Science.gov

Sample records for ion hit system

  1. HITS - The Navy's new DATPG system

    NASA Astrophysics Data System (ADS)

    Hosley, L.; Modi, M.

    A new digital automatic test program generation standard called HITS (Hierarchical Integrated Test Simulator), developed by the U.S. Navy as the answer to digital LSI/VLSI circuit technology is discussed. Three major areas of the HITS program which include system flow/unique capabilities, modeling language structures, and management of HITS are preseented. HITS contains the following major software modules: the primary model processor, the secondary model processor, the test language processor, the simulator, and the tester output generator. The functions performed by the individual system modules are described. A circuit description language, which provides user flexibility when describing complex circuit models, and its components are considered. The major areas of HITS management include: (1) HITS accessibility, distribution, and availability; (2) user support; (3) advanced development; and (4) Navy/DOD coordination and standardization.

  2. SHIELD-HIT12A - a Monte Carlo particle transport program for ion therapy research

    NASA Astrophysics Data System (ADS)

    Bassler, N.; Hansen, D. C.; Lühr, A.; Thomsen, B.; Petersen, J. B.; Sobolevsky, N.

    2014-03-01

    Purpose: The Monte Carlo (MC) code SHIELD-HIT simulates the transport of ions through matter. Since SHIELD-HIT08 we added numerous features that improves speed, usability and underlying physics and thereby the user experience. The "-A" fork of SHIELD-HIT also aims to attach SHIELD-HIT to a heavy ion dose optimization algorithm to provide MC-optimized treatment plans that include radiobiology. Methods: SHIELD-HIT12A is written in FORTRAN and carefully retains platform independence. A powerful scoring engine is implemented scoring relevant quantities such as dose and track-average LET. It supports native formats compatible with the heavy ion treatment planning system TRiP. Stopping power files follow ICRU standard and are generated using the libdEdx library, which allows the user to choose from a multitude of stopping power tables. Results: SHIELD-HIT12A runs on Linux and Windows platforms. We experienced that new users quickly learn to use SHIELD-HIT12A and setup new geometries. Contrary to previous versions of SHIELD-HIT, the 12A distribution comes along with easy-to-use example files and an English manual. A new implementation of Vavilov straggling resulted in a massive reduction of computation time. Scheduled for later release are CT import and photon-electron transport. Conclusions: SHIELD-HIT12A is an interesting alternative ion transport engine. Apart from being a flexible particle therapy research tool, it can also serve as a back end for a MC ion treatment planning system. More information about SHIELD-HIT12A and a demo version can be found on http://www.shieldhit.org.

  3. Ionoluminescence analysis of glass scintillators and application to single-ion-hit real-time detection

    NASA Astrophysics Data System (ADS)

    Yokoyama, Akihito; Kada, Wataru; Satoh, Takahiro; Koka, Masashi; Shimada, Keisuke; Yokoata, Yuya; Miura, Kenta; Hanaizumi, Osamu

    2016-03-01

    In this paper, we propose and test a real-time detection system for single-ion hits using mega-electronvolt (MeV)-heavy ions. The system was constructed using G2000 and G9 glass scintillators, as well as an electron-multiplying charge-coupled device (EMCCD) camera combined with an inverted microscope with a 10× objective lens. Commercially available G2000 and G9 glass scintillators, which have been reported to exhibit strong photoluminescence at 489, 543, 585, and 622 nm as a result of the Tb3+ f-f transition, were employed for highly accurate ionized particle detection. The EMCCD camera had a resolution of 512 × 512 pixels, each with a size of 16 μm × 16 μm, and a maximum linear gain of 8 × 105 electrons. For 260-MeV Ne, 3 ion hits/s were detected by our system. The intensity of the ionoluminescence (IL) peak induced by the heavy ions was 140 times the noise intensity. In contrast, the luminous diameter at the full width at half maximum (FWHM) in both the horizontal and vertical directions was calculated to be approximately 4.5 μm. These results suggest that our detection system can accurately detect single-ion hits with a diameter of the order of 1 μm.

  4. Improvements for extending the time between maintenance periods for the Heidelberg ion beam therapy center (HIT) ion sources

    SciTech Connect

    Winkelmann, Tim Cee, Rainer; Haberer, Thomas; Naas, Bernd; Peters, Andreas; Schreiner, Jochen

    2014-02-15

    The clinical operation at the Heidelberg Ion Beam Therapy Center (HIT) started in November 2009; since then more than 1600 patients have been treated. In a 24/7 operation scheme two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce protons and carbon ions. The modification of the low energy beam transport line and the integration of a third ion source into the therapy facility will be shown. In the last year we implemented a new extraction system at all three sources to enhance the lifetime of extraction parts and reduce preventive and corrective maintenance. The new four-electrode-design provides electron suppression as well as lower beam emittance. Unwanted beam sputtering effects which typically lead to contamination of the insulator ceramics and subsequent high-voltage break-downs are minimized by the beam guidance of the new extraction system. By this measure the service interval can be increased significantly. As a side effect, the beam emittance can be reduced allowing a less challenging working point for the ion sources without reducing the effective beam performance. This paper gives also an outlook to further enhancements at the HIT ion source testbench.

  5. Cosmic ray hit frequencies in critical sites in the central nervous system

    NASA Astrophysics Data System (ADS)

    Curtis, S. B.; Vazquez, M. E.; Wilson, J. W.; Atwell, W.; Kim, M.; Capala, J.

    One outstanding question to be addressed in assessing the risk of exposure to space travelers from galactic cosmic rays (GCR) outside the geomagnetosphere is to ascertain the effects of single heavy-ion hits on cells in critical regions of the central nervous system (CNS). As a first step toward this end, it is important to determine how many ``hits'' might be received by a neural cell in several critical CNS areas during an extended mission outside the confines of the earth's magnetic field. Critical sites in the CNS: the macula, and an interior brain point (typical of the genu, thalamus, hippocampus and nucleus basalis of Meynert) were chosen for the calculation of hit frequencies from galactic cosmic rays for a mission to Mars during solar minimum (i.e., at maximum cosmic-ray intensity). The shielding at a given position inside the body was obtained using the Computerized Anatomical Man (CAM) model, and a radiation transport code which includes nuclear fragmentation was used to calculate yearly fluences at the point of interest. Since the final Mars spacecraft shielding configuration has not yet been determined, we considered the minimum amount of aluminum required for pressure vessel-wall requirements in the living quarters of a spacecraft, and a typical duty area as a pressure vessel plus necessary equipment. The conclusions are: (1) variation of the position of the ``target site'' within the head plays only a small role in varying hit frequencies; (2) the average number of hits depends linearly on the cross section of the critical portion of the cell assumed in the calculation; (3) for a three-year mission to Mars at solar minimum (i.e., assuming the 1977 spectrum of galactic cosmic rays), 2% or 13% of the ``critical sites'' of cells in the CNS would be directly hit at least once by iron ions, depending on whether 60 mum^2 or 471 mum^2 is assumed as the critical cross sectional area; and (4) roughly 6 million out of some 43 million hippocampal cells and 55

  6. Cosmic ray hit frequencies in critical sites in the central nervous system.

    PubMed

    Curtis, S B; Vazquez, M E; Wilson, J W; Atwell, W; Kim, M; Capala, J

    1998-01-01

    One outstanding question to be addressed in assessing the risk of exposure to space travelers from galactic cosmic rays (GCR) outside the geomagnetosphere is to ascertain the effects of single heavy-ion hits on cells in critical regions of the central nervous system (CNS). As a first step toward this end, it is important to determine how many "hits" might be received by a neural cell in several critical CNS areas during an extended mission outside the confines of the earth's magnetic field. Critical sites in the CNS: the macula, and an interior brain point (typical of the genu, thalamus, hippocampus and nucleus basalis of Meynert) were chosen for the calculation of hit frequencies from galactic cosmic rays for a mission to Mars during solar minimum (i.e., at maximum cosmic-ray intensity). The shielding at a given position inside the body was obtained using the Computerized Anatomical Man (CAM) model, and a radiation transport code which includes nuclear fragmentation was used to calculate yearly fluences at the point of interest. Since the final Mars spacecraft shielding configuration has not yet been determined, we considered the minimum amount of aluminum required for pressure vessel-wall requirements in the living quarters of a spacecraft, and a typical duty area as a pressure vessel plus necessary equipment. The conclusions are: (1) variation of the position of the "target site" within the head plays only a small role in varying hit frequencies; (2) the average number of hits depends linearly on the cross section of the critical portion of the cell assumed in the calculation; (3) for a three-year mission to Mars at solar minimum (i.e., assuming the 1977 spectrum of galactic cosmic rays), 2% or 13% of the "critical sites" of cells in the CNS would be directly hit at least once by iron ions, depending on whether 60 micrometers2 or 471 micrometers2 is assumed as the critical cross sectional area; and (4) roughly 6 million out of some 43 million hippocampal cells

  7. Cosmic ray hit frequencies in critical sites in the central nervous system.

    PubMed

    Curtis, S B; Vazquez, M E; Wilson, J W; Atwell, W; Kim, M; Capala, J

    1998-01-01

    One outstanding question to be addressed in assessing the risk of exposure to space travelers from galactic cosmic rays (GCR) outside the geomagnetosphere is to ascertain the effects of single heavy-ion hits on cells in critical regions of the central nervous system (CNS). As a first step toward this end, it is important to determine how many "hits" might be received by a neural cell in several critical CNS areas during an extended mission outside the confines of the earth's magnetic field. Critical sites in the CNS: the macula, and an interior brain point (typical of the genu, thalamus, hippocampus and nucleus basalis of Meynert) were chosen for the calculation of hit frequencies from galactic cosmic rays for a mission to Mars during solar minimum (i.e., at maximum cosmic-ray intensity). The shielding at a given position inside the body was obtained using the Computerized Anatomical Man (CAM) model, and a radiation transport code which includes nuclear fragmentation was used to calculate yearly fluences at the point of interest. Since the final Mars spacecraft shielding configuration has not yet been determined, we considered the minimum amount of aluminum required for pressure vessel-wall requirements in the living quarters of a spacecraft, and a typical duty area as a pressure vessel plus necessary equipment. The conclusions are: (1) variation of the position of the "target site" within the head plays only a small role in varying hit frequencies; (2) the average number of hits depends linearly on the cross section of the critical portion of the cell assumed in the calculation; (3) for a three-year mission to Mars at solar minimum (i.e., assuming the 1977 spectrum of galactic cosmic rays), 2% or 13% of the "critical sites" of cells in the CNS would be directly hit at least once by iron ions, depending on whether 60 micrometers2 or 471 micrometers2 is assumed as the critical cross sectional area; and (4) roughly 6 million out of some 43 million hippocampal cells

  8. Characterizations of new ΔE detectors for single-ion hit facility

    NASA Astrophysics Data System (ADS)

    Abdel, Naseem S.; Pallon, Jan; Ros, Linus; Borysiuk, Maciek; Elfman, Mikael; Kristiansson, Per; Nilsson, E. J. Charlotta

    2014-01-01

    This paper describes the performance evaluation of new ΔE detectors to be used as pre-cell hit detectors in living cell irradiation experiments at the Lund Ion Beam Analysis facility (LIBAF). Using these detectors with a thickness down to 4.15 μm fabricated at Lund University, an experiment was setup in which ΔE-detectors were used together with a stop E-detector in a telescope system under coincidence measurements. The characteristics of ΔE detectors were based on the optimal detection of the passage of 2.55 MeV protons. The results of these tests demonstrate that the detector telescope clearly separates the protons, this due to high signal-to-noise ratio and good energy resolution of the ΔE-detectors. The best performing detector was shown to have a detection efficiency of 95% at thickness of 9.7 μm. This type of high-performing detector is suitable for the planned role of the ΔE-detector in the future cell irradiation experiments.

  9. A Study of Plasma Dynamics in HIT-SI using Ion Doppler Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hossack, Aaron Clark

    The HIT-SI device is a unique experiment which uses inductive helicity injectors to form and sustain a spheromak plasma. The n = 1 symmetry of the injectors enables stable spheromak sustainment by imposed-dynamo current drive (IDCD). The experiment is diagnosed with spectroscopy, interferometry, imaging, and internal and surface magnetic probes. Two methods of density reduction and control are presented. A helicon preionization source enables plasma breakdown and operations at densities an order of magnitude lower than previously possible. The system is critical for all operations at injector frequencies greater than 14.5 kHz and single-injector operations. Additionally, a high-speed piezoelectric gas injection valve was developed to enable dynamic injector fueling adjustable on a timescale of ~0.5 ms. The focus of this work is on results from an ion Doppler spectrometer (IDS) which was upgraded to multi-chord capability. Two coherent, linear fiber optic cables with small, wide-angle lenses simultaneously collect light from 30 - 40 chords. Additionally, biorthogonal decomposition is used as a novel filtering method for raw data. Impurity radiation measurements of high power plasmas show no toroidal flow associated with toroidal current and temperature evolution which rises during toroidal current ramp-up and falls during current sustainment. Coherent velocity fluctuations show rigid, oscillatory motion of the spheromak plasma driven by the helicity injectors. The coherent motion combined with a lack of magnetic instabilities indicates that the spheromak is stable. Comparisons with NIMROD and PSI-TET simulations show similar chord-averaged velocity oscillations but fail to show the observed coherent, rigid motion of the spheromak. Additionally, strong flows and reconnection events in simulations which are not observed in the experiment indicate that agreement may improve with higher viscosity. The measured C III temperatures lie between the two codes' estimates

  10. On the accuracy of the Head Impact Telemetry (HIT) System used in football helmets.

    PubMed

    Jadischke, Ron; Viano, David C; Dau, Nathan; King, Albert I; McCarthy, Joe

    2013-09-01

    On-field measurement of head impacts has relied on the Head Impact Telemetry (HIT) System, which uses helmet mounted accelerometers to determine linear and angular head accelerations. HIT is used in youth and collegiate football to assess the frequency and severity of helmet impacts. This paper evaluates the accuracy of HIT for individual head impacts. Most HIT validations used a medium helmet on a Hybrid III head. However, the appropriate helmet is large based on the Hybrid III head circumference (58 cm) and manufacturer's fitting instructions. An instrumented skull cap was used to measure the pressure between the head of football players (n=63) and their helmet. The average pressure with a large helmet on the Hybrid III was comparable to the average pressure from helmets used by players. A medium helmet on the Hybrid III produced average pressures greater than the 99th percentile volunteer pressure level. Linear impactor tests were conducted using a large and medium helmet on the Hybrid III. Testing was conducted by two independent laboratories. HIT data were compared to data from the Hybrid III equipped with a 3-2-2-2 accelerometer array. The absolute and root mean square error (RMSE) for HIT were computed for each impact (n=90). Fifty-five percent (n=49) had an absolute error greater than 15% while the RMSE was 59.1% for peak linear acceleration.

  11. The accelerator facility of the Heidelberg Ion-Beam Therapy Centre (HIT)

    NASA Astrophysics Data System (ADS)

    Peters, Andreas

    The following sections are included: * Introduction * Beam parameters * General layout of the HIT facility * The accelerator chain in detail * Operational aspects of a particle therapy facility * 24/7 accelerator operation at 335 days per year * Safety and regulatory aspects * Status and perspectives * References

  12. Cosmic Ray Hits in the Central Nervous System at Solar Maximum

    NASA Technical Reports Server (NTRS)

    Curtis, S. B.; Vazquez, M. E.; Wilson, J. W.; Kim, M.-H. Y.

    1997-01-01

    It has been suggested that a manned mission to Mars be launched at solar maximum rather than at solar minimum to minimize the radiation exposure to galactic cosmic rays. It is true that the number of hits from highly ionizing particles to critical regions in the brain will be less at solar maximum, and it is of some interest to estimate how much less. We present here calculations for several sites within the brain from iron ions (z = 26) and from particles with charge, z, greater than or equal to 15. The same shielding configurations and sites in the brain used in an earlier paper for solar minimum are employed so that direct comparison of results between the two solar activity conditions can be made. A simple pressure-vessel wall and an equipment room onboard a spacecraft are chosen as shielding examples. In the equipment room, typical results for the thalamus (100 mm2 area) are that the probability of any given cell nucleus being hit decreases from 10 percent at solar minimum to 6 percent at solar maximum for particles with z greater than or equal to 15 and from 2.3 percent to 1.3 percent for iron ions. We conclude that this modest decrease in hit frequency (less than a factor of two) is not a compelling reason to avoid solar minimum for a manned mission to Mars.

  13. Cosmic Ray Hits in the Central Nervous System at Solar Maximum

    NASA Technical Reports Server (NTRS)

    Curtis, S. B.; Vazquez, M. E.; Wilson, J. W.; Atwell, W.; Kin, M.-H. Y.

    2000-01-01

    It has been suggested that a manned mission to Mars be launched at solar maximum rather than at solar minimum to minimize the radiation exposure to galactic cosmic rays. It is true that the number of hits from highly ionizing particles to critical regions in the brain will be less at solar maximum, and it is of interest to estimate how much less. We present here calculations for several sites within the brain from iron ions (z = 26) and from particles with charge, z, greater than or equal to 15. The same shielding configurations and sites in the brain used in an earlier paper for solar minimum are employed so that direct comparison of results between the two solar activity conditions can be made. A simple pressure-vessel wall and an equipment room onboard a spacecraft are chosen as shielding examples. In the equipment room, typical results for the thalamus are that the probability of any particles with z greater than or equal to 15 and from 2.3 percent to 1.3 percent for iron ions. The extra shielding provided in the equipment room makes little difference in these numbers. We conclude that this decrease in hit frequency (less than a factor of two) does not provide a compelling reason to avoid solar minimum for a manned mission to Mars. This conclusion could be revised, however, if a very small number of hits is found to cause critical malfunction within the brain.

  14. Cosmic ray hits in the central nervous system at solar maximum.

    PubMed

    Curtis, S B; Vazquez, M E; Wilson, J W; Atwell, W; Kim, M H

    2000-01-01

    It has been suggested that a manned mission to Mars be launched at solar maximum rather than at solar minimum to minimize the radiation exposure to galactic cosmic rays. It is true that the number of hits from highly ionizing particles to critical regions in the brain will be less at solar maximum, and it is of interest to estimate how much less. We present here calculations for several sites within the brain from iron ions (z = 26) and from particles with charge, z, greater than or equal to 15. The same shielding configurations and sites in the brain used in an earlier paper for solar minimum are employed so that direct comparison of results between the two solar activity conditions can be made. A simple pressure-vessel wall and an equipment room onboard a spacecraft are chosen as shielding examples. In the equipment room, typical results for the thalamus are that the probability of any particles with 7 greater than or equal to 15 and from 2.3 percent to 1.3 percent for iron ions. The extra shielding provided in the equipment room makes little difference in these numbers. We conclude that this decrease in hit frequency (less than a factor of two) does not provide a compelling reason to avoid solar minimum for a manned mission to Mars. This conclusion could be revised, however, if a very small number of hits is found to cause critical malfunction within the brain. PMID:11542854

  15. Cosmic ray hits in the central nervous system at solar maximum.

    PubMed

    Curtis, S B; Vazquez, M E; Wilson, J W; Atwell, W; Kim, M H

    2000-01-01

    It has been suggested that a manned mission to Mars be launched at solar maximum rather than at solar minimum to minimize the radiation exposure to galactic cosmic rays. It is true that the number of hits from highly ionizing particles to critical regions in the brain will be less at solar maximum, and it is of interest to estimate how much less. We present here calculations for several sites within the brain from iron ions (z = 26) and from particles with charge, z, greater than or equal to 15. The same shielding configurations and sites in the brain used in an earlier paper for solar minimum are employed so that direct comparison of results between the two solar activity conditions can be made. A simple pressure-vessel wall and an equipment room onboard a spacecraft are chosen as shielding examples. In the equipment room, typical results for the thalamus are that the probability of any particles with 7 greater than or equal to 15 and from 2.3 percent to 1.3 percent for iron ions. The extra shielding provided in the equipment room makes little difference in these numbers. We conclude that this decrease in hit frequency (less than a factor of two) does not provide a compelling reason to avoid solar minimum for a manned mission to Mars. This conclusion could be revised, however, if a very small number of hits is found to cause critical malfunction within the brain.

  16. Will your IT system be ready when disaster hits?

    PubMed

    Page, Douglas

    2011-10-01

    This year's series of tornadoes, hurricanes, earthquakes and other natural disasters sent shivers down the spines of hospital and health information technology leaders. Most wired hospitals have safeguards in place so systems can be restored quickly. PMID:22111270

  17. Will your IT system be ready when disaster hits?

    PubMed

    Page, Douglas

    2011-10-01

    This year's series of tornadoes, hurricanes, earthquakes and other natural disasters sent shivers down the spines of hospital and health information technology leaders. Most wired hospitals have safeguards in place so systems can be restored quickly.

  18. System for solving diagnosis and hitting set problems

    NASA Technical Reports Server (NTRS)

    Fijany, Amir (Inventor); Vatan, Farrokh (Inventor)

    2007-01-01

    The diagnosis problem arises when a system's actual behavior contradicts the expected behavior, thereby exhibiting symptoms (a collection of conflict sets). System diagnosis is then the task of identifying faulty components that are responsible for anomalous behavior. To solve the diagnosis problem, the present invention describes a method for finding the minimal set of faulty components (minimal diagnosis set) that explain the conflict sets. The method includes acts of creating a matrix of the collection of conflict sets, and then creating nodes from the matrix such that each node is a node in a search tree. A determination is made as to whether each node is a leaf node or has any children nodes. If any given node has children nodes, then the node is split until all nodes are leaf nodes. Information gathered from the leaf nodes is used to determine the minimal diagnosis set.

  19. Floating production systems hit stride in North Sea fields

    SciTech Connect

    Knott, D.

    1994-05-23

    Floating production system (FPS) technology has come of age in the North Sea. That's apparent in plans to use FPSs to tap two of Northwest Europe's largest offshore oil discoveries in the last 10 years. First North Sea oil production with a floater involved a converted semisubmersible drilling rig. Floaters have been in use for small field development projects ever since. Now, industry's rising interest in FPSs reflects two trends: As the North Sea matures, discoveries are likely to be in deeper, more remote locations; and Operators increasingly are under pressure to slash costs. The paper discusses UK trends, Norway's needs, the Norne field, Norne contract, discovery of oil west of the Shetland Islands, Shell-Esso plans, the UK Machar field test, the UK Fife field, and prospects for other potential floater developments.

  20. An Analytic Model for the Success Rate of a Robotic Actuator System in Hitting Random Targets.

    PubMed

    Bradley, Stuart

    2015-11-20

    Autonomous robotic systems are increasingly being used in a wide range of applications such as precision agriculture, medicine, and the military. These systems have common features which often includes an action by an "actuator" interacting with a target. While simulations and measurements exist for the success rate of hitting targets by some systems, there is a dearth of analytic models which can give insight into, and guidance on optimization, of new robotic systems. The present paper develops a simple model for estimation of the success rate for hitting random targets from a moving platform. The model has two main dimensionless parameters: the ratio of actuator spacing to target diameter; and the ratio of platform distance moved (between actuator "firings") to the target diameter. It is found that regions of parameter space having specified high success are described by simple equations, providing guidance on design. The role of a "cost function" is introduced which, when minimized, provides optimization of design, operating, and risk mitigation costs.

  1. An Analytic Model for the Success Rate of a Robotic Actuator System in Hitting Random Targets

    PubMed Central

    Bradley, Stuart

    2015-01-01

    Autonomous robotic systems are increasingly being used in a wide range of applications such as precision agriculture, medicine, and the military. These systems have common features which often includes an action by an “actuator” interacting with a target. While simulations and measurements exist for the success rate of hitting targets by some systems, there is a dearth of analytic models which can give insight into, and guidance on optimization, of new robotic systems. The present paper develops a simple model for estimation of the success rate for hitting random targets from a moving platform. The model has two main dimensionless parameters: the ratio of actuator spacing to target diameter; and the ratio of platform distance moved (between actuator “firings”) to the target diameter. It is found that regions of parameter space having specified high success are described by simple equations, providing guidance on design. The role of a “cost function” is introduced which, when minimized, provides optimization of design, operating, and risk mitigation costs. PMID:26610500

  2. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  3. Nonlinear shot noise, memory systems, and all-time hit parades

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Klafter, Joseph

    2006-07-01

    Consider the evolution of a memory system ‘fed’ by an external event-process. New memories are continuously recorded by the system. Simultaneously, the recollection of old memories continuously fades away. Thus, at a given time epoch the memory system ranks all past events according to present importance-magnitudes attributed to them. Illustratively, the memory system is an all-time hit parade run continuously in time. Motivated by a recently-introduced nonlinear shot noise system-model [I. Eliazar, J. Klafter, Physica A, in press (titled: non-linear shot noise: Lévy, Noah, & Joseph).], we explore a memory system-model in which: (i) the external events follow an arbitrary time-homogeneous Poisson point process; and (ii) the ‘fading’ of memories is governed by an arbitrary nonlinear differential-equation dynamics. A Poissonian analysis of the model is conducted, addressing questions such as: How do memories get constructed and degraded? How does the memory process evolve? What is its stationary structure? What is its correlation structure? In addition, a Poissonian eigenvalue problem, arising in this context, is studied.

  4. Ion mobility sensor system

    DOEpatents

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  5. Ion thrusting system

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    An ion thrusting system is disclosed comprising an ionization membrane having at least one area through which a gas is passed, and which ionizes the gas molecules passing therethrough to form ions and electrons, and an accelerator element which accelerates the ions to form thrust. In some variations, a potential is applied to the ionization membrane may be reversed to thrust ions in an opposite direction. The ionization membrane may also include an opening with electrodes that are located closer than a mean free path of the gas being ionized. Methods of manufacture and use are also provided.

  6. Focused ion beam system

    DOEpatents

    Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  7. Focused ion beam system

    DOEpatents

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  8. Aftermath of early Hit-and-Run collisions in the Inner Solar System

    NASA Astrophysics Data System (ADS)

    Sarid, Gal; Stewart, Sarah T.; Leinhardt, zoe M.

    2015-08-01

    Planet formation epoch, in the terrestrial planet region and the asteroid belt, was characterized by a vigorous dynamical environment that was conducive to giant impacts among planetary embryos and asteroidal parent bodies, leading to diverse outcomes. Among these the greatest potential for producing diverse end-members lies is the erosive Hit-and-Run regime (small mass ratios, off-axis oblique impacts and non-negligible ejected mass), which is also more probable in terms of the early dynamical encounter configuration in the inner solar system. This collision regime has been invoked to explain outstanding issues, such as planetary volatile loss records, origin of the Moon and mantle stripping from Mercury and some of the larger asteroids (Vesta, Psyche).We performed and analyzed a set of simulations of Hit-and-Run events, covering a large range of mass ratios (1-20), impact parameters (0.25-0.96, for near head-on to barely grazing) and impact velocities (~1.5-5 times the mutual escape velocity, as dependent on the mass ratio). We used an SPH code with tabulated EOS and a nominal simlated time >1 day, to track the collisional shock processing and the provenance of material components. of collision debris. Prior to impact runs, all bodies were allowed to initially settle to negligible particle velocities in isolation, within ~20 simulated hrs. The total number of particles involved in each of our collision simulations was between (1-3 x 105). Resulting configurations include stripped mantles, melting/vaporization of rock and/or iron cores and strong variations of asteroid parent bodies fromcanonical chondritic composition.In the context of large planetary formation simulations, velocity and impact angle distributions are necessary to asses impact probabilities. The mass distribution and interaction within planetary embryo and asteroid swarms depends both on gravitational dynamics and the applied fragmentation mechanism. We will present results pertaining to general

  9. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  10. Ion beam lithography system

    DOEpatents

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  11. Development of a single ion hit facility at the Pierre Sue Laboratory: a collimated microbeam to study radiological effects on targeted living cells.

    PubMed

    Daudin, L; Carrière, M; Gouget, B; Hoarau, J; Khodja, H

    2006-01-01

    A single ion hit facility is being developed at the Pierre Süe Laboratory (LPS) since 2004. This set-up will be dedicated to the study of ionising radiation effects on living cells, which will complete current research conducted on uranium chemical toxicity on renal and osteoblastic cells. The study of the response to an exposure to alpha particles will allow us to distinguish radiological and chemical toxicities of uranium, with a special emphasis on the bystander effect at low doses. Designed and installed on the LPS Nuclear microprobe, up to now dedicated to ion beam microanalysis, this set-up will enable us to deliver an exact number of light ions accelerated by a 3.75 MV electrostatic accelerator. An 'in air' vertical beam permits the irradiation of cells in conditions compatible with cell culture techniques. Furthermore, cellular monolayer will be kept in controlled conditions of temperature and atmosphere in order to diminish stress. The beam is collimated with a fused silica capillary tubing to target pre-selected cells. Motorisation of the collimator with piezo-electric actuators should enable fast irradiation without moving the sample, thus avoiding mechanical stress. An automated epifluorescence microscope, mounted on an antivibration table, allows pre- and post-irradiation cell observation. An ultra thin silicon surface barrier detector has been developed and tested to be able to shoot a cell with a single alpha particle.

  12. ION ACCELERATION SYSTEM

    DOEpatents

    Luce, J.S.; Martin, J.A.

    1960-02-23

    Well focused, intense ion beams are obtained by providing a multi- apertured source grid in front of an ion source chamber and an accelerating multi- apertured grid closely spaced from and in alignment with the source grid. The longest dimensions of the elongated apertures in the grids are normal to the direction of the magnetic field used with the device. Large ion currents may be withdrawn from the source, since they do not pass through any small focal region between the grids.

  13. Fast ion beam chopping system for neutron generators

    NASA Astrophysics Data System (ADS)

    Hahto, S. K.; Hahto, S. T.; Leung, K. N.; Reijonen, J.; Miller, T. G.; Van Staagen, P. K.

    2005-02-01

    Fast deuterium (D+) and tritium (T+) ion beam pulses are needed in some neutron-based imaging systems. A compact, integrated fast ion beam extraction and chopping system has been developed and tested at the Lawrence Berkeley National Laboratory for these applications, and beam pulses with 15ns full width at half maximum have been achieved. Computer simulations together with experimental tests indicate that even faster pulses are achievable by shortening the chopper voltage rise time. This chopper arrangement will be implemented in a coaxial neutron generator, in which a small point-like neutron source is created by multiple 120keV D+ ion beams hitting a titanium target at the center of the source.

  14. Fast ion beam chopping system for neutron generators

    SciTech Connect

    Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Reijonen, J.; Miller, T.G.; Van Staagen, P.K.

    2005-02-01

    Fast deuterium (D{sup +}) and tritium (T{sup +}) ion beam pulses are needed in some neutron-based imaging systems. A compact, integrated fast ion beam extraction and chopping system has been developed and tested at the Lawrence Berkeley National Laboratory for these applications, and beam pulses with 15 ns full width at half maximum have been achieved. Computer simulations together with experimental tests indicate that even faster pulses are achievable by shortening the chopper voltage rise time. This chopper arrangement will be implemented in a coaxial neutron generator, in which a small point-like neutron source is created by multiple 120 keV D{sup +} ion beams hitting a titanium target at the center of the source.

  15. Developing Health Information Technology (HIT) Programs and HIT Curriculum: The Southern Polytechnic State University Experience

    ERIC Educational Resources Information Center

    Zhang, Chi; Reichgelt, Han; Rutherfoord, Rebecca H.; Wang, Andy Ju An

    2014-01-01

    Health Information Technology (HIT) professionals are in increasing demand as healthcare providers need help in the adoption and meaningful use of Electronic Health Record (EHR) systems while the HIT industry needs workforce skilled in HIT and EHR development. To respond to this increasing demand, the School of Computing and Software Engineering…

  16. Ion beam probe diagnostic system

    NASA Astrophysics Data System (ADS)

    Hickok, R. L.; Jennings, W. C.; Woo, J. T.; Connor, K. A.

    1980-07-01

    Tokomak plasmas suitable for diagnostic development were produced in RENTOR following technological improvements in the vacuum chamber and discharge cleaning systems. Secondary ion signals were obtained from the heavy ion beam probe on RENTOR leading to initial estimates of the plasma space potential, which appears to vary by several hundred volts during the plasma pulse. The principle of measuring space potential in a minimum-B geometry was established using an ion gun mounted at the center of the ALEX baseball coil. The neutral beam probe was installed for measuring the space potential using actual secondary ion signals from a hollow cathode arc in ALEX and preliminary tests have begun. The ion beam test stand was significantly altered to allow more flexibility in testing energy analyzers, ion guns, and ion focusing concepts.

  17. Computational Physics' Greatest Hits

    NASA Astrophysics Data System (ADS)

    Bug, Amy

    2011-03-01

    The digital computer, has worked its way so effectively into our profession that now, roughly 65 years after its invention, it is virtually impossible to find a field of experimental or theoretical physics unaided by computational innovation. It is tough to think of another device about which one can make that claim. In the session ``What is computational physics?'' speakers will distinguish computation within the field of computational physics from this ubiquitous importance across all subfields of physics. This talk will recap the invited session ``Great Advances...Past, Present and Future'' in which five dramatic areas of discovery (five of our ``greatest hits'') are chronicled: The physics of many-boson systems via Path Integral Monte Carlo, the thermodynamic behavior of a huge number of diverse systems via Monte Carlo Methods, the discovery of new pharmaceutical agents via molecular dynamics, predictive simulations of global climate change via detailed, cross-disciplinary earth system models, and an understanding of the formation of the first structures in our universe via galaxy formation simulations. The talk will also identify ``greatest hits'' in our field from the teaching and research perspectives of other members of DCOMP, including its Executive Committee.

  18. Hitting and missing targets by ambulance services for emergency calls: effects of different systems of performance measurement within the UK

    PubMed Central

    Bevan, Gwyn; Hamblin, Richard

    2009-01-01

    Following devolution, differences developed between UK countries in systems of measuring performance against a common target that ambulance services ought to respond to 75% of calls for what may be immediately life threatening emergencies (category A calls) within 8 minutes. Only in England was this target integral to a ranking system of ‘star rating’, which inflicted reputational damage on services that failed to hit targets, and only in England has this target been met. In other countries, the target has been missed by such large margins that services would have been publicly reported as failing, if they had been covered by the English system of star ratings. The paper argues that this case-study adds to evidence from comparisons of different systems of hospital performance measurement that, to have an effect, these systems need to be designed to inflict reputational damage on those that have performed poorly; and it explores implications of this hypothesis. The paper also asks questions about the adequacy of systems of performance measurement of ambulance services in UK countries. PMID:19381327

  19. Multi-arm multilateral haptics-based immersive tele-robotic system (HITS) for improvised explosive device disposal

    NASA Astrophysics Data System (ADS)

    Erickson, David; Lacheray, Hervé; Lai, Gilbert; Haddadi, Amir

    2014-06-01

    This paper presents the latest advancements of the Haptics-based Immersive Tele-robotic System (HITS) project, a next generation Improvised Explosive Device (IED) disposal (IEDD) robotic interface containing an immersive telepresence environment for a remotely-controlled three-articulated-robotic-arm system. While the haptic feedback enhances the operator's perception of the remote environment, a third teleoperated dexterous arm, equipped with multiple vision sensors and cameras, provides stereo vision with proper visual cues, and a 3D photo-realistic model of the potential IED. This decentralized system combines various capabilities including stable and scaled motion, singularity avoidance, cross-coupled hybrid control, active collision detection and avoidance, compliance control and constrained motion to provide a safe and intuitive control environment for the operators. Experimental results and validation of the current system are presented through various essential IEDD tasks. This project demonstrates that a two-armed anthropomorphic Explosive Ordnance Disposal (EOD) robot interface can achieve complex neutralization techniques against realistic IEDs without the operator approaching at any time.

  20. Studying the HIT-Complexity Interchange.

    PubMed

    Kuziemsky, Craig E; Borycki, Elizabeth M; Kushniruk, Andre W

    2016-01-01

    The design and implementation of health information technology (HIT) is challenging, particularly when it is being introduced into complex settings. While complex adaptive system (CASs) can be a valuable means of understanding relationships between users, HIT and tasks, much of the existing work using CASs is descriptive in nature. This paper addresses that issue by integrating a model for analyzing task complexity with approaches for HIT evaluation and systems analysis. The resulting framework classifies HIT-user tasks and issues as simple, complicated or complex, and provides insight on how to study them. PMID:27332158

  1. A Novel Scheme of Fast-frequency Hopping Optical CDMA System with No-hit-zone Sequence

    NASA Astrophysics Data System (ADS)

    Ji, Jianhua; liu, Ling; Wang, Ke; Zhang, Zhipeng; Xu, Ming

    2013-09-01

    In traditional fast frequency-hopping OCDMA (FFH-OCDMA) system, beat noise and multiple-access interference are the main performance limitations, and complicated power control must be employed to eliminate the near-far effect. In this paper, a novel scheme of FFH-OCDMA with no-hit-zone sequence is proposed, which is named NHZ FFH-OCDMA. In NHZ FFH-OCDMA, the synchronization among users can be controlled within permissible time delay, and the code cross-correlation for different users equals zero. Therefore, near-far effect can be eliminated. Furthermore, beat noise and multiple-access interference also can be removed. Simulation of eight simultaneous users with dada rate 100 Mbit/s is demonstrated, where the fiber link consists of 50 km single-mode fiber, plus 5 km dispersion compensating fiber. Simulation results show that the near-far problem of NHZ FFH-OCDMA can be eliminated, and complicated power control can be removed. Therefore, this scheme is a good candidate for optical access network.

  2. Deployment and Evaluation of the Helicopter In-Flight Tracking System (HITS)

    NASA Technical Reports Server (NTRS)

    Daskalakis, Anastasios; Martone, Patrick

    2004-01-01

    The Gulf of Mexico airspace has two major operating regions: low altitude offshore (below 7,000 ft) and high altitude oceanic (above 18,000 ft). Both regions suffer significant inefficiencies due to the lack of continuous surveillance during Instrument Flight Rules operations. Provision of surveillance in the offshore region is hindered by its low-altitude nature, which makes coverage by conventional radars economically infeasible. Significant portions of the oceanic sectors are inaccessible to shore-based sensors, as they are beyond line-of-sight. Two emerging surveillance technologies were assessed that are relatively low cost and can be deployed on offshore platforms Wide Area Multilateration and Automatic Dependent Surveillance Broadcast. Performance criteria were formulated using existing FAA specifications. Three configurations were developed and deployed representative of systems serving full-size and reduced-sized domestic terminal areas and an en-route/oceanic region. These configurations were evaluated during nine flight test periods using fixed- and rotary-wing aircraft.

  3. Lens system for a photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1990-01-01

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system.

  4. Lens system for a photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1990-11-27

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component is disclosed. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system. 8 figs.

  5. Secondary ion collection and transport system for ion microprobe

    DOEpatents

    Ward, James W.; Schlanger, Herbert; McNulty, Jr., Hugh; Parker, Norman W.

    1985-01-01

    A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.

  6. Cyclotron axial ion-beam-buncher system

    SciTech Connect

    Hamm, R.W.; Swenson, D.A.; Wangler, T.P.

    1982-02-11

    Adiabatic ion bunching is achieved in a cyclotron axial ion injection system through the incorporation of a radio frequency quadrupole system, which receives ions from an external ion source via an accelerate-decelerate system and a focusing einzel lens system, and which adiabatically bunches and then injects the ions into the median plane of a cyclotron via an electrostatic quadrupole system and an inflection mirror.

  7. Lithium ion rechargeable systems studies

    SciTech Connect

    Levy, S.C.; Lasasse, R.R.; Cygan, R.T.; Voigt, J.A.

    1995-02-01

    Lithium ion systems, although relatively new, have attracted much interest worldwide. Their high energy density, long cycle life and relative safety, compared with metallic lithium rechargeable systems, make them prime candidates for powering portable electronic equipment. Although lithium ion cells are presently used in a few consumer devices, e.g., portable phones, camcorders, and laptop computers, there is room for considerable improvement in their performance. Specific areas that need to be addressed include: (1) carbon anode--increase reversible capacity, and minimize passivation; (2) cathode--extend cycle life, improve rate capability, and increase capacity. There are several programs ongoing at Sandia National Laboratories which are investigating means of achieving the stated objectives in these specific areas. This paper will review these programs.

  8. Applications of Ion Laser Systems

    NASA Astrophysics Data System (ADS)

    Fletcher, Peter W.

    1987-04-01

    This paper provides an introduction to the more common applications of ion laser systems. Applications discussed include photocoagulation, flow cytometry, laser disk mastering, laser doppler velocimetry, Raman spectroscopy, holography, laser light shows, large screen projection, fingerprint detection, and applications in printing such as color separation and scanning. All these applications are currently in widespread use. At the end of the paper a short review is provided of developing applications such as cardiovascular surgery and semiconductor processing.

  9. But Can You Hit?

    ERIC Educational Resources Information Center

    Johnson, R. E.

    2009-01-01

    The author shares a story told to him by a colleague more than thirty years ago. The dean of a midsized American university was explaining the path to tenure to a roomful of newly appointed assistant professors. "We know you boys can all "field"," he declared. "Now we want to see if you can hit." A lot has changed over the intervening decades. If…

  10. Focused electron and ion beam systems

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  11. Implementation of the dawn ion propulsion system

    NASA Technical Reports Server (NTRS)

    Brophy, John; Marcucci, Michael G.; Ganapath, Gani B.; Gates, Jason; Garner, Charles E.; Klatte, Marlin; Lo, John; Nakazono, Barry; Pixler, Greg

    2005-01-01

    The Dawn ion propulsion system (IPS) was intended to be simply a larger version of the ion propulsion system that flew on Deep Space 1 (DS1). Implementation of this system to meet the needs of the Dawn mission, however, required modification of some IPS components and completely new developments of others.

  12. A silver ion water sterilization system

    NASA Technical Reports Server (NTRS)

    Parry, E. P.

    1971-01-01

    Small amounts of silver are incorporated in mixture of ion exchange resins, and water passing through this mixture is thus exposed to silver ion concentration. System is useful in self-contained water systems except city water systems where residual chlorine level is stipulated.

  13. ICR Heating in Ion Separation Systems

    SciTech Connect

    Timofeev, A.V.

    2005-12-15

    A systematic procedure for analyzing the physical processes that govern ICR heating in systems for ion separation is developed. The procedure is based on an analytic model of an rf antenna generating rf fields within a plasma column in a magnetic field and includes such issues as the calculation of rf fields, examination of the ICR interaction of ions with these fields, and determination of the distribution function of the ion flow at the exit from the ICR heating system. It is shown that, even in ICR heating systems with easily achievable parameter values, ions with appreciably different masses can be efficiently separated by energy.

  14. Air ion exposure system for plants

    NASA Technical Reports Server (NTRS)

    Morrow, R. C.; Tibbitts, T. W.

    1987-01-01

    A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

  15. Automatic system for single ion/single cell irradiation based on Cracow microprobe

    NASA Astrophysics Data System (ADS)

    Veselov, O.; Polak, W.; Lekki, J.; Stachura, Z.; Lebed, K.; Styczeń, J.; Ugenskiene, R.

    2006-05-01

    Recently, the Cracow ion microprobe has found its new application as a single ion hit facility (SIHF), allowing precise irradiations of living cells by a controlled number of ions. The instrument enables a broad field of research, such as survival studies, adaptive response investigations, bystander effect, inverse dose-rate effect, low-dose hypersensitivity, etc. This work presents principles of construction and operation of the SIHF based on the Cracow microprobe. We discuss some crucial features of optical, positioning, and blanking systems, including self-developed software responsible for semiautomatic cell recognition, for precise positioning of cells, and for controlling the irradiation process. We also show some tests carried out to determine the efficiency of the whole system and of its segments. In addition, we present results of the first irradiation measurements performed with living cells.

  16. Plasma formed ion beam projection lithography system

    DOEpatents

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette; Ngo, Vinh; Zahir, Nastaran

    2002-01-01

    A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

  17. Simulation Based on Ion Propulsion Rocket System with Using Negative ion - Negative Ion Pair Techniques

    NASA Astrophysics Data System (ADS)

    Sathiyavel, C.

