabrata; Inamuddin; Asiri, Abdullah M.
2017-11-01
In this work, electrochemically-driven Kraton/graphene oxide/Ag/polyaniline (Kraton/GO/Ag/Pani) polymer composite based ionic polymer metal composite (IPMC) was fabricated as a soft actuator. Silver nanopowder with polyaniline coating used as an electrode material is a novel approach in the fabrication of IPMC, which gives new opportunities for development of the electrode on ionic polymer actuator surfaces directly without electroless plating of Pt or Au metal. The Kraton/GO/Ag/Pani membrane showed much higher water-uptake (WU), ion exchange capacity (IEC), proton conductivity than those of several reported IPMC membranes. The enhanced actuation performance indicates that the Kraton/GO/Ag/Pani is a better alternative to the highly expensive commercialized IPMC actuator.
NafionxAE-based polymer actuators with ionic liquids as solvent incorporated at room temperature
NASA Astrophysics Data System (ADS)
Kikuchi, Kunitomo; Tsuchitani, Shigeki
2009-09-01
Nafion®-based ionic polymer-metal composites (IPMCs), with ionic liquids as solvent, were fabricated by exchanging counterions to ionic liquids at room temperature. Ion exchange is performed by only immersing IPMC in a mixture of de-ionized water and ionic liquids at room temperature for 48 h. The fabricated IPMCs exhibited a bending curvature the same as or larger than that of conventional IPMCs with ionic liquids, formed by ion exchange to ionic liquids at an elevated temperature up to about 100 °C, and also had long-term stability in operation in air, with a fluctuation smaller than 21% in bending curvature during a 180 min operation. The effective ion exchange to ionic liquids in the present method is probably due to an increase in diffusion speed of ionic liquids into IPMC by adsorption of water in a Nafion® membrane. It is a surprise that among IPMCs with ionic liquids 1-ethyl-3-methyl-imidazolium tetrafluoroborate, 1-buthyl-3-methyl-imidazolium tetrafluoroborate (BMIBF4), and 1-buthyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6), IPMC with water-insoluble BMIPF6 exhibited a larger bending curvature than that IPMC with water-miscible BMIBF4. This might be due to effective incorporation of BMIPF6 into IPMC, since BMIPF6 has a higher affinity with IPMC than with water in the mixture of water and BMIPF6. From measurements of complex impedance and step voltage response of the driving current of IPMCs with ionic liquid, they are expressed by an equivalent circuit of a parallel combination of a serial circuit of membrane resistance of Nafion® and electric double layer capacitance at metal electrodes, with membrane capacitance of Nafion®, in a frequency range higher than about 0.1 Hz. The difference in magnitude of bending curvature in three kinds of IPMCs with ionic liquids is mainly due to the difference in bending response speed coming from the difference in the membrane resistance.
NASA Astrophysics Data System (ADS)
Kumar, Prasoon; Gandhi, Prasanna S.; Majumder, Mainak
2016-04-01
Gills are one of the most primitive gas, solute exchange organs available in fishes. They facilitate exchange of gases, solutes and ions with a surrounding water medium through their functional unit called secondary lamella. These lamellae through their extraordinary morphometric features and peculiar arrangement in gills, achieve remarkable mass transport properties. Therefore, in the current study, modeling and simulation of convection-diffusion transport through a two dimensional model of secondary lamella and theoretical analysis of morphometric features of fish gills were carried out. Such study suggested an evolutionary conservation of parametric ratios across fishes of different weights. Further, we have also fabricated a thin microvascularised PDMS matrices mimicking secondary lamella by use of micro-technologies like electrospinning. In addition, we have also demonstrated the fluid flow by capillary action through these thin microvascularised PDMS matrices. Eventually, we also illustrated the application of these thin microvascularied PDMS matrices in solute exchange process under capillary flow conditions. Thus, our study suggested that fish gills have optimized parameteric ratios, at multiple length scale, throughout an evolution to achieve an organ with enhanced mass transport capabilities. Thus, these defined parametric ratios could be exploited to design and develop efficient, scaled-up gas/solute exchange microdevices. We also proposed an inexpensive and scalable method of fabrication of thin microvascularised polymer matrices and demonstrated its solute exchange capabilities under capillary flow conditions. Thus, mimicking the microstructures of secondary lamella will enable fabrication of microvascularised thin polymer systems through micro manufacturing technologies for potential applications in filtration, self-healing/cooling materials and bioengineering.
Photoinitiated Bottom-Up Click Synthesis of Ion-Containing Networks as Hydroxide Exchange Membranes
NASA Astrophysics Data System (ADS)
Tibbits, Andrew Charles
Fuel cells are energy conversion devices which directly convert chemical energy into electrical energy and environmentally friendly byproducts (i.e., water) with potential versatility for transportation and portable applications. Hydroxide exchange membrane fuel cells (HEMFCs) have the potential to decrease the overall fuel cell cost through the utilization of non-precious metal catalysts such as nickel and silver as opposed to platinum which is used by the current standard technology, proton exchange membrane fuel cells (PEMFCs). However, substantial improvements in thermal and alkaline stability, hydroxide conductivity, mechanical flexibility, and processing are needed to create a competitive membrane for HEMFC applications. Regardless of the type of membrane, the high water uptake that is typically associated with increased ionic conductivity is problematic and can result in the dissolution of the membrane during fuel cell operation. Covalent crosslinking of the membrane is an approach which has been effectively applied to reduce water uptake without a significant compromise of the hydroxide conductivity. The synthesis and processing of membrane materials is vastly simplified by using click polymerization schemes. Click chemistry is a collection of organic chemical reactions that are rapid, selective, and high yielding. One of the most versatile and facile click reactions is the thiol-ene reaction, which is the radical-mediated addition reaction between a thiol (an -SH group) and an 'ene' (an electron rich vinyl group, C=C) in the presence of a photoinitiator and light. The click attributes of the thiol-ene reaction enables potential of "bottom-up" design of ion-containing polymers via a single step photoinitiated crosslinking reaction with precise control over structure and physicochemical properties not only for fuel cell membranes but also for a range of other applications including separations, sensors, flexible electronics, and coatings. However, a fundamental understanding of the formation and properties of ion-containing thiol-ene materials and their implementation as hydroxide exchange membranes is largely absent from the current literature. The work described herein will highlight the versatility of click reactions, primarily the thiol-ene reaction, for fabrication of ion-containing networks with tunable properties based on the rational design and synthesis of photopolymerizable ionic liquid comonomers with an emphasis on applicability for HEMFC applications. The role of ionic liquid monomer structure on the kinetics and mechanism of thiol-ene ionic network formation and the subsequent properties (i.e., ion conductive, thermomechanical, and structural) will be elucidated to establish a guided framework for click ionic material development. This framework will be directed onto the development of alkaline stable hydroxide-conductive membranes for fuel cell applications as well as the incorporation of catalytic nanoparticles into a photocrosslinkable formulation as a self-standing catalyst layer. Finally, novel approaches to membrane fabrication will be implemented to build on the foundational studies that will simultaneously enhance the ionic conductivity and mechanical properties of the ion-containing polymer materials: these approaches include the synthesis and crosslinking of photopolymerizable cationic surfactants for microphase separated membranes as well as the first "bottom-up" ion-containing polymer synthesized from the photoinitiated copper-catalyzed azide-alkyne cycloaddition (photo-CuAAC) reaction which exhibits enhanced processability and hydroxide conductivity (>50 mS/cm).
NASA Astrophysics Data System (ADS)
Venugopal, Krishnaveni; Murugappan, Minnoli; Dharmalingam, Sangeetha
2017-07-01
Potable water has become a scarce resource in many countries. In fact, the world is not running out of water, but rather, the relatively fixed quantity is becoming too contaminated for many applications. Hence, the present work was designed to evaluate the desalination efficiency of resin and glass fiber-reinforced Polysulfone polymer-based monopolar and bipolar (BPM) ion exchange membranes (with polyvinyl pyrrolidone as the intermediate layer) on a real sample brine solution for 8 h duration. The prepared ion exchange membranes (IEMs) were characterized using FTIR, SEM, TGA, water absorption, and contact angle measurements. The BPM efficiency, electrical conductivity, salinity, sodium, and chloride ion concentration were evaluated for both prepared and commercial-based IEM systems. The current efficiency and energy consumption values obtained during BPMED process were found to be 45 % and 0.41 Wh for RPSu-PVP-based IEM system and 38 % and 1.60 Wh for PSDVB-based IEM system, respectively.
Nafion(TM) Coats For Electrodes In Liquid-Feed Fuel Cells
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R.; Surampudi, Subbarao; Halpert, Gerald; Vamos, Eugene; Frank, Harvey A.
1995-01-01
Coating or impregnation with commercially available material enables oxidation of organic liquid fuels. Nafion(TM) investigated for use in application because of known combination of desirable characteristics: It is perfluorinated, hydrophilic, proton-conducting ion-exchange polymer exhibiting relatively high thermal and electrochemical stability and not detrimental to kinetics of electrochemical processes. Available in solubilized form and used to apply stable coats to surfaces of electrodes.
Pan, B C; Zhang, Q R; Zhang, W M; Pan, B J; Du, W; Lv, L; Zhang, Q J; Xu, Z W; Zhang, Q X
2007-06-01
Zirconium phosphate (ZrP) has recently been demonstrated as an excellent sorbent for heavy metals due to its high selectivity, high thermal stability, and absolute insolubility in water. However, it cannot be readily adopted in fixed beds or any other flowthrough system due to the excessive pressure drop and poor mechanical strength resulting from its fine submicrometer particle sizes. In the present study a hybrid sorbent, i.e., polymer-supported ZrP, was prepared by dispersing ZrP within a strongly acidic cation exchanger D-001 and used for enhanced lead removal from contaminated waters. D-001 was selected as a host material for sorbent preparation mainly because of the Donnan membrane effect resulting from the nondiffusible negatively charged sulfonic acid group on the exchanger surface, which would enhance permeation of the targeted metal ions. The hybrid sorbent (hereafter denoted ZrP-001) was characterized using a nitrogen adsorption technique, scanning electron microscope (SEM), and X-ray diffraction (XRD). Lead sorption onto ZrP-001 was found to be pH dependent due to the ion-exchange mechanism, and its sorption kinetics onto ZrP-001 followed the pseudo-first-order model. Compared to D-001, ZrP-001 exhibited more favorable lead sorption particularly in terms of high selectivity, as indicated by its substantially larger distribution coefficients when other competing cations Na(+), Ca(2+), and Mg(2+) coexisted at a high level in solution. Fixed-bed column runs showed that lead sorption on ZrP-001 resulted in a conspicuous decrease of this toxic metal from 40 mg/L to below 0.05 mg/L. By comparison with D-001 and ZrP-CP (ZrP dispersion within a neutrally charged polymer CP), enhanced removal efficiency of ZrP-001 resulted from the Donnan membrane effect of the host material D-001. Moreover, its feasible regeneration by diluted acid solution and negligible ZrP loss during operation also helps ZrP-001 to be a potential candidate for lead removal from water. Thus, all the results suggested that ZrP-001 offers excellent potential for lead removal from contaminated water.
Dynamics of water in sulfonated poly(phenylene) membranes
NASA Astrophysics Data System (ADS)
Osti, Naresh; Etampawala, Thusitha; Shrestha, Umesh; Perahia, Dvora; Cornelius, Christopher
2011-03-01
The dynamics of water in networks formed by highly rigid ionic polymers, sulfonated poly(phenylene) as observed by quasi elastic neutron scattering (QENS) is presented. These rigid ionic polymers have potential as effective ion exchange membranes with impact on a large number of applications from water purification to clean energy, where its rigidity distinguishes it from other ionic polymers. Its transport characteristics are affected by its rigidness as well as by direct interactions with the solvent. Our QENS studies as a function of sulfonation levels, temperature and solvent content have shown that on the time scale of the measurement, the polymers are rigid. While macroscopically all samples swell, and transport water, the water molecules appear locally rather confined. Water however remind non-frozen to subzero temperatures. The results will be discussed in view of theoretical models including continues diffusion and hopping of solvent molecules.
Composite membranes from photochemical synthesis of ultrathin polymer films
NASA Astrophysics Data System (ADS)
Liu, Chao; Martin, Charles R.
1991-07-01
THERE has recently been a resurgence of interest in synthetic membranes and membrane-based processes1-12. This is motivated by a wide variety of technological applications, such as chemical separations1-7, bioreactors and sensors8,9, energy conversion10,11 and drug-delivery systems12. Many of these technologies require the ability to prepare extremely thin, defect-free synthetic (generally polymeric) films, which are supported on microporous supports to form composite membranes. Here we describe a method for producing composite membranes of this sort that incorporate high-quality polymer films less than 50-nm thick. The method involves interfacial photopolymerization of a thin polymer film on the surface of the microporous substrate. We have been able to use this technique to synthesize a variety of functionalized ultrathin films based on electroactive, photoactive and ion-exchange polymers. We demonstrate the method here with composite membranes that show exceptional gas-transport properties.
Performance Test on Polymer Waste Form - 12137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Se Yup
Polymer solidification was attempted to produce stable waste form for the boric acid concentrates and the dewatered spent resins. The polymer mixture was directly injected into the mold or drum which was packed with the boric acid concentrates and the dewatered spent resins, respectively. The waste form was produced by entirely curing the polymer mixture. A series of performance tests was conducted including compressive strength test, water immersion test, leach test, thermal stability test, irradiation stability test and biodegradation stability test for the polymer waste forms. From the results of the performance tests for the polymer waste forms, it ismore » believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal. At present, performance tests with full scale polymer waste forms are being carried out in order to obtain qualification certificate by the regulatory institute in Korea. Polymer waste forms were prepared with the surrogate of boric acid concentrates and the surrogate of spent ion exchange resins respectively. Waste forms were also made in lab scale and in full scale. Lab. scale waste forms were directly subjected to a series of the performance tests. In the case of full scale waste form, the test specimens for the performance test were taken from a part of waste form by coring. A series of performance tests was conducted including compressive strength test, thermal stability test, irradiation stability test and biodegradation stability test, water immersion test, leach test, and free standing water for the polymer waste forms. In addition, a fire resistance test was performed on the waste forms by the requirement of the regulatory institute in Korea. Every polymer waste forms containing the boric acid concentrates and the spent ion exchange resins had exhibited excellent structural integrity of more than 27.58 MPa (4,000 psi) of compressive strength. On thermal stability testing, biodegradation testing and water immersion testing, no degradation was observed in the waste forms. Also, by measuring the compressive strength after these tests, it was confirmed that the structural integrity was still retained. A leach test was performed by using non radioactive cobalt, cesium and strontium. The leaching of cobalt, cesium and strontium from the polymer waste forms was very low. Also, the polymer waste forms were found to possess adequate fire resistance. From the results of the performance tests, it is believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal. At present, Performance tests with full scale polymer waste forms are on-going in order to obtain qualification certificate by the regulatory institute in Korea. (authors)« less
NASA Astrophysics Data System (ADS)
Pandita, Surya D.; Lim, Hyoung Tae; Yoo, Youngtai; Park, Hoon Cheol
2006-03-01
Manufacturing and characterization of ionic polymer metal composites (IPMCs) with silver as electrodes have been investigated. Tollen's reagent that contains ion Ag(NH 3) II + was used as a raw material for silver deposition on the surfaces of the polymer membrane Nafion"R". Two types of inner solvents, namely common water based electrolyte solution (LiOH 1N) and ionic liquid were used and investigated. Compared to IPMCs with platinum electrodes, silver-plated IPMCs with water electrolyte showed higher conductivity. The actuation response of silver-plated IPMCs with the water based electrolyte was faster than that of platinum IPMCs. However, the silver electrode was too brittle and severely damaged during the solvent exchange process from water to ionic liquid, resulted in high resistance and hence very low actuation behavior.
Carbon Redox-Polymer-Gel Hybrid Supercapacitors
Vlad, A.; Singh, N.; Melinte, S.; Gohy, J.-F.; Ajayan, P.M.
2016-01-01
Energy storage devices that provide high specific power without compromising on specific energy are highly desirable for many electric-powered applications. Here, we demonstrate that polymer organic radical gel materials support fast bulk-redox charge storage, commensurate to surface double layer ion exchange at carbon electrodes. When integrated with a carbon-based electrical double layer capacitor, nearly ideal electrode properties such as high electrical and ionic conductivity, fast bulk redox and surface charge storage as well as excellent cycling stability are attained. Such hybrid carbon redox-polymer-gel electrodes support unprecedented discharge rate of 1,000C with 50% of the nominal capacity delivered in less than 2 seconds. Devices made with such electrodes hold the potential for battery-scale energy storage while attaining supercapacitor-like power performances. PMID:26917470
A Survey and Evaluation of Chemical Warfare Agent-Decontaminants and Decontamination
1984-10-15
0.21 citric acid monohydrate, 0.05% detergent, and 98.251 water) all contain calcium hypochlorite and have been used for decontaminating agents from...water repellent chemicals consist of an aluminum salt of a saturated carboxylic acid (such as format, acetate, palmitate, or stearate) mixed with...been conducted. Sawdust, soil, silicone, coal dust, amine or sulfonic acid -containing polymers, organic and inorganic ion-exchange materials, and metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palani, P. Bahavan, E-mail: bahavanpalani@gmail.com; Abidin, K. Sainul; Kannan, R., E-mail: rksrsrk@gmail.com
2016-05-23
The highest proton conductivity value of 0.0802 Scm{sup −1} is obtained at 6 wt% of protonated MMT added to the PVA/PEG blends. The polymer blend composite membranes are prepared with varied concentration of Poly vinyl alcohol (PVA), Poly ethylene glycol (PEG) and Montmorillonite (MMT) by solution casting method. The Na{sup +} MMT was modified (protonated) to H{sup +} MMT with ion exchange process. The prepared membranes were characterized by using TGA, FTIR, XRD, Ion Exchange Capacity, Water/Methanol uptake, swelling ratio and proton conductivity. The significant improvements in the hydrolytic stability were observed. In addition, thermal stability of the composite membranesmore » were improved and controlled by the addition of MMT. All the prepared membranes are shown appreciable values of proton conductivity at room temperature with 100% relative humidity.« less
NASA Astrophysics Data System (ADS)
Maes, Ashley M.
Anion exchange membranes (AEMs) are of considerable interest to developers and researchers of electrochemical conversion and storage devices such as anion exchange membrane fuel cells (AAEMFCs), alkaline polymer electrolyte electrolysers, redox flow batteries and bioelectrochemical devices. AEMs are generally in competition with more established proton exchange membranes (PEMs), but offer the potential for reduction of materials costs and greater fuel flexibility across these applications. This work includes an introduction to AEMs in the context of fuel cell technologies and some key techniques for AEM characterization. There are many synthetic strategies to incorporate cationic functional groups, which promote anion transport, into a polymer matrix. Two membrane chemistries are investigated in the following chapters. The first is based on a simple synthesis procedure that produced a membrane consisting of random, crosslinked polypropylene- ran-polyethyleneimine with quaternary ammonium functional groups. This membrane had moderate chloride ionic conductivity of 0.03 S cm -1 at 95 °C and high water uptake with minimal dimensional swelling. However, the lack of control of crosslink location and density during synthesis produced a material with a very random nature, making it a poor candidate for more fundamental transport studies. The second membrane chemistry is a block copolymer with a hydrophobic and hydrophilic block. The hydrophobic block was selected to provide favorable mechanical and barrier characteristics while a hydrophilic block was selected to provide water uptake and anion conducting functionalities. Poly(vinyl benzyl trimethyl ammonium bromide)-b-poly(methylbutylene) ([PVBTMA][Br]- b-PMB) was synthesized by partners at the University of Massachusetts-Amherst with varied degrees of functionalization (DF) along the hydrophilic block, resulting in ion exchange capacities ranging from 0.77 to 2.20 mmol g -1. Water uptake, in-plane ionic conductivity and membrane morphology were measured across a series of membranes with the original bromide (Br -) counter-ion. These bulk materials characterization experiments demonstrated that this polymer structure produces well-ordered lamellar morphology with moderate water uptake and competitive ionic conductivity (ca. 40 mS cm-1 at 90 °C and 95% relative humidity). These characteristics make it an appropriate candidate for the following more fundamental investigations of ionic conductivity mechanisms. Broadband electrical spectroscopy (BES) was conducted on one [PVBTMA][Br]- b-PMB sample in the Br- form and analyzed in conjunction with thermal stability and relaxation experiments in Chapter 4. We were able to propose two separate ionic conductivity mechanisms and relate each to physical attributes of the polymer structure. A significant thermal transition was observed at Tdelta , which resulted in a dramatic drop in conductivity. In a continued effort to characterize the ionic conductivity of these block-copolymer membranes, another BES study was conducted on three samples with varying DFs. Samples were converted to hydroxide (OH- ) form so we could contrast the Br- conductivity mechanisms to those in a more relevant counter-ion form. After analysis of the electric response of the material, combined with the thermal analysis by TGA, MDSC and DMA, conductivity mechanisms were described. As in the Br- study, conductivity involves two distinct conduction pathways, sigmaEP and sigmaIP,1. Importantly, we again observed a drop in conductivity at Tdelta in each of these samples, with Tdelta decreasing as the density of functional groups along the hydrophilic block increased. It is undesirable for this transition to occur during operation in a fuel cell or other electrochemical device, so future work to investigate strategies for inhibition are recommended.
Predicting Carbonate Species Ionic Conductivity in Alkaline Anion Exchange Membranes
2012-06-01
This method has been used previously with both PEM and AEM fuel cells and demonstrated its ability to accurately predict ionic conductivity [2,9,24...water. In an AMFC, the mobile species is a hydroxide ion (OH - ) and in a PEM fuel cell , the proton is solvated with a water molecule forming...membrane synthesis techniques have produced polymer electrolyte membranes that are capable of transporting anions in alkaline membrane fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin Zhengzhong; Chen Lian; Yue Chengyang
2006-04-15
Assembly of InCl{sub 3} with 1,3,5-benzenetricarboxylic acid (H{sub 3}btc) and pyridine or pyridine derivatives under hydrothermal conditions produces a series of isostructural coordination polymers with the interesting frameworks: {l_brace}(HL)[In{sub 4}(OH){sub 4}(btc){sub 3}].L.3H{sub 2}O{r_brace} {sub n} {sub ,} L=pyridine (1); L=2-picoline (2); L=4-picoline (3) and {l_brace}(Hdpea)[In{sub 4}(OH){sub 4}(btc){sub 3}].3H{sub 2}O{r_brace} {sub n} (4) (dpea=1,2-di(4-pyridyl)ethane). In these four complexes, carboxyl and hydroxyl oxygen atoms bridge indium(III) centers to form octahedral chain-like sinusoidal curves, which are further interlinked by btc{sup 3-} moieties to generate 3-D frameworks with 1-D channels. The protonated guests HL in 1-3 located at the channels can be fully exchangedmore » by K{sup +} ion or partially exchanged by Sr{sup 2+}, and Ba{sup 2+} ions.« less
Geomaterials: their application to environmental remediation
Yamada, Hirohisa; Tamura, Kenji; Watanabe, Yujiro; Iyi, Nobuo; Morimoto, Kazuya
2011-01-01
Geomaterials are materials inspired by geological systems originating from the billion years long history of the Earth. This article reviews three important classes of geomaterials. The first one is smectites—layered silicates with a cation-exchange capacity. Smectites are useful for removing pollutants and as intercalation compounds, catalysts and polymer nanocomposites. The second class is layered double hydroxides (LDHs). They have an anion-exchange capacity and are used as catalysts, catalyst precursors, sorbents and scavengers for halogens. The third class of geomaterials is zeolites—microporous materials with a cation-exchange capacity which are used for removing harmful cations. Zeolite composites with LDHs can absorb ammonium and phosphate ions in rivers and lakes, whereas zeolite/apatite composites can immobilize the radioactive iodine. These geomaterials are essential for environmental remediation. PMID:27877455
Arges, Christopher G.; Ramani, Vijay
2013-01-01
Anion exchange membranes (AEMs) find widespread applications as an electrolyte and/or electrode binder in fuel cells, electrodialysis stacks, flow and metal-air batteries, and electrolyzers. AEMs exhibit poor stability in alkaline media; their degradation is induced by the hydroxide ion, a potent nucleophile. We have used 2D NMR techniques to investigate polymer backbone stability (as opposed to cation stability) of the AEM in alkaline media. We report the mechanism behind a peculiar, often-observed phenomenon, wherein a demonstrably stable polysulfone backbone degrades rapidly in alkaline solutions upon derivatization with alkaline stable fixed cation groups. Using COSY and heteronuclear multiple quantum correlation spectroscopy (2D NMR), we unequivocally demonstrate that the added cation group triggers degradation of the polymer backbone in alkaline via quaternary carbon hydrolysis and ether hydrolysis, leading to rapid failure. This finding challenges the existing perception that having a stable cation moiety is sufficient to yield a stable AEM and emphasizes the importance of the often ignored issue of backbone stability. PMID:23335629
Water adsorption on surface-modified cellulose nanocrystals
NASA Astrophysics Data System (ADS)
Wei, Zonghui; Sinko, Robert; Keten, Sinan; Luijten, Erik
Cellulose nanocrystals (CNCs) have attracted much attention as a filler phase for polymer nanocomposites due to their impressive mechanical properties, low cost, and environmental sustainability. Despite their promise for this application, there are still numerous obstacles that prevent optimal performance of CNC-polymer nanocomposites, such as poor filler dispersion and high levels of water absorption. One way to mitigate these negative effects is to modify CNC surfaces. Computational approaches can be utilized to obtain direct insight into the properties of modified CNC surfaces and probe the interactions of CNCs with other materials to facilitate the experimental design of nanocomposites. We use atomistic grand-canonical Monte Carlo simulations to study how surface modification of ion-exchanged sulfated cellulose nanocrystals (Na-CNCs) impacts water adsorption. We find that methyl(triphenyl)phosphonium-exchanged CNCs adsorb less water than Na-CNCs at the same relative humidity, supporting recent experimental dynamic vapor sorption measurements. By characterizing the distribution and configuration of water molecules near the modified CNC surfaces we determine how surface modifications disrupt CNC-water interactions.
High Temperature Polymers for use in Fuel Cells
NASA Technical Reports Server (NTRS)
Peplowski, Katherine M.
2004-01-01
NASA Glenn Research Center (GRC) is currently working on polymers for fuel cell and lithium battery applications. The desire for more efficient, higher power density, and a lower environmental impact power sources has led to interest in proton exchanges membrane fuels cells (PEMFC) and lithium batteries. A PEMFC has many advantages as a power source. The fuel cell uses oxygen and hydrogen as reactants. The resulting products are electricity, heat, and water. The PEMFC consists of electrodes with a catalyst, and an electrolyte. The electrolyte is an ion-conducting polymer that transports protons from the anode to the cathode. Typically, a PEMFC is operated at a temperature of about 80 C. There is intense interest in developing a fuel cell membrane that can operate at higher temperatures in the range of 80 C- 120 C. Operating the he1 cell at higher temperatures increases the kinetics of the fuel cell reaction as well as decreasing the susceptibility of the catalyst to be poisoned by impurities. Currently, Nafion made by Dupont is the most widely used polymer membrane in PEMFC. Nafion does not function well above 80 C due to a significant decrease in the conductivity of the membrane from a loss of hydration. In addition to the loss of conductivity at high temperatures, the long term stability and relatively high cost of Nafion have stimulated many researches to find a substitute for Nafion. Lithium ion batteries are popular for use in portable electronic devices, such as laptop computers and mobile phones. The high power density of lithium batteries makes them ideal for the high power demand of today s advanced electronics. NASA is developing a solid polymer electrolyte that can be used for lithium batteries. Solid polymer electrolytes have many advantages over the current gel or liquid based systems that are used currently. Among these advantages are the potential for increased power density and design flexibility. Automobiles, computers, and cell phones require highly efficient power density for lowering emissions and meeting increasing consumer demands. Many of the solutions can be provided by proton exchange membrane fuel cells and lithium batteries. NASA Glenn Research Center has recognized this need, and is presently engaged in a solution. The goals for the summer include mastering synthesis techniques, understanding the reactions occurring during the synthesis, and characterizing the resulting polymer membranes using NMR, DSC, and TGA for the PEMFC and lithium batteries.
Yuan, Xiaoyan; Zhang, Yijia; Yang, Lu; Deng, Wenfang; Tan, Yueming; Ma, Ming; Xie, Qingji
2015-03-07
We report here that three-dimensional activated graphene networks (3DAGNs) are a better matrix to prepare graphene-polymer nanocomposites for sensitive electroanalysis than two-dimensional graphene nanosheets (2DGNs). 3DAGNs were synthesized in advance by the direct carbonization and simultaneous chemical activation of a cobalt ion-impregnated D113-type ion exchange resin, which showed an interconnected network structure and a large specific surface area. Then, the 3DAGN-sulfonate-terminated polymer (STP) nanocomposite was prepared via the in situ chemical co-polymerization of m-aminobenzene sulfonic acid and aniline in the presence of 3DAGNs. The 3DAGN-STP nanocomposite can adsorb dopamine (DA) and heavy metal ions, which was confirmed by quartz crystal microbalance studies. The 3DAGN-STP modified glassy carbon electrode (GCE) was used for the electrochemical detection of DA in the presence of ascorbic acid and uric acid, with a linear response range of 0.1-32 μM and a limit of detection of 10 nM. In addition, differential pulse voltammetry was used for the simultaneous determination of Cd(2+) and Pb(2+) at the 3DAGN-STP/GCE further modified with a bismuth film, exhibiting linear response ranges of 1-70 μg L(-1) for Cd(2+) and 1-80 μg L(-1) for Pb(2+) with limits of detection of 0.1 μg L(-1) for Cd(2+) and 0.2 μg L(-1) for Pb(2+). Because the 3DAGN-STP can integrate the advantages of 3DAGNs with STPs, the 3DAGN-STP/GCE was more sensitive than the bare GCE, 3DAGN/GCE, and 2DGN-STP/GCE for the determination of DA and heavy metal ions.
Phase Behavior and Conductivity of Phosphonated Block Copolymers Containing Ionic Liquids
NASA Astrophysics Data System (ADS)
Jung, Ha Young; Kim, Sung Yeon; Park, Moon Jeong
2015-03-01
As the focus on proton exchange fuel cells continues to escalate in the era of alternative energy systems, the rational design of sulfonated polymers has emerged as a key technique for enhancing device efficiency. While the sulfonic acid group guarantees high proton conductivity of membranes under humidified conditions, the growing need for high temperature operation has discouraged their practical uses in fuel cells. In this respect, phosphonated polymers have drawn intensive attention in recent years owing to their self-dissociation ability. In this study, we have synthesized a set of phosphonated block copolymers, poly(styrenephosphonate-methylbutylene) (PSP- b - PMB), by varying phosphonation level (PL). A wide variety of self-assembled morphologies, i.e., disordered, lamellar, hexagonally perforated lamellae and hexagonally packed cylindrical phases, were observed with PL. Remarkably, upon comparing the morphology of PSP- b-PMB and that of sulfonated analog, we found distinctly dissimilar domain sizes at the same molecular weight and composition. A range of ionic liquids (ILs) were incorporated into the PSP- b-PMB block copolymers and their ion transport properties were examined. It has been revealed that the degree of confinement of ionic phases (domain size) impacts the ion mobility and proton dissociation efficiency of IL-containing polymers.
Nuclear quantum effects in water exchange around lithium and fluoride ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, David M.; Manolopoulos, David; Dang, Liem X.
2015-02-14
We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell ismore » found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the water exchange reactions are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium, and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium. LXD was supported by US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandiver, Melissa A.; Caire, Benjamin R.; Pandey, Tara P.
Anion exchange m em branes (AEM )are prom ising solid polym er electrolytes utilized in alkalifuelcells and electrochem icalenergy conversion devices.AEM s m ust ef ciently conductions w hile m aintaining chem icaland m echanicalstability undera range ofoperating conditions.The ionicnature ofAEM sleads to stiffand brittle m em branesunderdry conditions w hile athigher hydrations,w ater sorption causes signi cant softening and w eakening of the m em brane.In this w ork,a new polyethylene-b-poly(vinylbenzyltrim ethylam m onium ) polym er (70 kg/m ol) w as cast into large (300 cm 2),thin (127 3 m ) m em branes.These m em branes exhibitedmore » im proved elasticity over previously tested AEM s,m inim aldim ensional sw elling,and m oderate ionic conductivity (57 2 m S/cm at 50 °C,95% RH in the brom ide form ).Extensional testing indicated a 95% reduction in Young's m odulus betw een dry and hydrated states.Furtherinvestigation ofthe com plex m odulusasa function ofhydration,by dynam ic m echanical analysis,revealed a sharp decrease in m odulusbetw een dry and hydrated states.M echanicalsoftening w as reversible,but the location ofthe transition displayed hysteresis betw een hum idi cation and dehum idi cation.Conductivity increased after m em brane softening;suggesting bulk m echanicalpropertiescan identify thehydration levelrequired forim proved ion transport.Understanding the relationship betw een ion conduction and m echanical properties w illhelp guide AEM developm ent and identify operating conditions for sustained perform ance.« less
Tartakovsky, Alla; Drutis, Dane M; Carnali, Joseph O
2003-07-15
The adsorption of cationic and amphoteric copolymers onto controlled pore glass (CPG) powders has been studied by measurement of the powder particle zeta (zeta) potential, by determination of the adsorption isotherm, and by FT Raman measurements of the polymer-coated powder. The cationic polymers consisted chiefly of homopolymers of dimethyldiallylammonium chloride (DMDAAC) or copolymers of DMDAAC and acrylamide. The amphoteric polymers studied included copolymers of DMDAAC and acrylic acid. The comonomer ratio was varied to explore the dependence of cationic charge density on the extent and effect of adsorption. Both types of polymers adsorb onto the anionic glass surface via an ion-exchange mechanism. Consequently, a correspondingly higher mass of a low-charge-density copolymer adsorbs than of a cationic homopolymer. The presence of the anionic portion in the amphoteric polymers does not significantly alter this picture. The zeta potential, however, reflects the overall nature of the polymer. Cationic polymers effectively neutralize the glass surface, while amphoteric polymers leave the zeta potential net negative. Adsorption isotherms, determined via the depletion technique using colloidal titration, were used to "calibrate" a FT Raman method. The latter was used to determined the amount of adsorbed polymer under solution conditions in which colloidal titration could not be performed.
NASA Astrophysics Data System (ADS)
Jung, Min-Suk
Polymeric ion exchange membranes are integral components of electrochemical conversion/storage devices such as fuel cells, water electrolyzers, and redox flow batteries. There has been dramatic progress in the research and development of cation exchange membranes (CEM). NafionRTM (perfluorosulfonic acid membranes) is one example of a state-of-the-art CEM and has been successfully demonstrated in various electrochemical energy devices. Unlike CEMs, anion exchange membranes (AEMs) have been of limited utility to date due to their drawbacks, including poor chemical/mechanical stability and low ionic conductivity. However, alkaline environments result in better activity for electrochemical reactions and afford the possibility of using non-platinum group metal (PGM) electrocatalysts. AEMs, therefore, are still being studied in order to resolve existing challenges in terms of conductivity and stability in alkaline media and in strongly oxidizing solutions. In this work, AEMs derived from different types of polymer backbones were prepared, and their chemical stability and electrochemical property were investigated. Polysulfone (PSF) AEMs were prepared by first chloromethylating polysulfone, then by functionalizing chloromethylated polysulfone (CMPSF) with different base reagents. PSF-trimethylamine (TMA) AEMs showed a 40-fold reduction in vanadium (IV) ion (VO2+) permeability when compared to a NafionRTM membrane and exceptional oxidative stability after exposure to a 1.5 M vanadium (V) ion (VO2+) solution for 90 days. PSF-TMA AEMs were successfully demonstrated in the all-vanadium redox flow battery. Excellent energy efficiencies (>75 %) were attained and sustained over 75 charge-discharge cycles for a vanadium redox flow battery prepared using the PSF-TMA separator. Crosslinking of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) AEMs using diamine was tried with intentions to improve the mechanical stability and electrochemical property of PPO AEM. Crosslinked PPO AEMs (30 +/- 4 % at 25 °C) showed less liquid water uptake than non-crosslinked PPO AEMs (46 +/- 5% at 25 °C) while maintaining comparable ionic conductivities (hydroxide ion conductivity of 45 mS/cm at 60 °C). Crosslinked PPO AEMs maintained mechanical integrity and still showed some mechanical stability (ultimate tensile strength of 3˜4 MPa and elongation at break of 13˜17 %) after exposure to 1 M KOH at 60 °C for 14 days, while non-crosslinked PPO AEMs completely lost their mechanical durability. Finally, this dissertation presents research related to perfluorinated AEMs prepared using a Grignard reagent. These membranes exhibited 0.7 mmol/g of Cl- ion exchange capacity (IEC), 20 mS/cm of hydroxide ion conductivity at 20 °C, and 10 % of water uptake at room temperature. The membranes also maintained 90 % of their initial conductivity after an exposure to 1.5 M VO2+ in 3 M H2SO4 solution for seven days.
Canopy Dynamics in Nanoscale Ionic Materials Probed by NMR
NASA Astrophysics Data System (ADS)
Mirau, Peter
2013-03-01
Nanoscale ionic materials (NIMs) are hybrids prepared from ionically functionalized nanoparticles (NP) neutralized by oligomeric polymer counter-ions. NIMs are designed to behave as liquids under ambient conditions in the absence of solvent and have no volatile organic content, making them useful for a number of applications. We have used NMR relaxation and pulse-field gradient NMR to probe local and collective canopy dynamics in NIMs based on silica nanoparticles (NP), fullerols and proteins in order to understand the relationship between the core and canopy structure and the bulk properties. The NMR studies show that the canopy dynamics depend on the degree of neutralization, the canopy radius of gyration and molecular crowding at the ionically modified NP surface. The viscosity in NIMs can be directly controlled with the addition of ions that enhance the exchange rate for polymers at the NP surface. These results show that NIMs for many applications can be prepared by controlling the dynamics of the NP interface.
Antimicrobial Polymers with Metal Nanoparticles
Palza, Humberto
2015-01-01
Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. PMID:25607734
Lee, Ho Suk; Chu, Wai Keung; Zhang, Kun; Huang, Xiaohua
2013-09-07
We report a method for fabricating permeable polymer microstructure barriers in polydimethylsiloxane (PDMS) microfluidic devices and the use of the devices to capture and transport DNA and cells. The polymer microstructure in a desired location in a fluidic channel is formed in situ by the polymerization of acrylamide and polyethylene diacrylate cross-linker (PEG-DA) monomer in a solution which is trapped in the location using a pair of PDMS valves. The porous polymer microstructure provides a mechanical barrier to convective fluid flow in the channel or between two microfluidic chambers while it still conducts ions or small charged species under an electric field, allowing for the rapid capture and transport of biomolecules and cells by electrophoresis. We have demonstrated the application of the devices for the rapid capture and efficient release of bacteriophage λ genomic DNA, solution exchange and for the transport and capture of HeLa cells. Our devices will enable the multi-step processing of biomolecules and cells or individual cells within a single microfluidic chamber.
Multiple Ion Implantation Effects on Wear and Wet Ability of Polyethylene Based Polymers
NASA Astrophysics Data System (ADS)
Torrisi, L.; Visco, A. M.; Campo, N.
2004-10-01
Polyethylene based polymers were ion implanted with multiple irradiations of different ions (N+, Ar+ and Kr+) at energies between 30 keV and 300 keV and doses ranging between 1013 and 1016 ions/cm2. The ion implantation dehydrogenises the polyethylene inducing cross-link effects in the residual polymer carbons. At high doses the irradiated surface show properties similar to graphite surfaces. The depth of the modified layers depends on the ion range in polyethylene at the incident ion energy. The chemical modification depends on the implanted doses and on the specie of the incident ions. A "pin-on-disc" machine was employed to measure the polymer wear against AISI-316 L stainless steel. A "contact-angle-test" machine was employed to measure the wet ability of the polymer surface for 1 μl pure water drop. Measurements demonstrate that the multiple ion implantation treatments decrease the surface wear and the surface wetting and produce a more resistant polymer surface. The properties of the treated surfaces improves the polymer functionality for many bio-medical applications, such as those relative to the polyethylene friction discs employed in knee and hip prosthesis joints. The possibility to use multiply ion implantations of polymers with traditional ion implanters and with laser ion sources producing plasmas is investigated.
NASA Astrophysics Data System (ADS)
Ren, Zhongqi; Zhu, Xinyan; Du, Jian; Kong, Delong; Wang, Nian; Wang, Zhuo; Wang, Qi; Liu, Wei; Li, Qunsheng; Zhou, Zhiyong
2018-03-01
A novel green adsorption polymer was prepared by ion imprinted technology in conjunction with sol-gel process under mild conditions for the selective removal of Cu(II) ions from aqueous solution. Effects of preparation conditions on adsorption performance of prepared polymers were studied. The ion-imprinted polymer was prepared using Cu(II) ion as template, N-[3-(2-aminoethylamino) propyl] trimethoxysilane (AAPTMS) as functional monomer and tetraethyl orthosilicate (TEOS) as cross-linker. Water was used as solvent in the whole preparation process. The imprinted and non-imprinted polymers were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscope (AFM), Brunauer, Emmett and Teller (BET) and zeta potential. Three-dimensional network structure was formed and functional monomer was successfully cross-linked into the network structure of polymers. Effects of adsorption conditions on adsorption performance of prepared polymers were studied too. The pH value is of great influence on adsorption behavior. Adsorption by ion-imprinted polymer was fast (adsorption equilibrium was reached within 60 min). The adsorption capacity of Cu(II) ion-imprinted polymer was always larger than that of non-imprinted polymer. Pseudo-second-order kinetics model and Freundlich isotherm model fitted well with adsorption data. The maximum adsorption capacity of Cu(II) ion-imprinted polymer was 39.82 mg·g-1. However, the preparation conditions used in this work are much milder than those reported in literatures. The Cu(II) ion-imprinted polymer showed high selectivity and relative selectivity coefficients for Pb(II), Ni(II), Cd(II) and Co(II). In addition, the prepared ion-imprinted polymer could be reused several times without significant loss of adsorption capacity.
Zhang, Wenzhong; Hietala, Sami; Khriachtchev, Leonid; Hatanpää, Timo; Doshi, Bhairavi; Koivula, Risto
2018-06-21
The lanthanides (Ln) are an essential part of many advanced technologies. Our societal transformation toward renewable energy drives their ever-growing demand. The similar chemical properties of the Ln pose fundamental difficulties in separating them from each other, yet high purity elements are crucial for specific applications. Here, we propose an intralanthanide separation method utilizing a group of titanium(IV) butyl phosphate coordination polymers as solid-phase extractants. These materials are characterized, and they contain layered structures directed by the hydrophobic interaction of the alkyl chains. The selective Ln uptake results from the transmetalation reaction (framework metal cation exchange), where the titanium(IV) serves as sacrificial coordination centers. The "tetrad effect" is observed from a dilute Ln 3+ mixture. However, smaller Ln 3+ ions are preferentially extracted in competitive binary separation models between adjacent Ln pairs. The intralanthanide ion-exchange selectivity arises synergistically from the coordination and steric strain preferences, both of which follow the reversed Ln contraction order. A one-step aqueous separation of neodymium (Nd) and dysprosium (Dy) is quantitatively achievable by simply controlling the solution pH in a batch mode, translating into a separation factor of greater than 2000 and 99.1% molar purity of Dy in the solid phase. Coordination polymers provide a versatile platform for further exploring selective Ln separation processes via the transmetalation process.
NASA Astrophysics Data System (ADS)
Zeng, Guangjian; Liu, Meiying; Heng, Chunning; Huang, Qiang; Mao, Liucheng; Huang, Hongye; Hui, Junfeng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen
2017-03-01
The Eu3+ doped luminescent hydroxyapatite (HAp) nanorods with uniform size and morphology can be synthesized by hydrothermal route. However, these HAp nanorods are coated by hydrophobic oleylamine, which makes them difficult to be dispersed in aqueous solution and impede their biomedical applications. In this work, Eu3+ doped luminescent polymers functionalized HAp nanorods were prepared through the combination of ligand exchange reaction and metal free surface initiated atom transfer radical polymerization (ATRP) method. In this procedure, the amino group functionalized HAp nanorods were first prepared by ligand exchange reaction using adenosine monophosphate (AMP) as ligand. Then the Br-containing initiators (HAp-Br) were introduced onto the surface of HAp-AMP nanorods through the amidation reaction. Finally, polymers functionalized HAp nanorods were prepared by metal free ATRP method using poly(ethylene glycol) methacrylate (PEGMA) as monomer and 10-phenylphenothiazine (PTH) as organic photocatalyst. The properties of these obtained HAp nanocomposites (HAP-polyPEGMA nanorods) were characterized by means of transmission electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis in detail. The cell imaging of these HAP-polyPEGMA nanorods was examined using laser scanning confocal microscope to evaluate their biomedical applications. We demonstrated for the first time that hydrophobic luminescent HAp nanorods can be functionalized with polyPEGMA through the combination of ligand exchange reaction and metal free surface initiated ATRP. As compared with the traditional ATRP, the metal free ATRP can overcome the toxic and fluorescence quenching effects of metal catalysts such as copper ions. More importantly, the strategy described in this work should also be utilized for fabrications of many other luminescent polymer nanocomposites due to its good monomer adoptability.
Random and Block Sulfonated Polyaramides as Advanced Proton Exchange Membranes
Kinsinger, Corey L.; Liu, Yuan; Liu, Feilong; ...