    2016-07-01

    Ion propulsion rocket system is expected to become popular with the development of ion-ion pair techniques because of their stimulated of low propellant, Design of Thrust range is 1N with low electric power and high efficiency. A Negative ion-Negative ion pair of ion propulsion rocket system is proposed in this work .Negative Ion Based Rocket system consists of three parts 1.ionization chamber 2. Repulsion force and ion accelerator 3. Exhaust of Nozzle. The Negative ions from electro negatively gas are produced by attachment of the gas ,such as chlorine with electron emitted from a Electron gun ionization chamber. The formulate of large stable negative ion is achievable in chlorine gas with respect to electron affinity (∆E). The electron affinity is a measure of the energy change when an electron is added to a neutral atom to form a negative ion. When a neutral chlorine atom in the gaseous form picks up an electron to form a Cl- ion, it releases energy of 349 kJ/mol or 3.6 ev/atom. It is said to have an electron affinity of -349 kJ/mol ,the negative sign indicating that energy is released during this process .The mechanisms of attachment involve the formation of intermediate states. In that reason for , the highly repulsive force created between the same negative ions. The distance between same negative ions is important for the evaluate of the rocket thrust and is also determined by the exhaust velocity of the propellant. The mass flow rate of propellant is achieved by the ratio of total mass of the propellant (Kg) needed for operation to time period(s). Accelerate the Negative ions to a high velocity in the thrust vector direction with a significantly intense Magnetic field and the exhaust of negative ions through Nozzle. The simulation of the ion propulsion system has been carried out by MATLAB. By comparing the simulation results with the theoretical and previous results, we have found that the proposed method is achieved of thrust value with estimated

  18. Progress in ISOL target ion source systems

    NASA Astrophysics Data System (ADS)

    Köster, U.; Arndt, O.; Bouquerel, E.; Fedoseyev, V. N.; Frånberg, H.; Joinet, A.; Jost, C.; Kerkines, I. S. K.; Kirchner, R.; Targisol Collaboration

    2008-10-01

    The heart of every ISOL (isotope separation on-line) facility is its target and ion source system. Its efficiency, selectivity and rapidity is decisive for the production of intense and pure ion beams of short-lived isotopes. Recent progress in ISOL target and ion source technology is discussed at the examples of radioactive ion beams of exotic zinc and tin isotopes that were purified by isothermal chromatography and molecular sideband separation respectively. An outlook is given to which other elements these purification methods are applicable.

  19. Effects of a "two-hit" model of organ damage on the systemic inflammatory response and development of laminitis in horses.

    PubMed

    Tadros, Elizabeth M; Frank, Nicholas; Newkirk, Kim M; Donnell, Robert L; Horohov, David W

    2012-11-15

    The role of endotoxemia in the development of laminitis remains unclear. Although systemic inflammation is a risk factor for laminitis in hospitalized horses, experimental endotoxin administration fails to induce the disease. While not sufficient to cause laminitis by itself, endotoxemia might predispose laminar tissue to damage from other mediators during systemic inflammation. In "two-hit" models of organ damage, sequential exposure to inflammatory stimuli primes the immune system and causes exaggerated inflammatory responses during sepsis. Acute laminitis shares many characteristics with sepsis-associated organ failure, therefore an equine "two-hit" sepsis model was employed to test the hypothesis that laminitis develops with increased frequency and severity when repeated inflammatory events exacerbate systemic inflammation and organ damage. Twenty-four light breed mares (10) and geldings (14) with chronic disease conditions or behavioral abnormalities unrelated to laminitis that warranted euthanasia were obtained for the study. Horses were randomly assigned to receive an 8-h intravenous infusion of either lipopolysaccharide (5 ng/kg/h) or saline beginning at -24h, followed by oligofructose (OF; 5 g/kg) via nasogastric tube at 0 h. Euthanasia and tissue collection occurred at Obel grade 2 laminitis, or at 48 h if laminitis had not developed. Liver biopsies were performed at 24h in laminitis non-responders. Blood cytokine gene expression was measured throughout the study period. Lipopolysaccharide and OF administration independently increased mean rectal temperature (P<0.001), heart rate (P=0.003), respiratory rate (P<0.001), and blood interleukin (IL)-1β gene expression (P<0.0016), but responses to OF were not exaggerated in endotoxin-pretreated horses. The laminitis induction rate did not differ between treatment groups and was 63% overall. When horses were classified as laminitis responders and non-responders, area under the blood IL-1β expression curve (P=0

  20. High efficiency ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1981-01-01

    An ion accelerator system that successfully combines geometrical and electrostatic focusing principles is presented. This accelerator system uses thin, concave, multiple-hole, closely spaced graphite screen and focusing grids which are coupled to single slot accelerator and decelerator grids to provide high ion extraction efficiency and good focusing. Tests with the system showed a substantial improvement in ion beam current density and collimation as compared with a Pierce electrode configuration. Durability of the thin graphite screen and focusing grids has been proven, and tests are being performed to determine the minimum screen and focusing grid spacing and thickness required to extract the maximum reliable beam current density. Compared with present neutral beam injector accelerator systems, this one has more efficient ion extraction, easier grid alignment, easier fabrication, a less cumbersome design, and the capacity to be constructed in a modular fashion. Conceptual neutral beam injector designs using this modular approach have electrostatic beam deflection plates downstream of each module.

  1. Preliminary flight prototype silver ion monitoring system

    NASA Technical Reports Server (NTRS)

    Brady, J.

    1974-01-01

    The design, fabrication, and testing of a preliminary flight prototype silver ion monitoring system based on potentiometric principles and utilizing a solid-state silver sulfide electrode paired with a pressurized double-junction reference electrode housing a replaceable electrolyte reservoir is described. The design provides automatic electronic calibration utilizing saturated silver bromide solution as a silver ion standard. The problem of loss of silver ion from recirculating fluid, its cause, and corrective procedures are reported. The instability of the silver sulfide electrode is discussed as well as difficulties met in implementing the autocalibration procedure.

  2. Hit to lead studies on (hetero)arylpyrimidines--agonists of the canonical Wnt-beta-catenin cellular messaging system.

    PubMed

    Gilbert, Adam M; Bursavich, Matthew G; Alon, Nippa; Bhat, Bheem M; Bex, Frederick J; Cain, Michael; Coleburn, Valerie; Gironda, Virginia; Green, Paula; Hauze, Diane B; Kharode, Yogendra; Krishnamurthy, Girija; Kirisits, Matthew; Lam, Ho-Sun; Liu, Yao-Bin; Lombardi, Sabrina; Matteo, Jeanne; Murrills, Richard; Robinson, John A; Selim, Sally; Sharp, Michael; Unwalla, Raymond; Varadarajan, Usha; Zhao, Weiguang; Yaworsky, Paul J

    2010-01-01

    A series of (hetero)arylpyrimidines agonists of the Wnt-beta-catenin cellular messaging system have been prepared. These compounds show activity in U2OS cells transfected with Wnt-3a, TCF-luciferase, Dkk-1 and tk-Renilla. Selected compounds show minimal GSK-3beta inhibition indicating that the Wnt-beta-catenin agonism activity most likely comes from interaction at Wnt-3a/Dkk-1. Two examples 1 and 25 show in vivo osteogenic activity in a mouse calvaria model. One example 1 is shown to activate non-phosphorylated beta-catenin formation in bone. PMID:19897365

  3. Hit finding: towards 'smarter' approaches.

    PubMed

    Langer, Thierry; Hoffmann, Rémy; Bryant, Sharon; Lesur, Brigitte

    2009-10-01

    Drug discovery is complex and risky, and the chances of success are low. One starting point to discover a new drug is the selective screening of a collection of high value and good quality compounds. Selection of compounds for screening is one of the challenging initial steps in the drug discovery process and is crucial for the success of the project. Optimal selection will enhance the chances of successful hit finding with regard to both number and quality of hits. Several scenarios for compound selection can be envisaged, and are primarily driven by knowledge of the target. Deciding the most appropriate scenario is important and appropriate software packages and chemoinformatics tools are available for these purposes. After screening, researchers may face challenges in selecting the best hits for further optimization. Numerous chemoinformatics tools have emerged recently to address challenges in hit analysis, prioritization and optimization. PMID:19576852

  4. Characterization of a DAPI-RIT-DAPI system for gas-phase ion/molecule and ion/ion reactions.

    PubMed

    Lin, Ziqing; Tan, Lei; Garimella, Sandilya; Li, Linfan; Chen, Tsung-Chi; Xu, Wei; Xia, Yu; Ouyang, Zheng

    2014-01-01

    The discontinuous atmospheric pressure interface (DAPI) has been developed as a facile means for efficiently introducing ions generated at atmospheric pressure to an ion trap in vacuum [e.g., a rectilinear ion trap (RIT)] for mass analysis. Introduction of multiple beams of ions or neutral species through two DAPIs into a single RIT has been previously demonstrated. In this study, a home-built instrument with a DAPI-RIT-DAPI configuration has been characterized for the study of gas-phase ion/molecule and ion/ion reactions. The reaction species, including ions or neutrals, can be introduced from both ends of the RIT through the two DAPIs without complicated ion optics or differential pumping stages. The primary reactant ions were isolated prior to reaction and the product ions were mass analyzed after controlled reaction time period. Ion/molecule reactions involving peptide radical ions and proton-transfer ion/ion reactions have been carried out using this instrument. The gas dynamic effect due to the DAPI operation on internal energy deposition and the reactivity of peptide radical ions has been characterized. The DAPI-RIT-DAPI system also has a unique feature for allowing the ion reactions to be carried out at significantly elevated pressures (in 10(-1) Torr range), which has been found to be helpful to speed up the reactions. The viability and flexibility of the DAPI-RIT-DAPI system for the study of gas-phase ion reactions have been demonstrated.

  5. Characterization of a DAPI-RIT-DAPI System for Gas-Phase Ion/Molecule and Ion/Ion Reactions

    NASA Astrophysics Data System (ADS)

    Lin, Ziqing; Tan, Lei; Garimella, Sandilya; Li, Linfan; Chen, Tsung-Chi; Xu, Wei; Xia, Yu; Ouyang, Zheng

    2014-01-01

    The discontinuous atmospheric pressure interface (DAPI) has been developed as a facile means for efficiently introducing ions generated at atmospheric pressure to an ion trap in vacuum [e.g., a rectilinear ion trap (RIT)] for mass analysis. Introduction of multiple beams of ions or neutral species through two DAPIs into a single RIT has been previously demonstrated. In this study, a home-built instrument with a DAPI-RIT-DAPI configuration has been characterized for the study of gas-phase ion/molecule and ion/ion reactions. The reaction species, including ions or neutrals, can be introduced from both ends of the RIT through the two DAPIs without complicated ion optics or differential pumping stages. The primary reactant ions were isolated prior to reaction and the product ions were mass analyzed after controlled reaction time period. Ion/molecule reactions involving peptide radical ions and proton-transfer ion/ion reactions have been carried out using this instrument. The gas dynamic effect due to the DAPI operation on internal energy deposition and the reactivity of peptide radical ions has been characterized. The DAPI-RIT-DAPI system also has a unique feature for allowing the ion reactions to be carried out at significantly elevated pressures (in 10-1 Torr range), which has been found to be helpful to speed up the reactions. The viability and flexibility of the DAPI-RIT-DAPI system for the study of gas-phase ion reactions have been demonstrated.

  6. Negative ion source with low temperature transverse divergence optical system

    DOEpatents

    Whealton, John H.; Stirling, William L.

    1986-01-01

    A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.

  7. Negative ion source with low temperature transverse divergence optical system

    DOEpatents

    Whealton, J.H.; Stirling, W.L.

    1985-03-04

    A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.

  8. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2007-02-20

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  9. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  10. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; Van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  11. Formulation of the Multi-Hit Model With a Non-Poisson Distribution of Hits

    SciTech Connect

    Vassiliev, Oleg N.

    2012-07-15

    Purpose: We proposed a formulation of the multi-hit single-target model in which the Poisson distribution of hits was replaced by a combination of two distributions: one for the number of particles entering the target and one for the number of hits a particle entering the target produces. Such an approach reflects the fact that radiation damage is a result of two different random processes: particle emission by a radiation source and interaction of particles with matter inside the target. Methods and Materials: Poisson distribution is well justified for the first of the two processes. The second distribution depends on how a hit is defined. To test our approach, we assumed that the second distribution was also a Poisson distribution. The two distributions combined resulted in a non-Poisson distribution. We tested the proposed model by comparing it with previously reported data for DNA single- and double-strand breaks induced by protons and electrons, for survival of a range of cell lines, and variation of the initial slopes of survival curves with radiation quality for heavy-ion beams. Results: Analysis of cell survival equations for this new model showed that they had realistic properties overall, such as the initial and high-dose slopes of survival curves, the shoulder, and relative biological effectiveness (RBE) In most cases tested, a better fit of survival curves was achieved with the new model than with the linear-quadratic model. The results also suggested that the proposed approach may extend the multi-hit model beyond its traditional role in analysis of survival curves to predicting effects of radiation quality and analysis of DNA strand breaks. Conclusions: Our model, although conceptually simple, performed well in all tests. The model was able to consistently fit data for both cell survival and DNA single- and double-strand breaks. It correctly predicted the dependence of radiation effects on parameters of radiation quality.

  12. 42 CFR 495.338 - Health information technology implementation advance planning document requirements (HIT IAPD).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... statement setting forth the security and interface requirements to be employed for all State HIT systems, and related systems, and the system failure and disaster recovery procedures available....

  13. Universal Hitting Time Statistics for Integrable Flows

    NASA Astrophysics Data System (ADS)

    Dettmann, Carl P.; Marklof, Jens; Strömbergsson, Andreas

    2016-08-01

    The perceived randomness in the time evolution of "chaotic" dynamical systems can be characterized by universal probabilistic limit laws, which do not depend on the fine features of the individual system. One important example is the Poisson law for the times at which a particle with random initial data hits a small set. This was proved in various settings for dynamical systems with strong mixing properties. The key result of the present study is that, despite the absence of mixing, the hitting times of integrable flows also satisfy universal limit laws which are, however, not Poisson. We describe the limit distributions for "generic" integrable flows and a natural class of target sets, and illustrate our findings with two examples: the dynamics in central force fields and ellipse billiards. The convergence of the hitting time process follows from a new equidistribution theorem in the space of lattices, which is of independent interest. Its proof exploits Ratner's measure classification theorem for unipotent flows, and extends earlier work of Elkies and McMullen.

  14. Liners for ion transport membrane systems

    SciTech Connect

    Carolan, Michael Francis; Miller, Christopher Francis

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  15. Note: Ion source design for ion trap systems

    NASA Astrophysics Data System (ADS)

    Noriega, J. R.; Quevedo, M.; Gnade, B.; Vasselli, J.

    2013-06-01

    A small plasma (glow discharge) based ion source and circuit are described in this work. The ion source works by producing a high voltage pulsed discharge between two electrodes in a pressure range of 50-100 mTorr. A third mesh electrode is used for ion extraction. The electrodes are small stainless steel screws mounted in a MACOR ionization chamber in a linear arrangement. The electrode arrangement is driven by a circuit, design for low power operation. This design is a proof of concept intended for applications on small cylindrical ion traps.

  16. The intensity feedback system at Heidelberg Ion-Beam Therapy Centre

    NASA Astrophysics Data System (ADS)

    Schoemers, Christian; Feldmeier, Eike; Naumann, Jakob; Panse, Ralf; Peters, Andreas; Haberer, Thomas

    2015-09-01

    At Heidelberg Ion-Beam Therapy Centre (HIT), more than 2500 tumour patients have been treated with charged particle beams since 2009 using the raster scanning method. The tumour is irradiated slice-by-slice, each slice corresponding to a different beam energy. For the particle dose of each raster point the pre-irradiation by more distal slices has to be considered. This leads to highly inhomogeneous dose distributions within one iso-energy slice. The particles are extracted from the synchrotron via transverse RF knock-out. A pure feed forward control cannot take into account fluence inhomogeneities or deal with intensity fluctuations. So far, fluctuations have been counteracted by a reduced scanning velocity. We now added a feedback loop to the extraction system. The dose monitoring ionisation chambers in front of the patient have been coupled to the extraction device in the synchrotron. Characterization and implementation of the intensity feedback system into the HIT facility is described here. By its implementation the treatment time has been reduced by 10% in average.

  17. Hitting the Jackpot

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2004-01-01

    Tribal leaders in Cherokee established the payment program known as the "per capita". All enrolled members of the Eastern Band of the Cherokee--adults and children alike--receive yearly sums. Upon graduation, students from the tribal-run school system are eligible to receive lump-sum payments, with the amount $36,967.78 per person. The money comes…

  18. Car Hits Boy on Bicycle

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    2005-01-01

    In this article we present the fascinating reconstruction of an accident where a car hit a boy riding his bicycle. The boy dramatically flew several metres through the air after the collision and was injured, but made a swift and complete recovery from the accident with no long-term after-effects. Students are challenged to determine the speed of…

  19. RFI-Based Ion Linac Systems

    NASA Astrophysics Data System (ADS)

    Swenson, Donald A.

    A new company, Ion Linac Systems, Inc., has been formed to promote the development, manufacture, and marketing of intense, RFI-based, Ion Linac Systems. The Rf Focused Interdigital (RFI) linac structure was invented by the author while at Linac Systems, LLC. The first step, for the new company, will be to correct a flaw in an existing RFI-based linac system and to demonstrate "good transmission" through the system. The existing system, aimed at the BNCT medical application, is designed to produce a beam of 2.5 MeV protons with an average beam current of 20 mA. In conjunction with a lithium target, it will produce an intense beam of epithermal neutrons. This system is very efficient, requiring only 180 kW of rf power to produce a 50 kW proton beam. In addition to the BNCT medical application, the RFI-based systems should represent a powerful neutron generator for homeland security, defence applications, cargo container inspection, and contraband detection. The timescale to the demonstration of "good transmission" is early fall of this year. Our website is www.ionlinacs.com.

  20. Treatment of Children With Central Nervous System Primitive Neuroectodermal Tumors/Pinealoblastomas in the Prospective Multicentric Trial HIT 2000 Using Hyperfractionated Radiation Therapy Followed by Maintenance Chemotherapy

    SciTech Connect

    Gerber, Nicolas U.; Hoff, Katja von; Resch, Anika; Ottensmeier, Holger; Kwiecien, Robert; Faldum, Andreas; Matuschek, Christiane; Hornung, Dagmar; Bremer, Michael; Benesch, Martin; Pietsch, Torsten; Warmuth-Metz, Monika; Kuehl, Joachim; Rutkowski, Stefan; Kortmann, Rolf D.

    2014-07-15

    Purpose: The prognosis for children with central nervous system primitive neuroectodermal tumor (CNS-PNET) or pinealoblastoma is still unsatisfactory. Here we report the results of patients between 4 and 21 years of age with nonmetastatic CNS-PNET or pinealoblastoma diagnosed from January 2001 to December 2005 and treated in the prospective GPOH-trial P-HIT 2000-AB4. Methods and Materials: After surgery, children received hyperfractionated radiation therapy (36 Gy to the craniospinal axis, 68 Gy to the tumor region, and 72 Gy to any residual tumor, fractionated at 2 × 1 Gy per day 5 days per week) accompanied by weekly intravenous administration of vincristine and followed by 8 cycles of maintenance chemotherapy (lomustine, cisplatin, and vincristine). Results: Twenty-six patients (15 with CNS-PNET; 11 with pinealoblastoma) were included. Median age at diagnosis was 11.5 years old (range, 4.0-20.7 years). Gross total tumor resection was achieved in 6 and partial resection in 16 patients (indistinct, 4 patients). Median follow-up of the 15 surviving patients was 7.0 years (range, 5.2-10.0 years). The combined response rate to postoperative therapy was 17 of 20 (85%). Eleven of 26 patients (42%; 7 of 15 with CNS-PNET; 4 of 11 with pinealoblastoma) showed tumor progression or relapse at a median time of 1.3 years (range, 0.5-1.9 years). Five-year progression-free and overall survival rates (±standard error [SE]) were each 58% (±10%) for the entire cohort: CNS-PNET was 53% (±13); pinealoblastoma was 64% (±15%; P=.524 and P=.627, respectively). Conclusions: Postoperative hyperfractionated radiation therapy with local dose escalation followed by maintenance chemotherapy was feasible without major acute toxicity. Survival rates are comparable to those of a few other recent studies but superior to those of most other series, including the previous trial, HIT 1991.

  1. The ion propulsion system for Dawn

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.; Marcucci, M. G.; Ganapathi, G. B.; Garner, C. E.; Henry, M. D.; Nakazono, B.; Noon, D.

    2003-01-01

    The Dawn Project's mission is to rendezvous and map the two heaviest main belt asteroids Vesta and Ceres. The Ion Propulsion System (IPS) for Dawn will be used for the heliocentric transfer from the Earth to Vesta, orbit capture at Vesta, transfer to a low Vesta orbit, departure and escape from Vesta, the heliocentric transfer from Vesta to Ceres, orbit capture at Ceres, and transfer to a low Ceres orbit.

  2. HitKeeper, a generic software package for hit list management

    PubMed Central

    Hau, Jörg; Muller, Michael; Pagni, Marco

    2007-01-01

    Background The automated annotation of biological sequences (protein, DNA) relies on the computation of hits (predicted features) on the sequences using various algorithms. Public databases of biological sequences provide a wealth of biological "knowledge", for example manually validated annotations (features) that are located on the sequences, but mining the sequence annotations and especially the predicted and curated features requires dedicated tools. Due to the heterogeneity and diversity of the biological information, it is difficult to handle redundancy, frequent updates, taxonomic information and "private" data together with computational algorithms in a common workflow. Results We present HitKeeper, a software package that controls the fully automatic handling of multiple biological databases and of hit list calculations on a large scale. The software implements an asynchronous update system that introduces updates and computes hits as soon as new data become available. A query interface enables the user to search sequences by specifying constraints, such as retrieving sequences that contain specific motifs, or a defined arrangement of motifs ("metamotifs"), or filtering based on the taxonomic classification of a sequence. Conclusion The software provides a generic and modular framework to handle the redundancy and incremental updates of biological databases, and an original query language. It is published under the terms and conditions of version 2 of the GNU Public License and available at . PMID:17391514

  3. Design of the ELIMAIA ion collection system

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Cirrone, G. A. P.; Cuttone, G.; Maggiore, M.; Andó, L.; Amato, A.; Costa, M.; Gallo, G.; Korn, G.; Larosa, G.; Leanza, R.; Manna, R.; Margarone, D.; Milluzzo, G.; Pulvirenti, S.; Romano, F.; Salamone, S.; Sedita, M.; Scuderi, V.; Tramontana, A.

    2015-12-01

    A system of permanent magnet quadrupoles (PMQs) is going to be realized by INFN-LNS to be used as a collection system for the injection of laser driven ion beams up to 60 MeV/u in an energy selector based on four resistive dipoles. This system is the first element of the ELIMED (ELI-Beamlines MEDical and Multidisciplinary applications) beam transport, dosimetry and irradiation line that will be developed by INFN-LNS (It) and installed at the ELI-Beamlines facility in Prague (Cz). ELIMED will be the first user's open transport beam-line where a controlled laser-driven ion beam will be used for multidisciplinary researches. The definition of well specified characteristics, both in terms of performances and field quality, of the magnetic lenses is crucial for the system realization, for the accurate study of the beam dynamics and for the proper matching with the magnetic selection system which will be designed in the next months. Here, we report the design of the collection system and the adopted solutions in order to realize a robust system form the magnetic point of view. Moreover, the first preliminary transport simulations are also described.

  4. Relativistic heavy ion fragmentation at HISS (Heavy Ion Spectrometer System)

    SciTech Connect

    Tull, C.E.

    1990-10-01

    An experiment was conducted at the Lawrence Berkeley Laboratory to measure projectile fragmentation of relativistic heavy ions. Charge identification was obtained by the use of a Cerenkov Hodoscope operating above the threshold for total internal reflection, while velocity measurement was performed by use of a second set of Cerenkov radiators operating at the threshold for total internal reflection. Charge and mass resolution for the system was {sigma}{sub Z} = 0.2 e and {sigma}{sub A} = 0.2 u. Measurements of the elemental and isotopic production cross sections for the fragmentation of {sup 40}Ar at 1.65{center dot}A GeV have been compared with an Abrasion-Ablation Model based on the evaporation computer code GEMINI. The model proves to be an accurate predictor of the cross sections for fragments between Chlorine and Boron. The measured cross section were reproduced using simple geometry with charge dispersions induced by zero-point vibrations of the giant dipole resonance for the prompt abrasion stage, and injecting an excitation energy spectrum based on a final state interaction with scaling factor E{sub fsi} = 38.8 MeV/c. Measurement of the longitudinal momentum distribution widths for projectile fragments are consistent with previous experiment and can be interpreted as reflecting the Fermi momentum distribution in the initial projectile nucleus. Measurement of the transverse momentum indicate an additional, unexplained dependence of the reduced momentum widths on fragment mass. This dependence has the same sign and similar slope to previously measured fragments of {sup 139}La, and to predictions based on phase-space constraints on the final state of the system.

  5. Development of a focused ion beam micromachining system

    SciTech Connect

    Pellerin, J.G.; Griffis, D.; Russell, P.E.

    1988-12-01

    Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.

  6. NSTAR Ion Propulsion System Power Electronics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) program, managed by the Jet Propulsion Laboratory (JPL), is currently developing a high performance, simplified ion propulsion system. This propulsion system, which is throttleable from 0.5- to 2.3-kW output power to the thruster, targets primary propulsion applications for planetary and Earth-space missions and has been baselined as the primary propulsion system for the first New Millennium spacecraft. The NASA Lewis Research Center is responsible for the design and delivery of a breadboard power processing unit (PPU) and an engineering model thruster (EMT) for this system and will manage the contract for the delivery of the flight hardware to JPL. The PPU requirements, which dictate a mass of less than 12 kg with an efficiency of 0.9 or greater at a 2.3-kW output, forced a departure from the state-of-the-art ion thruster PPU design. Several innovations--including dual-use topologies, simplified thruster control, and the use of ferrite magnetic materials--were necessary to meet these requirements.

  7. Charge neutralization apparatus for ion implantation system

    DOEpatents

    Leung, Ka-Ngo; Kunkel, Wulf B.; Williams, Malcom D.; McKenna, Charles M.

    1992-01-01

    Methods and apparatus for neutralization of a workpiece such as a semiconductor wafer in a system wherein a beam of positive ions is applied to the workpiece. The apparatus includes an electron source for generating an electron beam and a magnetic assembly for generating a magnetic field for guiding the electron beam to the workpiece. The electron beam path preferably includes a first section between the electron source and the ion beam and a second section which is coincident with the ion beam. The magnetic assembly generates an axial component of magnetic field along the electron beam path. The magnetic assembly also generates a transverse component of the magnetic field in an elbow region between the first and second sections of the electron beam path. The electron source preferably includes a large area lanthanum hexaboride cathode and an extraction grid positioned in close proximity to the cathode. The apparatus provides a high current, low energy electron beam for neutralizing charge buildup on the workpiece.

  8. Thomson Scattering Measurements on HIT-SI3

    NASA Astrophysics Data System (ADS)

    Everson, C. J.; Morgan, K. D.; Jarboe, T. R.

    2015-11-01

    A multi-point Thomson Scattering diagnostic has been implemented on HIT-SI3 (Helicity Injected Torus - Steady Inductive 3) to measure electron temperature. The HIT-SI3 experiment is a modification of the original HIT-SI apparatus that uses three injectors instead of two. This modification alters the configuration of magnetic fields and thus the plasma behavior in the device. The scientific aim of HIT-SI3 is to develop a deeper understanding of how injector behavior and interactions influence current drive and plasma performance in the spheromak. The Thomson Scattering system includes a 20 J (1 GW pulse) Ruby laser that provides the incident beam, and collection optics that are installed such that measurements can be taken at four spatial locations in HIT-SI3 plasmas. For each measurement point, a 3-channel polychromator is used to detect the relative level of scattering. These measurements allow for the presence of temperature gradients in the spheromak to be investigated. Preliminary HIT-SI3 temperature data are presented and can be compared to predictions from computational models. Work supported by the D.O.E.

  9. Electron-ion-x-ray spectrometer system

    SciTech Connect

    Southworth, S.H.; Deslattes, R.D.; MacDonald, M.A.; LeBrun, T.

    1993-10-01

    The authors describe a spectrometer system developed for electron, ion, and x-ray spectroscopy of gas-phase atoms and molecules following inner-shell excitation by tunable synchrotron radiation. The spectrometer has been used on beamline X-24A at the National Synchrotron Light Source for excitation-dependent studies of Ar L-shell and K-shell photoexcitation and vacancy decay processes. The instrumentation and experimental methods are discussed, and examples are given of electron spectra and coincidence spectra between electrons and fluorescent x-rays.

  10. Hitting is contagious in baseball: evidence from long hitting streaks.

    PubMed

    Bock, Joel R; Maewal, Akhilesh; Gough, David A

    2012-01-01

    Data analysis is used to test the hypothesis that "hitting is contagious". A statistical model is described to study the effect of a hot hitter upon his teammates' batting during a consecutive game hitting streak. Box score data for entire seasons comprising [Formula: see text] streaks of length [Formula: see text] games, including a total [Formula: see text] observations were compiled. Treatment and control sample groups ([Formula: see text]) were constructed from core lineups of players on the streaking batter's team. The percentile method bootstrap was used to calculate [Formula: see text] confidence intervals for statistics representing differences in the mean distributions of two batting statistics between groups. Batters in the treatment group (hot streak active) showed statistically significant improvements in hitting performance, as compared against the control. Mean [Formula: see text] for the treatment group was found to be [Formula: see text] to [Formula: see text] percentage points higher during hot streaks (mean difference increased [Formula: see text] points), while the batting heat index [Formula: see text] introduced here was observed to increase by [Formula: see text] points. For each performance statistic, the null hypothesis was rejected at the [Formula: see text] significance level. We conclude that the evidence suggests the potential existence of a "statistical contagion effect". Psychological mechanisms essential to the empirical results are suggested, as several studies from the scientific literature lend credence to contagious phenomena in sports. Causal inference from these results is difficult, but we suggest and discuss several latent variables that may contribute to the observed results, and offer possible directions for future research. PMID:23251507

  11. Hitting is contagious in baseball: evidence from long hitting streaks.

    PubMed

    Bock, Joel R; Maewal, Akhilesh; Gough, David A

    2012-01-01

    Data analysis is used to test the hypothesis that "hitting is contagious". A statistical model is described to study the effect of a hot hitter upon his teammates' batting during a consecutive game hitting streak. Box score data for entire seasons comprising [Formula: see text] streaks of length [Formula: see text] games, including a total [Formula: see text] observations were compiled. Treatment and control sample groups ([Formula: see text]) were constructed from core lineups of players on the streaking batter's team. The percentile method bootstrap was used to calculate [Formula: see text] confidence intervals for statistics representing differences in the mean distributions of two batting statistics between groups. Batters in the treatment group (hot streak active) showed statistically significant improvements in hitting performance, as compared against the control. Mean [Formula: see text] for the treatment group was found to be [Formula: see text] to [Formula: see text] percentage points higher during hot streaks (mean difference increased [Formula: see text] points), while the batting heat index [Formula: see text] introduced here was observed to increase by [Formula: see text] points. For each performance statistic, the null hypothesis was rejected at the [Formula: see text] significance level. We conclude that the evidence suggests the potential existence of a "statistical contagion effect". Psychological mechanisms essential to the empirical results are suggested, as several studies from the scientific literature lend credence to contagious phenomena in sports. Causal inference from these results is difficult, but we suggest and discuss several latent variables that may contribute to the observed results, and offer possible directions for future research.

  12. Quantum walks with infinite hitting times

    SciTech Connect

    Krovi, Hari; Brun, Todd A.

    2006-10-15

    Hitting times are the average time it takes a walk to reach a given final vertex from a given starting vertex. The hitting time for a classical random walk on a connected graph will always be finite. We show that, by contrast, quantum walks can have infinite hitting times for some initial states. We seek criteria to determine if a given walk on a graph will have infinite hitting times, and find a sufficient condition, which for discrete time quantum walks is that the degeneracy of the evolution operator be greater than the degree of the graph. The set of initial states which give an infinite hitting time form a subspace. The phenomenon of infinite hitting times is in general a consequence of the symmetry of the graph and its automorphism group. Using the irreducible representations of the automorphism group, we derive conditions such that quantum walks defined on this graph must have infinite hitting times for some initial states. In the case of the discrete walk, if this condition is satisfied the walk will have infinite hitting times for any choice of a coin operator, and we give a class of graphs with infinite hitting times for any choice of coin. Hitting times are not very well defined for continuous time quantum walks, but we show that the idea of infinite hitting-time walks naturally extends to the continuous time case as well.

  13. A Two-Hit Model of Autism: Adolescence as the Second Hit

    PubMed Central

    Picci, Giorgia; Scherf, K. Suzanne

    2015-01-01

    Adolescence brings dramatic changes in behavior and neural organization. Unfortunately, for some 30% of individuals with autism, there is marked decline in adaptive functioning during adolescence. We propose a two-hit model of autism. First, early perturbations in neural development function as a “first hit” that sets up a neural system that is “built to fail” in the face of a second hit. Second, the confluence of pubertal hormones, neural reorganization, and increasing social demands during adolescence provides the “second hit” that interferes with the ability to transition into adult social roles and levels of adaptive functioning. In support of this model, we review evidence about adolescent-specific neural and behavioral development in autism. We conclude with predictions and recommendations for empirical investigation about several domains in which developmental trajectories for individuals with autism may be uniquely deterred in adolescence. PMID:26609500

  14. Antiproton annihilation physics in the Monte Carlo particle transport code SHIELD-HIT12A

    NASA Astrophysics Data System (ADS)

    Taasti, Vicki Trier; Knudsen, Helge; Holzscheiter, Michael H.; Sobolevsky, Nikolai; Thomsen, Bjarne; Bassler, Niels

    2015-03-01

    The Monte Carlo particle transport code SHIELD-HIT12A is designed to simulate therapeutic beams for cancer radiotherapy with fast ions. SHIELD-HIT12A allows creation of antiproton beam kernels for the treatment planning system TRiP98, but first it must be benchmarked against experimental data. An experimental depth dose curve obtained by the AD-4/ACE collaboration was compared with an earlier version of SHIELD-HIT, but since then inelastic annihilation cross sections for antiprotons have been updated and a more detailed geometric model of the AD-4/ACE experiment was applied. Furthermore, the Fermi-Teller Z-law, which is implemented by default in SHIELD-HIT12A has been shown not to be a good approximation for the capture probability of negative projectiles by nuclei. We investigate other theories which have been developed, and give a better agreement with experimental findings. The consequence of these updates is tested by comparing simulated data with the antiproton depth dose curve in water. It is found that the implementation of these new capture probabilities results in an overestimation of the depth dose curve in the Bragg peak. This can be mitigated by scaling the antiproton collision cross sections, which restores the agreement, but some small deviations still remain. Best agreement is achieved by using the most recent antiproton collision cross sections and the Fermi-Teller Z-law, even if experimental data conclude that the Z-law is inadequately describing annihilation on compounds. We conclude that more experimental cross section data are needed in the lower energy range in order to resolve this contradiction, ideally combined with more rigorous models for annihilation on compounds.

  15. Recent developments and upgrades in ion source technology and ion beam systems at HVE

    NASA Astrophysics Data System (ADS)

    Podaru, Nicolae C.; Mous, Dirk J. W.

    2016-03-01

    In this paper we discuss various ion sources used in particle accelerator systems dedicated to ion beam analysis techniques. Key performance and characteristics of some ion sources are discussed: emittance, brightness, gas consumption, sample consumption efficiency, lifetime, etc. For negative ion sources, we focus on the performance of volume H- ion sources (e.g. HVE model 358), the duoplasmatron negative ion source and the magnetically filtered multicusp volume sources (e.g. HVE model SO-120). The duoplasmatron ion source has been recently upgraded with a Ta filament to deliver up to 150 μA H- ion beams and in conjunction with the Na charge exchange canal up to 20 μA of He-. The available brightness from the duoplasmatron increased from 2 to 6 A m-2 rad-2 eV-1. The ion source has been incorporated in a stand-alone light ion injector, well suited to deliver 20-30 keV negative ion beams of H-, He-, C-, NHx- and O- to accelerate for most ion beam analysis techniques.

  16. Biological effects in hit and non-hit cells

    NASA Astrophysics Data System (ADS)

    Hall, E. J.; Hei, T. K.; Geard, C. R.; Brenner, D. J.; Mitchell, S. A.

    It had long been considered axiomatic that heritable biological effects of radiation required direct damage to DNA. This is no longer the case. The bystander effect refers to the induction of biological effects in cells that are not directly traversed by a charged particle, but are close to cells that are. Experiments suggest that the effect is due to a molecule secreted by irradiated cells which is capable of transferring damage to distant cells. The magnitude of the effect is much larger if cells are in gap junction communication. In cell cultures, a bystander effect has been shown for cell lethality, chromosomal aberrations, mutation, oncogenic transformation and upregulation of gene expression. A similar effect has been observed in artificial 3-dimensional skin cultures. Bystander studies imply that the target for the biological effects of radiation is larger than the cell, and this has implications for biologically based models of carcinogenesis at low doses where not all cells receive a direct hit.

  17. Direct determination of the hit locations from experimental HPGe pulses

    NASA Astrophysics Data System (ADS)

    Désesquelles, P.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Dimmock, M. R.; Lazarus, I. H.; Ljungvall, J.; Nelson, L.; Nga, D.-T.; Nolan, P. J.; Rigby, S. V.; Simpson, J.; Van-Oanh, N.-T.

    2013-11-01

    The gamma-tracking technique optimises the determination of the energy and emission angle of gamma-rays detected by modern segmented HPGe detectors. This entails the determination, using the delivered pulse shapes, of the interaction points of the gamma-ray within the crystal. The direct method presented here allows the localisation of the hits using only a large sample of pulses detected in the actual operating conditions. No external crystal scanning system or pulse shape simulation code is needed. In order to validate this method, it is applied to sets of pulses obtained using the University of Liverpool scanning system. The hit locations are determined by the method with good precision.

  18. Cryogenic ion trapping systems with surface-electrode traps.

    PubMed

    Antohi, P B; Schuster, D; Akselrod, G M; Labaziewicz, J; Ge, Y; Lin, Z; Bakr, W S; Chuang, I L

    2009-01-01

    We present two simple cryogenic rf ion trap systems in which cryogenic temperatures and ultra high vacuum pressures can be reached in as little as 12 h. The ion traps are operated either in a liquid helium bath cryostat or in a low vibration closed cycle cryostat. The fast turn around time and availability of buffer gas cooling made the systems ideal for testing surface-electrode ion traps. The vibration amplitude of the closed cycled cryostat was found to be below 106 nm. We evaluated the systems by loading surface-electrode ion traps with (88)Sr(+) ions using laser ablation, which is compatible with the cryogenic environment. Using Doppler cooling we observed small ion crystals in which optically resolved ions have a trapped lifetime over 2500 min.

  19. Robust Matching System for the ITER Ion Cyclotron System

    NASA Astrophysics Data System (ADS)

    Swain, D.; Goulding, R.; Rasmussen, D.; Vervier, M.; Messiaen, A.; Dumortier, P.

    2008-11-01

    The ITER ion cyclotron system is required to deliver 20 MW to the ITER plasma under a number of different operating scenarios. The EU will fabricate the antenna, the US will supply the matching system and transmission lines, and India will deliver the rf sources and high-voltage power supplies. A brief description of the complete ion cyclotron system will be presented, and different design options for the matching system will be discussed. Emphasis will be on analyzing the ability of the system to operate effectively during sudden changes caused by plasma perturbations (e. g., ELMs), and on the robustness of matching algorithms. Particular challenges are: the possibility of relatively low loading of the antenna by the plasma because of a large plasma-antenna distance; the resulting high voltages in the matching system (which must be minimized by good system design); the need to install a number of large matching components in the tight space available near the tokamak; and the requirement for operation and maintenance in a radiation environment.

  20. Characterization of an 8-cm Diameter Ion Source System

    NASA Technical Reports Server (NTRS)

    Li, Zhongmin; Hawk, C. W.; Hawk, Clark W.; Buttweiler, Mark S.; Williams, John D.; Buchholtz, Brett

    2005-01-01

    Results of tests characterizing an 8-cm diameter ion source are presented. The tests were conducted in three separate vacuum test facilities at the University of Alabama-Huntsville, Colorado State University, and L3 Communications' ETI division. Standard ion optics tests describing electron backstreaming and total-voltage-limited impingement current behavior as a function of beam current were used as guidelines for selecting operating conditions where more detailed ion beam measurements were performed. The ion beam was profiled using an in-vacuum actuating probe system to determine the total ion current density and the ion charge state distribution variation across the face of the ion source. Both current density and ExB probes were utilized. The ion current density data were used to obtain integrated beam current, beam flatness parameters, and general beam profile shapes. The ExB probe data were used to determine the ratio of doubly to singly charged ion current. The ion beam profile tests were performed at over six different operating points that spanned the expected operating range of the DAWN thrusters being developed at L3. The characterization tests described herein reveal that the 8-cm ion source is suitable for use in (a) validating plasma diagnostic equipment, (b) xenon ion sputtering and etching studies of spacecraft materials, (c) plasma physics research, and (d) the study of ion thruster optics at varying conditions.

  1. Development and characterization of an Fv-1-sensitive retrovirus-packaging system: single-hit titration kinetics observed in restrictive cells.

    PubMed

    Boone, L R; Innes, C L; Glover, P L; Linney, E

    1989-06-01

    We have constructed an RNA-packaging-deficient mutant of N-tropic murine leukemia virus WN1802N by removal of 330 nucleotides located between the upstream long terminal repeat and the start of the gag gene region. Transfection into mink CCL64 cells produced a cell line capable of packaging retrovirus vectors into ecotropic, Fv-1 N-tropic virions. Using retrovirus vectors that confer resistance to the antibiotic G418, we demonstrated that the magnitude of restriction in BALB/3T3 and SIM.R cells (both Fv-1b/b) and in RFM/3T3 cells (Fv-1nr/nr) is approximately 100-fold compared with that in AKR or NIH 3T3 cells (both Fv-1n/n). Furthermore, titration kinetics were single hit in restrictive cells. Colonies of antibiotic-resistant cells recovered after infection of genotypically restrictive cultures were phenotypically restrictive when reinfected, ruling out selection of stably nonrestrictive subpopulations. These results suggest that the ability to infect some fraction of cells in a genotypically restrictive culture does not require specific abrogation and that multihit kinetics may not be an essential feature of Fv-1 restriction.

  2. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.

  3. Silver ion bactericide system. [for Space Shuttle Orbiter potable water

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Allen, E. T.

    1974-01-01

    Description of a preliminary flight prototype system which uses silver ions as the bactericide to preserve sterility of the water used for human consumption and hygiene in the Space Shuttle Orbiter. The performance of silver halide columns for passively dosing fuel cell water with silver ions is evaluated. Tests under simulated Orbiter mission conditions show that silver ion doses of 0.05 ppm are bactericidal for Pseudomonas aeruginosa and Type IIIa, the two bacteria found in Apollo potable water systems. The design of the Advance Prototype Silver Ion Water Bactericide System now under development is discussed.

  4. Technologies for trapped-ion quantum information systems - Progress toward scalability with hybrid systems

    NASA Astrophysics Data System (ADS)

    Eltony, Amira M.; Gangloff, Dorian; Shi, Molu; Bylinskii, Alexei; Vuletić, Vladan; Chuang, Isaac L.

    2016-03-01

    Scaling up from prototype systems to dense arrays of ions on chip, or vast networks of ions connected by photonic channels, will require developing entirely new technologies that combine miniaturized ion trapping systems with devices to capture, transmit, and detect light, while refining how ions are confined and controlled. Building a cohesive ion system from such diverse parts involves many challenges, including navigating materials incompatibilities and undesired coupling between elements. Here, we review our recent efforts to create scalable ion systems incorporating unconventional materials such as graphene and indium tin oxide, integrating devices like optical fibers and mirrors, and exploring alternative ion loading and trapping techniques.

  5. Nonplanar ion-acoustic two-soliton systems in quantum electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Mandal, Pankaj Kumar; Ghorui, Malay Kumar; Saha, Asit; Chatterjee, Prasanta

    2015-01-01

    The basic features of planar and nonplanar time dependent ion-acoustic two-soliton systems have been studied in a three component unmagnetized, collisionless quantum plasma consisting of inertialess electrons and positrons. Using the reductive perturbation technique (RPT), we have derived the Korteweg-de Vries equation for our model. The effects of several parameters on the properties of ion-acoustic two-soliton systems in quantum electron-positron-ion plasmas have been discussed in planar and nonplanar geometries. It has been shown that the properties of ion-acoustic two-soliton systems are affected significantly due to cylindrical and spherical geometries. The amplitude of the cylindrical two-soliton system is smaller than that of the spherical two-soliton system for small values of | τ|. The propagation of ion-acoustic two-soliton systems is quite different from the propagation of ion-acoustic two-soliton systems in a nonplanar geometry. The present investigation may have relevance in the study of the propagation of ion-acoustic two-soliton systems in space and laboratory plasmas.

  6. Transient absorption measurement system using pulsed energetic ion

    NASA Astrophysics Data System (ADS)

    Taguchi, Mitsumasa; Baldacchino, Gérard; Kurashima, Satoshi; Kimura, Atsushi; Sugo, Yumi; Katsumura, Yosuke; Hirota, Koichi

    2009-12-01

    This article reports a highly sensitive transient absorbance measurement system using pulsed energetic ions. The ions were pulsed by a beam chopper, which was synchronized with the cyclotron, and accelerated to the desired energy around 18 MeV/u. H, He, C and Ne ions can be used for the transient absorption measurement. The optical system can measure an absorbance smaller than 1.0×10 -4 in the wavelength range of 400-740 nm.

  7. Development of an ion beam analyzing system for the KBSI heavy-ion accelerator

    NASA Astrophysics Data System (ADS)

    Bahng, Jungbae; Hong, Jonggi; Park, Jin Yong; Kim, Seong Jun; Ok, Jung-Woo; Choi, Seyong; Shin, Chang Seouk; Yoon, Jang-Hee; Won, Mi-Sook; Lee, Byoung-Seob; Kim, Eun-San

    2016-02-01

    The Korea Basic Science Institute (KBSI) has been developing a heavy ion accelerator system to accelerate high current, multi-charge state ions produced by a 28 GHz superconducting electron cyclotron ion source. A beam analyzing system as a part of the low energy beam transport apparatus was developed to select charged particles with desirable charge states from the ion beams. The desired species of ion, which is generated and extracted from the ECR ion source including various ion particles, can be selected by 90° dipole electromagnet. Due to the non-symmetrical structure in the coil as well as the non-linear permeability of the yoke material coil, a three dimensional analysis was carried out to confirm the design parameters. In this paper, we present the experimental results obtained as result of an analysis of KBSI accelerator. The effectiveness of beam selection was confirmed during the test of the analyzing system by injecting an ion beam from an ECR ion source.

  8. Hit parade: the future of the sports concussion crisis.

    PubMed

    Nowinski, Chris

    2013-01-01

    While concussions have long been linked to brain and central nervous system issues, a new study suggests that repeated hits to the head-mild or otherwise-can lead to memory loss, depression, and dementia. This postmortem brain study, conducted at the Boston University Center for the Study of Traumatic Encephalopathy, provides new and troubling evidence about chronic traumatic encephalopathy (CTE), a long-term degenerative and incurable brain disease. Although military personnel and others are vulnerable to the disease, the highest risk is among athletes involved in contact sports in which hits to the head are considered "part of the game."

  9. The Relativistic Heavy Ion Collider control system

    SciTech Connect

    Clifford, T.S.; Barton, D.S.; Oerter, B.R.

    1997-12-01

    The Relativistic Heavy Ion Collider control system has been used in the commissioning of the AGS to RHIC transfer line and in the first RHIC sextant test. Much of the controls infrastructure for networks and links has been installed throughout the collider. All of the controls hardware modules needed to be built for early RHIC operations have been designed and tested. Many of these VME modules are already being used in normal AGS operations. Over 150 VME based front end computers and device controllers will be installed by the Summer of 1998 in order to be ready for Fall of 1998. A few features are being added to the front end computer core software. The bulk of the Accelerator Device Objects (ADOs) which are instantiated in the FECs, have been written and tested in the early commissioning. A configuration database has been designed. Generic control and display of ADO parameters via a spreadsheet like program on the console level computers was provided early on in the control system development. User interface tools that were developed for the AGS control system have been used in RHIC applications. Some of the basic operations programs, like alarm display and save/restore, that are used in the AGS operations have been or will be expanded to support RHIC operations. A model for application programs which involves a console level manager servicing ADOs have been verified with a few RHIC applications. More applications need to be written for the Fall of 1998 commissioning effort. A sequencer for automatic control of the fill is being written with the expectation that it will be useful in early commissioning.

  10. Molecular ion battery: a rechargeable system without using any elemental ions as a charge carrier.

    PubMed

    Yao, Masaru; Sano, Hikaru; Ando, Hisanori; Kiyobayashi, Tetsu

    2015-06-04

    Is it possible to exceed the lithium redox potential in electrochemical systems? It seems impossible to exceed the lithium potential because the redox potential of the elemental lithium is the lowest among all the elements, which contributes to the high voltage characteristics of the widely used lithium ion battery. However, it should be possible when we use a molecule-based ion which is not reduced even at the lithium potential in principle. Here we propose a new model system using a molecular electrolyte salt with polymer-based active materials in order to verify whether a molecular ion species serves as a charge carrier. Although the potential of the negative-electrode is not yet lower than that of lithium at present, this study reveals that a molecular ion can work as a charge carrier in a battery and the system is certainly a molecular ion-based "rocking chair" type battery.

  11. Molecular ion battery: a rechargeable system without using any elemental ions as a charge carrier

    PubMed Central

    Yao, Masaru; Sano, Hikaru; Ando, Hisanori; Kiyobayashi, Tetsu

    2015-01-01

    Is it possible to exceed the lithium redox potential in electrochemical systems? It seems impossible to exceed the lithium potential because the redox potential of the elemental lithium is the lowest among all the elements, which contributes to the high voltage characteristics of the widely used lithium ion battery. However, it should be possible when we use a molecule-based ion which is not reduced even at the lithium potential in principle. Here we propose a new model system using a molecular electrolyte salt with polymer-based active materials in order to verify whether a molecular ion species serves as a charge carrier. Although the potential of the negative-electrode is not yet lower than that of lithium at present, this study reveals that a molecular ion can work as a charge carrier in a battery and the system is certainly a molecular ion-based “rocking chair” type battery. PMID:26043147

  12. Molecular ion battery: a rechargeable system without using any elemental ions as a charge carrier

    NASA Astrophysics Data System (ADS)

    Yao, Masaru; Sano, Hikaru; Ando, Hisanori; Kiyobayashi, Tetsu

    2015-06-01

    Is it possible to exceed the lithium redox potential in electrochemical systems? It seems impossible to exceed the lithium potential because the redox potential of the elemental lithium is the lowest among all the elements, which contributes to the high voltage characteristics of the widely used lithium ion battery. However, it should be possible when we use a molecule-based ion which is not reduced even at the lithium potential in principle. Here we propose a new model system using a molecular electrolyte salt with polymer-based active materials in order to verify whether a molecular ion species serves as a charge carrier. Although the potential of the negative-electrode is not yet lower than that of lithium at present, this study reveals that a molecular ion can work as a charge carrier in a battery and the system is certainly a molecular ion-based “rocking chair” type battery.

  13. Development of polyatomic ion beam system using liquid organic materials

    NASA Astrophysics Data System (ADS)

    Takaoka, G. H.; Nishida, Y.; Yamamoto, T.; Kawashita, M.

    2005-08-01

    We have developed a new type of polyatomic ion beam system using liquid organic materials such as octane and ethanol, which consists of a capillary type of nozzle, an ionizer, a mass-separator and a substrate holder. Ion current extracted after ionization was 430 μA for octane and 200 μA for ethanol, respectively. The mass-analysis was realized using a compact E × B mass filter, and the mass-analyzed ion beams were transferred toward the substrate. The ion current density at the substrate was a few μA/cm2 for the mass-separated ion species. Interactions of polyatomic ion beams with silicon (Si) surfaces were investigated by utilizing the ellipsometry measurement. It was found that the damaged layer thickness irradiated by the polyatomic ions with a mass number of about 40 was smaller than that by Ar ion irradiation at the same incident energy and ion fluence. The result indicated that the rupture of polyatomic ions occurred upon its impact on the Si surface with an incident energy larger than a few keV. In addition, the chemical modification of Si surfaces such as wettability could be achieved by adjusting the incident energy for the ethanol ions, which included all the fragment ions.

  14. Electromagnetic interference assessment of an ion drive electric propulsion system

    NASA Technical Reports Server (NTRS)

    Whittlesey, A. C.

    1981-01-01

    An electric propulsion thrust system has the capability of providing a high specific impulse for long duration scientific missions in space. The EMI from the elements of an ion engine was characterized. The compatibility of ion drive electric propulsion systems with typical interplanetary spacecraft engineering was predicted.

  15. Ion Thruster Support and Positioning System

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W. (Inventor)

    1998-01-01

    A system for supporting and selectively positioning an ion thruster relative to a surface of a spacecraft includes three angularly spaced thruster support assemblies. Each thruster support assembly includes a frame which has a rotary actuator mounted thereon. The rotary actuator is connected to an actuator member which is rotatably connected to a thruster attachment member connected to a body of the thruster. A stabilizer member is rotatably mounted to the frame and to the thruster attachment member. The thruster is selectively movable in the pitch and yaw directions responsive to movement of the actuator members by the actuators on the thruster support assemblies. A failure of any one actuator on a thruster support assembly will generally still enable limited thruster positioning capability in two directions. In a retracted position the thruster attachment members are held in nested relation in saddles supported on the frames of the thruster support assemblies. The thruster is securely held in the retracted position during periods of high loading such as during launch of the spacecraft.

  16. Hit-and-run planetary collisions.

    PubMed

    Asphaug, Erik; Agnor, Craig B; Williams, Quentin

    2006-01-12

    Terrestrial planet formation is believed to have concluded in our Solar System with about 10 million to 100 million years of giant impacts, where hundreds of Moon- to Mars-sized planetary embryos acquired random velocities through gravitational encounters and resonances with one another and with Jupiter. This led to planet-crossing orbits and collisions that produced the four terrestrial planets, the Moon and asteroids. But here we show that colliding planets do not simply merge, as is commonly assumed. In many cases, the smaller planet escapes from the collision highly deformed, spun up, depressurized from equilibrium, stripped of its outer layers, and sometimes pulled apart into a chain of diverse objects. Remnants of these 'hit-and-run' collisions are predicted to be common among remnant planet-forming populations, and thus to be relevant to asteroid formation and meteorite petrogenesis.

  17. Ion-Atom and Ion-Molecule Hybrid Systems: Ion-Neutral Chemistry at Ultralow Energies

    NASA Astrophysics Data System (ADS)

    Eberle, Pascal; Dörfler, Alexander D.; von Planta, Claudio; Ravi, Krishnamurthy; Haas, Dominik; Zhang, Dong; van de Meerakker, Sebastiaan Y. T.; Willitsch, Stefan

    2015-09-01

    The study of chemical reactions between ions and neutral species at very low energies reveals precise informations about the dynamics of collisions and fine details of intermolecular interactions. Here, we report progress towards the development of next- generation experiments for the investigation of cold ion-neutral reactions. First, we present a new ’’dynamic” hybrid ion-atom trap which enables the study of collisions with a superior energy resolution accessing a regime in which quantum scattering resonances may become observable. Second, we discuss and numerically characterize the concept and properties of a hybrid trap for cold neutral molecules and molecular ions which paves the way for the study of ion-molecule reactions in the millikelvin regime.

  18. NEXT Ion Propulsion System Development Status and Performance

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Benson, Scott W.

    2008-01-01

    NASA s Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to provide future NASA science missions with enhanced mission performance benefit at a low total development cost. The objective of the NEXT project is to advance next generation ion propulsion technology by producing engineering model and prototype model system components, validating these through qualification-level and integrated system testing, and ensuring preparedness for transitioning to flight system development. This paper describes the NEXT ion propulsion system development status, characteristics and performance. A review of mission analyses results conducted to date using the NEXT system is also provided.

  19. Hitting Is Contagious: Experience and Action Induction

    ERIC Educational Resources Information Center

    Gray, Rob; Beilock, Sian L.

    2011-01-01

    In baseball, it is believed that "hitting is contagious," that is, probability of success increases if the previous few batters get a hit. Could this effect be partially explained by action induction--that is, the tendency to perform an action related to one that has just been observed? A simulation was used to investigate the effect of inducing…

  20. Recognition of Hits in a Target

    NASA Astrophysics Data System (ADS)

    Semerak, Vojtech; Drahansky, Martin

    This paper describes two possible ways of hit recognition in a target. First method is based on frame differencing with use of a stabilization algorithm to eliminate movements of a target. Second method uses flood fill with random seed point definition to find hits in the target scene.

  1. Characterization of ion accelerating systems on NASA LeRC's ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.

    1992-01-01

    An investigation is conducted regarding ion-accelerating systems for two NASA thrusters to study the limits of ion-extraction capability or perveance. A total of nine two-grid ion-accelerating systems are tested with the 30- and 50-cm-diam ring-cusp inert-gas ion thrusters emphasizing the extension of ion-extraction. The vacuum-tank testing is described using xenon, krypton, and argon propellants, and thruster performance is computed with attention given to theoretical design considerations. Reductions in perveance are noted with decreasing accelerator-hole-to-screen-hole diameter ratios. Perveance values vary indirectly with the ratio of discharge voltage to total accelerating voltage, and screen/accelerator electrode hole-pair alignment is also found to contribute to perveance values.

  2. Maskless micro-ion-beam reduction lithography system

    DOEpatents

    Leung, Ka-Ngo; Barletta, William A.; Patterson, David O.; Gough, Richard A.

    2005-05-03

    A maskless micro-ion-beam reduction lithography system is a system for projecting patterns onto a resist layer on a wafer with feature size down to below 100 nm. The MMRL system operates without a stencil mask. The patterns are generated by switching beamlets on and off from a two electrode blanking system or pattern generator. The pattern generator controllably extracts the beamlet pattern from an ion source and is followed by a beam reduction and acceleration column.

  3. Ion mixing, hydration, and transport in aqueous ionic systems

    SciTech Connect

    Tse, Ying-Lung Steve; Voth, Gregory A.; Witten, Thomas A.

    2015-05-14

    The enhancement effect on the ion mobility of fluoride (and that of chloride) in a polycationic system, as the chloride content increases, is shown to also exist in other more simple ionic systems with cations such as the cesium ion and an organic ammonium ion. As the chloride content increases, in addition to the finding that there is more unbound water associated with the cation, we also observe that the average lifetime of a hydrogen bond decreases. This change to the hydrogen bonds is correlated to significant changes to both the structural and dynamical properties of water. The more disordered water structure and faster water dynamics are hypothesized to be also responsible for the enhanced ion mobilities. Furthermore, when either the chloride content or hydration level is changed, the self-diffusion constant of each co-ion changes by almost the same factor, implying the existence of a single universal transport mechanism that determines ion mobilities.

  4. Magnetic resonances of ions in biological systems.

    PubMed

    Engström, Stefan; Bowman, Joseph D

    2004-12-01

    A magnetic field transduction mechanism based on an ion oscillator model is derived from an explicit quantum mechanical description. The governing equation prescribes how the electric dipole moment of an ion oscillating in a symmetric potential well evolves under the influence of an arbitrary magnetic field. The resulting equation is an analog of the Bloch equation, a well-studied model for magnetic resonances in atomic and molecular spectroscopy. The differential equation for this ion oscillator model is solved numerically for a few illustrative magnetic field exposures, showing when those resonances occur with single frequency, linearly polarized fields. Our formulation makes explicit the conditions that must be present for magnetic fields to produce observable biological effects under the ion oscillator model. The ion's potential well must have symmetry sufficient to produce a degenerate excited state, e.g., octahedral or trigonal bipyramid potentials. The impulse that excites the ion must be spatially correlated with the orientation of the detector that reads off the final state of the oscillator. The orientation between the static and oscillating magnetic fields that produces resonance is a complicated function of the field magnitudes and frequency. We suggest several classes of experiments that could critically test the validity of the model presented here.

  5. Comparison between single- and dual-electrode ion source systems for low-energy ion transport

    SciTech Connect

    Vasquez, M. Jr.; Tokumura, S.; Kasuya, T.; Maeno, S.; Wada, M.

    2012-11-06

    Extraction of ions with energies below 100 eV has been demonstrated using a hot-cathode multi-cusp ion source equipped with extraction electrodes made of thin wires. Two electrode geometries, a single-electrode system, and a dual-electrode system were built and tested. The single-electrode configuration showed high ion beam current densities at shorter distances from the electrode but exhibited rapid attenuation as the distance from the electrode increased. Beam angular spread measurements showed similar beam divergence for both electrode configurations at low plasma densities. At high plasma densities and low extraction potentials, the single-electrode system showed the angular spread twice as large as that of the dual-electrode system. Energy distribution analyses showed a broader energy spread for ion beams extracted from a single-electrode set-up.

  6. Computers and the design of ion beam optical systems

    NASA Astrophysics Data System (ADS)

    White, Nicholas R.

    Advances in microcomputers have made it possible to maintain a library of advanced ion optical programs which can be used on inexpensive computer hardware, which are suitable for the design of a variety of ion beam systems including ion implanters, giving excellent results. This paper describes in outline the steps typically involved in designing a complete ion beam system for materials modification applications. Two computer programs are described which, although based largely on algorithms which have been in use for many years, make possible detailed beam optical calculations using microcomputers, specifically the IBM PC. OPTICIAN is an interactive first-order program for tracing beam envelopes through complex optical systems. SORCERY is a versatile program for solving Laplace's and Poisson's equations by finite difference methods using successive over-relaxation. Ion and electron trajectories can be traced through these potential fields, and plots of beam emittance obtained.

  7. Three-grid accelerator system for an ion propulsion engine

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1994-01-01

    An apparatus is presented for an ion engine comprising a three-grid accelerator system with the decelerator grid biased negative of the beam plasma. This arrangement substantially reduces the charge-exchange ion current reaching the accelerator grid at high tank pressures, which minimizes erosion of the accelerator grid due to charge exchange ion sputtering, known to be the major accelerator grid wear mechanism. An improved method for life testing ion engines is also provided using the disclosed apparatus. In addition, the invention can also be applied in materials processing.

  8. Measurements of Beam Ion Loss from the Compact Helical System

    SciTech Connect

    D. S. Darrow, M. Isobe, Takashi Kondo, M. Sasao, and the CHS Group National Institute for Fusion Science, Toki, Gifu, Japan

    2010-02-03

    Beam ion loss from the Compact Helical System (CHS) has been measured with a scintillator-type probe. The total loss to the probe, and the pitch angle and gyroradius distributions of that loss, have been measured as various plasma parameters were scanned. Three classes of beam ion loss were observed at the probe position: passing ions with pitch angles within 10o of those of transition orbits, ions on transition orbits, and ions on trapped orbits, typically 15o or more from transition orbits. Some orbit calculations in this geometry have been performed in order to understand the characteristics of the loss. Simulation of the detector signal based upon the following of orbits from realistic beam deposition profiles is not able to reproduce the pitch angle distribution of the losses measured. Consequently it is inferred that internal plasma processes, whether magnetohydrodynamic modes, radial electric fields, or plasma turbulence, move previously confined beam ions to transition orbits, resulting in their loss.

  9. Behavior of metal ions in bioelectrochemical systems: A review

    NASA Astrophysics Data System (ADS)

    Lu, Zhihao; Chang, Dingming; Ma, Jingxing; Huang, Guangtuan; Cai, Lankun; Zhang, Lehua

    2015-02-01

    Bioelectrochemical systems (BESs) have been focused on by many researchers to treat wastewater and recover energy or valuable chemicals from wastes. In BESs, metal ions play an important role in the conductivity of solution, reactors' internal resistance, power generation, chemical production and activity of microorganisms. Additionally, the metal ions are also involved in anodic or cathodic reaction processes directly or indirectly in BESs. This paper reviews the behavior of metal ions in BESs, including (1) increase of the conductivity of electrolyte and decrease of internal resistance, (2) transfer for desalination, (3) enhancement or inhibition of the biocatalysis in anode, (4) improvement of cathodic performance by metal ions through electron acceptance or catalysis in cathodic process and (5) behavior of metal ions on membranes. Moreover, the perspectives of BESs removing heavy metal ions in wastewater or solid waste are discussed to realize recovery, reduction and detoxification simultaneously.

  10. How I diagnose and manage HIT.

    PubMed

    Warkentin, Theodore E

    2011-01-01

    Heparin-induced thrombocytopenia (HIT) is a prothrombotic drug reaction caused by platelet-activating IgG antibodies that recognize platelet factor 4 (PF4)/polyanion complexes. Platelet activation assays, such as the serotonin-release assay, are superior to PF4-dependent immunoassays in discerning which heparin-induced antibodies are clinically relevant. When HIT is strongly suspected, standard practice includes substituting heparin with an alternative anticoagulant; the 2 US-approved agents are the direct thrombin inhibitors (DTIs) lepirudin and argatroban, which are "niche" agents used only to manage HIT. However, only ~ 10% of patients who undergo serological investigation for HIT actually have this diagnosis. Indeed, depending on the clinical setting, only 10%-50% of patients with positive PF4-dependent immunoassays have platelet-activating antibodies. Therefore, overdiagnosis of HIT can be minimized by insisting that a positive platelet activation assay be required for definitive diagnosis of HIT. For these reasons, a management strategy that considers the real possibility of non-HIT thrombocytopenia is warranted. One approach that I suggest is to administer an indirect, antithrombin (AT)-dependent factor Xa inhibitor (danaparoid or fondaparinux) based upon the following rationale: (1) effectiveness in treating and preventing HIT-associated thrombosis; (2) effectiveness in treating and preventing thrombosis in diverse non-HIT situations; (3) both prophylactic- and therapeutic-dose protocols exist, permitting dosing appropriate for the clinical situation; (4) body weight-adjusted dosing protocols and availability of specific anti-factor Xa monitoring reduce risk of under- or overdosing (as can occur with partial thromboplastin time [PTT]-adjusted DTI therapy); (5) their long half-lives reduce risk of rebound hypercoagulability; (6) easy coumarin overlap; and (7) relatively low cost. PMID:22160026

  11. Protons and Hydroxide Ions in Aqueous Systems.

    PubMed

    Agmon, Noam; Bakker, Huib J; Campen, R Kramer; Henchman, Richard H; Pohl, Peter; Roke, Sylvie; Thämer, Martin; Hassanali, Ali

    2016-07-13

    Understanding the structure and dynamics of water's constituent ions, proton and hydroxide, has been a subject of numerous experimental and theoretical studies over the last century. Besides their obvious importance in acid-base chemistry, these ions play an important role in numerous applications ranging from enzyme catalysis to environmental chemistry. Despite a long history of research, many fundamental issues regarding their properties continue to be an active area of research. Here, we provide a review of the experimental and theoretical advances made in the last several decades in understanding the structure, dynamics, and transport of the proton and hydroxide ions in different aqueous environments, ranging from water clusters to the bulk liquid and its interfaces with hydrophobic surfaces. The propensity of these ions to accumulate at hydrophobic surfaces has been a subject of intense debate, and we highlight the open issues and challenges in this area. Biological applications reviewed include proton transport along the hydration layer of various membranes and through channel proteins, problems that are at the core of cellular bioenergetics. PMID:27314430

  12. Protons and Hydroxide Ions in Aqueous Systems.

    PubMed

    Agmon, Noam; Bakker, Huib J; Campen, R Kramer; Henchman, Richard H; Pohl, Peter; Roke, Sylvie; Thämer, Martin; Hassanali, Ali

    2016-07-13

    Understanding the structure and dynamics of water's constituent ions, proton and hydroxide, has been a subject of numerous experimental and theoretical studies over the last century. Besides their obvious importance in acid-base chemistry, these ions play an important role in numerous applications ranging from enzyme catalysis to environmental chemistry. Despite a long history of research, many fundamental issues regarding their properties continue to be an active area of research. Here, we provide a review of the experimental and theoretical advances made in the last several decades in understanding the structure, dynamics, and transport of the proton and hydroxide ions in different aqueous environments, ranging from water clusters to the bulk liquid and its interfaces with hydrophobic surfaces. The propensity of these ions to accumulate at hydrophobic surfaces has been a subject of intense debate, and we highlight the open issues and challenges in this area. Biological applications reviewed include proton transport along the hydration layer of various membranes and through channel proteins, problems that are at the core of cellular bioenergetics.

  13. Data acquisition system for ion-selective potentiometric sensors

    NASA Astrophysics Data System (ADS)

    Filipkowski, Andrzej; Ogrodzki, Jan; Opalski, Leszek J.; Rybaniec, Radoslaw; Wieczorek, Piotr Z.

    2009-06-01

    The paper presents an idea and directives on construction of a measurement system for estimation of ions' concentration in water. System presented in paper has been fully designed and manufactured in Warsaw University of Technology in Institute of Electronic Systems. The measurement system works with cheap ion-selective potentiometric sensors. System allows for potentiometric, transient response and voltamperometric measurements. Data fusion method has been implemented in the system to increase the estimation's accuracy. Presented solution contains of many modern electronic elements like 32bit ARM microcontroller, precise operational amplifiers and some hydraulics subsystems essential for chemical measurements.

  14. Hitting the Highway? Keep Safety in Mind

    MedlinePlus

    ... medlineplus.gov/news/fullstory_160238.html Hitting the Highway? Keep Safety in Mind Planning ahead is essential ... U.S. Department of Health and Human Services, or federal policy. More Health News on: Traveler's Health Recent ...

  15. Optical spectrosopy of HiTS supernovae

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Forster, F.; Smith, C.; Vivas, K.; Pignata, G.; Olivares, F.; Hamuy, M.; Martin, J. San; Maureira, J. C.; Cabrera, G.; Gonzalez-Gaitan, S.; Galbany, L.; Bufano, F.; de Jaeger, T.; Hsiao, E.; Munoz, R.; Vera, E.

    2015-04-01

    We report optical wavelength spectroscopy obtained using the Goodman instrument mounted on the SOAR at CTIO on UT 2015-03-30, for two supernovae discovered by HiTS, the High Cadence Transient Survey (see ATELs #7289, #7290).

  16. Rising Blood Sugar Hitting More Obese Adults

    MedlinePlus

    ... medlineplus.gov/news/fullstory_159853.html Rising Blood Sugar Hitting More Obese Adults To curb diabetes, researchers ... News) -- Among obese American adults, control of blood sugar is worsening, leading to more diabetes and heart ...

  17. Eight-cm mercury ion thruster system technology

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The technology status of 8 cm diameter electron bombardment ion thrusters is presented. Much of the technology resulting from the 5 cm diameter thruster has been adapted and improved upon to increase the reliability, durability, and efficiency of the 8 cm thruster. Technology discussed includes: dependence of neutralizer tip erosion upon neutralizer flow rate; impregnated and rolled-foil insert cathode performance and life testing; neutralizer position studies; thruster ion beam profile measurements; high voltage pulse ignition; high utilization ion machined accelerator grids; deposition internal and external to the thruster; thruster vectoring systems; thruster cycling life testing and thruster system weights for typical mission applications.

  18. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, William K.; Stirling, William L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.

  19. Cavity Ring-Down System for Density Measurement of Negative Hydrogen Ion on Negative Ion Source

    SciTech Connect

    Nakano, Haruhisa; Tsumori, Katsuyoshi; Nagaoka, Kenichi; Shibuya, Masayuki; Kisaki, Masashi; Ikeda, Katsunori; Osakabe, Masaki; Kaneko, Osamu; Asano, Eiji; Kondo, Tomoki; Sato, Mamoru; Komada, Seiji; Sekiguchi, Haruo; Takeiri, Yasuhiko; Fantz, Ursel

    2011-09-26

    A Cavity Ring-Down (CRD) system was applied to measure the density of negative hydrogen ion (H{sup -}) in vicinity of extraction surface in the H{sup -} source for the development of neutral beam injector on Large Helical Device (LHD). The density measurement with sampling time of 50 ms was carried out. The measured density with the CRD system is relatively good agreement with the density evaluated from extracted beam-current with applying a similar relation of positive ion sources. In cesium seeded into ion-source plasma, the linearity between an arc power of the discharge and the measured density with the CRD system was observed. Additionally, the measured density was proportional to the extracted beam current. These characteristics indicate the CRD system worked well for H{sup -} density measurement in the region of H{sup -} and extraction.

  20. A comparison of age level on baseball hitting kinematics.

    PubMed

    Escamilla, Rafael F; Fleisig, Glenn S; DeRenne, Coop; Taylor, Marcus K; Moorman, Claude T; Imamura, Rodney; Barakatt, Edward; Andrews, James R

    2009-08-01

    We propose that learning proper hitting kinematics should be encouraged at a young age during youth baseball because this may help reinforce proper hitting kinematics as a player progresses to higher levels of baseball in their adult years. To enhance our understanding between youth and adult baseball hitting, kinematic and temporal analyses of baseball hitting were evaluated with a high-speed motion analysis system between 12 skilled youth and 12 skilled adult baseball players. There were only a small number of temporal differences between youth and adult hitters, with adult hitters taking significantly greater time than youth hitters during the stride phase and during the swing. Compared with youth hitters, adult hitters a) had significantly greater (p < .01) lead knee flexion when the hands started to move forward; b) flexed the lead knee over a greater range of motion during the transition phase (31 degrees versus 13 degrees); c) extended the lead knee over a greater range of motion during the bat acceleration phase (59 degrees versus 32 degrees); d) maintained a more open pelvis position at lead foot off ground; and e) maintained a more open upper torso position when the hands started to move forward and a more closed upper torso position at bat-ball contact. Moreover, adult hitters had greater peak upper torso angular velocity (857 degrees/s versus 717 degrees/s), peak left elbow extension angular velocity (752 degrees/s versus 598 degrees/s), peak left knee extension angular velocity (386 degrees/s versus 303 degrees/s), and bat linear velocity at bat-ball contact (30 m/s versus 25 m/s). The numerous differences in kinematic and temporal parameters between youth and adult hitters suggest that hitting mechanics are different between these two groups. PMID:19827470

  1. One-hit models of carcinogenesis: conservative or not

    SciTech Connect

    Bailar, J.C. III; Crouch, E.A.C.; Shaikh, R.; Spiegelman, D.

    1988-12-01

    One-hit formulas are widely believed to be conservative when used to analyze carcinogenesis bioassays, in the sense that they will rarely underestimate risks of cancer at low exposures. Such formulas are generally applied to the lifetime incidence of cancer at a specific site, with risks estimated from animal data at zero dose (control), and two or more additional doses that are appreciable fractions of a maximum tolerated dose. No empirical study has demonstrated that the one-hit formula is conservative in the sense described. The Carcinogenesis Bioassay Database System contains data on 1212 separate bioassays of 308 chemical substances tested at exactly three evaluable doses. These provided sufficient data to examine 8432 specific combination of cancer site with sex, species, and chemical. For each of these they fitted a one-hit formula to the zero and maximum dose data points, then examined the relation of the fitted curve to the incidence rate observed at the mid-dose, with and without adjustment for intercurrent mortality. Both underestimates and overestimates of risk at mid-dose occurred substantially more often than expected by chance. They cannot tell whether such underestimates would occur at lower doses, but offer six biological reasons why underestimates might be expected. In a high percentage of animal bioassays, the one-hit formula is not conservative when applied in the usual way to animal data. It remains possible that the one-hit formula may indeed be conservative at sufficiently low doses (below the observational range), but the usual procedure, applied to the usual dose range, can be nonconservative in estimating the slope of the formula at such low doses. Risk assessments for regulation of carcinogens should incorporate some measure of additional uncertainty.

  2. A comparison of age level on baseball hitting kinematics.

    PubMed

    Escamilla, Rafael F; Fleisig, Glenn S; DeRenne, Coop; Taylor, Marcus K; Moorman, Claude T; Imamura, Rodney; Barakatt, Edward; Andrews, James R

    2009-08-01

    We propose that learning proper hitting kinematics should be encouraged at a young age during youth baseball because this may help reinforce proper hitting kinematics as a player progresses to higher levels of baseball in their adult years. To enhance our understanding between youth and adult baseball hitting, kinematic and temporal analyses of baseball hitting were evaluated with a high-speed motion analysis system between 12 skilled youth and 12 skilled adult baseball players. There were only a small number of temporal differences between youth and adult hitters, with adult hitters taking significantly greater time than youth hitters during the stride phase and during the swing. Compared with youth hitters, adult hitters a) had significantly greater (p < .01) lead knee flexion when the hands started to move forward; b) flexed the lead knee over a greater range of motion during the transition phase (31 degrees versus 13 degrees); c) extended the lead knee over a greater range of motion during the bat acceleration phase (59 degrees versus 32 degrees); d) maintained a more open pelvis position at lead foot off ground; and e) maintained a more open upper torso position when the hands started to move forward and a more closed upper torso position at bat-ball contact. Moreover, adult hitters had greater peak upper torso angular velocity (857 degrees/s versus 717 degrees/s), peak left elbow extension angular velocity (752 degrees/s versus 598 degrees/s), peak left knee extension angular velocity (386 degrees/s versus 303 degrees/s), and bat linear velocity at bat-ball contact (30 m/s versus 25 m/s). The numerous differences in kinematic and temporal parameters between youth and adult hitters suggest that hitting mechanics are different between these two groups.

  3. Simulation of an advanced techniques of ion propulsion Rocket system

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, R.

    2016-07-01

    The ion propulsion rocket system is expected to become popular with the development of Deuterium,Argon gas and Hexagonal shape Magneto hydrodynamic(MHD) techniques because of the stimulation indirectly generated the power from ionization chamber,design of thrust range is 1.2 N with 40 KW of electric power and high efficiency.The proposed work is the study of MHD power generation through ionization level of Deuterium gas and combination of two gaseous ions(Deuterium gas ions + Argon gas ions) at acceleration stage.IPR consists of three parts 1.Hexagonal shape MHD based power generator through ionization chamber 2.ion accelerator 3.Exhaust of Nozzle.Initially the required energy around 1312 KJ/mol is carrying out the purpose of deuterium gas which is changed to ionization level.The ionized Deuterium gas comes out from RF ionization chamber to nozzle through MHD generator with enhanced velocity then after voltage is generated across the two pairs of electrode in MHD.it will produce thrust value with the help of mixing of Deuterium ion and Argon ion at acceleration position.The simulation of the IPR system has been carried out by MATLAB.By comparing the simulation results with the theoretical and previous results,if reaches that the proposed method is achieved of thrust value with 40KW power for simulating the IPR system.

  4. NEXT Ion Propulsion System Development Status and Capabilities

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Benson, Scott W.

    2008-01-01

    NASA s Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to provide future NASA science missions with enhanced mission performance benefit at a low total development cost. The objective of the NEXT project is to advance next generation ion propulsion technology by producing engineering model system components, validating these through qualification-level and integrated system testing, and ensuring preparedness for transitioning to flight system development. As NASA s Evolutionary Xenon Thruster technology program completes advanced development activities, it is advantageous to review the existing technology capabilities of the system under development. This paper describes the NEXT ion propulsion system development status, characteristics and performance. A review of mission analyses results conducted to date using the NEXT system is also provided.

  5. Series expansions for an electron ion system

    NASA Astrophysics Data System (ADS)

    Baker, George A.; Johnson, J. D.

    2006-01-01

    By means of finite-temperature, many-body perturbation theory we derive through order e4 the corrections to an ideal Fermi gas plus an ideal Maxwell-Boltzmann gas of ions. This computation is carried out for general values of the de Broglie density. In a previous paper we carried out this computation for the pressure. Here we extend it to the internal and potential energies, the chemical potential, Grüneisen's parameter, the adiabatic exponent, and the dimensionless specific heat. We discuss the limitations on our results and cross compare them with the results of the spherical cellular model.

  6. HiPEP Ion Optics System Evaluation Using Gridlets

    NASA Technical Reports Server (NTRS)

    Willliams, John D.; Farnell, Cody C.; Laufer, D. Mark; Martinez, Rafael A.

    2004-01-01

    Experimental measurements are presented for sub-scale ion optics systems comprised of 7 and 19 aperture pairs with geometrical features that are similar to the HiPEP ion optics system. Effects of hole diameter and grid-to-grid spacing are presented as functions of applied voltage and beamlet current. Recommendations are made for the beamlet current range where the ion optics system can be safely operated without experiencing direct impingement of high energy ions on the accelerator grid surface. Measurements are also presented of the accelerator grid voltage where beam plasma electrons backstream through the ion optics system. Results of numerical simulations obtained with the ffx code are compared to both the impingement limit and backstreaming measurements. An emphasis is placed on identifying differences between measurements and simulation predictions to highlight areas where more research is needed. Relatively large effects are observed in simulations when the discharge chamber plasma properties and ion optics geometry are varied. Parameters investigated using simulations include the applied voltages, grid spacing, hole-to-hole spacing, doubles-to-singles ratio, plasma potential, and electron temperature; and estimates are provided for the sensitivity of impingement limits on these parameters.

  7. Cesium injection system for negative ion duoplasmatrons

    DOEpatents

    Kobayashi, Maasaki; Prelec, Krsto; Sluyters, Theodorus J

    1978-01-01

    Longitudinally extending, foraminous cartridge means having a cylindrical side wall forming one flat, circular, tip end surface and an opposite end; an open-ended cavity, and uniformly spaced orifices for venting the cavity through the side wall in the annulus of a plasma ring for uniformly ejecting cesium for coating the flat, circular, surface. To this end, the cavity is filled with a cesium containing substance and attached to a heater in a hollow-discharge duoplasmatron. By coating the flat circular surface with a uniform monolayer of cesium and locating it in an electrical potential well at the end of a hollow-discharge, ion duoplasmatron source of an annular hydrogen plasma ring, the negative hydrogen production from the duoplasmatron is increased. The negative hydrogen is produced on the flat surface of the cartridge and extracted by the electrical potential well along a trajectory coaxial with the axis of the plasma ring.

  8. Advance prototype silver ion water bactericide system

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Allen, E. T.

    1974-01-01

    An advance prototype unit was designed and fabricated to treat anticipated fuel cell water. The unit is a single canister that contains a membrane-type prefilter and a silver bromide contacting bed. A seven day baseline simulated mission test was performed; the performance was satisfactory and the effluent water was within all specifications for potability. After random vibrations another seven day simulated mission test was performed, and results indicate that simulated launch vibrations have no effects on the design and performance of the advanced prototype. Bench tests and accelerated breadboard tests were conducted to define the characteristics of an upgraded model of the advance prototype unit which would have 30 days of operating capability. A preliminary design of a silver ion generator for the shuttle orbiter was also prepared.

  9. Fabrication of catalyzed ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Kibby, Charles Leonard

    2013-06-04

    Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

  10. Development of a Kingdon ion trap system for trapping externally injected highly charged ions

    SciTech Connect

    Numadate, Naoki; Okada, Kunihiro; Nakamura, Nobuyuki; Tanuma, Hajime

    2014-10-01

    We have developed a Kingdon ion trap system for the purpose of the laboratory observation of the x-ray forbidden transitions of highly charged ions (HCIs). Externally injected Ar{sup q+} (q = 5–7) with kinetic energies of 6q keV were successfully trapped in the ion trap. The energy distribution of trapped ions is discussed in detail on the basis of numerical simulations. The combination of the Kingdon ion trap and the time-of-flight mass spectrometer enabled us to measure precise trapping lifetimes of HCIs. As a performance test of the instrument, we measured trapping lifetimes of Ar{sup q+} (q = 5–7) under a constant number density of H₂ and determined the charge-transfer cross sections of Ar{sup q+}(q = 5, 6)-H₂ collision systems at binary collision energies of a few eV. It was confirmed that the present cross section data are consistent with previous data and the values estimated by some scaling formula.

  11. A Modular Quantum System of Trapped Atomic Ions

    NASA Astrophysics Data System (ADS)

    Hucul, David Alexander

    Scaling up controlled quantum systems to involve large numbers of qubits remains one of the outstanding challenges of quantum information science. One path toward scalability is the use of a modular architecture where adjacent qubits may be entangled with applied electromagnetic fields, and remote qubits may be entangled using photon interference. Trapped atomic ion qubits are one of the most promising platforms for scaling up quantum systems by combining long coherence times with high fidelity entangling operations between proximate and remote qubits. In this thesis, I present experimental progress on combining entanglement between remote atomic ions separated by 1 meter with near-field entanglement between atomic ions in the same ion trap. I describe the experimental improvements to increase the remote entanglement rate by orders of magnitude to nearly 5 per second. This is the first experimental demonstration where the remote entanglement rate exceeds the decoherence rate of the entangled qubits. The flexibility of creating remote entanglement through photon interference is demonstrated by using the interference of distinguishable photons without sacrificing remote entanglement rate or fidelity. Next I describe the use of master clock in combination with a frequency comb to lock the phases of all laser-induced interactions between remote ion traps while removing optical phase stability requirements. The combination of both types of entanglement gates to create a small quantum network are described. Finally, I present ways to mitigate cross talk between photonic and memory qubits by using different trapped ion species. I show preliminary work on performing state detection of nuclear spin 0 ions by using entanglement between atomic ion spin and photon polarization. These control techniques may be important for building a large-scale modular quantum system.

  12. A heavy ion spectrometer system for the measurement of projectile fragmentation of relativistic heavy ions

    SciTech Connect

    Engelage, J.; Crawford, H.J.; Greiner, L.; Kuo, C.

    1996-06-01

    The Heavy Ion Spectrometer System (HISS) at the LBL Bevalac provided a unique facility for measuring projectile fragmentation cross sections important in deconvolving the Galactic Cosmic Ray (GCR) source composition. The general characteristics of the apparatus specific to this application are described and the main features of the event reconstruction and analysis used in the TRANSPORT experiment are discussed.

  13. A System For High Flexibility Entangling Gates With Trapped Ions

    NASA Astrophysics Data System (ADS)

    Milne, Alistair; Edmunds, Claire; Mavadia, Sandeep; Green, Todd; Biercuk, Michael

    Trapped ion qubits may be entangled via coupling to shared modes of motion using spin-dependent forces generated by optical fields. Residual qubit-motional coupling at the conclusion of the entangling operation is the dominant source of infidelity in this type of gate. For synchronously entangling increasing numbers of ions, longer gate times are required to minimise this residual coupling. We present a scheme that enables the state of each qubit to be simultaneously decoupled from all motional modes in an arbitrarily chosen gate time, increasing the gate fidelity and scalability. This is achieved by implementing discrete phase shifts in the optical field moderating the entangling operation. We describe an experimental system based on trapped ytterbium ions and demonstrate this scheme for two-qubit entangling gates on ytterbium ion pairs.

  14. Hitting is contagious: experience and action induction.

    PubMed

    Gray, Rob; Beilock, Sian L

    2011-03-01

    In baseball, it is believed that "hitting is contagious," that is, probability of success increases if the previous few batters get a hit. Could this effect be partially explained by action induction--that is, the tendency to perform an action related to one that has just been observed? A simulation was used to investigate the effect of inducing stimuli on batting performance for more-experienced (ME) and less-experienced (LE) baseball players. Three types of inducing stimuli were compared with a no-induction condition: action (a simulated ball traveling from home plate into left, right, or center field), outcome (a ball resting in either left, right, or center field), and verbal (the word "left", "center", or "right"). For both ME and LE players, fewer pitchers were required for a successful hit in the action condition. For ME players, there was a significant relationship between the inducing stimulus direction and hit direction for both the action and outcome prompts. For LE players, the prompt only had a significant effect on batting performance in the action condition, and the magnitude of the effect was significantly smaller than for ME. The effect of the inducing stimulus decreased as the delay (i.e., no. of pitches between prompt and hit) increased, with the effect being eliminated after roughly 4 pitches for ME and 2 pitches for LE. It is proposed that the differences in the magnitude and time course of action induction as a function of experience occurred because ME have more well-developed perceptual-motor representations for directional hitting. PMID:21443380

  15. Hitting is contagious: experience and action induction.

    PubMed

    Gray, Rob; Beilock, Sian L

    2011-03-01

    In baseball, it is believed that "hitting is contagious," that is, probability of success increases if the previous few batters get a hit. Could this effect be partially explained by action induction--that is, the tendency to perform an action related to one that has just been observed? A simulation was used to investigate the effect of inducing stimuli on batting performance for more-experienced (ME) and less-experienced (LE) baseball players. Three types of inducing stimuli were compared with a no-induction condition: action (a simulated ball traveling from home plate into left, right, or center field), outcome (a ball resting in either left, right, or center field), and verbal (the word "left", "center", or "right"). For both ME and LE players, fewer pitchers were required for a successful hit in the action condition. For ME players, there was a significant relationship between the inducing stimulus direction and hit direction for both the action and outcome prompts. For LE players, the prompt only had a significant effect on batting performance in the action condition, and the magnitude of the effect was significantly smaller than for ME. The effect of the inducing stimulus decreased as the delay (i.e., no. of pitches between prompt and hit) increased, with the effect being eliminated after roughly 4 pitches for ME and 2 pitches for LE. It is proposed that the differences in the magnitude and time course of action induction as a function of experience occurred because ME have more well-developed perceptual-motor representations for directional hitting.

  16. Hit-and-run, hit-and-stay, and commensal bacteria present different peptide content when viewed from the perspective of the T cell.