2015-10-09
We present here the experimental and computational characterization of two novel copolyaramide proton exchange membranes (PEMs) with higher conductivity than Nafion at relatively high temperatures, good mechanical properties, high thermal stability, and the capability to operate in low humidity conditions. The random and block copolyaramide PEMs are found to possess different ion exchange capacities (IEC) in addition to subtle structural and morphological differences, which impact the stability and conductivity of the membranes. SAXS patterns indicate the ionomer peak for the dry block copolymer resides at q = 0.1 Å –1, which increases in amplitude when initially hydrated to 25% relativemore » humidity, but then decrease in amplitude with additional hydration. This pattern is hypothesized to signal the transport of water into the polymer matrix resulting in a reduced degree of phase separation. Coupled to these morphological changes, the enhanced proton transport characteristics and structural/mechanical stability for the block copolymer are hypothesized to be primarily due to the ordered structure of ionic clusters that create connected proton transport pathways while reducing swelling upon hydration. Interestingly, the random copolymer did not possess an ionomer peak at any of the hydration levels investigated, indicating a lack of any significant ionomer structure. The random copolymer also demonstrated higher proton conductivity than the block copolymer, which is opposite to the trend normally seen in polymer membranes. However, it has reduced structural/mechanical stability as compared to the block copolymer. In conclusion, this reduction in stability is due to the random morphology formed by entanglements of polymer chains and the adverse swelling characteristics upon hydration. Therefore, the block copolymer with its enhanced proton conductivity characteristics, as compared to Nafion, and favorable structural/mechanical stability, as compared to the random copolymer, represents a viable alternative to current proton exchange membranes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Jinhua; Maness, N.O.; Mort, A.J.
1989-04-01
Walls of cotton suspension cultures were treated with a highly purified endopolygalacturonase coded for by a gene from Erwinia carotovora expressed in E. coli. About 80 percent of the walls galacturonic acid was solubilized and could be fractionated by ion exchange chromatography into three classes: (1) tri- and tetra-galacturonides from digestion of homogalacturonans, (2) high molecular weight fragments rich in galacturonic acid, rhamnose and other neutral sugars indicative of rhamnogalacturonan I, and (3) a well defined low molecular weight polymer resembling rhamnogalacturonan II. Treatment of the insoluble wall residue with alkali allowed extraction of the remainder of the wall galacturonicmore » acid as high molecular weight polymers resembling rhamnogalacturonan I but in association with what is probably xyloglucan. The purified polymers will be compared to those obtained by others from different species, especially those of sycamore.« less
Radiolytic preparation of ETFE and PFA based anion exchange membranes for alkaline fuel cell
NASA Astrophysics Data System (ADS)
Ko, Beom-Seok; Sohn, Joon-Yong; Nho, Young-Chang; Shin, Junhwa
2011-11-01
In this study, a versatile monomer, vinylbenzyl chloride (VBC) was radiolytically grafted onto a partially fluorinated ETFE and perfluorinated polymer PFA films. The VBC grafted films were treated with trimethylamine to prepare the alkaline anion exchange membranes (AAEMs). No significant differences in the ion exchange capacities and water uptakes were observed between the ETFE and PFA based AAEMs with similar degree of grafting (DOG). However, the distribution patterns of the graft chains over the cross-section of the ETFE and PFA based AAEMs were found to be quite different; the even distribution was observed from the ETFE based AAEMs while the uneven distribution was observed from the PFA based AAEMs. It was also found that the PFA based AAEMs have the higher ionic conductivity and chemical stability, compared to the ETFE based AAEMs.
Tao, Bing; Fletcher, Ashleigh J
2013-01-15
Metaldehyde removal from aqueous solution was evaluated using granular activated carbon (GAC), a non-functionalised hyper-cross-linked polymer Macronet (MN200) and an ion-exchange resin (S957) with sulfonic and phosphonic functional groups. Equilibrium experimental data were successfully described by Freundlich isotherm models. The maximum adsorption capacity of S957 (7.5 g metaldehyde/g S957) exceeded those of MN200 and GAC. Thermodynamic studies showed that sorption of metaldehyde onto all sorbents is endothermic and processes are controlled by entropic rather than enthalpic changes. Kinetic experiments demonstrated that experimental data for MN200 and GAC obey pseudo-second order models with rates limited by particle diffusion. Comparatively, S957 was shown to obey a pseudo-first order model with a rate-limiting step of metaldehyde diffusion through the solid/liquid interface. Results obtained suggest that metaldehyde adsorption onto MN200 and GAC are driven by hydrophobic interactions and hydrogen bonding, as leaching tendencies were high since no degradation of metaldehyde occurred. Conversely, adsorption of metaldehyde onto S957 occurs via ion-exchange processes, where sulfonic and phosphonic functionalities degrade adsorbed metaldehyde molecules and failure to detect metaldehyde in leaching studies for S957 supports this theory. Consequently, the high adsorption capacity and absence of leaching indicate S957 is promising for metaldehyde removal from source water. Copyright © 2012 Elsevier B.V. All rights reserved.
Nanofiber Ion-Exchange Membranes for the Rapid Uptake and Recovery of Heavy Metals from Water
Chitpong, Nithinart; Husson, Scott M.
2016-01-01
An evaluation of the performance of polyelectrolyte-modified nanofiber membranes was undertaken to determine their efficacy in the rapid uptake and recovery of heavy metals from impaired waters. The membranes were prepared by grafting poly(acrylic acid) (PAA) and poly(itaconic acid) (PIA) to cellulose nanofiber mats. Performance measurements quantified the dynamic ion-exchange capacity for cadmium (Cd), productivity, and recovery of Cd(II) from the membranes by regeneration. The dynamic binding capacities of Cd(II) on both types of nanofiber membrane were independent of the linear flow velocity, with a residence time of as low as 2 s. Analysis of breakthrough curves indicated that the mass flow rate increased rapidly at constant applied pressure after membranes approached equilibrium load capacity for Cd(II), apparently due to a collapse of the polymer chains on the membrane surface, leading to an increased porosity. This mechanism is supported by hydrodynamic radius (Rh) measurements for PAA and PIA obtained from dynamic light scattering, which show that Rh values decrease upon Cd(II) binding. Volumetric productivity was high for the nanofiber membranes, and reached 0.55 mg Cd/g/min. The use of ethylenediaminetetraacetic acid as regeneration reagent was effective in fully recovering Cd(II) from the membranes. Ion-exchange capacities were constant over five cycles of binding-regeneration. PMID:27999394
Nanofiber Ion-Exchange Membranes for the Rapid Uptake and Recovery of Heavy Metals from Water.
Chitpong, Nithinart; Husson, Scott M
2016-12-20
An evaluation of the performance of polyelectrolyte-modified nanofiber membranes was undertaken to determine their efficacy in the rapid uptake and recovery of heavy metals from impaired waters. The membranes were prepared by grafting poly(acrylic acid) (PAA) and poly(itaconic acid) (PIA) to cellulose nanofiber mats. Performance measurements quantified the dynamic ion-exchange capacity for cadmium (Cd), productivity, and recovery of Cd(II) from the membranes by regeneration. The dynamic binding capacities of Cd(II) on both types of nanofiber membrane were independent of the linear flow velocity, with a residence time of as low as 2 s. Analysis of breakthrough curves indicated that the mass flow rate increased rapidly at constant applied pressure after membranes approached equilibrium load capacity for Cd(II), apparently due to a collapse of the polymer chains on the membrane surface, leading to an increased porosity. This mechanism is supported by hydrodynamic radius (R h ) measurements for PAA and PIA obtained from dynamic light scattering, which show that R h values decrease upon Cd(II) binding. Volumetric productivity was high for the nanofiber membranes, and reached 0.55 mg Cd/g/min. The use of ethylenediaminetetraacetic acid as regeneration reagent was effective in fully recovering Cd(II) from the membranes. Ion-exchange capacities were constant over five cycles of binding-regeneration.
Gilchrist, Elizabeth S; Nesterenko, Pavel N; Smith, Norman W; Barron, Leon P
2015-03-20
There has recently been increased interest in coupling ion chromatography (IC) to high resolution mass spectrometry (HRMS) to enable highly sensitive and selective analysis. Herein, the first comprehensive study focusing on the direct coupling of suppressed IC to HRMS without the need for post-suppressor organic solvent modification is presented. Chromatographic selectivity and added HRMS sensitivity offered by organic solvent-modified IC eluents on a modern hyper-crosslinked polymeric anion-exchange resin (IonPac AS18) are shown using isocratic eluents containing 5-50 mM hydroxide with 0-80% methanol or acetonitrile for a range of low molecular weight anions (<165 Da). Comprehensive experiments on IC thermodynamics over a temperature range between 20-45 °C with the eluent containing up to 60% of acetonitrile or methanol revealed markedly different retention behaviour and selectivity for the selected analytes on the same polymer based ion-exchange resin. Optimised sensitivity with HRMS was achieved with as low as 30-40% organic eluent content. Analytical performance characteristics are presented and compared with other IC-MS based works. This study also presents the first application of IC-HRMS to forensic detection of trace low-order anionic explosive residues in latent human fingermarks. Copyright © 2015 Elsevier B.V. All rights reserved.
Tohmyoh, Hironori; Sakamoto, Yuhei
2015-11-01
This paper reports on a technique to measure the acoustic properties of a thin polymer film utilizing the frequency dependence of the reflection coefficient of ultrasound reflected back from a system comprising a reflection plate, the film, and a material that covers the film. The frequency components of the echo reflected from the back of the plate, where the film is attached, take their minimum values at the resonant frequency, and from these frequency characteristics, the acoustic impedance, sound velocity, and the density of the film can be determined. We applied this technique to characterize an ion exchange membrane, which has high water absorbability, and successfully determined the acoustic properties of the membrane without getting it wet.
Development of an alkaline/surfactant/polymer compositional reservoir simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhuyan, D.
1989-01-01
The mathematical formulation of a generalized three-dimensional compositional reservoir simulator for high-pH chemical flooding processes is presented in this work. The model assumes local thermodynamic equilibrium with respect to both reaction chemistry and phase behavior and calculates equilibrium electrolyte and phase compositions as a function of time and position. The reaction chemistry considers aqueous electrolytic chemistry, precipitation/dissolution of minerals, ion exchange reactions on matrix surface, reaction of acidic components of crude oil with the bases in the aqueous solution and cation exchange reactions with the micelles. The simulator combines this detailed reaction chemistry associated with these processes with the extensivemore » physical and flow property modeling schemes of an existing chemical flood simulator (UTCHEM) to model the multiphase, multidimensional displacement processes. The formulation of the chemical equilibrium model is quite general and is adaptable to simulate a variety of chemical descriptions. In addition to its use in the simulation of high-pH chemical flooding processes, the model will find application in the simulation of other reactive flow problems like the ground water contamination, reinjection of produced water, chemical waste disposal, etc. in one, two or three dimensions and under multiphase flow conditions. In this work, the model is used to simulate several hypothetical cases of high-pH chemical floods, which include cases from a simple alkaline preflush of a micellar/polymer flood to surfactant enhanced alkaline-polymer flooding and the results are analyzed. Finally, a few published alkaline, alkaline-polymer and surfactant-alkaline-polymer corefloods are simulated and compared with the experimental results.« less
Han, Yehong; Yang, Chunliu; Zhou, Yang; Han, Dandan; Yan, Hongyuan
2017-03-01
A new method involving ionic liquid-hybrid molecularly imprinted material-filter solid-phase extraction coupled to high-performance liquid chromatography (IL-HIM-FSPE-HPLC) was developed for the simultaneous isolation and determination of 6-benzyladenine (6-BA) and 4-chlorophenoxyacetic acid (4-CPA) in bean sprouts. Sample preconcentration was performed using a modified filter, with the new IL-HIM as the adsorbent, which shows double adsorption. The first adsorption involves special recognition of molecular imprinting, and the second involves ion exchange and electrostatic attraction caused by the ionic liquid. This method combines the advantages of ionic liquids, hybrid materials, and molecularly imprinted polymers and was successfully applied to determine 6-BA and 4-CPA in bean sprouts. The adsorption of 6-BA to IL-HIM is based on selective imprinted recognition, whereas the adsorption of 4-CPA is mainly dependent on ion-exchange interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mogurampelly, Santosh; Sethuraman, Vaidyanathan; Pryamitsyn, Victor
We use atomistic simulations to probe the ion conductivities and mechanical properties of polyethylene oxide electrolytes containing Al{sub 2}O{sub 3} nanoparticles. We specifically study the influence of repulsive polymer-nanoparticle and ion-nanoparticle interactions and compare the results with those reported for electrolytes containing the polymorph β-Al{sub 2}O{sub 3} nanoparticles. We observe that incorporating repulsive nanoparticle interactions generally results in increased ionic mobilities and decreased elastic moduli for the electrolyte. Our results indicate that both ion transport and mechanical properties are influenced by the polymer segmental dynamics in the interfacial zones of the nanoparticle in the ion-doped systems. Such effects were seenmore » to be determined by an interplay between the nanoparticle-polymer, nanoparticle-ion, and ion-polymer interactions. In addition, such interactions were also observed to influence the number of dissociated ions and the resulting conductivities. Within the perspective of the influence of nanoparticles on the polymer relaxation times in ion-doped systems, our results in the context of viscoelastic properties were consistent with the ionic mobilities. Overall, our results serve to highlight some issues that confront the efforts to use nanoparticle dispersions to simultaneously enhance the conductivity and the mechanical strength of polymer electrolyte.« less
Molecular Dynamics Simulations of Ion Transport and Mechanisms in Polymer Nanocomposites
NASA Astrophysics Data System (ADS)
Mogurampelly, Santosh; Ganesan, Venkat
2015-03-01
Using all atom molecular dynamics and trajectory-extending kinetic Monte Carlo simulations, we study the influence of Al2O3 nanoparticles on the transport properties of Li+ ions in polymer electrolytes consisting of polyethylene oxide (PEO) melt solvated with LiBF4 salt. We observe that the nanoparticles have a strong influence on polymer segmental dynamics which in turn correlates with the mobility of Li+ ions. Explicitly, polymer segmental relaxation times and Li+ ion residence times around polymer were found to increase with the addition of nanoparticles. We also observe that increasing short range repulsive interactions between nanoparticles and polymer membrane leads to increasing polymer dynamics and ion mobility. Overall, our simulation results suggest that nanoparticle induced changes in conformational and dynamic properties of the polymer influences the ion mobilities in polymer electrolytes and suggests possible directions for using such findings to improve the polymer matrix conductivity. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing computing resources that have contributed to the research.
NASA Astrophysics Data System (ADS)
Khalfan, Amish N.
This dissertation investigates the structural and dynamical properties of polymer electrolyte materials for applications to lithium-ion batteries and fuel cells. The nuclear magnetic resonance (NMR) technique was used to characterize these materials. NMR aids in understanding the local environments of nuclei and the mobility of a molecular/ionic species. Five research projects were carried out, and they have been outlined in this work. NASA has developed rod-coil block copolymers for use as electrolytes in lithium-ion batteries. The copolymers exhibit a microphase separation within their structure leading to the formation of ionically conducting channels. We studied ion transport properties of the copolymers, and determined the predominant mechanism for transport to occur in the amorphous phase. Seven gel polymer electrolytes, each containing a mixture of LiBETI salt and organic solvents, were studied. Two of them incorporated BMI (1-n-butyl-3-methylimidazolium) ionic liquid. Ionic liquids are room temperature molten salts. BMI had been thought to enhance ion mobility. However, the BMI component was observed to restrict ion mobility. Gel polymer electrolytes containing LiTFSI salt and P13TFSI ionic liquid with or without the inclusion of ethylene carbonate (EC) were studied for application to lithium metal/air batteries, which have high theoretical energy densities. The addition of EC was found to improve lithium ion transport. The gels with EC therefore prove to be favorable for use as electrolytes in lithium metal/air batteries. Highly sulfonated poly(arylenethioethersulfone) (SPTES) membranes were examined for use in direct methanol fuel cells (DMFCs) as an alternative to the Nafion membrane. DMFCs use methanol as a fuel instead of reformed hydrogen as in conventional proton exchange membrane fuel cells. Compared to Nafion, the SPTES membranes were shown to retain water better at high temperatures and yield lower methanol diffusion. SPTES membranes with the addition of fluorine groups (6F-SPTES) were also studied, and these membranes had been thought to show an improvement in water transport properties over SPTES. However, water diffusion studies of the 6F-SPTES membranes revealed the fluorinated membranes to be unfavorable. The morphology of the FSPTES is suspected to be more susceptible to the loss of bound water at higher temperatures than SPTES.
Obadia, Mona M; Mudraboyina, Bhanu P; Serghei, Anatoli; Montarnal, Damien; Drockenmuller, Eric
2015-05-13
Exploiting exchangeable covalent bonds as dynamic cross-links recently afforded a new class of polymer materials coined as vitrimers. These permanent networks are insoluble and infusible, but the network topology can be reshuffled at high temperatures, thus enabling glasslike plastic deformation and reprocessing without depolymerization. We disclose herein the development of functional and high-value ion-conducting vitrimers that take inspiration from poly(ionic liquid)s. Tunable networks with high ionic content are obtained by the solvent- and catalyst-free polyaddition of an α-azide-ω-alkyne monomer and simultaneous alkylation of the resulting poly(1,2,3-triazole)s with a series of difunctional cross-linking agents. Temperature-induced transalkylation exchanges of C-N bonds between 1,2,3-triazolium cross-links and halide-functionalized dangling chains enable recycling and reprocessing of these highly cross-linked permanent networks. They can also be recycled by depolymerization with specific solvents able to displace the transalkylation equilibrium, and they display a great potential for applications that require solid electrolytes with excellent mechanical performances and facile processing such as supercapacitors, batteries, fuel cells, and separation membranes.
The influence of ion content on mobility and ion aggregation in PEO-based single-ion conductors
NASA Astrophysics Data System (ADS)
Caldwell, David; Maranas, Janna
2013-03-01
PEO-based ionomers reduce concentration polarization in solid polymer electrolytes by binding the anion to the polymer backbone. Ionomers have significant ion aggregation compared to PEO/salt systems, and the influence of these aggregates is unclear. When ion transport is coupled to the segmental dynamics of the polymer, aggregation will always reduce ion motion and conductivity. However, the conductivity of PEO ionomers is not sensitive to the degree of aggregation. We present results of molecular dynamics simulations where ion content is systematically varied. We consider the influence of ion content on ion aggregation, polymer mobility and cation motion.
NASA Astrophysics Data System (ADS)
Lin, Kan-Ju; Maranas, Janna
2010-03-01
We use molecular dynamics simulation to study ion clustering and dynamics in ion containing polymers. This PEO based single-ion conducting ionomer serves as a model system for understanding cation transport in solid state polymer electrolytes (SPEs). Although small-angle x-ray scattering does not show an ionomer peak, we observer various cation-anion complexes in the simulation, suggesting ionomer backbones are crosslinked through ion complexes. These crosslinks reduce the adjacent PEO mobility resulting in a symmetric mobility gradient along the PEO chain. We vary the cation-anion interaction in the simulation to observe the interplay of cation-anion association, polymer mobility and cation motion. Cation-anion association controls the number of free ions, which is important in ionic conductivity when these materials are used as SPEs. Polymer mobility controls how fast the free ions are able to move through the SPE. High conductivity requires both a high free ion content and fast polymer motion. To understand the connection between the two, we ``tune'' the force field in order to manipulate the free ion content and observe the influence on PEO dynamics.
Mihranyan, Albert; Nyholm, Leif; Bennett, Alfonso E Garcia; Strømme, Maria
2008-10-02
We present a novel conducting polypyrrole-based composite material, obtained by polymerization of pyrrole in the presence of iron(III) chloride on a cellulose substrate derived from the environmentally polluting Cladophora sp. algae. The material, which was doped with chloride ions, was molded into paper sheets and characterized using scanning and transmission electron microscopy, N 2 gas adsorption analysis, cyclic voltammetry, chronoamperometry and conductivity measurements at varying relative humidities. The specific surface area of the composite was found to be 57 m (2)/g and the fibrous structure of the Cladophora cellulose remained intact even after a 50 nm thick layer of polypyrrole had been coated on the cellulose fibers. The composite could be repeatedly used for electrochemically controlled extraction and desorption of chloride and an ion exchanging capacity of 370 C per g of composite was obtained as a result of the high surface area of the cellulose substrate. The influence of the oxidation and reduction potentials on the chloride ion exchange capacity and the nucleation of delocalized positive charges, forming conductive paths in the polypyrrole film, was also investigated. The creation of conductive paths during oxidation followed an effective medium rather than a percolative behavior, indicating that some conduction paths survive the polymer reduction steps. The present high surface area material should be well-suited for use in, e.g., electrochemically controlled ion exchange or separation devices, as well as sensors based on the fact that the material is compact, light, mechanically stable, and moldable into paper sheets.
A simple graphical representation of selectivity in hydrophilic interaction liquid chromatography.
Ibrahim, Mohammed E A; Liu, Yang; Lucy, Charles A
2012-10-19
This paper uses the HILIC selectivity data of Dinh et al. (J. Chromatogr. A 1218 (2011) 5880) to yield simple and easy to understand plots analogous to Neue plots for selectivity in HILIC. The plots categorize 21 previously studied HILIC phases (data from Dinh et al.), 8 additional HILIC columns and 4 reversed phase columns (our data) using selected probes for specific interactions. The relative retention of cytosine vs. uracil is used to probe the "hydrophilicity" of the HILIC phases; adenosine vs. adenine is used to probe the ability of the stationary phase to participate in hydrogen bonding; and benzyltrimethylammonium (BTMA) vs. cytosine is used to probe the cation exchange and anion exchange character of the column. Plots of kBTMA/kcytosine vs. kcytosine/kuracil successfully classify silica, amide, zwitterionic, diol and reverse phase columns in terms of their HILIC behavior. Polymeric columns including polymer substrate and polymer coated columns show low ion exchange character, but vary widely in their hydrophilicity. Alternatively a HILIC-Phase Selectivity Chart, in analogy to the Neue plot, is constructed by plotting log(kBTMA/kcytosine) vs. log(kcytosine). This plot enables classification of HILIC columns that will yield similar or significantly different separations. Copyright © 2012 Elsevier B.V. All rights reserved.
A stable perovskite electrolyte in moist air for Li-ion batteries.
Li, Yutao; Xu, Henghui; Chien, Po-Hsiu; Wu, Nan; Xin, Sen; Xue, Leigang; Park, Kyusung; Hu, Yan-Yan; Goodenough, John B
2018-05-07
Solid-oxide Li+ electrolytes of a rechargeable cell are generally sensitive to moisture in the air, H+ exchanges for the mobile Li+ of the electrolyte and forms insulating surface phases at the electrolyte interfaces and in the grain boundaries of a polycrystalline membrane. These surface phases dominate the total interfacial resistance of a conventional rechargeable cell having a solid-electrolyte separator. We report a new perovskite Li+ solid electrolyte, Li0.38Sr0.44Ta0.7Hf0.3O2.95F0.05, having a Li-ion conductivity σLi = 4.8×10-4 S cm-1 at 25 oC that does not react with water having 3≤pH≤14. The solid electrolyte with a thin Li+-conducting polymer on its surface to prevent reduction of Ta5+ is wet by metallic lithium and provides low-impedance dendrite-free plating/stripping of a lithium anode. It is also stable on contact with a composite polymer cathode. With this solid electrolyte, we demonstrate excellent cycling performance of an all-solid-state Li/LiFePO4 cell, a Li-S cell with a polymer-gel cathode, and a supercapacitor. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Superabsorbing gel for actinide, lanthanide, and fission product decontamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaminski, Michael D.; Mertz, Carol J.
The present invention provides an aqueous gel composition for removing actinide ions, lanthanide ions, fission product ions, or a combination thereof from a porous surface contaminated therewith. The composition comprises a polymer mixture comprising a gel forming cross-linked polymer and a linear polymer. The linear polymer is present at a concentration that is less than the concentration of the cross-linked polymer. The polymer mixture is at least about 95% hydrated with an aqueous solution comprising about 0.1 to about 3 percent by weight (wt %) of a multi-dentate organic acid chelating agent, and about 0.02 to about 0.6 molar (M)more » carbonate salt, to form a gel. When applied to a porous surface contaminated with actinide ions, lanthanide ions, and/or other fission product ions, the aqueous gel absorbs contaminating ions from the surface.« less
NASA Astrophysics Data System (ADS)
Kwon, Sohyun; Rao, Anil H. N.; Kim, Tae-Hyun
2018-01-01
Azide-assisted terminal crosslinking of methyl morpholinium-functionalized poly(arylene ether sulfone) block copolymers yields products (xMM-PESs) suitable for use as anion exchange membranes. By combining the advantages of bulky morpholinium conductors and our unique polymer network crosslinked only at the termini of the polymer chains, we can produce AEMs that after the crosslinking show minimal loss in conductivity, yet with dramatically reduced water uptake. Terminal crosslinking also significantly increases the thermal, mechanical and chemical stability levels of the membranes. A high ion conductivity of 73.4 mS cm-1 and low water uptake of 26.1% at 80 °C are obtained for the crosslinked membrane with higher amount of hydrophilic composition, denoted as xMM-PES-1.5-1. In addition, the conductivity of the crosslinked xMM-PES-1.5-1 membrane exceeds that of its non-crosslinked counterpart (denoted as MM-PES-1.5-1) above 60 °C at 95% relative humidity because of its enhanced water retention capacity caused by the terminally-crosslinked structure.
NASA Astrophysics Data System (ADS)
Mogurampelly, Santosh; Ganesan, Venkat
2017-02-01
We use all atom molecular dynamics simulations to investigate the influence of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) ionic liquid on the structure and transport properties of poly(ethylene oxide) (PEO) polymer electrolytes doped with LiPF6 salt. We observe enhanced diffusivities of the Li+, PF6-, and BMIM+ ions with increasing loading of the ionic liquid. Interplay between the different ion-ion and ion-polymer interactions is seen to lead to a destabilization of the Li-PF6 coordination and increase in the strength of association between the Li+ cations and the polymer backbone. As a consequence, the polymer segmental relaxation times are shown to be only moderately affected by the addition of ionic liquids. The ionic-liquid induced changes in the mobilities of Li+ ions are seen to be correlated to polymer segmental relaxation times. However, the mobilities of BMIM+ ions are seen to be more strongly correlated to the BMIM-PF6 ion-pair relaxation times.
Trueba, Alfredo; García, Sergio; Otero, Félix M
2014-01-01
Electromagnetic field (EMF) treatment is presented as an alternative physical treatment for the mitigation of biofouling adhered to the tubes of a heat exchanger-condenser cooled by seawater. During an experimental phase, a fouling biofilm was allowed to grow until experimental variables indicated that its growth had stabilised. Subsequently, EMF treatment was applied to seawater to eliminate the biofilm and to maintain the achieved cleanliness. The results showed that EMFs precipitated ions dissolved in the seawater. As a consequence of the application of EMFs, erosion altered the intermolecular bonding of extracellular polymers, causing the destruction of the biofilm matrix and its detachment from the inner surface of the heat exchanger-condenser tubes. This detachment led to the partial removal of a mature biofilm and a partial recovery of the efficiency lost in the heat transfer process by using a physical treatment that is harmless to the marine environment.
NASA Astrophysics Data System (ADS)
Kizewski, Jamie Peter; Mudri, Nurul H.; Varcoe, John R.
2013-08-01
The application of alkaline anion-exchange membranes (AAEM) in solid alkaline fuel cells is growing in prominence mainly due to enhanced tolerance to carbon dioxide, compared to alkaline fuel cells containing aqueous electrolytes, and the potential for using non precious metal catalysts. Radiation grafting is a common methodology for the production of functional polymers and membranes. This statistical study examines the synthesis of radiation grafted AAEMs that are formed from electron beam irradiated poly(ethylene-co-tetrafluoroethylene), EB-ETFE. It is shown that EB-ETFE can be cold stored for at least 16 months and still be used to produce ionically conductive AAEMs. The limitations of routine measurements of properties, such as dimensional increases, ion-exchange capacity, water uptakes and ionic conductivities, are also highlighted.
Pezeshki, Alan M.; Fujimoto, Cy; Sun, Che -Nan; ...
2015-11-14
In this paper, we report on the performance of Diels Alder poly(phenylene) membranes in vanadium redox flow batteries. The membranes were functionalized with quaternary ammonium groups to form an anion exchange membrane (QDAPP) and with sulfonic acid groups to form a cation exchange membrane (SDAPP). Both membrane classes showed similar conductivities in the battery environment, suggesting that the ion conduction mechanism in the material is not strongly affected by the moieties along the polymer backbone. The resistance to vanadium permeation in QDAPP was not improved relative to SDAPP, further suggesting that the polarity of the functional groups do not playmore » a significant role in the membrane materials tested. Both QDAPP and SDAPP outperformed Nafion membranes in cycling tests, with both achieving voltage efficiencies above 85% while maintaining 95% coulombic efficiency while at a current density of 200 mA/cm 2.« less
Barique, Mohammad A; Wu, Libin; Takimoto, Naohiko; Kidena, Koh; Ohira, Akihiro
2009-12-10
The effects of water on the changes in morphology of sulfonated poly(phenylene sulfide) (SPPS) hydrocarbon polymer electrolyte membranes (PEM) with an ion exchange capacity (IEC) of 0-2.0 mequiv/g are investigated using small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM). Wide-angle X-ray scattering (WAXS) was used to characterize the effect of direct sulfonation on the changes in membrane crystalline structure, and it was found that the crystallinity and crystallite domain size decrease and the volume of the amorphous region in the SPPS membranes increases with increasing IEC. The experimental data have been fitted to the Porod law for approaching the analysis of the sharpness of the polymer/water interface, development of the proton channel, or dispersion of water in the hydrated membranes. Porod plots showed positive deviation which revealed that the polymer/water interface in the hydrated SPPS membrane is not smooth but diffused and a well-developed proton channel does not form in the membrane.
Polyelectrolyte-coated ion exchangers for cell-resistant expanded bed adsorption.
Dainiak, Maria B; Galaev, Igor Yu; Mattiasson, Bo
2002-01-01
Adsorption chromatography in expanded beds is a widely used technology for direct capture of target proteins from fermentation broths. However, in many cases this method cannot be applied as a result of the strong tendency of cells or cell debris to interact with the adsorbent beads. To prevent contamination of the expanded bed with the biomass, STREAMLINE DEAE, anion exchanger designed for expanded bed adsorption, was modified with a layer of poly(acrylic acid) (PAA). The shielding layer of polyelectrolyte was attached to the surface of the matrix beads via electrostatic interactions. PAA with a high degree of polymerization was chosen to prevent diffusion of large polymer molecules into the pores of adsorbent. Thus, the shielding layer of PAA was adsorbed only at the mouth of the pores of STREAMLINE DEAE beads and only marginally decreased the binding capacity of the ion exchanger for bovine serum albumin, the model protein in this study. PAA-coated STREAMLINE DEAE practically did not interact with yeast cells, which otherwise bound strongly to the native adsorbent at neutral conditions. Cell-resistant PAA-coated anion exchanger was successfully used for isolation of BSA from the model protein mixture containing BSA, lysozyme (positively charged at applied conditions), and yeast cells. The layer of PAA was stable under mild elution conditions, and the modified adsorbent could be used in the repeated purification cycles.
Synthetic and Biopolymer Gels - Similarities and Difference.
NASA Astrophysics Data System (ADS)
Horkay, Ferenc
2006-03-01
Ion exchange plays a central role in a variety of physiological processes, such as nerve excitation, muscle contraction and cell locomotion. Hydrogels can be used as model systems for identifying fundamental chemical and physical interactions that govern structure formation, phase transition, etc. in biopolymer systems. Polyelectrolyte gels are particularly well-suited to study ion-polymer interactions because their structure and physical-chemical properties (charge density, crosslink density, etc) can be carefully controlled. They are sensitive to different external stimuli such as temperature, ionic composition and pH. Surprisingly few investigations have been made on polyelectrolyte gels in salt solutions containing both monovalent and multivalent cations. We have developed an experimental approach that combines small angle neutron scattering and osmotic swelling pressure measurements. The osmotic pressure exerted on a macroscopic scale is a consequence of changes occurring at a molecular level. The intensity of the neutron scattering signal, which provides structural information as a function of spatial resolution, is directly related to the osmotic pressure. We have found a striking similarity in the scattering and osmotic behavior of polyacrylic acid gels and DNA gels swollen in nearly physiological salt solutions. Addition of calcium ions to both systems causes a sudden volume change. This volume transition, which occurs when the majority of the sodium counterions are replaced by calcium ions, is reversible. Such reversibility implies that the calcium ions are not strongly bound by the polyanion, but are free to move along the polymer chain, which allows these ions to form temporary bridges between negative charges on adjacent chains. Mechanical measurements reveal that the elastic modulus is practically unchanged in the calcium-containing gels, i.e., ion bridging is qualitatively different from covalent crosslinks.
Computer Simulations of Ion Transport in Polymer Electrolyte Membranes.
Mogurampelly, Santosh; Borodin, Oleg; Ganesan, Venkat
2016-06-07
Understanding the mechanisms and optimizing ion transport in polymer membranes have been the subject of active research for more than three decades. We present an overview of the progress and challenges involved with the modeling and simulation aspects of the ion transport properties of polymer membranes. We are concerned mainly with atomistic and coarser level simulation studies and discuss some salient work in the context of pure binary and single ion conducting polymer electrolytes, polymer nanocomposites, block copolymers, and ionic liquid-based hybrid electrolytes. We conclude with an outlook highlighting future directions.
Advanced biohybrid materials based on nanoclays for biomedical applications
NASA Astrophysics Data System (ADS)
Ruiz-Hitzky, Eduardo; Darder, Margarita; Wicklein, Bernd; Fernandes, Francisco M.; Castro-Smirnov, Fidel A.; Martín del Burgo, M. Angeles; del Real, Gustavo; Aranda, Pilar
2012-10-01
Bio-nanohybrids prepared by assembling natural polymers (polysaccharides, proteins, nucleic acids, etc) to nanosized silicates (nanoclays) and related solids (layered double hydroxides, LDHs) give rise to the so-called bionanocomposites constituting a group of biomaterials with potential applications in medicine. In this way, biopolymers, including chitosan, pectin, alginate, xanthan gum, ι-carrageenan, gelatin, zein, and DNA, as well as phospholipids such as phosphatidylcholine, have been incorporated in layered host matrices by means of ion-exchange mechanisms producing intercalation composites. Also bio-nanohybrids have been prepared by the assembly of diverse bio-polymers with sepiolite, a natural microfibrous magnesium silicate, in this case through interactions affecting the external surface of this silicate. The properties and applications of these resulting biomaterials as active phases of ion-sensors and biosensors, for potential uses as scaffolds for tissue engineering, drug delivery, and gene transfection systems, are introduced and discussed in this work. It is also considered the use of synthetic bionanocomposites as new substrates to immobilize microorganisms, as for instance to bind Influenza virus particles, allowing their application as effective low-cost vaccine adjuvants and carriers.
López-Chávez, Ernesto; Peña-Castañeda, Yésica A; de la Portilla-Maldonado, L César; Guzmán-Pantoja, Javier; Martínez-Magadán, José Manuel; Oviedo-Roa, Raúl; de Landa Castillo-Alvarado, Fray; Cruz-Torres, Armando
2014-07-01
The design of polymer electrolyte membranes for fuel cells must satisfy two equally important fundamental principles: optimization of the reactivity and the selectivity in order to improve the ion transport properties of the membrane as well as its long-term stability in the hydrated state at high temperature (above 100 °C). A study utilizing density functional theory (DFT) to elucidate the effect of the degree of sulfonation on the chemical stability, reactivity, and selectivity of poly(ether imide) (PEI), which allows the ionic transport properties of the membrane to be predicted, is reported here. Sulfonated poly(ether imide) (SPEI) structures with (-SO3H) n (n = 1-6) groups were built and optimized in order to calculate the above properties as functions of the number of sulfonyl groups. A comparative study demonstrated that the SPEI with four sulfonyl groups in its backbone is the polymer with the properties best suited for use in fuel cells.
Electrodeposition for Electrochemical Energy Conversion and Storage Devices
NASA Astrophysics Data System (ADS)
Shaigan, Nima
Electrodeposition of metals, alloys, metal oxides, conductive polymers, and their composites plays a pivotal role in fabrication processes of some recently developed electrochemical energy devices, most particularly fuel cells, supercapacitors, and batteries. Unique nanoscale architectures of electrocatalysts for low temperature fuel cells, including proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC), can only be obtained through electrodeposition processes. Promising, cost-effective conductive/protective coatings for stainless steel interconnects used in solid oxide fuel cells (SOFCs) have been achieved employing a variety of electrodeposition techniques. In supercapacitors, anodic deposition of metal oxides, conductive polymers, and their composites is a versatile technique for fabrication of electrodes with distinctive morphology and exceptional specific capacitance. Electrodeposition is also very recently employed for preparation of Sn-based anodes for lithium ion batteries.
Low Cost Polymer heat Exchangers for Condensing Boilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butcher, Thomas; Trojanowski, Rebecca; Wei, George
2015-09-30
Work in this project sought to develop a suitable design for a low cost, corrosion resistant heat exchanger as part of a high efficiency condensing boiler. Based upon the design parameters and cost analysis several geometries and material options were explored. The project also quantified and demonstrated the durability of the selected polymer/filler composite under expected operating conditions. The core material idea included a polymer matrix with fillers for thermal conductivity improvement. While the work focused on conventional heating oil, this concept could also be applicable to natural gas, low sulfur heating oil, and biodiesel- although these are considered tomore » be less challenging environments. An extruded polymer composite heat exchanger was designed, built, and tested during this project, demonstrating technical feasibility of this corrosion-resistant material approach. In such flue gas-to-air heat exchangers, the controlling resistance to heat transfer is in the gas-side convective layer and not in the tube material. For this reason, the lower thermal conductivity polymer composite heat exchanger can achieve overall heat transfer performance comparable to a metal heat exchanger. However, with the polymer composite, the surface temperature on the gas side will be higher, leading to a lower water vapor condensation rate.« less
Skene, Williams G.; Lehn, Jean-Marie P.
2004-01-01
Component exchange in reversible polymers allows the generation of dynamic constitutional diversity. The polycondensation of dihydrazides with dialdehydes generates polyacylhydrazones, to which the acylhydrazone functionality formed confers both hydrogen-bonding and reversibility features through the amide and imine groups, respectively. Polyacylhydrazones are thus dynamic polyamides. They are able to reversibly exchange either one or both of their repeating monomer units in the presence of different monomers, thus presenting constitutional dynamic diversity. The polymers subjected to monomer exchange/interchange may be brought to exhibit physical properties vastly different from those of the original polymer. The principle may be extended to other important classes of polymers, giving access, for instance, to dynamic polyureas or polycarbamates. These reversible polymers are therefore able to incorporate, decorporate, or reshuffle their constituting monomers, namely in response to environmental physical or chemical factors, an adaptability feature central to constitutional dynamic chemistry. PMID:15150411
Process for the displacement of cyanide ions from metal-cyanide complexes
Smith, Barbara F.; Robinson, Thomas W.
1997-01-01
The present invention relates to water-soluble polymers and the use of such water-soluble polymers in a process for the displacement of the cyanide ions from the metal ions within metal-cyanide complexes. The process waste streams can include metal-cyanide containing electroplating waste streams, mining leach waste streams, mineral processing waste streams, and related metal-cyanide containing waste streams. The metal ions of interest are metals that give very strong complexes with cyanide, mostly iron, nickel, and copper. The physical separation of the water-soluble polymer-metal complex from the cyanide ions can be accomplished through the use of ultrafiltration. Once the metal-cyanide complex is disrupted, the freed cyanide ions can be recovered for reuse or destroyed using available oxidative processes rendering the cyanide nonhazardous. The metal ions are released from the polymer, using dilute acid, metal ion oxidation state adjustment, or competing chelating agents, and collected and recovered or disposed of by appropriate waste management techniques. The water-soluble polymer can then be recycled. Preferred water-soluble polymers include polyethyleneimine and polyethyleneimine having a catechol or hydroxamate group.
Adams, Marisa; Richmond, Victoria; Smith, Douglas; ...
2017-03-24
Here, in order to design more effective solid polymer electrolytes, it is important to decouple ion conductivityfrom polymer segmental motion. To that end, novel polymers based on oxanorbornene dicarboximidemonomers with varying lengths of oligomeric ethylene oxide side chains have been synthesized usingring opening metathesis polymerization. These unique polymers have a fairly rigid and bulky backboneand were used to investigate the decoupling of ion motion from polymer segmental dynamics. Ionconductivity was measured using broadband dielectric spectroscopy for varying levels of added lithiumsalt. The conductivity data demonstrate six to seven orders of separation in timescale of ion conductivityfrom polymer segmental motion formore » polymers with shorter ethylene oxide side chains. However,commensurate changes in the glass transition temperatures T g reduce the effect of decoupling in ionconductivity and lead to lower conductivity at ambient conditions. These results suggest that both anincrease in decoupling and a reduction in T g might be required to develop solid polymer electrolytes withhigh ion conductivity at room temperature.« less
Ahmadi, Seyed Javad; Noori-Kalkhoran, Omid; Shirvani-Arani, Simindokht
2010-03-15
UO(2)(2+) ion-imprinted polymer materials used for solid-phase extraction were prepared by copolymerization of a ternary complex of uranyl ions with styrene and divinyl benzene in the presence of 2,2'-azobisisobutyronitrile. The imprinted particles were leached by HCl 6M. Various parameters in polymerization steps such as DVB/STY ratio, time of polymerization and temperature of polymerization were varied to achieve the most efficient uranyl-imprinted polymer. X-ray diffraction (XRD), infra-red spectroscopy (IR), thermo gravimetric analysis (TGA), UV-vis and nitrogen sorption were used to characterize the polymer particles. The XRD results showed that uranyl ions were completely removed from the polymer after leaching process. IR Analysis indicated that the N,N'-ethylenebis(pyridoxylideneiminato) remained intact in the polymer even after leaching. Some parameters such as pH, weight of the polymer, elution time, eluent volume and aqueous phase volume which affects the efficiency of the polymer were studied. (c) 2009 Elsevier B.V. All rights reserved.
Multivalent Ion Transport in Polymers via Metal-Ligand Coordination
NASA Astrophysics Data System (ADS)
Sanoja, Gabriel; Schauser, Nicole; Evans, Christopher; Majumdar, Shubhaditya; Segalman, Rachel
Elucidating design rules for multivalent ion conducting polymers is critical for developing novel high-performance materials for electrochemical devices. Herein, we molecularly engineer multivalent ion conducting polymers based on metal-ligand interactions and illustrate that both segmental dynamics and ion coordination kinetics are essential for ion transport through polymers. We present a novel statistical copolymer, poly(ethylene oxide-stat-imidazole glycidyl ether) (i.e., PEO-stat-PIGE), that synergistically combines the structural hierarchy of PEO with the Lewis basicity of tethered imidazole ligands (xIGE = 0.17) required to coordinate a series of transition metal salts containing bis(trifluoromethylsulfonyl)imide anions. Complexes of PEO-stat-PIGE with salts exhibit a nanostructure in which ion-enriched regions alternate with ion-deficient regions, and an ionic conductivity above 10-5 S/cm. Novel normalization schemes that account for ion solvation kinetics are presented to attain a universal scaling relationship for multivalent ion transport in polymers via metal-ligand coordination. AFOSR MURI program under FA9550-12-1.
O'Rourke, Michelle; Duffy, Noel; De Marco, Roland; Potter, Ian
2011-01-01
Electrochemical impedance spectroscopy (EIS) has been used to estimate the non-frequency dependent (static) dielectric constants of base polymers such as poly(vinyl chloride) (PVC), cellulose triacetate (CTA) and polystyrene (PS). Polymer inclusion membranes (PIMs) containing different amounts of PVC or CTA, along with the room temperature ionic liquid Aliquat 336 and plasticizers such as trisbutoxyethyl phosphate (TBEP), dioctyl sebecate (DOS) and 2-nitrophenyloctyl ether (NPOE) have been investigated. In this study, the complex and abstract method of EIS has been applied in a simple and easy to use way, so as to make the method accessible to membrane scientists and engineers who may not possess the detailed knowledge of electrochemistry and interfacial science needed for a rigorous interpretation of EIS results. The EIS data reported herein are internally consistent with a percolation threshold in the dielectric constant at high concentrations of Aliquat 336, which illustrates the suitability of the EIS technique since membrane percolation with ion exchangers is a well-known phenomenon. PMID:24957616
NASA Astrophysics Data System (ADS)
Arya, Anil; Sharma, A. L.
2018-01-01
Free-standing solid polymer nanocomposite (PEO-PVC) + LiPF6-TiO2 films have been prepared through a standard solution-cast technique. The improvement in structural, microstructural and electrochemical properties has been observed on the dispersion of nanofiller in polymer salt complex. X-ray diffraction studies clearly reflect the formation of complex formation, as no corresponding salt peak appeared in the diffractograms. The Fourier transform infrared analysis suggested clear and convincing evidence of polymer-ion, ion-ion and polymer-ion-nanofiller interaction. The highest ionic conductivity of the prepared solid polymer electrolyte (SPE) films is ~5 × 10-5 S cm-1 for 7 wt.% TiO2. The linear sweep voltammetry provides the electrochemical stability window of the prepared SPE films, about ~3.5 V. The ion transference number has been estimated, t ion = 0.99 through the DC polarization technique. Dielectric spectroscopic studies were performed to understand the ion transport process in polymer electrolytes. All solid polymer electrolytes possess good thermal stability up to 300 °C. Differential scanning calorimetry analysis confirms the decrease of the melting temperature and signal of glass transition temperature with the addition of nanofiller, which indicates the decrease of crystallinity of the polymer matrix. An absolute correlation between diffusion coefficient (D), ion mobility (µ), number density (n), double-layer capacitance (C dl), glass transition temperature, melting temperature (T m), free ion area (%) and conductivity (σ) has been observed. A convincing model to study the role of nanofiller in a polymer salt complex has been proposed, which supports the experimental findings. The prepared polymer electrolyte system with significant ionic conductivity, high ionic transference number, and good thermal and voltage stability could be suggested as a potential candidate as electrolyte cum separator for the fabrication of a rechargeable lithium-ion battery system.