    PubMed

    He, Lu; De Groot, Anne S; Bailey-Kellogg, Chris

    2015-11-27

    Different types of bacteria face different pressures from the immune system, with those that persist ("hit-and-stay") potentially having to adapt more in order to escape than those prone to short-lived infection ("hit-and-run"), and with commensal bacteria potentially different from both due to additional physical mechanisms for avoiding immune detection. The Janus Immunogenicity Score (JIS) was recently developed to assess the likelihood of T cell recognition of an antigen, using an analysis that considers both binding of a peptide within the antigen by major histocompatability complex (MHC) and recognition of the peptide:MHC complex by cognate T cell receptor (TCR). This score was shown to be predictive of T effector vs. T regulatory or null responses in experimental data, as well as to distinguish viruses representative of the hit-and-stay vs. hit-and-run phenotypes. Here, JIS-based analyses were conducted in order to characterize the extent to which the pressure to avoid T cell recognition is manifested in genomic differences among representative hit-and-run, hit-and-stay, and commensal bacteria. Overall, extracellular proteins were found to have different JIS profiles from cytoplasmic ones. Contrasting the bacterial groups, extracellular proteins were shown to be quite different across the groups, much more so than intracellular proteins. The differences were evident even at the level of corresponding peptides in homologous protein pairs from hit-and-run and hit-and-stay bacteria. The multi-level analysis of patterns of immunogenicity across different groups of bacteria provides a new way to approach questions of bacterial immune camouflage or escape, as well as to approach the selection and optimization of candidates for vaccine design.

  17. Biophysics Representation of the Two-Hit Model of Alzheimer's Disease for the Exploration of Late CNS Risks from Space Radiation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Ponomarev, Artem

    2009-01-01

    A concern for long-term space travel outside the Earth s magnetic field is the late effects to the central nervous system (CNS) from galactic cosmic ray (GCR) or solar particle events (SPE). Human epidemiology data is severely limited for making CNS risk estimates and it is not clear such effects occur following low LET exposures. We are developing systems biology models based on biological information on specific diseases, and experimental data for proton and heavy ion radiation. A two-hit model of Alzheimer s disease (AD) has been proposed by Zhu et al.(1), which is the framework of our model. Of importance is that over 50% of the US population over the age of 75-y have mild to severe forms of AD. Therefore we recommend that risk assessment for a potential AD risk from space radiation should focus on the projection of an earlier age of onset of AD and the prevention of this possible acceleration through countermeasures. In the two-hit model, oxidative stress and aberrant cell cycle-related abnormalities leading to amyloid-beta plaques and neurofibrillary tangles are necessary and invariant steps in AD. We have formulated a stochastic cell kinetics model of the two-hit AD model. In our model a population of neuronal cells is allowed to undergo renewal through neurogenesis and is susceptible to oxidative stress or cell cycle abnormalities with age-specific accumulation of damage. Baseline rates are fitted to AD population data for specific ages, gender, and for persons with an apolipoprotein 4 allele. We then explore how low LET or heavy ions may increase either of the two-hits or neurogenesis either through persistent oxidative stress, direct mutation, or through changes to the micro-environment, and suggest possible ways to develop accurate quantitative estimates of these processes for predicting AD risks following long-term space travel.

  18. Statistical properties and pre-hit dynamics of price limit hits in the Chinese stock markets.

    PubMed

    Wan, Yu-Lei; Xie, Wen-Jie; Gu, Gao-Feng; Jiang, Zhi-Qiang; Chen, Wei; Xiong, Xiong; Zhang, Wei; Zhou, Wei-Xing

    2015-01-01

    Price limit trading rules are adopted in some stock markets (especially emerging markets) trying to cool off traders' short-term trading mania on individual stocks and increase market efficiency. Under such a microstructure, stocks may hit their up-limits and down-limits from time to time. However, the behaviors of price limit hits are not well studied partially due to the fact that main stock markets such as the US markets and most European markets do not set price limits. Here, we perform detailed analyses of the high-frequency data of all A-share common stocks traded on the Shanghai Stock Exchange and the Shenzhen Stock Exchange from 2000 to 2011 to investigate the statistical properties of price limit hits and the dynamical evolution of several important financial variables before stock price hits its limits. We compare the properties of up-limit hits and down-limit hits. We also divide the whole period into three bullish periods and three bearish periods to unveil possible differences during bullish and bearish market states. To uncover the impacts of stock capitalization on price limit hits, we partition all stocks into six portfolios according to their capitalizations on different trading days. We find that the price limit trading rule has a cooling-off effect (object to the magnet effect), indicating that the rule takes effect in the Chinese stock markets. We find that price continuation is much more likely to occur than price reversal on the next trading day after a limit-hitting day, especially for down-limit hits, which has potential practical values for market practitioners.

  19. Statistical Properties and Pre-Hit Dynamics of Price Limit Hits in the Chinese Stock Markets

    PubMed Central

    Wan, Yu-Lei; Xie, Wen-Jie; Gu, Gao-Feng; Jiang, Zhi-Qiang; Chen, Wei; Xiong, Xiong; Zhang, Wei; Zhou, Wei-Xing

    2015-01-01

    Price limit trading rules are adopted in some stock markets (especially emerging markets) trying to cool off traders’ short-term trading mania on individual stocks and increase market efficiency. Under such a microstructure, stocks may hit their up-limits and down-limits from time to time. However, the behaviors of price limit hits are not well studied partially due to the fact that main stock markets such as the US markets and most European markets do not set price limits. Here, we perform detailed analyses of the high-frequency data of all A-share common stocks traded on the Shanghai Stock Exchange and the Shenzhen Stock Exchange from 2000 to 2011 to investigate the statistical properties of price limit hits and the dynamical evolution of several important financial variables before stock price hits its limits. We compare the properties of up-limit hits and down-limit hits. We also divide the whole period into three bullish periods and three bearish periods to unveil possible differences during bullish and bearish market states. To uncover the impacts of stock capitalization on price limit hits, we partition all stocks into six portfolios according to their capitalizations on different trading days. We find that the price limit trading rule has a cooling-off effect (object to the magnet effect), indicating that the rule takes effect in the Chinese stock markets. We find that price continuation is much more likely to occur than price reversal on the next trading day after a limit-hitting day, especially for down-limit hits, which has potential practical values for market practitioners. PMID:25874716

  20. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.

    PubMed

    Tu, Bin; Chen, Minxin; Xie, Yan; Zhang, Linbo; Eisenberg, Bob; Lu, Benzhuo

    2013-09-15

    A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and I - V curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α-Hemolysin (α-HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size-modified PNP (SMPNP) model on VDAC and α-HL. It is shown that the size effects in SMPNP can

  1. Dawn Ion Propulsion System - Initial Checkout After Launch

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Garner, Charles E.; Mikes, Steven

    2008-01-01

    The first 80 days after launch of the Dawn mission were dedicated to the checkout of the spacecraft with a major emphasis on the ion propulsion system. All three ion thrusters, all three thruster-gimbal assemblies, both power processor units, both digital interface and control units, and the entire xenon feed system were completely checked out and every component was found to be in good health. Direct thrust measurements agreed well with preflight expected values for all three thrusters over the entire throttle range. Thruster electrical operating parameters and power processor units efficiencies also agreed well with preflight expected values based on acceptance test data. Two of the three ion thrusters were fully checked out within 30 days after launch. Checkout of all three thrusters was completed 64 days after launch. Deterministic thrusting with the IPS began on December 17, 2007.

  2. Precise timing when hitting falling balls.

    PubMed

    Brenner, Eli; Driesen, Ben; Smeets, Jeroen B J

    2014-01-01

    People are extremely good at hitting falling balls with a baseball bat. Despite the ball's constant acceleration, they have been reported to time hits with a standard deviation of only about 7 ms. To examine how people achieve such precision, we compared performance when there were no added restrictions, with performance when looking with one eye, when vision was blurred, and when various parts of the ball's trajectory were hidden from view. We also examined how the size of the ball and varying the height from which it was dropped influenced temporal precision. Temporal precision did not become worse when vision was blurred, when the ball was smaller, or when balls falling from different heights were randomly interleaved. The disadvantage of closing one eye did not exceed expectations from removing one of two independent estimates. Precision was higher for slower balls, but only if the ball being slower meant that one saw it longer before the hit. It was particularly important to see the ball while swinging the bat. Together, these findings suggest that people time their hits so precisely by using the changing elevation throughout the swing to adjust the bat's movement to that of the ball. PMID:24904380

  3. Improvements of HITS Algorithms for Spam Links

    NASA Astrophysics Data System (ADS)

    Asano, Yasuhito; Tezuka, Yu; Nishizeki, Takao

    The HITS algorithm proposed by Kleinberg is one of the representative methods of scoring Web pages by using hyperlinks. In the days when the algorithm was proposed, most of the pages given high score by the algorithm were really related to a given topic, and hence the algorithm could be used to find related pages. However, the algorithm and the variants including Bharat's improved HITS, abbreviated to BHITS, proposed by Bharat and Henzinger cannot be used to find related pages any more on today's Web, due to an increase of spam links. In this paper, we first propose three methods to find “linkfarms,” that is, sets of spam links forming a densely connected subgraph of a Web graph. We then present an algorithm, called a trust-score algorithm, to give high scores to pages which are not spam pages with a high probability. Combining the three methods and the trust-score algorithm with BHITS, we obtain several variants of the HITS algorithm. We ascertain by experiments that one of them, named TaN+BHITS using the trust-score algorithm and the method of finding linkfarms by employing name servers, is most suitable for finding related pages on today's Web. Our algorithms take time and memory no more than those required by the original HITS algorithm, and can be executed on a PC with a small amount of main memory.

  4. HiTS additional supernova candidates

    NASA Astrophysics Data System (ADS)

    Forster, F.; Maureira, J. C.; Points, S.; Medina, G.; Munoz, R.; Martin, J. San; Hamuy, M.; Estevez, P.; Smith, R. C.; Vivas, K.; Flores, S.; Huijse, P.; Cabrera, G.; Anderson, J.; Bufano, F.; Gonzalez-Gaitan, S.; Galbany, L.; Pignata, G.; de Jaeger, Th.; Martinez, J.; Munoz, R.; Vera, E.; Perez, C.

    2015-03-01

    HiTS, the High Cadence Transient Survey (see ATELs #5949, #7099), reports the discovery of additional supernova candidates detected using an image subtraction / classification pipeline developed at the Center for Mathematical Modelling (CMM) in collaboration with the Millennium Institute for Astrophysics (MAS).

  5. CEOs: Gulf crisis hits hospitals' bottom line.

    PubMed

    Johnsson, J

    1990-12-01

    Hospital CEOs say the Persian Gulf crisis could hit them hard where it counts. In fact, hospitals are already seeing some adverse impact from events in the Middle East. From fundraising to plant management to strategic planning, the confrontations in the Gulf are having an impact on the hospital's bottom line.

  6. Precise timing when hitting falling balls

    PubMed Central

    Brenner, Eli; Driesen, Ben; Smeets, Jeroen B. J.

    2014-01-01

    People are extremely good at hitting falling balls with a baseball bat. Despite the ball's constant acceleration, they have been reported to time hits with a standard deviation of only about 7 ms. To examine how people achieve such precision, we compared performance when there were no added restrictions, with performance when looking with one eye, when vision was blurred, and when various parts of the ball's trajectory were hidden from view. We also examined how the size of the ball and varying the height from which it was dropped influenced temporal precision. Temporal precision did not become worse when vision was blurred, when the ball was smaller, or when balls falling from different heights were randomly interleaved. The disadvantage of closing one eye did not exceed expectations from removing one of two independent estimates. Precision was higher for slower balls, but only if the ball being slower meant that one saw it longer before the hit. It was particularly important to see the ball while swinging the bat. Together, these findings suggest that people time their hits so precisely by using the changing elevation throughout the swing to adjust the bat's movement to that of the ball. PMID:24904380

  7. Precise timing when hitting falling balls.

    PubMed

    Brenner, Eli; Driesen, Ben; Smeets, Jeroen B J

    2014-01-01

    People are extremely good at hitting falling balls with a baseball bat. Despite the ball's constant acceleration, they have been reported to time hits with a standard deviation of only about 7 ms. To examine how people achieve such precision, we compared performance when there were no added restrictions, with performance when looking with one eye, when vision was blurred, and when various parts of the ball's trajectory were hidden from view. We also examined how the size of the ball and varying the height from which it was dropped influenced temporal precision. Temporal precision did not become worse when vision was blurred, when the ball was smaller, or when balls falling from different heights were randomly interleaved. The disadvantage of closing one eye did not exceed expectations from removing one of two independent estimates. Precision was higher for slower balls, but only if the ball being slower meant that one saw it longer before the hit. It was particularly important to see the ball while swinging the bat. Together, these findings suggest that people time their hits so precisely by using the changing elevation throughout the swing to adjust the bat's movement to that of the ball.

  8. Cardiac ion channel safety profiling on the IonWorks Quattro automated patch clamp system.

    PubMed

    Cao, Xueying; Lee, Yan Tony; Holmqvist, Mats; Lin, Yingxin; Ni, Yucheng; Mikhailov, Dmitri; Zhang, Haiyan; Hogan, Christopher; Zhou, Liping; Lu, Qiang; Digan, Mary Ellen; Urban, Laszlo; Erdemli, Gül

    2010-12-01

    The normal electrophysiologic behavior of the heart is determined by the integrated activity of specific cardiac ionic currents. Mutations in genes encoding the molecular components of individual cardiac ion currents have been shown to result in multiple cardiac arrhythmia syndromes. Presently, 12 genes associated with inherited long QT syndrome (LQTS) have been identified, and the most common mutations are in the hKCNQ1 (LQT1, Jervell and Lange-Nielson syndrome), hKCNH2 (LQT2), and hSCN5A (LQT3, Brugada syndrome) genes. Several drugs have been withdrawn from the market or received black box labeling due to clinical cases of QT interval prolongation, ventricular arrhythmias, and sudden death. Other drugs have been denied regulatory approval owing to their potential for QT interval prolongation. Further, off-target activity of drugs on cardiac ion channels has been shown to be associated with increased mortality in patients with underlying cardiovascular diseases. Since clinical arrhythmia risk is a major cause for compound termination, preclinical profiling for off-target cardiac ion channel interactions early in the drug discovery process has become common practice in the pharmaceutical industry. In the present study, we report assay development for three cardiac ion channels (hKCNQ1/minK, hCa(v)1.2, and hNa(v)1.5) on the IonWorks Quattro™ system. We demonstrate that these assays can be used as reliable pharmacological profiling tools for cardiac ion channel inhibition to assess compounds for cardiac liability during drug discovery.

  9. Low pressure electrospray ionization system and process for effective transmission of ions

    DOEpatents

    Tang, Keqi; Page, Jason S; Kelly, Ryan T; Smith, Richard D

    2012-05-08

    Systems and methods that provide up to complete transmission of ions between coupled stages with low effective ion losses. An "interfaceless" electrospray ionization system is further described that operates an electrospray at a reduced pressure such that standard electrospray sample solutions can be directly sprayed into an electrodynamic ion funnel which provides ion focusing and transmission of ions into a mass analyzer. Furthermore, chambers maintained at different pressures can allow for more optimal operating conditions for an electrospray emitter and an ion guide.

  10. NASA's Evolutionary Xenon Thruster (NEXT) Ion Propulsion System Information Summary

    NASA Technical Reports Server (NTRS)

    Pencil, Eirc S.; Benson, Scott W.

    2008-01-01

    This document is a guide to New Frontiers mission proposal teams. The document describes the development and status of the NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system (IPS) technology, its application to planetary missions, and the process anticipated to transition NEXT to the first flight mission.

  11. Phonon arithmetic in a trapped ion system.

    PubMed

    Um, Mark; Zhang, Junhua; Lv, Dingshun; Lu, Yao; An, Shuoming; Zhang, Jing-Ning; Nha, Hyunchul; Kim, M S; Kim, Kihwan

    2016-01-01

    Single-quantum level operations are important tools to manipulate a quantum state. Annihilation or creation of single particles translates a quantum state to another by adding or subtracting a particle, depending on how many are already in the given state. The operations are probabilistic and the success rate has yet been low in their experimental realization. Here we experimentally demonstrate (near) deterministic addition and subtraction of a bosonic particle, in particular a phonon of ionic motion in a harmonic potential. We realize the operations by coupling phonons to an auxiliary two-level system and applying transitionless adiabatic passage. We show handy repetition of the operations on various initial states and demonstrate by the reconstruction of the density matrices that the operations preserve coherences. We observe the transformation of a classical state to a highly non-classical one and a Gaussian state to a non-Gaussian one by applying a sequence of operations deterministically. PMID:27097897

  12. Phonon arithmetic in a trapped ion system

    PubMed Central

    Um, Mark; Zhang, Junhua; Lv, Dingshun; Lu, Yao; An, Shuoming; Zhang, Jing-Ning; Nha, Hyunchul; Kim, M. S.; Kim, Kihwan

    2016-01-01

    Single-quantum level operations are important tools to manipulate a quantum state. Annihilation or creation of single particles translates a quantum state to another by adding or subtracting a particle, depending on how many are already in the given state. The operations are probabilistic and the success rate has yet been low in their experimental realization. Here we experimentally demonstrate (near) deterministic addition and subtraction of a bosonic particle, in particular a phonon of ionic motion in a harmonic potential. We realize the operations by coupling phonons to an auxiliary two-level system and applying transitionless adiabatic passage. We show handy repetition of the operations on various initial states and demonstrate by the reconstruction of the density matrices that the operations preserve coherences. We observe the transformation of a classical state to a highly non-classical one and a Gaussian state to a non-Gaussian one by applying a sequence of operations deterministically. PMID:27097897

  13. Trapped ion system for for multi-species quantum control

    NASA Astrophysics Data System (ADS)

    Hanneke, David

    2015-05-01

    Many atoms and molecules possess interesting spectroscopic transitions, but lack dissipative transitions useful for control and detection of internal states. In particular, molecules are useful candidates for quantum memories, low-temperature chemistry studies, tests of fundamental symmetries, and searches for time-variation of fundamental constants, but most lack a convenient cycling transition. By co-trapping a molecular ion with an atomic ion, the atom can provide all dissipation and detection. We present a system capable of such quantum control and report progress towards its use. This work is supported by the NSF, the Research Corporation for Science Advancement, and Amherst College.

  14. System and method of applying energetic ions for sterilization

    DOEpatents

    Schmidt, John A.

    2003-12-23

    A method of sterilization of a container is provided whereby a cold plasma is caused to be disposed near a surface to be sterilized, and the cold plasma is then subjected to a pulsed voltage differential for producing energized ions in the plasma. Those energized ions then operate to achieve spore destruction on the surface to be sterilized. Further, a system for sterilization of a container which includes a conductive or non-conductive container, a cold plasma in proximity to the container, and a high voltage source for delivering a pulsed voltage differential between an electrode and the container and across the cold plasma, is provided.

  15. System And Method Of Applying Energetic Ions For Sterlization

    DOEpatents

    Schmidt, John A.

    2002-06-11

    A method of sterilization of a container is provided whereby a cold plasma is caused to be disposed near a surface to be sterilized, and the cold plasma is then subjected to a pulsed voltage differential for producing energized ions in the plasma. Those energized ions then operate to achieve spore destruction on the surface to be sterilized. Further, a system for sterilization of a container which includes a conductive or non-conductive container, a cold plasma in proximity to the container, and a high voltage source for delivering a pulsed voltage differential between an electrode and the container and across the cold plasma, is provided.

  16. Investigation of organic systems by ion-photon spectroscopy

    SciTech Connect

    Afanas'eva, I A; Bobkov, V V; Gritsyna, V V; Shevchenko, D I

    2011-06-30

    We study spectral composition, quantum yield and spatial intensity distribution of radiation of excited particles, escaping from the surface of some organic dyes and their mixtures with lipids under bombardment by Ar{sup +} ions. Essential influence of the method of target preparation from organic compounds on the yield of the excited particles is demonstrated. The processes resulting in formation of excited particles under ion bombardment of complex organic systems are specified. The model of interaction of lipids with organic dyes is proposed. (biophotonics)

  17. Analyzing system safety in lithium-ion grid energy storage

    NASA Astrophysics Data System (ADS)

    Rosewater, David; Williams, Adam

    2015-12-01

    As grid energy storage systems become more complex, it grows more difficult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to fill the gaps recognized in PRA for designing complex systems and hence be more effective or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. We conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.

  18. Analyzing system safety in lithium-ion grid energy storage

    SciTech Connect

    Rosewater, David; Williams, Adam

    2015-10-08

    As grid energy storage systems become more complex, it grows more di cult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to ll the gaps recognized in PRA for designing complex systems and hence be more e ective or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. Lastly, we conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.

  19. Analyzing system safety in lithium-ion grid energy storage

    DOE PAGESBeta

    Rosewater, David; Williams, Adam

    2015-10-08

    As grid energy storage systems become more complex, it grows more di cult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to ll the gaps recognized in PRA for designing complex systems and hence be more e ectivemore » or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. Lastly, we conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.« less

  20. Integrated System Technologies for Modular Trapped Ion Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Crain, Stephen G.

    Although trapped ion technology is well-suited for quantum information science, scalability of the system remains one of the main challenges. One of the challenges associated with scaling the ion trap quantum computer is the ability to individually manipulate the increasing number of qubits. Using micro-mirrors fabricated with micro-electromechanical systems (MEMS) technology, laser beams are focused on individual ions in a linear chain and steer the focal point in two dimensions. Multiple single qubit gates are demonstrated on trapped 171Yb+ qubits and the gate performance is characterized using quantum state tomography. The system features negligible crosstalk to neighboring ions (< 3e-4), and switching speeds comparable to typical single qubit gate times (< 2 mus). In a separate experiment, photons scattered from the 171Yb+ ion are coupled into an optical fiber with 63% efficiency using a high numerical aperture lens (0.6 NA). The coupled photons are directed to superconducting nanowire single photon detectors (SNSPD), which provide a higher detector efficiency (69%) compared to traditional photomultiplier tubes (35%). The total system photon collection efficiency is increased from 2.2% to 3.4%, which allows for fast state detection of the qubit. For a detection beam intensity of 11 mW/cm 2, the average detection time is 23.7 mus with 99.885(7)% detection fidelity. The technologies demonstrated in this thesis can be integrated to form a single quantum register with all of the necessary resources to perform local gates as well as high fidelity readout and provide a photon link to other systems.

  1. 76 FR 25355 - HIT Standards Committee; Schedule for the Assessment of HIT Policy Committee Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND... Recommendations AGENCY: Office of the National Coordinator for Health Information Technology, HHS. ACTION: Notice..., clinical operations, implementation, and privacy and security. HIT Standards Committee's Schedule for...

  2. Metal ions affecting the neurological system.

    PubMed

    Pohl, Hana R; Roney, Nickolette; Abadin, Henry G

    2011-01-01

    Several individual metals including aluminum, arsenic, cadmium, lead, manganese, and mercury were demonstrated to affect the neurological system. Metals are ubiquitous in the environment. Environmental and occupational exposure to one metal is likely to be accompanied by exposure to other metals, as well. It is, therefore, expected that interactions or "joint toxic actions" may occur in populations exposed to mixtures of metals or to mixtures of metals with other chemicals. Some metals seem to have a protective role against neurotoxicity of other metals, yet other interactions may result in increased neurotoxicity. For example, zinc and copper provided a protective role in cases of lead-induced neurotoxicity. In contrast, arsenic and lead co-exposure resulted in synergistic effects. Similarly, information is available in the current literature on interactions of metals with some organic chemicals such as ethanol, polychlorinated biphenyls, and pesticides. In depth understanding of the toxicity and the mechanism of action (including toxicokinetics and toxicodynamics) of individual chemicals is important for predicting the outcomes of interactions in mixtures. Therefore, plausible mechanisms of action are also described.

  3. Ion Channels as Drug Targets in Central Nervous System Disorders

    PubMed Central

    Waszkielewicz, A.M; Gunia, A; Szkaradek, N; Słoczyńska, K; Krupińska, S; Marona, H

    2013-01-01

    Ion channel targeted drugs have always been related with either the central nervous system (CNS), the peripheral nervous system, or the cardiovascular system. Within the CNS, basic indications of drugs are: sleep disorders, anxiety, epilepsy, pain, etc. However, traditional channel blockers have multiple adverse events, mainly due to low specificity of mechanism of action. Lately, novel ion channel subtypes have been discovered, which gives premises to drug discovery process led towards specific channel subtypes. An example is Na+ channels, whose subtypes 1.3 and 1.7-1.9 are responsible for pain, and 1.1 and 1.2 – for epilepsy. Moreover, new drug candidates have been recognized. This review is focusing on ion channels subtypes, which play a significant role in current drug discovery and development process. The knowledge on channel subtypes has developed rapidly, giving new nomenclatures of ion channels. For example, Ca2+ channels are not any more divided to T, L, N, P/Q, and R, but they are described as Cav1.1-Cav3.3, with even newer nomenclature α1A-α1I and α1S. Moreover, new channels such as P2X1-P2X7, as well as TRPA1-TRPV1 have been discovered, giving premises for new types of analgesic drugs. PMID:23409712

  4. Sensor-actuator system for dynamic chloride ion determination.

    PubMed

    de Graaf, Derk Balthazar; Abbas, Yawar; Gerrit Bomer, Johan; Olthuis, Wouter; van den Berg, Albert

    2015-08-12

    Chloride is a crucial anion for various analytical applications from biological to environmental applications. In order to measure the chloride ion concentration, a measurement system is needed which can detect this concentration for prolonged times reliably. Chronopotentiometry is a technique which does not need a long term stable reference electrode and is therefore very suitable for prolonged ion concentration measurements. As the used electrode might be fouled by reaction products, this work focuses on a chronopotentiometric approach with a separated sensing electrode (sensor) and actuating electrode (actuator). Both actuation and sensor electrode are made of Ag/AgCl. A constant current is applied to the actuator and will start the reaction between Ag and Cl-, while the resulting Cl- ion concentration change is observed through the sensor, which is placed close to the actuator. The time it takes to locally deplete the Cl- ions is called transition time. Experiments were performed to verify the feasibility of this approach. The performed experiments show that the sensor detects the local concentration changes resulting from the current applied to the actuator. A linear relation between the Cl- ion concentration and the square root of the transition time was observed, just as was predicted by theory. The calibration curves for different chips showed that both a larger sensor and a larger distance between sensor and actuator resulted in a larger time delay between the transition time detected at the actuator and the sensor.

  5. Confinement-induced resonances in ultracold atom-ion systems

    NASA Astrophysics Data System (ADS)

    Melezhik, V. S.; Negretti, A.

    2016-08-01

    We investigate confinement-induced resonances in a system composed of a tightly trapped ion and a moving atom in a waveguide. We determine the conditions for the appearance of such resonances in a broad region—from the "long-wavelength" limit to the opposite case when the typical length scale of the atom-ion polarization potential essentially exceeds the transverse waveguide width. We find considerable dependence of the resonance position on the atomic mass which, however, disappears in the "long-wavelength and zero-energy" limit, where the known result for the confined atom-atom scattering is reproduced. We also derive an analytic and a semianalytic formula for the resonance position in the long-wavelength and zero-energy limit and we investigate numerically the dependence of the resonance condition on the finite atomic colliding energy. Our results, which can be investigated experimentally in the near future, could be used to determine the atom-ion scattering length, to determine the temperature of the atomic ensemble in the presence of an ion impurity, and to control the atom-phonon coupling in a linear ion crystal in interaction with a quasi-one-dimensional atomic quantum gas.

  6. Power supply system for negative ion source at IPR

    NASA Astrophysics Data System (ADS)

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K. G.; Soni, Jignesh; Bandyopadhyay, M.; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun

    2010-02-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ~5 × 1012 cm-3, from which ~ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (~15 to 35kV), and high current (~ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (~50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (~ 50kV) isolated from the system. The paper shall present the

  7. Solution structure of the zinc finger HIT domain in protein FON

    PubMed Central

    He, Fahu; Umehara, Takashi; Tsuda, Kengo; Inoue, Makoto; Kigawa, Takanori; Matsuda, Takayoshi; Yabuki, Takashi; Aoki, Masaaki; Seki, Eiko; Terada, Takaho; Shirouzu, Mikako; Tanaka, Akiko; Sugano, Sumio; Muto, Yutaka; Yokoyama, Shigeyuki

    2007-01-01

    The zinc finger HIT domain is a sequence motif found in many proteins, including thyroid hormone receptor interacting protein 3 (TRIP-3), which is possibly involved in maturity-onset diabetes of the young (MODY). Novel zinc finger motifs are suggested to play important roles in gene regulation and chromatin remodeling. Here, we determined the high-resolution solution structure of the zinc finger HIT domain in ZNHIT2 (protein FON) from Homo sapiens, by an NMR method based on 567 upper distance limits derived from NOE intensities measured in three-dimensional NOESY spectra. The structure yielded a backbone RMSD to the mean coordinates of 0.19 Å for the structured residues 12–48. The fold consists of two consecutive antiparallel β-sheets and two short C-terminal helices packed against the second β-sheet, and binds two zinc ions. Both zinc ions are coordinated tetrahedrally via a CCCC-CCHC motif to the ligand residues of the zf-HIT domain in an interleaved manner. The tertiary structure of the zinc finger HIT domain closely resembles the folds of the B-box, RING finger, and PHD domains with a cross-brace zinc coordination mode, but is distinct from them. The unique three-dimensional structure of the zinc finger HIT domain revealed a novel zinc-binding fold, as a new member of the treble clef domain family. On the basis of the structural data, we discuss the possible functional roles of the zinc finger HIT domain. PMID:17656577

  8. NASA's Evolutionary Xenon Thruster: The NEXT Ion Propulsion System for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Benson, Scott W.

    2008-01-01

    This viewgraph presentation reviews NASA s Evolutionary Xenon Thruster (NEXT) Ion Propulsion system. The NEXT project is developing a solar electric ion propulsion system. The NEXT project is advancing the capability of ion propulsion to meet NASA robotic science mission needs. The NEXT system is planned to significantly improve performance over the state of the art electric propulsion systems, such as NASA Solar Electric Propulsion Technology Application Readiness (NSTAR). The status of NEXT development is reviewed, including information on the NEXT Thruster, the power processing unit, the propellant management system (PMS), the digital control interface unit, and the gimbal. Block diagrams NEXT system are presented. Also a review of the lessons learned from the Dawn and NSTAR systems is provided. In summary the NEXT project activities through 2007 have brought next-generation ion propulsion technology to a sufficient maturity level.

  9. Time-dependent ion transport in heterogeneous permselective systems

    NASA Astrophysics Data System (ADS)

    Green, Yoav; Yossifon, Gilad

    2015-06-01

    The current study extends previous analytical and numerical solutions of chronopotentiometric response of one-dimensional systems consisting of three layers to the more realistic two-dimensional (2D) heterogeneous ion-permselective medium. An analytical solution for the transient concentration-polarization problem, under the local electroneutrality approximation and assumption of ideal permselectivity, was obtained using the Laplace transform and separation of variables technique. Then the 2D electric potential was obtained numerically and was compared to the full Poisson-Nernst-Planck solution. It was then shown that the resultant voltage drop across the system varies between the initial Ohmic response and that of the steady state accounting for concentration polarization. Also, the field-focusing effect in a 2D system is shown to result in a faster depletion of ions at the permselective interface.

  10. Time-dependent ion transport in heterogeneous permselective systems.

    PubMed

    Green, Yoav; Yossifon, Gilad

    2015-06-01

    The current study extends previous analytical and numerical solutions of chronopotentiometric response of one-dimensional systems consisting of three layers to the more realistic two-dimensional (2D) heterogeneous ion-permselective medium. An analytical solution for the transient concentration-polarization problem, under the local electroneutrality approximation and assumption of ideal permselectivity, was obtained using the Laplace transform and separation of variables technique. Then the 2D electric potential was obtained numerically and was compared to the full Poisson-Nernst-Planck solution. It was then shown that the resultant voltage drop across the system varies between the initial Ohmic response and that of the steady state accounting for concentration polarization. Also, the field-focusing effect in a 2D system is shown to result in a faster depletion of ions at the permselective interface.

  11. Performance optimized, small structurally integrated ion thruster system

    NASA Technical Reports Server (NTRS)

    Hyman, J., Jr.

    1973-01-01

    A 5-cm structurally integrated ion thruster has been developed for attitude control and stationkeeping of synchronous satellites. As optimized with a conventional ion extraction system, the system demonstrates a thrust T = 0.47 mlb at a beam voltage of 1600 V, total mass efficiency of 76%, and electrical efficiency of 56%. Under the subject contract effort, no significant performance change was noted for operation with two dimensional electrostatic thrust-vectoring grids. Structural integrity with the vectoring grids was demonstrated for shock (+ or - 30 G), sinusoidal (9 G), and random (19.9 G rms) accelerations. System envelope is 31.2 cm long by 13.4 cm flange bolt circle, with a mass of 9.0 Kg, including 6.8 Kg mercury propellant.

  12. Design of an ion thruster movable grid thrust vectoring system

    NASA Astrophysics Data System (ADS)

    Kural, Aleksander; Leveque, Nicolas; Welch, Chris; Wolanski, Piotr

    2004-08-01

    Several reasons justify the development of an ion propulsion system thrust vectoring system. Spacecraft launched to date have used ion thrusters mounted on gimbals to control the thrust vector within a range of about ±5°. Such devices have large mass and dimensions, hence the need exists for a more compact system, preferably mounted within the thruster itself. Since the 1970s several thrust vectoring systems have been developed, with the translatable accelerator grid electrode being considered the most promising. Laboratory models of this system have already been built and successfully tested, but there is still room for improvement in their mechanical design. This work aims to investigate possibilities of refining the design of such movable grid thrust vectoring systems. Two grid suspension designs and three types of actuators were evaluated. The actuators examined were a micro electromechanical system, a NanoMuscle shape memory alloy actuator and a piezoelectric driver. Criteria used for choosing the best system included mechanical simplicity (use of the fewest mechanical parts), accuracy, power consumption and behaviour in space conditions. Designs of systems using these actuators are proposed. In addition, a mission to Mercury using the system with piezoelectric drivers has been modelled and its performance presented.

  13. Probability of Brownian motion hitting an obstacle

    SciTech Connect

    Knessl, C.; Keller, J.B.

    2000-02-01

    The probability p(x) that Brownian motion with drift, starting at x, hits an obstacle is analyzed. The obstacle {Omega} is a compact subset of R{sup n}. It is shown that p(x) is expressible in terms of the field U(x) scattered by {Omega} when it is hit by plane wave. Therefore results for U(x), and methods for finding U(x) can be used to determine p(x). The authors illustrate this by obtaining exact and asymptotic results for p(x) when {Omega} is a slit in R{sup 2}, and asymptotic results when {Omega} is a disc in R{sup 3}.

  14. Hitting and trapping times on branched structures.

    PubMed

    Agliari, Elena; Sartori, Fabio; Cattivelli, Luca; Cassi, Davide

    2015-05-01

    In this work we consider a simple random walk embedded in a generic branched structure and we find a close-form formula to calculate the hitting time H(i,f) between two arbitrary nodes i and j. We then use this formula to obtain the set of hitting times {H(i,f)} for combs and their expectation values, namely, the mean first-passage time, where the average is performed over the initial node while the final node f is given, and the global mean first-passage time, where the average is performed over both the initial and the final node. Finally, we discuss applications in the context of reaction-diffusion problems. PMID:26066144

  15. Simplified Ion Thruster Xenon Feed System for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Randolph, Thomas M.; Hofer, Richard R.; Goebel, Dan M.

    2009-01-01

    The successful implementation of ion thruster technology on the Deep Space 1 technology demonstration mission paved the way for its first use on the Dawn science mission, which launched in September 2007. Both Deep Space 1 and Dawn used a "bang-bang" xenon feed system which has proven to be highly successful. This type of feed system, however, is complex with many parts and requires a significant amount of engineering work for architecture changes. A simplified feed system, with fewer parts and less engineering work for architecture changes, is desirable to reduce the feed system cost to future missions. An attractive new path for ion thruster feed systems is based on new components developed by industry in support of commercial applications of electric propulsion systems. For example, since the launch of Deep Space 1 tens of mechanical xenon pressure regulators have successfully flown on commercial spacecraft using electric propulsion. In addition, active proportional flow controllers have flown on the Hall-thruster-equipped Tacsat-2, are flying on the ion thruster GOCE mission, and will fly next year on the Advanced EHF spacecraft. This present paper briefly reviews the Dawn xenon feed system and those implemented on other xenon electric propulsion flight missions. A simplified feed system architecture is presented that is based on assembling flight-qualified components in a manner that will reduce non-recurring engineering associated with propulsion system architecture changes, and is compared to the NASA Dawn standard. The simplified feed system includes, compared to Dawn, passive high-pressure regulation, a reduced part count, reduced complexity due to cross-strapping, and reduced non-recurring engineering work required for feed system changes. A demonstration feed system was assembled using flight-like components and used to operate a laboratory NSTAR-class ion engine. Feed system components integrated into a single-string architecture successfully operated

  16. Visual factors in hitting and catching.

    PubMed

    Regan, D

    1997-12-01

    To hit or catch an approaching ball, it is necessary to move a bat or hand to the right place at the right time. The performance of top sports players is remarkable: positional errors of less than 5 cm and temporal errors of less than 2 or 3 ms are reliably maintained. There are three schools of thought about how this is achieved. One holds that predictive visual information about where the ball will be at some future instance (when) is used to achieve the hit or catch. The second holds that the bat or hand is moved to the correct position by exploiting some relation between visual information and the required movement. The third focuses on the use of prior knowledge to supplement inadequate visual information. For a rigid spherical ball travelling at constant speed along or close to the line of sight, the retinal images contain both binocular and monocular correlates of the ball's instantaneous direction of motion in depth. Also, the retinal images contain both binocular and monocular information about time of arrival. Humans can unconfound and use this visual information, but they are unable to estimate the absolute distance of the ball or its approach speed other than crudely. In cricket, this visual inadequacy allows a slow bowler to cause the batsman to misjudge where the ball will hit the ground. Such a bowler uses a three-pronged strategy: first, to deliver the ball in such a way as to prevent the batsman from obtaining the necessary visual information until it is too late to react; secondly, to force the batsman to rely entirely on inadequate retinal image information; thirdly, to allow the batsman to learn a particular relationship between the early part of the ball's flight and the point where the ball hits the ground, and then to change the relationship with such skill that the batsman does not detect the change. PMID:9486432

  17. Visual factors in hitting and catching.

    PubMed

    Regan, D

    1997-12-01

    To hit or catch an approaching ball, it is necessary to move a bat or hand to the right place at the right time. The performance of top sports players is remarkable: positional errors of less than 5 cm and temporal errors of less than 2 or 3 ms are reliably maintained. There are three schools of thought about how this is achieved. One holds that predictive visual information about where the ball will be at some future instance (when) is used to achieve the hit or catch. The second holds that the bat or hand is moved to the correct position by exploiting some relation between visual information and the required movement. The third focuses on the use of prior knowledge to supplement inadequate visual information. For a rigid spherical ball travelling at constant speed along or close to the line of sight, the retinal images contain both binocular and monocular correlates of the ball's instantaneous direction of motion in depth. Also, the retinal images contain both binocular and monocular information about time of arrival. Humans can unconfound and use this visual information, but they are unable to estimate the absolute distance of the ball or its approach speed other than crudely. In cricket, this visual inadequacy allows a slow bowler to cause the batsman to misjudge where the ball will hit the ground. Such a bowler uses a three-pronged strategy: first, to deliver the ball in such a way as to prevent the batsman from obtaining the necessary visual information until it is too late to react; secondly, to force the batsman to rely entirely on inadequate retinal image information; thirdly, to allow the batsman to learn a particular relationship between the early part of the ball's flight and the point where the ball hits the ground, and then to change the relationship with such skill that the batsman does not detect the change.

  18. Experimental system design for the integration of trapped-ion and superconducting qubit systems

    NASA Astrophysics Data System (ADS)

    De Motte, D.; Grounds, A. R.; Rehák, M.; Rodriguez Blanco, A.; Lekitsch, B.; Giri, G. S.; Neilinger, P.; Oelsner, G.; Il'ichev, E.; Grajcar, M.; Hensinger, W. K.

    2016-07-01

    We present a design for the experimental integration of ion trapping and superconducting qubit systems as a step towards the realization of a quantum hybrid system. The scheme addresses two key difficulties in realizing such a system: a combined microfabricated ion trap and superconducting qubit architecture, and the experimental infrastructure to facilitate both technologies. Developing upon work by Kielpinski et al. (Phys Rev Lett 108(13):130504, 2012. doi: 10.1103/PhysRevLett.108.130504), we describe the design, simulation and fabrication process for a microfabricated ion trap capable of coupling an ion to a superconducting microwave LC circuit with a coupling strength in the tens of kHz. We also describe existing difficulties in combining the experimental infrastructure of an ion trapping set-up into a dilution refrigerator with superconducting qubits and present solutions that can be immediately implemented using current technology.

  19. Hitting a baseball: a biomechanical description.

    PubMed

    Welch, C M; Banks, S A; Cook, F F; Draovitch, P

    1995-11-01

    A tremendous amount of time and energy has been dedicated to the development of conditioning programs, mechanics drills, and rehabilitation protocols for the throwing athlete. In comparison, a significantly smaller amount has been spent on the needs of the hitting athlete. Before these needs can be addressed, an understanding of mechanics and the demands placed on the body during the swing must be developed. This study uses three-dimensional kinematic and kinetic data to define and quantify biomechanics during the baseball swing. The results show that a hitter starts the swing with a weight shift toward the rear foot and the generation of trunk coil. As the hitter strides forward, force applied by the front foot equal to 123% of body weight promotes segment acceleration around the axis of the trunk. The hip segment rotates to a maximum speed of 714 degrees/sec followed by a maximum shoulder segment velocity of 937 degrees/sec. The product of this kinetic link is a maximum linear bat velocity of 31 m/sec. By quantifying the hitting motion, a more educated approach can be made in developing rehabilitation, strength, and conditioning programs for the hitting athlete. PMID:8580946

  20. Hitting a baseball: a biomechanical description.

    PubMed

    Welch, C M; Banks, S A; Cook, F F; Draovitch, P

    1995-11-01

    A tremendous amount of time and energy has been dedicated to the development of conditioning programs, mechanics drills, and rehabilitation protocols for the throwing athlete. In comparison, a significantly smaller amount has been spent on the needs of the hitting athlete. Before these needs can be addressed, an understanding of mechanics and the demands placed on the body during the swing must be developed. This study uses three-dimensional kinematic and kinetic data to define and quantify biomechanics during the baseball swing. The results show that a hitter starts the swing with a weight shift toward the rear foot and the generation of trunk coil. As the hitter strides forward, force applied by the front foot equal to 123% of body weight promotes segment acceleration around the axis of the trunk. The hip segment rotates to a maximum speed of 714 degrees/sec followed by a maximum shoulder segment velocity of 937 degrees/sec. The product of this kinetic link is a maximum linear bat velocity of 31 m/sec. By quantifying the hitting motion, a more educated approach can be made in developing rehabilitation, strength, and conditioning programs for the hitting athlete.

  1. Ion sphere model for Yukawa systems (dusty plasmas)

    SciTech Connect

    Khrapak, S. A.; Khrapak, A. G.; Ivlev, A. V.; Thomas, H. M.

    2014-12-15

    Application of the ion sphere model (ISM), well known in the context of the one-component-plasma, to estimate thermodynamic properties of model Yukawa systems is discussed. It is shown that the ISM approximation provides fairly good estimate of the internal energy of the strongly coupled Yukawa systems, in both fluid and solid phases. Simple expressions for the excess pressure and isothermal compressibility are derived, which can be particularly useful in connection to wave phenomena in strongly coupled dusty plasmas. It is also shown that in the regime of strong screening a simple consideration of neighboring particles interactions can be sufficient to obtain quite accurate estimates of thermodynamic properties of Yukawa systems.

  2. Ion sphere model for Yukawa systems (dusty plasmas)

    NASA Astrophysics Data System (ADS)

    Khrapak, S. A.; Khrapak, A. G.; Ivlev, A. V.; Thomas, H. M.

    2014-12-01

    Application of the ion sphere model (ISM), well known in the context of the one-component-plasma, to estimate thermodynamic properties of model Yukawa systems is discussed. It is shown that the ISM approximation provides fairly good estimate of the internal energy of the strongly coupled Yukawa systems, in both fluid and solid phases. Simple expressions for the excess pressure and isothermal compressibility are derived, which can be particularly useful in connection to wave phenomena in strongly coupled dusty plasmas. It is also shown that in the regime of strong screening a simple consideration of neighboring particles interactions can be sufficient to obtain quite accurate estimates of thermodynamic properties of Yukawa systems.