Roushani, Mahmoud; Abbasi, Shahryar; Khani, Hossein
2015-04-01
Novel Cu(II) ion-imprinted polymers (Cu-IIP) nanoparticles were prepared by using Cu(II) ion-thiosemicarbazide complex as the template molecule and methacrylic acid, ethylene glycol dimethacrylate (EGDMA), and 2,2'azobisisobutyronitrile (AIBN) as the functional monomer, cross-linker, and the radical initiator, respectively. The synthesized polymer nanoparticles were characterized by using infrared spectroscopy (IR), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopic (SEM) techniques. Some parameters such as pH, weight of the polymer, adsorption time, elution time, eluent type, and eluent volume which affect the extraction efficiency of the polymer were studied. In the proposed method, the maximum sorbent capacity of the ion-imprinted polymer was calculated to be 38.8 mg g(-1). The preconcentration factor, relative standard deviation, and limit of detection of the method were found to be 80, 1.7%, and 0.003 μg mL(-1), respectively. The prepared ion-imprinted polymer nanoparticles have an increased selectivity toward Cu(II) ions over a range of competing metal ions with the same charge and similar ionic radius. The method was applied to the determination of ultra trace levels of Cu2+ in environmental water samples with satisfactory results.
NASA Astrophysics Data System (ADS)
Kohyama, Tetsu; Kaneko, Fumiya; Ly, Saksatha; Hamzik, James; Jaber, Jad; Yamada, Yoshiaki
2017-03-01
Weak-polar solvents like PGMEA (Propylene Glycol Monomethyl Ether Acetate) or CHN (Cyclohexanone) are used to dissolve hydrophobic photo-resist polymers, which are challenging for traditional cleaning methods such as distillation, ion-exchange resins service or water-washing processes. This paper investigated two novel surface modifications to see their effectiveness at metal removal and to understand the mechanism. The experiments yielded effective purification methods for metal reduction, focusing on solvent polarities based on HSP (Hansen Solubility Parameters), and developing optimal purification strategies.
Formation of conductive polymers using nitrosyl ion as an oxidizing agent
Choi, Kyoung-Shin; Jung, Yongju; Singh, Nikhilendra
2016-06-07
A method of forming a conductive polymer deposit on a substrate is disclosed. The method may include the steps of preparing a composition comprising monomers of the conductive polymer and a nitrosyl precursor, contacting the substrate with the composition so as to allow formation of nitrosyl ion on the exterior surface of the substrate, and allowing the monomer to polymerize into the conductive polymer, wherein the polymerization is initiated by the nitrosyl ion and the conductive polymer is deposited on the exterior surface of the substrate. The conductive polymer may be polypyrrole.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clearfield, Abraham
2014-11-01
In this part of the proposal we have concentrated on the surface functionalization of α-zirconium phosphate of composition Zr(O3POH)2•H2O. It is a layered compound that can be prepared as particles as small as 30 nm to single crystals in the range of cm. This compound is an ion exchanger with a capacity of 6.64 meq per gram. It finds use as a catalyst, proton conductor, sensors, biosensors, in kidney dialysis and drug delivery. By functionalizing the surface additional uses are contemplated as will be described. The layers consist of the metal, with 4+ charge, that is positioned slightly above andmore » below the mean layer plane and bridged by three of the four phosphate oxygens. The remaining POH groups point into the interlayer space creating double rows of POH groups but single arrays on the surface layers. The surface groups are reactive and we were able to bond silanes, isocyanates, epoxides, acrylates ` and phosphates to the surface POH groups. The layers are easily exfoliated or filled with ions by ion exchange or molecules by intercalation reactions. Highlights of our work include, in addition to direct functionalization of the surfaces, replacement of the protons on the surface with ions of different charge. This allows us to bond phosphates, biophosphates, phosphonic acids and alcohols to the surface. By variation of the ion charge of the ions that replace the surface protons, different surface structures are obtained. We have already shown that polymer fillers, catalysts and Janus particles may be prepared. The combination of surface functionalization with the ability to insert molecules and ions between the layers allow for a rich development of numerous useful other applications as well as nano-surface chemistry.« less
NASA Astrophysics Data System (ADS)
Nikolaev, A. G.; Yushkov, G. Yu.; Oks, E. M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E. S.; Brown, I. G.
2014-08-01
Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal-gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the "inverse" concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.
Lithium-Ion Battery Program Status
NASA Technical Reports Server (NTRS)
Surampudi, S.; Huang, C. K.; Smart, M.; Davies, E.; Perrone, D.; Distefano, S.; Halpert, G.
1996-01-01
The objective of this program is to develop rechargeable Li-ion cells for future NASA missions. Applications that would benefit from this project are: new millenium spacecraft; rovers; landers; astronaut equipment; and planetary orbiters. The approach of this program is: select electrode materials and electrolytes; identify failure modes and mechanisms and enhance cycle life; demonstrate Li-ion cell technology with liquid electrolyte; select candidate polymer electrolytes for Li-ion polymer cells; and develop Li-ion polymer cell technology.
Mechanisms Underlying Ionic Mobilities in Nanocomposite Polymer Electrolytes
NASA Astrophysics Data System (ADS)
Ganesan, Venkat; Hanson, Benjamin; Pryamitsyn, Victor
2014-03-01
Recently, a number of experiments have demonstrated that addition of ceramics with nanoscale dimensions can lead to substantial improvements in the low temperature conductivity of the polymeric materials. However, the origin of such behaviors, and more generally, the manner by which nanoscale fillers impact the ion mobilities remain unresolved. In this communication, we report the results of atomistic molecular dynamics simulations which used multibody polarizable force-fields to study lithium ion diffusivities in an amorphous poly(ethylene-oxide) (PEO) melt containing well-dispersed TiO2 nanoparticles. We observed that the lithium ion diffusivities decrease with increased particle loading. Our analysis suggests that the ion mobilities are correlated to the nanoparticle-induced changes in the polymer segmental dynamics. Interestingly, the changes in polymer segmental dynamics were seen to be related to the nanoparticle's influence on the polymer conformational features. Overall, our results indicate that addition of nanoparticle fillers modify polymer conformations and the polymer segmental dynamics, and thereby influence the ion mobilities of polymer electrolytes.
Ion conducting polymers and polymer blends for alkali metal ion batteries
DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra
2017-08-29
Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.
Aggregate-mediated charge transport in ionomeric electrolytes
NASA Astrophysics Data System (ADS)
Lu, Keran; Maranas, Janna; Milner, Scott
Polymers such PEO can conduct ions, and have been studied as possible replacements for organic liquid electrolytes in rechargeable metal-ion batteries. More generally, fast room-temperature ionic conduction has been reported for a variety of materials, from liquids to crystalline solids. Unfortunately, polymer electrolytes generally have limited conductivity; these polymers are too viscous to have fast ion diffusion like liquids, and too unstructured to promote cooperative transport like crystalline solids. Ionomers are polymer electrolytes in which ionic groups are covalently bound to the polymer backbone, neutralized by free counterions. These materials also conduct ions, and can exhibit strong ionic aggregation. Using coarse-grained molecular dynamics, we explore the forces driving ionic aggregation, and describe the role ion aggregates have in mediating charge transport. The aggregates are string-like such that ions typically have two neighbors. We find ion aggregates self-assemble like worm-like micelles. Excess charge, or free ions, occasionally coordinate with aggregates and are transported along the chain in a Grotthuss-like mechanism. We propose that controlling ionomer aggregate structure through materials design can enhance cooperative ion transport.
Polymers for Traveling Wave Ion Mobility Spectrometry Calibration
NASA Astrophysics Data System (ADS)
Duez, Quentin; Chirot, Fabien; Liénard, Romain; Josse, Thomas; Choi, ChangMin; Coulembier, Olivier; Dugourd, Philippe; Cornil, Jérôme; Gerbaux, Pascal; De Winter, Julien
2017-07-01
One of the main issues when using traveling wave ion mobility spectrometry (TWIMS) for the determination of collisional cross-section (CCS) concerns the need for a robust calibration procedure built from referent ions of known CCS. Here, we implement synthetic polymer ions as CCS calibrants in positive ion mode. Based on their intrinsic polydispersities, polymers offer in a single sample the opportunity to generate, upon electrospray ionization, numerous ions covering a broad mass range and a large CCS window for different charge states at a time. In addition, the key advantage of polymer ions as CCS calibrants lies in the robustness of their gas-phase structure with respect to the instrumental conditions, making them less prone to collisional-induced unfolding (CIU) than protein ions. In this paper, we present a CCS calibration procedure using sodium cationized polylactide and polyethylene glycol, PLA and PEG, as calibrants with reference CCS determined on a home-made drift tube. Our calibration procedure is further validated by testing the polymer calibration to determine CCS of numerous different ions for which CCS are reported in the literature. [Figure not available: see fulltext.
Structurally colored biopolymer thin films for detection of dissolved metal ions in aqueous solution
NASA Astrophysics Data System (ADS)
Cathell, Matthew David
Natural polymers, such as the polysaccharides alginate and chitosan, are noted sorbents of heavy metals. Their polymer backbone structures are rich in ligands that can interact with metal ions through chelation, electrostatics, ion exchange and nonspecific mechanisms. These water-soluble biopolymer materials can be processed into hydrogel thin films, creating high surface area interfaces ideal for binding and sequestering metal ions from solution. By virtue of their uniform nanoscale dimensions (with thicknesses smaller than wavelengths of visible light) polymer thin films exhibit structure-based coloration. This phenomenon, frequently observed in nature, causes the transparent and essentially colorless films to reflect light in a wide array of colors. The lamellar film structures act as one-dimensional photonic crystals, allowing selective reflection of certain wavelengths of light while minimizing other wavelengths by out-of-phase interference. The combination of metal-binding and reflective properties make alginate and chitosan thin films attractive candidates for analyte sensing. Interactions with metal ions can induce changes in film thicknesses and refractive indices, thus altering the path of light reflected through the film. Small changes in dimensional or optical properties can lead to shifts in film color that are perceivable by the unaided eye. These thin films offer the potential for optical sensing of toxic dissolved materials without the need for instrumentation, external power or scientific expertise. With the use of a spectroscopic ellipsometer and a fiber optic reflectance spectrometer, the physical and optical characteristics of biopolymer thin films have been characterized in response to 50 ppm metal ion solutions. It has been determined that metal interactions can lead to measurable changes in both film thicknesses and effective refractive indices. The intrinsic response behaviors of alginate and chitosan, as well as the responses of modified derivatives of these materials, have been investigated. It has been found that the natural metal selectivity of biopolymer films can be tuned and refined by adjusting the ligand environment through backbone modification. Other investigations have also been undertaken, including in situ monitoring of biopolymer---metal interactions and quantification of thin film metal-binding capacities.
NASA Astrophysics Data System (ADS)
Hossain, U. H.; Ensinger, W.
2015-12-01
Devices operating in space, e.g. in satellites, are being hit by cosmic rays. These include so-called HZE-ions, with High mass (Z) and energy (E). These highly energetic heavy ions penetrate deeply into the materials and deposit a large amount of energy, typically several keV per nm range. Serious damage is created. In space vehicles, polymers are used which are degraded under ion bombardment. HZE ion irradiation can experimentally be simulated in large scale accelerators. In the present study, the radiation damage of aliphatic vinyl- and fluoro-polymers by heavy ions with energies in the GeV range is described. The ions cause bond scission and create volatile small molecular species, leading to considerable mass loss of the polymers. Since hydrogen, oxygen and fluorine-containing molecules are created and these elements are depleted, the remaining material is carbon-richer than the original polymers and contains conjugated CC double bonds. This process is investigated by measuring the optical band gap with UV-Vis absorption spectrometry as a function of ion fluence. The results show how the optical band gaps shift from the UV into the Vis region upon ion irradiation for the different polymers.
Monitoring and modulating ion traffic in hybrid lipid/polymer vesicles
Paxton, Walter F.; McAninch, Patrick T.; Achyuthan, Komandoor E.; ...
2017-08-01
Controlling the traffic of molecules and ions across membranes is a critical feature in a number of biologically relevant processes and highly desirable for the development of technologies based on membrane materials. In this study, ion transport behavior of hybrid lipid/polymer membranes was studied in the absence and presence of ion transfer agents. A pH-sensitive fluorophore was used to investigate ion (H +/OH -) permeability across hybrid lipid/polymer membranes as a function of the fraction of amphiphilic block copolymer. It was observed that vesicles with intermediate lipid/polymer ratios tend to be surprisingly more permeable to ion transport than the puremore » lipid or pure polymer vesicles. Hybrid vesicle permeability could be further modulated with valinomycin, nigericin, or gramicidin A, which significantly expedite the dissipation of externally-imposed pH gradients by facilitating the transport of the rate-limiting co-ions (e.g. K +) ions across the membrane. For gramicidin A, ion permeability decreased with increasing polymer mole fraction, and the method of introduction of gramicidin A into the membrane played an important role. Finally, strategies to incorporate biofunctional molecules and facilitate their activity in synthetic systems are highly desirable for developing artificial organelles or other synthetic compartmentalized structures requiring control over molecular traffic across biomimetic membranes.« less
Preparation of microspheric Fe(III)-ion imprinted polymer for selective solid phase extraction
NASA Astrophysics Data System (ADS)
Ara, Behisht; Muhammad, Mian; Salman, Muhammad; Ahmad, Raees; Islam, Noor; Zia, Tanveer ul Haq
2018-03-01
In this research work, an Fe(III)-IIP was prepared using methacrylic acid as monomer, divinylbenzene as cross-linker, azobisisobutyronitrile as initiator. The ion imprinted polymer was functionalized with Fe(III)8-hydroxy quinolone complex under thermal conditions by copolymerization with the monomer and the cross-linker. The prepared Fe(III)-ion imprinted polymer (IIP) and non-ion imprinted polymer (Non-IIP) were characterized with fourier transform-infrared spectroscopy, scanning electron microscopic analysis and thermal gravimetric analysis. The polymer showed a good stability to thermal analysis up to a temperature of 500 °C. The size of the polymer obtained was 1 µm, large enough to be filtered easily. At pH 2.5 more affinity was observed with ion imprinted polymer in comparison to non-ion imprinted polymer. For the kinetic study, the most linear and rhythmical relation were seen in pseudo second order. The maximum sorption capacity of Fe(III) ions on Fe(III)-IIP and non-IIP was 170 and 30.0 µmolg-1, respectively. The relative selectivity factor (αr) values of Fe(III)/Fe(II), Fe(III)/Al(III) and Fe(III)/Cr(III) were 151.0, 84.6 and 91.9, respectively. The preconcentration factor was found to be 240. The developed method was successfully applied to the determination of trace Fe in the drinking water.
Liquid membrane coated ion-exchange column solids
Barkey, Dale P.
1988-01-01
This invention relates to a method for improving the performance of liquid membrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selective for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.
Liquid membrane coated ion-exchange column solids
Barkey, Dale P.
1989-01-01
This invention relates to a method for improving the performance of liquid embrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selected for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.
Pöller, Sascha; Beyl, Yvonne; Vivekananthan, Jeevanthi; Guschin, Dmitrii A; Schuhmann, Wolfgang
2012-10-01
A new synthesis route for Os-complex modified redox polymers was developed. Instead of ligand exchange reactions for coordinative binding of suitable precursor Os-complexes at the polymer, Os-complexes already exhibiting the final ligand shell containing a suitable functional group were bound to the polymer via an epoxide opening reaction. By separation of the polymer synthesis from the ligand exchange reaction at the Os-complex, the modification of the same polymer backbone with different Os-complexes or the binding of the same Os-complex to a number of different polymer backbones becomes feasible. In addition, the Os-complex can be purified and characterized prior to its binding to the polymer. In order to further understand and optimize suitable enzyme/redox polymer systems concerning their potential application in biosensors or biofuel cells, a series of redox polymers was synthesized and used as immobilization matrix for Trametes hirsuta laccase. The properties of the obtained biofuel cell cathodes were compared with similar biocatalytic interfaces derived from redox polymers obtained via ligand exchange reaction of the parent Os-complex with a ligand integrated into the polymer backbone during the polymer synthesis. Copyright © 2011 Elsevier B.V. All rights reserved.
Bioinspired Nanocellulose Based Hybrid Materials With Novel Interfacial Properties
NASA Astrophysics Data System (ADS)
Keten, Sinan
This talk will overview a simulation-based approach to enhancing the mechanical properties of nanocomposites by utilizing cellulose - the most abundant and renewable structural biopolymer found on our planet. Cellulose nanocrystals (CNCs) exhibit outstanding mechanical properties exceeding that of Kevlar, serving as reinforcing domains in nature's toughest hierarchical nanocomposites such as wood. Yet, weak interfaces at the surfaces of CNCs have so far made it impossible to scale these inherent properties to macroscopic systems. In this work, I will discuss how surface functionalization of CNCs influences their properties in their self-assembled films and nanocomposites with engineered polymer matrices . Specifically, the role of ion exchange based surface modifications and polymer conjugation will be discussed, where atomistic and coarse-grained simulations will reveal new insights into how superior mechanical properties can potentially be attained by hybrid constructs.
Polymer Electrolyte Through Enzyme Catalysis for High Performance Lithium-Ion Batteries
1998-10-16
by block number) FIELD GROUP SUB-GROUP Polymer Electrolyte, Solid State, Enzyme Catalysis, Lithium - Ion Battery , Sol Gel, High Conductivity 19...excellent candidates for lithium - ion battery development. Furthermore, the processes used to achieve the final product yield very good mechanical properties...Objectives This research was initiated to investigate synthesis of improved polymer electrolytes for lithium - ion battery applications. The overall
Effects of ion irradiation on the mechanical properties of several polymers
NASA Astrophysics Data System (ADS)
Sasuga, Tsuneo; Kawanishi, Shunichi; Nishii, Masanobu; Seguchi, Tadao; Kohno, Isao
The effects of high-energy ion irradiation (8 MeV protons, 30 MeV He 2+, 80 MeV C 4+, and N 4+) on the tensile properties of polymers were studied under conditions in which ions should pass completely through the specimen and the results were compared with 2 MeV electron irradiation effects. Experiments were carried out on polymers having various constituents and molecular structures, i.e. eight aliphatic polymers and four aromatic polymers. In the aliphatic polymers studied (PE, PP, PVdF, ETFE, EVA, nylon-6, EPDM, and PE-TPE), there was scarcely any difference in the dose dependence of the tensile strength and ultimate elongation between proton and electron irradiation. In aromatic polymers (PET, PES, U-PS, and U-polymer), however, the decrements in the tensile strength and ultimate elongation vs proton dose were less than those for electron irradiation. In heavy-ion irradiation, the radiation damage of PE (an aliphatic polymer) decreased with increase of LET, but no obvious LET effects were observed in PES (an aromatic polymer).
Fish, Richard H.
1998-01-01
The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe.sup.3+ ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu.sup.2+, Zn.sup.2+, Mn.sup.2+, Ni.sup.2+, Mg.sup.2+, Al.sup.3+, and Cr.sup.3+ ions at pH 1-3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe.sup.3+ (for example, Hg.sup.2+ at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe.sup.3+ Al.sup.3+ ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads used determined are useful as well as equilibrium selectivity coefficient (K.sub.m) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe.sup.3+ ion in comparison to the PS-CATS polymer beads. The predisposed square planar PS-2,6-LICAMS series of polymer pendant ligands are more selective to divalent metal ions Cu.sup.2+, Zn.sup.2+, Mn.sup.2+, Ni.sup.2+, and Mg.sup.2+, than either PS-CATS or PS-3,3-LICAMS. However, Fe.sup.3+ ion still dominates in competition with other divalent and trivalent metal ions. In the absence of Fe.sup.3+, the polymer ligand is selective for Al.sup.3+, Cu.sup.2+ or Hg.sup.2+. The changing of the cavity size from two CH.sub.2 groups to six CH.sub.2 groups in the PS-2-6-LICAMS polymer pendant ligand series does not effect the order of metal ion selectivity.
Fish, R.H.
1998-11-10
The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe{sup 3+} ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, Mg{sup 2+}, Al{sup 3+}, and Cr{sup 3+} ions at pH 1--3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe{sup 3+} (for example, Hg{sup 2+} at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe{sup 3+}, Al{sup 3+} ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads used determined are useful as well as equilibrium selectivity coefficient (K{sub m}) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe{sup 3+} ion in comparison to the PS-CATS polymer beads. The predisposed square planar PS-2,6-LICAMS series of polymer pendant ligands are more selective to divalent metal ions Cu{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, and Mg{sup 2+}, than either PS-CATS or PS-3,3-LICAMS. However, Fe{sup 3+} ion still dominates in competition with other divalent and trivalent metal ions. In the absence of Fe{sup 3+}, the polymer ligand is selective for Al{sup 3+}, Cu{sup 2+} or Hg{sup 2+}. The changing of the cavity size from two CH{sub 2} groups to six CH{sub 2} groups in the PS-2-6-LICAMS polymer pendant ligand series does not effect the order of metal ion selectivity. 9 figs.
Optomechanical characterization of proton-exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Jalani, Nikhil H.; Mizar, Shivananda P.; Choi, Pyoungho; Furlong, Cosme; Datta, Ravindra
2004-08-01
Nafion is widely used as the polymer electrolyte in proton exchange membrane (PEM) fuel cells. The properties that make the Nafion membrane indispensable are the combination of good water uptake, ion-exchange capacity, proton conductivity, gas permeability, and excellent electrochemical stability. The amount of water sorbed in the Nafion membrane is critical as the proton conductivity depends directly on the water content of the membrane which determines the fuel cell performance. The factors which affect the extent of the solvent uptake by Nafion are temperature, ion-exchange capacity, pretreatment of membrane, and the physical state of absorbing water, whether it is in liquid or vapor phase. The water sorption in the membrane is explained in terms of thermodynamic equilibrium of water in the vapor and absorption phases. As the membrane imbibes more water, the membrane matrix expands and exerts a pressure on the pore liquid which affects its chemical potential and limits extent of swelling. The extent of matrix expansion of the membranes depends on the elastic modulus, E, of the membrane, which directly affects the sorption. Hence, it is important to understand the variation of E for Nafion membrane with relative humidity (RH) and temperature. Optoelectronic holography (OEH) techniques are applied to perform quantitative, noninvasive, full field of view investigations to determine temperature and water activity dependence of E. The results obtained confirm that with the increase in temperature, E decreases and the membranes imbibes more water. Such results will allow optimization and realization of fuel cells with improved efficiency and performance.
High Thermal Conductivity Polymer Composites for Low Cost Heat Exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2017-08-01
This factsheet describes a project that identified and evaluated commercially available and state-of-the-art polymer-based material options for manufacturing industrial and commercial non-metallic heat exchangers. A heat exchanger concept was also developed and its performance evaluated with heat transfer modeling tools.
Production of sodium-22 from proton irradiated aluminum
Taylor, Wayne A.; Heaton, Richard C.; Jamriska, David J.
1996-01-01
A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.
NASA Astrophysics Data System (ADS)
Sherazi, Tauqir A.; Rehman, Tayyiba; Naqvi, Syed Ali Raza; Shaikh, Ahson Jabbar; Shahzad, Sohail Anjum; Abbas, Ghazanfar; Raza, Rizwan; Waseem, Amir
2015-12-01
The surface of ultra-high molecular weight polyethylene (UHMWPE) powder was functionalized with styrene using chemical grafting technique. The grafting process was initiated through radical generation on base polymer matrix in the solid state by sodium thiosulfate, while peroxides formed at radical sites during this process were dissociated by ceric ammonium nitrate. Various factors were optimized and reasonably high level of monomer grafting was achieved, i.e., 15.6%. The effect of different acids as additive and divinyl benzene (DVB) as a cross-linking agent was also studied. Post-grafting sulfonation was conducted to introduce the ionic moieties to the grafted polymer. Ion-exchange capacity (IEC) was measured experimentally and is found to be 1.04 meq g-1, which is in close agreement with the theoretical IEC values. The chemical structure of grafted and functionalized polymer was characterized by attenuated total reflection infrared spectroscopy (ATR-FTIR) and thermal properties were investigated by thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Thermal analysis depicts that the presence of radicals on the polymer chain accelerates the thermal decomposition process. The results signify that the chemical grafting is an effective tool for substantial surface modification and subsequent functionalization of polyethylene.
Abu Sayeed, M D; Talukdar, Krishan; Kim, Hee Jin; Park, Younjin; Gopalan, A I; Kim, Young Ho; Lee, Kwang-Pill; Choi, Sang-June
2014-12-01
Multi-walled carbon nanotubes (MWCNTs) are regarded as ideal fillers for Nafion polymer electrolyte membranes (PEMs) for fuel cell applications. The highly aggregated properties of MWCNTs can be overcome by the successful cross-linking with polyvinyl alcohol (PVA) into the MWCNTs/Nafion membrane. In this study, a series of nanocomposite membranes were fabricated with the PVA-influenced functionalized MWCNTs reinforced into the Nafion polymer matrix by a solution casting method. Several different PVA contents were blended to f-MWCNTs/Nafion nanocomposite membranes followed by successful cross-linking by annealing. The surface morphologies and the inner structures of the resulting PVA-MWCNTs/Nafion nanocomposite membranes were then observed by optical microscopy and scanning electron microscopy (SEM) to investigate the dispersion of MWCNTs into the PVA/Nafion composite membranes. After that, the nanocomposite membranes were characterized by thermo-gravimetric analysis (TGA) to observe the thermal enhancement caused by effective cross-linking between the f-MWCNTs with the composite polymer matrixes. Improved water uptake with reduced methanol uptake revealed the successful fabrication of PVA-blended f-MWCNTs/Nafion membranes. In addition, the ion exchange capacity (IEC) was evaluated for PEM fuel cell (PEMFC) applications.
Ion Transport via Structural Relaxations in Polymerized Ionic Liquids
NASA Astrophysics Data System (ADS)
Ganesan, Venkat; Mogurampelly, Santosh
We study the mechanisms underlying ion transport in poly(1-butyl-3-vinylimidazolium-hexafluorophosphate) polymer electrolytes. We consider polymer electrolytes of varying polymerized ionic liquid to ionic liquid (polyIL:IL) ratios and use atomistic molecular dynamics (MD) simulations to probe the dynamical and structural characteristics of the electrolyte. Our results reveal that anion diffusion along polymer backbone occurs primarily viathe formation and breaking of ion-pairs involving threepolymerized cationic monomers of twodifferent polymer chains. Moreover, we observe that the ionic diffusivities exhibit a direct correlation with the structural relaxation times of the ion-pairs and hydrogen bonds (H-bonds). These results provide new insights into the mechanisms underlying ion transport in polymerized ionic liquid electrolytes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, D.K.; Yadav, K.K.; Varshney, L.
The present study deals with the preparation and evaluation of the poly-ethersulfone (PES) based composite beads encapsulating synergistic mixture of D2EHPA and Cyanex 923 (at 4:1 mole ratio) for the separation of uranium from phosphoric acid medium. SEM was used for the characterization of the composite materials. Addition of 1% PVA (polyvinyl alcohol) improved the internal morphology and porosity of the beads. Additionally, microscopic examination of the composite bead confirmed central coconut type cavity surrounded by porous polymer layer of the beads through which exchange of metal ions take place. Effect of various experimental variables including aqueous acidity, metal ionmore » concentration in aqueous feed, concentration of organic extractant inside the beads, extractant to polymer ratio, liquid to solid (L/S) ratio and temperature on the extraction of uranium was studied. Increase in acidity (1-6 M), L/S ratio (1- 10), metal ion concentration (0.2-3 g/L U{sub 3}O{sub 8}) and polymer to extractant ratio (1:4 -1:10) led to decrease in extraction of uranium. At 5.5 M (comparable to wet process phosphoric acid concentration) the extraction of uranium was about 85% at L/S ratio 5. Increase in extractant concentration inside the bead resulted in enhanced extraction of metal ion. Increase in temperature in the range of 30 to 50 Celsius degrees increased the extraction, whereas further increase to 70 C degrees led to the decrease in extraction of uranium. Amongst various reagents tested, stripping of uranium was quantitative by 12% Na{sub 2}CO{sub 3} solution. Polymeric beads were found to be stable and reusable up-to 10 cycles of extraction/stripping. (authors)« less
Local Structure and Ion Transport in Glassy Poly(ethylene oxide styrene) Copolymers
NASA Astrophysics Data System (ADS)
Yang, Han-Chang; Mays, Jimmy; Sokolov, Alexei P.; Winey, Karen I.
2014-03-01
Polymer electrolytes have attracted attention for a wide variety of applications in energy production such as lithium-ion batteries and fuel cells. The concept of free volume provides important information about ion mobility and chain dynamics in the polymer matrix. Researchers have recently demonstrated that ion transport in glassy polymer can be improved by designing a system with high free volume. We have studied the effect of temperature and humidity on the intermolecular correlations of poly(ethylene oxide styrene-block-styrene) (PEOSt- b-St) block copolymer and poly(ethylene oxide styrene) (PEOSt) homopolymer using in situ multi-angle x-ray scattering across a wide range of scattering angles (q = 0.007-1.5 Å-1) . An increase in backbone-to-backbone distance is observed, indicating an increase in free volume between different polymer main chains. Structural characterization of the polymer segments will be discussed together with conductivity and dielectric results to better understand the ion transport mechanism in the local environment of the polymer system. Department of Chemistry, University of Tennessee.
Composite membranes, methods of making same, and applications of same
Pintauro, Peter N.; Park, Andrew; Ballengee, Jason
2016-05-24
In one aspect of the present invention, a method of fabricating a composite membrane includes: forming a first polymer solution from a first polymer and a second polymer solution from a second polymer, respectively, where the first polymer includes a charged polymer and the second polymer includes an uncharged polymer; electrospinning, separately and simultaneously, the first and second polymer solutions to form a dual fiber mat with first polymer fibers and second polymer fibers; and processing the dual fiber mat by softening and flowing one of the first or second polymer fibers to fill in the void space between the other of the first and second polymer fibers so as to form the composite membrane. In some embodiments, the composite membrane may be a proton exchange membrane (PEM) or an anion exchange membrane (AEM).
Performance Loss of Lithium Ion Polymer Batteries Subjected to Overcharge and Overdischarge Abuse
2012-11-16
hexafluorophosphate EC: ethylene carbonate DEC: diethyl carbonate DMC: dimethyl carbonate PC: propylene carbonate 2 2. Introduction Lithium -ion...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6110--12-9455 Performance Loss of Lithium Ion Polymer Batteries Subjected to Overcharge...ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Performance Loss of Lithium Ion Polymer Batteries Subjected to Overcharge and
Ion exchange of Group I metals by hydrous crystalline silicotitanates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Z.; Philip, C.V.; Anthony, R.G.
1996-11-01
A new hydrous crystalline silicotitanate, labeled TAM-5 or CST, was developed for removing radioactive Cs{sup +} from aqueous nuclear waste. This material is stable to radiation, highly selective for cesium relative to sodium, potassium, rubidium, and protons, and performs well in acidic, neutral, and basic solutions. Various experiments were conducted to determine the ion exchange properties of TAM-5. Two kinds of ion exchange sites exist in the solid, and cation exchange in one site affects the ion exchange properties of the other site. These two types of sites have different thermal effects: with increasing temperature the pH of one increasesmore » and the pH of the other one decreases. The total ion exchange capacity is 4.6 mequiv/g, but the cesium ion exchange capacity was less, which shows that not all of the ion exchange sites are available for cesium exchange. Step changes were observed in the ion exchange isotherms. The solid phase behaved ideally prior to the step changes. The apparent capacities within the ideal solid region were 0.57 mequiv/g for Cs{sup +}, 1.18 mequiv/g for Rb{sup +}, and 1.2 mequiv/g for K{sup +}. Both direct competition by rubidium and protons and indirect competition by protons and potassium were observed. The rational selectivities, which were measured from binary ion exchange data, can be used in different solutions including the multicomponent ion exchange systems, because they are constant for an ideal solid. Binary ion exchange isotherms were also developed using the rational selectivity as the parameter for the isotherms of cesium, rubidinium, and potassium.« less
Rangreez, Tauseef Ahmad; Alhogbi, Basma G.; Naushad, Mu.
2017-01-01
In this study, graphene Th(IV) phosphate was prepared by sol–gel precipitation method. The ion-exchange behavior of this cation-exchanger was studied by investigating properties like ion-exchange capacity for various metal ions, the effect of eluent concentration, elution behavior, and thermal effect on ion-exchange capacity (IEC). Several physicochemical properties as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) study, thermal studies, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies were also carried out. The material possessed an IEC of 1.56 meq·dry·g−1 of the exchanger and was found to be nano-composite. The selectivity studies showed that the material is selective towards Pb(II) ions. The selectivity of this cation-exchanger was demonstrated in the binary separation of Pb(II) ions from mixture with other metal ions. The recovery was found to be both quantitative and reproducible. PMID:28737717
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pezeshki, Alan M.; Fujimoto, Cy; Sun, Che -Nan
In this paper, we report on the performance of Diels Alder poly(phenylene) membranes in vanadium redox flow batteries. The membranes were functionalized with quaternary ammonium groups to form an anion exchange membrane (QDAPP) and with sulfonic acid groups to form a cation exchange membrane (SDAPP). Both membrane classes showed similar conductivities in the battery environment, suggesting that the ion conduction mechanism in the material is not strongly affected by the moieties along the polymer backbone. The resistance to vanadium permeation in QDAPP was not improved relative to SDAPP, further suggesting that the polarity of the functional groups do not playmore » a significant role in the membrane materials tested. Both QDAPP and SDAPP outperformed Nafion membranes in cycling tests, with both achieving voltage efficiencies above 85% while maintaining 95% coulombic efficiency while at a current density of 200 mA/cm 2.« less
Coloring a Superabsorbent Polymer with Metal Ions: An Undergraduate Chemistry Experiment
ERIC Educational Resources Information Center
Yaung, Jing-Fun; Chen, Yueh-Huey
2009-01-01
A novel undergraduate chemistry experiment involving superabsorbent polymers commonly used in diapers and other personal care products is described. Students observe the removal of divalent transition-metal ions from aqueous solutions by the polymers. With the procedures provided, students are able to color the superabsorbent polymers with metal…
Structure/property relationships in polymer membranes for water purification and energy applications
NASA Astrophysics Data System (ADS)
Geise, Geoffrey
Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.
NASA Astrophysics Data System (ADS)
Lima, V.; Hossain, U. H.; Walbert, T.; Seidl, T.; Ensinger, W.
2018-03-01
The study of polymers irradiated by highly energetic ions and the resulting radiation-induced degradation is of major importance for space and particle accelerator applications. The mechanism of ion-induced molecular fragmentation of polyethylene, polyethyleneimine and polyamide was investigated by means of mass spectrometry and infrared spectroscopy. The results show that the introduction of nitrogen and oxygen into the polymer influences the stability rendering aliphatic polymers with heteroatoms less stable. A comparison to thermal decomposition data from literature reveals that ion-induced degradation is different in its bond fracture mechanism. While thermal degradation starts at the weakest bond, which is usually the carbon-heteroatom bond, energetic ion irradiation leads in the first step to scission of all types of bonds creating smaller molecular fragments. This is due to the localized extreme energy input under non-equilibrium conditions when the ions transfer kinetic energy onto electrons. These findings are of relevance for the choice of polymers for long-term application in both space and accelerator facilities.
Fixation of radioactive ions in porous media with ion exchange gels
Mercer, Jr., Basil W.; Godfrey, Wesley L.
1979-01-01
A method is provided for fixing radioactive ions in porous media by injecting into the porous media water-soluble organic monomers which are polymerizable to gel structures with ion exchange sites and polymerizing the monomers to form ion exchange gels. The ions and the particles of the porous media are thereby physically fixed in place by the gel structure and, in addition, the ions are chemically fixed by the ion exchange properties of the resulting gel.
Controlling ion aggregation and conduction in PEO-based ionomers.
NASA Astrophysics Data System (ADS)
Caldwell, David, II; Maranas, Janna
2015-03-01
PEO-based ionomers are ideal for reducing concentration polarization found in typical solid polymer electrolytes. This is achieved by binding the anion to the polymer backbone, significantly reducing the anions mobility. Ion aggregation is prevalent in these systems, but their influence on SPE performance is difficult to study experimentally. We present results of molecular dynamics simulations that explore the relationship between ion content and temperature on ion aggregation, polymer motion, and ion conduction. An unforeseen result of ionomers is the creation of string like aggregates that form conduction pathways in the amorphous region. These conduction pathways allow for a partial decoupling of ion conduction with polymer dynamics. The improvement in conductivity through the use of ion aggregates can be quantified by calculating the inverse of the Haven Ratio, dubbed f-value. Typical SPEs have an f-value less than 0.2, while the ionomers of study exhibit f-values near unity or higher. Understanding what properties influence the development and use of these conduction pathways will provide insight for further development of solid polymer electrolytes.
Roushani, Mahmoud; Abbasi, Shahryar; Khani, Hossein; Sahraei, Reza
2015-04-15
A new Zinc (II) ion-imprinted polymer (IIPs) nanoparticles was synthesised for the separation and recovery of trace Zn (II) ion from food and water sample. Zn (II) IIP was prepared by copolymerisation of methyl methacrylate (monomer) and ethylene glycol dimethacrylate (cross-linker) in the presence of Zn (II)-N,N'-o-phenylene bis (salicylideneimine) ternary complex wherein Zn (II) ion is the imprint ion and is used to form the imprinted polymer. Moreover, control polymer (NIP) particles were similarly prepared without the zinc (II) ions. The unleached and leached IIP particles were characterised by X-ray diffraction, Fourier transform infra-red spectroscopy and scanning electron microscopy. The preconcentration of Zn(2+) from aqueous solution was studied during rebinding with the leached IIP particles as a function of pH, the weight of the polymer material, the uptake and desorption times, the aqueous phase and the desorption volumes. Flame atomic absorption spectrometry was employed for determination of zinc in aqueous solution. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Soles, Christopher; Peng, Hua-Gen; Page, Kirt; Snyder, Chad; Pandy, Ashoutosh; Jeong, Youmi; Runt, James; NIST Collaboration; Pennsylvania Collaboration
2011-03-01
The application of solid polymer electrolytes in rechargeable batteries has not been fully realized after decades of research due to its low conductivity. Dramatic increases of the ion conductivity are needed and this progress requires the understanding of conduction mechanism. We address this topic in two fronts, namely, the effect of plasticizer additives and geometric confinement on the charge transfer mechanism. To this end, we combine broadband dielectric spectroscopy (BDS) to characterize the ion mobility and quasi-elastic neutron scattering (QENS) to quantify segmental motion on a single-ion model polymer electrolyte. Deuterated small molecules were used as plasticizers so that the segmental motion of the polymer electrolyte could be monitored by QENS to understand the mechanism behind the increased conductivity. Anodic aluminum oxide (AAO) membranes with well defined channel sizes are used as the matrix to study the transport of ions solvated in a 1D polymer electrolyte.
Oxidation of cyclohexane catalyzed by metal-ion-exchanged zeolites.
Sökmen, Ilkay; Sevin, Fatma
2003-08-01
The ion-exchange rates and capacities of the zeolite NaY for the Cu(II), Co(II), and Pb(II) metal ions were investigated. Ion-exchange equilibria were achieved in approximately 72 h for all the metal ions. The maximum ion exchange of metal ions into the zeolite was found to be 120 mg Pb(II), 110 mg Cu(II), and 100 mg Co(II) per gram of zeolite NaY. It is observed that the exchange capacity of a zeolite varies with the exchanged metal ion and the amount of metal ions exchanged into zeolite decreases in the sequence Pb(II) > Cu(II) > Co(II). Application of the metal-ion-exchanged zeolites in oxidation of cyclohexane in liquid phase with visible light was examined and it is observed that the order of reactivity of the zeolites for the conversion of cyclohexane to cyclohexanone and cyclohexanol is CuY > CoY > PbY. It is found that conversion increases by increase of the empty active sites of a zeolite and the formation of cyclohexanol is favored initially, but the cyclohexanol is subsequently converted to cyclohexanone.
Production of an ion-exchange membrane-catalytic electrode bonded material for electrolytic cells
NASA Technical Reports Server (NTRS)
Takenaka, H.; Torikai, E.
1986-01-01
A good bond is achieved by placing a metal salt in solution on one side of a membrane and a reducing agent on the other side so that the reducing agent penetrates the membrane and reduces the metal. Thus, a solution containing Pt, Rh, etc., is placed on one side of the membrane and a reducing agent such as NaBH, is placed on the other side. The bonded metal layer obtained is superior in catalytic activity and is suitable as an electrode in a cell such as for solid polymer electrolyte water electrolysis.
Watanabe, Yuuya; Ohnaka, Kenji; Fujita, Saki; Kishi, Midori; Yuchi, Akio
2011-10-01
The spaces (voids) available for cations in the five exchange resins with varying exchange capacities and cross-linking degrees were estimated, on the basis of the additivity of molar volumes of the constituents. Tetraalkylammonium ions (NR(4)(+); R: Me, Et, Pr) may completely exchange potassium ion on the resin having a larger void radius. In contrast, the ratio of saturated adsorption capacity to exchange capacity of the resin having a smaller void radius decreased with an increase in size of NR(4)(+) ions, due to the interionic contacts. Alkali metal ions could be exchanged quantitatively. While the hydration numbers of K(+), Rb(+), and Cs(+) were independent of the void radius, those of Li(+) and Na(+), especially Na(+), decreased with a decrease in void radius. Interionic contacts between the hydrated ions enhance the dehydration. Multivalent metal ions have the hydration numbers, comparable to or rather greater than those in water. A greater void volume available due to exchange stoichiometry released the interionic contacts and occasionally promoted the involvement of water molecules other than directly bound molecules. The close proximity between ions in the conventional ion-exchange resins having higher exchange capacities may induce varying interactions.
Dahaghin, Zohreh; Mousavi, Hassan Zavvar; Sajjadi, S Maryam
2017-12-15
In this work, a magnetic ion-imprinted polymer (Fe 3 O 4 @SiO 2 @IIP) as a novel and selective nanosorbent for selective extraction of Pb(II) ions from various agricultural products is presented. The novel lead magnetic ion-imprinted polymer was synthesized by imidazole as a new ligand and grafted onto the surface of Fe 3 O 4 @SiO 2 NPs. A Box-Behnken (BBD) design was used for optimization of the extraction and elution steps. In the selected conditions, the limit of detection was 0.48ngmL -1 , preconcentration factor was 300, the sorption capacity of this new magnetic ion-imprinted polymer was 105mgg -1 , and the precision of the method (RSD%) for six replicate measurements was found 3.2%. Finally, the feasibility of the new magnetic ion-imprinted polymer was evaluated by extraction and determination of trace Pb 2+ ions in different agricultural products including (orange, mango, apple, kiwi, lettuce, broccoli, carrot, squash, eggplant, radish, mushroom, cucumber, and tomato). Copyright © 2017 Elsevier Ltd. All rights reserved.
Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries
Zhang, Ruisi; Chen, Yuanfen; Montazami, Reza
2015-01-01
Application of gel polymer electrolytes (GPE) in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol %) were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.
Porphyrin coordination polymer nanospheres and nanorods
Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.
2012-12-04
A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.
Porphyrin coordination polymer nanospheres and nanorods
Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.
2013-09-10
A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.
Evaluation of Performance and Safety of Electrofuel Lithium-Ion Polymer Cells
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.; Bragg, Bobby J.; Tracinski, Walter A.
2002-01-01
Lithium-ion batteries of the conventional and polymer type are being used widely for cellular phones, cameras, camcorders, personal computers, PDAs and in several other portable electronic equipment. The Electrofuel 11-ion polymer battery is one of the first available polymer batteries to be used for commercial applications. In our study, the tests carried out on these cells were aimed at determining if these batteries can be used in extravehicular activity tools for both Shuttle and International Space Station
Charge exchange molecular ion source
Vella, Michael C.
2003-06-03
Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.
Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cells
Zheng, Weiqing; Wang, Liang; Deng, Fei; ...
2017-09-04
Proton conductivity of the polymer electrolyte membranes in fuel cells dictates their performance and requires sufficient water management. Here, we report a simple, scalable method to produce well-dispersed transition metal carbide nanoparticles. We demonstrate that these, when added as an additive to the proton exchange Nafion membrane, provide significant enhancement in power density and durability over 100 hours, surpassing both the baseline Nafion and platinum-containing recast Nafion membranes. Using focused ion beam/scanning electron microscope tomography reveals the key membrane degradation mechanism. Density functional theory exposes that OH• and H• radicals adsorb more strongly from solution and reactions producing OH• aremore » significantly more endergonic on tungsten carbide than on platinum. Consequently, tungsten carbide may be a promising catalyst in self-hydrating crossover gases while retarding desorption of and capturing free radicals formed at the cathode, resulting in enhanced membrane durability.« less
Liu, Jianxi; Ma, Shuanhong; Wei, Qiangbing; Jia, Lei; Yu, Bo; Wang, Daoai; Zhou, Feng
2013-12-07
Smart systems on the nanometer scale for continuous flow-through reaction present fascinating advantages in heterogeneous catalysis, in which a parallel array of straight nanochannels offers a platform with high surface area for assembling and stabilizing metallic nanoparticles working as catalysts. Herein we demonstrate a method for finely modifying the nanoporous anodic aluminum oxide (AAO), and further integration of nanoreactors. By using atomic transfer radical polymerization (ATRP), polymer brushes were successfully grafted on the inner wall of the nanochannels of the AAO membrane, followed by exchanging counter ions with a precursor for nanoparticles (NPs), and used as the template for deposition of well-defined Au NPs. The membrane was used as a functional nanochannel for novel flow-through catalysis. High catalytic performance and instantaneous separation of products from the reaction system was achieved in reduction of 4-nitrophenol.
NASA Astrophysics Data System (ADS)
Liu, Jianxi; Ma, Shuanhong; Wei, Qiangbing; Jia, Lei; Yu, Bo; Wang, Daoai; Zhou, Feng
2013-11-01
Smart systems on the nanometer scale for continuous flow-through reaction present fascinating advantages in heterogeneous catalysis, in which a parallel array of straight nanochannels offers a platform with high surface area for assembling and stabilizing metallic nanoparticles working as catalysts. Herein we demonstrate a method for finely modifying the nanoporous anodic aluminum oxide (AAO), and further integration of nanoreactors. By using atomic transfer radical polymerization (ATRP), polymer brushes were successfully grafted on the inner wall of the nanochannels of the AAO membrane, followed by exchanging counter ions with a precursor for nanoparticles (NPs), and used as the template for deposition of well-defined Au NPs. The membrane was used as a functional nanochannel for novel flow-through catalysis. High catalytic performance and instantaneous separation of products from the reaction system was achieved in reduction of 4-nitrophenol.
Closed cycle ion exchange method for regenerating acids, bases and salts
Dreyfuss, Robert M.
1976-01-01
A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.
Laser-induced thermo-lens in ion-implanted optically-transparent polymer
NASA Astrophysics Data System (ADS)
Stefanov, Ivan L.; Ivanov, Victor G.; Hadjichristov, Georgi B.
2009-10-01
A strong laser-induced thermo-lens (LITL) effect is found in optically-transparent ion-implanted polymer upon irradiation by a cw laser with a power up to 100 mW (λ = 532 nm). The effect is observed in bulk polymethylmethacrylate (PMMA) implanted with silicon ions (Si+). A series of PMMA specimens is examined, subjected to low-energy (50 keV) Si+ implantation at various dosages in the range from 1014 to 1017 ions/cm2. The thermo-lensing is unambiguously attributed to the modification of the subsurface region of the polymer upon the ion implantation. Having a gradient refractive-index in-depth profile, the subsurface organic-carbonaceous layer produced in the polymer by ion implantation, is responsible for the LITL effect observed in reflection geometry. The LITL occurs due to optical absorption of the ion-implanted layer of a thickness of about 100 nm buried in a depth ~ 100 nm, and subsequent laser-induced change in the refractive index of the Si+-implanted PMMA. Being of importance as considering photonic applications of ion-implanted optically-transparent polymers, the LITL effect in Si+-implanted PMMA is studied as a function of the implant dose, the incident laser power and incidence angle, and is linked to the structure formed in this ion-implanted plastic.
Porous solid ion exchange wafer for immobilizing biomolecules
Arora, Michelle B.; Hestekin, Jamie A.; Lin, YuPo J.; St. Martin, Edward J.; Snyder, Seth W.
2007-12-11
A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.
Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts.
Tang, Cindy G; Ang, Mervin C Y; Choo, Kim-Kian; Keerthi, Venu; Tan, Jun-Kai; Syafiqah, Mazlan Nur; Kugler, Thomas; Burroughes, Jeremy H; Png, Rui-Qi; Chua, Lay-Lay; Ho, Peter K H
2016-11-24
To make high-performance semiconductor devices, a good ohmic contact between the electrode and the semiconductor layer is required to inject the maximum current density across the contact. Achieving ohmic contacts requires electrodes with high and low work functions to inject holes and electrons respectively, where the work function is the minimum energy required to remove an electron from the Fermi level of the electrode to the vacuum level. However, it is challenging to produce electrically conducting films with sufficiently high or low work functions, especially for solution-processed semiconductor devices. Hole-doped polymer organic semiconductors are available in a limited work-function range, but hole-doped materials with ultrahigh work functions and, especially, electron-doped materials with low to ultralow work functions are not yet available. The key challenges are stabilizing the thin films against de-doping and suppressing dopant migration. Here we report a general strategy to overcome these limitations and achieve solution-processed doped films over a wide range of work functions (3.0-5.8 electronvolts), by charge-doping of conjugated polyelectrolytes and then internal ion-exchange to give self-compensated heavily doped polymers. Mobile carriers on the polymer backbone in these materials are compensated by covalently bonded counter-ions. Although our self-compensated doped polymers superficially resemble self-doped polymers, they are generated by separate charge-carrier doping and compensation steps, which enables the use of strong dopants to access extreme work functions. We demonstrate solution-processed ohmic contacts for high-performance organic light-emitting diodes, solar cells, photodiodes and transistors, including ohmic injection of both carrier types into polyfluorene-the benchmark wide-bandgap blue-light-emitting polymer organic semiconductor. We also show that metal electrodes can be transformed into highly efficient hole- and electron-injection contacts via the self-assembly of these doped polyelectrolytes. This consequently allows ambipolar field-effect transistors to be transformed into high-performance p- and n-channel transistors. Our strategy provides a method for producing ohmic contacts not only for organic semiconductors, but potentially for other advanced semiconductors as well, including perovskites, quantum dots, nanotubes and two-dimensional materials.
Phosphonic acid based ion exchange resins
Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato
1994-01-01
An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.
Phosphonic acid based ion exchange resins
Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato
1996-01-01
An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.
Zhang, Jianjun; Wen, Huijie; Yue, Liping; Chai, Jingchao; Ma, Jun; Hu, Pu; Ding, Guoliang; Wang, Qingfu; Liu, Zhihong; Cui, Guanglei; Chen, Liquan
2017-01-01
Sodium ion battery is one of the promising rechargeable batteries due to the low-cost and abundant sodium sources. In this work, a monolithic sodium ion battery based on a Na 3 V 2 (PO 4 ) 3 cathode, MoS 2 layered anode, and polyether-based polymer electrolyte is reported. In addition, a new kind of polysulfonamide-supported poly(ethylene glycol) divinyl ether based polymer electrolyte is also demonstrated for monolithic sodium ion battery via in situ preparation. The resultant polymer electrolyte exhibits relatively high ionic conductivity (1.2 mS cm -1 ) at ambient temperature, wide electrochemical window (4.7 V), and favorable mechanical strength (25 MPa). Moreover, such a monolithic Na 3 V 2 (PO 4 ) 3 /MoS 2 sodium ion battery using this polymer electrolyte delivers outstanding rate capability (up to 10 C) and superior cyclic stability (84%) after 1000 cycles at 0.5 C. What is more essential, such a polymer electrolyte based soft-package monolithic sodium ion cell can still power a red light emitting diode lamp and run finite times without suffering from any internal short-circuit failures, even in the case of a bended and wrinkled state. Considering these aspects, this work no doubt provides a new approach for the design of a high-performance polymer electrolyte toward monolithic sodium ion battery with exceptional rate capability and high safety. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Coupled acoustic-gravity field for dynamic evaluation of ion exchange with a single resin bead.
Kanazaki, Takahiro; Hirawa, Shungo; Harada, Makoto; Okada, Tetsuo
2010-06-01
A coupled acoustic-gravity field is efficient for entrapping a particle at the position determined by its acoustic properties rather than its size. This field has been applied to the dynamic observation of ion-exchange reactions occurring in a single resin bead. The replacement of counterions in an ion-exchange resin induces changes in its acoustic properties, such as density and compressibility. Therefore, we can visually trace the advancement of an ion-exchange reaction as a time change in the levitation position of a resin bead entrapped in the field. Cation-exchange reactions occurring in resin beads with diameters of 40-120 microm are typically completed within 100-200 s. Ion-exchange equilibrium or kinetics is often evaluated with off-line chemical analyses, which require a batch amount of ion exchangers. Measurements with a single resin particle allow us to evaluate ion-exchange dynamics and kinetics of ions including those that are difficult to measure by usual off-line analyses. The diffusion properties of ions in resins have been successfully evaluated from the time change in the levitation positions of resin beads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, B.L.; Hueda, A.H.; Jodra, L.G.
1958-01-01
The lateest trends in the preparation of modern synthetic ion exchangers obtained by the treatment of polymerization and polycondensation products are reviewed. The physical and chemical characteristics, especially the stability, of exchangers are discussed. The utilization of ion exchangers in basic operations is described and illustrated with the results obtained in its application to the hydrometallurgy of uranium. The life of such materials are also considered. The most important synthetic commercial exchangers and their uses and properties are tabulated. (tr-auth)
Fish, Richard H.
1997-01-01
The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe.sup.3+ ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu.sup.2+, Zn.sup.2+, Mn.sup.2+, Ni.sup.2+,Mg.sup.2+, Al.sup.3+, and Cr.sup.3+ ions at pH 1-3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe.sup.3+ (for example, Hg.sup.2+ at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe.sup.3+ Al.sup.3+ ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads use determined are useful as well as equilibrium selectivity coefficient (K.sub.m) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe.sup.3+ ion in comparison to the PS-CATS polymer beads. The predisposed square planar PS-2-6-Mn.sup.2+, Ni.sup.2+, and Mg.sup.2+, than either PS-CATS or PS-3,3-LICAMS. However, Fe.sup.3+ ion still dominates in competition with other divalent and trivalent metal ions. In the absence of Fe.sup.3+, the polymer ligand is selective for Al.sup.3+, Cu.sup.2+ or Hg.sup.2+. The changing of the cavity size from two CH.sub.2 groups to six CH.sub.2 groups in the PS-2-6-LICAMS polymer pendant ligand series does not effect the order of metal ion selectivity.
Fish, R.H.
1997-04-22
The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe{sup 3+} ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, Mg{sup 2+}, Al{sup 3+}, and Cr{sup 3+} ions at pH 1--3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe{sup 3+} (for example, Hg{sup 2+} at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe{sup 3+}, Al{sup 3+} ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads use determined are useful as well as equilibrium selectivity coefficient (K{sub m}) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe{sup 3+} ion in comparison to the PS-CATS polymer beads. The predisposed square planar PS-2-6-Mn{sup 2+}, Ni{sup 2+}, and Mg{sup 2+}, than either PS-CATS or PS-3,3-LICAMS. However, Fe{sup 3+} ion still dominates in competition with other divalent and trivalent metal ions. In the absence of Fe{sup 3+}, the polymer ligand is selective for Al{sup 3+}, Cu{sup 2+} or Hg{sup 2+}. The changing of the cavity size from two CH{sub 2} groups to six CH{sub 2} groups in the PS-2-6-LICAMS polymer pendant ligand series does not effect the order of metal ion selectivity. 9 figs.
Morphological and electromechanical characterization of ionic liquid/Nafion polymer composites
NASA Astrophysics Data System (ADS)
Bennett, Matthew; Leo, Donald
2005-05-01
Ionic liquids have shown promise as replacements for water in ionic polymer transducers. Ionic liquids are non-volatile and have a larger electrochemical stability window than water. Therefore, transducers employing ionic liquids can be operated for long periods of time in air and can be actuated with higher voltages. Furthermore, transducers based on ionic liquids do not exhibit the characteristic back relaxation that is common with water-swollen materials. However, the physics of transduction in the ionic liquid-swollen materials is not well understood. In this paper, the morphology of Nafion/ionic liquid composites is characterized using small-angle X-ray scattering (SAXS). The electromechanical transduction behavior of the composites is also investigated. For this testing, five different counterions and two ionic liquids are used. The results reveal that both the morphology and transduction performance of the composites is affected by the identity of the ionic liquid, the cation, and the swelling level of ionic liquid within the membrane. Specifically, speed of response is found to be lower for the membranes that were exchanged with the smaller lithium and potassium ions. The response speed is also found to increase with increased content of ionic liquid. Furthermore, for the two ionic liquids studied, the actuators swollen with the less viscous ionic liquid exhibited a slower response. The slower speed of response corresponds to less contrast between the ionically conductive phase and the inert phase of the polymer. This suggests that disruption of the clustered morphology in the ionic liquid-swollen membranes as compared to water-swollen membranes attenuates ion mobility within the polymer. This attenuation is attributed to swelling of the non-conductive phase by the ionic liquids.
RECENT ADVANCES IN ION EXCHANGE MATERIALS AND PROCESSES FOR POLLUTION PREVENTION
The goal of this article was to summarize the recent advances in ion exchange technology for the metal finishing industry. Even though the ion exchange technology is mature and is widely employed in the industry, new applications, approaches and ion exchange materials are emergi...
Pharmaceutical Applications of Ion-Exchange Resins
ERIC Educational Resources Information Center
Elder, David
2005-01-01
The historical uses of ion-exchanged resins and a summary of the basic chemical principles involved in the ion-exchanged process are discussed. Specific applications of ion-exchange are provided that include drug stabilization, pharmaceutical excipients, taste-masking agents, oral sustained-release products, topical products for local application…
Hubicki, Zbigniew; Wołowicz, Anna
2009-05-30
The increasing demand for palladium for technological application requires the development of ion exchange chromatography. Recently ion exchange chromatography has developed largely as a result of new types of ion exchangers available on the market of which two types are widely applied. One of them are selective (chelating) and modified ion exchangers and the other one are liquid exchangers. Two types of ion exchange resins such as chelating (Lewatit TP 214, Purolite S 920) and cationic (Chelite S, Duolite GT 73) ion exchangers are used for the recovery of palladium(II) complexes from chloride media (0.1-2.0M HCl-1.0M NaCl-0.0011 M Pd(II); 0.1-2.0M HCl-2.0M NaCl-0.0011M Pd(II)). The influence of concentration of hydrochloric acid, sodium chloride as well as the phase contact time on the degree of recovery of palladium(II) complexes was studied. Moreover, the amount of palladium(II) chlorocomplexes sorbed onto ion exchangers, the working ion exchange capacities and the weight and bed distribution coefficients were calculated in order to judge which of two types of resins possesses the best performance towards palladium(II) complexes.
Hayashi, Aki; Saimen, Hiroki; Watanabe, Nobuaki; Kimura, Hitomi; Kobayashi, Ayumi; Nakayama, Hirokazu; Tsuhako, Mitsutomo
2005-08-02
Ag(+) ion-exchanged layered aluminum dihydrogen triphosphate (AlP) with the interlayer distance of 0.85 nm was synthesized by the ion-exchange of proton in triphosphate with Ag(+) ion. The amount of exchanged Ag(+) ion depended on the concentration of AgNO(3) aqueous solution. Ag(+) ion-exchanged AlP adsorbed gaseous thiols and sulfides into the interlayer region. The adsorption amounts of thiols were more than those of sulfides, thiols with one mercapto group > thiol with two mercapto groups > sulfides, and depended on the amount of exchanged Ag(+) ion in the interlayer region. The thiols with one mercapto group were intercalated to expand the interlayer distance of Ag(+) ion-exchanged AlP, whereas there was no expansion in the adsorption of sulfide. In the case of thiol with two mercapto groups, there was observed contraction of the interlayer distance through the bridging with Ag(+) ions of the upper and lower sides of the interlayer region.
Pharmaceutical Applications of Ion-Exchange Resins
NASA Astrophysics Data System (ADS)
Elder, David P.
2005-04-01
The historical uses of ion-exchange resins and a summary of the basic chemical principles involved in the ion-exchange process are discussed. Specific applications of ion-exchange resins are provided. The utility of these agents to stabilize drugs are evaluated. Commonly occurring chemical and physical incompatibilities are reviewed. Ion-exchange resins have found applicability as inactive pharmaceutical constituents, particularly as disintegrants (inactive tablet ingredient whose function is to rapidly disrupt the tablet matrix on contact with gastric fluid). One of the more elegant approaches to improving palatability of ionizable drugs is the use of ion-exchange resins as taste-masking agents. The selection, optimization of drug:resin ratio and particle size, together with a review of scaleup of typical manufacturing processes for taste-masked products are provided. Ion-exchange resins have been extensively utilized in oral sustained-release products. The selection, optimization of drug:resin ratio and particle size, together with a summary of commonly occurring commercial sustained-release products are discussed. Ion-exchange resins have also been used in topical products for local application to the skin, including those where drug flux is controlled by a differential electrical current (ionotophoretic delivery). General applicability of ion-exchange resins, including ophthalmic delivery, nasal delivery, use as drugs in their own right (e.g., colestyramine, formerly referred to as cholestyramine), as well as measuring gastrointestinal transit times, are discussed. Finally, pharmaceutical monographs for ion-exchange resins are reviewed.
Ion Exchange Technology Development in Support of the Urine Processor Assembly
NASA Technical Reports Server (NTRS)
Mitchell, Julie; Broyan, James; Pickering, Karen
2013-01-01
The urine processor assembly (UPA) on the International Space Station (ISS) recovers water from urine via a vacuum distillation process. The distillation occurs in a rotating distillation assembly (DA) where the urine is heated and subjected to sub-ambient pressure. As water is removed, the original organics, salts, and minerals in the urine become more concentrated and result in urine brine. Eventually, water removal will concentrate the urine brine to super saturation of individual constituents, and precipitation occurs. Under typical UPA DA operating conditions, calcium sulfate or gypsum is the first chemical to precipitate in substantial quantity. During preflight testing with ground urine, the UPA achieved 85% water recovery without precipitation. However, on ISS, it is possible that crewmember urine can be significantly more concentrated relative to urine from ground donors. As a result, gypsum precipitated in the DA when operating at water recovery rates at or near 85%, causing the failure and subsequent re14 NASA Tech Briefs, September 2013 placement of the DA. Later investigations have demonstrated that an excess of calcium and sulfate will cause precipitation at water recovery rates greater than 70%. The source of the excess calcium is likely physiological in nature, via crewmembers' bone loss, while the excess sulfate is primarily due to the sulfuric acid component of the urine pretreatment. To prevent gypsum precipitation in the UPA, the Precipitation Prevention Project (PPP) team has focused on removing the calcium ion from pretreated urine, using ion exchange resins as calcium removal agents. The selectivity and effectiveness of ion exchange resins are determined by such factors as the mobility of the liquid phase through the polymer matrix, the density of functional groups, type of functional groups bound to the matrix, and the chemical characteristics of the liquid phase (pH, oxidation potential, and ionic strength). Previous experience with ion exchange resins has demonstrated that the most effective implementation for an ion exchange resin is a cartridge, or column, in which the resin is contained. Based on the results of equilibrium and sub-scale dynamic column testing, a possible solution for mitigating the calcium precipitation issue on the ISS has been identified. From an original pool of 13 ion exchange resins, two candidates have been identified that demonstrate substantial calcium removal on the sub-scale. The dramatic reduction in resin performance from published calcium uptake demonstrates the need for thorough evaluation of resins at the low pH and strong oxidizing environment present in the UPA. Chemical variations in the influent (calcium concentrations and pretreatment dosing) appear to have a noticeable impact on the calcium capacity of the resin. Low calcium concentrations and high pretreatment dosing will likely result in a decrease in calcium capacity. Conversely, low pre trea t - ment dosing will likely result in an increase in calcium capacity. In contrast, investigations at a variety of flow rates, length-to-diameter ratios, resin volumes, and flow regimes (continuous versus pulsed) show that changes in physical parameters do not have substantial impacts on resin performance in the very low specific velocity ranges of interest. This result is particularly useful because most commercial applications at higher specific velocities do show a relatively strong relationship between flow and capacity. The lack of a strong relationship will allow more flexibility in the implementation of an ion exchange bed for flight. Verification of subscale tests with flight-scale resin beds is recommended prior to implementation in the on-orbit UPA.
Carbon dioxide capture using resin-wafer electrodeionization
Lin, YuPo J.; Snyder, Seth W.; Trachtenberg, Michael S.; Cowan, Robert M.; Datta, Saurav
2015-09-08
The present invention provides a resin-wafer electrodeionization (RW-EDI) apparatus including cathode and anode electrodes separated by a plurality of porous solid ion exchange resin wafers, which when in use are filled with an aqueous fluid. The apparatus includes one or more wafers comprising a basic ion exchange medium, and preferably includes one or more wafers comprising an acidic ion exchange medium. The wafers are separated from one another by ion exchange membranes. The fluid within the acidic and/or basic ion exchange wafers preferably includes, or is in contact with, a carbonic anhydrase (CA) enzyme to facilitate conversion of bicarbonate ion to carbon dioxide within the acidic medium. A pH suitable for exchange of CO.sub.2 is electrochemically maintained within the basic and acidic ion exchange wafers by applying an electric potential across the cathode and anode.
Polymer biomaterial constructs for regenerative medicine and functional biological systems
NASA Astrophysics Data System (ADS)
Meng, Linghui
The use of collagen as a biomaterial is currently undergoing a renaissance in the tissue engineering field. The excellent biocompatibility and safety due to its biological characteristics, such as biodegradability and weak antigenicity, make collagen a primary material resource in medical applications. Described herein is work towards the development of novel collagen-based matrices, with additional multi-functionality imparted through a novel in-situ crosslinking approach. The process of electrospinning has become a widely used technique for the creation of fibrous scaffolds for tissue engineering applications due to its ability to rapidly create structures composed of nano-scale polymer fibers closely resembling the architecture of the extracellular matrix (ECM). Collagen-PCL sheath-core bicomponent fibrous scaffolds were fabricated using a novel variation on traditional electrospinning, known as co-axial electrospinning. The results showed that the addition of a synthetic polymer core into collagen nanofibers remarkably increased the mechanical strength of collagen matrices spun from the benign solvent system. A novel single-step, in-situ collagen crosslink approach was developed in order to solve the problems dominating traditional collagen crosslinking methods, such as dimensional shrinking and loss of porous morphology, and to simplify the crosslinking procedure for electrospun collagen scaffolds. The excess amount of NHS present in the crosslinking mixture was found to delay the EDC/collagen coupling reaction in a controlled fashion. Fundamental investigations into the development and characterization of in-situ crosslinked collagen matrices such as fibrous scaffolds, gels and sponges, as well as their biomedical applications including cell culture substrates, wound dressings, drug delivery matrices and bone regeneration substitutes, were performed. The preliminary mice studies indicated that the in-situ crosslinked collagen matrices could be good candidates for wound healing and skin regeneration. Polyelectrolyte fibrous tubes of highly-crosslinked poly (acrylic acid) were fabricated by means of electrospinning as polymer models for functional biological systems, with special attention to the axon cortical layer and its cation-exchange properties. The processing parameters of fiber formation and the reversible phase transitions of PAA tubes according to monovalent-divalent ion exchange in solution were systematically investigated. The results showed that the neutralized PAA tubes were responsive to calcium ions, exhibiting significant shrinkage that could be reversed with a chelator such as citrate. Study of such phase transitions may help to better understand the electrophysiological processes known as nerve excitation and conduction in the nervous system, and the resulting PAA tubes might be used as polymer models of artificial axons for potential tissue engineering and nerve repair applications.
Orthacker, A; Schmied, R; Chernev, B; Fröch, J E; Winkler, R; Hobisch, J; Trimmel, G; Plank, H
2014-01-28
Focused ion beam processing of low melting materials, such as polymers or biological samples, often leads to chemical and morphological instabilities which prevent the straight-forward application of this versatile direct-write structuring method. In this study the behaviour of different polymer classes under ion beam exposure is investigated using different patterning parameters and strategies with the aim of (i) correlating local temperatures with the polymers' chemistry and its morphological consequences; and (ii) finding a way of processing sensitive polymers with lowest chemical degradation while maintaining structuring times. It is found that during processing of polymers three temperature regimes can be observed: (1) at low temperatures all polymers investigated show stable chemical and morphological behaviour; (2) very high temperatures lead to strong chemical degradation which entails unpredictable morphologies; and (3) in the intermediate temperature regime the behaviour is found to be strongly material dependent. A detailed look reveals that polymers which rather cross-link in the proximity of the beam show stable morphologies in this intermediate regime, while polymers that rather undergo chain scission show tendencies to develop a creeping phase, where material follows the ion beam movement leading to instable and unpredictable morphologies. Finally a simple, alternative patterning strategy is suggested, which allows stable processing conditions with lowest chemical damage even for challenging polymers undergoing chain scission.
Ion implantation method for preparing polymers having oxygen erosion resistant surfaces
Lee, Eal H.; Mansur, Louis K.; Heatherly, Jr., Lee
1995-01-01
Hard surfaced polymers and the method for making them are generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface, improved wear resistance, and improved oxygen erosion resistance.
Phosphonic acid based ion exchange resins
Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.
1996-07-23
An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.
Phosphonic acid based ion exchange resins
Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.
1994-01-25
An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.
Structured copolymers and their use as absorbents, gels and carriers of metal ions
Hedstrand, David M.; Helmer, Bradley J.; Tomalia, Donald A.
1996-01-01
Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.
Structured copolymers and their use as absorbents, gels and carriers of metal ions
Hedstrand, D.M.; Helmer, B.J.; Tomalia, D.A.
1996-10-01
Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.
Varcoe, John R
2007-03-28
This article presents the first systematic study of the effect of Relative Humidity (RH) on the water content and hydroxide ion conductivity of quaternary ammonium-based Alkaline Anion-Exchange Membranes (AAEMs). These AAEMs have been developed specifically for application in alkaline membrane fuel cells, where conductivities of >0.01 S cm(-1) are mandatory. When fully hydrated, an ETFE-based radiation-grafted AAEM exhibited a hydroxide ion conductivity of 0.030 +/- 0.005 S cm(-1) at 30 degrees C without additional incorporation of metal hydroxide salts; this is contrary to the previous wisdom that anion-exchange membranes are very low in ionic conductivity and represents a significant breakthrough for metal-cation-free alkaline ionomers. Desirably, this AAEM also showed increased dimensional stability on full hydration compared to a Nafion-115 proton-exchange membrane; this dimensional stability is further improved (with no concomitant reduction in ionic conductivity) with a commercial AAEM of similar density but containing additional cross-linking. However, all of the AAEMs evaluated in this study demonstrated unacceptably low conductivities when the humidity of the surrounding static atmospheres was reduced (RH = 33-91%); this highlights the requirement for continued AAEM development for operation in H(2)/air fuel cells with low humidity gas supplies. Preliminary investigations indicate that the activation energies for OH(-) conduction in these quaternary ammonium-based solid polymer electrolytes are typically 2-3 times higher than for H(+) conduction in acidic Nafion-115 at all humidities.
Mukherjee, Debdyuti; Gowda Y K, Guruprasada; Makri Nimbegondi Kotresh, Harish; Sampath, S
2017-06-14
Organic materials containing active carbonyl groups have attracted considerable attention as electrodes in Li-ion batteries due to their reversible redox activity, ability to retain capacity, and, in addition, their ecofriendly nature. Introduction of porosity will help accommodate as well as store small ions and molecules reversibly. In the present work, we introduce a mesoporous triptycene-related, rigid network polymer with high specific surface area as an electrode material for rechargeable Li-ion battery. The designed polymer with a three-dimensional (3D), rigid porous network allows free movement of ions/electrolyte as well as helps in interacting with the active anhydride moieties (containing two carbonyl groups). Considerable intake of Li + ions giving rise to very high specific capacity of 1100 mA h g -1 at a discharge current of 50 mA g -1 and ∼120 mA h g -1 at a high discharge current of 3 A g -1 are observed with excellent cyclability up to 1000 cycles. This remarkable rate capability, which is one of the highest among the reported organic porous polymers to date, makes the triptycene-related rigid 3D network a very good choice for Li-ion batteries and opens up a new method to design polymer-based electrode materials for metal-ion battery technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, J.S.; Choi, W.K.; Jung, H.J.
1997-12-01
Ar{sup +} ion irradiation on low density polyethylene (LDPE), and polystyrene (PS) was performed in an O{sub 2} environment in order to improve wettability of polymers to water and to identify the formation of hydrophilic groups originated from chemical reactions on the surface of polymers. Doses of a broad Ar{sup +} ion beam of 1 keV energy were changed from 5 {times} 10{sup 15} to 1 {times} 10{sup 17}/cm{sup 2} and the rate of oxygen gas flowing near the sample surface was varied from 0 to 7 ml/min. The contact angle of polymers was not reduced much by Ar{sup +}more » ion irradiation without oxygen gas. However, it dropped largely to a minimum of 35{degree} and 26{degree} for Ar{sup +} ion irradiation in the presence of flowing oxygen gas on LDPE and PS, respectively. From x-ray photoelectron spectroscopy analysis, it was observed that hydrophilic groups were formed on the surface of polymers through an ion-assisted chemical reaction between the ion-induced unstable chains and oxygen. The newly formed hydrophilic group was identified as {single_bond}(C{double_bond}){single_bond} bond and {single_bond}(C{double_bond}O){single_bond}O{single_bond} bond. The contact angle of polymer was greatly dependent on the hydrophilic group formed on the surface.« less
Palencia, Manuel; Rivas, Bernabé L
2011-11-15
Metal-ion retention properties of water-soluble amphiphilic polymers in presence of double emulsion were studied by diafiltration. Double emulsion systems, water-in-oil-in-water, with a pH gradient between external and internal aqueous phases were prepared. A poly(styrene-co-maleic anhydride) (PSAM) solution at pH 6.0 was added to the external aqueous phase of double emulsion and by application of pressure a divalent metal-ion stream was continuously added. Metal-ions used were Cu(2+) and Cd(2+) at the same pH of polymer solution. According to our results, metal-ion retention is mainly the result of polymer-metal interaction. Interaction between PSMA and reverse emulsion globules is strongly controlled by amount of metal-ions added in the external aqueous phase. In addition, as metal-ion concentration was increased, a negative effect on polymer retention capacity and promotion of flocculation phenomena were produced. Copyright © 2011 Elsevier Inc. All rights reserved.
Three-dimensional patterning in polymer optical waveguides using focused ion beam milling
NASA Astrophysics Data System (ADS)
Kruse, Kevin; Burrell, Derek; Middlebrook, Christopher
2016-07-01
Waveguide (WG) photonic-bridge taper modules are designed for symmetric planar coupling between silicon WGs and single-mode fibers (SMFs) to minimize photonic chip and packaging footprint requirements with improving broadband functionality. Micromachined fabrication and evaluation of polymer WG tapers utilizing high-resolution focused ion beam (FIB) milling is performed and presented. Polymer etch rates utilizing the FIB and optimal methods for milling polymer tapers are identified for three-dimensional patterning. Polymer WG tapers with low sidewall roughness are manufactured utilizing FIB milling and optically tested for fabrication loss. FIB platforms utilize a focused beam of ions (Ga+) to etch submicron patterns into substrates. Fabricating low-loss polymer WG taper prototypes with the FIB before moving on to mass-production techniques provides theoretical understanding of the polymer taper and its feasibility for connectorization devices between silicon WGs and SMFs.
Performance evaluation of cross-flow single-phase liquid-to-gas polymer tube heat exchanger
NASA Astrophysics Data System (ADS)
Dewanjee, Sujan; Hossain, Md. Rakibul; Rahman, Md. Ashiqur
2017-06-01
Reduced core weight and material cost, higher corrosion resistance are some of the major eye catching properties to study polymers over metal in heat exchanger applications in spite of the former's relatively low thermal conductivity and low strength. In the present study, performance of polymer parallel thin tube heat exchanger is numerically evaluated for cross flow liquid to air applications for a wide range of design and operating parameters such as tube diameter, thickness, fluid velocity and temperature, etc. using Computational Fluid Dynamics (CFD). Among a range of available polymeric materials, those with a moderate to high thermal conductivity and strength are selected for this study. A 90 cm × 1 cm single unit of polymer tubes, with appropriate number of tubes such that at least a gap of 5 mm is maintained in between the tubes, is used as a basic unit and multiple combination in the transverse direction of this single unit is simulated to measure the effect. The tube inner diameter is varied from 2 mm to 4 mm and the pressure drop is measured to have a relative idea of pumping cost. For each inner diameter the thickness is varied from .5 mm to 2.5 mm. The water velocity and the air velocity are varied from 0.4 m/s to 2 m/s and 1 m/s to 5 m/s, respectively. The performance of the polymer heat exchanger is compared with that of metal heat exchanger through and an optimum design for polymer heat exchanger is sought out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Jing, E-mail: jinjing_crystal@126.com; Chen, Chong; Gao, Yan
Six Ln–Ag coordination polymers {[LnAg_2(IN)_4(H_2O)_5]·NO_3·2H_2O}{sub n} (Ln=Ho (1) and Tb (2), HIN=isonicotinic acid), {[PrAg_2(IN)_4(H_2O)_2]·NO_3·H_2O}{sub n} (3), [LnAg(pdc){sub 2}]{sub n} (Ln=Eu(4) and Pr (5), H{sub 2}pdc=3,4-pyridine-dicarboxylic acid) and [NdAg(bidc){sub 2}(H{sub 2}O){sub 4}]{sub n} (6) (H{sub 2}bidc=benzimidazole-5,6-dicarboxylic acid) have been hydrothermally synthesized and characterized by single crystal X-ray diffraction, elemental analysis, IR, UV–vis-NIR absorption spectra, fluorescence spectra and thermogravimetric analysis. Structural analyses reveal that the six polymers exhibit 0D (polymer (1)), 1D (polymer (2)), 2D (polymers (3) and (5)) and 3D (polymers (4) and (6)) infinite structures, respectively. Polymers (1)–(6) exhibit the Ln(III) characteristic emission in the near-infrared (NIR) region or inmore » the visible region. Especially, the NIR emission bands of polymers 1, 5 and 6 evidently present shift or splitting due to formation of the Ln–Ag coordination polymers. This can be attributed to the tune of inner levels in Ln–Ag system caused by the interact and influence between the 4d orbital of the Ag(I) ion and the 4f orbital of the Ln(III) ion, which can be confirmed by the UV–vis-NIR absorption spectra of the polymers. In addition, the distortion of coordination geometry as well as difference of the coordination number around the Ag(I) ion affect the structure framework. - Graphical abstract: Six Ag–Ln coordination polymers have been hydrothermally synthesized and characterized. The photoluminescence properties were studied. The distortion of coordination geometry of Ag(I) ion affect structure framework. Introduction of Ag(I) cause wonderful changes to the NIR emission of Ln(III) ions. - Highlights: • Six Ln–Ag polymers have been synthesized and characterized. • The distortion of coordination geometry of Ag(I) ion affect structure framework. • Introduction of Ag(I) cause wonderful changes to the NIR emission of Ln(III) ions.« less
Murphy, Ryan P; Kelley, Elizabeth G; Rogers, Simon A; Sullivan, Millicent O; Epps, Thomas H
2014-11-18
Chain exchange between block polymer micelles in highly selective solvents, such as water, is well-known to be arrested under quiescent conditions, yet this work demonstrates that simple agitation methods can induce rapid chain exchange in these solvents. Aqueous solutions containing either pure poly(butadiene- b -ethylene oxide) or pure poly(butadiene- b -ethylene oxide- d 4 ) micelles were combined and then subjected to agitation by vortex mixing, concentric cylinder Couette flow, or nitrogen gas sparging. Subsequently, the extent of chain exchange between micelles was quantified using small angle neutron scattering. Rapid vortex mixing induced chain exchange within minutes, as evidenced by a monotonic decrease in scattered intensity, whereas Couette flow and sparging did not lead to measurable chain exchange over the examined time scale of hours. The linear kinetics with respect to agitation time suggested a surface-limited exchange process at the air-water interface. These findings demonstrate the strong influence of processing conditions on block polymer solution assemblies.
Ion implantation method for preparing polymers having oxygen erosion resistant surfaces
Lee, E.H.; Mansur, L.K.; Heatherly, L. Jr.
1995-04-18
Hard surfaced polymers and the method for making them are generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface, improved wear resistance, and improved oxygen erosion resistance. 8 figs.
Rozendal, R A; Sleutels, T H J A; Hamelers, H V M; Buisman, C J N
2008-01-01
Previous studies have shown that the application of cation exchange membranes (CEMs) in bioelectrochemical systems running on wastewater can cause operational problems. In this paper the effect of alternative types of ion exchange membrane is studied in biocatalyzed electrolysis cells. Four types of ion exchange membranes are used: (i) a CEM, (ii) an anion exchange membrane (AEM), (iii) a bipolar membrane (BPM), and (iv) a charge mosaic membrane (CMM). With respect to the electrochemical performance of the four biocatalyzed electrolysis configurations, the ion exchange membranes are rated in the order AEM > CEM > CMM > BPM. However, with respect to the transport numbers for protons and/or hydroxyl ions (t(H/OH)) and the ability to prevent pH increase in the cathode chamber, the ion exchange membranes are rated in the order BPM > AEM > CMM > CEM.
NASA Astrophysics Data System (ADS)
Tsuruoka, Takaaki; Miyanaga, Ayumi; Ohhashi, Takashi; Hata, Manami; Takashima, Yohei; Akamatsu, Kensuke
2017-09-01
A simple composition control route to mixed-lanthanide metal-organic frameworks (MOFs) was developed based on an interfacial reaction with mixed-lanthanide metal ion-doped polymer substrates. By controlling the composition of lanthanide ion (Eu3+ and Tb3+) dopants in polymer substrates to be used as metal ion precursors and scaffolding for the formation of MOFs, [EuxTb2-x(bdc)3(H2O)4]n crystals with a tunable metal composition could be routinely prepared on polymer substrates. Inductively coupled plasma (ICP) measurements revealed that the composition of the obtained frameworks was almost the same as that of the initial polymer substrates. In addition, the resulting [EuxTb2-x(bdc)3(H2O)4]n crystals showed strong phosphorescence because of Eu3+ transitions, indicating that the energy transfer from Tb3+ to Eu3+ ions in the frameworks could be achieved with high efficiency.
Understanding ion association states and molecular dynamics using infrared spectroscopy
NASA Astrophysics Data System (ADS)
Masser, Hanqing
A molecular level understanding of the ion transport mechanism within polymer electrolytes is crucial to the further development for advanced energy storage applications. This can be achieved by the identification and quantitative measurement of different ion species in the system and further relating them to the ion conductivity. In the first part of this thesis, research is presented towards understanding the ion association states (free ions, ion pairs and ion aggregates) in ionomer systems, and the correlation of ion association states, ion conduction, polymer dynamics, and morphology. Ion conductivity in ionomers can be improved by lowering glass transition temperature, increasing polymer ion solvation ability, and adjusting ionomer structural variables such as ion content, cation type and side chain structure. These effects are studied in three ionomer systems respectively, using a combination of characterization methods. Fourier Transform Infrared Spectroscopy (FTIR) identifies and quantifies the ion association states. Dielectric Spectroscopy (DRS) characterizes ion conductivity and polymer and ion dynamics. X-ray scattering reveals changes in morphology. The influence of a cation solvating plasticizer on a polyester ionomer is systematically investigated with respect to ion association states, ion and polymer dynamics and morphology. A decrease in the number ratio of ion aggregates with increased plasticizer content and a slight increase at elevated temperature are observed in FTIR. Similar results are also detected by X-ray scattering. As determined from dielectric spectroscopy, ion conductivity increases with plasticizer content, in accordance with the decrease in glass transition temperature. Research on copolymer of poly(ethylene oxide) (PEO) and poly(tetramethylene oxide) (PTMO) based ionomers further develops an understanding of the trade-off between ion solvation and segmental dynamics. Upon the incorporation of PTMO, the majority of the PTMO microphase separates from the PEO-rich microphase, and ionic groups are preferentially solvated by PEO chains and reside in the PEO-rich microphase. As the ratio of PTMO increases, the fraction of aggregates increases, resulting in more highly coordinated aggregation states. Results on ion association states are in good agreement with previous results on ion conductivity, polymer dynamics and morphology. The effects of ion content, cation type and ionic side chain structure on ion association states are systemically studied in a series of ionomers with short ethylene oxide and ionic sulfonated styrene side chains, and then correlated to the ion and polymer dynamic characterization. It is found that ionomers with modest ion content, large cation and styrene ionic side chain have the most "free ions" and ion pairs, and highest ion conductivity. Ion conduction in ionomers is optimized by systematically changing their chemical structures. In addition to knowledge of ion association states, a IR band shape also contains information on molecular dynamics. In companion investigation, the vibrational relaxation and dynamic transitions of conformationally insensitive normal modes in two different polymer systems (atactic polystyrene and deuterated poly(methyl methacrylate)) are studied. The information on vibrational relaxations is resolved by conducting precisely controlled FTIR experiments, applying specialized curve resolving data analysis, and calculating time correlation functions through numerical Fourier transformation. The vibrational relaxations of these modes can be described by a two process model: a fast process on the time scale of 0.01 ps, which is inhomogeneously broadened by a slow process on the time scale of picoseconds.
Gadolinium-hydrogen ion exchange of zirconium phosphate
NASA Technical Reports Server (NTRS)
Liu, D. C.; Power, J. L.
1972-01-01
The Gd(+3)/H(+) ion exchange on a commercial zirconium phosphate ion exchanger was investigated in chloride, sulfate, and phosphate solutions of Gd(+3) at gadolinium concentrations of 0.001 to 1 millimole per cc and in the pH range of 0 to 3.5. Relatively low Gd(+3) capacities, in the range of 0.01 to 0.1 millimole per g of ion exchanger were found at room temperature. A significant difference in Gd(+3) sorption was observed, depending on whether the ion exchanger was converted from initial conditions of greater or lesser Gd(+3) sorption than the specific final conditions. Correlations were found between decrease in Gd(+3) capacity and loss of exchanger phosphate groups due to hydrolysis during washing and between increase in capacity and treatment with H3PO4. Fitting of the experimental data to ideal ion exchange equilibrium expressions indicated that each Gd(+3) ion is sorbed on only one site of the ion exchanger. The selectivity quotient was determined to be 2.5 + or - 0.4 at room temperature on gadolinium desorption in chloride solutions.
Pekkanen, Allison M; Zawaski, Callie; Stevenson, André T; Dickerman, Ross; Whittington, Abby R; Williams, Christopher B; Long, Timothy E
2017-04-12
Water-soluble polymers as sacrificial supports for additive manufacturing (AM) facilitate complex features in printed objects. Few water-soluble polymers beyond poly(vinyl alcohol) enable material extrusion AM. In this work, charged poly(ether ester)s with tailored rheological and mechanical properties serve as novel materials for extrusion-based AM at low temperatures. Melt transesterification of poly(ethylene glycol) (PEG, 8k) and dimethyl 5-sulfoisophthalate afforded poly(ether ester)s of sufficient molecular weight to impart mechanical integrity. Quantitative ion exchange provided a library of poly(ether ester)s with varying counterions, including both monovalent and divalent cations. Dynamic mechanical and tensile analysis revealed an insignificant difference in mechanical properties for these polymers below the melting temperature, suggesting an insignificant change in final part properties. Rheological analysis, however, revealed the advantageous effect of divalent countercations (Ca 2+ , Mg 2+ , and Zn 2+ ) in the melt state and exhibited an increase in viscosity of two orders of magnitude. Furthermore, time-temperature superposition identified an elevation in modulus, melt viscosity, and flow activation energy, suggesting intramolecular interactions between polymer chains and a higher apparent molecular weight. In particular, extrusion of poly(PEG 8k -co-CaSIP) revealed vast opportunities for extrusion AM of well-defined parts. The unique melt rheological properties highlighted these poly(ether ester) ionomers as ideal candidates for low-temperature material extrusion additive manufacturing of water-soluble parts.
Smart textile device using ion polymer metal compound.
Nakamura, Taro; Ihara, Tadashi
2013-01-01
We have developed a smart textile device that detects angular displacement of attached surface using ion polymer metal compound. The device was composed of ion polymer metal compound (IPMC) which was fabricated from Nafion resin by heat-press and chemical gold plating. The generated voltage from IPMC was measured as a function of bending angle. Fabricated IPMC device was weaved into a cotton cloth and multidirectional movements were detected.
Bi, Sheng; Sun, Che-Nan; Zawodzinski, Thomas A.; ...
2015-08-06
Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl) imide and polymer matrix were extensively studied in the past due to their excellent potential in a broad range of energy related applications. Poly(vinylidene fluoride) (PVDF) and polyethylene oxide (PEO) are among the most examined polymer candidates as solid polymer electrolyte matrix. In this paper, we study the effect of reciprocated suppression of polymer crystallization in PVDF/PEO binary matrix on ion transport and mechanical properties of the resultant solid polymer electrolytes. With electron and X-ray diffractions as well as energy filtered transmission electron microscopy, we identify and examine the appropriate blending composition thatmore » is responsible for the diminishment of both PVDF and PEO crystallites. Laslty, a three-fold conductivity enhancement is achieved along with a highly tunable elastic modulus ranging from 20 to 200 MPa, which is expected to contribute toward future designs of solid polymer electrolytes with high room-temperature ion conductivities and mechanical flexibility.« less
Ion-ion charge exchange processes. Final technical report, June 1, 1977-May 31, 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poe, R.T.; Choi, B.H.
Under the auspices of ERDA, we have undertaken a vigorous study of ion-ion charge exchange process pertinent to the storage-ring configurations in the heavy-ion fusion program. One particular reaction, singly charged helium charge exchange, was investigated in detail. General trend of the singly charged heavy-ion charge exchange reaction can be inferred from the present study. Some of our results were presented at Proceedings of the Heavy-Ion Fusion Workshop, Argonne National Laboratory (September 1978) as a paper entitled Charge Exchange Between Singly Ionized Helium Ions, by B.H. Choi, R.T. Poe and K.T. Tang. Here, we briefly describe our method and reportmore » the results.« less
2013-01-01
exchange resins and as membranes for water purification [1], Li–air batteries, and in polymer exchange membrane ( PEM ) fuel cells [2]. PEM Fuel cells show...SUBJECT TERMS Anion exchange membrane, Fuel Cell , Poly(ethyleneimine), Quaternary ammonium caton, Hydroxide Ashley M. Maes, Tara P. Pandey, Melissa...membrane Fuel cell Poly(ethyleneimine) Quaternary ammonium cation Hydroxide a b s t r a c t A new randomly crosslinked polymer is investigated
Zhang, Jinqiang; Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang; Wang, Guoxiu
2014-08-29
Lithium ion batteries have shown great potential in applications as power sources for electric vehicles and large-scale energy storage. However, the direct uses of flammable organic liquid electrolyte with commercial separator induce serious safety problems including the risk of fire and explosion. Herein, we report the development of poly(vinylidene difluoride-co-hexafluoropropylene) polymer membranes with multi-sized honeycomb-like porous architectures. The as-prepared polymer electrolyte membranes contain porosity as high as 78%, which leads to the high electrolyte uptake of 86.2 wt%. The PVDF-HFP gel polymer electrolyte membranes exhibited a high ionic conductivity of 1.03 mS cm(-1) at room temperature, which is much higher than that of commercial polymer membranes. Moreover, the as-obtained gel polymer membranes are also thermally stable up to 350 °C and non-combustible in fire (fire-proof). When applied in lithium ion batteries with LiFePO4 as cathode materials, the gel polymer electrolyte demonstrated excellent electrochemical performances. This investigation indicates that PVDF-HFP gel polymer membranes could be potentially applicable for high power lithium ion batteries with the features of high safety, low cost and good performance.