  3. USER FRUSTRATION IN HIT INTERFACES: EXPLORING PAST HCI RESEARCH FOR A BETTER UNDERSTANDING OF CLINICIANS’ EXPERIENCES

    PubMed Central

    Opoku-Boateng, Gloria A.

    2015-01-01

    User frustration research has been one way of looking into clinicians’ experience with health information technology use and interaction. In order to understand how clinician frustration with Health Information Technology (HIT) use occurs, there is the need to explore Human-Computer Interaction (HCI) literature that addresses both frustration and HIT use. In the past three decades, HCI frustration research has increased and expanded. Researchers have done a lot of work to understand emotions, end-user frustration and affect. This paper uses a historical literature review approach to review the origins of emotion and frustration research and explore the research question; Does HCI research on frustration provide insights on clinicians’ frustration with HIT interfaces? From the literature review HCI research on emotion and frustration provides additional insights that can indeed help explain user frustration in HIT. Different approaches and HCI perspectives also help frame HIT user frustration research as well as inform HIT system design. The paper concludes with a suggested directions on how future design and research may take. PMID:26958238

  4. USER FRUSTRATION IN HIT INTERFACES: EXPLORING PAST HCI RESEARCH FOR A BETTER UNDERSTANDING OF CLINICIANS' EXPERIENCES.

    PubMed

    Opoku-Boateng, Gloria A

    2015-01-01

    User frustration research has been one way of looking into clinicians' experience with health information technology use and interaction. In order to understand how clinician frustration with Health Information Technology (HIT) use occurs, there is the need to explore Human-Computer Interaction (HCI) literature that addresses both frustration and HIT use. In the past three decades, HCI frustration research has increased and expanded. Researchers have done a lot of work to understand emotions, end-user frustration and affect. This paper uses a historical literature review approach to review the origins of emotion and frustration research and explore the research question; Does HCI research on frustration provide insights on clinicians' frustration with HIT interfaces? From the literature review HCI research on emotion and frustration provides additional insights that can indeed help explain user frustration in HIT. Different approaches and HCI perspectives also help frame HIT user frustration research as well as inform HIT system design. The paper concludes with a suggested directions on how future design and research may take.

  5. Dosimetric precision of an ion beam tracking system

    PubMed Central

    2010-01-01

    Background Scanned ion beam therapy of intra-fractionally moving tumors requires motion mitigation. GSI proposed beam tracking and performed several experimental studies to analyse the dosimetric precision of the system for scanned carbon beams. Methods A beam tracking system has been developed and integrated in the scanned carbon ion beam therapy unit at GSI. The system adapts pencil beam positions and beam energy according to target motion. Motion compensation performance of the beam tracking system was assessed by measurements with radiographic films, a range telescope, a 3D array of 24 ionization chambers, and cell samples for biological dosimetry. Measurements were performed for stationary detectors and moving detectors using the beam tracking system. Results All detector systems showed comparable data for a moving setup when using beam tracking and the corresponding stationary setup. Within the target volume the mean relative differences of ionization chamber measurements were 0.3% (1.5% standard deviation, 3.7% maximum). Film responses demonstrated preserved lateral dose gradients. Measurements with the range telescope showed agreement of Bragg peak depth under motion induced range variations. Cell survival experiments showed a mean relative difference of -5% (-3%) between measurements and calculations within the target volume for beam tracking (stationary) measurements. Conclusions The beam tracking system has been successfully integrated. Full functionality has been validated dosimetrically in experiments with several detector types including biological cell systems. PMID:20591160

  6. An integrated systems model for heavy ion drivers

    SciTech Connect

    Bangerter, R O; Faltens, A; Meier, W R

    1998-09-02

    A source-to-target computer model for an induction linac driver for heavy ion fusion has been developed and used to define a reference case driver that meets the requirements of one current target design. Key features of the model are discussed, and the design parameters of the reference case design are described. Examples of the systems analyses leading to the point design are given, and directions for future work are noted.

  7. Design options for an ITER ion cyclotron system

    NASA Astrophysics Data System (ADS)

    Swain, D. W.; Baity, F. W.; Bigelow, T. S.; Ryan, P. M.; Goulding, R. H.; Carter, M. D.; Stallings, D. C.; Batchelor, D. B.; Hoffman, D. J.

    1996-02-01

    Recent changes have occurred in the design requirements for the ITER ion cyclotron system, requiring in-port launchers in four main horizontal ports to deliver 50 MW of power to the plasma. The design is complicated by the comparatively large antenna-separatrix distance of 10-20 cm. Designs of a conventional strap launcher and a folded waveguide launcher that can meet the new requirements are presented.

  8. Thermal Analysis for Ion-Exchange Column System

    SciTech Connect

    Lee, Si Y.; King, William D.

    2012-12-20

    Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models were used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.

  9. Excess surface area in bioelectrochemical systems causes ion transport limitations

    PubMed Central

    Harrington, Timothy D.; Babauta, Jerome T.; Davenport, Emily K.; Renslow, Ryan S.; Beyenal, Haluk

    2014-01-01

    We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: 1) showing that serially increasing NaCl concentration up to 200 mM increased current linearly up to a total of +273% vs. 0 mM NaCl under advective conditions, 2) growing the biofilm with a starting concentration of 200 mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and 3) showing that un-colonized surface area remained even after steady-state current was reached. After accounting for iR effects, we confirmed that the excess surface area existed despite a non-zero overpotential at the electrode surface. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant. PMID:25421463

  10. Excess Surface Area in Bioelectrochemical Systems Causes ion Transport Limitations

    SciTech Connect

    Harrington, Timothy D.; Babauta, Jerome T.; Davenport, Emily K.; Renslow, Ryan S.; Beyenal, Haluk

    2015-05-01

    We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: (i) showing that serially increasing NaCl concentration up to 200mM increased current linearly up to a total of þ273% vs. 0mM NaCl under advective conditions; (ii) growing the biofilm with a starting concentration of 200mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and (iii) showing that un-colonized surface area remained even after steadystate current was reached. After accounting for iR effects, we confirmed that the excess surface area existed despite a non-zero overpotential. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant.

  11. Cesium Delivery System for Negative Ion Source at IPR

    SciTech Connect

    Bansal, G.; Pandya, K.; Soni, J.; Gahlaut, A.; Parmar, K. G.; Bandyopadhyay, M.; Chakraborty, A.; Singh, M. J.

    2011-09-26

    The technique of surface production of negative ions using cesium, Cs, has been efficiently exploited over the years for producing negative ion beams with increased current densities from negative ion sources used on neutral beam lines. Deposition of Cs on the source walls and the plasma grid lowers the work function and therefore enables a higher yield of H{sup -}, when hydrogen particles (H and/or H{sub x}{sup +}) strike these surfaces.A single driver RF based (100 kW, 1 MHz) negative ion source test bed, ROBIN, is being set up at IPR under a technical collaboration between IPR and IPP, Germany. The optimization of the Cs oven design to be used on this facility as well as multidriver sources is underway. The characterization experiments of such a Cs delivery system with a 1 g Cs inventory have been carried out using surface ionization technique. The experiments have been carried by delivering Cs into a vacuum chamber without plasma. The linear motion of the surface ionization detector, SID, attached with a linear motion feedthrough allows measuring the angular distribution of the Cs coming out of the oven. Based on the experimental results, a Cs oven for ROBIN has been proposed. The Cs oven design and experimental results of the prototype Cs oven are reported and discussed in the paper.

  12. Low pressure electrospray ionization system and process for effective transmission of ions

    DOEpatents

    Tang, Keqi; Page, Jason S.; Kelly, Ryan T.; Smith, Richard D.

    2010-03-02

    A system and method are disclosed that provide up to complete transmission of ions between coupled stages with low effective ion losses. A novel "interfaceless" electrospray ionization system is further described that operates the electrospray at a reduced pressure such that standard electrospray sample solutions can be directly sprayed into an electrodynamic ion funnel which provides ion focusing and transmission of ions into a mass analyzer.

  13. Positive and negative ion beam merging system for neutral beam production

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani

    2005-12-13

    The positive and negative ion beam merging system extracts positive and negative ions of the same species and of the same energy from two separate ion sources. The positive and negative ions from both sources pass through a bending magnetic field region between the pole faces of an electromagnet. Since the positive and negative ions come from mirror image positions on opposite sides of a beam axis, and the positive and negative ions are identical, the trajectories will be symmetrical and the positive and negative ion beams will merge into a single neutral beam as they leave the pole face of the electromagnet. The ion sources are preferably multicusp plasma ion sources. The ion sources may include a multi-aperture extraction system for increasing ion current from the sources.

  14. Potential measurements with heavy ion beam probe system on LHD

    SciTech Connect

    Shimizu, A.; Nishiura, M.; Kato, S.; Ido, T.; Toi, K.; Nakamura, S.

    2010-10-15

    The heavy ion beam probe system in the Large Helical Device (LHD) was improved as follows. At first, the additional new sweeper was installed into the diagnostic port to extend the observable region. By using this sweeper, the potential profile was measured in a wider minor radius range than in previous experiments, in the case of outward shifted magnetic configuration of LHD. Next, the real time control system was installed to control the probe beam orbit for measuring the potential in plasma with large plasma current. In this system, a digital signal processor was used to control the probe beam in real time. The system worked well in the fixed position observation mode. In the sweeping mode for profile measurement, this control system became unstable. The details of this system and the experimental results are reported in this article.

  15. Ion accelerator system mounting design and operating characteristics for a 5 kW 30-cm xenon ion engine

    NASA Technical Reports Server (NTRS)

    Aston, Graeme; Brophy, John R.

    1987-01-01

    Results from a series of experiments to determine the effect of accelerator grid mount geometry on the performance of the J-series ion optics assembly are described. Three mounting schemes, two flexible and one rigid, are compared for their relative ion extraction capability over a range of total accelerating voltages. The largest ion beam current, for the maximum total voltage investigated, is shown to occur using one of the flexible grid mounting geometries. However, at lower total voltages and reduced engine input power levels, the original rigid J-series ion optics accelerator grid mounts result in marginally better grid system performance at the same cold interelectrode gap.

  16. Multiple cell hits by particle tracks in solid tissues

    NASA Astrophysics Data System (ADS)

    Todd, P.

    1992-08-01

    Relative Biological Effectiveness (RBE) and Quality Factor (Q) at extreme values of Linear Energy Transfer (LET) have been determined on the basis of experiments with single-cell systems and specific tissue responses. In typical single cell systems, each heavy particle (Ar or Fe) passes through a single cell or no cell. In tissue end-point experiments each heavy particle passes through several cells, and the LET can exceed 200 keV/μm in every cell. In most laboratory animal tissue systems, however, only a small portion of the hit cells are capable of expressing the end-point of interest to the investigator, such as cell killing, mutation or carcinogenesis. The following question must therefore be addressed: Do RBE's and Q factors derived from single-cell experiments properly account for the increased probability of multiple-cell damage by HZE tracks? A model is offered in which measured radiation effects and known tissue properties are combined to estimate the value of a multiplier of damage effectiveness on the basis of number of cells at risk, p3n, per track containing a hit cell, where n is the number of cells per track, based on tissue and organ geometry, and p3 is the probability that a cell in the track is capable of expressing the experimental end-point.

  17. Diagnostic system design for the Ion Auxiliary Propulsion System /IAPS/ - Flight test of two 8 cm mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Hurst, E. B.; Thomas, G. Z.

    1981-01-01

    The experimental design of a Diagnostic Subsystem (DSS) as part of an Ion Auxiliary Propulsion System (IAPS) to be flown on P80-1 spacecraft in May 1983, is discussed. The DSS is composed of several detectors measuring thruster efflux, material deposition and spacecraft potential relative to the local space plasma in the vicinity of two 8 cm mercury ion thrusters. The detectors consist of two QCM units measuring frequency in the range of two to 65 KHz. Nine solar cell arrays have the capability of measuring current and voltage from 0-600 mA and 0-0.9 V. Seven ion collectors can measure ion currents with bias voltages of 0, 25, 55 and 96 V. The potential probe can measure current at 16 different commandible levels varying from one to 5 K microamperes within a voltage range of -25 to 175 V. The analysis of the ground-based data indicates that the hardware is qualified for flight, with the detectors and electronic units having passed all functional and environmental tests. Block diagrams are given and the functional parameters of the different design configurations are described.

  18. Health Information Technology Knowledge and Skills Needed by HIT Employers

    PubMed Central

    Fenton, S.H.; Gongora-Ferraez, M.J.; Joost, E.

    2012-01-01

    Objective To evaluate the health information technology (HIT) workforce knowledge and skills needed by HIT employers. Methods Statewide face-to-face and online focus groups of identified HIT employer groups in Austin, Brownsville, College Station, Dallas, El Paso, Houston, Lubbock, San Antonio, and webinars for rural health and nursing informatics. Results HIT employers reported needing an HIT workforce with diverse knowledge and skills ranging from basic to advanced, while covering information technology, privacy and security, clinical practice, needs assessment, contract negotiation, and many other areas. Consistent themes were that employees needed to be able to learn on the job and must possess the ability to think critically and problem solve. Many employers wanted persons with technical skills, yet also the knowledge and understanding of healthcare operations. Conclusion The HIT employer focus groups provided valuable insight into employee skills needed in this fast-growing field. Additionally, this information will be utilized to develop a statewide HIT workforce needs assessment survey. PMID:23646090

  19. Feed gas contaminant control in ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Minford, Eric; Waldron, William Emil

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  20. Analysis and design of ion thrusters for large space systems

    NASA Technical Reports Server (NTRS)

    James, E. L.

    1980-01-01

    This study undertakes the analysis and conceptual design of a 0.5 Newton electrostatic ion thruster suitable for use on large space system missions in the next decade. Either argon or xenon gas shall be used as propellant. A 50 cm diameter discharge chamber was selected to meet stipulated performance goals. The discharge plasma is contained at the boundary by a periodic structure of alternating permanent magnets generating a series of line cusps. Anode strips between the magnets collect Maxwellian electrons generated by a central cathode. Ion extraction utilizes either two or three grid optics at the user's choice. An extensive analysis was undertaken to investigate optics behavior in the high power environment of this large thruster. A plasma bridge neutralizer operating on inert gas provides charge neutralizing electrons to complete the design. The resulting conceptual thruster and the necessary power management and control requirements are described.

  1. Test-retest reliability for hitting accuracy tennis test.

    PubMed

    Strecker, Estevam; Foster, Ernest B; Pascoe, David D

    2011-12-01

    Strecker, E, Foster, EB, and Pascoe, DD. Test-retest reliability for hitting accuracy tennis test. J Strength Cond Res 25(12): 3501-3505, 2011-The purpose of this investigation was to assess a test-retest reliability of the hitting accuracy tennis test (HATT). Twelve National Collegiate Athletic Association (NCAA) division I tennis players (4 men and 8 women) volunteered to participate in this investigation. Skill tests consisted of 15 consecutive ground strokes in all 4 directions (forehand [FH] and backhand [BH]; crosscourt and up the line) with not >1 minute between directions. The court was divided into 12 areas, and each area was assigned a value according to a grid system based on offensive, defensive, and neutral shots ranging from 1 point to 6 points. Total score, unforced errors, and shot index (total number of shots that landed on optimal performance areas 5 and 6 minus total number of unforced errors) were used for statistical analysis. The order of shot direction was randomized between participants and trials. The analysis of variance with repeated measures (p value ≤ 0.05) of this investigation showed no statistical difference between trials on any of the measurements. The results also suggest that division I level tennis players have the ability to hit accurately specific targets on a tennis court using either FH or BH with minimal daily variation. Therefore, we conclude that the HATT for trained tennis athletes is a simple, reliable, and accurate assessment tool to measure tennis skill performance based on accuracy. The HATT is also an easy, inexpensive training device that coaches can use to monitor players development.

  2. Design of the ion cyclotron system for TPX

    NASA Astrophysics Data System (ADS)

    Swain, D.; Shipley, S.; Yugo, J.; Goulding, R.; Batchelor, D.; Stallings, D.; Fredd, E.

    The TPX experiment will operate for very long pulse times (greater than or equal to 1000 s) and will require current drive of several different types to explore the advanced physics operating modes as one of its main missions. Fast wave current drive (FWCD) using ion cyclotron waves in the 40-80 MHz range will be used as one of the main current-drive mechanisms. For initial operation, 8 MW of RF will be supplied, along with 8 MW of neutral beams and 1.5 MW of lower hybrid power. The ion cyclotron (IC) system is a major part of the TPX heating and current drive system. The IC system must: supply 8 MW of power through two main horizontal ports; be upgradable to provide up to 12 MW of RF power through two ports; operate, for 1000-s pulses every 75 min; drive current using FWCD with high reliability; be bakeable to 350(degree)C for cleaning; and incorporate shielding to attenuate the neutron and gamma flux from DD operation so that hands-on maintenance can be performed exterior to the vacuum vessel. The system will consist of four modified FMIT power units that will be upgraded to deliver 2 MW each to the plasma. Two antennas, each with six current straps, will be located in adjacent ports. A sophisticated matching system is needed to provide experimental flexibility and reliability.

  3. A Hit or Miss History of Statistics at Sandia

    SciTech Connect

    Diegert, Kathleen V.

    1999-08-04

    The Statistics and Human Factors Department at SNL has evolved as the Labs' mission has evolved from engineering designs for the non-nuclear parts of nuclear weapons, including the safety and security components, to a multi-program lab focusing on national security. Twenty years ago their client base was the engineers, scientists, and managers of the nuclear weapon stockpile program, at Sandia and other facilities within the DOE complex. Client relationships developed over years of association. Components and systems were assigned to statisticians so that they could develop a knowledge base in that area. Because of the many different component types and system designs in the stockpile, they typically juggled five or six statistical projects at a time. project participation other than statistical consulting was limited. They rarely had the time to lead project teams, and any skills or inclinations in that direction were often undeveloped. This paper describes a (hit-or-miss) selection of some early and recent efforts. This paper also presents their self-assessment metrics and their external assessment metrics. These metrics were selected to track the business aspects of the department; they are systematic (not hit-or-miss). These two types of histories should allow them to judge whether we're doing the right things, and also doing things right.

  4. Two Methods for Efficient Solution of the Hitting-Set Problem

    NASA Technical Reports Server (NTRS)

    Vatan, Farrokh; Fijany, Amir

    2005-01-01

    A paper addresses much of the same subject matter as that of Fast Algorithms for Model-Based Diagnosis (NPO-30582), which appears elsewhere in this issue of NASA Tech Briefs. However, in the paper, the emphasis is more on the hitting-set problem (also known as the transversal problem), which is well known among experts in combinatorics. The authors primary interest in the hitting-set problem lies in its connection to the diagnosis problem: it is a theorem of model-based diagnosis that in the set-theory representation of the components of a system, the minimal diagnoses of a system are the minimal hitting sets of the system. In the paper, the hitting-set problem (and, hence, the diagnosis problem) is translated from a combinatorial to a computational problem by mapping it onto the Boolean satisfiability and integer- programming problems. The paper goes on to describe developments nearly identical to those summarized in the cited companion NASA Tech Briefs article, including the utilization of Boolean-satisfiability and integer- programming techniques to reduce the computation time and/or memory needed to solve the hitting-set problem.

  5. Completely modular Thermionic Reactor Ion Propulsion System (TRIPS)

    NASA Technical Reports Server (NTRS)

    Peelgren, M. L.; Kikin, G. M.; Sawyer, C. D.

    1972-01-01

    The nuclear reactor powered ion propulsion system described is an advanced completely modularized system which lends itself to development of prototype and/or flight type components without the need for complete system tests until late in the development program. This modularity is achieved in all of the subsystems and components of the electric propulsion system including (1) the thermionic fuel elements, (2) the heat rejection subsystem (heat pipes), (3) the power conditioning modules, and (4) the ion thrusters. Both flashlight and external fuel type in-core thermionic reactors are considered as the power source. The thermionic fuel elements would be useful over a range of reactor power levels. Electrical heated acceptance testing in their flight configuration is possible for the external fuel case. Nuclear heated testing by sampling methods could be used for acceptance testing of flashlight fuel elements. The use of heat pipes for cooling the collectors and as a means of heat transport to the radiator allows early prototype or flight configuration testing of a small module of the heat rejection subsystem as opposed to full scale liquid metal pumps and radiators in a large vacuum chamber. The power conditioner (p/c) is arranged in modules with passive cooling.

  6. Technology Readiness of the NEXT Ion Propulsion System

    NASA Technical Reports Server (NTRS)

    Benson, Scott W.; Patterson, Michael J.

    2008-01-01

    The NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system has been in advanced technology development under the NASA In-Space Propulsion Technology project. The highest fidelity hardware planned has now been completed by the government/industry team, including: a flight prototype model (PM) thruster, an engineering model (EM) power processing unit, EM propellant management assemblies, a breadboard gimbal, and control unit simulators. Subsystem and system level technology validation testing is in progress. To achieve the objective Technology Readiness Level 6, environmental testing is being conducted to qualification levels in ground facilities simulating the space environment. Additional tests have been conducted to characterize the performance range and life capability of the NEXT thruster. This paper presents the status and results of technology validation testing accomplished to date, the validated subsystem and system capabilities, and the plans for completion of this phase of NEXT development. The next round of competed planetary science mission announcements of opportunity, and directed mission decisions, are anticipated to occur in 2008 and 2009. Progress to date, and the success of on-going technology validation, indicate that the NEXT ion propulsion system will be a primary candidate for mission consideration in these upcoming opportunities.

  7. Cryogenic molecular separation system for radioactive 11C ion acceleration

    NASA Astrophysics Data System (ADS)

    Katagiri, K.; Noda, A.; Suzuki, K.; Nagatsu, K.; Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ramzdorf, A. Yu.; Nakao, M.; Hojo, S.; Wakui, T.; Noda, K.

    2015-12-01

    A 11C molecular production/separation system (CMPS) has been developed as part of an isotope separation on line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. In the ISOL system, 11CH4 molecules will be produced by proton irradiation and separated from residual air impurities and impurities produced during the irradiation. The CMPS includes two cryogenic traps to separate specific molecules selectively from impurities by using vapor pressure differences among the molecular species. To investigate the fundamental performance of the CMPS, we performed separation experiments with non-radioactive 12CH4 gases, which can simulate the chemical characteristics of 11CH4 gases. We investigated the separation of CH4 molecules from impurities, which will be present as residual gases and are expected to be difficult to separate because the vapor pressure of air molecules is close to that of CH4. We determined the collection/separation efficiencies of the CMPS for various amounts of air impurities and found desirable operating conditions for the CMPS to be used as a molecular separation device in our ISOL system.

  8. Statistical mechanics of the hitting set problem.

    PubMed

    Mézard, Marc; Tarzia, Marco

    2007-10-01

    In this paper we present a detailed study of the hitting set (HS) problem. This problem is a generalization of the standard vertex cover to hypergraphs: one seeks a configuration of particles with minimal density such that every hyperedge of the hypergraph contains at least one particle. It can also be used in important practical tasks, such as the group testing procedures where one wants to detect defective items in a large group by pool testing. Using a statistical mechanics approach based on the cavity method, we study the phase diagram of the HS problem, in the case of random regular hypergraphs. Depending on the values of the variables and tests degrees different situations can occur: The HS problem can be either in a replica symmetric phase, or in a one-step replica symmetry breaking one. In these two cases, we give explicit results on the minimal density of particles, and the structure of the phase space. These problems are thus in some sense simpler than the original vertex cover problem, where the need for a full replica symmetry breaking has prevented the derivation of exact results so far. Finally, we show that decimation procedures based on the belief propagation and the survey propagation algorithms provide very efficient strategies to solve large individual instances of the hitting set problem.

  9. Cutaneous presentation of Double Hit Lymphoma

    PubMed Central

    Khelfa, Yousef; Lebowicz, Yehuda

    2016-01-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma (NHL), representing approximately 25% of diagnosed NHL. DLBCL is heterogeneous disease both clinically and genetically. The 3 most common chromosomal translocations in DLBCL involve the oncogenes BCL2, BCL6, and MYC. Double hit (DH) DLBCL is an aggressive form in which MYC rearrangement is associated with either BCL2 or BCL6 rearrangement. Patients typically present with a rapidly growing mass, often with B symptoms. Extranodal disease is often present. Though there is a paucity of prospective trials in this subtype, double hit lymphoma (DHL) has been linked to very poor outcomes when patients are treated with standard R-CHOP. There is, therefore, a lack of consensus regarding the standard treatment for DHL. Several retrospective analyses have been conducted to help guide treatment of this disease. These suggest that DA EPOCH-R may be the most promising regimen and that achievement of complete resolution predicts better long-term outcomes. PMID:27115017

  10. Validation of an ion selective electrode system for the analysis of serum fluoride ion.

    PubMed

    Duly, E B; Luney, S R; Trinick, T R; Murray, J M; Comer, J E

    1995-01-01

    A high impedance unit was developed for use with a fluoride/pH electrode system for the measurement of serum fluoride. The linearity, accuracy, precision and detection limit of the system is reported. At a pH of 1.55, the system was linear over a range of serum fluoride concentrations up to 100 mumol l(-1), with a lower limit of detection of 0.3 mumol l(-1). Recoveries at this pH were 94-105% in the range 2.6-100 mumol l(-1). Within-run CVs ranged from 4.2% at a level of 2.3 mumol l(-1) to 1.2% at a level of 55.7 mumol l(-1), while day-to-day CVs ranged from 12.8% at a level of 2.2 mumol l(-1) to 4.6% at a level of 51.7 mumol l(-1). The system demonstrated a rapid response time and has the potential for a smaller sample size requirement with alternative electrode shape. Continued development of this unit into an automated fluoride ion selective electrode system is recommended, since the measurement of serial serum fluoride samples is of greatest importance in assessing the impact of new anaesthetic agents on renal function. PMID:18925049

  11. Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)

    SciTech Connect

    Christie, W.B. Jr.

    1990-05-01

    This thesis contains the setup, analysis and results of experiment E684H Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS is that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment.

  12. Highly sensitive vacuum ion pump current measurement system

    DOEpatents

    Hansknecht, John Christopher

    2006-02-21

    A vacuum system comprising: 1) an ion pump; 2) power supply; 3) a high voltage DC--DC converter drawing power from the power supply and powering the vacuum pump; 4) a feedback network comprising an ammeter circuit including an operational amplifier and a series of relay controlled scaling resistors of different resistance for detecting circuit feedback; 5) an optional power block section intermediate the power supply and the high voltage DC--DC converter; and 6) a microprocessor receiving feedback information from the feedback network, controlling which of the scaling resistors should be in the circuit and manipulating data from the feedback network to provide accurate vacuum measurement to an operator.

  13. Electron attachment and ion mobility in hydrocarbons and related systems

    SciTech Connect

    Bakale, G.

    1988-01-01

    During the last two decades, a firm base for the emerging field of liquid state electronics (LSE) has developed through studies of the transport and reaction properties of excess electrons in a variety of liquid-phase systems. Pulse-conductivity techniques were used in many of these studies to measure the mobilities of electrons and ions in pure liquids as well as the rate constants of electron attachment to a wide variety of electron-accepting solutes. Results obtained through such studies have interdisciplinary implications that are described in the discussion that follows which includes examples of the contributions of LSE to physics, chemistry and biology. 42 refs.

  14. Ion accelerator systems for high power 30 cm thruster operation

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1982-01-01

    Two and three-grid accelerator systems for high power ion thruster operation were investigated. Two-grid translation tests show that over compensation of the 30 cm thruster SHAG grid set spacing the 30 cm thruster radial plasma density variation and by incorporating grid compensation only sufficient to maintain grid hole axial alignment, it is shown that beam current gains as large as 50% can be realized. Three-grid translation tests performed with a simulated 30 cm thruster discharge chamber show that substantial beamlet steering can be reliably affected by decelerator grid translation only, at net-to-total voltage ratios as low as 0.05.

  15. Small Column Ion Exchange Monitor System Final Report

    SciTech Connect

    CASELLA, VITO

    2004-09-30

    A Small Column Ion Exchange (SCIX) system has been designed by the Oak Ridge and Savannah River National Laboratories (ORNL and SRNL) as a potential way to reduce Cs-137 concentrations in high-level radioactive waste at the Savannah River Site. SRNL was asked to develop gamma-ray monitors at six locations within the SCIX system. Gamma-ray monitors are required to verify the proper operation of the ion exchange system, detect cesium breakthrough, and confirm presence of cesium before and after used resin is transferred to a grinder module. The only observable gamma ray in the decay of Cs-137 is from its short-lived Ba-137m daughter. Chemical processes, such as the SCIX, may disrupt the secular equilibrium between this parent-daughter pair; meaning that measurement of Ba-137m will not necessarily yield information about Cs-137 content. While this is a complicating factor that can not be ignored, it is controllable by either: allowing sufficient time for equilibrium to be reestablished (about 20 minutes), or by making multiple measurements with sufficient statistical precision to determine the extent of disequilibrium. The present work provides a means of measuring the Cs-137 and Ba-137m by taking multiple measurements in a process isolation loop that contains the process solution of interest.

  16. Progress in Technology Validation of the Next Ion Propulsion System

    NASA Technical Reports Server (NTRS)

    Benson, Scott W.; Patterson, Michael J.

    2007-01-01

    The NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system has been in advanced technology development under the NASA In-Space Propulsion Technology project. The highest fidelity hardware planned has now been completed by the government/industry team, including a flight prototype model (PM) thruster, an engineering model (EM) power processing unit, EM propellant management assemblies, a breadboard gimbal, and control unit simulators. Subsystem and system level technology validation testing is in progress. To achieve the objective Technology Readiness Level 6, environmental testing is being conducted to qualification levels in ground facilities simulating the space environment. Additional tests have been conducted to characterize the performance range and life capability of the NEXT thruster. This paper presents the status and results of technology validation testing accomplished to date, the validated subsystem and system capabilities, and the plans for completion of this phase of NEXT development.

  17. Noble gas storage and delivery system for ion propulsion

    NASA Technical Reports Server (NTRS)

    Back, Dwight Douglas (Inventor); Ramos, Charlie (Inventor)

    2001-01-01

    A method and system for storing and delivering a noble gas for an ion propulsion system where an adsorbent bearing a noble gas is heated within a storage vessel to desorb the noble gas which is then flowed through a pressure reduction device to a thruster assembly. The pressure and flow is controlled using a flow restrictor and low wattage heater which heats an adsorbent bed containing the noble gas propellant at low pressures. Flow rates of 5-60 sccm can be controlled to within about 0.5% or less and the required input power is generally less than 50 W. This noble gas storage and delivery system and method can be used for earth orbit satellites, and lunar or planetary space missions.

  18. Rocket having barium release system to create ion clouds in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Lewis, B. W.; Stokes, C. S.; Smith, E. W.; Murphy, W. J. (Inventor)

    1974-01-01

    A chemical system for releasing a good yield of free barium atoms and barium ions to create ion clouds in the upper atmosphere and interplanetary space for the study of the geophysical properties of the medium is presented.

  19. Ion Trap Array-Based Systems And Methods For Chemical Analysis

    DOEpatents

    Whitten, William B [Oak Ridge, TN; Ramsey, J Michael [Knoxville, TN

    2005-08-23

    An ion trap-based system for chemical analysis includes an ion trap array. The ion trap array includes a plurality of ion traps arranged in a 2-dimensional array for initially confining ions. Each of the ion traps comprise a central electrode having an aperture, a first and second insulator each having an aperture sandwiching the central electrode, and first and second end cap electrodes each having an aperture sandwiching the first and second insulator. A structure for simultaneously directing a plurality of different species of ions out from the ion traps is provided. A spectrometer including a detector receives and identifies the ions. The trap array can be used with spectrometers including time-of-flight mass spectrometers and ion mobility spectrometers.

  20. Polymer filtration systems for dilute metal ion recovery

    SciTech Connect

    Smith, B.F.; Robison, T.W.; Jarvinen, G.D.

    1998-12-01

    Scientists at Los Alamos National Laboratory have developed a metal recovery system that meets the global treatment demands for all kinds of industrial and metal-processing streams. The Polymer Filtration (PF) System--a process that is easily operated and robust--offers metal-finishing businesses a convenient and inexpensive way to recover and recycle metal ions in-house, thus reducing materials costs, waste removal costs, and industrial liability. As a valuable economic and environmental asset, the PF System has been named a winner of a 1995 R and D 100 Award. These awards are presented annually by R and D Magazine to the one hundred most significant technical innovations of the year. The PF System is based on the use of water-soluble metal-binding polymers and on advanced ultrafiltration membranes. Customers for this technology will receive new soluble polymers, especially formulated for their waste stream, and the complete PF processing unit: a reaction reservoir, pumps, plumbing, controls, and the advanced ultrafiltration membranes, all in a skid mounted frame. Metal-bearing waste water is treated in the reaction reservoir, where the polymer binds with the metal ions under balanced acid/base conditions. The reservoir fluid is then pumped through the ultrafiltration system--a cartridge packed with ultrafiltration membranes shaped in hollow fibers. As the fluid travels inside the fiber, water and other small molecules--simple salts such as calcium and sodium, for example--pass through the porous membrane walls of the fibers and are discharged through the outlet as permeate. The polymer-bound metal, which is too large to pass through the pores, is both purified and concentrated inside the hollow fibers and is returned to the fluid reservoir for further waste water treatment.

  1. Improved Monte Carlo method for ion transport in ion-molecule asymmetric systems at high electric fields

    NASA Astrophysics Data System (ADS)

    Yousfi, M.; Hennad, A.; Eichwald, O.

    1998-07-01

    An improved Monte Carlo method is developed for the simulation of the ion transport in classical drift tube in the case of ion-molecule asymmetric systems such as O-/O2 or N+/N2. The aim of this new method is to overcome the problem of incident ions which vanish at relative high electric field due to asymmetric charge transfer or electron detachment. These ion removal processes are compensated by a fictitious ion creation which improves the accuracy of the ion distribution function and swarm coefficient calculations. The classical ion-molecule collision processes occurring in weakly ionized gases at room temperature (elastic collisions including energy exchange and thermal motion of background gases and also inelastic collisions) are taken into account. This new method is then validated and the transport and reaction coefficients have been given for a large range of E/N (a part of them for the first time in the literature) in O-/O2 and N+/N2 systems.

  2. Advanced integrated solvent extraction and ion exchange systems

    SciTech Connect

    Horwitz, P.

    1996-10-01

    Advanced integrated solvent extraction (SX) and ion exchange (IX) systems are a series of novel SX and IX processes that extract and recover uranium and transuranics (TRUs) (neptunium, plutonium, americium) and fission products {sup 90}Sr, {sup 99}Tc, and {sup 137}Cs from acidic high-level liquid waste and that sorb and recover {sup 90}Sr, {sup 99}Tc, and {sup 137}Cs from alkaline supernatant high-level waste. Each system is based on the use of new selective liquid extractants or chromatographic materials. The purpose of the integrated SX and IX processes is to minimize the quantity of waste that must be vitrified and buried in a deep geologic repository by producing raffinates (from SX) and effluent streams (from IX) that will meet the specifications of Class A low-level waste.

  3. Single-cell/Single-particle Irradiation Using Heavy-ion Microbeams

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yasuhiko

    Heavy charged particles transfer their energy to biological organisms through high-density ionization along the particle trajectories. The population of cells exposed to a very low dose of heavy-ion beams contains a few cells hit by a particle, while the majority of the cells receive no radiation damage. At somewhat higher doses, some of the cells receive two or more events according to the Poisson distribution of ion injections. This fluctuation of particle trajectories through individual cells makes interpretation of radiological effects of heavy ions difficult. Furthermore, there has recently been an increasing interest in ionizing radiation-induced “bystander effects”, that is, radiation effects transmitted from hit cells to neighboring un-hit cells. Therefore, we have established a single-cell/single-particle irradiation system using a heavy-ion microbeam apparatus at JAEA-Takasaki to study radiobiological processes in hit cells and bystander cells exposed to low dose and low dose-rate high-LET radiations, in ways that cannot be achieved using conventional broad-field exposures.

  4. Design of the extraction system and beamline of the superconducting ECR ion source VENUS

    SciTech Connect

    Leitner, Matthaeus A.; Wutte, Daniela C.; Lyneis, Claude M.

    2001-05-07

    A new, very high magnetic field superconducting ECR ion source, VENUS, is under construction at the LBNL 88-Inch Cyclotron [1,2]. The paper describes the VENUS extraction system and discusses the ion beam formation in the strong axial magnetic field (3 T) of the ECR ion source. Emittance values as expected from theory, which assumes a uniform plasma density across the plasma outlet hole, are compared with actual measurements from the AECR-U ion source. Results indicate that highly charged heavier ions are concentrated on the source axis. They are extracted from an ''effective'' plasma outlet hole, whose smaller radius must be included in ion optics simulations.

  5. Overview of Particle and Heavy Ion Transport Code System PHITS

    NASA Astrophysics Data System (ADS)

    Sato, Tatsuhiko; Niita, Koji; Matsuda, Norihiro; Hashimoto, Shintaro; Iwamoto, Yosuke; Furuta, Takuya; Noda, Shusaku; Ogawa, Tatsuhiko; Iwase, Hiroshi; Nakashima, Hiroshi; Fukahori, Tokio; Okumura, Keisuke; Kai, Tetsuya; Chiba, Satoshi; Sihver, Lembit

    2014-06-01

    A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. The Japan Atomic Energy Agency is responsible for managing the entire project. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development's Nuclear Energy Agency, and the Radiation Safety Information Computational Center. More than 1,000 researchers have been registered as PHITS users, and they apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications, such as an event generator mode and beam transport functions.

  6. Ion thruster system (8-cm) cyclic endurance test

    NASA Technical Reports Server (NTRS)

    Dulgeroff, C. R.; Beattie, J. R.; Poeschel, R. L.; Hyman, J., Jr.

    1984-01-01

    This report describes the qualification test of an Engineering-Model 5-mN-thrust 8-cm-diameter mercury ion thruster which is representative of the Ion Auxiliary Propulsion System (IAPS) thrusters. Two of these thrusters are scheduled for future flight test. The cyclic endurance test described herein was a ground-based test performed in a vacuum facility with a liquid-nitrogen-cooled cryo-surface and a frozen mercury target. The Power Electronics Unit, Beam Shield, Gimal, and Propellant Tank that were used with the thruster in the endurance test are also similar to those of the IAPS. The IAPS thruster that will undergo the longest beam-on-time during the actual space test will be subjected to 7,055 hours of beam-on-time and 2,557 cycles during the flight test. The endurance test was successfully concluded when the mercury in the IAPS Propellant Tank was consumed. At that time, 8,471 hours of beam-on-time and 599 cycles had been accumulated. Subsequent post-test-evaluation operations were performed (without breaking vacuum) which extended the test values to 652 cycles and 9,489 hours of beam-on-time. The Power Electronic Unit (PEU) and thruster were in the same vacuum chamber throughout the test. The PEU accumulated 10,268 hr of test time with high voltage applied to the operating thruster or dummy load.

  7. NEXT Propellant Management System Integration With Multiple Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Soulas, George C.; Herman, Daniel A.

    2011-01-01

    As a critical part of the NEXT test validation process, a multiple-string integration test was performed on the NEXT propellant management system and ion thrusters. The objectives of this test were to verify that the PMS is capable of providing stable flow control to multiple thrusters operating over the NEXT system throttling range and to demonstrate to potential users that the NEXT PMS is ready for transition to flight. A test plan was developed for the sub-system integration test for verification of PMS and thruster system performance and functionality requirements. Propellant management system calibrations were checked during the single and multi-thruster testing. The low pressure assembly total flow rates to the thruster(s) were within 1.4 percent of the calibrated support equipment flow rates. The inlet pressures to the main, cathode, and neutralizer ports of Thruster PM1R were measured as the PMS operated in 1-thruster, 2-thruster, and 3-thruster configurations. It was found that the inlet pressures to Thruster PM1R for 2-thruster and 3-thruster operation as well as single thruster operation with the PMS compare very favorably indicating that flow rates to Thruster PM1R were similar in all cases. Characterizations of discharge losses, accelerator grid current, and neutralizer performance were performed as more operating thrusters were added to the PMS. There were no variations in these parameters as thrusters were throttled and single and multiple thruster operations were conducted. The propellant management system power consumption was at a fixed voltage to the DCIU and a fixed thermal throttle temperature of 75 C. The total power consumed by the PMS was 10.0, 17.9, and 25.2 W, respectively, for single, 2-thruster, and 3-thruster operation with the PMS. These sub-system integration tests of the PMS, the DCIU Simulator, and multiple thrusters addressed, in part, the NEXT PMS and propulsion system performance and functionality requirements.

  8. Controlled Quantum Teleportation via the GHZ Entangled Ions in the Ion-Trapped System

    NASA Astrophysics Data System (ADS)

    Xu, Xiong; Wang, Xiaoxue

    2016-08-01

    In this paper, we present a controlled quantum teleportation protocol. In the protocol, quantum information of an unknown state is faithfully transmitted from a sender (Alice) to a remote receiver (Bob) via the GHZ entangled ions under the control of the supervisor Charlie. The apparent Bell-state measurements that Alice should perform in order to teleport her ions are not needed.

  9. System for Predicting Pitzer Ion-Interaction Model Parameters

    NASA Astrophysics Data System (ADS)

    Schreiber, D. R.; Obias, T.

    2002-12-01

    Pitzer's Ion-Interaction Model has been widely utilized for the prediction of non-ideal solution behavior. The Pitzer model does an excellent job of predicting the solubility of minerals over a wide range of conditions for natural water systems. While Pitzer's equations have been successful in modeling systems when there are parameters available, there are still some systems that can't be modeled because parameters aren't available for all of the salts of interest. For example, there is little to no data for aluminum salts yet in acidified natural waters it may be present at significant concentrations. In addition, aluminum chemistry will also be important in the remediation of acidified High-level waste. Given the quantity of work involved in generating the needed parameters it would be advantageous to be able to predict Pitzer parameters for salt systems when there is no data available. Recently we began work on modeling High-level waste systems where Pitzer parameters are not available for some of the constituents of interest. We will discuss a set of relations we have developed for the prediction of Pitzer's binary ion-interaction parameters. In the binary parameter case, we reformulated the Pitzer's equations by replacing the parameters, β(0), β(1), β(2), and C, with expressions in ionic radii. Equations have been developed for salts of a particular anion with cations of similar charge. For example, there is a single equation for the 1:1 chloride salts. Relations for acids were developed separately. Also we have developed a separate set of equations for all salts of a particular charge type independent of the anion. While the latter set of equations are of lesser predictive value, they can be used in cases where we don't have a relation for a particular anion. Since any system used to predict parameters would result in a loss of accuracy, experimentally determined parameters should be used when available. The ability of parameters derived from our model

  10. Multiple delivery cesium oven system for negative ion sources

    SciTech Connect

    Bansal, G.; Bhartiya, S.; Pandya, K.; Bandyopadhyay, M.; Singh, M. J.; Soni, J.; Gahlaut, A.; Parmar, K. G.; Chakraborty, A.

    2012-02-15

    Distribution of cesium in large negative ion beam sources to be operational in ITER, is presently based on the use of three or more cesium ovens, which operate simultaneously and are controlled remotely. However, use of multiple Cs ovens simultaneously is likely to pose difficulties in operation and maintenance of the ovens. An alternate method of Cs delivery, based on a single oven distribution system is proposed as one which could reduce the need of simultaneous operation of many ovens. A proof of principle experiment verifying the concept of a multinozzle distributor based Cs oven has been carried out at Institute for Plasma Research. It is also observed that the Cs flux is not controlled by Cs reservoir temperature after few hours of operation but by the temperature of the distributor which starts behaving as a Cs reservoir.

  11. Mutual diffusion coefficients in systems containing the nickel ion

    NASA Astrophysics Data System (ADS)

    Ribeiro, Ana C. F.; Veríssimo, Luis V. M. M.; Gomes, Joselaine C. S.; Santos, Cecilia I. A. V.; Barros, Marisa C. F.; Lobo, Victor M. M.; Sobral, Abílio J. F. N.; Esteso, Miguel A.; Leaist, Derek G.

    2013-04-01

    Mutual diffusion coefficients of nickel chloride in water have been measured at 293.15 K and 303.15 K and at concentrations between 0.020 mol dm-3 and 0.100 mol dm-3, using a conductimetric cell. The experimental mutual diffusion coefficients are discussed on the basis of the Onsager-Fuoss model. The equivalent conductances at infinitesimal concentration of the nickel ion in these solutions at those temperatures have been estimated using these results. In addition, from these data, we have estimated some transport and structural parameters, such as limiting diffusion coefficient, ionic conductance at infinitesimal concentration, hydrodynamic radii and activation energy, contributing this way to a better understanding of the structure of these systems and of their thermodynamic behavior in aqueous solution at different concentrations.