NASA Astrophysics Data System (ADS)
Zhang, Jinqiang; Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang; Wang, Guoxiu
2014-08-01
Lithium ion batteries have shown great potential in applications as power sources for electric vehicles and large-scale energy storage. However, the direct uses of flammable organic liquid electrolyte with commercial separator induce serious safety problems including the risk of fire and explosion. Herein, we report the development of poly(vinylidene difluoride-co-hexafluoropropylene) polymer membranes with multi-sized honeycomb-like porous architectures. The as-prepared polymer electrolyte membranes contain porosity as high as 78%, which leads to the high electrolyte uptake of 86.2 wt%. The PVDF-HFP gel polymer electrolyte membranes exhibited a high ionic conductivity of 1.03 mS cm-1 at room temperature, which is much higher than that of commercial polymer membranes. Moreover, the as-obtained gel polymer membranes are also thermally stable up to 350°C and non-combustible in fire (fire-proof). When applied in lithium ion batteries with LiFePO4 as cathode materials, the gel polymer electrolyte demonstrated excellent electrochemical performances. This investigation indicates that PVDF-HFP gel polymer membranes could be potentially applicable for high power lithium ion batteries with the features of high safety, low cost and good performance.
Zhang, Jinqiang; Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang; Wang, Guoxiu
2014-01-01
Lithium ion batteries have shown great potential in applications as power sources for electric vehicles and large-scale energy storage. However, the direct uses of flammable organic liquid electrolyte with commercial separator induce serious safety problems including the risk of fire and explosion. Herein, we report the development of poly(vinylidene difluoride-co-hexafluoropropylene) polymer membranes with multi-sized honeycomb-like porous architectures. The as-prepared polymer electrolyte membranes contain porosity as high as 78%, which leads to the high electrolyte uptake of 86.2 wt%. The PVDF-HFP gel polymer electrolyte membranes exhibited a high ionic conductivity of 1.03 mS cm−1 at room temperature, which is much higher than that of commercial polymer membranes. Moreover, the as-obtained gel polymer membranes are also thermally stable up to 350°C and non-combustible in fire (fire-proof). When applied in lithium ion batteries with LiFePO4 as cathode materials, the gel polymer electrolyte demonstrated excellent electrochemical performances. This investigation indicates that PVDF-HFP gel polymer membranes could be potentially applicable for high power lithium ion batteries with the features of high safety, low cost and good performance. PMID:25168687
Albert, Albert; Barnett, Alejandro O; Thomassen, Magnus S; Schmidt, Thomas J; Gubler, Lorenz
2015-10-14
Radiation-grafted membranes can be considered an alternative to perfluorosulfonic acid (PFSA) membranes, such as Nafion, in a solid polymer electrolyte electrolyzer. Styrene, acrylonitrile, and 1,3-diisopropenylbenzene monomers are cografted into preirradiated 50 μm ethylene tetrafluoroethylene (ETFE) base film, followed by sulfonation to introduce proton exchange sites to the obtained grafted films. The incorporation of grafts throughout the thickness is demonstrated by scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analysis of the membrane cross-sections. The membranes are analyzed in terms of grafting kinetics, ion-exchange capacity (IEC), and water uptake. The key properties of radiation-grafted membranes and Nafion, such as gas crossover, area resistance, and mechanical properties, are evaluated and compared. The plot of hydrogen crossover versus area resistance of the membranes results in a property map that indicates the target areas for membrane development for electrolyzer applications. Tensile tests are performed to assess the mechanical properties of the membranes. Finally, these three properties are combined to establish a figure of merit, which indicates that radiation-grafted membranes obtained in the present study are promising candidates with properties superior to those of Nafion membranes. A water electrolysis cell test is performed as proof of principle, including a comparison to a commercial membrane electrode assembly (MEA).
NASA Astrophysics Data System (ADS)
Sawada, Shin-ichi; Suzuki, Akihiro; Terai, Takayuki; Maekawa, Yasunari
2010-04-01
We prepared proton exchange membranes (PEMs) by 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO)-mediated living-radical graft polymerization (LRGP) of styrene into fluoropolymer films and subsequent sulfonation. Poly(vinylidene fluoride) (PVDF) and poly(ethylene- co-tetrafluoroethylene) (ETFE) films were first irradiated and then treated with TEMPO solutions in various solvents. TEMPO addition was confirmed by the test of styrene grafting into TEMPO-treated films at 60 °C, at which the LRGP never proceeds. This test enabled us to differentiate the LRGP from the conventional graft polymerization. In order to gain a deep insight about TEMPO-addition reaction, the TEMPO-penetration behavior into the base polymer films was examined by a permeation experiment and computer simulation. Xylene and dioxane were appropriate solvents for the complete introduction of TEMPO into PVDF and ETFE films, respectively. Then, the LRGP of styrene was performed based on the fully TEMPO-capped films at 125 °C with various solvents. By using an alcoholic solvent, the degree of grafting was enhanced and it reached a maximum of 38%. This grafted film was sulfonated to prepare a PEM showing an ion exchange capacity of 2.2 meq/g and proton conductivity of 1.6×10 -1 S/cm.
On the influence of ion exchange on the local structure of the titanosilicate ETS-10.
Pavel, Claudiu C; Zibrowius, Bodo; Löffler, Elke; Schmidt, Wolfgang
2007-07-14
The effect of ion exchange with different monovalent cations (NH(4)(+), K(+), Na(+) and Cs(+)) on the local structure of the titanosilicate ETS-10 has been studied by (29)Si MAS NMR and Raman spectroscopy. Although X-ray diffraction shows no significant influence of ion exchange on the long range order, ammonium exchange is found to result in substantial damage to the local structure. Ion exchange experiments with alkali cations under significantly more acidic conditions clearly show that the structural damage brought about by ammonium exchange is not caused by the low pH of the exchange solution. The exchange with potassium and caesium ions also leads to significant changes in the (29)Si NMR and Raman spectra. However, these changes can largely be reversed by sodium back-exchange.
Study on improving viscosity of polymer solution based on complex reaction
NASA Astrophysics Data System (ADS)
Sun, G.; Li, D.; Zhang, D.; Xu, T. H.
2018-05-01
The current status of polymer flooding Technology on high salinity oil reservoir is not ideal. A method for increasing the viscosity of polymer solutions is urgently needed. This paper systematically studied the effect of ions with different mass concentrations on the viscosity of polymer solutions. Based on the theory of complex reaction, a countermeasure of increasing viscosity of polymer solution under conditions of high salinity reservoir was proposed. The results show that Ca2+ and Mg2+ have greater influence on the solution viscosity than K+ and Na+. When the concentration of divalent ions increases from 0 mg/L to 80 mg/L, the viscosity of the polymer solution decreases from 210 mPa·s to 38.6 mPa·s. The viscosity of the polymer solution prepared from the sewage treated with the Na2C2O4 increased by 25.3%. Atomic force microscopy test results show that Na2C2O4 can effectively shield the divalent metal ions, so that the polymer molecules in the solution stretch more, thereby increasing the solution viscosity. Atomic force microscopy test results show that Na2C2O4 can effectively shield the divalent metal ions, so that the polymer molecules in the solution stretch more, thereby increasing the solution viscosity.
Ion conduction in high ion content PEO-based ionomers
NASA Astrophysics Data System (ADS)
Caldwell, David, II; Maranas, Janna
Solid Polymer Electrolytes (SPEs) can enable the design of batteries that are safer and have higher capacity than batteries with traditional volatile organic electrolytes. The current limitation for SPEs is their low conductivity, resulting from a conduction mechanism strongly coupled to the dynamics of the polymer host matrix. Our previous work indicated the possibility of a conduction mechanism through the use of ion aggregates. In order to investigate this mechanism, we performed a series of molecular dynamics simulations of PEO-based ionomers at high ion content. Our results indicate that conduction through ion aggregates are partially decoupled from polymer dynamics and could enable the development of higher conductive SPEs.
Brambleby, J.; Goddard, P. A.; Johnson, R. D.; ...
2015-10-07
The magnetic ground state of two isostructural coordination polymers, (i) the quasi-two-dimensional S=1/2 square-lattice antiferromagnet [Cu(HF 2)(pyrazine) 2]SbF 6 and (ii) a related compound [Co(HF 2)(pyrazine)2]SbF6, was examined with neutron powder diffraction measurements. We find that the ordered moments of the Heisenberg S=1/2 Cu(II) ions in [Cu(HF 2)(pyrazine) 2]SbF 6 are 0.6(1)μ b, while the ordered moments for the Co(II) ions in [Co(HF 2)(pyrazine) 2]SbF 6 are 3.02(6)μ b. For Cu(II), this reduced moment indicates the presence of quantum fluctuations below the ordering temperature. We also show from heat capacity and electron spin resonance measurements that due to the crystalmore » electric field splitting of the S=3/2 Co(II) ions in [Co(HF 2)(pyrazine) 2]SbF 6, this isostructual polymer also behaves as an effective spin-half magnet at low temperatures. Furthermore, the Co moments in [Co(HF 2)(pyrazine) 2]SbF 6 show strong easy-axis anisotropy, neutron diffraction data, which do not support the presence of quantum fluctuations in the ground state, and heat capacity data, which are consistent with 2D or close to 3D spatial exchange anisotropy.« less
Using Ion Exchange Chromatography to Separate and Quantify Complex Ions
ERIC Educational Resources Information Center
Johnson, Brian J.
2014-01-01
Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…
Singh, A V; Sharma, Naresh Kumar; Rathore, Abhay S
2012-01-01
A new composite cation exchanger, tamarind sulphonic acid (TSA) resin has been synthesized. The chemically modified TSA ion exchange resin has been used for the removal and preconcentration of Zn2+, Cd2+, Fe2+, Co2+ and Cu2+ ions in aqueous solution and effluent from the Laxmi steel plant in Jodhpur, India. This type of composite represents a new class of hybrid ion exchangers with good ion exchange capacity, stability, reproducibility and selectivity for toxic metal ions found in effluent from the steel industry. The characterization of the resin was carried out by determining the ion-exchange capacity, elemental analysis, pH titration, Fourier transform infrared spectra and thermal analysis. The distribution coefficients (K(d)) of toxic metal ions were determined in a reference aqueous solution and the steel plant effluent at different pH values; the absorbency of different metal ions on the TSA resin was studied for up to 10 cycles. The adsorption of different metal ions on TSA resin follows the order: Co2+ > Cu2+ > Zn2+ > Fe2+ > Cd2+. The ion exchange capacity of TSA resin is 2.87%.
Nanomodified polymer materials for regenerative heat exchangers
NASA Astrophysics Data System (ADS)
Shchegolkov, Alexander; Shchegolkov, Alexey; Dyachkova, Tatyana
2017-11-01
The paper presents thermophysical properties of nanomodified paraffin mixed with polymers as polyethylene or fluoroplastic, which may be effectively used for the development of heat exchange elements of personal protective equipment. It has been experimentally shown that the heat exchangers based on the nanomodified polymer composites have twofold mass compared to the standard regenerative heat exchanger with comparable dimensions. The best result has been obtained on the basis of composite containing polyethylene and paraffin modified with CNTs, which thermal conductivity is 1.6 times higher than forconventional paraffin. The application of carbon nanostructures as the modifiers of heat storage materials improves cooling efficiency by 14.9-17.9 °C by creating more comfortable conditions for breathing via personal protective equipment.
Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete
Sugama, Toshifumi; Kukacka, Lawrence E.; Horn, William H.
1985-01-01
Quick setting polymer concrete compositions with excellent structural properties are disclosed; these polymer concrete compositions are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate, which may be wet, and with a source of bivalent metallic ions.
Ion-Containing Polymers: Ionomers.
ERIC Educational Resources Information Center
Bazuin, C. G.; Eisenberg, A.
1981-01-01
Demonstrates how the incorporation of relatively low amounts of ionic material into nonionic polymers affects the structure and properties of these polymers. The extent to which properties are altered depends on dielectric constant of the backbone, position and type of ionic group, counterion type, ion concentration, and degree of neutralization.…
Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete
Sugama, T.; Kukacka, L.E.; Horn, W.H.
1981-11-04
Quick setting polymer concrete compositions which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.
X-ray photoelectron study of Si+ ion implanted polymers
NASA Astrophysics Data System (ADS)
Tsvetkova, T.; Balabanov, S.; Bischoff, L.; Krastev, V.; Stefanov, P.; Avramova, I.
2010-11-01
X-ray photoelectron spectroscopy was used to characterize different polymer materials implanted with low energy Si+ ions (E=30 keV, D= 1.1017 cm-2). Two kinds of polymers were studied - ultra-high-molecular-weight poly-ethylene (UHMWPE), and poly-methyl-methacrylate (PMMA). The non-implanted polymer materials show the expected variety of chemical bonds: carbon-carbon, carbon being three- and fourfold coordinated, and carbon-oxygen in the case of PMMA samples. The X-ray photoelectron and Raman spectra show that Si+ ion implantation leads to the introduction of additional disorder in the polymer material. The X-ray photoelectron spectra of the implanted polymers show that, in addition to already mentioned bonds, silicon creates new bonds with the host elements - Si-C and Si-O, together with additional Si dangling bonds as revealed by the valence band study of the implanted polymer materials.
Triggered metal ion release and oxidation: Ferrocene as new mechanophore in polymers.
Di Giannantonio, Michela; Ayer, Mathieu A; Verde-Sesto, Ester; Lattuada, Marco; Weder, Christoph; Fromm, Katharina M
2018-06-13
The introduction of mechanophores into polymers allows transducing mechanical forces into chemical reactions for e.g. self-healing, catalytic activity, or mechanochromic response. Here, the first example of mechanically induced metal ion release from a polymer is reported. Ferrocene (Fc) was incorporated as an Fe-ion releasing mechanophore into poly(methyl acrylate)s (PMAs) and polyurethanes (PUs). Sonication triggered the preferential cleavage of the polymers at the Fc units over other bonds, as shown by a kinetic study of the molar mass distribution of the cleaved Fc-containing and Fc-free reference polymers. The released and oxidized Fe2+ ions can be detected with KSCN to generate the red-colored [Fe(SCN)n(H2O)6-n)](3-n)+ or reacted with K4[Fe(CN)6] to afford Prussian blue. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ion Exchange Formation via Sulfonated Bicomponent Nonwovens
NASA Astrophysics Data System (ADS)
Stoughton, Hannah L.
For many years ion exchange resins were used to: remove heavy metals from water, recover materials from wastewater, and eliminate harmful gases from the air. While use of these resin beads dominates the ion exchange industry, the beads have limitations that should be considered when decisions are made to employ them. For instance, officials must balance the inherent zero sum surface area and porosity of the materials. This series of studies investigates the use of bicomponent nonwovens as a base substrate for producing high surface area ion exchange materials for the removal of heavy metal ions. Functionalized materials were produced in a two-step process: (1) PET/PE spunbond bicomponent fibers were fractured completely, producing the high surface area nonwoven to be used as the base ion exchange material, and (2) the conditions for functionalizing the PET fibers of the nonwoven webs were investigated where an epoxy containing monomer was grafted to the surface followed by sulfonation of the monomer. The functionalization reactions of the PET fibers were monitored based on: weight gain, FTIR, TOF-SIMS, and SEM. Ion exchange properties were evaluated using titration and copper ion removal capacity from test solutions. The relationship between web structure and removal efficiency of the metal ions was defined through a comparison of the bicomponent and homocomponent nonwovens for copper ion removal efficiency. The investigation revealed that utilizing the high surface area, fractured bicomponent nonwoven ion exchange materials with capacities comparable to commercially available ion exchange resins could be produced.
Phosphonic acid based exchange resins
Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato
1995-01-01
An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.
NASA Astrophysics Data System (ADS)
Balachandra, Anagi Manjula
Membrane-based separations are attractive in industrial processes because of their low energy costs and simple operation. However, low permeabilities often make membrane processes uneconomical. Since flux is inversely proportional to membrane thickness, composite membranes consisting of ultrathin, selective skins on highly permeable supports are required to simultaneously achieve high throughput and high selectivity. However, the synthesis of defect-free skins with thicknesses less than 50 nm is difficult, and thus flux is often limited. Layer-by-layer deposition of oppositely charged polyelectrolytes on porous supports is an attractive method to synthesize ultrathin ion-separation membranes with high flux and high selectivity. The ion-transport selectivity of multilayer polyelectrolyte membranes (MPMs) is primarily due to Donnan exclusion; therefore increase in fixed charge density should yield high selectivity. However, control over charge density in MPMs is difficult because charges on polycations are electrostatically compensated by charges on polyanions, and the net charge in the bulk of these films is small. To overcome this problem, we introduced a templating method to create ion-exchange sites in the bulk of the membrane. This strategy involves alternating deposition of a Cu2+-poly(acrylic acid) complex and poly(allylamine hydrochloride) on a porous alumina support followed by removal of Cu2+ and deprotonation to yield free -COO- ion-exchange sites. Diffusion dialysis studies showed that the Cl-/SO42-. Selectivity of Cu2+-templated membranes is 4-fold higher than that of membranes prepared in the absence of Cu2+. Post-deposition cross-linking of these membranes by heat-induced amide bond formation further increased Cl-/SO42- selectivity to values as high as 600. Room-temperature, surface-initiated atom transfer radical polymerization (ATRP) provides another convenient method for formation of ultrathin polymer skins. This process involves attachment of polymerization initiators to a porous alumina support and subsequent polymerization from these initiators. Because ATRP is a controlled polymerization technique, it yields well-defined polymer films with low polydispersity indices (narrow molecular weight distributions). Additionally, this method is attractive because film thickness can be easily controlled by adjusting polymerization time. Gas-permeability data showed that grafted poly(ethylene glycol dimethacrylate) membranes have a CO 2/CH4 selectivity of 20, whereas poly(2-hydroxyethyl methacrylate) (PHEMA) films grown from a surface have negligible selectivity. However, derivatization of PHEMA with pentadecafluorooctanoyl chloride increases the solubility of CO2 in the membrane and results in a CO2/CH4 selectivity of 9. Although composite PHEMA membranes have no significant gas-transport selectivity, diffusion dialysis studies with PHEMA membranes showed moderate ion-transport selectivities. Cross-linking of PHEMA membranes by reaction with succinyl chloride greatly enhanced anion-transport selectivities while maintaining reasonable flux. The selectivities of these systems demonstrate that alternating polyelectrolyte deposition and surface-initiated ATRP are indeed capable of forming ultrathin, defect-free membrane skins that can potentially be modified for specific separations.
Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete
Sugama, T.; Kukacka, L.E.; Horn, W.H.
1983-05-13
Quick setting polymer concrete compositions are described which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.
Hu, Meng-Xin; Li, Xiang; Li, Ji-Nian; Huang, Jing-Jing; Ren, Ge-Rui
2018-02-23
Polymer brushes modified surfaces have been widely used for protein immobilization and isolation. Modification of membranes with polymer brushes increases the surface concentration of affinity ligands used for protein binding. Albumin is one of the transporting proteins and shows a high affinity to bile acids. In this work, the modified membranes with cholic acid-containing polymer brushes can be facilely prepared by the immobilization of cholic acid on the poly(2-hydroxyethyl methacrylate) grafted microporous polypropylene membranes (MPPMs) for affinity adsorption of albumin. ATR/FT-IR and X-ray photoelectron spectroscopy were used to characterize the chemical composition of the modified membranes. Water contact angle measurements were used to analyze the hydrophilic/hydrophobic properties of the membrane surface. The modified MPPMs show a high affinity to albumin and have little non-specific adsorption of hemoglobin. The dynamic binding capacity of albumin in the continous-flow system increases with the cycle number and feed rate as the binding degree of cholic acid is moderate. The highest binding capacity of affinity membranes is about 52.49 g/m 2 membrane, which is about 24 times more than the monolayer binding capacity. These results reveal proteins could be captured in multilayers by the polymer brushes containing affinity ligands similar to the polymer brushes containing ion-exchange groups, which open up the potential of the polymer brushes containing affinity ligands in protein or another components separation. And the cholic acid containing polymer brushes modified membranes has the promising potential for albumin separation and purification rapidly from serum or fermented solution in medical diagnosis and bioseparation. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Subhash; Mohapatra, Y. N.
2017-06-01
We have investigated switch-on drain-source current transients in fully solution-processed thin film transistors based on 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) using cross-linked poly-4-vinylphenol as a dielectric. We show that the nature of the transient (increasing or decreasing) depends on both the temperature and the amplitude of the switching pulse at the gate. The isothermal transients are analyzed spectroscopically in a time domain to extract the degree of non-exponentiality and its possible origin in trap kinetics. We propose a phenomenological model in which the exchange of electrons between interfacial ions and traps controls the nature of the drain current transients dictated by the Fermi level position. The origin of interfacial ions is attributed to the essential fabrication step of UV-ozone treatment of the dielectric prior to semiconductor deposition.
Nakamura, Issei
2014-05-29
We studied the thermodynamic properties of ion solvation in polymer blends and block copolymer melts and developed a dipolar self-consistent field theory for polymer mixtures. Our theory accounts for the chain connectivity of polymerized monomers, the compressibility of the liquid mixtures under electrostriction, the permanent and induced dipole moments of monomers, and the resultant dielectric contrast among species. In our coarse-grained model, dipoles are attached to the monomers and allowed to rotate freely in response to electrostatic fields. We demonstrate that a strong electrostatic field near an ion reorganizes dipolar monomers, resulting in nonmonotonic changes in the volume fraction profile and the dielectric function of the polymers with respect to those of simple liquid mixtures. For the parameter sets used, the spatial variations near an ion can be in the range of 1 nm or larger, producing significant differences in the solvation energy among simple liquid mixtures, polymer blends, and block copolymers. The solvation energy of an ion depends substantially on the chain length in block copolymers; thus, our theory predicts the preferential solvation of ions arising from differences in chain length.
Abdi, Mahnaz M; Abdullah, Luqman Chuah; Sadrolhosseini, Amir R; Mat Yunus, Wan Mahmood; Moksin, Mohd Maarof; Tahir, Paridah Md
2011-01-01
A new sensing area for a sensor based on surface plasmon resonance (SPR) was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI) conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU) were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+) and Hg(2+) ions. The Pb(2+) ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+) compared to Hg(2+). The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.
Takashima, Yohei; Miras, Haralampos N; Glatzel, Stefan; Cronin, Leroy
2016-06-14
We report examples of crystal surface modification of polyoxometalate open frameworks whereby the use of pyrrole or aniline as monomers leads to the formation of the corresponding polymers via an oxidative polymerization process initiated by the redox active POM scaffolds. Guest-exchange experiments demonstrate that the polymers can finely tune the guest exchange rate and their structural integrity is retained after the surface modifications. In addition, the formation of polyoxometalate-based self-fabricating tubes by the dissolution of Keggin-based network crystals were also modulated by the polymers, allowing a new type of hybrid inorganic polymer with an organic coating to be fabricated.
Investigation of ionic conduction in PEO-PVDF based blend polymer electrolytes
NASA Astrophysics Data System (ADS)
Patla, Subir Kumar; Ray, Ruma; Asokan, K.; Karmakar, Sanat
2018-03-01
We investigate the effect of blend host polymer on solid polymer electrolyte (SPE) films doped with ammonium iodide (NH4I) salt using a variety of experimental techniques. Structural studies on the composite SPEs show that the blending of Poly(ethylene oxide) (PEO)-Poly(vinylidene fluoride) (PVDF) polymers in a suitable ratio enhances the amorphous fraction of the polymer matrix and facilitates fast ion conduction through it. We observe that the addition of a small amount of PVDF in the PEO host polymer enhances the ion - polymer interaction leading to more ion dissociation. As a result, the effective number of mobile charge carriers within the polymer matrix increases. Systematic investigation in these blend SPEs shows that the maximum conductivity (1.01 × 10-3 S/cm) is obtained for PEO - rich (80 wt. % PEO, 20 wt. % PVDF) composites at 35 wt. % NH4I concentration at room temperature. Interestingly, at higher salt concentrations (above 35 wt. %), the conductivity is found to decrease in this system. The reduction of conductivity at higher salt concentrations is the consequence of decrease in the carrier concentration due to the formation of an ion pair and ion aggregates. PVDF-rich compositions (20 wt. % PEO and 80 wt. % PVDF), on the other hand, show a very complex porous microstructure. We also observe a much lower ionic conductivity (maximum ˜ 10-6 S/cm at 15 wt. % salt) in these composite systems relative to PEO-rich composites.
NASA Technical Reports Server (NTRS)
Rembaum, A.; Yen, S. P. S.; Klein, E. (Inventor)
1976-01-01
An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, crosslinked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.
Anisotropic microporous supports impregnated with polymeric ion-exchange materials
Friesen, Dwayne; Babcock, Walter C.; Tuttle, Mark
1985-05-07
Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets.
A review of studies on ion thruster beam and charge-exchange plasmas
NASA Technical Reports Server (NTRS)
Carruth, M. R., Jr.
1982-01-01
Various experimental and analytical studies of the primary beam and charge-exchange plasmas of ion thrusters are reviewed. The history of plasma beam research is recounted, emphasizing experiments on beam neutralization, expansion of the beam, and determination of beam parameters such as electron temperature, plasma density, and plasma potential. The development of modern electron bombardment ion thrusters is treated, detailing experimental results. Studies on charge-exchange plasma are discussed, showing results such as the relationship between neutralizer emission current and plasma beam potential, ion energies as a function of neutralizer bias, charge-exchange ion current collected by an axially moving Faraday cup-RPA for 8-cm and 30-cm ion thrusters, beam density and potential data from a 15-cm ion thruster, and charge-exchange ion flow around a 30-cm thruster. A 20-cm thruster electrical configuration is depicted and facility effects are discussed. Finally, plasma modeling is covered in detail for plasma beam and charge-exchange plasma.
Study of Swift Heavy Ion Modified Conducting Polymer Composites for Application as Gas Sensor
Srivastava, Alok; Singh, Virendra; Dhand, Chetna; Kaur, Manindar; Singh, Tejvir; Witte, Karin; Scherer, Ulrich W.
2006-01-01
A polyaniline-based conducting composite was prepared by oxidative polymerisation of aniline in a polyvinylchloride (PVC) matrix. The coherent free standing thin films of the composite were prepared by a solution casting method. The polyvinyl chloride-polyaniline composites exposed to 120 MeV ions of silicon with total ion fluence ranging from 1011 to 1013 ions/cm2, were observed to be more sensitive towards ammonia gas than the unirradiated composite. The response time of the irradiated composites was observed to be comparably shorter. We report for the first time the application of swift heavy ion modified insulating polymer conducting polymer (IPCP) composites for sensing of ammonia gas.
NASA Astrophysics Data System (ADS)
Galyautdinov, M. F.; Nuzhdin, V. I.; Fattakhov, Ya. V.; Farrakhov, B. F.; Valeev, V. F.; Osin, Yu. N.; Stepanov, A. L.
2016-02-01
We propose to form optical diffractive elements on the surface of poly(methyl methacrylate) (PMMA) by implanting the polymer with silver ions ( E = 30 keV; D = 5.0 × 1014 to 1.5 × 1017 ion/cm2; I = 2 μA/cm2) through a nickel grid (mask). Ion implantation leads to the nucleation and growth of silver nanoparticles in unmasked regions of the polymer. The formation of periodic surface microstructures during local sputtering of the polymer by incident ions was monitored using an optical microscope. The diffraction efficiency of obtained gratings is demonstrated under conditions of their probing with semiconductor laser radiation in the visible spectral range.
Self-consistent field theory of polymer-ionic molecule complexation.
Nakamura, Issei; Shi, An-Chang
2010-05-21
A self-consistent field theory is developed for polymers that are capable of binding small ionic molecules (adsorbates). The polymer-ionic molecule association is described by Ising-like binding variables, C(i) ((a))(kDelta)(=0 or 1), whose average determines the number of adsorbed molecules, n(BI). Polymer gelation can occur through polymer-ionic molecule complexation in our model. For polymer-polymer cross-links through the ionic molecules, three types of solutions for n(BI) are obtained, depending on the equilibrium constant of single-ion binding. Spinodal lines calculated from the mean-field free energy exhibit closed-loop regions where the homogeneous phase becomes unstable. This phase instability is driven by the excluded-volume interaction due to the single occupancy of ion-binding sites on the polymers. Moreover, sol-gel transitions are examined using a critical degree of conversion. A gel phase is induced when the concentration of adsorbates is increased. At a higher concentration of the adsorbates, however, a re-entrance from a gel phase into a sol phase arises from the correlation between unoccupied and occupied ion-binding sites. The theory is applied to a model system, poly(vinyl alcohol) and borate ion in aqueous solution with sodium chloride. Good agreement between theory and experiment is obtained.
Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won
2016-01-01
Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842
Kanaujia, Pankaj K; Tak, Vijay; Pardasani, Deepak; Gupta, A K; Dubey, D K
2008-03-28
The analysis of nitrogen containing amino alcohols, which are the precursors and degradation products of nitrogen mustards and nerve agent VX, constitutes an important aspect for verifying the compliance to the CWC (Chemical Weapons Convention). This work devotes on the development of solid-phase extraction method using silica- and polymer-based SCX (strong cation-exchange) and MCX (mixed-mode strong cation-exchange) cartridges for N,N-dialkylaminoethane-2-ols and alkyl N,N-diethanolamines, from water. The extracted analytes were analyzed by GC-MS (gas chromatography-mass spectrometry) in the full scan and selected ion monitoring modes. The extraction efficiencies of SCX and MCX cartridges were compared, and results revealed that SCX performed better. Extraction parameters, such as loading capacity, extraction solvent, its volume, and washing solvent were optimized. Best recoveries were obtained using 2 mL methanol containing 10% NH(4)OH and limits of detection could be achieved up to 5 x 10(-3) microg mL(-1) in the selected ion monitoring mode and 0.01 microg mL(-1) in full scan mode. The method was successfully employed for the detection and identification of amino alcohol present in water sample sent by Organization for Prohibition of Chemical Weapons (OPCW) in the official proficiency tests. The method was also applied to extract the analytes from human plasma. The SCX cartridge showed good recoveries of amino alcohols from human plasma after protein precipitation.
Electronic and Ionic Transport in Processable Conducting Polymers
1991-05-28
doping with nitrosonium fluoborate. 6. Polypyrrole containing luminescent ions has been shown to be useful as in-situ probes of ion transport during...blends, ion transport, fibers, theoretical calculations ABSTRACT (Continue on reverse if necessary and identify by block number) A summary of the research...polymer/dopant ion interactions, symmereically and asymmetrically substituted poly(di-2-heterocycle-2,5-disubstitutedphenylenes), poly(5
Phosphonic acid based exchange resins
Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.
1995-09-12
An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.
Mechanical and chemical effects of ion-texturing biomedical polymers
NASA Technical Reports Server (NTRS)
Weigand, A. J.; Cenkus, M. A.
1979-01-01
To determine whether sputter etching may provide substantial polymer surface texturing with insignificant changes in chemical and mechanical properties, an 8 cm beam diameter, electron bombardment, argon ion source was used to sputter etch (ion-texture process) nine biomedical polymers. The materials included silicone rubber, 32% carbon impregnated polyolefin, polyoxymethylene, polytetrafluoroethylene, ultrahigh molecular weight (UHMW) polyethylene, UHMW polyethylene with carbon fibers (10%), and several polyurethanes (bioelectric, segmented, and cross linked). Ion textured microtensile specimens of each material except UHMW polyethylene and UHMW polyethylene with 10% carbon fibers were used to determine the effect of ion texturing on tensile properties. Scanning electron microscopy was used to determine surface morphology changes, and electron spectroscopy for chemical analysis was used to analyze the near surface chemical changes that result from ion texturing. Ion energies of 500 eV with beam current densities ranging from 0.08 to 0.19 mA/sq cm were used to ion texture the various materials. Standard microtensile specimens of seven polymers were exposed to a saline environment for 24 hours prior to and during the tensile testing. The surface chemical changes resulting from sputter etching are minimal in spite of the often significant changes in the surface morphology.
Bio-inspired network optimization in soft materials — Insights from the plant cell wall
NASA Astrophysics Data System (ADS)
Vincent, R. R.; Cucheval, A.; Hemar, Y.; Williams, M. A. K.
2009-01-01
The dynamic-mechanical responses of ionotropic gels made from the biopolymer pectin have recently been investigated by microrheological experiments and found to exhibit behaviour indicative of semi-flexible polymer networks. In this work we investigate the gelling behaviour of pectin systems in which an enzyme (pectinmethylesterase, PME) is used to liberate ion-binding sites on initially inert polymers, while in the presence of ions. This is in contrast to the previous work, where it was the release of ions (rather than ion-binding groups) that was controlled and the polymers had pre-existing cross-linkable moieties. In stark contrast to the semi-flexible network paradigm of biological gels and the previous work on pectin, the gels studied herein exhibit the properties of chemically cross-linked networks of flexible polymers.
Ohm's Law, Batteries, and the Clean Energy Landscape
NASA Astrophysics Data System (ADS)
Balsara, Nitash
The need for creating safe electrolytes for lithium batteries is significant given the continued safety problems associated with current lithium-ion batteries. Nonflammable polymer electrolytes offer a possible solution but the rate of lithium ion transport is too low for practical applications. In this talk, I will discuss some of the fundamental factors that limit ion transport in polymers. Polymer electrolytes obey Ohm's Law, i.e. in the limit of small applied potentials, the current generated at steady state is proportional to the applied potential. Factors that determine the current generated will be determined using the continuum theory of Newman. Independent measurements of ion diffusion by pulsed-field gradient NMR will also be presented. The talk will end with a discussion of the possibility of commercializing all-solid batteries with polymer electrolytes.
NASA Astrophysics Data System (ADS)
Min, Jae-Ho; Lee, Gyeo-Re; Lee, Jin-Kwan; Moon, Sang Heup; Kim, Chang-Koo
2004-05-01
The dependences of etch rates on the angle of ions incident on the substrate surface in four plasma/substrate systems that constitute the advanced Bosch process were investigated using a Faraday cage designed for the accurate control of the ion-incident angle. The four systems, established by combining discharge gases and substrates, were a SF6/poly-Si, a SF6/fluorocarbon polymer, an O2/fluorocarbon polymer, and a C4F8/Si. In the case of SF6/poly-Si, the normalized etch rates (NERs), defined as the etch rates normalized by the rate on the horizontal surface, were higher at all angles than values predicted from the cosine of the ion-incident angle. This characteristic curve shape was independent of changes in process variables including the source power and bias voltage. Contrary to the earlier case, the NERs for the O2/polymer decreased and eventually reached much lower values than the cosine values at angles between 30° and 70° when the source power was increased and the bias voltage was decreased. On the other hand, the NERs for the SF6/polymer showed a weak dependence on the process variables. In the case of C4F8/Si, which is used in the Bosch process for depositing a fluorocarbon layer on the substrate surface, the deposition rate varied with the ion incident angle, showing an S-shaped curve. These characteristic deposition rate curves, which were highly dependent on the process conditions, could be divided into four distinct regions: a Si sputtering region, an ion-suppressed polymer deposition region, an ion-enhanced polymer deposition region, and an ion-free polymer deposition region. Based on the earlier characteristic angular dependences of the etch (or deposition) rates in the individual systems, ideal process conditions for obtaining an anisotropic etch profile in the advanced Bosch process are proposed. .
NASA Astrophysics Data System (ADS)
Singare, P. U.
2014-07-01
Radioanalytical technique using 131I and 82Br was employed to evaluate organic based anion exchange resins Tulsion A-30 and Indion-930A. The evaluation was based on performance of these resins during iodide and bromide ion-isotopic exchange reactions. It was observed that for iodide ion-isotopic exchange reaction by using Tulsion A-30 resin, the values of specific reaction rate (min-1), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K d were 0.238, 0.477, 0.114, and 11.0, respectively, which was higher than 0.155, 0.360, 0.056, and 7.3, respectively as that obtained by using Indion-930A resins under identical experimental conditions of 40.0°C, 1.000 g of ion exchange resins and 0.003 M labeled iodide ion solution. Also at a constant temperature of 40.0°C, as the concentration of labeled iodide ion solution increases 0.001 to 0.004 M, for Tulsion A-30 resins the percentage of iodide ions exchanged increases from 59.0 to 65.1%, and from 46.4 to 48.8% for Indion-930A resins under identical experimental conditions. The identical trend was observed for both the resins during bromide ion-isotopic exchange reactions. The overall results indicate that under identical experimental conditions, Tulsion A-30 show superior performance over Indion-930A resins. The results of present experimental work have demonstrated that the radioanalytical technique used here can be successfully applied for characterization of different ion exchange resins so as to evaluate their performance under various process parameters.
Anisotropic microporous supports impregnated with polymeric ion-exchange materials
Friesen, D.; Babcock, W.C.; Tuttle, M.
1985-05-07
Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets. 5 figs.
ERIC Educational Resources Information Center
Foster, N.; And Others
1985-01-01
Describes an experiment in which students use ion exchange chromatography to separate a mixture of chloro complexes of transition metal ions and then use spectrophotometry to define qualitatively the efficiency of the ion exchange columns. Background information, materials needed, and procedures used are included. (JN)
El Maghraby, Gamal Mohamed; Elzayat, Ehab Mostafa; Alanazi, Fars Kaed
2014-03-01
Alginate vehicles are capable of forming a gel matrix in situ when they come into contact with gastric medium in the presence of calcium ions. However, the gel structure is pH dependent and can break after gastric emptying, leading to dose dumping. The aim of this work was to develop modified in situ gelling alginate formulations capable of sustaining dextromethorphan release throughout the gastrointestinal tract. Alginate solution (2 %, m/m) was used as a vehicle for the tested formulations. Solid matrix of the drug and Eudragit S 100 was prepared by dissolving the drug and polymer in acetone. The organic solvent was then evaporated and the deposited solid matrix was micronized, sieved and dispersed in alginate solution to obtain candidate formulations. The release behavior of dextromethorphan was monitored and evaluated in a medium simulating the gastric and intestinal pH. Drug-polymer compatibility and possible solid-state interactions suggested physical interaction through hydrogen bonding between the drug and the polymer. A significant decrease in the rate and extent of dextromethorphan release was observed with increasing Eudragit S 100 concentration in the prepared particles. Most formulations showed sustained release profiles similar to that of a commercial sustained-release liquid based on ion exchange resin. The release pattern indicated strict control of drug release both under gastric and intestinal conditions, suggesting the potential advantage of using a solid dispersion of drug-Eudragit S 100 to overcome the problem of dose dumping after the rupture of the pH dependent alginate gels.
Process for disposing of radioactive wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grantham, L.F.; Gray, R.L.; McCoy, L.R.
1988-05-03
A process for removing water from the pores of spent, contaminated radioactive ion exchange resins and encasing radionuclides entrapped within the pores of the resins, the process is described consisting essentially of the sequential steps of: (a) heating the spent ion exchange resins at a temperature of from about 100/sup 0/C to about 150/sup 0/C to remove water from within and fill the pores of the ion exchange resins by heating the ion exchange resins for from about 46 to about 610 hours at a temperature at which the pores of the resins are sealed while avoiding any fusing ormore » melting of the ion exchange resins to encase radionuclides contained within the resins; and (b) cooling the resins to obtain dry, flowable ion exchange resins having radionuclides encased within sealed polymeric spheres.« less
Sikora, Karol; Neubauer, Damian; Jaśkiewicz, Maciej; Kamysz, Wojciech
2018-01-01
In view of the increasing interest in peptides in various market sectors, a stronger emphasis on topics related to their production has been seen. Fmoc-based solid phase peptide synthesis, although being fast and efficient, provides final products with significant amounts of trifluoroacetate ions in the form of either a counter-ion or an unbound impurity. Because of the proven toxicity towards cells and peptide activity inhibition, ion exchange to more biocompatible one is purposeful. Additionally, as most of the currently used counter-ion exchange techniques are time-consuming and burdened by peptide yield reduction risk, development of a new approach is still a sensible solution. In this study, we examined the potential of peptide counter-ion exchange using non-aqueous organic solvents saturated with HCl. Counter-ion exchange of a model peptide, citropin 1.1 (GLFDVIKKVASVIGGL-NH 2 ), for each solvent was conducted through incubation with subsequent evaporation under reduced pressure, dissolution in water and lyophilization. Each exchange was performed four times and compared to a reference method-lyophilization of the peptide from an 0.1 M HCl solution. The results showed superior counter-ion exchange efficiency for most of the organic solutions in relation to the reference method. Moreover, HCl-saturated acetonitrile and tert -butanol provided a satisfying exchange level after just one repetition. Thus, those two organic solvents can be potentially introduced into routine peptide counter-ion exchange.
Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes
NASA Technical Reports Server (NTRS)
Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha
2012-01-01
Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.
NASA Astrophysics Data System (ADS)
Zhang, A. Ping; He, Sailing; Kim, Kyoung Tae; Yoon, Yong-Kyu; Burzynski, Ryszard; Samoc, Marek; Prasad, Paras N.
2008-11-01
We report on the fabrication of nanoparticle/polymer submicron structures by combining holographic lithography and reactive ion etching. Silica nanoparticles are uniformly dispersed in a (SU8) polymer matrix at a high concentration, and in situ polymerization (cross-linking) is used to form a nanoparticle/polymer composite. Another photosensitive SU8 layer cast upon the nanoparticle/SU8 composite layer is structured through holographic lithography, whose pattern is finally transferred to the nanoparticle/SU8 layer by the reactive ion etching process. Honeycomb structures in a submicron scale are experimentally realized in the nanoparticle/SU8 composite.
Comparison of monomode KTiOPO4 waveguide formed by C3+ ion implantation and Rb+ ion exchange
NASA Astrophysics Data System (ADS)
Cui, Xiao-Jun; Wang, Liang-Ling
2017-02-01
In this work, we report on the formation and characterization of monomode KTiOPO4 waveguide at 1539 nm by 6.0 MeV C3+ ion implantation with the dose of 2×1015 ions/cm2 and Rb+-K+ ion exchange, respectively. The relative intensity of light as a function of effective refractive index of TM modes at 633 nm and 1539 nm for KTiOPO4 waveguide formed by two different methods were compared with the prism coupling technique. The refractive index (nz) profile for the ion implanted waveguide was reconstructed by reflectivity calculation method, and one for the ion exchanged waveguide was by inverse Wentzel-Kramers-Brillouin. The nuclear energy loss versus penetration depth of the C3+ ions implantation into KTiOPO4 was simulated using the Stopping Range of Ions in Matter software. The Rutherford Backscattering Spectrometry spectrum of KTiOPO4 waveguide was analyzed after ions exchanged. The results showed that monomode waveguide at 1539 nm can be formed by ion implantation and Rb+ -K+ ion exchange, respectively.
Membranes in Lithium Ion Batteries
Yang, Min; Hou, Junbo
2012-01-01
Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed. PMID:24958286
Solution dewatering with concomitant ion removal
Peterson, Eric S.; Marshall, Douglas W.; Stone, Mark L.
2003-08-05
One of the biggest needs in the separations and waste handling and reduction area is a method for dewatering ion-containing solutions. Unexpectedly, it has been found that phosphazene polymers can discriminate between water and metal ions, allowing water to pass through the membrane while retaining the ions. This unexpected result, along with the inherent chemical and thermal stability of the phosphazene polymers, yields a powerful tool for separating and dewatering metal-ion-containing solutions.
NASA Technical Reports Server (NTRS)
Komatsu, G. K.; Stellen, J. M., Jr.
1976-01-01
Measurements have been made of the high energy thrust ions, (Group I), high angle/high energy ions (Group II), and high angle/low energy ions (Group IV) of a mercury electron bombardment thruster in the angular divergence range from 0 deg to greater than 90 deg. The measurements have been made as a function of thrust ion current, propellant utilization efficiency, bombardment discharge voltage, screen and accelerator grid potential (accel-decel ratio) and neutralizer keeper potential. The shape of the Group IV (charge exchange) ion plume has remained essentially fixed within the range of variation of the engine operation parameters. The magnitude of the charge exchange ion flux scales with thrust ion current, for good propellant utilization conditions. For fixed thrust ion current, charge exchange ion flux increases for diminishing propellant utilization efficiency. Facility effects influence experimental accuracies within the range of propellant utilization efficiency used in the experiments. The flux of high angle/high energy Group II ions is significantly diminished by the use of minimum decel voltages on the accelerator grid. A computer model of charge exchange ion production and motion has been developed. The program allows computation of charge exchange ion volume production rate, total production rate, and charge exchange ion trajectories for "genuine" and "facilities effects" particles. In the computed flux deposition patterns, the Group I and Group IV ion plumes exhibit a counter motion.