  12. Subcutoff microwave driven plasma ion sources for multielemental focused ion beam systems.

    PubMed

    Mathew, Jose V; Chowdhury, Abhishek; Bhattacharjee, Sudeep

    2008-06-01

    A compact microwave driven plasma ion source for focused ion beam applications has been developed. Several gas species have been experimented including argon, krypton, and hydrogen. The plasma, confined by a minimum B multicusp magnetic field, has good radial and axial uniformity. The octupole multicusp configuration shows a superior performance in terms of plasma density (~1.3 x 10(11) cm(-3)) and electron temperature (7-15 eV) at a power density of 5-10 Wcm(2). Ion current densities ranging from a few hundreds to over 1000 mA/cm(2) have been obtained with different plasma electrode apertures. The ion source will be combined with electrostatic Einzel lenses and should be capable of producing multielemental focused ion beams for nanostructuring and implantations. The initial simulation results for the focused beams have been presented.

  13. Ions in the Terrestrial Atmosphere and Other Solar System Atmospheres

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Tammet, Hannes

    Charged molecular clusters, traditionally called small ions, carry electric currents in atmospheres. Charged airborne particles, or aerosol ions, play an important role in generation and evolution of atmospheric aerosols. Growth of ions depends on the trace gas content, which is highly variable in the time and space. Even at sub-ppb concentrations, electrically active organic compounds (e.g. pyridine derivatives) can affect the ion composition and size. The size and mobility are closely related, although the form of the relationship varies depending on the critical diameter, which, at 273 K, is about 1.6 nm. For ions smaller than this the separation of quantum levels exceeds the average thermal energy, allowing use of a molecular aggregate model for the size-mobility relation. For larger ions the size-mobility relation approaches the Stokes-Cunningham-Millikan law. The lifetime of a cluster ion in the terrestrial lower atmosphere is about one minute, determined by the balance between ion production rate, ion-ion recombination, and ion-aerosol attachment.

  14. Ions in the Terrestrial Atmosphere and Other Solar System Atmospheres

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Tammet, Hannes

    2008-06-01

    Charged molecular clusters, traditionally called small ions, carry electric currents in atmospheres. Charged airborne particles, or aerosol ions, play an important role in generation and evolution of atmospheric aerosols. Growth of ions depends on the trace gas content, which is highly variable in the time and space. Even at sub-ppb concentrations, electrically active organic compounds ( e.g. pyridine derivatives) can affect the ion composition and size. The size and mobility are closely related, although the form of the relationship varies depending on the critical diameter, which, at 273 K, is about 1.6 nm. For ions smaller than this the separation of quantum levels exceeds the average thermal energy, allowing use of a molecular aggregate model for the size-mobility relation. For larger ions the size-mobility relation approaches the Stokes-Cunningham-Millikan law. The lifetime of a cluster ion in the terrestrial lower atmosphere is about one minute, determined by the balance between ion production rate, ion-ion recombination, and ion-aerosol attachment.

  15. Observation of a power-law energy distribution in atom-ion hybrid system

    NASA Astrophysics Data System (ADS)

    Meir, Ziv; Akerman, Nitzan; Sikorsky, Tomas; Ben-Shlomi, Ruti; Dallal, Yehonatan; Ozeri, Roee

    2016-05-01

    Understanding atom-ion collision dynamics is at the heart of the growing field of ultra-cold atom-ion physics. The naive picture of a hot ion sympathetically-cooled by a cold atomic bath doesn't hold due to the time dependent potentials generated by the ion Paul trap. The energy scale of the atom-ion system is determined by a combination of the atomic bath temperature, the ion's excess micromotion (EMM) and the back action of the atom-ion attraction on the ion's position in the trap. However, it is the position dependent ion's inherent micromotion which acts as an amplifier for the ion's energy during random consecutive collisions. Due to this reason, the ion's energy distribution deviates from Maxwell-Boltzmann (MB) characterized by an exponential tail to one with power-law tail described by Tsallis q-exponential function. Here we report on the observation of a strong deviation from MB to Tsallis energy distribution of a trapped ion. In our experiment, a ground-state cooled 88 Sr+ ion is immersed in an ultra-cold cloud of 87 Rb atoms. The energy scale is determined by either EMM or solely due to the back action on the ion position during a collision with an atom in the trap. Energy distributions are obtained using narrow optical clock spectroscopy.

  16. Improved Curveball Hitting through the Enhancement of Visual Cues.

    ERIC Educational Resources Information Center

    Osborne, Kurt; And Others

    1990-01-01

    The study investigated the effectiveness of using visual cues to highlight the seams of baseballs, to improve the hitting of curveballs by five undergraduate varsity baseball team candidates. Results indicated that subjects hit a greater percentage of marked than unmarked balls. (Author/DB)

  17. Optoelectronic hit/miss transform for screening cervical smear slides

    NASA Astrophysics Data System (ADS)

    Narayanswamy, R.; Turner, R. M.; McKnight, D. J.; Johnson, K. M.; Sharpe, J. P.

    1995-06-01

    An optoelectronic morphological processor for detecting regions of interest (abnormal cells) on a cervical smear slide using the hit/miss transform is presented. Computer simulation of the algorithm tested on 184 Pap-smear images provided 95% detection and 5% false alarm. An optoelectronic implementation of the hit/miss transform is presented, along with preliminary experimental results.

  18. Object Rotation Effects on the Timing of a Hitting Action

    ERIC Educational Resources Information Center

    Scott, Mark A.; van der Kamp, John; Savelsbergh, Geert J. P.; Oudejans, Raoul R. D.; Davids, Keith

    2004-01-01

    In this article, the authors investigated how perturbing optical information affects the guidance of an unfolding hitting action. Using monocular and binocular vision, six participants were required to hit a rectangular foam object, released from two different heights, under four different approach conditions, two with object rotation (to perturb…

  19. 13-kV Ion-Extraction System Being Developed for Inert Gas Ion Engines

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.; Williams, George J.; Wilbur, Paul

    2002-01-01

    A high-voltage ion optics design was chosen for an assumed outer planet or interstellar precursor mission that would require a long-life, high-power, high-specific-impulse krypton ion engine. Such an engine could support energetic space missions to the outer planets or beyond. Detailed performance and lifetime analyses and several inexpensive subscale grid tests were conducted at the NASA Glenn Research Center and at the Colorado State University under a NASA Glenn grant. A subscale grid set of the selected geometry shown was tested at voltages up to 13,000 V. This yielded a krypton ion beam current that would, when scaled to a full-size 50-cm diameter, produce an ion beam with a power of 30 kW at a specific impulse over 14,000 sec. The operational ion beam focusing limits, as a function of ion current per hole, were found to impose requirements of high uniformity on the discharge chamber plasma density. A full-size set of two-grid, 50-cm-diameter titanium ion optics has been fabricated and awaits testing.

  20. Antarctic ozone hole hits record depth

    SciTech Connect

    Not Available

    1991-10-18

    A bad year for the ozone over Antarctica looked like a good bet this year. For the past 2 years, stratospheric ozone destruction has equaled the record set in 1987. Now things look even worse, with a record-setting ozone hole. In 1987, 1989, and 1990, the minimum amount of ozone over Antarctica early each October was 120 to 125 Dobson units compared to the typical level of 220 that prevailed before manmade Chlorofluorocarbons (CFCs) began eating into the ozone layer. The depletion allowed as much as twice the usual amount of biologically damaging ultraviolet light to reach the earth's surface. But researchers took some comfort in the fact that the hole seemed to have hit a barrier to further losses. Now that barrier may have been breached. On 6 October, the satellite-borne Total Ozone Mapping Spectrometer detected an ozone minimum of 110 Dobson units. The region of the lower stratosphere where icy cloud particles and the chlorine of CFCs combine to destroy ozone - between 14 and 24 kilometers - looks much the same as it did in 1987.

  1. Nimodipine in traumatic subarachnoid haemorrhage: a re-analysis of the HIT I and HIT II trials.

    PubMed

    Murray, G D; Teasdale, G M; Schmitz, H

    1996-01-01

    Two large randomised controlled trials have been performed to study the effect of the calcium antagonist nimodipine on the outcome of severe head injury, HIT I [1] amd HIT II [4]. Both trials showed a modest and statistically non-significant increase in the proportion of favourable outcomes in patients treated with nimodipine. A subgroup analysis of the HIT II trial [4, 5] suggested, however, that there could be a substantial protective effect of nimodipine in patients with traumatic subarachnoid haemorrhage (SAH). This report provides a re-analysis of the HIT I data to see whether it provides a re-analysis of the HIT I data to see whether in HIT II. This involved performing a central review of the CT scans for the HIT I patients, to identify those individuals with evidence of traumatic SAH. The sample size was small, but the HIT I data gave no support to the hypothesis that nimodipine is protective in the traumatic SAH subgroup, where 69% of patients had a poor outcome on placebo and 74% of patients had a poor outcome on nimodipine. The data do not exclude the possibility of a clinically relevant beneficial effect of nimodipine in the traumatic SAH subgroup, but further data are required to provide a definitive answer. In addition, we present a pooled analysis of the data from the two trials, which suggests that the overall benefit of treating unselected head injured patients with nimodipine is unlikely to be clinically relevant. PMID:8955434

  2. Recovering Residual Xenon Propellant for an Ion Propulsion System

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani; Skakkottai, P.; wu, Jiunn Jeng

    2006-01-01

    Future nuclear-powered Ion-Propulsion- System-propelled spacecraft such as Jupiter Icy Moon Orbiter (JIMO) will carry more than 10,000 kg of xenon propellant. Typically, a small percentage of this propellant cannot be used towards the end of the mission because of the pressure drop requirements for maintaining flow. For large missions such as JIMO, this could easily translate to over 250 kg of unusable xenon. A proposed system, the Xenon Recovery System (XRS), for recovering almost all of the xenon remaining in the tank, would include a cryopump in the form of a condenser/evaporator that would be alternatively cooled by a radiator, then heated electrically. When the pressure of the xenon in the tank falls below 0.7 MPa (100 psia), the previously isolated XRS will be brought online and the gas from the tank would enter the cryopump that is initially cooled to a temperature below saturation temperature of xenon. This causes xenon liquefaction and further cryopumping from the tank till the cryopump is full of liquid xenon. At this point, the cryopump is heated electrically by small heaters (70 to 80 W) to evaporate the liquid that is collected as high-pressure gas (<7 MPa; 1,000 psia) in an intermediate accumulator. Check valves between the tank and the XRS prevent the reverse flow of xenon during the heating cycle. The accumulator serves as the high-pressure source of xenon gas to the Xenon Feed System (XFS) downstream of the XRS. This cycle is repeated till almost all the xenon is recovered. Currently, this system is being baselined for JIMO.

  3. Mission Benefits of Gridded Ion and Hall Thruster Hybrid Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Polsgrove, Tara

    2006-01-01

    The NASA In-Space Propulsion Technology (ISPT) Project Office has been developing the NEXT gridded ion thruster system and is planning to procure a low power Hall system. The new ion propulsion systems will join NSTAR as NASA's primary electric propulsion system options. Studies have been performed to show mission benefits of each of the stand alone systems. A hybrid ion propulsion system (IPS) can have the advantage of reduced cost, decreased flight time and greater science payload delivery over comparable homogeneous systems. This paper explores possible advantages of combining various thruster options for a single mission.

  4. Code System for Calculating Ion Track Condensed Collision Model.

    1997-05-21

    Version 00 ICOM calculates the transport characteristics of ion radiation for applicaton to radiation protection, dosimetry and microdosimetry, and radiation physics of solids. Ions in the range Z=1-92 are handled. The energy range for protons is 0.001-10,000 MeV. For other ions the energy range is 0.001-100MeV/nucleon. Computed quantities include stopping powers, ranges; spatial, angular and energy distributions of particle current and fluence; spatial distributions of the absorbed dose; and spatial distributions of thermalized ions.

  5. A heavy ion beam probe system for investigation of a modified Penning discharge

    NASA Technical Reports Server (NTRS)

    Kambic, G. X.; Krawczonek, W. M.

    1977-01-01

    An ion beam probe diagnostic system can measure time- and space-resolved profiles of plasma space potential and electron density. In combination with a computer iterative technique, the ion beam probe can determine both the space potential profile in plasmas containing strong electric fields and potentials comparable in magnitude to the energy of the probing ion beam. During ion beam probing of a modified Penning discharge, several groups of secondary ions were observed coming from the plasma with a fixed primary beam energy and momentum. The energies of these ions were within 10 percent of the values predicted by a computer-generated model of the potential profile in the plasma. The mechanical and electronic components of the system are described, with particular emphasis on those features required to probe plasma potentials comparable in magnitude to the ion beam energy.

  6. Production of silver ions from colloidal silver by nanoparticle iontophoresis system.

    PubMed

    Tseng, Kuo-Hsiung; Liao, Chih-Yu

    2011-03-01

    Metal ions, especially the silver ion, were used to treat infection before the initiation of antibiotic therapy. Unfortunately, there is a lack of research on the metallic nanoparticle suspension as a reservoir for metal ion release application. For medical purposes, conversion of colloidal silver into an ionic form is necessary, but not using silver salts (e.g., AgNO3, Ag2SO4), due to the fact that the counter-ion of silver salts may cause problems to the body as the silver ion (Ag+) is consumed. The goal of this research is to develop a silver nanoparticle iontophoresis system (NIS) which can provide a relatively safe bactericidal silver ion solution with a controllable electric field. In this study, ion-selective electrodes were used to identify and observe details of the system's activity. Both qualitative and quantitative data analyses were performed. The experimental results show that the ion releasing peak time (R(PT)) has an inversely proportional relationship with the applied current and voltage. The ion releasing maximum level (R(ML)) and dosage (R(D)) are proportional to the current density and inversely proportional to the voltage, respectively. These results reveal that the nanoparticle iontophoresis system (NIS) is an alternative method for the controlled release of a metal ion and the ion's concentration profile, by controlling the magnitude of current density (1 microA/cm2 equal to 1 ppm/hour) and applied voltage.

  7. Electromagnetic interference assessment of an ion drive electric propulsion system

    NASA Technical Reports Server (NTRS)

    Whittlesey, A. C.

    1979-01-01

    The electromagnetic interference (EMI) form elements of an ion drive electric propulsion system was analyzed, and the effects of EMI interaction with a typical interplanetary spacecraft engineering and scientific subsystems were predicted. SEMCAP, a computerized electromagnetic compatibility assessment code, was used to analyze the impact of EMI noise sources on 65 engineering/telemetry circuits and 48 plasma wave and planetary radio astronomy channels measuring over the range of 100 Hz to 40 MHz in a spacecraft of the Voyager type; manual methods were used to evaluate electrostatics, magnetics, and communications effects. Results indicate that some conducted and radiated spectra are in excess of electromagnetic compatibility specification limits; direct design changes may be required for filtering and shielding of thrust system elements. The worst source of broadband radiated noise appears to be the power processor. The magnetic field necessary to thruster operation is equivalent to about 18 amp-sq m per amp of beam current at right angles to the axis caused by the neutralizer/plume loop.

  8. Ozone loss hits us where we live

    SciTech Connect

    Appenzeller, T.

    1991-11-01

    The news about Earth's ozone layer just keeps getting worse. Three weeks ago, NASA researchers reported that the ozone hole over the Antarctic hit a record depth this year. Now comes the United Nations Environment Program, together with the World Meteorological Organization, with an even more distressing assessment of the state of the ozone layer. For the first time, the 80-member UN panel said, measurements show the ozone shield is eroding over temperate latitudes in summer, exposing crops and people to a larger dose of ultraviolet light just when they are most vulnerable. For a small group of atmospheric modelers, though, the bad news is bittersweet. Four months ago researchers predicted summertime ozone losses of just the magnitude the UN panel has now reported: about 3% over the past decade for northern temperate latitudes. Ozone modelers are encouraged by the agreement, particularly because other models are now yielding the same result. The modeling effort was spurred by earlier measurements showing a serious erosion of ozone at midlatitudes, mainly in winter. In 1988, an analysis of data collected from the ground showed that ozone levels at the latitude of the US were dropping by about 1% to 3% per decade; last April, an analysis of measurements from the satellite-borne Total Ozone Mapping Spectrometer boosted that figure to between 4% and 5%. Those findings raised the question: What mechanisms could be driving the midlatitude losses The fact that the losses seemed to be concentrated in winter suggested one possibility. The winter ozone losses at the poles are driven by chemical reactions taking place on the surface of ice crystals in polar stratospheric clouds. Such clouds don't form at temperate latitudes. But some researchers suggested that masses of air already depleted in ozone or enriched in reactive chlorine by the chemistry in the polar clouds might be escaping to temperate latitudes during the winter.

  9. Sources and transport systems for low energy extreme of ion implantation

    SciTech Connect

    Hershcovitch, A.; Batalin, V.A.; Bugaev, A.S.; Gushenets, V.I.; Alexeyenko, O.; Gurkova, E.; Johnson, B.M.; Kolomiets, A.A.; Kropachev, G.N.; Kuibeda, R.P.; Kulevoy, T.V.; Masunov, E.S.; Oks, E.M.; Pershin, V.I.; Polozov, S.M.; Poole, H.J.; Seleznev, D.N.; Storozhenko, P.A.; Vizir, A.; Svarovski, A.Ya.; Yakushin, P.; Yushkov, G.Yu.

    2010-06-06

    For the past seven years a joint research and development effort focusing on the design of steady state, intense ion sources has been in progress with the ultimate goal being to meet the two, energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. However, since the last Fortier is low energy ion implantation, focus of the endeavor has shifted to low energy ion implantation. For boron cluster source development, we started with molecular ions of decaborane (B{sub 10}H{sub 14}), octadecaborane (B{sub 18}H{sub 22}), and presently our focus is on carborane (C{sub 2}B{sub 10}H{sub 12}) ions developing methods for mitigating graphite deposition. Simultaneously, we are developing a pure boron ion source (without a working gas) that can form the basis for a novel, more efficient, plasma immersion source. Our Calutron-Berna ion source was converted into a universal source capable of switching between generating molecular phosphorous P{sub 4}{sup +}, high charge state ions, as well as other types of ions. Additionally, we have developed transport systems capable of transporting a very large variety of ion species, and simulations of a novel gasless/plasmaless ion beam deceleration method were also performed.

  10. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems

    NASA Astrophysics Data System (ADS)

    Dykstra, J. E.; Biesheuvel, P. M.; Bruning, H.; Ter Heijne, A.

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  11. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems.

    PubMed

    Dykstra, J E; Biesheuvel, P M; Bruning, H; Ter Heijne, A

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density. PMID:25122405

  12. Effect of ion velocity on SHI-induced mixing in Ti/Bi system

    NASA Astrophysics Data System (ADS)

    Bansal, Nisha; Kumar, Sarvesh; Khan, Saif Ahmad; Chauhan, R. S.

    2016-03-01

    Energetic ion beams are proving to be versatile tools for modification and depth profiling of materials. The energy and ion species are the deciding factor in the ion-beam-induced materials modification. Among the various parameters such as electronic energy loss, fluence and heat of mixing, velocity of the ions used for irradiation plays an important role in mixing at the interface. The present study is carried out to find the effect of the velocity of swift heavy ions on interface mixing of a Ti/Bi bilayer system. Ti/Bi/C was deposited on Si substrate at room temperature by an electron gun in a high-vacuum deposition system. Carbon layer is deposited on top to avoid oxidation of the samples. Eighty mega electron volts Au ions and 100 MeV Ag ions with same value of Se for Ti are used for the irradiation of samples at the fluences 1 × 1013-1 × 1014 ions/cm2. Different techniques like Rutherford backscattering spectroscopy, atomic force microscopy and grazing incidence X-ray diffraction were used to characterize the pristine and irradiated samples. The mixing effect is explained in the framework of the thermal spike model. It has been found that the mixing rate is higher for low-velocity Au ions in comparison to high-velocity Ag ions. The result could be explained as due to less energy deposition in thermal spike by high-velocity ions.

  13. Study of nuclear reactions with intense, high-purity, low-energy radioactive ion beams using a versatile multi-configuration dual superconducting-solenoid system

    NASA Astrophysics Data System (ADS)

    Lee, M. Y.; Becchetti, F. D.; O'Donnell, T. W.; Roberts, D. A.; Zimmerman, J. A.; Guimarães, V.; Kolata, J. J.; Peterson, D.; Santi, P.; DeYoung, P. A.; Peaslee, G. F.; Hinnefeld, J. D.

    1999-02-01

    A new device (TwinSol) installed at the Nuclear Structure Laboratory at the University of Notre Dame implements a pair of large-bore 6 T superconducting solenoids for producing relatively pure, high-intensity beams of exotic light nuclei at low-energies (10-80 MeV). Typical beams include 8Li and 6He (T 1/2<1 s). The device efficiently produces, collects and focuses beams onto (or implants into) suitable target foils and test materials. The system uses various combinations of the following detection schemes: XY position sensitive gas counters for time-of-flight and ion ray-tracing; multiple stacks of silicon surface barrier detector telescopes mounted at various angles on a rotating table; 2D position-sensitive silicon detectors (PSDs) for high precision angular measurements; multi-annular, multisectored "CD" detectors for large solid angle (nearly 2π in lab frame), high-collection efficiency (multi-hit) particle detection; and ion-implanted stacks of target foils for off-line detection. Also available are a set of HPGe detectors which will be implemented upon completion of a low-background gamma cave. TwinSol represents an advancement in the application of large-bore superconducting magnet technology, capable of running in persistent mode for weeks without liquid helium (LHe) refill or measurable degradation of magnetic field (<0.1%).

  14. Control of microelectromechanical systems membrane curvature by silicon ion implantation

    NASA Astrophysics Data System (ADS)

    Jin, S.; Mavoori, H.; Kim, J.; Aksyuk, V. A.

    2003-09-01

    Thin silicon membranes in microelectromechanical systems (MEMS) optical devices such as beam-steering, movable mirrors may exhibit undesirable curvature when their surface is metallized with light-reflecting metals to enhance optical performance. We have applied Si+ ion implantations at dose levels of 0.4-5×1016/cm2 into the gold metallization layer to successfully reduce the mirror curvature as well as the degree of its temperature-dependent changes. The curvature change as well as the temperature dependence is found to be dependent on the implantation dose. The mechanism of the observed curvature flattening effect is attributed mostly to the induced compressive stress in gold metallization caused by the insertion of foreign implanted atoms of silicon. Such a Si implantation approach can be useful as a means for post-fabrication correction of unwanted curvature in MEMS membranes, as well as a technique to intentionally introduce a desired degree of curvature if needed. A convenient blanket implantation process can be utilized with minimal contamination problems as Si is a common element already present in the MEMS.

  15. A system for trapping barium ions in a microfabricated surface trap

    SciTech Connect

    Graham, R. D. Sakrejda, T.; Wright, J.; Zhou, Z.; Blinov, B. B.; Chen, S.-P.

    2014-05-15

    We have developed a vacuum chamber and control system for rapid testing of microfabricated surface ion traps. Our system is modular in design and is based on an in-vacuum printed circuit board with integrated filters. We have used this system to successfully trap and cool barium ions and have achieved ion ‘dark' lifetimes of 31.6 s ± 3.4 s with controlled shuttling of ions. We provide a detailed description of the ion trap system including the in-vacuum materials used, control electronics and neutral atom source. We discuss the challenges presented in achieving a system which can work reliably over two years of operations in which the trap under test was changed at least 10 times.

  16. K{sup +} ion source for the heavy ion Induction Linac System Experiment ILSE

    SciTech Connect

    Eylon, S.; Henestroza, E.; Chupp, W.W.; Yu, S.

    1993-05-01

    Low emittance singly charged potassium thermionic ion sources are being developed for the ILSE injector. The ILSE, now under study at LBL, will address the physics issues of particle beams in a heavy ion fusion driver scenario. The K{sup +} ion beam is emitted thermionically into a diode gap from alumina-silicate layers (zeolite) coated uniformly on a porous tungsten cup. The Injector diode design requires a large diameter (4in. to 7in.) source able to deliver high current ({approximately}800 mA) low emittance (E{sub n} < .5 {pi} mm-mr) beam. The SBTE (Single Beam Test Experiment) 120 keV gun was redesigned and modified with the aid of diode optics calculations using the EGUN code to enable the extraction of high currents of about 90 mA out of a one-inch diameter source. We report on the 1in. source fabrication technique and performance, including total current and current density profile measurements using Faraday cups, emittance and phase space profile measurements using the double slit scanning technique, and life time measurements. Furthermore, we shall report on the extension of the fabricating technique to large diameter sources (up to 7in.), measured ion emission performance, measured surface temperature uniform heating power considerations for large sources.

  17. An expert system/ion trap mass spectrometry approach for life support systems monitoring

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Wong, Carla M.; Yost, Richard A.; Johnson, Jodie V.; Yates, Nathan A.; Story, Michael

    1992-01-01

    Efforts to develop sensor and control system technology to monitor air quality for life support have resulted in the development and preliminary testing of a concept based on expert systems and ion trap mass spectrometry (ITMS). An ITMS instrument provides the capability to identify and quantitate a large number of suspected contaminants at trace levels through the use of a variety of multidimensional experiments. An expert system provides specialized knowledge for control, analysis, and decision making. The system is intended for real-time, on-line, autonomous monitoring of air quality. The key characteristics of the system, performance data and analytical capabilities of the ITMS instrument, the design and operation of the expert system, and results from preliminary testing of the system for trace contaminant monitoring are described.

  18. Basic data of polyatomic ion-molecule systems for flue gas discharge modelling

    NASA Astrophysics Data System (ADS)

    Nelson, D.; Benhenni, M.; Yousfi, M.; Eichwald, O.

    2001-11-01

    In the presence of an external electric field, ion transport coefficients (ion mobility and diffusion coefficients) are closely related to the ion-neutral interaction potential. A new generalized potential model, coupled to an optimized Monte Carlo technique, has been developed for the determination of the transport coefficients of polyatomic ions in weakly ionized gases. This corresponds to the polyatomic ion-molecule systems which can affect the electrical behaviour of the flue gas discharges used for the non-thermal plasma reactor for pollution control. The ion-molecule interaction has been described by a rigid core potential model which is adapted for both polar and non-polar systems and also symmetric and asymmetric systems. Momentum transfer cross sections are then determined using a semi-classical approach. The corresponding sets of cross sections including the dominant processes in our intermediate ion energy range (elastic and mainly charge transfer in certain cases) are used in the Monte Carlo code to calculate the ion transport coefficients over a wide range of reduced electric field E/N. These ion transport data fit quite well the drift tube measurements available in the literature for the CO2+/CO2 system, and also for certain weakly polar cases. The case of the H2O+/H2O system is then considered thus giving in this highly polar system the ion swarm data for the first time in the literature. Finally, we have considered with quite good reliability some asymmetric systems such as CO2+/N2 and N2+/CO2 whose ion data are also needed for flue gas discharge modelling.

  19. The Chelyabinsk Meteorite Hits an Anomalous Zone in the Urals

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2013-09-01

    The Chelyabinsk meteorite is "strange" because it hits an area in the Urals where anomalous events are observed: shining skies, light balls, UFOs, electrphonic bolids. The area tectonically occurs at the intersection of two fold belts: Urals and Timan.

  20. Concussion Study Shows Player-To-Player Hits Most Damaging

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_159936.html Concussion Study Shows Player-to-Player Hits Most Damaging ... American football continue to debate how to prevent concussions, a new study using data from devices inside ...

  1. Development of the Engineering Test Satellite-3 (ETS-3) ion engine system

    NASA Technical Reports Server (NTRS)

    Kitamura, S.

    1984-01-01

    The ion engine system onboard the ETS-3 is discussed. The system consists of two electron bombardment type mercury ion engines with 2 mN thrust and 2,000 sec specific impulse and a power conditioner with automatic control functions. The research and development of the system, development of its EM, PM and FM, the system test and the technical achievements leading up to final launch are discussed.

  2. Do pigeons prefer alternatives that include near-hit outcomes?

    PubMed

    Stagner, Jessica P; Case, Jacob P; Sticklen, Mary F; Duncan, Amanda K; Zentall, Thomas R

    2015-07-01

    Pigeons show suboptimal choice on a gambling-like task similar to that shown by humans. Humans also show a preference for gambles in which there are near hits (losses that come close to winning). In the present research, we asked if pigeons would show a preference for alternatives with near-hit-like trials. In Experiment 1, we included an alternative that presented a near hit, in which a stimulus associated with reinforcement (a presumed conditioned reinforcer) changed to a stimulus associated with the absence of reinforcement (a presumed conditioned inhibitor). The pigeons tended to avoid this alternative. In Experiment 2, we varied the duration of the presumed conditioned reinforcer (2 vs. 8 s) that changed to a presumed conditioned inhibitor (8 vs. 2 s) and found that the longer the conditioned reinforcer was presented, the more the pigeons avoided it. In Experiment 3, the near-hit alternative involved an ambiguous stimulus for 8 s that changed to a presumed conditioned reinforcer (or a presumed conditioned inhibitor) for 2 s, but the pigeons still avoided it. In Experiment 4, we controlled for the duration of the conditioned reinforcer by presenting it first for 2 s followed by the ambiguous stimulus for 8 s. Once again, the pigeons avoided the alternative with the near-hit trials. In all 4 experiments, the pigeons tended to avoid alternatives that provided near-hit-like trials. We concluded that humans may be attracted to near-hit trials because near-hit trials give them the illusion of control, whereas this does not appear to be a factor for pigeons.

  3. Verbs in the lexicon: Why is hitting easier than breaking?

    PubMed Central

    Mckoon, Gail; Love, Jessica

    2012-01-01

    Adult speakers use verbs in syntactically appropriate ways. For example, they know implicitly that the boy hit at the fence is acceptable but the boy broke at the fence is not. We suggest that this knowledge is lexically encoded in semantic decompositions. The decomposition for break verbs (e.g. crack, smash) is hypothesized to be more complex than that for hit verbs (e.g. kick, kiss). Specifically, the decomposition of a break verb denotes that “an entity changes state as the result of some external force” whereas the decomposition for a hit verb denotes only that “an entity potentially comes in contact with another entity.” In this article, verbs of the two types were compared in a lexical decision experiment — Experiment 1 — and they were compared in sentence comprehension experiments with transitive sentences (e.g. the car hit the bicycle and the car broke the bicycle) — Experiments 2 and 3. In Experiment 1, processing times were shorter for the hit than the break verbs and in Experiments 2 and 3, processing times were shorter for the hit sentences than the break sentences, results that are in accord with the complexities of the postulated semantic decompositions. PMID:22649484

  4. Superfast Cosmic Jet "Hits the Wall"

    NASA Astrophysics Data System (ADS)

    1999-01-01

    -288. The jet travelled quickly until its advance suddenly was stopped and the endpoint of the jet became brighter than the core. "This fast-moving material obviously hit something," Hjellming said. What did it it hit? "Probably a mixture of external material plus material from a previous jet ejection." Further studies of the collision could yield new information about the physics of cosmic jets. Such jets are believed to be powered by black holes into which material is being drawn. The exact mechanism by which the black hole's gravitational energy accelerates particles to nearly the speed of light is not well understood. There is even dispute about the types of particles ejected. Competing models call for either a mixture of electrons and protons or a mixture of electrons and positrons. Because protons are more than 1,800 times more massive than electrons or positrons (the positively-charged antiparticle of the electron), the electron-proton mixture would be much more massive than the electron-positron pair. Thus, an electron-proton jet is called a heavy jet and an electron-positron jet is called a light jet. A light jet would be much more easily slowed or stopped by tenuous interstellar material than a heavy jet, so the collision of XTE J1748-288's jet may indicate that it is a light jet. "There's still a lot more work to do before anyone can conclude that, but the collision offers the possibility of answering the light-heavy jet question," Hjellming said. A 1998 VLA study by John Wardle of Brandeis University and his colleagues indicated that the jet of a distant quasar is a light, electron-positron jet. Though the black holes in quasars are supermassive, usually millions of times more massive than the Sun, the physics of jet production in them is thought to be similar to the physics of jet production by smaller black holes, only a few times more massive than the sun, such as the one possibly in XTE J1748-288. The VLA is an instrument of the National Radio Astronomy

  5. A high-resolution beam profile measuring system for high-current ion implanters

    NASA Astrophysics Data System (ADS)

    Fujishita, N.; Noguchi, K.; Sasaki, S.; Yamamoto, H.

    1991-04-01

    A high-resolution beam profile measuring system (BPM) has been developed to analyze the correlation between charging damage and the ion beam profile for high-current ion implanters. With the increase of the ion beam current, insulators such as thin oxide layers of VLSI devices are subject to charging damage during ion implantation. To obtain accurate information on the local current density of the ion beam, 125 Faraday cups are placed in the BPM. This system has two measuring modes. One is a topographic mode that can detect the ion beam current density of 12500 sampling points in 30 s. A high-resolution contour map of the current density distribution is displayed on a CRT. The other is a real-time mode in which the current density distribution (125 sampling points) of the ion beam can be monitored every half second on the CRT. In this mode, fine adjustment of the ion beam profile is easily possible by visual control. The charging damage of insulating layers in the TEG (test element group) to the beam profile was investigated using this newly developed BPM. It has been proven that the damage probability increases rapidly above some threshold level of the beam current density. It is confirmed that for high-current implantation a uniform current density distribution of the ion beam is very effective to prevent charging damage. It is concluded that this measuring system is valuable not only for quick analysis of damage phenomena, but also for evaluating machine performance.

  6. The "first hit" toward alcohol reinforcement: role of ethanol metabolites.

    PubMed

    Israel, Yedy; Quintanilla, María Elena; Karahanian, Eduardo; Rivera-Meza, Mario; Herrera-Marschitz, Mario

    2015-05-01

    This review analyzes literature that describes the behavioral effects of 2 metabolites of ethanol (EtOH): acetaldehyde and salsolinol (a condensation product of acetaldehyde and dopamine) generated in the brain. These metabolites are self-administered into specific brain areas by animals, showing strong reinforcing effects. A wealth of evidence shows that EtOH, a drug consumed to attain millimolar concentrations, generates brain metabolites that are reinforcing at micromolar and nanomolar concentrations. Salsolinol administration leads to marked increases in voluntary EtOH intake, an effect inhibited by mu-opioid receptor blockers. In animals that have ingested EtOH chronically, the maintenance of alcohol intake is no longer influenced by EtOH metabolites, as intake is taken over by other brain systems. However, after EtOH withdrawal brain acetaldehyde has a major role in promoting binge-like drinking in the condition known as the "alcohol deprivation effect"; a condition seen in animals that have ingested alcohol chronically, are deprived of EtOH for extended periods, and are allowed EtOH re-access. The review also analyzes the behavioral effects of acetate, a metabolite that enters the brain and is responsible for motor incoordination at low doses of EtOH. Also discussed are the paradoxical effects of systemic acetaldehyde. Overall, evidence strongly suggests that brain-generated EtOH metabolites play a major role in the early ("first-hit") development of alcohol reinforcement and in the generation of relapse-like drinking.

  7. Emulating Solid-State Physics with a Hybrid System of Ultracold Ions and Atoms

    NASA Astrophysics Data System (ADS)

    Bissbort, U.; Cocks, D.; Negretti, A.; Idziaszek, Z.; Calarco, T.; Schmidt-Kaler, F.; Hofstetter, W.; Gerritsma, R.

    2013-08-01

    We propose and theoretically investigate a hybrid system composed of a crystal of trapped ions coupled to a cloud of ultracold fermions. The ions form a periodic lattice and induce a band structure in the atoms. This system combines the advantages of high fidelity operations and detection offered by trapped ion systems with ultracold atomic systems. It also features close analogies to natural solid-state systems, as the atomic degrees of freedom couple to phonons of the ion lattice, thereby emulating a solid-state system. Starting from the microscopic many-body Hamiltonian, we derive the low energy Hamiltonian, including the atomic band structure, and give an expression for the atom-phonon coupling. We discuss possible experimental implementations such as a Peierls-like transition into a period-doubled dimerized state.

  8. Emulating Solid-State Physics with a Hybrid System of Ultracold Ions and Atoms

    NASA Astrophysics Data System (ADS)

    Hofstetter, Walter; Ulf, Bissbort; Cocks, Daniel; Negretti, Antonio; Idziaszek, Zbigniew; Calarco, Tommaso; Schmidt-Kaler, Ferdinand; Gerritsma, Rene

    2014-05-01

    We propose and theoretically investigate a hybrid system composed of a crystal of trapped ions coupled to a cloud of ultracold fermions. The ions form a periodic lattice and induce a band structure in the atoms. This system combines the advantages of high fidelity operations and detection offered by trapped ion systems with ultracold atomic systems. It also features close analogies to natural solid-state systems, as the atomic degrees of freedom couple to phonons of the ion lattice, thereby emulating a solid-state system. Starting from the microscopic many-body Hamiltonian, we derive the low energy Hamiltonian, including the atomic band structure, and give an expression for the atom-phonon coupling. We discuss possible experimental implementations such as a Peierls-like transition into a period-doubled dimerized state.

  9. Emulating solid-state physics with a hybrid system of ultracold ions and atoms.

    PubMed

    Bissbort, U; Cocks, D; Negretti, A; Idziaszek, Z; Calarco, T; Schmidt-Kaler, F; Hofstetter, W; Gerritsma, R

    2013-08-23

    We propose and theoretically investigate a hybrid system composed of a crystal of trapped ions coupled to a cloud of ultracold fermions. The ions form a periodic lattice and induce a band structure in the atoms. This system combines the advantages of high fidelity operations and detection offered by trapped ion systems with ultracold atomic systems. It also features close analogies to natural solid-state systems, as the atomic degrees of freedom couple to phonons of the ion lattice, thereby emulating a solid-state system. Starting from the microscopic many-body Hamiltonian, we derive the low energy Hamiltonian, including the atomic band structure, and give an expression for the atom-phonon coupling. We discuss possible experimental implementations such as a Peierls-like transition into a period-doubled dimerized state.

  10. Control system renewal for efficient operation in RIKEN 18 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Uchiyama, A.; Ozeki, K.; Higurashi, Y.; Kidera, M.; Komiyama, M.; Nakagawa, T.

    2016-02-01

    A RIKEN 18 GHz electron cyclotron resonance ion source (18 GHz ECRIS) is used as an external ion source at the Radioactive Ion Beam Factory (RIBF) accelerator complex to produce an intense beam of medium-mass heavy ions (e.g., Ca and Ar). In most components that comprise the RIBF, the control systems (CSs) are integrated by the Experimental Physics and Industrial Control System (EPICS). On the other hand, a non-EPICS-based system has hardwired controllers, and it is used in the 18 GHz ECRIS CS as an independent system. In terms of efficient and effective operation, the 18 GHz ECRIS CS as well as the RIBF CS should be renewed using EPICS. Therefore, we constructed an 18 GHz ECRIS CS by using programmable logic controllers with embedded EPICS technology. In the renewed system, an operational log system was developed as a new feature, for supporting of the 18 GHz ECRIS operation.

  11. Emulating solid-state physics with a hybrid system of ultracold ions and atoms.

    PubMed

    Bissbort, U; Cocks, D; Negretti, A; Idziaszek, Z; Calarco, T; Schmidt-Kaler, F; Hofstetter, W; Gerritsma, R

    2013-08-23

    We propose and theoretically investigate a hybrid system composed of a crystal of trapped ions coupled to a cloud of ultracold fermions. The ions form a periodic lattice and induce a band structure in the atoms. This system combines the advantages of high fidelity operations and detection offered by trapped ion systems with ultracold atomic systems. It also features close analogies to natural solid-state systems, as the atomic degrees of freedom couple to phonons of the ion lattice, thereby emulating a solid-state system. Starting from the microscopic many-body Hamiltonian, we derive the low energy Hamiltonian, including the atomic band structure, and give an expression for the atom-phonon coupling. We discuss possible experimental implementations such as a Peierls-like transition into a period-doubled dimerized state. PMID:24010420

  12. Diagnostic system design for the Ion Auxiliary Propulsion System (IAPS). Flight tests of two 8 cm mercury ion

    NASA Astrophysics Data System (ADS)

    Hurst, E. B.; Thomas, G. Z.

    The mechanical, thermal, electrical design and the ground test results of four types of detectors are explained. The DSS is designed to measure the thruster efflux material deposition and S/C potential relative to the local plasma in the vicinity of two 8 cm mercury ion thrusters. The DSS consists of two quartz crystal microbalance (QCM) detectors, one potential probe, nine solar cell arrays, seven ion collectors and two electronic packages.

  13. Diagnostic system design for the Ion Auxiliary Propulsion System (IAPS). Flight tests of two 8 cm mercury ion

    NASA Technical Reports Server (NTRS)

    Hurst, E. B.; Thomas, G. Z.

    1981-01-01

    The mechanical, thermal, electrical design and the ground test results of four types of detectors are explained. The DSS is designed to measure the thruster efflux material deposition and S/C potential relative to the local plasma in the vicinity of two 8 cm mercury ion thrusters. The DSS consists of two quartz crystal microbalance (QCM) detectors, one potential probe, nine solar cell arrays, seven ion collectors and two electronic packages.

  14. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak

    SciTech Connect

    Zou, G. Q.; Lei, G. J.; Cao, J. Y.; Duan, X. R.

    2012-07-15

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage ({approx}100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  15. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak.

    PubMed

    Zou, G Q; Lei, G J; Cao, J Y; Duan, X R

    2012-07-01

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage (∼100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak. PMID:22852685

  16. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak

    NASA Astrophysics Data System (ADS)

    Zou, G. Q.; Lei, G. J.; Cao, J. Y.; Duan, X. R.

    2012-07-01

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage (˜100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  17. Formation and sustainment of a very low aspect ratio tokamak using coaxial helicity injection (the Helicity Injected Torus (HIT) experiment)

    SciTech Connect

    Jarboe, T.R.; Nelson, B.A.

    1992-01-01

    In the paper we will detail the progress of the HIT experiment construction, including the following components: preliminary data and interpretation; diagnostic systems; vacuum vessel and pumping system; helicity source and power supplies; toroidal field coil and power supply; data acquisition system; collaboration with general atomics, with a brief summary given on each.

  18. The Award for the Development of Ion Exchange Systems for Food Processing

    NASA Astrophysics Data System (ADS)

    Yao, Eiya

    In the food industry, ion exchange resins have been used not only for water treatment, but also for the purification of foodstuff itself. Here I will introduce some topics in the development and improvement of ion exchange systems for food proccssing that I have worked on.

  19. Performance limits of ion extraction systems with non-circular apertures.

    PubMed

    Shagayda, A; Madeev, S

    2016-04-01

    A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at which there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures. PMID:27131665

  20. Dialysis system. [using ion exchange resin membranes permeable to urea molecules

    NASA Technical Reports Server (NTRS)

    Mueller, W. A. (Inventor)

    1978-01-01

    The improved hemodialysis system utilizes a second polymeric membrane having dialyzate in contact with one surface and a urea decomposition solution in contact with the other surface. The membrane selectively passes urea from the dialyzate into the decomposition solution, while preventing passage of positively charged metal ions from the dialyzate into the solution and ammonium ions from the solution into the dialyzate.

  1. Performance limits of ion extraction systems with non-circular apertures

    NASA Astrophysics Data System (ADS)

    Shagayda, A.; Madeev, S.

    2016-04-01

    A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at which there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures.

  2. Biological systems: from water radiolysis to carbon ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Beuve, Michael; Moreau, Jean-Michel; Rodriguez, Claire; Testa, Etienne

    2015-07-01

    Hadron therapy is an innovative cancer treatment method based on the acceleration of light ions at high energy. In addition to their interesting profile of dose deposition, which ensures accurate targeting of localized tumors, carbon ions offer biological properties that lead to an efficient treatment for radio- and chemo-resistant tumors and to provide a boost for tumors in hypoxia. This paper is a short review of the progress in theoretical, experimental, fundamental and applied research, aiming at understanding the origin of the biological benefits of light ions better. As a limit of such a vast and multidisciplinary domain, this review adopts the point of view of the physicists, leaning on results obtained in connection with CIMAP's IRRABAT platform.