Precise spectroscopic analysis of solar-type stars with moderate and fast rotation
NASA Astrophysics Data System (ADS)
Tsantaki, Maria
In the present work the performance and applicability of the thin mercury film electrode (TMFE) in the dynamic speciation of trace metals was investigated. Two different electroanalytical stripping techniques were used: the classical anodic stripping voltammetry (ASV) and a recent developed technique, scanning stripping chronopotentiometry (SSCP). The ion-exchange and the mass transport features of novel mixed coatings of two sulfonated cation-exchange polymers with dissimilar characteristics, Nafion (NA) and poly(sodium 4-styrenesulfonate) (PSS) were evaluated, prior to its application in the field of trace metal analysis. Suitable NA-PSS polymer coatings could be used in the modification of TMFE, presenting a high sensitivity, reproducibility, mechanical stability and adequate antifouling properties in the ASV determination of trace metal cations in complex media. Also the features of the PSS polyelectrolyte layers for ion-exchange voltammetry (IEV) were evaluated. The goal was to search for the best conditions to obtain stable PSS coated electrodes, which could present high negative charge densities in order to enhance the electrostatic accumulation of cations within the film, thus enlarging the ASV signal. The applicability and performance of the TMFE in the trace metal speciation studies, by SSCP, were for the first time exploited. The optimized TMFE presented a high sensitivity and resolution, being an excellent complement to the conventional mercury electrodes and could be use for 1-day term with no significant variation in the SCP analytical signal and no apparent degradation. The calculated SSCP curves were in excellent agreement with experimental data at the TMFE and the stability constant (K), calculated from the shift in the SSCP half-wave potential, of two labile metal-complex systems were in good agreement with the ones obtained using the conventional Hanging mercury drop electrode (HMDE) and those predicted by theory. Additionally, the experimental lability diagnosis inherent to the SSCP technique was validated and a rigorous quantification of the lability degree was made. Due to the well defined hydrodynamic conditions at the thin mercury film rotating disk electrode (TMF-RDE), during the deposition step, this electrode is quite valuable in the determination of kinetic parameters, like the association rate constants (ka).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Z.; Anthony, R.G.; Miller, J.E.
1997-06-01
An equilibrium multicomponent ion exchange model is presented for the ion exchange of group I metals by TAM-5, a hydrous crystalline silicotitanate. On the basis of the data from ion exchange and structure studies, the solid phase is represented as Na{sub 3}X instead of the usual form of NaX. By using this solid phase representation, the solid can be considered as an ideal phase. A set of model ion exchange reactions is proposed for ion exchange between H{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, and Cs{sup +}. The equilibrium constants for these reactions were estimated from experiments with simplemore » ion exchange systems. Bromley`s model for activity coefficients of electrolytic solutions was used to account for liquid phase nonideality. Bromley`s model parameters for CsOH at high ionic strength and for NO{sub 2}{sup {minus}} and Al(OH){sub 4}{sup {minus}} were estimated in order to apply the model for complex waste simulants. The equilibrium compositions and distribution coefficients of counterions were calculated for complex simulants typical of DOE wastes by solving the equilibrium equations for the model reactions and material balance equations. The predictions match the experimental results within 10% for all of these solutions.« less
Molecular dynamics simulation of low dielectric constant polymer electrolytes
NASA Astrophysics Data System (ADS)
Wheatle, Bill; Lynd, Nathaniel; Ganesan, Venkat
Recent experimental studies measured the ionic conductivities of a series of poly(glycidyl ether)s with varying neat dielectric constants (ɛ), viscosities (η), and glass transition temperatures (Tg), as hosts for lithium bistrifluoromethanesulfonimide (LiTFSI) salt. In such a context, it was demonstrated that the ionic conductivity of these polymer electrolytes was a function of ɛ rather than Tg or η, suggesting that there may exist regimes in which ionic conductivity is not limited by slow segmental dynamics but rather by low ionic dissociation. Motivated by such results, we used atomistic molecular dynamics to study the structure and transport characteristics of the same set of host polymers. We found that the coordination number of TFSI- about Li+ in the first solvation shell and the total fraction of free ions increased as a function of ɛ, implying the polymer hosts enhanced ion dissociation. In addition, we found that increasing the dielectric constant of the host polymer enhanced self-correlated ion transport, as evidenced by an increase in the diffusion coefficients of each ion species. Overall, we confirmed that limited ion dissociation in low- ɛ polymer electrolyte hosts hampers ionic conductivity. We would like to thank the National Science Foundation Graduate Research Fellowship Program for funding this research endeavor.
Effets optiques et structurels de l'implantation ionique dans des couches minces polymeres
NASA Astrophysics Data System (ADS)
Cottin, Pierre
The main goal of this work is to highlight the effect of ion implantation---a widely spread technique to modify chemical, electrical or optical properties of materials---on the third order nonlinear optical properties (chi (3)) of polymers. This study was limited to four polymers (PMMA, PVK, PVA, CA) for which we developed a fabrication process to obtain high optical quality thin films and controlled thickness compatible with ion implantation depth. Moreover, these polymers show different chemical structures and have in common to have very low nonlinear optical properties. Two faces of the problem were studied. First, the chemical structure of these polymers was characterized using ultraviolet and infrared spectroscopy before and after ion implantation and then was compared with which of intrinsic nonlinear optical polymers. These analysis have clearly shown that from one hand, ion implantation leads to a great number of bond breaks but from the other hand, it creates a high concentration of conjugated bonds characteristic of nonlinear optical polymers. Second, the third order nonlinear optical properties of ion implanted polymers were measured by nonlinear waveguide coupling and by third harmonic generation. For the first method, the coupling function was performed by a diffraction grating etched in a glass substrate whose fabrication process was developed in this particular case. In both cases, the used laser wave-length was 1064 nm with pulse duration of 30 ps and 5 ns respectively. The corresponding modelization for each of these techniques was established and numerically implemented. Both techniques have shown an increase of chi(3) for these polymers after ion implantation but however, they can not reach the performance of chemically designed nonlinear optical polymers. The best results were obtained for 50 keV helium implanted PMMA given |chi(3)(-3o; o, o, o)| = 7.2 x 10-21 m2.V-2 which is six time greater than the pristine material.
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)
1980-01-01
An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)
1977-01-01
An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.
NASA Astrophysics Data System (ADS)
Yang, Ruidong
Microporous zeolite membranes have been widely studied for molecular separations based on size exclusion or preferential adsorption-diffusion mechanisms. The MFI-type zeolite membranes were also demonstrated for brine water desalination by molecular sieving effect. In this research, the pure silica MFI-type zeolite (i.e. silicalite) membrane has been for the first time demonstrated for selective permeation of hydrated proton (i.e. H3O+) in acidic electrolyte solutions. The silicalite membrane allows for permeation of H 3O+ ions, but is inaccessible to the large hydrated multivalent vanadium ions due to steric effect. The silicalite membrane has been further demonstrated as an effective ion separator in the all-vanadium redox flow battery (RFB).The silicalite is nonionic and its proton conductivity relies on the electric field-driven H3O+ transport through the sub nanometer-sized pores under the RFB operation conditions. The silicalite membrane displayed a significantly reduced self-discharge rate because of its high proton-to-vanadium ion transport selectivity. However, the nonionic nature of the silicalite membrane and very small diffusion channel size render low proton conductivity and is therefore inefficient as ion exchange membranes (IEMs) for practical applications. The proton transport efficiency may be improved by reducing the membrane thickness. However, the zeolite thin films are extremely fragile and must be supported on mechanically strong and rigid porous substrates. In this work, silicalite-Nafion composite membranes were synthesized to achieve a colloidal silicalite skin on the Nafion thin film base. The "colloidal zeolite-ionic polymer" layered composite membrane combines the advantages of high proton-selectivity of the zeolite layer and the mechanical flexibility and low proton transport resistance of the ionic polymer membrane. The composite membrane exhibited higher proton/vanadium ion separation selectivity and lower electrical resistance than the commercial Nafion 117 membrane. The high proton transport selectivity is a result of the molecular sieving effect between the H3O+ and multivalent vanadium ions by the zeolitic pores; thus the zeolite particles significantly reduced the effective membrane surface area for vanadium ion permeation. The low resistance of the composite membrane can be attributed to the reduced thickness of the Nafion base film and the thinness of the colloidal silicalite top layer. The composite membrane outperformed the Nafion 117 membrane in the vanadium RFB operation in terms of the overall charge-discharge energy efficiency. Efforts have been made in further investigation of ion and molecular transport diffusivity in the polycrystalline silicalite film using zeolite-coated optical fiber interferometers. A physical model has been established for analyzing the molecular diffusivity in the zeolite layer based on the temporal responses of the optical interferometric signals during the transient process of molecular sorption. Experiments were first carried out to study the diffusivity of isobutane to evaluate the effectiveness of the proposed optical method. The isobutane diffusivities in silicalite measured by this method were in good agreement with the values reported in literature. The zeolite coated fiber optic interferometer was however ineffective in monitoring ion sorption or ion exchange in the silicalite films. It is suggested that more sensitive fiber optic devices are needed for studying the ion diffusion.
Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cells.
Zheng, Weiqing; Wang, Liang; Deng, Fei; Giles, Stephen A; Prasad, Ajay K; Advani, Suresh G; Yan, Yushan; Vlachos, Dionisios G
2017-09-04
Proton conductivity of the polymer electrolyte membranes in fuel cells dictates their performance and requires sufficient water management. Here, we report a simple, scalable method to produce well-dispersed transition metal carbide nanoparticles. We demonstrate that these, when added as an additive to the proton exchange Nafion membrane, provide significant enhancement in power density and durability over 100 hours, surpassing both the baseline Nafion and platinum-containing recast Nafion membranes. Focused ion beam/scanning electron microscope tomography reveals the key membrane degradation mechanism. Density functional theory exposes that OH• and H• radicals adsorb more strongly from solution and reactions producing OH• are significantly more endergonic on tungsten carbide than on platinum. Consequently, tungsten carbide may be a promising catalyst in self-hydrating crossover gases while retarding desorption of and capturing free radicals formed at the cathode, resulting in enhanced membrane durability.The proton conductivity of polymer electrolyte membranes in fuel cells dictates their performance, but requires sufficient water management. Here, the authors report a simple method to produce well-dispersed transition metal carbide nanoparticles as additives to enhance the performance of Nafion membranes in fuel cells.
Chemically Modified Polyvinyl Chloride for Removal of Thionine Dye (Lauth’s Violet)
Silva, Cleuzilene V.; Royer, Betina; Rodrigues Filho, Guimes; Cerqueira, Daniel A.; Assunção, Rosana M. N.
2017-01-01
The chemical modification of hydrophobic polymer matrices is an alternative way to elchange their surface properties. The introduction of sulfonic groups in the polymer changes the surface properties such as adhesion, wettability, catalytic ability, and adsorption capacity. This work describes the production and application of chemically modified polyvinyl chloride (PVC) as adsorbent for dyes removal. Chemical modification of PVC was evaluated by infrared spectroscopy and elemental analysis, which indicated the presence of sulfonic groups on PVC. The chemically modified PVC (PVCDS) showed an ion exchange capacity of 1.03 mmol−1, and efficiently removed the thionine dye (Lauth’s violet) from aqueous solutions, reaching equilibrium in 30 min. The adsorption kinetics was better adjusted for a pseudo second order model. This result indicates that the adsorption of thionine onto PVCDS occurs by chemisorption. Among the models for the state of equilibrium, SIPS and Langmuir exhibited the best fit to the experimental results and PVCDS showed high adsorption capacities (370 mg−1). Thus, it is assumed that the system presents homogeneous characteristics to the distribution of active sites. The modification promoted the formation of surface characteristics favorable to the dye adsorption by the polymer. PMID:29137158
Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tawfic, A.F.; Dickson, S.E.; Kim, Y.
2015-03-15
Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active filmsmore » (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.
Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds viamore » a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.« less
Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; ...
2015-07-10
Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds viamore » a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.« less
2015-01-01
Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials. PMID:27162971
New Approach To Produce Water Free of Bacteria, Viruses, and Halogens in a Recyclable System▿
Ahmed, Abd El-Shafey I.; Cavalli, Gabriel; Bushell, Michael E.; Wardell, John N.; Pedley, Steve; Charles, Katarina; Hay, John N.
2011-01-01
The antimicrobial activity of a new cross-linked N-halamine polymer against bacteria and viruses was evaluated. The polymer achieved a 9-log10 reduction of bacteria (both Escherichia coli and Staphylococcus aureus) in 1.5 h and a 5-log10 reduction of bacteriophage PRD1 in 3 h. At the same time, the ability of the nonhalogenated polymer to trap halide ions was examined. The polymer was incorporated into a multifiltration system to study the ability to produce water free of bacteria, viruses, and halide ions. The antimicrobial activity, useful lifetime, halide ion level, and recycling possibilities of the system were quantified on a laboratory scale. A design for a large-scale multifiltration system based on this polymer is proposed. PMID:21115711
Selection of new Kynar-based electrolytes for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Christie, Alasdair M.; Christie, Lynn; Vincent, Colin A.
New electrolyte solution compositions have been identified for use in lithium-ion batteries after gelling with an appropriate quantity of Kynar polymer. Since the Li + conducting medium is largely the liquid electrolyte component, the assessment of these solutions as suitable lithium-ion cell candidates were investigated before adding the polymer. Selected electrolyte solutions were then used in the preparation of polymer gels. The specific conductivities of Kynar-based gels were determined as a function of salt concentration and polymer concentration. Optimised self-supporting polymer films, based on mixtures of ethylene carbonate (EC), ethylmethyl carbonate (EMC) and lithium hexafluorophosphate (LiPF 6) or lithium tetrafluoroborate (LiBF 4), showed good high current density cycling performance when used as separators in coke and Li 1- xMn 2O 4 (spinel) half-cells.
Thermoswitchable Janus Gold Nanoparticles with Stimuli-Responsive Hydrophilic Polymer Brushes.
Niu, Xiaoqin; Ran, Fen; Chen, Limei; Lu, Gabriella Jia-En; Hu, Peiguang; Deming, Christopher P; Peng, Yi; Rojas-Andrade, Mauricio D; Chen, Shaowei
2016-05-03
Well-defined thermoswitchable Janus gold nanoparticles with stimuli-responsive hydrophilic polymer brushes were fabricated by combining ligand exchange reactions and the Langmuir technique. Stimuli-responsive polydi(ethylene glycol) methyl ether methacrylate was prepared by addition-fragmentation chain-transfer polymerization. The polymer brushes were then anchored onto the nanoparticle surface by interfacial ligand exchange reactions with hexanethiolate-protected gold nanoparticles, leading to the formation of a hydrophilic (polymer) hemisphere and a hydrophobic (hexanethiolate) one. The resulting Janus nanoparticles showed temperature-switchable wettability, hydrophobicity at high temperatures, and hydrophilicity at low temperatures, due to thermally induced conformational transition of the polymer ligands. The results further highlight the importance of interfacial engineering in the deliberate functionalization of nanoparticle materials.
A new configuration of membrane stack for retrieval of nickel absorbed in resins*
Chen, Xue-fen; Wu, Zu-cheng
2005-01-01
A new configuration integrated ion exchange effect with both electro-migration and electrochemical reaction in a single cell was developed to effectively retrieve metal ions from simulated wastewater using ion exchange resins without additive chemicals. By simply assembling cation exchange resins and anion exchange resins separated by homogeneous membranes, we found that the system will always be acidic in the concentrate compartment so that ion exchange resins could be in-situ regenerated without hydroxide precipitation. Such a realizable design will be really suitable for wastewater purification. PMID:15909341
Charged particle measurements on a 30-CM diameter mercury ion engine thrust beam
NASA Technical Reports Server (NTRS)
Sellen, J. M., Jr.; Komatsu, G. K.; Hoffmaster, D. K.; Kemp, R. F.
1974-01-01
Measurements of both thrust ions and charge exchange ions were made in the beam of a 30 centimeter diameter electron bombardment mercury ion thruster. A qualitative model is presented which describes magnitudes of charge exchange ion formation and motions of these ions in the weak electric field structure of the neutralized thrust beam plasma. Areas of agreement and discrepancy between observed and modeled charge exchange properties are discussed.
Ultrafiltration characteristics of glucose polymers with low polydispersity.
Leypoldt, John K; Hoff, Catherine M; Piscopo, Dean; Carr, Seraya N; Svatek, Jessica M; Holmes, Clifford J
2013-01-01
Icodextrin, a glucose polymer with a polydispersity [ratio of weight-average molecular weight (Mw) to number-average molecular weight] of approximately 2.6, has been shown, compared with glucose, to provide superior ultrafiltration (UF) efficiency [ratio of UF to carbohydrate (CHO) absorbed] when used as an osmotic agent during a long-dwell peritoneal dialysis exchange. In an experimental rabbit model, we evaluated the effect of Mw on the UF and UF efficiency of glucose polymers with low polydispersity. A crossover trial in female New Zealand White rabbits (2.20 - 2.65 kg) with surgically implanted peritoneal catheters evaluated two glucose polymers at nominal concentrations of 7.5 g/dL: a 6K polymer (Mw: 6.4 kDa; polydispersity: 2.3) and a 19K polymer (Mw: 18.8 kDa; polydispersity: 2.0). Rabbits were randomized to receive either the 6K (n = 11) or the 19K (n = 12) solution during the first exchange (40 mL/kg body weight). The alternative solution was evaluated in a second exchange 3 days later. During each 4-hour dwell, the UF and total glucose polymer CHO absorbed were determined. The UF was higher for the 6K (p < 0.0001) than for the 19K polymer (mean ± standard deviation: 73.6 ± 30.8 mL vs. 43.0 ± 20.2 mL), as was the amount of CHO absorbed (42.5% ± 9.8% vs. 35.7% ± 11.0%, p = 0.021). In spite of higher CHO absorption, an approximately 50% higher (p = 0.029) UF efficiency was achieved with the 6K polymer (28.3 ± 18.8 mL/g) than with the 19K polymer (19.0 ± 11.3 mL/g). The results were independent of the order of the experimental exchanges. Glucose polymers with low polydispersity are effective osmotic agents in a rabbit model. The low-Mw polymer was more effective at generating UF and had a higher UF efficiency, but those results came at the expense of the polymer being more readily absorbed from the peritoneal cavity.
Chen, Shaojiang; Popovich, John; Iannuzo, Natalie; Haydel, Shelley E; Seo, Dong-Kyun
2017-11-15
As antibiotic resistance continues to be a major public health problem, antimicrobial alternatives have become critically important. Nanostructured zeolites have been considered as an ideal host for improving popular antimicrobial silver-ion-exchanged zeolites, because with very short diffusion path lengths they offer advantages in ion diffusion and release over their conventional microsized zeolite counterparts. Herein, comprehensive studies are reported on materials characteristics, silver-ion release kinetics, and antibacterial properties of silver-ion-exchanged nanostructured zeolite X with comparisons to conventional microsized silver-ion-exchanged zeolite (∼2 μm) as a reference. The nanostructured zeolites are submicrometer-sized aggregates (100-700 nm) made up of primary zeolite particles with an average primary particle size of 24 nm. The silver-ion-exchanged nanostructured zeolite released twice the concentration of silver ions at a rate approximately three times faster than the reference. The material exhibited rapid antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with minimum inhibitory concentration (MIC) values ranging from 4 to 16 μg/mL after 24 h exposure in various growth media and a minimum bactericidal concentration (MBC; >99.9% population reduction) of 1 μg/mL after 2 h in water. While high concentrations of silver-ion-exchanged nanostructured zeolite X were ineffective at reducing MRSA biofilm cell viability, efficacy increased at lower concentrations. In consideration of potential medical applications, cytotoxicity of the silver-ion-exchanged nanostructured zeolite X was also investigated. After 4 days of incubation, significant reduction in eukaryotic cell viability was observed only at concentrations 4-16-fold greater than the 24 h MIC, indicating low cytotoxicity of the material. Our results establish silver-ion-exchanged nanostructured zeolites as an effective antibacterial material against dangerous antibiotic-resistant bacteria.
Roach, David J.; Dou, Shichen; Colby, Ralph H.; ...
2012-01-06
Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T 1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T 1 values along with the presence of minima in T 1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similarmore » activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though their respective correlation times differ significantly. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments.« less
Computationally Guided Design of Polymer Electrolytes for Battery Applications
NASA Astrophysics Data System (ADS)
Wang, Zhen-Gang; Webb, Michael; Savoie, Brett; Miller, Thomas
We develop an efficient computational framework for guiding the design of polymer electrolytes for Li battery applications. Short-times molecular dynamics (MD) simulations are employed to identify key structural and dynamic features in the solvation and motion of Li ions, such as the structure of the solvation shells, the spatial distribution of solvation sites, and the polymer segmental mobility. Comparative studies on six polyester-based polymers and polyethylene oxide (PEO) yield good agreement with experimental data on the ion conductivities, and reveal significant differences in the ion diffusion mechanism between PEO and the polyesters. The molecular insights from the MD simulations are used to build a chemically specific coarse-grained model in the spirit of the dynamic bond percolation model of Druger, Ratner and Nitzan. We apply this coarse-grained model to characterize Li ion diffusion in several existing and yet-to-be synthesized polyethers that differ by oxygen content and backbone stiffness. Good agreement is obtained between the predictions of the coarse-grained model and long-timescale atomistic MD simulations, thus providing validation of the model. Our study predicts higher Li ion diffusivity in poly(trimethylene oxide-alt-ethylene oxide) than in PEO. These results demonstrate the potential of this computational framework for rapid screening of new polymer electrolytes based on ion diffusivity.
Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz
2008-01-01
Many research studies have been conducted on the use of conjugated polymers in the construction of chemical sensors including potentiometric, conductometric and amperometric sensors or biosensors over the last decade. The induction of conductivity on conjugated polymers by treating them with suitable oxidizing agents won Heeger, MacDiarmid and Shirakawa the 2000 Nobel Prize in Chemistry. Common conjugated polymers are poly(acetylene)s, poly(pyrrole)s, poly(thiophene)s, poly(terthiophene)s, poly(aniline)s, poly(fluorine)s, poly(3-alkylthiophene)s, polytetrathiafulvalenes, poly-napthalenes, poly(p-phenylene sulfide), poly(p-phenylenevinylene)s, poly(3,4-ethylene-dioxythiophene), polyparaphenylene, polyazulene, polyparaphenylene sulfide, poly-carbazole and polydiaminonaphthalene. More than 60 sensors for inorganic cations and anions with different characteristics based on conducting polymers have been reported. There have also been reports on the application of non-conducting polymers (nCPs), i.e. PVC, in the construction of potentiometric membrane sensors for determination of more than 60 inorganic cations and anions. However, the leakage of ionophores from the membranes based on these polymers leads to relatively lower life times. In this article, we try to give an overview of Solid-Contact ISE (SCISE), Single-Piece ISE (SPISE), Conducting Polymer (CP)-Based, and also non-conducting polymer PVC-based ISEs for various ions which their difference is in the way of the polymer used with selective\\ membrane. In SCISEs and SPISEs, the plasticized PVC containing the ionophore and ionic additives govern the selectivity behavior of the electrode and the conducting polymer is responsible of ion-to-electron transducer. However, in CPISEs, the conducting polymer layer is doped with a suitable ionophore which enhances the ion selectivity of the CP while its redox response has to be suppressed. PMID:27879825
The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation.
Hassanvand, Armineh; Wei, Kajia; Talebi, Sahar; Chen, George Q; Kentish, Sandra E
2017-09-14
Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange membranes act as selective gates allowing the transport of counter-ions toward carbon electrodes. This article provides a summary of recent developments in the preparation, characterization, and performance of ion exchange membranes in the MCDI field. In some parts of this review, the most relevant literature in the area of electrodialysis (ED) is also discussed to better elucidate the role of the ion exchange membranes. We conclude that more work is required to better define the desalination performance of the proposed novel materials and cell designs for MCDI in treating a wide range of feed waters. The extent of fouling, the development of cleaning strategies, and further techno-economic studies, will add value to this emerging technique.
Synthesis and Characterization of Polymer-Metal Nanostructured Membranes
ions creating unique polymer -metal nanostructured membranes. A comprehensive materials characterization study was performed to understand their...fluoropolymers were also investigated. First the polymer -metal nanostructure of Nafion with several counter-ions was studied upon supercritical fluid CO2...processing. Then, novel fluorinated block copolymers were synthesized using atom transfer radical polymerization (ATRP) and their resulting nanostructure was
Immobilization of metals in contaminated soils using natural polymer-based stabilizers.
Tao, Xue; Li, Aimin; Yang, Hu
2017-03-01
Three low-cost natural polymer materials, namely, lignin (Ln), carboxymethyl cellulose, and sodium alginate, were used for soil amendment to immobilize lead and cadmium in two contaminated soil samples collected from a mining area in Nanjing, China. The remediation effects of the aforementioned natural polymers were evaluated by toxicity characteristic leaching procedure (TCLP) and sequential extractions. The stabilizers could lower the bioavailability of Pb and Cd in the contaminated soils, and the amount of the exchangeable forms of the aforementioned two metals were reduced evidently. TCLP results showed that the leaching concentrations of Pb and Cd were decreased by 5.46%-71.1% and 4.25%-49.6%, respectively, in the treated soils. The contents of the organic forms of the two metals both increased with the increase in stabilizer dose on the basis of the redistribution of metal forms by sequential extractions. These findings were due to the fact that the abundant oxygen-containing groups on the polymeric amendments were effective in chelating and immobilizing Pb and Cd, which have been further confirmed from the metal adsorptions in aqueous solutions. Moreover, Ln achieved the greatest effect among the three polymers under study because of the former's distinct three-dimensional molecular structure, showing the preferential immobilization of Pb over Cd in soils also. Thus, the above-mentioned natural polymers hold great application potentials for reducing metal ion entry into the food chain at a field scale. Copyright © 2016 Elsevier Ltd. All rights reserved.
Grasso, Gianvito; Deriu, Marco Agostino; Patrulea, Viorica; Borchard, Gerrit; Möller, Michael; Danani, Andrea
2017-01-01
The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine.
Patrulea, Viorica; Borchard, Gerrit; Möller, Michael; Danani, Andrea
2017-01-01
The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine. PMID:29088239
A theoretical framework for the study of compression sensing in ionic polymer metal composites
NASA Astrophysics Data System (ADS)
Volpini, Valentina; Bardella, Lorenzo; Rodella, Andrea; Cha, Youngsu; Porfiri, Maurizio
2017-04-01
Ionic Polymer Metal Composites (IPMCs) are electro-responsive materials for sensing and actuation, consisting of an ion-exchange polymeric membrane with ionized units, plated within noble metal electrodes. In this work, we investigate the sensing response of IPMCs that are subject to a through-the-thickness compression, by specializing the continuum model introduced by Cha and Porfiri,1 to this one-dimensional problem. This model modifies the classical Poisson-Nernst-Plank system governing the electrochemistry in the absence of mechanical effects, by accounting for finite deformations underlying the actuation and sensing processes. With the aim of accurately describing the IPMC dynamic compressive behavior, we introduce a spatial asymmetry in the properties of the membrane, which must be accounted for to trigger a sensing response. Then, we determine an analytical solution by applying the singular perturbation theory, and in particular the method of matched asymptotic expansions. This solution shows a good agreement with experimental findings reported in literature.
Euvrard, Élise; Morin-Crini, Nadia; Druart, Coline; Bugnet, Justine; Martel, Bernard; Cosentino, Cesare; Moutarlier, Virginie
2016-01-01
Summary In this study, a polymer, prepared by crosslinking cyclodextrin (CD) by means of a polycarboxylic acid, was used for the removal of pollutants from spiked solutions and discharge waters from the surface treatment industry. In spiked solutions containing five metals, sixteen polycyclic aromatic hydrocarbons (PAH) and three alkylphenols (AP), the material exhibited high adsorption capacities: >99% of Co2+, Ni2+ and Zn2+ were removed, between 65 and 82% of the PAHs, as well as 69 to 90% of the APs. Due to the structure of the polymer and its specific characteristics, such as the presence of carboxylic groups and CD cavities, the adsorption mechanism involves four main interactions: ion exchange, electrostatic interactions and precipitation for metal removal, and inclusion complexes for organics removal. In industrial discharge waters, competition effects appeared, especially because of the presence of calcium at high concentrations, which competed with other pollutants for the adsorption sites of the adsorbent. PMID:27829889
Dielectric characterization of CuxS-NiySz/FNBR and CuS-NiySz/FNBR nanocomposites
NASA Astrophysics Data System (ADS)
Balayeva, Ofeliya O.; Azizov, Abdulsaid A.; Muradov, Mustafa B.; Eyvazova, Goncha M.
2017-06-01
CuxS-NiySz/FNBR and CuS-NiySz/FNBR nanocomposites (NCs) were prepared from β-NiS/FNBR by ion exchange method and dielectric characterized. Dielectric properties of NCs were investigated at the temperature of 26 °C-120 °C in 120-106 Hz frequency range. With measuring electric capacity and resistance of the samples at different frequency we have studied the dielectric permittivity, dielectric loss tangent, dielectric modulus, conductivity, relaxation times and Cole-Cole plots were obtained. At 120 °C measurement temperature, some of the destruction processes in polymers affect to interfacial interaction between the polymer and particles surface. After high temperature measurement all three samples were cooled to room temperature and their dielectric measurements were carried out at room temperature. It is observed that at high measurement temperature some of carriers transfer from one energy level to another and the dipole orientation did not return completely to the previous situation.
Sulfonated poly(ether sulfone)s containing pyridine moiety for PEMFC.
Jang, Hohyoun; Islam, Md Monirul; Lim, Youngdon; Hossain, Md Awlad; Cho, Younggil; Joo, Hyunho; Kim, Whangi; Jeon, Heung-Seok
2014-10-01
Sulfonated poly(ether sulfone)s with varied degree of sulfonation (DS) were prepared via post-sulfonation of synthesized pyridine based poly(ether sulfone) (PPES) using concentrated sulfuric acid as sulfonating agent. The DS was varied with different mole ratio of 4,4'-(2,2-diphenylethenylidene)diphenol, DHTPE in the polymer unit. PPES copolymers were synthesized by direct polycondensation of pyridine unit with bis-(4-fluorophenyl)-sulfone, 4, 4'-sulfonyldiphenol and DHTPE. The structure of the resulting PPES copolymer membranes with different sulfonated units were studied by 1H NMR spectroscopy and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity were evaluated according to the increase of DS. The water uptake (WU) of the resulting membranes was in the range of 17-58%, compared to that of Nafion 211 28%. The membranes provided proton conductivities of 65-95 mS/cm in contrast to 103 mS/cm of Nafion 211.
Nguyen, Huu-Dat; Assumma, Luca; Judeinstein, Patrick; Mercier, Regis; Porcar, Lionel; Jestin, Jacques; Iojoiu, Cristina; Lyonnard, Sandrine
2017-01-18
Proton-conducting multiblock polysulfones bearing perfluorosulfonic acid side chains were designed to encode nanoscale phase-separation, well-defined hydrophilic/hydrophobic interfaces, and optimized transport properties. Herein, we show that the superacid side chains yield highly ordered morphologies that can be tailored by best compromising ion-exchange capacity and block lengths. The obtained microstructures were extensively characterized by small-angle neutron scattering (SANS) over an extended range of hydration. Peculiar swelling behaviors were evidenced at two different scales and attributed to the dilution of locally flat polymer particles. We evidence the direct correlation between the quality of interfaces, the topology and connectivity of ionic nanodomains, the block superstructure long-range organization, and the transport properties. In particular, we found that the proton conductivity linearly depends on the microscopic expansion of both ionic and block domains. These findings indicate that neat nanoscale phase-separation and block-induced long-range connectivity can be optimized by designing aromatic ionomers with controlled architectures to improve the performances of polymer electrolyte membranes.
NASA Astrophysics Data System (ADS)
Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.
2016-11-01
It has recently been demonstrated that the use of anion exchange membranes (AEMs) in vanadium redox flow batteries (VRFBs) can reduce the migration of vanadium ions through the membrane due to the Donnan exclusion effect among the positively charged functional groups and vanadium ions. However, AEMs are plagued by low chemical stability in harsh chemical environments. Here we propose and fabricate a pyridinium-functionalized cross-linked AEM for VRFBs. The pyridinium-functionalized bromomethylated poly (2,6-dimethyl-1,4-phenylene oxide) exhibits a superior chemical stability as a result of the strengthened internal cross-linking networks and the chemical inertness of the polymer backbone. Therefore, the membrane exhibits littler decay in a harsh environment for 20 days during the course of an ex situ immersion test. A cycling test also demonstrates that the VRFB assembled with the membrane enable to retain 80% of the initial discharge capacity over 537 cycles with a capacity decay rate of 0.037% cycle-1. Meanwhile, the membrane also shows a low vanadium permeability and a reasonably high conductivity in supporting electrolytes. Hence, all the measurements and performance tests reported in this work suggest that the membrane is a promising AEM for redox flow batteries to achieve excellent cycling stability and superior cell performance.
NASA Astrophysics Data System (ADS)
Gindt, Brandon
This dissertation outlines a novel path towards improved understanding and function of proton exchange membranes (PEMs) for redox flow batteries, a large-scale battery storage device. This research uses synthetic methods and nanotechnology through two different approaches to prepare tailored polymer membranes: 1) Ion exchange membranes with enhanced chemical structures to promote membrane morphology on the nano-scale were prepared. Specifically, functional polysulfones (PSUs) were synthesized from different pre-sulfonated monomers. These PSUs have controlled placement and content of unique sulfonic acid moieties. PEMs were fabricated and characterized. The new PEMs showed desirable physical properties and performance in a vanadium redox flow battery (VRFB) cell. 2) Nanoporous PSU membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA-PSU-PLA triblock copolymer membranes. The controlled morphology and pore size of the resulting nanoporous membranes were evaluated by different microscopy and scattering techniques to understand structure-property relationships. Further, the resulting nanopore surface was chemically modified with sulfonic acid moieties. Membranes were analyzed and evaluated as separators for a VRFB. The chemically modified nanoporous PEMs exhibited unique behavior with respect to their ion conductivity when exposed to solutions of increasing acid concentration. In addition, the hierarchical micro-nanoporous membranes developed further showed promising structure and properties.
Terborg, Lydia; Masini, Jorge C.; Lin, Michelle; ...
2014-11-04
A new approach has been developed for the preparation of mixed-mode stationary phases to separate proteins. The pore surface of monolithic poly(glycidyl methacrylate- co-ethylene dimethacrylate) capillary columns was functionalized with thiols and coated with gold nanoparticles. The final mixed mode surface chemistry was formed by attaching, in a single step, alkanethiols, mercaptoalkanoic acids, and their mixtures on the free surface of attached gold nanoparticles. Use of these mixtures allowed fine tuning of the hydrophobic/hydrophilic balance. The amount of attached gold nanoparticles according to thermal gravimetric analysis was 44.8 wt.%. This value together with results of frontal elution enabled calculation ofmore » surface coverage with the alkanethiol and mercaptoalkanoic acid ligands. Interestingly, alkanethiols coverage in a range of 4.46–4.51 molecules/nm 2 significantly exceeded that of mercaptoalkanoic acids with 2.39–2.45 molecules/nm 2. The mixed mode character of these monolithic stationary phases was for the first time demonstrated in the separations of proteins that could be achieved in the same column using gradient elution conditions typical of reverse phase (using gradient of acetonitrile in water) and ion exchange chromatographic modes (applying gradient of salt in water), respectively.« less
An Empirical Formula From Ion Exchange Chromatography and Colorimetry.
ERIC Educational Resources Information Center
Johnson, Steven D.
1996-01-01
Presents a detailed procedure for finding an empirical formula from ion exchange chromatography and colorimetry. Introduces students to more varied techniques including volumetric manipulation, titration, ion-exchange, preparation of a calibration curve, and the use of colorimetry. (JRH)
Effect of silver ions and clusters on the luminescence properties of Eu-doped borate glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Qing, E-mail: jiaoqing@nbu.edu.cn; Wang, Xi; Qiu, Jianbei
2015-12-15
Highlights: • Ag{sup +} and Ag clusters are investigated in the borate glasses via ion exchange method. • The aggregation of silver ions to the clusters was controlled by the ion exchange concentration. • Eu{sup 3+}/Eu{sup 2+} ions emission was enhanced with the sensitization of the silver species. • Energy transfer process from Ag ions and Ag clusters to Eu ions is identified by the lifetime measurements. - Abstract: Silver ions and clusters were applied to Eu{sup 3+}-doped borate glasses via the Ag{sup +}–Na{sup +} ion exchange method. Eu{sup 3+}/Eu{sup 2+} ion luminescence enhancement was achieved after silver ion exchange.more » Absorption spectra showed no band at 420 nm, which indicates that silver nanoparticles can be excluded as a silver state in the glass. Silver ion aggregation into clusters during the ion exchange process may be inferred. The effect of silver ions and clusters on rare earth emissions was investigated using spectral information and lifetime measurements. Significant luminescence enhancements were observed from the energy transfer of Ag{sup +} ions and clusters to Eu{sup 3+}/Eu{sup 2+} ions, companied with the silver ions aggregated into the clusters state. The results of this research may extend the current understanding of interactions between rare-earth ions and Ag species.« less
Polymer-grafted QCM chemical sensor and application to heavy metalions real time detection.
Sartore, Luciana; Barbaglio, Marzia; Borgese, Laura; Bontempi, Elza
2011-07-20
A flow type quartz crystal microbalance (QCM) chemical sensor was developed for monitoring of heavy metal ions in aqueous solutions (that is suitable for environmental monitoring). The sensor is based upon surface chelation of the metal ions at multifunctional polymer modified gold electrodes on 9 MHz AT-cut quartz resonators, functioning as a QCM. New processes have been developed which enable to obtain surface-modified gold electrodes with high heavy metal ions complexing ability. These polymer grafted QCM sensors can selectively adsorb heavy metal ions, such as copper lead chrome and cadmium, from solution over a wide range from 0.01 to 1000 ppm concentration by complexation with functional groups in the polymers. Cations typically present in natural water did not interfere with the detection of heavy metals. X-Ray Reflectivity (XRR) and Total Reflection X-ray Fluorescence (TXRF) were carried out to characterise the unmodified and modified gold surfaces as well as to verify the possibility to selectively bond and remove metal ions.
Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Dehghanpoor Frashah, Shahab
2016-04-01
A vanadium ion-imprinted polymer was synthesized in the presence of V(V) and N-benzoyl-N-phenyl hydroxyl amine using 4-vinyl pyridine as the monomer, ethylene glycol dimethacrylate as the cross linker and 2,2'-azobis(isobutyronitrile) as the initiator. The imprinted V(V) ions were completely removed by leaching the polymer with 5 mol/L nitric acid, and the polymer structure was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The ion-imprinted polymer was used as the sorbent in the development of the solid-phase extraction method for V(V) prior to its determination by electrothermal atomic absorption spectrometry. The maximum sorption capacity for V(V) ions was 26.7 mg/g at pH 4.0. Under the optimum conditions, for a sample volume of 150.0 mL, an enrichment factor of 289.0 and a detection limit of 6.4 ng/L were obtained. The developed method was successfully applied to the determination of vanadium in parsley, zucchini, black tea, rice, and water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, You-Na; Choi, Minkee
2014-07-01
Ion-exchange has been frequently used for the treatment of perchlorate (ClO4(-)), but disposal or regeneration of the spent resins has been the major hurdle for field application. Here we demonstrate a synergistic integration of ion-exchange and catalytic decomposition by using Pd-supported ion-exchange resin as an adsorption/catalysis bifunctional material. The ion-exchange capability of the resin did not change after generation of the Pd clusters via mild ethanol reduction, and thus showed very high ion-exchange selectivity and capacity toward ClO4(-). After the resin was saturated with ClO4(-) in an adsorption mode, it was possible to fully decompose the adsorbed ClO4(-) into nontoxic Cl(-) by the catalytic function of the Pd catalysts under H2 atmosphere. It was demonstrated that prewetting the ion-exchange resin with ethanol significantly accelerate the decomposition of ClO4(-) due to the weaker association of ClO4(-) with the ion-exchange sites of the resin, which allows more facile access of ClO4(-) to the catalytically active Pd-resin interface. In the presence of ethanol, >90% of the adsorbed ClO4(-) could be decomposed within 24 h at 10 bar H2 and 373 K. The ClO4(-) adsorption-catalytic decomposition cycle could be repeated up to five times without loss of ClO4(-) adsorption capacity and selectivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baird, Lance Awender; Brandvold, Timothy A.
Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed throughmore » the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.« less
DNA Based Electrolyte/Separator for Lithium Battery Application (Postprint)
2015-10-07
Lithium - ion or sodium- ion ) batteries and the second are the gel polymer electrolyte (GPE) metal- ion batteries also known as metal- ion polymer...AFRL-RX-WP-JA-2016-0302 DNA BASED ELECTROLYTE/SEPARATOR FOR LITHIUM BATTERY APPLICATION (POSTPRINT) Jitendra Kumar1, Fahima...BASED ELECTROLYTE/SEPARATOR FOR LITHIUM BATTERY APPLICATION (POSTPRINT) 5a. CONTRACT NUMBER FA8650-15-D-5405-0001 5b. GRANT NUMBER 5c. PROGRAM
Single-ion conducting diblock terpolymers for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Morris, Melody; Epps, Thomas H., III
Block polymer (BP) electrolytes provide an attractive route to overcome the competing constraints of high conductivity and mechanical/thermal stability in lithium-ion batteries through nanoscale self-assembly. For example, macromolecules can be engineered such that one domain conducts lithium ions and the other prevents lithium dendrite formation. Herein, we report on the behavior of a single-ion conducting BP electrolyte that was designed to facilitate the transport of lithium ions. These polymers differ from traditional salt-doped BP electrolytes, which require the addition of a lithium salt to bestow conductivity and typically suffer from substantial counterion motion that reduces efficiency. New single-ion BPs were synthesized, and the nanoscale morphologies were determined using small angle X-ray scattering and transmission electron microscopy. Electrolyte performance was measured using AC impedance spectroscopy and DC polarization, and the results were correlated to nanoscale morphology and ion content. Enhanced physical understanding of single-ion BPs was gained by connecting the ion mobility to the chemistry, chain structure, and ion content of the single-ion BP. These studies can be applied to other charged-neutral block polymers to elucidate the effects of ion content on self-assembly and macroscopic properties.
Ion Exchange and Adsorption of Inorganic Contaminants
In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...
Halim, Mohammad A; Clavier, Christian; Dagany, Xavier; Kerleroux, Michel; Dugourd, Philippe; Dunbar, Robert C; Antoine, Rodolphe
2018-05-07
In this study, we report the unimolecular dissociation mechanism of megadalton SO 3 -containing poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) polymer cations and anions with the aid of infrared multiphoton dissociation coupled to charge detection ion trap mass spectrometry. A gated electrostatic ion trap ("Benner trap") is used to store and detect single gaseous polymer ions generated by positive and negative polarity in an electrospray ionization source. The trapped ions are then fragmented due to the sequential absorption of multiple infrared photons produced from a continuous-wave CO 2 laser. Several fragmentation pathways having distinct signatures are observed. Highly charged parent ions characteristically adopt a distinctive "stair-case" pattern (assigned to the "fission" process) whereas low charge species take on a "funnel like" shape (assigned to the "evaporation" process). Also, the log-log plot of the dissociation rate constants as a function of laser intensity between PAMPS positive and negative ions is significantly different.
A method for the production of weakly acidic cation exchange resins
NASA Astrophysics Data System (ADS)
Heller, H.; Werner, F.; Mitschker, A.; Diehl, H. V.; Schaefer, A.
1991-12-01
The invention relates to a nonpolluting method for the production of weakly acidic cation exchange resins by saponification of cross-linked acrylonitrile bead polymers, with an alkaline saponification agent at elevated temperature, according to which method the bead polymer and alkaline saponification agent are jointly added only at elevated temperature.
NASA Astrophysics Data System (ADS)
Bahavan Palani, P.; Sainul Abidin, K.; Kannan, R.; Rajashabala, S.
This research work describes the fabrication of polymer blend nanocomposite membranes using the solution casting method. These membranes were fabricated with Poly (Vinylidene Fluoride) (PVdF) as host, Poly (Ethylene Glycol) (PEG) in steps of 2wt.% as blending polymer and Montmorillonite (MMT) nanoclay particles in steps of 3wt.% which were used as received. The protonated MMT was synthesized through an ion exchange process with column chromatographic technique. The prepared membrane’s performance was investigated using different characterization techniques of Thermo Gravimetric Analysis (TGA), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), water uptake, IEC and electrochemical impedance spectroscopy. Thermal stability was decreased while adding PEG into PVDF but it is controlled with the addition of MMT on PVDF/PEG blend matrix. Moreover, It is noticed that, the increase of water uptake, IEC by the increasing additive concentration of PEG and MMT. XRD studies reveal the increased amorphous phase with uniform exfoliation of nanoclay particles. The highest proton conductivity value of 0.127S cm‑1 is obtained with 9wt.% of MMT in the PVdF/PEG/MMT composite membranes at room temperature with 100% Relative Humid (RH) condition and 10 V.% of sulfonation. The blended nanocomposite membranes fulfill the requirements of proton exchange membrane for fuel cell application.
ERIC Educational Resources Information Center
Chen, Yueh-Huey; Lin, Jia-Ying; Lin, Li-Pin; Liang, Han; Yaung, Jing-Fun
2010-01-01
This activity explores an alternative use of a superabsorbent polymer known as a water absorbing material. A dilute solution of CuCl[subscript 2] is treated with a small piece of unused disposable diaper containing superabsorbent sodium polyacrylates. The polymer is used for the removal of Cu[superscript 2+] ions from the solution. The…
Potentiometric Detection of Pathogens
2012-01-01
nanosize organic electrode (conducting polymer top-layer) surface. This approach has then been changed to the gate modification in ion sensitive field...electrode (conducting polymer top-layer) surface. This approach has then been changed to the gate modification in ion sensitive field effect transistors, in...the conducting polymer top-layer, which makes the devices very functional and competitive. Secondly, the device development is discussed and finally
Ion exchanger from chemically modified banana leaves.
El-Gendy, Ahmed A; Mohamed, Samar H; Abd-Elkader, Amal H
2013-07-25
Cation exchangers from chemically modified banana leaves have been prepared. Banana leaves were treated with different molarities of KMnO4 and cross linked with epichlorohydrin and their effect on metal ion adsorption was investigated. Phosphorylation of chemically modified banana leaves was also studied. The metal ion uptake by these modified banana leaves was clarified. Effect of different varieties, e.g. activation of produced cation exchanger, concentration of metal ions was also investigated. Characterization of the prepared ion exchangers by using infrared and thermal analysis was also taken in consideration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Preetha, Chandrika Ravindran; Gladis, Joseph Mary; Rao, Talasila Prasada; Venkateswaran, Gopala
2006-05-01
Major quantities of uranium find use as nuclear fuel in nuclear power reactors. In view of the extreme toxicity of uranium and consequent stringent limits fixed by WHO and various national governments, it is essential to remove uranium from nuclear power reactor effluents before discharge into environment. Ion imprinted polymer (IIP) materials have traditionally been used for the recovery of uranium from dilute aqueous solutions prior to detection or from seawater. We now describe the use of IIP materials for selective removal of uranium from a typical synthetic nuclear power reactor effluent. The IIP materials were prepared for uranyl ion (imprint ion) by forming binary salicylaldoxime (SALO) or 4-vinylpyridine (VP) or ternary SALO-VP complexes in 2-methoxyethanol (porogen) and copolymerizing in the presence of styrene (monomer), divinylbenzene (cross-linking monomer), and 2,2'-azobisisobutyronitrile (initiator). The resulting materials were then ground and sieved to obtain unleached polymer particles. Leached IIP particles were obtained by leaching the imprint ions with 6.0 M HCl. Control polymer particles were also prepared analogously without the imprint ion. The IIP particles obtained with ternary complex alone gave quantitative removal of uranyl ion in the pH range 3.5-5.0 with as low as 0.08 g. The retention capacity of uranyl IIP particles was found to be 98.50 mg/g of polymer. The present study successfully demonstrates the feasibility of removing uranyl ions selectively in the range 5 microg - 300 mg present in 500 mL of synthetic nuclear power reactor effluent containing a host of other inorganic species.
Programmatic Re-Evaluation of Ion Exchange as a 1st Generation ITP Replacement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, A.B.
This re-evaluation differs from previous work in that (1) the Ion Exchange option was evaluated from a standpoint assuming that ITP would never start up, thus Ion Exchange was the only viable option, (2) the DOE prescribed balanced assumptions were quite different than the WSRC Assumptions used previously, and (3) other Site events and changes within HLWM have tended to reduce the disadvantages of Ion Exchange relative to ITP as the first generation salt decontamination process.
Electrolyte materials containing highly dissociated metal ion salts
Lee, H.S.; Geng, L.; Skotheim, T.A.
1996-07-23
The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.
Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; ...
2015-10-22
Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl 3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.
Singh, Dhruv K; Mishra, Shraddha
2009-06-30
Ion-imprinted polymers (IIPs) were prepared for uranyl ion (imprint ion) by formation of binary (salicylaldoxime (SALO) or 4-vinylpyridine (VP)) or ternary (salicylaldoxime and 4-vinylpyridine) complex in 2-methoxy ethanol (porogen) following copolymerization with methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as crosslinking monomer using 2,2'-azobisisobutyronitrile as initiator. Control polymers (CPs) were also prepared under identical experimental conditions without using imprint ion. The above synthesized polymers were characterized by surface area measurement, microanalysis and FT-IR analysis techniques. The imprinted polymer formed with ternary complex of UO(2)(2+)-SALO-VP (1:2:2, IIP3) showed quantitative enrichment of uranyl ion from dilute aqueous solution and hence was chosen for detailed studies. The optimal pH for quantitative enrichment is 3.5-6.5. The adsorbed UO(2)(2+) was completely eluted with 10 mL of 1.0 M HCl. The retention capacity of IIP3 was found to be 0.559 mmol g(-1). Further, the distribution ratio and selectivity coefficients of uranium and other selected inorganic ions were also evaluated. Five replicate determinations of 25 microg L(-1) of uranium(VI) gave a mean absorbance of 0.032 with a relative standard deviation of 2.20%. The detection limit corresponding to three times the standard deviation of the blank was found to be 5 microg L(-1). IIP3 was tested for preconcentration of uranium(VI) from ground, river and sea water samples.
Fu, Najing; Li, Liteng; Liu, Xiao; Fu, Nian; Zhang, Chenchen; Hu, Liandong; Li, Donghao; Tang, Baokun; Zhu, Tao
2017-12-29
Typically, a target compound is selected as a template for a molecularly imprinted polymer (MIP); however, some target compounds are not suitable as templates because of their poor solubility. Using the tailoring properties of a deep eutectic solvent (DES), the insoluble target compound caffeic acid was transformed into a ternary choline chloride-caffeic acid-ethylene glycol (ChCl-CA-EG) DES, which was then employed as a template to prepare MIPs. The ternary DES-based MIPs were characterized by Fourier transform infrared spectroscopy, elemental analysis, scanning electron microscopy, and atomic force microscopy. The effects of time, temperature, ionic strength, and pH on the recognition processes for four polyphenols (caffeic acid, protocatechuic acid, catechin, and epicatechin) by 13 ChCl-CA-EG ternary DES-based MIPs was investigated using high-performance liquid chromatography. The recognition specificity of the MIPs for CA was significantly better than that for the other polyphenols, and the MIPs exhibited obvious characteristics of chromatographic packing materials. In addition, the recognition processes mainly followed a second-order kinetics model and the Freundlich isotherm model, which together indicated that the MIPs mainly recognized the polyphenols by chemical interactions including ion exchange, electron exchange, and new bond formation. Furthermore, the specific recognition ability of the MIPs for polyphenols, which was better than those of C 18 , C 8 , or non-molecularly imprinted polymer adsorbents, was successfully applied to the recognition of polyphenols in a Radix asteris sample. The transformation of an insoluble target compound in a polymeric DES for MIP preparation and recognition is a novel and feasible strategy suitable for use in further MIP research developments. Copyright © 2017 Elsevier B.V. All rights reserved.
Sandoval, Andrea P; Suárez-Herrera, Marco F; Feliu, Juan M
2015-01-01
Thin films of PEDOT synthesized on platinum single electrodes in contact with the ionic liquid 1-ethyl-2,3-dimethylimidazolium triflimide ([EMMIM]Tf2N) were studied by cyclic voltammetry, chronoamperometry, infrared spectroscopy and atomic force microscopy. It was found that the polymer grows faster on Pt(111) than on Pt(110) or Pt(100) and that the redox reactions associated with the PEDOT p-doping process are much more reversible in [EMMIM]Tf2N than in acetonitrile. Finally, the ion exchange and charge carriers' formation during the p-doping reaction of PEDOT were studied using in situ FTIR spectroscopy.
Functional membranes. Present and future
NASA Technical Reports Server (NTRS)
Kunitake, T.
1982-01-01
The present situation and the future development of the functional membrane are discussed. It is expected that functional membranes will play increasingly greater roles in the chemical industry of the coming decade. These membranes are formed from polymer films, liquid membranes or bilayer membranes. The two most important technologies based on the polymeric membrane are reverse osmosis and ion exchange. The liquid membrane is used for separation of ionic species; an extension of the solvent extraction process. By using appropriate ligands and ionophores, highly selective separations are realized. The active transport is made possible if the physical and chemical potentials are applied to the transport process. More advanced functional membranes may be designed on the basis of the synthetic bilayer membrane.
[Advances of poly (ionic liquid) materials in separation science].
Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang
2015-11-01
Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials.
Rapid Polymer Transport in a Single Nanometer-Scale Pore
NASA Astrophysics Data System (ADS)
Kasianowicz, J. J.
1998-03-01
Protein ion channels are nanometer-scale pores that control the transport of ions and polymers across cell membranes. We compared the ability of charged and nonelectrolyte linear polymers to partition into a single channel reconstituted into a planar lipid bilayer membrane. The entry of each polymer (e.g. monodisperse length single-stranded homopolymeric RNA1 or poly(ethylene glycol)2,3) into the pore caused characteristic transient decreases in the channel's ionic conductance. The ionic current blockades yield detailed information about the physical properties of the polymers and the pore. The biological and technological significance of the results will be discussed.
Method for the preparation of thin-skinned asymmetric reverse osmosis membranes and products thereof
NASA Technical Reports Server (NTRS)
Wydeven, T. J. (Inventor); Katz, M. G.
1984-01-01
A method for preparing water insoluble asymmetric membranes from water soluble polymers is discussed. The process involves casting a film of the polymer, partially drying it, and then contacting it with a concentrated solution of a transition metal salt. The transition metal ions render the polymer insoluable and are believed to form a complex with it. Optionally, the polymer is crosslinked with heat or radiation. The most preferred polymer is poly(vinyl alcohol). The most preferred complexing salt is copper sulfate. The process and the metal ion linked membranes are discussed. The membranes are reverse osmosis membranes.
NASA Astrophysics Data System (ADS)
Donohoe, Gregory C.; Khakinejad, Mahdiar; Valentine, Stephen J.
2015-04-01
Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.
Brooker, Robert Paul; Mohajeri, Nahid
2016-01-05
A method of detecting defects in membranes such as ion exchange membranes of electrochemical cells. The electrochemical cell includes an assembly having an anode side and a cathode side with the ion exchange membrane in between. In a configuration step a chemochromic sensor is placed above the cathode and flow isolation hardware lateral to the ion exchange membrane which prevents a flow of hydrogen (H.sub.2) between the cathode and anode side. The anode side is exposed to a first reactant fluid including hydrogen. The chemochromic sensor is examined after the exposing for a color change. A color change evidences the ion exchange membrane has at least one defect that permits H.sub.2 transmission therethrough.
The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation
Hassanvand, Armineh; Wei, Kajia; Talebi, Sahar
2017-01-01
Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange membranes act as selective gates allowing the transport of counter-ions toward carbon electrodes. This article provides a summary of recent developments in the preparation, characterization, and performance of ion exchange membranes in the MCDI field. In some parts of this review, the most relevant literature in the area of electrodialysis (ED) is also discussed to better elucidate the role of the ion exchange membranes. We conclude that more work is required to better define the desalination performance of the proposed novel materials and cell designs for MCDI in treating a wide range of feed waters. The extent of fouling, the development of cleaning strategies, and further techno-economic studies, will add value to this emerging technique. PMID:28906442
Rey, M A
2001-06-22
One of the advantages of ion chromatography [Anal Chem. 47 (1975) 1801] as compared to other analytical techniques is that several ions may be analyzed simultaneously. One of the most important contributions of cation-exchange chromatography is its sensitivity to ammonium ion, which is difficult to analyze by other techniques [J. Weiss, in: E.L. Johnson (Ed.), Handbook of Ion Chromatography, Dionex, Sunnyvale, CA, USA]. The determination of low concentrations of ammonium ion in the presence of high concentrations of sodium poses a challenge in cation-exchange chromatography [J. Weiss, Ion Chromatography, VCH, 2nd Edition, Weinheim, 1995], as both cations have similar selectivities for the common stationary phases containing either sulfonate or carboxylate functional groups. The task was to develop a new cation-exchange stationary phase (for diverse concentration ratios of adjacent peaks) to overcome limitations experienced in previous trails. Various cation-exchange capacities and column body formats were investigated to optimize this application and others. The advantages and disadvantages of two carboxylic acid columns of different cation-exchange capacities and different column formats will be discussed.
Behbahani, Mohammad; Bagheri, Akbar; Taghizadeh, Mohsen; Salarian, Mani; Sadeghi, Omid; Adlnasab, Laleh; Jalali, Kobra
2013-06-01
This paper describes the preparation of new Pb(II)-imprinted polymeric particles using 2-vinylpyridine as a functional monomer, ethylene glycol dimethacrylate as the cross-linker, 2,2'- azobisisobutyronitrile as the initiator, diphenylcarbazone as the ligand, acetonitril as the solvent, and Pb(NO(3))(2) as the template ion, through bulk polymerisation technique. The imprinted lead ions were removed from the polymeric matrix using 5 mL of HCl (2 mol.L(-1)) as the eluting solvent. The lead ion concentration was determined by flame atomic absorption spectrometry. Optimum pH for maximum sorption was obtained at 6.0. Sorption and desorption of Pb(II) ions on the IIP particles were quite fast and achieved fully over 5 min. In the proposed method, the maximum sorbent capacity of the ion-imprinted polymer was calculated to be 75.4 mg g(-1). The preconcentration factor, relative standard deviation, and limit of detection of the method were found to be 245, 2.1%, and 0.42 ng mL(-1), respectively. The prepared ion-imprinted polymer particles have an increased selectivity toward Pb(II) ions over a range of competing metal ions with the same charge and similar ionic radius. This ion-imprinted polymer is an efficient solid phase for extraction and preconcentration of lead ions in complex matrixes. For proving that the proposed method is reliable, a wide range of food samples with different and complex matrixes was used. Copyright © 2012 Elsevier Ltd. All rights reserved.
Properties of a Novel Ion-Exchange Film
NASA Technical Reports Server (NTRS)
Street, Kenneth W.; Hill, Carol M.; Philipp, Warren H.; Tanner, Stephen P.; Gorse, Joseph; Lusk, Amy; Taylor, Jason; Dickens, Jason
2002-01-01
A new ion-exchange material (based on polyacrylic acid) and some of its analytical applications have been reported. This paper contains data on the ion-exchange properties of the film form of the material and its potential application to the decontamination of waste water and drinking water. The film has a high exchange capacity of 5 to 6 meq/g and a pK(sub a) of 5.7. The calcium form is the most effective for removing metal ions from solution, and the optimum pH range is between 5 and 7. The exchange rates are slower for the film than for bead and powder forms of the ion-exchange material; otherwise, the properties are similar. The film is effective when hard water solutions are employed and also when metal ions are in the complex matrix of waste water from electroplating. The film can be used in flow systems having a flow channel large enough to allow passage of turbid solutions.
NASA Technical Reports Server (NTRS)
Tanner, Stephen P.
1997-01-01
One of the goals of the original proposal was to study how cross-linking affects the properties of an ion exchange material(IEM) developed at Lewis Research Center. However, prior to the start of this work, other workers at LERC investigated the effect of cross-linking on the properties of this material. Other than variation in the ion exchange capacity, the chemical characteristics were shown to be independent of the cross-linking agent, and the degree of cross-linking. New physical forms of the film were developed (film, supported film, various sizes of beads, and powder). All showed similar properties with respect to ion exchange equilibria but the kinetics of ion exchange depended on the surface area per unit mass; the powder form of the IEM exchanging much more rapidly than the other forms. The research performed under this grant was directed towards the application of the IEM to the analysis of metal ions at environmental concentrations.
Properties of a Novel Ion-Exchange Film
NASA Technical Reports Server (NTRS)
Street, Kenneth W.; Hill, Carol M.; Philipp, Warren H.; Tanner, Stephen P.; Gorse, Joseph; Lusk, Amy; Taylor, Jason; Dickens, Jason
2004-01-01
A new ion-exchange material (based on polyacrylic acid) and some of its analytical applications have been reported. This paper contains data on the ion-exchange properties of the film form of the material and its potential application to the decontamination of waste water and drinking water. The film has a high exchange capacity of 5 to 6 meq/g and a pK(sub a) of 5.7. The calcium form is the most effective for removing metal ions from solution, and the optimum pH range is between 5 and 7. The exchange rates are slower for the film than for bead and powder forms of the ion-exchange material; otherwise, the properties are similar. The film is effective when hard water solutions are employed and also when metal ions are in the complex matrix of waste water from electroplating. The film can be used in flow systems having a flow channel large enough to allow passage of turbid solutions.
Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette
NASA Astrophysics Data System (ADS)
Vilozny, Boaz; Wollenberg, Alexander L.; Actis, Paolo; Hwang, Daniel; Singaram, Bakthan; Pourmand, Nader
2013-09-01
Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems.Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems. Electronic supplementary information (ESI) available: Experimental details on synthesis of polymer PVP-Bn, optical methods, 1H-NMR spectra, details on pH and ionic strength studies, and examples of current actuation with several different nanopores. See DOI: 10.1039/c3nr02105j
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, S.; Ghosh, A., E-mail: sspag@iacs.res.in
We have studied ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of freemore » ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.« less
Shin, Dong Won; Guiver, Michael D; Lee, Young Moo
2017-03-22
A fundamental understanding of polymer microstructure is important in order to design novel polymer electrolyte membranes (PEMs) with excellent electrochemical performance and stabilities. Hydrocarbon-based polymers have distinct microstructure according to their chemical structure. The ionic clusters and/or channels play a critical role in PEMs, affecting ion conductivity and water transport, especially at medium temperature and low relative humidity (RH). In addition, physical properties such as water uptake and dimensional swelling behavior depend strongly on polymer morphology. Over the past few decades, much research has focused on the synthetic development and microstructural characterization of hydrocarbon-based PEM materials. Furthermore, blends, composites, pressing, shear field, electrical field, surface modification, and cross-linking have also been shown to be effective approaches to obtain/maintain well-defined PEM microstructure. This review summarizes recent work on developments in advanced PEMs with various chemical structures and architecture and the resulting polymer microstructures and morphologies that arise for potential application in fuel cell, lithium ion battery, redox flow battery, actuators, and electrodialysis.
NASA Astrophysics Data System (ADS)
Laskarakis, A.; Gravalidis, C.; Logothetidis, S.
2004-02-01
The continuously increasing application of polymeric materials in many scientific and technological fields has motivated an extensive use of polymer surface treatments, which modify the physical and chemical properties of polymer surfaces leading to surface activation and promotion of the surface adhesion. Fourier transform IR spectroscopic ellipsometry (FTIRSE) and phase modulated ellipsometry (PME) in the IR and Vis-FUV spectral regions respectively have been employed for in situ and real time monitoring of the structural changes on the polymer surface obtained by Ar + ion bombardment. The polymers were industrially supplied polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) membranes. The Ar + ion bombardment has found to change the chemical bonding of the films and especially the amount of the CO, C-C and CC groups. The detailed study of the FTIRSE spectra reveals important information about the effect of the Ar + ion bombardment on each of the above bonding groups. Also, the modification of the characteristic features, attributed to electronic transitions in specific bonds of PET and PEN macromolecules, has been studied using PME.
"JCE" Classroom Activity Connections: NaCl or CaCl[subscript 2], Smart Polymer Gel Tells More
ERIC Educational Resources Information Center
Chen, Yueh-Huey; Lin, Jia-Ying; Wang, Yu-Chen; Yaung, Jing-Fun
2010-01-01
This classroom activity connection demonstrates the differences between the effects of NaCl (a salt of monovalent metal ions) and CaCl[subscript 2] (a salt of polyvalent metal ions) on swollen superabsorbent polymer gels. Being ionic compounds, NaCl and CaCl[subscript 2] both collapse the swollen polymer gels. The gel contracted by NaCl reswells…
NASA Astrophysics Data System (ADS)
Cha, Min Suc; Jeong, Hwan Yeop; Shin, Hee Young; Hong, Soo Hyun; Kim, Tae-Ho; Oh, Seong-Geun; Lee, Jang Yong; Hong, Young Taik
2017-09-01
A series of polysulfone-based crosslinked anion exchange membranes (AEMs) with primary diamine-based crosslinkers has been prepared via simple a crosslinking process as low-cost and durable membranes for vanadium redox flow batteries (VRFBs). Chloromethylated polysulfone is used as a precursor polymer for crosslinked AEMs (CAPSU-x) with different degrees of crosslinking. Among the developed AEMs, CAPSU-2.5 shows outstanding dimensional stability and anion (Cl-, SO42-, and OH-) conductivity. Moreover, CAPSU-2.5 exhibits much lower vanadium ion permeability (2.72 × 10-8 cm2 min-1) than Nafion 115 (2.88 × 10-6 cm2 min-1), which results in an excellent coulombic efficiency of 100%. The chemical and operational stabilities of the membranes have been investigated via ex situ soaking tests in 0.1 M VO2+ solution and in situ operation tests for 100 cycles, respectively. The excellent chemical, physical, and electrochemical properties of the CAPSU-2.5 membrane make it suitable for use in VRFBs.
Bele, Mrudula H; Derle, Diliprao V
2012-09-01
Polacrilin potassium is an ion exchange resin used in oral pharmaceutical formulations as a tablet disintegrant. It is a weakly acidic cation exchange resin. Chemically, it is a partial potassium salt of a copolymer of methacrylic acid with divinyl benzene. It ionizes to an anionic polymer chain and potassium cations. It was hypothesized that polacrilin potassium may be able to improve the permeability of anionic drugs according to the Donnan membrane phenomenon. The effect of polacrilin potassium on the permeability of diclofenac potassium, used as a model anionic drug, was tested in vitro using diffusion cells and in vivo by monitoring serum levels in rats. The amount of drug permeated across a dialysis membrane in vitro was significantly more in the presence of polacrilin potassium. Significant improvement was found in the extent of drug absorption in vivo. It could be concluded that polacrilin potassium may be used as a high-functionality excipient for improving the bioavailability of anionic drugs having poor gastrointestinal permeability.
NASA Astrophysics Data System (ADS)
Otero
2017-10-01
Here we review the persisting conceptual discrepancies between different research groups working on artificial muscles based on conducting polymers and other electroactive material. The basic question is if they can be treated as traditional electro-mechanical (physical) actuators driven by electric fields and described by some adaptation of their physical models or if, replicating natural muscles, they are electro-chemo-mechanical actuators driven by electrochemical reaction of the constitutive molecular machines: the polymeric chains. In that case the charge consumed by the reaction will control the volume variation of the muscular material and the motor displacement, following the basic and single Faraday's laws: the charge consumed by the reaction determines the number of exchanged ions and solvent, the film volume variation to lodge/expel them and the amplitude of the movement. Deviations from the linear relationships are due to the osmotic exchange of solvent and to the presence of parallel reactions from the electrolyte, which originate creeping effects. Challenges and limitations are underlined.
Experimental study of copper-alkali ion exchange in glass
NASA Astrophysics Data System (ADS)
Gonella, F.; Caccavale, F.; Bogomolova, L. D.; D'Acapito, F.; Quaranta, A.
1998-02-01
Copper-alkali ion exchange was performed by immersing different silicate glasses (soda-lime and BK7) in different molten eutectic salt baths (CuSO4:Na2SO4 and CuSO4:K2SO4). The obtained optical waveguides were characterized by m-lines spectroscopy for the determination of refractive index profiles, and by secondary ion mass spectrometry for the concentration profiles of the ion species involved in the exchange process. The different oxidation states of copper inside the glass structure were studied by electron paramagnetic resonance and x-ray absorption techniques. Interdiffusion copper coefficients were also determined. The Cu-alkali exchange was observed to give rise to local structural rearrangement of the atoms in the glass matrix. The Cu+ ion was found to mainly govern the exchange process, while competition between Cu-Na and K-Na exchanges occurred when a potassium sulfate bath was used. In this case, significant waveguide modal birefringence was observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abiddin, Jamal Farghali Bin Zainal; Ahmad, Azizah Hanom; Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor D.E.
2015-08-28
Sodium ion (Na{sup +}) based solid polymer electrolyte (SPE) has been prepared using solution cast technique with distilled water as solvent and Methylcellulose (MC) as a polymer host. Methylcellulose polymer was chosen as the polymer host due to the abundance of lone pair electrons in the carbonyl and C-O-C constituents, which in turn provide multiple hopping sites for the Na{sup +} conducting ions. Variable compositions of sodium iodide (NaI) salt were prepared to investigate the optimum MC-NaI weight ratio. Results from Electrical Impedance Spectroscopy (EIS) technique show that pure methylcellulose has a low conductivity of 3.61 × 10{sup −11} S/cm.Themore » conductivity increases as NaI content increases up to optimum NaIcomposition of 40 wt%, which yields an average conductivity of 2.70 × 10{sup −5} S/cm.« less
NASA Astrophysics Data System (ADS)
Abiddin, Jamal Farghali Bin Zainal; Ahmad, Azizah Hanom
2015-08-01
Sodium ion (Na+) based solid polymer electrolyte (SPE) has been prepared using solution cast technique with distilled water as solvent and Methylcellulose (MC) as a polymer host. Methylcellulose polymer was chosen as the polymer host due to the abundance of lone pair electrons in the carbonyl and C-O-C constituents, which in turn provide multiple hopping sites for the Na+ conducting ions. Variable compositions of sodium iodide (NaI) salt were prepared to investigate the optimum MC-NaI weight ratio. Results from Electrical Impedance Spectroscopy (EIS) technique show that pure methylcellulose has a low conductivity of 3.61 × 10-11 S/cm.The conductivity increases as NaI content increases up to optimum NaIcomposition of 40 wt%, which yields an average conductivity of 2.70 × 10-5 S/cm.
Choi, Bong Gill; Hong, Jinkee; Park, Young Chul; Jung, Doo Hwan; Hong, Won Hi; Hammond, Paula T; Park, Hoseok
2011-06-28
The chemistry and structure of ion channels within the polymer electrolytes are of prime importance for studying the transport properties of electrolytes as well as for developing high-performance electrochemical devices. Despite intensive efforts on the synthesis of polymer electrolytes, few studies have demonstrated enhanced target ion conduction while suppressing unfavorable ion or mass transport because the undesirable transport occurs through an identical pathway. Herein, we report an innovative, chemical strategy for the synthesis of polymer electrolytes whose ion-conducting channels are physically and chemically modulated by the ionic (not electronic) conductive, functionalized graphenes and for a fundamental understanding of ion and mass transport occurring in nanoscale ionic clusters. The functionalized graphenes controlled the state of water by means of nanoscale manipulation of the physical geometry and chemical functionality of ionic channels. Furthermore, the confinement of bound water within the reorganized nanochannels of composite membranes was confirmed by the enhanced proton conductivity at high temperature and the low activation energy for ionic conduction through a Grotthus-type mechanism. The selectively facilitated transport behavior of composite membranes such as high proton conductivity and low methanol crossover was attributed to the confined bound water, resulting in high-performance fuel cells.
NASA Astrophysics Data System (ADS)
Singh, Priyadarshini; Ashthana, Harshita; Rena, Vikas; Kumar, Pardeep; Mukherjee, Saumitra
2017-04-01
Geochemical signatures from alluvial and hard rock aquifers in a part of Northern India elucidate the chemical processes controlling fluctuations in fluoride ion concentration linked to changes in major ion groundwater chemistry. Majority of samples from the hard rock and the alluvial aquifers for pre-monsoon show both carbonate and silicate weathering, ion exchange, evaporation and rock water interaction as the processes controlling major ion chemistry whereas for post monsoon samples, contribution of silicate weathering and ion exchange process were observed. Evaporative processes causing the increase in Na+ ion concentration in premonsoon enhance the reverse ion exchange processes causing increase in Ca2+ ions which impedes fluorite mineral dissolution in the premonsoon groundwater samples within the study area. Alternately, it is observed that the removal of Ca2+ ion from solution plays a key role in increase in fluorite mineral dissolution despite its saturation in groundwater in the postmonsoon samples. Also, ion exchange process on clay surfaces is more pronounced in the postmonsoon samples leading to the uptake of Ca2+ ion upon release of Na+ and K+ ion in solution. Ca2+ ion concentration is inversely correlated with F- ion concentration in both the aquifers in the postmonsoon season validating the role of calcite precipitation as a major reason for the fluoride ion increase. Moreover, increase in silicate weathering in the postmonsoon samples leads to increase in clay particles acting as suitable sites for ion exchange enhancing Ca2+ removal from groundwater. Cationic dominance of Na+ ion in the post monsoon samples also validates the occurrence of this process. Collectively, these processes set the ideal conditions for increase in the fluoride ion concentration particularly in the alluvium aquifer waters in the postmonsoon season Keywords: geochemistry, ion-exchange, rock-water interaction, mineral dissolution, weathering.
Ion beam sputtering of fluoropolymers. [etching polymer films and target surfaces
NASA Technical Reports Server (NTRS)
Sovey, J. S.
1978-01-01
Ion beam sputter processing rates as well as pertinent characteristics of etched targets and films are described. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Sputter target and film characteristics documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs are included.
NASA Astrophysics Data System (ADS)
Leggett, Graham J.; Vickerman, John C.
1992-12-01
Some of the models that have been proposed to account for ion formation during sputtering are reviewed. Particular attention is paid to models describing polyatomic ion formation. Aspects of these models that are relevant to ion formation from molecular materials are discussed. Reports describing the sputtering of polymeric materials are reviewed, and the bearing of recent tandem studies on attempts to formulate a model for ion formation from polymer materials is discussed. Some of the characteristics that a suitable model would possess are identified from the experimental data.
Preparation and characterization of (St-DVB-MAA) ion exchange resins
NASA Astrophysics Data System (ADS)
Jiang, Shanquan; Sun, Xiangwei; Ling, Lixing; Wang, Shumin; Wu, Wufeng; Cheng, Shihong; Hu, Yue; Zhong, Chunyan
2017-08-01
In this paper, used polyvinyl alcohol as dispersing agent, Benzoyl peroxide as initiator of polymerization, Divinyl benzene as cross-linking agent, Styrene and 2-Methylpropenoic acid as monomer, ion exchange resin (copolymer of St-DVB-MAA)were prepared by suspension polymerization on 80°C. The structures, components and properties of the prepared composite micro gels were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA). The experiment of ion exchange was conducted by resin to deal with copper ions in the solution. The result showed that performance of the ion exchange capacity was excellent, which impacted by pH.
Internal gas and liquid distributor for electrodeionization device
Lin, YuPo J.; Snyder, Seth W.; Henry, Michael P.; Datta, Saurav
2016-05-17
The present invention provides a resin-wafer electrodeionization (RW-EDI) apparatus including cathode and anode electrodes separated by a plurality of porous solid ion exchange resin wafers, which when in use are filled with an aqueous fluid. The apparatus includes one or more wafers comprising a basic ion exchange medium, and preferably includes one or more wafers comprising an acidic ion exchange medium. The wafers are separated from one another by ion exchange membranes. The gas and aqueous fluid are introduced into each basic wafer via a porous gas distributor which disperses the gas as micro-sized bubbles laterally throughout the distributor before entering the wafer. The fluid within the acidic and/or basic ion exchange wafers preferably includes, or is in contact with, a carbonic anhydrase (CA) enzyme or inorganic catalyst to facilitate conversion of bicarbonate ion to carbon dioxide within the acidic medium.
NASA Astrophysics Data System (ADS)
Woo, H. J.; Arof, A. K.
2016-05-01
A flexible solid polymer electrolyte (SPE) system based on poly(ε-caprolactone) (PCL), a FDA approved non-toxic and biodegradable material in the effort to lower environmental impact was prepared. Ammonium thiocyanate (NH4SCN) and ethylene carbonate (EC) were incorporated as the source of charge carriers and plasticizing agent, respectively. When 50 wt.% of ethylene carbonate (EC) was added to PCL-NH4SCN system, the conductivity increased by two orders from of 3.94 × 10- 7 Scm- 1 to 3.82 × 10- 5 Scm- 1. Molecular vibrational analysis via infrared spectroscopy had been carried out to study the interaction between EC, PCL and NH4SCN. The relative percentage of free ions, ion pairs and ion aggregates was calculated quantitatively by deconvoluting the SCN- stretching mode (2030-2090 cm- 1). This study provides fundamental insight on how EC influences the free ion dissociation rate and ion mobility. The findings are also in good agreement to conductivity, differential scanning calorimetry and X-ray diffraction results. High dielectric constant value (89.8) of EC had made it an effective ion dissociation agent to dissociate both ion pairs and ion aggregates, thus contributing to higher number density of free ions. The incorporation of EC had made the polymer chains more flexible in expanding amorphous domain. This will facilitate the coupling synergy between ionic motion and polymer segmental motion. Possible new pathway through EC-NH4+ complex sites for ions to migrate with shorter distance has been anticipated. This implies an easier ion migration route from one complex site to another.
Mineral Separation in a CELSS by Ion-exchange Chromatography
NASA Technical Reports Server (NTRS)
Ballou, E. V.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.
1982-01-01
Operational parameters pertinent to ion exchange chromatography separation were identified. The experiments were performed with 9 mm diameter ion exchange columns and conventional column accessories. The cation separation beds were packed with AG 50W-X2 strong acid cation exchange resin in H(+) form and 200-400 dry mesh particle size. The stripper beds used in some experiments were packed with AG 1-XB strong base cation exchange resin in OH(-) form and 200-400 dry mesh particle size.
NASA Astrophysics Data System (ADS)
Shamsipur, Mojtaba; Rajabi, Hamid Reza; Pourmortazavi, Seied Mahdi; Roushani, Mahmoud
2014-01-01
Preparation of Zn2+ ion-imprinted polymer (Zn-IIP) nanoparticles is presented in this report. The Zn-IIP nanoparticles are prepared by dissolving stoichiometric amounts of zinc nitrate and selected chelating ligand, 3,5,7,20,40-pentahydroxyflavone, in 15 mL ethanol-acetonitrile (2:1; v/v) mixture as a porogen solvent in the presence of ethylene glycol-dimethacrylate (EGDMA) as cross-linking, methacrylic acid (MAA) as functional monomer, and 2,2-azobisisobutyronitrile (AIBN) as initiator. After polymerization, Cavities in the polymer particles corresponding to the Zn2+ ions were created by leaching the polymer in HCl aqueous solution. The synthesized IIPs were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermal analysis techniques. Also, the pH range for rebinding of Zn2+ ion on the IIP and equilibrium binding time were optimized, using flame atomic absorption spectrometry. In selectivity study, it was found that imprinting results increased affinity of the material toward Zn2+ ion over other competitor metal ions with the same charge and close ionic radius. The prepared IIPs were repeatedly used and regenerated for six times without any significant decrease in polymer binding affinities. Finally, the prepared sorbent was successfully applied to the selective recognition and determination of zinc ion in different real samples.
The Award for the Development of Ion Exchange Systems for Food Processing
NASA Astrophysics Data System (ADS)
Yao, Eiya
In the food industry, ion exchange resins have been used not only for water treatment, but also for the purification of foodstuff itself. Here I will introduce some topics in the development and improvement of ion exchange systems for food proccssing that I have worked on.
Experimental simulation of internal short circuit in Li-ion and Li-ion-Polymer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Wei; Wang, Hsin; Maleki, Hossein
A multi-parameter controlled pinch test was developed to study the occurrence of internal short circuits in Li-ion and Li-ion-polymer cells. By tuning the control parameters (i.e., cell voltage as well as pinching area, load, and speed), the pinch test can reproducibly create ~1 to 2 mm wide internal short between a cell jelly-roll s inner layer electrodes. This recreates conditions similar to those that may occur during service. Furthermore, the pinch test is used to determine thermal stability of two Li-ion-polymer cells of different designs built by the same manufacturer. The pinch test method can be used to help distinguishmore » cells with design features or characteristics that lower risk of potential thermal events created by internal short circuits.« less
ION-EXCHANGE METHOD FOR SEPARATING RADIUM FROM RADIUM-BARIUM MIXTURES
Fuentevilla, M.E.
1959-06-30
An improved process is presented for separating radium from an aqueous feed solution containing radium and barium values and a complexing agent for these metals. In this process a feed solutlon containing radium and barium ions and a complexing agent for said ions ls cycled through an exchange zone in resins. The radiumenriched resin is then stripped of radium values to form a regeneration liquid, a portion of which is collected as an enriched product, the remaining portion being recycled to the exchange zone to further enrich the ion exchange resin in radium.
NASA Astrophysics Data System (ADS)
Tu, Yi-Jung; Lin, Zhijin; Allen, Matthew J.; Cisneros, G. Andrés
2018-01-01
We report a kinetic study of the water exchange on lanthanide ions in water/[1-ethyl-3-methylimidazolium][trifluoromethylsufate] (water/[EMIm][OTf]). The results from 17O-NMR measurements show that the water-exchange rates in water/[EMIm][OTf] increase with decreasing size of the lanthanide ions. This trend for water-exchange is similar to the previously reported trend in water/1-ethyl-3-methylimidazolium ethyl sulfate (water/[EMIm][EtSO4]) but opposite to that in water. To gain atomic-level insight into these water-exchange reactions, molecular dynamics simulations for lanthanide ions in water/[EMIm][OTf] have been performed using the atomic-multipole-optimized-energetics-for-biomolecular-application polarizable force field. Our molecular dynamics simulations reproduce the experimental water-exchange rates in terms of the trend and provide possible explanations for the observed experimental behavior. The smaller lanthanide ions in water/[EMIm][OTf] undergo faster water exchange because the smaller lanthanide ions coordinate to the first shell [OTf]- anions more tightly, resulting in a stronger screening effect for the second-shell water. The screening effect weakens the interaction of the lanthanide ions with the second-shell water molecules, facilitating the dissociation of water from the second-shell and subsequent association of water molecules from the outer solvation shells.
Tu, Yi-Jung; Lin, Zhijin; Allen, Matthew J; Cisneros, G Andrés
2018-01-14
We report a kinetic study of the water exchange on lanthanide ions in water/[1-ethyl-3-methylimidazolium][trifluoromethylsufate] (water/[EMIm][OTf]). The results from 17 O-NMR measurements show that the water-exchange rates in water/[EMIm][OTf] increase with decreasing size of the lanthanide ions. This trend for water-exchange is similar to the previously reported trend in water/1-ethyl-3-methylimidazolium ethyl sulfate (water/[EMIm][EtSO 4 ]) but opposite to that in water. To gain atomic-level insight into these water-exchange reactions, molecular dynamics simulations for lanthanide ions in water/[EMIm][OTf] have been performed using the atomic-multipole-optimized-energetics-for-biomolecular-application polarizable force field. Our molecular dynamics simulations reproduce the experimental water-exchange rates in terms of the trend and provide possible explanations for the observed experimental behavior. The smaller lanthanide ions in water/[EMIm][OTf] undergo faster water exchange because the smaller lanthanide ions coordinate to the first shell [OTf] - anions more tightly, resulting in a stronger screening effect for the second-shell water. The screening effect weakens the interaction of the lanthanide ions with the second-shell water molecules, facilitating the dissociation of water from the second-shell and subsequent association of water molecules from the outer solvation shells.
NASA Astrophysics Data System (ADS)
Chandra, A.
2013-07-01
Synthesis and ion transport characterization of a new Ag+ ion conducting glass-polymer electrolyte (GPE) films: (1- x) PEO: x [0.8(0.75AgI:0.25AgCl):0.2(Ag2O:V2O5)], where 0 < x < 50 wt%, are reported. The composition: 70PEO: 30[0.8(0.75AgI:0.25AgCl):0.2(Ag2O:V2O5)] with conductivity ( σ) 7.7 × 10-7 Ω-1 cm-1 is identified as highest conducting composition referred to as the optimum conducting composition (OCC). Approximately two and half orders of conductivity enhancement have been achieved in OCC from that of the pure polymer poly(ethylene oxide). The glass-polymer complexation is confirmed by the XRD, FTIR, DSC and TGA techniques. The ion transport behavior has been reported on the basis of experimental measurements on some basic ionic parameters. A solid state polymeric battery has been fabricated by using GPE OCC as an electrolyte and their important cell parameters have been also calculated from the discharge profiles.
The use of an ion-beam source to alter the surface morphology of biological implant materials
NASA Technical Reports Server (NTRS)
Weigand, A. J.
1978-01-01
An electron bombardment, ion thruster was used as a neutralized-ion beam sputtering source to texture the surfaces of biological implant materials. Scanning electron microscopy was used to determine surface morphology changes of all materials after ion-texturing. Electron spectroscopy for chemical analysis was used to determine the effects of ion texturing on the surface chemical composition of some polymers. Liquid contact angle data were obtained for ion textured and untextured polymer samples. Results of tensile and fatigue tests of ion-textured metal alloys are presented. Preliminary data of tissue response to ion textured surfaces of some metals, polytetrafluoroethylene, alumina, and segmented polyurethane were obtained.
NASA Astrophysics Data System (ADS)
Liu, Dong; Peng, Jinhua; Li, Zhuoyao; Liu, Bin; Wang, Lei
2018-02-01
Sulfonated polymer/graphene oxide (GO) nanocomposites exhibit excellent properties as proton exchange membranes. However, few investigations on highly branched sulfonated poly(arylene ether)s (HBSPE)/GO nanocomposites as proton exchange membranes are reported. In order to obtain HBSPE-based nanocomposite membranes with better dispersibility and properties, a novel GO containing flexible alkylsulfonated side chains (SGO) is designed and prepared for the first time in this work. The HBSPE/SGO nanocomposite membranes with excellent dispersibility are successfully prepared. The properties of these membranes, including the mechanical properties, ion-exchange capacity, water uptake, proton conductivity, and methanol resistance, are characterized. The nanocomposite membranes exhibit higher tensile strength (32.67 MPa), higher proton conductivity (0.39 S cm-1 at 80 °C) and lower methanol permeability (4.89 × 10-7 cm2 s-1) than the pristine membrane. The nanocomposite membranes also achieve a higher maximum power density (82.36 mW cm-2) than the pristine membrane (67.85 mW cm-2) in single-cell direct methanol fuel cell (DMFC) tests, demonstrating their considerable potential for applications in DMFCs.
Nanostructured MnO2-Based Cathodes for Li-Ion/Polymer Cells
NASA Technical Reports Server (NTRS)
Skandan, Ganesh; Singhal, Amit
2005-01-01
Nanostructured MnO2-based cathodes for Li-ion/polymer electrochemical cells have been investigated in a continuing effort to develop safe, high-energy-density, reliable, low-toxicity, rechargeable batteries for a variety of applications in NASA programs and in mass-produced commercial electronic equipment. Whereas the energy densities of state-of-the-art lithium-ion/polymer batteries range from 150 to 175 W h/kg, the goal of this effort is to increase the typical energy density to about 250 W h/kg. It is also expected that an incidental benefit of this effort will be increases in power densities because the distances over which Li ions must diffuse through nanostructured cathode materials are smaller than those through solid bulk cathode materials.
Dispersions of polymer ionomers: I.
Capek, Ignác
2004-12-31
The principal subject discussed in the current paper is the effect of ionic functional groups in polymers on the formation of nontraditional polymer materials, polymer blends or polymer dispersions. Ionomers are polymers that have a small amount of ionic groups distributed along a nonionic hydrocarbon chain. Specific interactions between components in a polymer blend can induce miscibility of two or more otherwise immiscible polymers. Such interactions include hydrogen bonding, ion-dipole interactions, acid-base interactions or transition metal complexation. Ion-containing polymers provide a means of modifying properties of polymer dispersions by controlling molecular structure through the utilization of ionic interactions. Ionomers having a relatively small number of ionic groups distributed usually along nonionic organic backbone chains can agglomerate into the following structures: (1) multiplets, consisting of a small number of tightly packed ion pairs; and (2) ionic clusters, larger aggregates than multiplets. Ionomers exhibit unique solid-state properties as a result of strong associations among ionic groups attached to the polymer chains. An important potential application of ionomers is in the area of thermoplastic elastomers, where the associations constitute thermally reversible cross-links. The ionic (anionic, cationic or polar) groups are spaced more or less randomly along the polymer chain. Because in this type of ionomer an anionic group falls along the interior of the chain, it trails two hydrocarbon chain segments, and these must be accommodated sterically within any domain structure into which the ionic group enters. The primary effects of ionic functionalization of a polymer are to increase the glass transition temperature, the melt viscosity and the characteristic relaxation times. The polymer microstructure is also affected, and it is generally agreed that in most ionomers, microphase-separated, ion-rich aggregates form as a result of strong ion-dipole attractions. As a consequence of this new phase, additional relaxation processes are often observed in the viscoelastic behavior of ionomers. Light functionalization of polymers can increase the glass transition temperature and gives rise to two new features in viscoelastic behavior: (1) a rubbery plateau above T(g) and (2) a second loss process at elevated temperatures. The rubbery plateau was due to the formation of a physical network. The major effect of the ionic aggregate was to increase the longer time relaxation processes. This in turn increases the melt viscosity and is responsible for the network-like behavior of ionomers above the glass transition temperature. Ionomers rich in polar groups can fulfill the criteria for the self-assembly formation. The reported phenomenon of surface micelle formation has been found to be very general for these materials.