  3. Plasma simulation in a hybrid ion electric propulsion system

    NASA Astrophysics Data System (ADS)

    Jugroot, Manish; Christou, Alex

    2015-04-01

    An exciting possibility for the next generation of satellite technology is the microsatellite. These satellites, ranging from 10-500 kg, can offer advantages in cost, reduced risk, and increased functionality for a variety of missions. For station keeping and control of these satellites, a suitable compact and high efficiency thruster is required. Electrostatic propulsion provides a promising solution for microsatellite thrust due to their high specific impulse. The rare gas propellant is ionized into plasma and generates a beam of high speed ions by electrostatic processes. A concept explored in this work is a hybrid combination of dc ion engines and hall thrusters to overcome space-charge and lifetime limitations of current ion thruster technologies. A multiphysics space and time-dependent formulation was used to investigate and understand the underlying physical phenomena. Several regions and time scales of the plasma have been observed and will be discussed.

  4. Sulfur control in ion-conducting membrane systems

    DOEpatents

    Stein, VanEric Edward; Richards, Robin Edward; Brengel, David Douglas; Carolan, Michael Francis

    2003-08-05

    A method for controlling the sulfur dioxide partial pressure in a pressurized, heated, oxygen-containing gas mixture which is contacted with an ion-conducting metallic oxide membrane which permeates oxygen ions. The sulfur dioxide partial pressure in the oxygen-depleted non-permeate gas from the membrane module is maintained below a critical sulfur dioxide partial pressure, p.sub.SO2 *, to protect the membrane material from reacting with sulfur dioxide and reducing the oxygen flux of the membrane. Each ion-conducting metallic oxide material has a characteristic critical sulfur dioxide partial pressure which is useful in determining the required level of sulfur removal from the feed gas and/or from the fuel gas used in a direct-fired feed gas heater.

  5. Development of a fully integrated analysis system for ions based on ion-selective optodes and centrifugal microfluidics

    NASA Technical Reports Server (NTRS)

    Johnson, R. D.; Badr, I. H.; Barrett, G.; Lai, S.; Lu, Y.; Madou, M. J.; Bachas, L. G.; Daunert, S. (Principal Investigator)

    2001-01-01

    A fully integrated, miniaturized analysis system for ions based on a centrifugal microfluidics platform and ion-selective optode membranes is described. The microfluidic architecture is composed of channels, five solution reservoirs, a measuring chamber, and a waste reservoir manufactured onto a disk-shaped substrate of poly(methyl methacrylate). Ion-selective optode membranes, composed of plasticized poly(vinyl chloride) impregnated with an ionophore, a proton chromoionophore, and a lipophilic anionic additive, were cast, with a spin-on device, onto a support layer and then immobilized on the disk. Fluid propulsion is achieved by the centrifugal force that results from spinning the disk, while a system of valves is built onto the disk to control flow. These valves operate based on fluid properties and fluid/substrate interactions and are controlled by the angular frequency of rotation. With this system, we have been able to deliver calibrant solutions, washing buffers, or "test" solutions to the measuring chamber where the optode membrane is located. An analysis system based on a potassium-selective optode has been characterized. Results indicate that optodes immobilized on the platform demonstrate theoretical responses in an absorbance mode of measurement. Samples of unknown concentration can be quantified to within 3% error by fitting the response function for a given optode membrane using an acid (for measuring the signal for a fully protonated chromoionophore), a base (for fully deprotonated chromoionophore), and two standard solutions. Further, the ability to measure ion concentrations by employing one standard solution in conjunction with acid and base and with two standards alone were studied to delineate whether the current architecture could be simplified. Finally, the efficacy of incorporating washing steps into the calibration protocol was investigated.

  6. Extraction characteristics of a low-energy ion beam system with a remote plasma chamber

    NASA Astrophysics Data System (ADS)

    Vasquez, M. R.; Wada, M.

    2016-02-01

    Low-energy argon beams were extracted from a dual-chamber ion source system. The first chamber is a quartz cylinder where dense inductively coupled plasmas were produced using 13.56 MHz radio frequency (rf) power. The discharge was driven into an adjacent chamber which acts as a reservoir for ion beam extraction using a dual-electrode extractor configuration. Extraction of ions from the second chamber with energies in the 100 eV range was achieved while minimizing fluctuations induced by the rf signal. A custom-built retarding potential analyzer was used to analyze the effectiveness of ion beam transport using the remote plasma chamber. Well-defined beams were extracted between 60 and 100 V extraction potentials at 50-100 W rf powers. An increase in rf power resulted in an increase in average ion energy, increase in ion current density while the energy spread remains constant.

  7. Simple scheme for preparing W states and cloning via adiabatic passage in ion-trap systems

    NASA Astrophysics Data System (ADS)

    Yang, Rong-Can; Li, Hong-Cai; Lin, Xiu; Huang, Zhi-Ping; Xie, Hong; Lin, Jian-Feng; Huang, Gui-Ru

    2007-11-01

    We propose a simple protocol for the generation of W states and the implementation of phase-covariant cloning and anticloning machines via adiabatic passage in ion-trap system. In the present scheme, the system state evolves in the dark space during the whole procedure. We only use the two-level ions to act as memory and do not require the transfer quantum information from ions to the vibrational mode, which makes the system simple and robust against decoherence. Moreover, the proposal may be feasible based on current technologies.

  8. A north-south stationkeeping ion thruster system for ATS-F.

    NASA Technical Reports Server (NTRS)

    Worlock, R.; James, E.; Ramsey, W.; Trump, G.; Gant, G.; Jan, L.; Bartlett, R.

    1972-01-01

    An ion thruster system is being developed for the ATS-F satellite to demonstrate the application of ion thruster technology to the synchronous satellite north-south stationkeeping mission. The cesium bombardment ion thruster develops one millipound thrust at 2600 seconds specific impulse and provides thrust vectoring by accelerator electrode displacement. The propellant system is sized for two years operation at 25 percent duty cycle. Power conditioning circuitry is based on transistor inverters switching at 10 kHz. Thirteen command channels allow flexibility in operation; 12 telemetry channels provide information on system performance. Input power is less than 150 watts.

  9. System integration of RF based negative ion experimental facility at IPR

    NASA Astrophysics Data System (ADS)

    Bansal, G.; Bandyopadhyay, M.; Singh, M. J.; Gahlaut, A.; Soni, J.; Pandya, K.; Parmar, K. G.; Sonara, J.; Chakraborty, A.

    2010-02-01

    The setting up of RF based negative ion experimental facility shall witness the beginning of experiments on the negative ion source fusion applications in India. A 1 MHz RF generator shall launch 100 kW RF power into a single driver on the plasma source to produce a plasma of density ~5 × 1012 cm-3. The source can deliver a negative ion beam of ~10 A with a current density of ~30 mA/cm2 and accelerated to 35 kV through an electrostatic ion accelerator. The experimental system is similar to a RF based negative ion source, BATMAN, presently operating at IPP. The subsystems for source operation are designed and procured principally from indigenous resources, keeping the IPP configuration as a base line. The operation of negative ion source is supported by many subsystems e.g. vacuum pumping system with gate valves, cooling water system, gas feed system, cesium delivery system, RF generator, high voltage power supplies, data acquisition and control system, and different diagnostics. The first experiments of negative ion source are expected to start at IPR from the middle of 2009.

  10. Comparative investigation of the energetic ion spectra comprising the magnetospheric ring currents of the solar system

    PubMed Central

    Mauk, B H

    2014-01-01

    Investigated here are factors that control the intensities and shapes of energetic ion spectra that make up the ring current populations of the strongly magnetized planets of the solar system, specifically those of Earth, Jupiter, Saturn, Uranus, and Neptune. Following a previous and similar comparative investigation of radiation belt electrons, we here turn our attention to ions. Specifically, we examine the possible role of the differential ion Kennel-Petschek limit, as moderated by Electromagnetic Ion Cyclotron (EMIC) waves, as a standard for comparing the most intense ion spectra within the strongly magnetized planetary magnetospheres. In carrying out this investigation, the substantial complexities engendered by the very different ion composition distributions of these diverse magnetospheres must be addressed, given that the dispersion properties of the EMIC waves are strongly determined by the ion composition of the plasmas within which the waves propagate. Chosen for comparison are the ion spectra within these systems that are the most intense observed, specifically at 100 keV and 1 MeV. We find that Earth and Jupiter are unique in having their most intense ion spectra likely limited and sculpted by the Kennel-Petschek process. The ion spectra of Saturn, Uranus, and Neptune reside far below their respective limits and are likely limited by interactions with gas and dust (Saturn) and by the absence of robust ion acceleration processes (Uranus and Neptune). Suggestions are provided for further testing the efficacy of the differential Kennel-Petschek limit for ions using the Van Allen Probes. PMID:26167438

  11. High-performance control system for a heavy-ion medical accelerator

    SciTech Connect

    Lancaster, H.D.; Magyary, S.B.; Sah, R.C.

    1983-03-01

    A high performance control system is being designed as part of a heavy ion medical accelerator. The accelerator will be a synchrotron dedicated to clinical and other biomedical uses of heavy ions, and it will deliver fully stripped ions at energies up to 800 MeV/nucleon. A key element in the design of an accelerator which will operate in a hospital environment is to provide a high performance control system. This control system will provide accelerator modeling to facilitate changes in operating mode, provide automatic beam tuning to simplify accelerator operations, and provide diagnostics to enhance reliability. The control system being designed utilizes many microcomputers operating in parallel to collect and transmit data; complex numerical computations are performed by a powerful minicomputer. In order to provide the maximum operational flexibility, the Medical Accelerator control system will be capable of dealing with pulse-to-pulse changes in beam energy and ion species.

  12. Conceptual Design of the Nuclear Electronic Xenon Ion System (NEXIS)

    NASA Technical Reports Server (NTRS)

    Monheiser, Jeff; Polk, Jay; Randolph, Tom

    2004-01-01

    In support of the NEXIS program, Aerojet-Redmond Operations, with review and input from the JPL and Boeing, has completed the design for a development model (DM) discharge chamber assembly and main discharge cathode assembly. These efforts along with the work by JPL to develop the carbon-carbon-composite ion optics assembly have resulted in a complete ion engine design. The goal of the NEXIS program is to significantly advance the current state of the art by developing an ion engine capable of operating at an input power of 20kW, an Isp of 7500 sec and have a total xenon through put capability of 2000 kg. In this paper we will describe the methodology used to design the discharge chamber and cathode assemblies and describe the resulting final design. Specifics will include the concepts used for the mounting of the ion optics along with the concepts used for the gimbal mounts. In addition, we will present results of a vibrational analysis showing how the engine will respond to a typical Delta IV heavy vibration spectrum.

  13. Stochastic, weighted hit size theory of cellular radiobiological action

    SciTech Connect

    Bond, V.P.; Varma, M.N.

    1982-01-01

    A stochastic theory that appears to account well for the observed responses of cell populations exposed in radiation fields of different qualities and for different durations of exposure is described. The theory appears to explain well most cellular radiobiological phenomena observed in at least autonomous cell systems, argues for the use of fluence rate (phi) instead of absorbed dose for quantification of the amount of radiation involved in low level radiation exposure. With or without invoking the cell sensitivity function, the conceptual improvement would be substantial. The approach suggested also shows that the absorbed dose-cell response functions currently employed do not reflect the spectrum of cell sensitivities to increasing cell doses of a single agent, nor can RBE represent the potency ratio for different agents that can produce similar quantal responses. Thus, for accurate comparison of cell sensitivities among different cells in the same individual, or between the cells in different kinds of individuals, it is necessary to quantify cell sensitivity in terms of the hit size weighting or cell sensitivity function introduced here. Similarly, this function should be employed to evaluate the relative potency of radiation and other radiomimetic chemical or physical agents.

  14. Ion-Specific Nutrient Management in Closed Systems: The Necessity for Ion-Selective Sensors in Terrestrial and Space-Based Agriculture and Water Management Systems

    PubMed Central

    Bamsey, Matthew; Graham, Thomas; Thompson, Cody; Berinstain, Alain; Scott, Alan; Dixon, Michael

    2012-01-01

    The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenhouse sector has invested in research examining the potential of a number of these technologies to meet the industry's demanding requirements, and although no ideal solution yet exists for on-line measurement, growers do utilize technologies such as high-performance liquid chromatography to provide off-line measurements. An analogous situation exists on the International Space Station where, technological solutions are sought, but currently on-orbit water quality monitoring is considerably restricted. This paper examines the specific advantages that on-line ion-selective sensors could provide to plant production systems both terrestrially and when utilized in space-based biological life support systems and how similar technologies could be applied to nominal on-orbit water quality monitoring. A historical development and technical review of the various ion-selective monitoring technologies is provided. PMID:23201999

  15. Ion-specific nutrient management in closed systems: the necessity for ion-selective sensors in terrestrial and space-based agriculture and water management systems.

    PubMed

    Bamsey, Matthew; Graham, Thomas; Thompson, Cody; Berinstain, Alain; Scott, Alan; Dixon, Michael

    2012-10-01

    The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenhouse sector has invested in research examining the potential of a number of these technologies to meet the industry's demanding requirements, and although no ideal solution yet exists for on-line measurement, growers do utilize technologies such as high-performance liquid chromatography to provide off-line measurements. An analogous situation exists on the International Space Station where, technological solutions are sought, but currently on-orbit water quality monitoring is considerably restricted. This paper examines the specific advantages that on-line ion-selective sensors could provide to plant production systems both terrestrially and when utilized in space-based biological life support systems and how similar technologies could be applied to nominal on-orbit water quality monitoring. A historical development and technical review of the various ion-selective monitoring technologies is provided.

  16. A novel capsule-based self-recovery system with a chloride ion trigger

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Tang, Jiaoning; Zhu, Guangming; Han, Ningxu; Schlangen, Erik; Dong, Biqin; Wang, Xianfeng; Xing, Feng

    2015-06-01

    Steel is prone to corrosion induced by chloride ions, which is a serious threat to reinforced concrete structures, especially in marine environments. In this work, we report a novel capsule-based self-recovery system that utilizes chloride ions as a trigger. These capsules, which are functionalized via a smart response to chloride ions, are fabricated using a silver alginate hydrogel that disintegrates upon contact with chloride ions, and thereby releases the activated core materials. The experimental results show that the smart capsules respond to a very low concentration of chloride ions (0.1 wt%). Therefore, we believe that this novel capsule-based self-recovery system will exhibit a promising prospect for self-healing or corrosion inhibition applications.

  17. RF System Requirements for a Medium-Energy Electron-Ion Collider (MEIC) at JLab

    SciTech Connect

    Rimmer, Robert A; Hannon, Fay E; Guo, Jiquan; Huang, Shichun; Huang, Yulu; Wang, Haipeng; Wang, S

    2015-09-01

    JLab is studying options for a medium energy electron-ion collider that could fit on the JLab site and use CEBAF as a full-energy electron injector. A new ion source, linac and booster would be required, together with collider storage rings for the ions and electrons. In order to achieve the maximum luminosity these will be high-current storage rings with many bunches. We present the high-level RF system requirements for the storage rings, ion booster ring and high-energy ion beam cooling system, and describe the technology options under consideration to meet them. We also present options for staging that might reduce the initial capital cost while providing a smooth upgrade path to a higher final energy. The technologies under consideration may also be useful for other proposed storage ring colliders or ultimate light sources.

  18. Validation of concussion risk curves for collegiate football players derived from HITS data.

    PubMed

    Funk, James R; Rowson, Steven; Daniel, Ray W; Duma, Stefan M

    2012-01-01

    For several years, Virginia Tech and other schools have measured the frequency and severity of head impacts sustained by collegiate American football players in real time using the Head Impact Telemetry (HIT) System of helmet-mounted accelerometers. In this study, data from 37,128 head impacts collected at Virginia Tech during games from 2006 to 2010 were analyzed. Peak head acceleration exceeded 100 g in 516 impacts, and the Head Injury Criterion (HIC) exceeded 200 in 468 impacts. Four instrumented players in the dataset sustained a concussion. These data were used to develop risk curves for concussion as a function of peak head acceleration and HIC. The validity of this biomechanical approach was assessed using epidemiological data on concussion incidence from other sources. Two specific aspects of concussion incidence were addressed: the variation by player position, and the frequency of repeat concussions. The HIT System data indicated that linemen sustained the highest overall number of head impacts, while skill positions sustained a higher number of more severe head impacts (peak acceleration > 100 g or HIC > 200). When weighted using injury risk curves, the HIT System data predicted a higher incidence of concussion in skill positions compared to linemen at rates that were in strong agreement with the epidemiological literature (Pearson's r = 0.72-0.87). The predicted rates of repeat concussions (21-39% over one season and 33-50% over five seasons) were somewhat higher than the ranges reported in the epidemiological literature. These analyses demonstrate that simple biomechanical parameters that can be measured by the HIT System possess a high level of power for predicting concussion.

  19. HIT: a new approach for hiding multimedia information in text

    NASA Astrophysics Data System (ADS)

    El-Kwae, Essam A.; Cheng, Li

    2002-04-01

    A new technique for hiding multimedia data in text, called the Hiding in Text (HIT) technique, is introduced. The HIT technique can transform any type of media represented by a long binary string into innocuous text that follows correct grammatical rules. This technique divides English words into types where each word can appear in any number of types. For each type, there is a dictionary, which maps words to binary codes. Marker types are special types whose words do not repeat in any other type. Each generated sentence must include at least one word from the marker type. In the hiding phase, a binary string is input to the HIT encoding algorithm, which then selects sentence templates at random. The output is a set of English sentences according to the selected templates and the dictionaries of types. In the retrieving phase, the HIT technique uses the position of the marker word to identify the template used to build each sentence. The proposed technique greatly improves the efficiency and the security features of previous solutions. Examples for hiding text and image information in a cover text are given to illustrate the HIT technique.

  20. Experimental Investigation of the 2D Ion Beam Profile Generated by an ESI Octopole-QMS System

    NASA Astrophysics Data System (ADS)

    Syed, Sarfaraz U. A. H.; Eijkel, Gert B.; Kistemaker, Piet; Ellis, Shane; Maher, Simon; Smith, Donald F.; Heeren, Ron M. A.

    2014-10-01

    In this paper, we have employed an ion imaging approach to investigate the behavior of ions exiting from a quadrupole mass spectrometer (QMS) system that employs a radio frequency octopole ion guide before the QMS. An in-vacuum active pixel detector (Timepix) is employed at the exit of the QMS to image the ion patterns. The detector assembly simultaneously records the ion impact position and number of ions per pixel in every measurement frame. The transmission characteristics of the ion beam exiting the QMS are studied using this imaging detector under different operating conditions. Experimental results confirm that the ion spatial distribution exiting the QMS is heavily influenced by ion injection conditions. Furthermore, ion images from Timepix measurements of protein standards demonstrate the capability to enhance the quality of the mass spectral information and provide a detailed insight in the spatial distribution of different charge states (and hence different m/z) ions exiting the QMS.

  1. A one-dimensional ion beam figuring system for x-ray mirror fabrication

    SciTech Connect

    Idir, Mourad Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Lauer, Ken; Conley, Ray; Rennie, Kent; Kahn, Jim; Nethery, Richard; Zhou, Lin

    2015-10-15

    We report on the development of a one-dimensional Ion Beam Figuring (IBF) system for x-ray mirror polishing. Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The system is based on a state of the art sputtering deposition system outfitted with a gridded radio frequency inductive coupled plasma ion beam source equipped with ion optics and dedicated slit developed specifically for this application. The production of an IBF system able to produce an elongated removal function rather than circular is presented in this paper, where we describe in detail the technical aspect and present the first obtained results.

  2. Miniaturized gas chromatograph-Paul ion trap system: applications to environmental monitoring

    NASA Technical Reports Server (NTRS)

    Shortt, B. J.; Darrach, M. R.; Holland, Paul M.; Chutjian, A.

    2004-01-01

    A miniature gas chromatograph (GC) and miniature Paul ion trap (PT) mass spectrometer system has been developed for identifying and quantifying chemical species present in closed environments having a complex mixture of gases.

  3. A one-dimensional ion beam figuring system for x-ray mirror fabrication

    SciTech Connect

    Idir, Mourad; Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Lauer, Ken; Conley, Ray; Rennie, Kent; Kahn, Jim; Nethery, Richard; Zhou, Lin

    2015-10-01

    We report on the development of a one-dimensional Ion Beam Figuring (IBF) system for x-ray mirror polishing. Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The system is based on a state of the art sputtering deposition system outfitted with a gridded radio frequency inductive coupled plasma ion beam source equipped with ion optics and dedicated slit developed specifically for this application. The production of an IBF system able to produce an elongated removal function rather than circular is presented in this paper, where we describe in detail the technical aspect and present the first obtained results. (C) 2015 AIP Publishing LLC.

  4. A one-dimensional ion beam figuring system for x-ray mirror fabrication.

    PubMed

    Idir, Mourad; Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Lauer, Ken; Conley, Ray; Rennie, Kent; Kahn, Jim; Nethery, Richard; Zhou, Lin

    2015-10-01

    We report on the development of a one-dimensional Ion Beam Figuring (IBF) system for x-ray mirror polishing. Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The system is based on a state of the art sputtering deposition system outfitted with a gridded radio frequency inductive coupled plasma ion beam source equipped with ion optics and dedicated slit developed specifically for this application. The production of an IBF system able to produce an elongated removal function rather than circular is presented in this paper, where we describe in detail the technical aspect and present the first obtained results.

  5. A one-dimensional ion beam figuring system for x-ray mirror fabrication.

    PubMed

    Idir, Mourad; Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Lauer, Ken; Conley, Ray; Rennie, Kent; Kahn, Jim; Nethery, Richard; Zhou, Lin

    2015-10-01

    We report on the development of a one-dimensional Ion Beam Figuring (IBF) system for x-ray mirror polishing. Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The system is based on a state of the art sputtering deposition system outfitted with a gridded radio frequency inductive coupled plasma ion beam source equipped with ion optics and dedicated slit developed specifically for this application. The production of an IBF system able to produce an elongated removal function rather than circular is presented in this paper, where we describe in detail the technical aspect and present the first obtained results. PMID:26520997

  6. Calculating chemical equilibria in the heparin-Co2+ ion-glycine system

    NASA Astrophysics Data System (ADS)

    Feofanova, M. A.; Frantseva, Yu. V.; Zhuravlev, E. V.; Ryasensky, S. S.; Baranova, N. V.

    2013-08-01

    Results from investigating interactions in the heparin-Co2+ ion-glycine system are presented. The stoichiometry of cobalt complexes with heparin and glycine compositions CoOHHtpGly4- and CoHepGly3- is established.

  7. A business case for HIT adoption: effects of "meaningful use" EHR financial incentives on clinic revenue.

    PubMed

    Behkami, Nima A; Dorr, David A; Morrice, Stuart

    2010-01-01

    The goal of this study is to describe a framework that allows decision makers to efficiently evaluate factors that affect Electronic Health Record (EHR) adoption and test suitable interventions; specifically financial incentives. The United States healthcare delivery system is experiencing a transformation to improve population health. There is strong agreement that "meaningful use" of Health Information Technology (HIT) is a major enabler in this effort. However it's also understood that the high cost of implementing an EHR is an obstacle for adoption. To help understand these complexities we developed a simulation model designed to capture the dynamic nature of policy interventions that affect the adoption of EHR. We found that "Effective" use of HIT approaches break-even-point and larger clinic revenue many times faster that "average" or "poor" use of HIT. This study uses a systems perspective to the evaluate EHR adoption process through the "meaningful use" redesign as proposed in the American Reinvestment and Recovery Act 2009 in the United States healthcare industry by utilizing the System Dynamics methodology and Scenario Analysis.

  8. Contamination Effects of Getter Ion and Titanium Sublimation Pumped Systems on Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Visentine, James T.; Richmond, Robert G.

    1973-01-01

    Previous studies have indicated that ultraclean vacuum can be produced when titanium sublimation pumps are used in conjunction with getter-ion pumps. Experiments are described in which the degrees of cleanliness of a typical getter-ion, titanium sublimation-pumped system were monitored by measuring the effects of surface contamination on the reflectance of evaporated vacuum ultraviolet mirrors. Results are presented which indicate that severe reflectance losses occurred when startup of a getter-ion pump was initiated at too high a chamber pressure. Significant reflectance losses also occurred as a result of titanium sublimation-pump operation. These data are reviewed and recommendations for improved system performance are presented.

  9. New high-efficiency ion-trap mobility detection system for narcotics

    NASA Astrophysics Data System (ADS)

    McGann, William J.

    1997-02-01

    A new patented Ion Trap Mobility Spectrometer design is presented. Conventional IMS designs typically operate below 0.1 percent efficiency. This is due primarily to electric field driven, sample ion discharge on a shutter grid. Since 99.9 percent of the sample ions generated in the reaction region are lost int his discharge process, the sensitivity of conventional systems is limited. The new design provides greater detection efficiency than conventional designs through the use of an 'ion trap' concept. The paper describes the plasma and sample ion dynamics in the reaction region of the new detector and discusses the advantages of utilizing a 'field-free' space to generate sample ions with high efficiency. Fast electronic switching is described which is used to perturb the field-free space and pulse the sample ions into the drift region for separation and subsequent detection using pseudo real-time software for analysis and display of the data. One application for this new detector is now being developed, a portable, hand-held system with switching capability for the detection of drugs and explosives. Preliminary ion spectra and sensitivity data are presented for cocaine and heroin using a hand sniffer configuration.

  10. Generation of broad ion beams in sources based on Penning system with nonequipotential cathode

    NASA Astrophysics Data System (ADS)

    Nikulin, S. P.; Chichigin, D. F.; Tretnikov, P. V.

    2004-05-01

    A method of generation of uniform plasma in low-pressure glow discharges with oscillating electrons has been developed. The method is based on the separation of the cathode into several elements, with potentials of the parts being different. Experimental results show that the use of the nonequipotential cathode in the Penning system enables effective control of spatial plasma distribution. This makes it possible to obtain nearly uniform ion emission current distributions and to form broad beams. Two variants of ion sources are under investigation. The first source generates low energy (˜1 keV) ions, which are often used for cleaning of surfaces. A treated target plays a role in one of the cathodes and acceleration of ions is realized directly in the cathode sheath. The required level of ion energy is provided by applying a corresponding voltage between the target and the anode of the system. The second source generates an ion beam with higher (several tens of keV) energy. Accelerating-decelerating ion optics is used in this variant. The efficiency of ion extraction, defined as the ratio of beam and discharge currents, is equal to 30%.

  11. Calculated distortions induced by metal-ion binding to simple oligonucleotide systems: Implications for toxicity

    SciTech Connect

    Turner, J.E.; Hingerty, B.E.; England, M.W.; Jacobson, K.B.

    1990-01-01

    We have previously published detailed results of calculations of the binding of the metal ions, Cd{sup 2+} and Ca{sup 2+}, to the dinucleoside monophosphate GpC in water. These ions, which have the same charge and radius, differ enormously in their toxicity to man and other biological systems. Our calculations showed contrasting behavior in the binding of these two metal ions to GpC. We suggest the hypothesis that structural distortions calculated for metal ions binding to simple nucleic-acid systems might serve as a indicator of an ion's potential ability to alter molecular activity and hence to be toxic to an organism. Furthermore, the degree of distortion might be correlated with the degree of toxicity as measured by some suitable criteria. The present paper reports the results of binding calculations for a number of other metal ions, of different valence states, with several dinucleoside monophosphates in water. A general trend of distortion with the type of binding of the metal ions is found. We are seeking quantitative measures of distortion to correlate with indicators of acute toxicity that we have measured for 24 metal ions using mice, Drosophila, and CHO cells. 3 refs., 3 figs.

  12. Vanadium oxychloride/magnesium electrode systems for chloride ion batteries.

    PubMed

    Gao, Ping; Zhao, Xiangyu; Zhao-Karger, Zhirong; Diemant, Thomas; Behm, R Jürgen; Fichtner, Maximilian

    2014-12-24

    We report a new type of rechargeable chloride ion battery using vanadium oxychloride (VOCl) as cathode and magnesium or magnesium/magnesium chloride (MgCl2/Mg) as anode, with an emphasis on the VOCl-MgCl2/Mg full battery. The charge and discharge mechanism of the VOCl cathode has been investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical measurements, demonstrating the chloride ion transfer during cycling. The VOCl cathode can deliver a reversible capacity of 101 mAh g(-1) at a current density of 10 mA g(-1) and a capacity of 60 mAh g(-1) was retained after 53 cycles in this first study.

  13. The magnet system of the Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect

    Greene, A.; Anerella, M.; Cozzolino, J.

    1995-07-01

    The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ``Big Bang.`` The collider rings will consist of 1740 superconducting magnet elements. Some of elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing and test results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful.

  14. The magnet system of the Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect

    Greene, A.; Anerella, M.; Cozzolino, J.

    1996-07-01

    The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ``Big Bang``. The collider rings will consist of 1,740 superconducting magnet elements. Some of these elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing and test results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful.

  15. Characterization of in-flight performance of ion propulsion systems

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Rawlin, Vincent K.

    1993-01-01

    In-flight measurements of ion propulsion performance, ground test calibrations, and diagnostic performance measurements were reviewed. It was found that accelerometers provided the most accurate in-flight thrust measurements compared with four other methods that were surveyed. An experiment has also demonstrated that pre-flight alignment of the thrust vector was sufficiently accurate so that gimbal adjustments and use of attitude control thrusters were not required to counter disturbance torques caused by thrust vector misalignment. The effects of facility background pressure, facility enhanced charge-exchange reactions, and contamination on ground-based performance measurements are also discussed. Vacuum facility pressures for inert-gas ion thruster life tests and flight qualification tests will have to be less than 2 mPa to ensure accurate performance measurements.

  16. Thermal analysis for ion-exchange column system

    SciTech Connect

    Lee, S. Y.; King, W. D.

    2012-07-01

    Models have been developed to simulate the thermal characteristics of Crystalline Silico-titanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. A primary objective of these calculations was to estimate temperature distributions across packed CST beds immersed in waste supernate or filled with dry air under various accident scenarios. Accident scenarios evaluated included loss of salt solution flow through the bed, inadvertent column drainage, and loss of active cooling in the column. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. (authors)

  17. Ion Implantation with Scanning Probe Alignment

    SciTech Connect

    Persaud, A.; Liddle, J.A.; Schenkel, T.; Bokor, J.; Ivanov, Tzv.; Rangelow, I.W.

    2005-07-12

    We describe a scanning probe instrument which integrates ion beams with the imaging and alignment function of a piezo-resistive scanning probe in high vacuum. The beam passes through several apertures and is finally collimated by a hole in the cantilever of the scanning probe. The ion beam spot size is limited by the size of the last aperture. Highly charged ions are used to show hits of single ions in resist, and we discuss the issues for implantation of single ions.

  18. Improved curveball hitting through the enhancement of visual cues.

    PubMed

    Osborne, K; Rudrud, E; Zezoney, F

    1990-01-01

    This study investigated the effectiveness of using visual cues to highlight the seams of baseballs to improve the hitting of curveballs. Five undergraduate varsity baseball team candidates served as subjects. Behavior change was assessed through an alternating treatments design involving unmarked balls and two treatment conditions that included baseballs with 1/4-in. and 1/8-in. orange stripes marking the seams of the baseballs. Results indicated that subjects hit a greater percentage of marked than unmarked balls. These results suggest that the addition of visual cues may be a significant and beneficial technique to enhance hitting performance. Further research is suggested regarding the training procedures, effect of feedback, rate of fading cues, generalization to live pitching, and generalization to other types of pitches.

  19. Improved curveball hitting through the enhancement of visual cues.

    PubMed Central

    Osborne, K; Rudrud, E; Zezoney, F

    1990-01-01

    This study investigated the effectiveness of using visual cues to highlight the seams of baseballs to improve the hitting of curveballs. Five undergraduate varsity baseball team candidates served as subjects. Behavior change was assessed through an alternating treatments design involving unmarked balls and two treatment conditions that included baseballs with 1/4-in. and 1/8-in. orange stripes marking the seams of the baseballs. Results indicated that subjects hit a greater percentage of marked than unmarked balls. These results suggest that the addition of visual cues may be a significant and beneficial technique to enhance hitting performance. Further research is suggested regarding the training procedures, effect of feedback, rate of fading cues, generalization to live pitching, and generalization to other types of pitches. PMID:2249972

  20. B-HIT - A Tool for Harvesting and Indexing Biodiversity Data

    PubMed Central

    Barker, Katharine; Braak, Kyle; Cawsey, E. Margaret; Coddington, Jonathan; Robertson, Tim; Whitacre, Jamie

    2015-01-01

    With the rapidly growing number of data publishers, the process of harvesting and indexing information to offer advanced search and discovery becomes a critical bottleneck in globally distributed primary biodiversity data infrastructures. The Global Biodiversity Information Facility (GBIF) implemented a Harvesting and Indexing Toolkit (HIT), which largely automates data harvesting activities for hundreds of collection and observational data providers. The team of the Botanic Garden and Botanical Museum Berlin-Dahlem has extended this well-established system with a range of additional functions, including improved processing of multiple taxon identifications, the ability to represent associations between specimen and observation units, new data quality control and new reporting capabilities. The open source software B-HIT can be freely installed and used for setting up thematic networks serving the demands of particular user groups. PMID:26544980

  1. "Hits" emerge through self-organized coordination in collective response of free agents

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Anindya S.; Sinha, Sitabhra

    2016-10-01

    Individuals in free societies frequently exhibit striking coordination when making independent decisions en masse. Examples include the regular appearance of hit products or memes with substantially higher popularity compared to their otherwise equivalent competitors or extreme polarization in public opinion. Such segregation of events manifests as bimodality in the distribution of collective choices. Here we quantify how apparently independent choices made by individuals result in a significantly polarized but stable distribution of success in the context of the box-office performance of movies and show that it is an emergent feature of a system of noninteracting agents who respond to sequentially arriving signals. The aggregate response exhibits extreme variability amplifying much smaller differences in individual cost of adoption. Due to self-organization of the competitive landscape, most events elicit only a muted response but a few stimulate widespread adoption, emerging as "hits".

  2. Individual addressing of trapped {sup 171}Yb{sup +} ion qubits using a microelectromechanical systems-based beam steering system

    SciTech Connect

    Crain, S.; Mount, E.; Baek, S.; Kim, J.

    2014-11-03

    The ability to individually manipulate the increasing number of qubits is one of the many challenges towards scalable quantum information processing with trapped ions. Using micro-mirrors fabricated with micro-electromechanical systems technology, we focus laser beams on individual ions in a linear chain and steer the focal point in two dimensions. We demonstrate sequential single qubit gates on multiple {sup 171}Yb{sup +} qubits and characterize the gate performance using quantum state tomography. Our system features negligible crosstalk to neighboring ions (<3×10{sup −4}), and switching speed comparable to typical single qubit gate times (<2 μs)

  3. Applications of Biophysics in High-Throughput Screening Hit Validation.

    PubMed

    Genick, Christine Clougherty; Barlier, Danielle; Monna, Dominique; Brunner, Reto; Bé, Céline; Scheufler, Clemens; Ottl, Johannes

    2014-06-01

    For approximately a decade, biophysical methods have been used to validate positive hits selected from high-throughput screening (HTS) campaigns with the goal to verify binding interactions using label-free assays. By applying label-free readouts, screen artifacts created by compound interference and fluorescence are discovered, enabling further characterization of the hits for their target specificity and selectivity. The use of several biophysical methods to extract this type of high-content information is required to prevent the promotion of false positives to the next level of hit validation and to select the best candidates for further chemical optimization. The typical technologies applied in this arena include dynamic light scattering, turbidometry, resonance waveguide, surface plasmon resonance, differential scanning fluorimetry, mass spectrometry, and others. Each technology can provide different types of information to enable the characterization of the binding interaction. Thus, these technologies can be incorporated in a hit-validation strategy not only according to the profile of chemical matter that is desired by the medicinal chemists, but also in a manner that is in agreement with the target protein's amenability to the screening format. Here, we present the results of screening strategies using biophysics with the objective to evaluate the approaches, discuss the advantages and challenges, and summarize the benefits in reference to lead discovery. In summary, the biophysics screens presented here demonstrated various hit rates from a list of ~2000 preselected, IC50-validated hits from HTS (an IC50 is the inhibitor concentration at which 50% inhibition of activity is observed). There are several lessons learned from these biophysical screens, which will be discussed in this article.

  4. Ion-exchange chromatography separation applied to mineral recycle in closed systems

    NASA Technical Reports Server (NTRS)

    Ballou, E.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1981-01-01

    As part of the controlled ecological life support system (CELSS) program, a study is being made of mineral separation on ion-exchange columns. The purpose of the mineral separation step is to allow minerals to be recycled from the oxidized waste products of plants, man, and animals for hydroponic food production. In the CELSS application, relatively large quantities of minerals in a broad concentration range must be recovered by the desired system, rather than the trace quantities and very low concentrations treated in analytical applications of ion-exchange chromatography. Experiments have been carried out to assess the parameters pertinent to the scale-up of ion-exchange chromatography and to determine feasibility. Preliminary conclusions are that the column scale-up is in a reasonable size range for the CELSS application. The recycling of a suitable eluent, however, remains a major challenge to the suitability of using ion exchange chromatography in closed systems.

  5. A novel electrochemical ion exchange system and its application in water treatment.

    PubMed

    Li, Yansheng; Li, Yongbin; Liu, Zhigang; Wu, Tao; Tian, Ying

    2011-06-01

    A novel electrochemical ion exchange system with porous cylinder electrodes is proposed for treatment of wastewater. This system can be used for desalination without the costly ion-exchange membrane and extra chemical reagents. Since the electrodes are completely uniform and no ion-exchange membrane was used in this system, it can be operated by switching anodes and cathodes flexibly for eliminating the scaling on the surface of electrodes. The strong base ion-exchange resin grains placed among the anode and cathode have played as supporting electrolyte, which is capable for the treatment of wastewater with low conductivity. The concentrated and neutralized anolyte containing chlorine is effective for disinfection and contaminants removal. Under the experimental conditions, the removal percentage of total dissolved salts was 83% and the removal percentage of chemical oxygen demand was 92% without consumption of extra chemical reagents.

  6. Interval Throwing and Hitting Programs in Baseball: Biomechanics and Rehabilitation.

    PubMed

    Chang, Edward S; Bishop, Meghan E; Baker, Dylan; West, Robin V

    2016-01-01

    Baseball injuries from throwing and hitting generally occur as a consequence of the repetitive and high-energy motions inherent to the sport. Biomechanical studies have contributed to understanding the pathomechanics leading to injury and to the development of rehabilitation programs. Interval-based throwing and hitting programs are designed to return an athlete to competition through a gradual progression of sport-specific exercises. Proper warm-up and strict adherence to the program allows the athlete to return as quickly and safely as possible.

  7. Interval Throwing and Hitting Programs in Baseball: Biomechanics and Rehabilitation.

    PubMed

    Chang, Edward S; Bishop, Meghan E; Baker, Dylan; West, Robin V

    2016-01-01

    Baseball injuries from throwing and hitting generally occur as a consequence of the repetitive and high-energy motions inherent to the sport. Biomechanical studies have contributed to understanding the pathomechanics leading to injury and to the development of rehabilitation programs. Interval-based throwing and hitting programs are designed to return an athlete to competition through a gradual progression of sport-specific exercises. Proper warm-up and strict adherence to the program allows the athlete to return as quickly and safely as possible. PMID:26991569

  8. HEAT TRANSFER ANALYSIS FOR ION-EXCHANGE COLUMN SYSTEM

    SciTech Connect

    Lee, S.; King, W.

    2011-05-23

    Models have been developed to simulate the thermal characteristics of Crystalline Silicotitanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. The SCIX design includes CST columns inserted and supported in the tank top risers for cesium removal. Temperature distributions and maximum temperatures across the column were calculated with a focus on process upset conditions. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. The current full-scale design for the CST column includes one central cooling pipe and four outer cooling tubes. Most calculations assumed that the fluid within the column was stagnant (i.e. no buoyancy-induced flow) for a conservative estimate. A primary objective of these calculations was to estimate temperature distributions across packed CST beds immersed in waste supernate or filled with dry air under various accident scenarios. Accident scenarios evaluated included loss of salt solution flow through the bed, inadvertent column drainage, and loss of active cooling in the column. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature.

  9. NEXT Ion Propulsion System Configurations and Performance for Saturn System Exploration

    NASA Technical Reports Server (NTRS)

    Benson, Scott W.; Riehl, John P.; Oleson, Steven R.

    2007-01-01

    The successes of the Cassini/Huygens mission have heightened interest to return to the Saturn system with focused robotic missions. The desire for a sustained presence at Titan, through a dedicated orbiter and in-situ vehicle, either a lander or aerobot, has resulted in definition of a Titan Explorer flagship mission as a high priority in the Solar System Exploration Roadmap. The discovery of active water vapor plumes erupting from the tiger stripes on the moon Enceladus has drawn the attention of the space science community. The NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system is well suited to future missions to the Saturn system. NEXT is used within the inner solar system, in combination with a Venus or Earth gravity assist, to establish a fast transfer to the Saturn system. The NEXT system elements are accommodated in a separable Solar Electric Propulsion (SEP) module, or are integrated into the main spacecraft bus, depending on the mission architecture and performance requirements. This paper defines a range of NEXT system configurations, from two to four thrusters, and the Saturn system performance capability provided. Delivered mass is assessed parametrically over total trip time to Saturn. Launch vehicle options, gravity assist options, and input power level are addressed to determine performance sensitivities. A simple two-thruster NEXT system, launched on an Atlas 551, can deliver a spacecraft mass of over 2400 kg on a transfer to Saturn. Similarly, a four-thruster system, launched on a Delta 4050 Heavy, delivers more than 4000 kg spacecraft mass. A SEP module conceptual design, for a two thruster string, 17 kW solar array, configuration is characterized.

  10. Ion-exchange polymer artificial muscle and actuating system

    NASA Astrophysics Data System (ADS)

    Vial, Dominique; Tondu, Bertrand; Lopez, Pierre; Aurelle, Yves; Ricard, Alain

    1996-04-01

    Chemomechanical transformations are used to produce a mechanical force from a reversible chemical reaction in order to generate artificial muscular contraction, on the model of the biological muscle. The design and experimentation of an original artificial muscle using an ion-exchange polymer which reacts inside a soft envelope, derived from research on pneumatic artificial McKibben muscle, is presented. Then a chemomechanical actuator constituted of two artificial muscles has been conceived: first results are shown on position control in open-loop mode.

  11. Feed gas contaminant removal in ion transport membrane systems

    DOEpatents

    Underwood, Richard Paul; Makitka, III, Alexander; Carolan, Michael Francis

    2012-04-03

    An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

  12. New, high-efficiency ion trap mobility detection system for narcotics and explosives

    NASA Astrophysics Data System (ADS)

    McGann, William J.; Bradley, V.; Borsody, A.; Lepine, S.

    1994-10-01

    A new patented Ion Trap Mobility Spectrometer (ITMS) design is presented. Conventional IMS designs typically operate below 0.1% efficiency. This is due primarily to electric field driven, sample ion discharge on a shutter grid. Since 99.9% of the sample ions generated in the reaction region are lost in this discharge process, the sensitivity of conventional systems is limited. The new design provides greater detection efficiency than conventional designs through the use of an `ion trap' concept. The paper describes the plasma and sample ion dynamics in the reaction region of the new detector and discusses the advantages of utilizing a `field-free' space to generate sample ions with high efficiency. Fast electronic switching is described which is used to perturb the field-free space and pulse the sample ions into the drift region for separation and subsequent detection using pseudo real-time software for analysis and display of the data. Many applications for this new detector are now being considered including the detection of narcotics and explosives. Preliminary ion spectra, reduced mobility data and sensitivity data are presented for fifteen narcotics, including cocaine, THC and LSD are reported.

  13. New high-efficiency ion trap mobility detection system for narcotics and explosives

    NASA Astrophysics Data System (ADS)

    McGann, William J.; Jenkins, Anthony; Ribiero, K.; Napoli, J.

    1994-03-01

    A new patented ion trap mobility spectrometer design is presented. Conventional IMS designs typically operate below 0.1% efficiency. This is due primarily to electrical-field-driven, sample ion discharge on a shutter grid. Since 99.9% of the sample ions generated in the reaction region are lost in this discharge process, the sensitivity of conventional systems is limited. The new design provides greater detection efficiency than conventional designs through the use of an `ion trap' concept. The paper describes the plasma and sample ion dynamics in the reaction region of the new detector and discusses the advantages of utilizing a `field-free' space to generate sample ions with high efficiency. Fast electronic switching is described which is used to perturb the field-free space and pulse the sample ions into the drift region for separation and subsequent detection using pseudo real-time software for analysis and display of the data. Many applications for this new detector are now being considered including the detection of narcotics and explosives. Preliminary ion spectra, reduced mobility data and sensitivity data are presented for fifteen narcotics, including cocaine, THC, and LSD are reported.