New Metal Niobate and Silicotitanate Ion Exchangers: Development and Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandra Navrotsky; Mary Lou Balmer; Tina M. Nenoff
2003-12-05
This renewal proposal outlines our current progress and future research plans for ion exchangers: novel metal niobate and silicotitanate ion exchangers and their ultimate deployment in the DOE complex. In our original study several forms (including Cs exchanged) of the heat treated Crystalline Silicotitanates (CSTs) were fully characterized by a combination of high temperature synthesis and phase identification, low temperature synthesis and phase identification, and thermodynamics. This renewal proposal is predicated on work completed in our current EMSP program: we have shown preliminary data of a novel class of niobate-based molecular sieves (Na/Nb/M/O, M = transition metals), which show exceptionallymore » high selectivity for divalent cations under extreme conditions (acid solutions, competing cations), in addition to novel silicotitanate phases which are also selective for divalent cations. Furthermore, these materials are easily converted by a high temperature in-situ heat treatment into a refractory ceramic waste form with low cation leachability. The new waste form is a perovskite phase, which is also a major component of Synroc, a titanate ceramic waste form used for sequestration of HLW wastes from reprocessed, spent nuclear fuel. These new niobate ion exchangers also shown orders of magnitude better selectivity for Sr2+ under acid conditions than any other material. The goal of the program is to reduce the costs associated with divalent cation waste removal and disposal, to minimize the risk of contamination to the environment during ion exchanger processing, and to provide DOE with materials for near-term lab-bench stimulant testing, and eventual deployment. The proposed work will provide information on the structure/property relationship between ion exchanger frameworks and selectivity for specific ions, allowing for the eventual ''tuning'' of framework for specific ion exchange needs. To date, DOE sites have become interested in on-site testing of these materials; ongoing discussions and initial experiments are occurring with Dr. Dean Peterman, Idaho National Engineering and Environmental Laboratory (INEEL) (location of the DOE/EM Waste Treatment Focus Area), and Dr. John Harbour, Savannah River Site (SRS). Yet the materials have not been optimized, and further research and development of the novel ion exchangers and testing conditions with simulants are needed. In addition, studies of the ion exchanger composition versus ion selectivity, ion exchange capacity and durability of final waste form are needed. This program will bring together three key institutions to address scientific hurdles of the separation process associated with metal niobate and silicotitanate ion exchangers, in particular for divalent cations (e.g., Sr2+). The program involves a joint effort between researchers at Pacific Northwest National Laboratory, who are leaders in structure/property relations in silicotitanates and in waste form development and performance assessment, Sandia National Laboratories, who discovered and developed crystalline silicotitanate ion exchangers (with Texas A&M and UOP) and also the novel class of divalent metal niobate ion exchangers, and the Thermochemistry Facility at UC Davis, who are world renowned experts in calorimetry and have already performed extensive thermodynamic studies on silicotitanate materials. In addition, Dr. Rodney Ewing of University of Michigan, an expert in radiation effects on materials, and Dr. Robert Roth of the National Institute of Standards and Technology and The Viper Group, a leader in phase equilibria development, will be consultants for radiation and phase studies. The research team will focus on three tasks that will provide both the basic research necessary for the development of highly selective ion exchange materials and also materials for short-term deployment within the DOE complex: (1) Structure/property relationships of a novel class of niobate-based molecular sieves (Na/Nb/M/O, M = transition metals), which show exceptionally high selectivity for divalent cations under extreme conditions (acid solutions, competing cations), (2) the role of ion exchanger structure change (both niobates and silicotitanates) on the exchange capacity (for elements such as Sr and actinide-surrogates) which results from exposure to DOE complex waste simulants, (3) thermodynamic stability of metal niobates and silicotitanate ion exchangers.« less
Park, Young-Uk; Bai, Jianming; Wang, Liping; Yoon, Gabin; Zhang, Wei; Kim, Hyungsub; Lee, Seongsu; Kim, Sung-Wook; Looney, J Patrick; Kang, Kisuk; Wang, Feng
2017-09-13
Ion exchange is a ubiquitous phenomenon central to wide industrial applications, ranging from traditional (bio)chemical separation to the emerging chimie douce synthesis of materials with metastable structure for batteries and other energy applications. The exchange process is complex, involving substitution and transport of different ions under non-equilibrium conditions, and thus difficult to probe, leaving a gap in mechanistic understanding of kinetic exchange pathways toward final products. Herein, we report in situ tracking kinetic pathways of Li + /Na + substitution during solvothermal ion-exchange synthesis of Li x Na 1.5-x VOPO 4 F 0.5 (0 ≤ x ≤ 1.5), a promising multi-Li polyanionic cathode for batteries. The real-time observation, corroborated by first-principles calculations, reveals a selective replacement of Na + by Li + , leading to peculiar Na + /Li + /vacancy orderings in the intermediates. Contradicting the traditional belief of facile topotactic substitution via solid solution reaction, an abrupt two-phase transformation occurs and predominantly governs the kinetics of ion exchange and transport in the 1D polyanionic framework, consequently leading to significant difference of Li stoichiometry and electrochemical properties in the exchanged products. The findings may help to pave the way for rational design of ion exchange synthesis for making new materials.
Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming
2014-01-01
Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug-fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug-fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid.
Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming
2014-01-01
Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug–fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug–fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid. PMID:25114504
Raman probing of molecular interactions of alginate biopolymers with cells
NASA Astrophysics Data System (ADS)
Chourpa, Igor; Carpentier, Philippe; Maingault, Philippe; Fetissoff, Franck; Dubois, Pierre
2000-05-01
The biological polymers extracted from brown algae, alginates, are novel materials in biotechnology and biomedicine. Their ability to form viscous gels is used to immobilize or encapsulate yeast, enzymes, living cells and drugs. Calcium-alginate fibers are extensively used in wound dressings since exhibit antihaemostatic and healing properties. The problem with alginate-made dressings in surgery is their slow biodegradability: if entrapped within tissues, they can induce a local cellular recruitment with an inflammatory response contemporaneous to the resorption phase. In part, this problem is a consequence of poor solubility of the calcium alginates in water. Although calcium alginate fibers can exchange calcium ions with sodium ions from the wound exudate to create a calcium/sodium alginate fibers, the residual alginates are thought to be not totally degradable in vivo. Rapid and non- destructive characterization of series of the crude alginates and calcium alginate fibers has been performed using Raman spectroscopy with near IR excitation. Study of structural organization of the polymeric chains within calcium alginate fibers have been previously reported as made by confocal Raman multispectral imaging (CRMSI) in visible. Here, the Raman approach has been used to monitor the ion exchange reactions for different types of alginates and their salts in vitro. For in vivo evaluation, histological sections of alginate-treated rat tissue have been analyzed by light microscopy and CRMSI. The in vitro Raman modeling and the histochemical mapping were a necessary precursor for application of the Raman microprobe to follow in a non-invasive way the alginate-cell molecular interactions in rat tissue.
Nanostructure enhanced ionic transport in fullerene reinforced solid polymer electrolytes.
Sun, Che-Nan; Zawodzinski, Thomas A; Tenhaeff, Wyatt E; Ren, Fei; Keum, Jong Kahk; Bi, Sheng; Li, Dawen; Ahn, Suk-Kyun; Hong, Kunlun; Rondinone, Adam J; Carrillo, Jan-Michael Y; Do, Changwoo; Sumpter, Bobby G; Chen, Jihua
2015-03-28
Solid polymer electrolytes, such as polyethylene oxide (PEO) based systems, have the potential to replace liquid electrolytes in secondary lithium batteries with flexible, safe, and mechanically robust designs. Previously reported PEO nanocomposite electrolytes routinely use metal oxide nanoparticles that are often 5-10 nm in diameter or larger. The mechanism of those oxide particle-based polymer nanocomposite electrolytes is under debate and the ion transport performance of these systems is still to be improved. Herein we report a 6-fold ion conductivity enhancement in PEO/lithium bis(trifluoromethanesulfonyl) imide (LiTFSI)-based solid electrolytes upon the addition of fullerene derivatives. The observed conductivity improvement correlates with nanometer-scale fullerene crystallite formation, reduced crystallinities of both the (PEO)6:LiTFSI phase and pure PEO, as well as a significantly larger PEO free volume. This improved performance is further interpreted by enhanced decoupling between ion transport and polymer segmental motion, as well as optimized permittivity and conductivity in bulk and grain boundaries. This study suggests that nanoparticle induced morphological changes, in a system with fullerene nanoparticles and no Lewis acidic sites, play critical roles in their ion conductivity enhancement. The marriage of fullerene derivatives and solid polymer electrolytes opens up significant opportunities in designing next-generation solid polymer electrolytes with improved performance.
Aversa, Thiago Muza; da Silva, Carla Michele Frota; da Rocha, Paulo Cristiano Silva; Lucas, Elizabete Fernandes
2016-11-01
Contamination of water by phenol is potentially a serious problem due to its high toxicity and its acid character. In this way some treatment process to remove or reduce the phenol concentration before contaminated water disposal on the environment is required. Currently, phenol can be removed by charcoal adsorption, but this process does not allow easy regeneration of the adsorbent. In contrast, polymeric resins are easily regenerated and can be reused in others cycles of adsorption process. In this work, the interaction of phenol with two polymeric resins was investigated, one of them containing a weakly basic anionic exchange group (GD-DEA) and the other, a strongly basic group (GD-QUAT). Both ion exchange resins were obtained through chemical modifications from a base porous resin composed of glycidyl methacrylate (GMA) and divinyl benzene (DVB). Evaluation tests with resins were carried out with 30 mg/L of phenol in water solution, at pH 6 and 10, employing two distinct processes: (i) batch, to evaluate the effect of temperature, and (ii) continuous flow, to assess the breakthrough of the resins. Batch tests revealed that the systems did not follow the model proposed by Langmuir due to the negative values obtained for the constant b and for the maximum adsorption capacity, Q0. However, satisfactory results for the constants KF and n allowed assuming that the behavior of systems followed the Freundlich model, leading to the conclusion that resin GD-DEA had the best interaction with the phenol when in a solution having pH 10 (phenoxide ions). The continuous flow tests corroborated this conclusion since the performance of GD-DEA in removing phenol was also best at pH 10, indicating that the greater availability of the electron pair in the resin with the weakly basic donor group contributed to enhance the resin's interaction with the phenoxide ions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Malliakas, Christos D.; Leung, Kevin; Pupek, Krzysztof Z.; ...
2016-03-31
Fluorinated carbonate solvents are pursued as liquid electrolytes for high-voltage Li-ion batteries. We report aggregation of [Li +(FEC) 3] n polymer species from fluoroethylene carbonate containing electrolytes and scrutinized the causes for this behavior.
Studying ion exchange in solution and at biological membranes by FCS.
Widengren, Jerker
2013-01-01
By FCS, a wide range of processes can be studied, covering time ranges from subnanoseconds to seconds. In principle, any process at equilibrium conditions can be measured, which reflects itself by a change in the detected fluorescence intensity. In this review, it is described how FCS and variants thereof can be used to monitor ion exchange, in solution and along biological membranes. Analyzing fluorescence fluctuations of ion-sensitive fluorophores by FCS offers selective advantages over other techniques for measuring local ion concentrations, and, in particular, for studying exchange kinetics of ions on a very local scale. This opens for several areas of application. The FCS approach was used to investigate fundamental aspects of proton exchange at and along biological membranes. The protonation relaxation rate, as measured by FCS for a pH-sensitive dye, can also provide information about local accessibility/interaction of a particular labeling site and conformational states of biomolecules, in a similar fashion as in a fluorescence quenching experiment. The same FCS concept can also be applied to ion exchange studies using other ion-sensitive fluorophores, and by use of dyes sensitive to other ambient conditions the concept can be extended also beyond ion exchange studies. Copyright © 2013 Elsevier Inc. All rights reserved.
Ion-exchange and iontophoresis-controlled delivery of apomorphine.
Malinovskaja, Kristina; Laaksonen, Timo; Kontturi, Kyösti; Hirvonen, Jouni
2013-04-01
The objective of this study was to test a drug delivery system that combines iontophoresis and cation-exchange fibers as drug matrices for the controlled transdermal delivery of antiparkinsonian drug apomorphine. Positively charged apomorphine was bound to the ion-exchange groups of the cation-exchange fibers until it was released by mobile counter-ions in the external solution. The release of the drug was controlled by modifying either the fiber type or the ionic composition of the external solution. Due to high affinity of apomorphine toward the ion-exchanger, a clear reduction in the in vitro transdermal fluxes from the fibers was observed compared to the respective fluxes from apomorphine solutions. Changes in the ionic composition of the donor formulations affected both the release and iontophoretic flux of the drug. Upon the application of higher co-ion concentrations or co-ions of higher valence in the donor formulation, the release from the fibers was enhanced, but the iontophoretic steady-state flux was decreased. Overall, the present study has demonstrated a promising approach using ion-exchange fibers for controlling the release and iontophoretic transdermal delivery of apomorphine. Copyright © 2012 Elsevier B.V. All rights reserved.
Recent developments on ion-exchange membranes and electro-membrane processes.
Nagarale, R K; Gohil, G S; Shahi, Vinod K
2006-02-28
Rapid growth of chemical and biotechnology in diversified areas fuels the demand for the need of reliable green technologies for the down stream processes, which include separation, purification and isolation of the molecules. Ion-exchange membrane technologies are non-hazardous in nature and being widely used not only for separation and purification but their application also extended towards energy conversion devices, storage batteries and sensors etc. Now there is a quite demand for the ion-exchange membrane with better selectivities, less electrical resistance, high chemical, mechanical and thermal stability as well as good durability. A lot of work has been done for the development of these types of ion-exchange membranes during the past twenty-five years. Herein we have reviewed the preparation of various types of ion-exchange membranes, their characterization and applications for different electro-membrane processes. Primary attention has been given to the chemical route used for the membrane preparation. Several general reactions used for the preparation of ion-exchange membranes were described. Methodologies used for the characterization of these membranes and their applications were also reviewed for the benefit of readers, so that they can get all information about the ion-exchange membranes at one platform. Although there are large number of reports available regarding preparations and applications of ion-exchange membranes more emphasis were predicted for the usefulness of these membranes or processes for solving certain type of industrial or social problems. More efforts are needed to bring many products or processes to pilot scale and extent their applications.
Groundwater transport of strontium 90 in a glacial outwash environment
Kipp, Kenneth L.; Stollenwerk, Kenneth G.; Grove, David B.
1986-01-01
As part of the investigation of groundwater contamination at a uranium-scrap recovery plant at Wood River Junction, Rhode Island, laboratory experiments led to the development of a model for predicting the transport of strontium 90 in glacial outwash sediments based on an approximate mechanism for ion exchange. The multicomponent system was simplified to two components by regarding all exchangeable cations other than strontium 90 as a single component. The binary ion-exchange parameter was a function of the variable, total ion concentration. A one-dimensional solute transport model was formulated to evaluate the time necessary for natural groundwater flow to remove the strontium 90 contamination plume from the groundwater system to the Pawcatuck River. The finite difference transport equations were solved sequentially for total ion concentrations, then strontium 90 concentrations. Clay-free quartz and feldspar sands at the study site have little potential for strontium 90 sorption, and high calcium, magnesium, and sodium concentrations compete for the few ion exchange sites. As the total ion concentration plume moves out of the system, ion exchange of strontium 90 increases, reducing the strontium 90 concentration in the groundwater. Cleanout times predicted using the binary ion exchange mechanism were about two thirds of those predicted using a constant distribution coefficient. It is suggested that this type of model can simulate solute transport more realistically in many groundwater systems where the total ion concentration is not constant.
Pprogramming biomaterial bioresorption profile by embedding hydrolytic enzymes on polymer matrix
NASA Astrophysics Data System (ADS)
Ganesh, Manoj
A unique strategy to control bioresorbable polymer lifetime by embedding enzymes in polymer matrices has been developed. Lipase from Candida Antarctica Lipase B (CALB) is surfactant paired enabling it to be organo-soluble and active for hydrolysis of the polymer matrix. The ion-paired lipase prepared by this technique is embedded within the poly(caprolactone) (PCL) matrix. Degradation studies of enzyme embedded PCL films were performed in three different incubation conditions namely i) batch; ii) continuous flow; iii) static (controlled humidity). In our batch studies ion paired CALB (6.5 and 1.65% (w/w)) was reported to degrade the PCL films in 1 day and 18 days respectively. Enzyme-catalyzed degradation of PCL films with embedded CALB (1.6 %-by-wt) under continuous fluid exchange (flow) conditions and in controlled humidity desiccators were also determined. At 0.2 mL/min flow rate, film weight loss reached 85% in 3 days relative to static incubations where 70% degradation occurred in 9 days. However, further increase in flow rate from 0.2 to 0.5 mL/min results in slower weight loss (7 days, 70%) as increased flow rate appears to negatively influence enzyme stability. The removal of degradation products is more efficient leading to formation of a porous matrix where SEM cross sectional images show larger better defined pores under continuous flow conditions. 1.6% CALB-embedded PCL films were incubated in desiccators set at 20, 75 and 95% relative humidity (RH). Water uptake and molecular weight change at 20% RH were insignificant. However, at 75 and 95% RH, by 28 days, %-water content increased to 0.30 and 0.82, and film Mn decreased by 25% to 59300 and 58% to 33900, respectively. From studies performed in embedded enzymatic polymer systems, we have extended our work to develop a new method for micro contact printing (μCP), which involves enzymes that has site-specific recognition domains for the polymer substrates. We have shown that degradation can occur under ambient conditions, at temperature 37 deg C and 30% humidity. A patterned degradation at this micron level wherein PCL films are degraded only along the areas of contact by stamping with CALB has not been reported by soft lithography using PDMS stamp.
Hernández, Sebastián; Papp, Joseph K.; Bhattacharyya, Dibakar
2014-01-01
Functionalized polymer materials with ion exchange groups and integration of nano-structured materials is an emerging area for catalytic and water pollution control applications. The polymerization of materials such as acrylic acid often requires persulfate initiator and a high temperature start. However, is generally known that metal ions accelerate such polymerizations starting from room temperature. If the metal is properly selected, it can be used in environmental applications adding two advantages simultaneously. This paper deals with this by polymerizing acrylic acid using iron as accelerant and its subsequent use for nanoparticle synthesis in hydrogel and PVDF membranes. Characterizations of hydrogel, membranes and nanoparticles were carried out with different techniques. Nanoparticles sizes of 30–60 nm were synthesized. Permeability and swelling measurements demonstrate an inverse relationship between hydrogel mesh size (6.30 to 8.34 nm) and membrane pores (222 to 110 nm). Quantitative reduction of trichloroethylene/chloride generation by Fe/Pd nanoparticles in hydrogel/membrane platforms was also performed. PMID:24954975
NASA Astrophysics Data System (ADS)
Miura, Hitoshi
The development of compact separation and recovery methods using selective ion-exchange techniques is very important for the reprocessing and high-level liquid wastes (HLLWs) treatment in the nuclear backend field. The selective nuclide separation techniques are effective for the volume reduction of wastes and the utilization of valuable nuclides, and expected for the construction of advanced nuclear fuel cycle system and the rationalization of waste treatment. In order to accomplish the selective nuclide separation, the design and synthesis of novel adsorbents are essential for the development of compact and precise separation processes. The present paper deals with the preparation of highly functional and selective hybrid microcapsules enclosing nano-adsorbents in the alginate gel polymer matrices by sol-gel methods, their characterization and the clarification of selective adsorption properties by batch and column methods. The selective separation of Cs, Pd and Re in real HLLW was further accomplished by using novel microcapsules, and an advanced nuclide separation system was proposed by the combination of selective processes using microcapsules.
Subianto, Surya; Roy Choudhury, Namita; Dutta, Naba
2013-01-01
Macromolecular modification of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF) was done with various proportions of sulfonic acid terminated, hyperbranched polysulfone (HPSU) with a view to prepare ion conducting membranes. The PVDF-co-HFP was first chemically modified by dehydrofluorination and chlorosulfonation in order to make the membrane more hydrophilic as well as to introduce unsaturation, which would allow crosslinking of the PVDF-co-HFP matrix to improve the stability of the membrane. The modified samples were characterized for ion exchange capacity, morphology, and performance. The HPSU modified S-PVDF membrane shows good stability and ionic conductivity of 5.1 mS cm−1 at 80 °C and 100% RH for blends containing 20% HPSU, which is higher than the literature values for equivalent blend membranes using Nafion. SEM analysis of the blend membranes containing 15% or more HPSU shows the presence of spherical domains with a size range of 300–800 nm within the membranes, which are believed to be the HPSU-rich area. PMID:28348282
The influence of cation exchange treatment on the final characteristics of red wines.
Lasanta, Cristina; Caro, Ildefonso; Pérez, Luis
2013-06-01
Ion exchange technology has been applied to adjust the pH of red wine and improve its tartaric and oxidative stability. Ion exchange appears to be a useful technique to achieve these objectives. Regarding the effect of ion exchange on organoleptic characteristics and the quality of the obtained wines, a slight decrease in both anthocyanin and tannin contents was observed along with a small drop in the aromatic content. However, the treated wines had lower hue and higher colour intensity and gave better punctuations in the sensory evaluation. These results confirm that ion exchange is an interesting technique for application in red winemaking. Copyright © 2012 Elsevier Ltd. All rights reserved.
Copper cladding on polymer surfaces by ionization-assisted deposition
NASA Astrophysics Data System (ADS)
Kohno, Tomoki; Tanaka, Kuniaki; Usui, Hiroaki
2018-03-01
Copper thin films were prepared on poly(ethylene terephthalate) (PET) and polyimide (PI) substrates by an ionization-assisted vapor deposition method. The films had a polycrystalline structure, and their crystallite size decreased with increasing ion acceleration voltage V a. Ion acceleration was effective in reducing the surface roughness of the films. Cross-sectional transmission electron microscopy revealed that the copper/polymer interface showed increased corrugation with increasing V a. The increase in V a also induced the chemical modification of polymer chains of the PET substrate, but the PI substrate underwent smaller modification after ion bombardment. Most importantly, the adhesion strength between the copper film and the PET substrate increased with increasing V a. It was concluded that ionization-assisted deposition is a promising technique for preparing metal clad layers on flexible polymer substrates.
Dynamics of Lithium Polymer Electrolytes using X-ray Photon Correlation Spectroscopy and Rheology
NASA Astrophysics Data System (ADS)
Oparaji, Onyekachi; Narayanan, Suresh; Sandy, Alec; Hallinan, Daniel, Jr.
Polymer electrolytes are promising materials for high energy density rechargeable batteries. Battery fade can be caused by structural evolution in the battery electrode and loss of electrode/electrolyte adhesion during cycling. Both of these effects are dependent on polymer mechanical properties. In addition, cycling rate is dictated by the ion mobility of the polymer electrolyte. Lithium ion mobility is expected to be strongly coupled to polymer dynamics. Therefore, we investigate polymer dynamics as a function of salt concentration using X-ray Photon Correlation Spectroscopy (XPCS) and rheology. We report the influence of lithium salt concentration on the structural relaxation time (XPCS) and stress relaxation time (rheology) of high molecular weight poly(styrene - ethylene oxide) block copolymer membranes.
Titania bound sodium titanate ion exchanger
DeFilippi, Irene C. G.; Yates, Stephen Frederic; Shen, Jian-Kun; Gaita, Romulus; Sedath, Robert Henry; Seminara, Gary Joseph; Straszewski, Michael Peter; Anderson, David Joseph
1999-03-23
This invention is method for preparing a titania bound ion exchange composition comprising admixing crystalline sodium titanate and a hydrolyzable titanium compound and, thereafter drying the titania bound crystalline sodium titanate and subjecting the dried titania bound ion exchange composition to optional compaction and calcination steps to improve the physical strength of the titania bound composition.
NASA Astrophysics Data System (ADS)
Zeng, Huidan; Wang, Ling; Ye, Feng; Yang, Bin; Chen, Jianding; Chen, Guorong; Sun, Luyi
2016-11-01
Chemical strengthening of aluminosilicate glasses through K+-Na+ ion exchange has attracted tremendous attentions because of the accelerating demand for high strength and damage resistance glasses. However, a paramount challenge still exists to fabricate glasses with a higher strength and greater depth of ion-exchange layer. Herein, aluminosilicate glasses with different contents of P2O5 were prepared and the influence of P2O5 on the increased compressive stress and depth of ion-exchange layer was investigated by micro-Raman technique. It was noticed that the hardness, compressive stress, as well as the depth of ion-exchange layer substantially increased with an increasing concentration of P2O5 varied from 1 to 7 mol%. The obtained micro-Raman spectra confirmed the formation of relatively depolymerized silicate anions that accelerated the ion exchange. Phosphorus containing aluminosilicate glasses with a lower polymerization degree exhibited a higher strength and deeper depth of ion-exchange layer, which suggests that the phosphorus containing aluminosilicate glasses have promising applications in flat panel displays, windshields, and wafer sealing substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobbs, D. T.; Shehee, T. C.
2015-08-31
Our research seeks to determine if inorganic ion-exchange materials can be exploited to provide effective minor actinide (Am, Cm) separation from lanthanides. Previous work has established that a number of inorganic and UMOF ion-exchange materials exhibit varying affinities for actinides and lanthanides, which may be exploited for effective separations. During FY15, experimental work focused on investigating methods to oxidize americium in dilute nitric and perchloric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium in dilute nitric acid. Ion-exchange materials tested included a variety of alkali titanates. Americium oxidation testing sought to determine the influence thatmore » other redox active components may have on the oxidation of Am III. Experimental findings indicated that Ce III, Np V, and Ru II are oxidized by peroxydisulfate, but there are no indications that the presence of Ce III, Np V, and Ru II affected the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used.« less
NASA Technical Reports Server (NTRS)
Spjeldvik, W. N.
1981-01-01
Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.
Marchal, Claire; Filinchuk, Yaroslav; Chen, Xiao-Yan; Imbert, Daniel; Mazzanti, Marinella
2009-01-01
Four picolinate building blocks were implemented into the multidentate linker N,N',N'-tetrakis[(6-carboxypyridin-2-yl)methyl]butylenediamine (H(4)tpabn) with a linear flexible spacer to promote the assembly of lanthanide-based 1D coordination polymers. The role of the linker in directing the geometry of the final assembly is evidenced by the different results obtained in the presence of Htpabn(3-) and tpabn(4-) ions. The tpabn(4-) ion leads to the desired 1D polymer {[Nd(tpabn)]H(3)O x 6 H(2)O}(infinity) (12). The Htpabn(3-) ion leads to the assembly of Tb(III) and Er(III) ions into 1D zigzag chains of the general formula {[M(Htpabn)] x xH(2)O}(infinity) (M = Tb, x = 14 (1); M = Tb, x = 8 (11); M = Er, x = 14 (2); M = Er, x = 5.5 (4)), a 2D network is formed by the Eu(III) ion (i.e., {[Eu(Htpabn)] x 10 H(2)O}(infinity) (7)), and both supramolecular isomers (1D and 2D) are obtained by the Tb(III) ion. The high flexibility of the polymeric chains results in a dynamic behavior with a solvent-induced reversible structural transition. The Tb(III)- and Eu(III)-containing polymers display high-luminescence quantum yields (38 and 18%, respectively). A sizeable near-IR luminescence emission is observed for the Er(III)- and Nd(III)-containing polymers when lattice water molecules are removed.
Palamarchuk, Marina; Egorin, Andrey; Tokar, Eduard; Tutov, Mikhail; Marinin, Dmitry; Avramenko, Valentin
2017-01-05
The origin of the emergence of radioactive contamination not removable in the process of acid-base regeneration of ion-exchange resins used in treatment of technological media and liquid radioactive waste streams has been determined. It has been shown that a majority of cesium radionuclides not removable by regeneration are bound to inorganic deposits on the surface and inside the ion-exchange resin beads. The nature of the above inorganic inclusions has been investigated by means of the methods of electron microscopy, IR spectrometry and X-ray diffraction. The method of decontamination of spent ion-exchange resins and zeolites contaminated with cesium radionuclides employing selective resorcinol-formaldehyde resins has been suggested. Good prospects of such an approach in deep decontamination of spent ion exchangers have been demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.
High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal.
Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Haskey, S R; Kaplan, D H
2016-11-01
A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.
Humic Acid Isolations from Lignite by Ion Exchange Method
NASA Astrophysics Data System (ADS)
Kurniati, E.; Muljani, S.; Virgani, D. G.; Neno, B. P.
2018-01-01
The humic liquid is produced from lignite extraction using alkali solution. Conventional humic acid is obtained by acidifying a humic solution using HCl. The purpose of this research is the formation of solid humic acid from lignite by ion exchange method using cation resin. The results showed that the addition of cation resin was able to reduce the pH from 14 to pH 2 as well as the addition of acid (HCl), indicating the exchange of Na + ions with H + ions. The reduction of pH in the humic solution is influenced by the concentration of sodium ions in the humic solution, the weight of the cation resin, and the ion exchange time. The IR spectra results are in good agreement for humic acid from lignite characterization.
Savi, Geovana D; Cardoso, William A; Furtado, Bianca G; Bortolotto, Tiago; Zanoni, Elton T; Scussel, Rahisa; Rezende, Lucas F; Machado-de-Ávila, Ricardo A; Montedo, Oscar R K; Angioletto, Elidio
2018-03-04
Zeolites are often used as adsorbents materials and their loaded cations can be exchanged with metal ions in order to add antimicrobial properties. The aim of this study was to use the 4A zeolite and its derived ion-exchanged forms with Zn 2+ , Li + , Cu 2+ and Co 2+ in order to evaluate their antifungal properties against Fusarium graminearum, including their capacity in terms of metal ions release, conidia germination and the deoxynivalenol (DON) adsorption. The zeolites ion-exchanged with Li + , Cu 2+ , and Co 2+ showed an excellent antifungal activity against F. graminearum, using an agar diffusion method, with a zone of inhibition observed around the samples of 45.3 ± 0.6 mm, 25.7 ± 1.5 mm, and 24.7 ± 0.6 mm, respectively. Similar results using agar dilution method were found showing significant growth inhibition of F. graminearum for ion-exchanged zeolites with Zn 2+ , Li + , Cu 2+ , and Co 2+ . The fungi growth inhibition decreased as zeolite-Cu 2+ >zeolite-Li + >zeolite-Co 2+ >zeolite-Zn 2+ . In addition, the conidia germination was strongly affected by ion-exchanged zeolites. With regard to adsorption capacity, results indicate that only zeolite-Li + were capable of DON adsorption significantly (P < 0.001) with 37% at 2 mg mL -1 concentration. The antifungal effects of the ion-exchanged zeolites can be ascribed to the interactions of the metal ions released from the zeolite structure, especially for zeolite-Li + , which showed to be a promising agent against F. graminearum and its toxin.
Local Dynamics of Acid- and Ion-containing Copolymer Melts
NASA Astrophysics Data System (ADS)
Winey, Karen; Middleton, Robert; Tarver, Jacob; Tyagi, Madhusudan; Soles, Christopher; Frischknecht, Amalie
Interest in acid- and ion-containing polymers arises in part from applications as single-ion conductors for selectively transporting a counter ion for battery applications. Structurally, the low dielectric constant of organic polymers and strong ionic interactions leads to ionic aggregation. Here the polymer backbone motion was investigated through quasi-elastic neutron scattering measurements (QENS) and compared with fully atomistic molecular dynamic simulations of precise poly(ethylene-acrylic acid) copolymers and their ionomers (pxAA-y%Li). The effect of carbon spacer length (x =9, 15, 21) between the acid groups and the degree of neutralization (y) with Li on PE backbone dynamics were considered. Systematic slowing in chain dynamics were observed with increasing neutralization where polymer dynamics appear constrained due to anchoring effects. Simulations provide complementary viewpoints indicating a gradient in chain dynamics as a distance away from acid groups. These results indicate that the addition of pendant acid groups inhibit typical PE backbone motion and the neutralized forms strongly suppress the fraction of mobile PE chain.
NASA Astrophysics Data System (ADS)
Savchenko, Irina; Yanovska, Elina; Sternik, Dariusz; Kychkyruk, Olga; Ol'khovik, Lidiya; Polonska, Yana
2018-03-01
In situ immobilization of poly[(4-methacryloyloxy-(4'-carboxy)azobenzene] on silica gel surface has been performed by radical polymerization of monomer. The fact of polymer immobilization is confirmed by IR spectroscopy. TG and DSC-MS analysis showed that the mass of the immobilized polymer was 10.61%. The SEM-microphotograph-synthesized composite analysis showed that the immobilized polymer on the silica gel surface is placed in the form of fibers. It has been found that the synthesized composite exhibits the sorption ability in terms of microquantities of Cu(II), Cd(II), Pb(II), Mn(II) and Fe(III) ions in a neutral aqueous medium. The quantitative sorption of microquantities of Pb(II) and Fe(III) ions has been recorded. It has been found that immobilization of the silica gel surface leads to an increase in its sorption capacitance for Fe(III), Cu(II) and Pb(II) ions by half.
Process and apparatus for the production of BI-213 cations
Horwitz, E. Philip; Hines, John J.; Chiarizia, Renato; Dietz, Mark
1998-01-01
A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed.
Process and apparatus for the production of Bi-213 cations
Horwitz, E.P.; Hines, J.J.; Chiarizia, R.; Dietz, M.
1998-12-29
A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed. 7 figs.
Fast Lithium-Ion Transportation in Crystalline Polymer Electrolytes.
Fu, Xiao-Bin; Yang, Guang; Wu, Jin-Ze; Wang, Jia-Chen; Chen, Qun; Yao, Ye-Feng
2018-01-05
Fast lithium-ion transportation is found in the crystalline polymer electrolytes, α-CD-PEO n /Li + (n=12, 40), prepared by self-assembly of α-cyclodextrin (CD), polyethylene oxide (PEO) and Li + salts. A detailed solid-state NMR study combined with the X-ray diffraction technique reveals the unique structural features of the samples, that is, a) the tunnel structure formed by the assembled CDs, providing the ordered long-range pathway for Li + ion transportation; b) the all-trans conformational sequence of the PEO chains in the tunnels, attenuating significantly the coordination between Li + and the EO segments. The origin of the fast lithium-ion transportation has been attributed to these unique structural features. This work demonstrates the first example in solid polymer electrolytes (SPEs) for "creating" fast ion transportation through material design and will find potential applications in the design of new ionconducting SPE materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fabrication of poly(vinyl carbazole) waveguides by oxygen ion implantation
NASA Astrophysics Data System (ADS)
Ghailane, Fatima; Manivannan, Gurusamy; Knystautas, Émile J.; Lessard, Roger A.
1995-08-01
Polymer waveguides were fabricated by ion implantation involving poly(vinyl carbazole) films. This material was implanted by oxygen ions (O ++ ) of energies ranging from 50 to 250 keV. The ion doses varied from 1010 to 1015 ions / cm2. The conventional prism-film coupler method was used to determine the waveguiding nature of the implanted and unimplanted films. The increase of the surface refractive index in the implanted layer has been studied by measuring the effective refractive index (neff) for different optical modes. Electron spectroscopy chemical analysis measurements were also performed to assess the effect of ion implantation on the polymer matrix.
Kenawy, I M; Ismail, M A; Hafez, M A H; Hashem, M A
2018-04-21
The new ion-imprinted guanyl-modified cellulose (II.Gu-MC) was prepared for the separation and determination of Cu (II) ions in different real samples. Several techniques such as Fourier Transform Infrared (FT-IR), scanning electron microscope (SEM), thermal analysis, potentiograph and elemental analysis have been utilized for the characterization of II.Gu-MC. The adsorption behavior of the ion imprinted polymer (II.Gu-MC) was evaluated and compared to the non ion-imprinted polymer (NII.Gu-MC) at the optimum conditions. The selectivity and the adsorption capacity were greatly enhanced by using the ion-imprinted polymer, indicating its validation for the separation and determination of Cu 2+ ions in different matrices. The adsorption capacity by chelating fibers II.Gu-MC & NII.Gu-MC agreed with the second-order model, and the sorption-isotherm experiments revealed best agreement with Langmuir model. The adsorption capacity of II.Gu-MC and NII.Gu-MC were 115 and 55 mg·g -1 , respectively. The II.Gu-MC was successfully employed for the selective separation and determination of Cu(II) ions with high accuracy. Copyright © 2018 Elsevier B.V. All rights reserved.
Crystal structure and cation exchanging properties of a novel open framework phosphate of Ce (IV)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevara, Samatha; Achary, S. N., E-mail: sachary@barc.gov.in; Tyagi, A. K.
2016-05-23
Herein we report preparation, crystal structure and ion exchanging properties of a new phosphate of tetravalent cerium, K{sub 2}Ce(PO{sub 4}){sub 2}. A monoclinic structure having framework type arrangement of Ce(PO{sub 4}){sub 6} units formed by C2O{sub 8} square-antiprism and PO{sub 4} tetrahedra is assigned for K{sub C}e(PO{sub 4}){sub 2}. The K{sup +} ions are occupied in the channels formed by the Ce(PO{sub 4})6 and provide overall charge neutrality. The unique channel type arrangements of the K+ make them exchangeable with other cations. The ion exchanging properties of K2Ce(PO4)2 has been investigated by equilibrating with solution of 90Sr followed by radiometricmore » analysis. In optimum conditions, significant exchange of K+ with Sr2+ with Kd ~ 8000 mL/g is observed. The details of crystal structure and ion exchange properties are explained and a plausible mechanism for ion exchange is presented.« less
Thiacrown polymers for removal of mercury from waste streams
Baumann, Theodore F.; Reynolds, John G.; Fox, Glenn A.
2002-01-01
Thiacrown polymers immobilized to a polystyrene-divinylbenzene matrix react with Hg.sup.2+ under a variety of conditions to efficiently and selectively remove Hg.sup.2+ ions from acidic aqueous solutions, even in the presence of a variety of other metal ions. The mercury can be recovered and the polymer regenerated. This mercury removal method has utility in the treatment of industrial wastewater, where a selective and cost-effective removal process is required.
Thiacrown polymers for removal of mercury from waste streams
Baumann, Theodore F.; Reynolds, John G.; Fox, Glenn A.
2004-02-24
Thiacrown polymers immobilized to a polystyrene-divinylbenzene matrix react with Hg.sup.2+ under a variety of conditions to efficiently and selectively remove Hg.sup.2+ ions from acidic aqueous solutions, even in the presence of a variety of other metal ions. The mercury can be recovered and the polymer regenerated. This mercury removal method has utility in the treatment of industrial wastewater, where a selective and cost-effective removal process is required.
Characterization of PEEK, PET and PI implanted with Mn ions and sub-sequently annealed
NASA Astrophysics Data System (ADS)
Mackova, A.; Malinsky, P.; Miksova, R.; Pupikova, H.; Khaibullin, R. I.; Slepicka, P.; Gombitová, A.; Kovacik, L.; Svorcik, V.; Matousek, J.
2014-04-01
Polyimide (PI), polyetheretherketone (PEEK) and polyethylene terephthalate (PET) foils were implanted with 80 keV Mn+ ions at room temperature at fluencies of 1.0 × 1015-1.0 × 1016 cm-2. Mn depth profiles determined by RBS were compared to SRIM 2012 and TRIDYN simulations. The processes taking place in implanted polymers under the annealing procedure were followed. The measured projected ranges RP differ slightly from the SRIM and TRIDYN simulation and the depth profiles are significantly broader (up to 2.4 times) than those simulated by SRIM, while TRIDYN simulations were in a reasonable agreement up to the fluence 0.5 × 1016 in PEEK. Oxygen and hydrogen escape from the implanted layer was examined using RBS and ERDA techniques. PET, PEEK and PI polymers exhibit oxygen depletion up to about 40% of its content in virgin polymers. The compositional changes induced by implantation to particular ion fluence are similar for all polymers examined. After annealing no significant changes of Mn depth distribution was observed even the further oxygen and hydrogen desorption from modified layers appeared. The surface morphology of implanted polymers was characterized using AFM. The most significant change in the surface roughness was observed on PEEK. Implanted Mn atoms tend to dissipate in the polymer matrix, but the Mn nanoparticles are too small to be observed on TEM micrographs. The electrical, optical and structural properties of the implanted and sub-sequently annealed polymers were investigated by sheet resistance measurement and UV-Vis spectroscopy. With increasing ion fluence, the sheet resistance decreases and UV-Vis absorbance increases simultaneously with the decline of optical band gap Eg. The most pronounced change in the resistance was found on PEEK. XPS spectroscopy shows that Mn appears as a mixture of Mn oxides. Mn metal component is not present. All results were discussed in comparison with implantation experiment using the various ion species (Ni, Co) and energies used in our former experiments. Interesting differences were found in Mn concentration distribution, Mn nano-particle creation and structural changes comparing to Ni, Co ions implantation into the same polymers.
Single lithium-ion conducting solid polymer electrolytes: advances and perspectives.
Zhang, Heng; Li, Chunmei; Piszcz, Michal; Coya, Estibaliz; Rojo, Teofilo; Rodriguez-Martinez, Lide M; Armand, Michel; Zhou, Zhibin
2017-02-06
Electrochemical energy storage is one of the main societal challenges to humankind in this century. The performances of classical Li-ion batteries (LIBs) with non-aqueous liquid electrolytes have made great advances in the past two decades, but the intrinsic instability of liquid electrolytes results in safety issues, and the energy density of the state-of-the-art LIBs cannot satisfy the practical requirement. Therefore, rechargeable lithium metal batteries (LMBs) have been intensively investigated considering the high theoretical capacity of lithium metal and its low negative potential. However, the progress in the field of non-aqueous liquid electrolytes for LMBs has been sluggish, with several seemingly insurmountable barriers, including dendritic Li growth and rapid capacity fading. Solid polymer electrolytes (SPEs) offer a perfect solution to these safety concerns and to the enhancement of energy density. Traditional SPEs are dual-ion conductors, in which both cations and anions are mobile and will cause a concentration polarization thus leading to poor performances of both LIBs and LMBs. Single lithium-ion (Li-ion) conducting solid polymer electrolytes (SLIC-SPEs), which have anions covalently bonded to the polymer, inorganic backbone, or immobilized by anion acceptors, are generally accepted to have advantages over conventional dual-ion conducting SPEs for application in LMBs. A high Li-ion transference number (LTN), the absence of the detrimental effect of anion polarization, and the low rate of Li dendrite growth are examples of benefits of SLIC-SPEs. To date, many types of SLIC-SPEs have been reported, including those based on organic polymers, organic-inorganic hybrid polymers and anion acceptors. In this review, a brief overview of synthetic strategies on how to realize SLIC-SPEs is given. The fundamental physical and electrochemical properties of SLIC-SPEs prepared by different methods are discussed in detail. In particular, special attention is paid to the SLIC-SPEs with high ionic conductivity and high LTN. Finally, perspectives on the main challenges and focus on the future research are also presented.
Polymer-electrolyte-gated nanowire synaptic transistors for neuromorphic applications
NASA Astrophysics Data System (ADS)
Zou, Can; Sun, Jia; Gou, Guangyang; Kong, Ling-An; Qian, Chuan; Dai, Guozhang; Yang, Junliang; Guo, Guang-hua
2017-09-01
Polymer-electrolytes are formed by dissolving a salt in polymer instead of water, the conducting mechanism involves the segmental motion-assisted diffusion of ion in the polymer matrix. Here, we report on the fabrication of tin oxide (SnO2) nanowire synaptic transistors using polymer-electrolyte gating. A thin layer of poly(ethylene oxide) and lithium perchlorate (PEO/LiClO4) was deposited on top of the devices, which was used to boost device performances. A voltage spike applied on the in-plane gate attracts ions toward the polymer-electrolyte/SnO2 nanowire interface and the ions are gradually returned after the pulse is removed, which can induce a dynamic excitatory postsynaptic current in the nanowire channel. The SnO2 synaptic transistors exhibit the behavior of short-term plasticity like the paired-pulse facilitation and self-adaptation, which is related to the electric double-effect regulation. In addition, the synaptic logic functions and the logical function transformation are also discussed. Such single SnO2 nanowire-based synaptic transistors are of great importance for future neuromorphic devices.
Polymer stability and function for electrolyte and mixed conductor applications
NASA Astrophysics Data System (ADS)
Hammond, Paula; Davis, Nicole; Liu, David; Amanchukwu, Chibueze; Lewis, Nate; Shao-Horn, Yang
2015-03-01
Polymers exhibit a number of attractive properties as solid state electrolytes for electrochemical energy devices, including the light weight, flexibility, low cost and adaptive transport properties that polymeric materials can exhibit. For a number of applications, mixed ionic and electronic conducting materials are of interest to achieve transport of electrons and holes or ions within an electrode or at the electrode-electrolyte interface (e.g. aqueous batteries, solar water splitting, lithium battery electrode). Using layer-by-layer assembly, a mode of alternating adsorption of charged or complementary hydrogen bonding group, we can design composite thin films that contain bicontinuous networks of electronically and ionically conducting polymers. We have found that manipulation of salt concentration and the use of divalent ions during assembly can significantly enhance the number of free acid anions available for ion hopping. Unfortunately, for certain electrochemical applications, polymer stability is a true challenge. In separate studies, we have been investigating macromolecular systems that may provide acceptable ion transport properties, but withstand the harsh oxidative environment of lithium air systems. An investigation of different polymeric materials commonly examined for electrochemical applications provides insight into polymer design for these kinds of environments. NSF Center for Chemical Innovation, NDSEG Fellowship and Samsung Corporation.
Rahman, Siti Khadijah Ab.; Yusof, Nor Azah; Abdullah, Abdul Halim; Idris, Azni; Al-lohedan, Hamad A.
2018-01-01
In the present study, ion imprinted polymer monoliths (IIPMs) were developed to overcome the limitations of ion imprinted polymer particles (IIPPs) used for the removal of Hg(II) ions from waste water samples. The adsorbents preparation, characterization and Hg(II) removal were very well reported. The IIPMs on porogen optimization was prepared using the molding technique with Hg(II) as a template ion, [2-(methacryloyloxy)ethyl]trimethylammonium cysteine (MAETC) as ligand, methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylamide (EGDMA) as cross-linker, benzoyl peroxide as an initiator and methanol and acetonitrile as porogen in the polypropylene tube (drinking straw) as mold. The IIPMs prepared with higher volumes of porogen were indicated to have a good adsorption rate for the Hg(II) removal along with good water permeability and larger porosity as compared to a lower volume of porogen. The IIPMs prepared using the binary porogen were able to improve the porosity and surface area of the monolithic polymers as compared to the single porogen added IIPMs. Finally, we indicate from our analysis that the IIPM having the efficient capacity for the Hg(II) ions is easy to prepare, and has higher water permeability along with high porosity and high adsorption capacity and all these factors making it one of the suitable adsorbent for the successful removal of Hg(II) ions. PMID:29649325
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Carruth, M. R., Jr.
1979-01-01
The charge exchange plasma environment around a spacecraft that uses mercury ion thrusters for propulsion is described. The interactions between the plasma environment and the spacecraft are determined and a model which describes the propagation of the mercury charge exchange plasma is discussed. The model is extended to describe the flow of the molybdenum component of the charge exchange plasma. The uncertainties in the models for various conditions are discussed and current drain to the solar array, charge exchange plasma material deposition, and the effects of space plasma on the charge exchange plasma propagation are addressed.