  14. Dosimetry in radiobiological studies with the heavy ion beam of the Warsaw cyclotron

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, U.; Banaś, D.; Braziewicz, J.; Czub, J.; Jaskóła, M.; Korman, A.; Kruszewski, M.; Lankoff, A.; Lisowska, H.; Malinowska, A.; Stępkowski, T.; Szefliński, Z.; Wojewódzka, M.

    2015-12-01

    The aim of this study was to verify various dosimetry methods in the irradiation of biological materials with a 12C ion beam at the Heavy Ion Laboratory of the University of Warsaw. To this end the number of ions hitting the cell nucleus, calculated on the basis of the Si-detector system used in the set-up, was compared with the number of ion tracks counted in irradiated Solid State Nuclear Track Detectors and with the number of ion tracks detected in irradiated Chinese Hamster Ovary cells processed for the γ-H2AX assay. Tests results were self-consistent and confirmed that the system serves its dosimetric purpose.

  15. Development of Cooling System for Cryogenic Preamplifier in Ft-Icr Ion Trap

    NASA Astrophysics Data System (ADS)

    Choi, Y. S.; Kim, D. L.; Painter, T. A.; Choi, M. C.; Kim, H. S.; Yoo, J. S.

    2008-03-01

    The cooling system of cryogenic preamplifier was designed and fabricated for Fourier transform ion cyclotron resonance (FT-ICR) ion trap. A cryogenic preamplifier consisted of non-magnetic materials is thermally connected to the cooling medium which is passing through the flange maintaining ultra-high vacuum in the ion cell. At the other end, the cooling medium is thermally anchored to the coldhead of cryocooler (conduction-cooled system) or liquid helium (liquid circulation system). In the conduction-cooled system the temperature distribution along the cooling medium was calculated by the relevant thermal analysis for steady-state. The liquid circulation unit with cryogenic preamplifier was installed in 7 T FT-ICR system and the temperature at the preamplifier was measured during the initial cool-down process. The effects of thermal radiation, contact resistance, and magnetic field on the temperature distribution were also investigated.

  16. NASA hits back in asteroid spat

    NASA Astrophysics Data System (ADS)

    Cartlidge, Edwin

    2016-07-01

    Nathan Myhrvold, chief executive of the company Intellectual Ventures and a former chief technology officer of Microsoft, is at loggerheads with a group of NASA astrophysicists over the latter's ability to accurately measure the properties of tens of thousands of asteroids in the solar system.

  17. Gas Feeding System Supplying the U-400M Cyclotron Ion Source with Hydrogen Isotopes

    SciTech Connect

    Yukhimchuk, A.A.; Angilopov, V.V.; Apasov, V.A.

    2005-07-15

    Automated system feeding into ion source hydrogen isotopes as molecules with preset ratio of the fluxes is described. The control system automatically maintained the working parameters and provided graphic and digital representation of the controlled processes. The radiofrequency (RF) ion source installed at the axial injection line of the cyclotron produced ion beams of HD{sup +}, HT{sup +}, DT{sup +}, D{sub 2}H{sup +}, etc. At a several months DT{sup +} beam acceleration the tritium consumption was less than 108 Bq/hr. The intensity of a 58.2 MeV triton beam (T{sup +} ions) extracted from the cyclotron chamber was about 10 nA.

  18. New heterocycle modified chitosan adsorbent for metal ions (II) removal from aqueous systems.

    PubMed

    Kandile, Nadia G; Mohamed, Hemat M; Mohamed, Mansoura I

    2015-01-01

    A new hydrogel based on a modified chitosan CS-B was synthesized and evaluated for its metal ion removal from aqueous systems. The CS-B hydrogel was prepared through modification of chitosan with 4-((1, 3-dioxoisoindolin-2-ylimino) methyl) benzaldehyde as a heterocyclic component. The new hydrogel was analyzed by diverse techniques such as FTIR, XRD, TGA, SEM, and swelling tests. The adsorption capacity of CS-B for metal ions Co(2+), Hg(2+), Cu(2+), Zn(2+), and Pb(2+) from aqueous systems at different pH values showed various levels of efficiency. The metal ion uptake data over a range of pH values for Co(2+) and Hg(2+) showed the highest adsorption capacity while Cu(2+), Zn(2+), and Pb(2+) showed moderate adsorption capacity. Selective metal ion efficiency was highest for Co(2+) and lowest for Hg(2+) in their binary mixture.

  19. Hit Identification and Optimization in Virtual Screening: Practical Recommendations Based Upon a Critical Literature Analysis

    PubMed Central

    Zhu, Tian; Cao, Shuyi; Su, Pin-Chih; Patel, Ram; Shah, Darshan; Chokshi, Heta B.; Szukala, Richard; Johnson, Michael E.; Hevener, Kirk E.

    2013-01-01

    A critical analysis of virtual screening results published between 2007 and 2011 was performed. The activity of reported hit compounds from over 400 studies was compared to their hit identification criteria. Hit rates and ligand efficiencies were calculated to assist in these analyses and the results were compared with factors such as the size of the virtual library and the number of compounds tested. A series of promiscuity, drug-like, and ADMET filters were applied to the reported hits to assess the quality of compounds reported and a careful analysis of a subset of the studies which presented hit optimization was performed. This data allowed us to make several practical recommendations with respect to selection of compounds for experimental testing, defining hit identification criteria, and general virtual screening hit criteria to allow for realistic hit optimization. A key recommendation is the use of size-targeted ligand efficiency values as hit identification criteria. PMID:23688234

  20. Preventive effects of minocycline in a neurodevelopmental two-hit model with relevance to schizophrenia

    PubMed Central

    Giovanoli, S; Engler, H; Engler, A; Richetto, J; Feldon, J; Riva, M A; Schedlowski, M; Meyer, U

    2016-01-01

    Maternal immune activation can increase the vulnerability of the offspring to develop neuroimmune and behavioral abnormalities in response to stress in puberty. In offspring of immune-challenged mothers, stress-induced inflammatory processes precede the adult onset of multiple behavioral dysfunctions. Here, we explored whether an early anti-inflammatory intervention during peripubertal stress exposure might prevent the subsequent emergence of adult behavioral pathology. We used an environmental two-hit model in mice, in which prenatal maternal administration of the viral mimetic poly(I:C) served as the first hit, and exposure to sub-chronic unpredictable stress during peripubertal maturation as the second hit. Using this model, we examined the effectiveness of the tetracycline antibiotic minocycline (MINO) given during stress exposure to block stress-induced inflammatory responses and to prevent subsequent behavioral abnormalities. We found that combined exposure to prenatal immune activation and peripubertal stress caused significant deficits in prepulse inhibition and increased sensitivity to the psychotomimetic drugs amphetamine and dizocilpine in adulthood. MINO treatment during stress exposure prevented the emergence of these behavioral dysfunctions. In addition, the pharmacological intervention blocked hippocampal and prefrontal microglia activation and interleukin-1β expression in offspring exposed to prenatal infection and peripubertal stress. Together, these findings demonstrate that presymptomatic MINO treatment can prevent the subsequent emergence of multiple behavioral abnormalities relevant to human neuropsychiatric disorders with onset in early adulthood, including schizophrenia. Our epidemiologically informed two-hit model may thus encourage attempts to explore the use of anti-inflammatory agents in the early course of brain disorders that are characterized by signs of central nervous system inflammation during development. PMID:27045842

  1. Real time tracker based upon local hit correlation circuit for silicon strip sensors

    NASA Astrophysics Data System (ADS)

    Lehmann, Niklaus; Pirrami, Lorenzo; Blue, Andrew; Diez, Sergio; Dressnandt, Nandor; Duner, Silvan; Garcia-Sciveres, Maurice; Haber, Carl; Halgeri, Amogh; Keener, Paul; Keller, John; Newcomer, Mitchell; Pasner, Jacob; Peschke, Richard; Risbud, Amar; Ropraz, Eric; Stalder, Jonas; Wang, Haichen

    2016-01-01

    For the planned high luminosity upgrade of the Large Hadron Collider (LHC), a significant performance improvement of the detectors is required, including new tracker and trigger systems that makes use of charged track information early on. In this note we explore the principle of real time track reconstruction integrated in the readout electronics. A prototype was built using the silicon strip sensor for the ATLAS phase-II upgrade. The real time tracker is not the baseline for ATLAS but is nevertheless of interest, as the upgraded trigger design has not yet been finalized. For this, a new readout scheme in parallel with conventional readout, called the Fast Cluster Finder (FCF), was included in the latest prototype of the ATLAS strip detector readout chip (ABC130). The FCF is capable of finding hits within 6 ns and transmitting the found hit information synchronously every 25 ns. Using the FCF together with external correlation logic makes it possible to look for pairs of hits consistent with tracks from the interaction point above a transverse momentum threshold. A correlator logic finds correlations between two closely spaced parallel sensors, a "doublet", and can generate information used as input to a lowest level trigger decision. Such a correlator logic was developed as part of a demonstrator and was successfully tested in an electron beam. The results of this test beam experiment proved the concept of the real time track vector processor with FCF.

  2. Prize for Industrial Applications of Physics Talk: Low energy spread Ion source for focused ion beam systems-Search for the holy grail

    NASA Astrophysics Data System (ADS)

    Ward, Bill

    2011-03-01

    In this talk I will cover my personal experiences as a serial entrepreneur and founder of a succession of focused ion beam companies (1). Ion Beam Technology, which developed a 200kv (FIB) direct ion implanter (2). Micrion, where the FIB found a market in circuit edit and mask repair, which eventually merged with FEI corporation. and (3). ALIS Corporation which develop the Orion system, the first commercially successful sub-nanometer helium ion microscope, that was ultimately acquired by Carl Zeiss corporation. I will share this adventure beginning with my experiences in the early days of ion beam implantation and e-beam lithography which lead up to the final breakthrough understanding of the mechanisms that govern the successful creation and operation of a single atom ion source.

  3. U.S. Teen Births Hit Another Record Low: CDC

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_161207.html U.S. Teen Births Hit Another Record Low: CDC Less sex, ... Sept. 28, 2016 (HealthDay News) -- Births to U.S. teens reached a record low last year, continuing a ...

  4. Madoff Debacle Hits Colleges and Raises Questions about Trustee Conflicts

    ERIC Educational Resources Information Center

    Fain, Paul

    2009-01-01

    Several colleges and universities lost millions in the alleged $50-billion Ponzi scheme run by the Wall Street trader Bernard L. Madoff. The losses include institutions' endowment holdings in hedge funds that were invested with Madoff as well as hits taken by supporting foundations and donors. Several foundations that have been active in higher…

  5. Appreciating an Old Favorite: Sousa's All-Time Hit

    ERIC Educational Resources Information Center

    Van Outryve, Karen

    2006-01-01

    In this article, the author presents John Philip Sousa's all time hit, "The Stars and Stripes Forever". It is one of the most recognizable pieces of American music. Wherever John Philip Sousa and his band appeared, this march was likely to be played. According to American poet and educator Eli Siegel (1902-78), who first articulated the philosophy…

  6. HiTS real-time supernova detections

    NASA Astrophysics Data System (ADS)

    Forster, F.; Maureira, J. C.; Gonzalez-Gaitan, S.; Medina, G.; Pignata, G.; Galbany, L.; Martin, J. San; Hamuy, M.; Estevez, P.; Smith, R. C.; Vivas, K.; Flores, S.; Huijse, P.; Cabrera, G.; Anderson, J.; Bufano, F.; Jaeger, Th. de; Martinez, J.; Munoz, R.; Vera, E.; Perez, C.

    2015-02-01

    HiTS, the High Cadence Transient Survey (see ATELs #5949, #5956, #7099, #7108, #7115, #7122, #7131, #7132), reports the discovery of 5 additional supernova candidates detected using a novel real-time high-cadence image subtraction / classification pipeline developed at the Center for Mathematical Modelling (CMM) in collaboration with the Millennium Institute for Astrophysics (MAS).

  7. HiTS real-time supernova detections

    NASA Astrophysics Data System (ADS)

    Forster, F.; Maureira, J. C.; Pignata, G.; Martinez, J.; Medina, G.; Galbany, L.; Martin, J. San; Hamuy, M.; Estevez, P.; Smith, R. C.; Vivas, K.; Flores, S.; Huijse, P.; Cabrera, G.; Anderson, J.; Bufano, F.; Munoz, R.; Vera, E.; Perez, C.

    2015-02-01

    Body: HiTS: The High Cadence Transient Survey (see ATELs #5949, #5956, #7099, #7108, #7115) reports the discovery of 9 additional supernova candidates detected using a novel real-time high-cadence image subtraction / classification pipeline developed at the Center for Mathematical Modelling (CMM) in collaboration with the Millennium Institute for Astrophysics (MAS).

  8. HiTS real-time supernova detections

    NASA Astrophysics Data System (ADS)

    Forster, F.; Maureira, J. C.; Galbany, L.; de Jaeger, Th.; Martinez, J.; Cabrera, G.; Martin, J. San; Hamuy, M.; Estevez, P.; Smith, R. C.; Vivas, K.; Flores, S.; Huijse, P.; Anderson, J.; Bufano, F.; Pignata, G.; Medina, G.; Munoz, R.; Vera, E.

    2015-02-01

    HiTS: The High Cadence Transient Survey (ATELs #5949, #5956, #7099) reports the discovery of one additional supernova candidate detected using a novel real-time high-cadence image subtraction / classification pipeline developed at the Center for Mathematical Modelling (CMM) in collaboration with the Millennium Institute for Astrophysics (MAS).

  9. HiTS real-time supernova detections

    NASA Astrophysics Data System (ADS)

    Forster, F.; Maureira, J. C.; Pignata, G.; Gonzalez-Gaitan, S.; Medina, G.; Martinez, J.; Galbany, L.; Martin, J. San; Hamuy, M.; Estevez, P.; Smith, R. C.; Vivas, K.; Flores, S.; Huijse, P.; Cabrera, G.; Anderson, J.; Bufano, F.; Jaeger, Th. de; Munoz, R.; Vera, E.; Perez, C.

    2015-02-01

    HiTS: The High Cadence Transient Survey (see ATELs #5949, #5956, #7099, #7108, #7115, #7122, #7131) reports the discovery of 9 additional supernova candidates detected using a novel real-time high-cadence image subtraction / classification pipeline developed at the Center for Mathematical Modelling (CMM) in collaboration with the Millennium Institute for Astrophysics (MAS).

  10. HiTS real-time supernova detections

    NASA Astrophysics Data System (ADS)

    Forster, F.; Maureira, J. C.; Pignata, G.; Gonzalez-Gaitan, S.; Medina, G.; Martinez, J.; Galbany, Â. L.; Martin, J. San; Hamuy, M.; Estevez, P.; Smith, R. C.; Vivas, K.; Flores, S.; Huijse, P.; Cabrera, G.; Anderson, J.; Bufano, F.; Jaeger, Th. de; Munoz, R.; Vera, E.; Perez, C.

    2015-02-01

    HiTS: The High Cadence Transient Survey (see ATELs #5949, #5956, #7099, #7108, #7115, #7122) reports the discovery of 9 additional supernova candidates detected using a novel real-time high-cadence image subtraction / classification pipeline developed at the Center for Mathematical Modelling (CMM) in collaboration with the Millennium Institute for Astrophysics (MAS).

  11. HiTS real-time supernova detections

    NASA Astrophysics Data System (ADS)

    Forster, F.; Maureira, J. C.; Gonzalez-Gaitan, S.; Medina, G.; Galbany, L.; Martinez, J.; San Martin, J.; Hamuy, M.; Estevez, P.; Smith, R. C.; Vivas, K.; Flores, S.; Huijse, P.; Cabrera, G.; Anderson, J.; Bufano, F.; Pignata, G.; de Jaeger, Th.; Munoz, R.; Vera, E.; Perez, C.; Points, S.

    2015-03-01

    HiTS, the High Cadence Transient Survey (see ATELs #5949, #5956, #7099, #7108, #7115, #7122, #7131, #7146, #7148, #7149), reports the discovery of additional supernova candidates detected using a novel real-time high-cadence image subtraction / classification pipeline developed at the Center for Mathematical Modelling (CMM) in collaboration with the Millennium Institute for Astrophysics (MAS).

  12. HiTS real-time supernova detections

    NASA Astrophysics Data System (ADS)

    Forster, F.; Maureira, J. C.; Galbany, L.; De Jaeger, Th.; Gonzalez-Gaitan, S.; Martinez, J.; Cabrera, G.; San Martin, J.; Hamuy, M.; Estevez, P.; Smith, R. C.,; Vivas, K.; Flores, S.; Huijse, P.; Anderson, J.; Bufano, F.; Pignata, G.; Medina, G.; Munoz, R.; Vera, E.

    2015-02-01

    HiTS: The High Cadence Transient Survey (ATELs #5949, #5956, #7099) reports the discovery of 4 additional supernova candidates detected using a novel real-time high-cadence image subtraction / classification pipeline developed at the Center for Mathematical Modelling (CMM) in collaboration with the Millennium Institute for Astrophysics (MAS).

  13. HiTS real-time supernova detections

    NASA Astrophysics Data System (ADS)

    Forster, F.; Maureira, J. C.; Gonzalez-Gaitan, S.; Medina, G.; Galbany, L.; Martinez, J.; Martin, J. San; Hamuy, M.; Estevez, P.; Smith, R. C.; Vivas, K.; Flores, S.; Huijse, P.; Cabrera, G.; Anderson, J.; Bufano, F.; Pignata, G.; Jaeger, Th. de; Munoz, R.; Vera, E.; Perez, C.

    2015-02-01

    HiTS, the High Cadence Transient Survey (see ATELs #5949, #5956, #7099, #7108, #7115, #7122, #7131, #7146, #7148), reports the discovery of additional supernova candidates detected using a novel real-time high-cadence image subtraction / classification pipeline developed at the Center for Mathematical Modelling (CMM) in collaboration with the Millennium Institute for Astrophysics (MAS).

  14. HiTS real-time supernova detections

    NASA Astrophysics Data System (ADS)

    Forster, F.; Maureira, J. C.; Gonzalez-Gaitan, S.; Medina, G.; Galbany, L.; Martinez, J.; Martin, J. San; Hamuy, M.; Estevez, P.; Smith, R. C.; Vivas, K.; Flores, S.; Huijse, P.; Cabrera, G.; Anderson, J.; Bufano, F.; Pignata, G.; Jaeger, Th. de; Munoz, R.; Vera, E.; Perez, C.

    2015-02-01

    HiTS, the High Cadence Transient Survey (see ATELs #5949, #5956, #7099, #7108, #7115, #7122, #7131, #7146), reports the discovery of additional supernova candidates detected using a novel real-time high-cadence image subtraction / classification pipeline developed at the Center for Mathematical Modelling (CMM) in collaboration with the Millennium Institute for Astrophysics (MAS).

  15. HiTS real-time supernova detections

    NASA Astrophysics Data System (ADS)

    Forster, F.; Maureira, J. C.; Galbany, L.; De Jaeger, Th.; Gonzalez-Gaitan, S.; Martinez, J.; Cabrera, G.; San Martin, J.; Hamuy, M.; Estevez, P.; Smith, R. C.; Vivas, K.; Flores, S.; Huijse, P.; Anderson, J.; Bufano, F.; Pignata, G.; Medina, G.; Munoz, R.; Vera, E.

    2015-02-01

    HiTS: The High Cadence Transient Survey (ATELs #5949, #5956) reports the discovery of 4 possible supernova explosions detected using a novel real-time high-cadence image subtraction / classification pipeline developed at the Center for Mathematical Modelling (CMM) in collaboration with the Millennium Institute for Astrophysics (MAS).

  16. Sexually Transmitted Diseases Hit All-Time High: CDC

    MedlinePlus

    ... news/fullstory_161565.html Sexually Transmitted Diseases Hit All-Time High: CDC More prevention efforts needed, agency ... Oct. 19, 2016 HealthDay Copyright (c) 2016 HealthDay . All rights reserved. News stories are provided by HealthDay ...

  17. Assessing the lipophilicity of fragments and early hits.

    PubMed

    Mortenson, Paul N; Murray, Christopher W

    2011-07-01

    A key challenge in many drug discovery programs is to accurately assess the potential value of screening hits. This is particularly true in fragment-based drug design (FBDD), where the hits often bind relatively weakly, but are correspondingly small. Ligand efficiency (LE) considers both the potency and the size of the molecule, and enables us to estimate whether or not an initial hit is likely to be optimisable to a potent, druglike lead. While size is a key property that needs to be controlled in a small molecule drug, there are a number of additional properties that should also be considered. Lipophilicity is amongst the most important of these additional properties, and here we present a new efficiency index (LLE(AT)) that combines lipophilicity, size and potency. The index is intuitively defined, and has been designed to have the same target value and dynamic range as LE, making it easily interpretable by medicinal chemists. Monitoring both LE and LLE(AT) should help both in the selection of more promising fragment hits, and controlling molecular weight and lipophilicity during optimisation. PMID:21614595

  18. Double hit lymphoma: the MD Anderson Cancer Center clinical experience.

    PubMed

    Oki, Yasuhiro; Noorani, Mansoor; Lin, Pei; Davis, Richard E; Neelapu, Sattva S; Ma, Long; Ahmed, Mohamed; Rodriguez, Maria Alma; Hagemeister, Fredrick B; Fowler, Nathan; Wang, Michael; Fanale, Michelle A; Nastoupil, Loretta; Samaniego, Felipe; Lee, Hun J; Dabaja, Bouthaina S; Pinnix, Chelsea C; Medeiros, Leonard J; Nieto, Yago; Khouri, Issa; Kwak, Larry W; Turturro, Francesco; Romaguera, Jorge E; Fayad, Luis E; Westin, Jason R

    2014-09-01

    We report our experience with 129 cases of double hit lymphoma (DHL), defined as B-cell lymphoma with translocations and/or extra signals involving MYC plus BCL2 and/or BCL6. All cases were reviewed for histopathological classification. Median age was 62 years (range, 18-85), 84% of patients had advanced-stage disease, and 87% had an International Prognostic Index score ≥2. Fourteen patients (11%) had a history of low-grade follicular lymphoma. MYC translocation was present in 81%, and extra signals of MYC in 25% of patients. IGH-BCL2 translocation was present in 84% and extra signals of BCL2 in 12% of patients. Two-year event-free survival (EFS) rates in all patients and patients who received R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone), R-EPOCH (rituximab, etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin), and R-HyperCVAD/MA (rituximab, hyperfractionated cyclophosphamide, vincristine, doxorubicin, dexamethasone, alternating with cytarabine plus methotrexate) were 33%, 25%, 67% and 32%, respectively. In patients achieving complete response with initial therapy (n = 71), 2-year EFS rates in patients who did (n = 23) or did not (n = 48) receive frontline stem cell transplantation were 68% and 53%, respectively (P = 0·155). The cumulative incidence of central nervous system involvement was 13% at 3 years. Multivariate analysis identified performance status ≥2 and bone marrow involvement as independent adverse prognostic factors for EFS and OS. Further research is needed to identify predictive and/or targetable biological markers and novel therapeutic approaches for DHL patients.

  19. Knowledge based system for runtime controlling of multiscale model of ion-exchange solvent extraction

    NASA Astrophysics Data System (ADS)

    Macioł, Piotr; Gotfryd, Leszek; Macioł, Andrzej

    2012-09-01

    The hereby paper concerns the issue of solution of runtime controlling of multiscale model of ion-exchange solvent extraction. It is based on cooperation of a framework applying Agile Multiscale Modeling Methodology (AM3), and the REBIT Knowledge Based System. Ion-exchange solvent extraction has been shortly introduced. Design assumptions of AM3 and theoretical basis of REBIT have been described. Designed workflows and rules for simple laminar/ turbulent flow and extraction processes have been shown.

  20. Compact Full-Field Ion Detector System for SmallSats Beyond LEO

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Clark, Pamela E.; McNeil, Roger R.

    2014-01-01

    NASA Glenn Research Center (GRC) is applying its expertise and facilities in harsh environment instrumentation to develop a Compact Full-Field Ion Detector System (CFIDS). The CFIDS is designed to be an extremely compact, low cost instrument, capable of being flown on a wide variety of deep space platforms, to provide multi-directional, comprehensive (composition, velocity, and direction) in-situ measurements of heavy ions in space plasma environments.

  1. Compact Full-Field Ion Detector System for CubeSat Science Beyond LEO

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Clark, Pamela E.

    2013-01-01

    NASA Glenn Research Center (GRC) is applying its expertise and facilities in harsh environment instrumentation to develop a Compact Full-Field Ion Detector System (CFIDS). The CFIDS is designed to be an extremely compact, low cost instrument, capable of being flown on a wide variety of deep space platforms, to provide comprehensive (composition, velocity, and direction) in situ measurements of heavy ions in space plasma environments with higher fidelity, than previously available.

  2. Systems modeling and analysis of heavy ion drivers for inertial fusion energy

    SciTech Connect

    Meier, W. R.

    1998-06-03

    A computer model for systems analysis of heavy ion drivers based on induction linac technology has been used to evaluate driver designs for inertial fusion energy (IFE). Design parameters and estimated costs have been determined for drivers with various ions, different charge states, different front-end designs, with and without beam merging, and various pulse compression and acceleration schedules. We have examined the sensitivity of the results to variations in component cost assumptions, design constraints, and selected design parameters

  3. Rare isotope beams at ISAC—target & ion source systems

    NASA Astrophysics Data System (ADS)

    Bricault, Pierre G.; Ames, Friedhelm; Dombsky, Marik; Kunz, Peter; Lassen, Jens

    2014-01-01

    The present status of the ISAC facility for rare isotopes beams after its first 10 years of operation is presented. Planning for the ISAC facility started in 1985 with the Parksville workshop on radioactive ion beams (Buchmann and D'Auria 1985). It was put on halt by the KAON proposal and planning was only resumed in 1993 after the cancellation of KAON. The ISAC facility was built to satisfy the scientific need for accelerated beams of rare isotopes for use in applications such as nuclear physics, nuclear astrophysics, atomic and condensed matter physics as well as medicine. At the time of the ISAC proposal submission, a number of facilities were either planned or under construction. In order to have an impact in the field, the requirements and specifications for the driver beam intensity on target was set to 100 μA, 500 MeV protons, which for ISAC results in a driver beam power of 50 kW.

  4. Nanoionics: ion transport and electrochemical storage in confined systems.

    PubMed

    Maier, J

    2005-11-01

    The past two decades have shown that the exploration of properties on the nanoscale can lead to substantially new insights regarding fundamental issues, but also to novel technological perspectives. Simultaneously it became so fashionable to decorate activities with the prefix 'nano' that it has become devalued through overuse. Regardless of fashion and prejudice, this article shows that the crystallizing field of 'nanoionics' bears the conceptual and technological potential that justifies comparison with the well-acknowledged area of nanoelectronics. Demonstrating this potential implies both emphasizing the indispensability of electrochemical devices that rely on ion transport and complement the world of electronics, and working out the drastic impact of interfaces and size effects on mass transfer, transport and storage. The benefits for technology are expected to lie essentially in the field of room-temperature devices, and in particular in artificial self-sustaining structures to which both nanoelectronics and nanoionics might contribute synergistically. PMID:16379070

  5. Hybrid Ion-Detector/Data-Acquisition System for a TOF-MS

    NASA Technical Reports Server (NTRS)

    Burton, William D., Jr.; Schultz, J. Albert; Vaughn, Valentine; McCully, Michael; Ulrich, Steven; Egan, Thomas F.

    2006-01-01

    A modified ion-detector/data-acquisition system has been devised to increase the dynamic range of a time-of-flight mass spectrometer (TOF-MS) that, previously, included a microchannel-plate detector and a data-acquisition system based on counting pulses and time-tagging them by use of a time-to-digital converter (TDC). The dynamic range of the TOF-MS was limited by saturation of the microchannel plate detector, which can handle no more than a few million counts per second. The modified system includes (1) a combined microchannel plate/discrete ion multiplier and (2) a hybrid data-acquisition system that simultaneously performs analog current or voltage measurements and multianode single-ion-pulse-counting time-of-flight measurements to extend the dynamic range of a TDC into the regime in which a mass peak comprises multiple ions arriving simultaneously at the detector. The multianode data are used to determine, in real time, whether the detector is saturated. When saturation is detected, the data-acquisition system selectively enables circuitry that simultaneously determines the ion-peak intensity by measuring the time profile of the analog current or voltage detector-output signal.

  6. UREA/ammonium ion removal system for the orbiting frog otolith experiment. [ion exchange resins for water treatment during space missions

    NASA Technical Reports Server (NTRS)

    Schulz, J. R.; Anselmi, R. T.

    1976-01-01

    The feasibility of using free urease enzyme and ANGC-101 ion exchange resin to remove urea and ammonium ion for space system waste water applications was studied. Specifically examined is the prevention of urea and ammonia toxicity in a 30-day Orbiting Frog Otolith (OFO) flight experiment. It is shown that free urease enzyme used in conjunction with ANGC-101 ion-exchange resin and pH control can control urea and amonium ion concentration in unbuffered recirculating water. In addition, the resin does not adversely effect the bullfrogs by lowering the concentration of cations below critical minimum levels. Further investigations on bioburden control, frog waste excretion on an OFO diet, a trade-off analysis of methods of automating the urea/ammonium ion removal system and fabrication and test of a semiautomated breadboard were recommended as continuing efforts. Photographs of test equipment and test animals are shown.

  7. wwLigCSRre: a 3D ligand-based server for hit identification and optimization

    PubMed Central

    Sperandio, O.; Petitjean, M.; Tuffery, P.

    2009-01-01

    The wwLigCSRre web server performs ligand-based screening using a 3D molecular similarity engine. Its aim is to provide an online versatile facility to assist the exploration of the chemical similarity of families of compounds, or to propose some scaffold hopping from a query compound. The service allows the user to screen several chemically diversified focused banks, such as Kinase-, CNS-, GPCR-, Ion-channel-, Antibacterial-, Anticancer- and Analgesic-focused libraries. The server also provides the possibility to screen the DrugBank and DSSTOX/Carcinogenic compounds databases. User banks can also been downloaded. The 3D similarity search combines both geometrical (3D) and physicochemical information. Starting from one 3D ligand molecule as query, the screening of such databases can lead to unraveled compound scaffold as hits or help to optimize previously identified hit molecules in a SAR (Structure activity relationship) project. wwLigCSRre can be accessed at http://bioserv.rpbs.univ-paris-diderot.fr/wwLigCSRre.html. PMID:19429687

  8. Hitting the mucosal road in tolerance induction.

    PubMed

    Wiedermann, Ursula

    2009-01-01

    Within the last decades a dramatic increase in allergic diseases has been recognized in the Westernized societies, leading to the fact that meanwhile 25-30% of the population is afflicted by allergic disorders. Besides a hereditary disposition, other factors, including a reduced microbial contact early in life or changes in nutrition, might also have influenced this epidemiological development. So far the only causative treatment against type-I allergies is specific immunotherapy. In young and monosensitized patients this treatment is highly efficacious, while there are clear limitations in older or multisensitized patients. Allergy research therefore aims at establishing new and more efficacious treatment strategies in prophylactic as well as therapeutic settings. Our research programs focus on the development of novel allergy vaccines based on the induction of mucosal tolerance. In different mouse models of respiratory allergy mucosal treatment with genetically engineered allergen constructs proved to prevent the development of allergic mono- and multisensitivities. The additional use of mucosal adjuvants seems particularly important to improve therapeutic treatment approaches. Recent studies on the inverse relation of certain parasite infections and the development of allergy prompted us to search for selected parasitic molecules with immunosuppressive properties as potential adjuvant systems for novel allergy vaccines. An overview of our recent studies will be given.

  9. PREFACE: Heavy-Ion Spectroscopy and QED Effects in Atomic Systems

    NASA Astrophysics Data System (ADS)

    Lindgren, Ingvar; Martinson, Indrek; Schuch, Reinhold

    1993-01-01

    Experimental studies of heavy and highly charged ions have made remarkable progress in recent years. Today it is possible to produce virtually any ion up to hydrogen-like uranium; to study collisions of those ions with atoms, electrons, and solid surfaces; to excite such an ion and accurately measure the radiation emitted. This progress is largely due to the development of new experimental methods, for instance, the high-energy ion accelerators, laser-produced plasmas, advanced ion sources and ion traps (such as EBIS, EBIT, ECR, etc.), high temperature magnetically confined plasmas and heavy-ion storage rings. The motivations for studies of collisions with highly charged ions and for the understanding of the structure of heavy atomic systems are multi-faceted. Besides of the basic scientific aspects which are mainly the subject of this symposium, much incentive is experienced by applications, e.g., the interpretation of spectra from space (solar corona, solar flares and hot stars), the modelling of stellar atmospheres, the diagnostics of fusion plasma impurities, and the development of X-ray lasers. Since quite some time highly charged ions play a key role for high-precision metrology of atomic structure. These studies have been benchmarks for tests of advanced theories, including many-body theories of interelectronic correlations, relativistic and quantum-electrodynamic (QED) effects, effects due to the finite size of the nucleus and to parity non-conservation (PNC). The interest in QED effects in heavy ions has increased drastically in the last few years. The remarkable experiment on Li-like uranium, recently reported from Berkeley, has stimulated several groups to perform very accurate Lamb-shift calculations on such systems, and reports from three groups were given about such work. The agreement between the calculations as well as with experiment was generally very good, which implies that the problem of evaluating the first-order Lamb shift for any element is

  10. Plasticizer contamination from vacuum system O-rings in a quadrupole ion trap mass spectrometer.

    PubMed

    Verge, Kent M; Agnes, George R

    2002-08-01

    The outgassing of plasticizers from Buna-N and Viton o-rings under vacuum lead to undesired ion-molecule chemistry in an Electrospray Quadrupole Ion Trap Mass Spectrometer. In experiments with the helium bath gas pressure >1.2 mTorr, or whenever analyte ions were stored for >100 ms, extensive loss of analyte ions by proton transfer or adduction with o-ring plasticizers bis(2-ethylhexyl) phthalate and bis(2-ethylhexyl) adipate occurred. A temporary solution to this contamination problem was found to be overnight refluxing in hexane of all the o-rings in the vacuum system. This procedure alleviated this plasticizer contamination for approximately 100 hours of operation. These results, and those that lead to identification of the contamination as plasticizers outgassing from o-rings are described. PMID:12216729

  11. Installation of spectrally selective imaging system in RF negative ion source.

    PubMed

    Ikeda, K; Wünderlich, D; Fantz, U; Heinemann, B; Kisaki, M; Nagaoka, K; Nakano, H; Osakabe, M; Tsumori, K; Geng, S; Kaneko, O; Takeiri, Y

    2016-02-01

    A spectrally selective imaging system has been installed in the RF negative ion source in the International Thermonuclear Experimental Reactor-relevant negative ion beam test facility ELISE (Extraction from a Large Ion Source Experiment) to investigate distribution of hydrogen Balmer-α emission (Hα) close to the production surface of hydrogen negative ion. We selected a GigE vision camera coupled with an optical band-path filter, which can be controlled remotely using high speed network connection. A distribution of Hα emission near the bias plate has been clearly observed. The same time trend on Hα intensities measured by the imaging diagnostic and the optical emission spectroscopy is confirmed. PMID:26931995

  12. Oscillatory instability development in extraction system of a negative ion source.

    PubMed

    Barminova, H Y; Chikhachev, A S

    2016-02-01

    Conditions of oscillatory instability development in the extraction system of a negative hydrogen ion source based on a volume-produced plasma are studied. Such an ion source is characterized by the presence of the parent gas in the extraction system due to the leakage from the gas-discharge chamber. The secondary electrons in the area of the ion-optical system become the reason of oscillation appearance and possible beam current modulation. Analytically the range of the stable beam propagation is found. The instability increment is shown to be rather small. Maximum increment of the oscillations corresponds to the beam velocity equal to the thermal velocity of plasma electrons. The group velocity of the oscillations is close to the beam velocity so the oscillations are convective. Simulation of the low energy beam propagation is performed in COMSOL Multiphysics, the beam current modulation being observed. PMID:26931916

  13. Performance Evaluation of an Expanded Range XIPS Ion Thruster System for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Oh, David Y.; Goebel, Dan M.

    2006-01-01

    This paper examines the benefit that a solar electric propulsion (SEP) system based on the 5 kW Xenon Ion Propulsion System (XIPS) could have for NASA's Discovery class deep space missions. The relative cost and performance of the commercial heritage XIPS system is compared to NSTAR ion thruster based systems on three Discovery class reference missions: 1) a Near Earth Asteroid Sample Return, 2) a Comet Rendezvous and 3) a Main Belt Asteroid Rendezvous. It is found that systems utilizing a single operating XIPS thruster provides significant performance advantages over a single operating NSTAR thruster. In fact, XIPS performs as well as systems utilizing two operating NSTAR thrusters, and still costs less than the NSTAR system with a single operating thruster. This makes XIPS based SEP a competitive and attractive candidate for Discovery class science missions.

  14. 77 FR 66617 - HIT Policy and Standards Committees; Workgroup Application Database

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... HUMAN SERVICES HIT Policy and Standards Committees; Workgroup Application Database AGENCY: Office of the... Application Database. The Office of the National Coordinator (ONC) has launched a new Health Information Technology Federal Advisory Committee Workgroup Application Database. Name of Committees: HIT...

  15. 75 FR 62399 - Office of the National Coordinator for Health Information Technology; HIT Standards Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... from the HIT Policy Committee regarding health information technology standards, implementation... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Office of the National Coordinator for Health Information Technology; HIT...

  16. 75 FR 32472 - Office of the National Coordinator for Health Information Technology; HIT Standards Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... HUMAN SERVICES Office of the National Coordinator for Health Information Technology; HIT Standards... Information Technology AGENCY: Office of the National Coordinator for Health Information Technology, HHS... Information Technology (ONC). Name of Committee: HIT Standards Committee. General Function of the...

  17. Using ProHits to store, annotate and analyze affinity purification - mass spectrometry (AP-MS) data

    PubMed Central

    Liu, Guomin; Zhang, Jianping; Choi, Hyungwon; Lambert, Jean-Philippe; Srikumar, Tharan; Larsen, Brett; Nesvizhskii, Alexey I.; Raught, Brian; Tyers, Mike; Gingras, Anne-Claude

    2012-01-01

    Affinity purification coupled with mass spectrometry (AP-MS) is a robust technique used to identify protein-protein interactions. With recent improvements in sample preparation, and dramatic advances in MS instrumentation speed and sensitivity, this technique is becoming more widely used throughout the scientific community. To meet the needs of research groups both large and small, we have developed software solutions for tracking, scoring and analyzing AP-MS data. Here, we provide details for the installation and utilization of ProHits, a Laboratory Information Management System designed specifically for AP-MS interaction proteomics. This protocol explains: (i) how to install the complete ProHits system, including modules for the management of mass spectrometry files and the analysis of interaction data, and (ii) alternative options for the use of pre-existing search results in simpler versions of ProHits, including a virtual machine implementation of our ProHits Lite software. We also describe how to use the main features of the software to analyze AP-MS data. PMID:22948730

  18. Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

    SciTech Connect

    Shi, Ying; Smith, Kandler; Wood, Eric; Pesaran, Ahmad

    2015-09-14

    Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.

  19. Manual laterality and hitting performance in major league baseball.

    PubMed

    Grondin, S; Guiard, Y; Ivry, R B; Koren, S

    1999-06-01

    Asymmetrical hand function was examined in the context of expert sports performance: hitting in professional baseball. An archival study was conducted to examine the batting performance of all Major League Baseball players from 1871 to 1992, focusing on those who batted left (n = 1,059) to neutralize the game asymmetry. Among them, left-handers (n = 421) were more likely to hit with power and to strike out than right-handers (n = 638). One possible account, based on the idea of hand dominance and an analogy to tennis, is that batting left involves a double-handed forehand for left-handers and a weaker and more reliable double-handed backhand for right-handers. The results are also interpretable in the light of Y. Guiard's (1987) kinematic chain model of a between-hands asymmetrical division of labor, which provides a detailed account of why left batting is optimal for left-handers. PMID:10385985

  20. A memory model for internet hits after media exposure

    NASA Astrophysics Data System (ADS)

    Chessa, Antonio G.; Murre, Jaap M. J.

    2004-02-01

    We present a cognitive model, based on the mathematical theory of point processes, which extends the results of two studies by Johansen (Physica A 276 (2000) 338; Physica A 296 (2001) 539) on download relaxation dynamics. Responses from subjects are considered as single events, which are received from original listeners or readers and from a network of social contacts, through which a message may propagate further. We collected data on the number of daily visits at our web site after a radio interview with the second author, in which the name of the web site was mentioned. A model based on an exponential hit time distribution and a homogeneous point process for regular visitors fits our data and Johansen's very well and is superior to both the power law and the logarithmic function. The fits suggest that hit data from different sources share the same cognitive mechanism, which are controlled merely by the encoding and retrieval of the target information memorised.

  1. Manual laterality and hitting performance in major league baseball.

    PubMed

    Grondin, S; Guiard, Y; Ivry, R B; Koren, S

    1999-06-01

    Asymmetrical hand function was examined in the context of expert sports performance: hitting in professional baseball. An archival study was conducted to examine the batting performance of all Major League Baseball players from 1871 to 1992, focusing on those who batted left (n = 1,059) to neutralize the game asymmetry. Among them, left-handers (n = 421) were more likely to hit with power and to strike out than right-handers (n = 638). One possible account, based on the idea of hand dominance and an analogy to tennis, is that batting left involves a double-handed forehand for left-handers and a weaker and more reliable double-handed backhand for right-handers. The results are also interpretable in the light of Y. Guiard's (1987) kinematic chain model of a between-hands asymmetrical division of labor, which provides a detailed account of why left batting is optimal for left-handers.

  2. Flexible system for multiple plasma immersion ion implantation-deposition processes

    NASA Astrophysics Data System (ADS)

    Tian, Xiubo; Fu, Ricky K. Y.; Chu, Paul K.; Anders, Andre; Gong, Chunzhi; Yang, Shiqin

    2003-12-01

    Multiple plasma immersion ion implantation-deposition offers better flexibility compared to other thin film deposition techniques with regard to process optimization. The plasmas may be based on either cathodic arc plasmas (metal ions) or gas plasmas (gas ions) or both of them. Processing parameters such as pulsing frequency, pulse duration, bias voltage amplitude, and so on, that critically affect the film structure, internal stress, surface morphology, and other surface properties can be adjusted relatively easily to optimize the process. The plasma density can be readily controlled via the input power to obtain the desirable gas-to-metal ion ratios in the films. The high-voltage pulses can be applied to the samples within (in-duration mode), before (before-duration mode), or after (after-duration mode) the firing of the cathodic arcs. Consequently, dynamic ion beam assisted deposition processes incorporating various mixes of gas and metal ions can be achieved to yield thin films with the desirable properties. The immersion configuration provides to a certain degree the ability to treat components that are large and possess irregular geometries without resorting to complex sample manipulation or beam scanning. In this article we describe the hardware functions of such a system, voltage-current behavior to satisfy the needs of different processes, as well as typical experimental results.

  3. The Effects of Pain Cues on Hitting Behavior.

    ERIC Educational Resources Information Center

    Dubanoski, Richard A.; Kong, Colleen

    This study investigates the effects of pain and non-pain consequences on groups of 22 high- and 22 low-aggression boys, as determined by a peer rating scale. The boys, who had a mean age of 10 years, 8 months, were instructed to hit a punching apparatus. Through earphones, half of each group heard pain cues, i.e., "ouch", while the other half…

  4. Hitting moving targets with a continuously changing temporal window.

    PubMed

    de la Malla, Cristina; López-Moliner, Joan

    2015-09-01

    Hitting a moving target requires that we do not miss the target when it is around the aimed position. The time available for us not to miss the target when it is at the position of interest is usually called the time window and depends on target's speed and size. These variables, among others, have been manipulated in previous studies but kept constant within the same trial or session. Here, we present results of a hitting task in which targets underwent simple harmonic motion, which is defined by a sinusoidal function. Target velocity changes continuously in this motion and so does the time window which is shorter in the centre (peak velocity) and longer at the turning points (lowest velocity) within a single trial. We studied two different conditions in which the target moved with a reliable (across trials) amplitude displacement or reliable peak velocity, respectively, and subjects were free to decide where and when to hit it. Results show that subjects made a compromise between maximum and minimum target's speed, so that they did hit the target at intermediate speed values. Interestingly, the reliability of target peak velocity (or displacement) modulated the point of interception. When target's peak velocity was more reliable, subjects intercepted the target at positions with smaller temporal windows and the reverse was true when displacement was reliable. Subjects adapted the interceptive behaviour to the underlying statistical structure of the targets. Finally, in a control condition in which the temporal window also depended on the instant size and not only on speed, subjects intercepted the target when it moved at similar speeds than when the size was constant. This finding suggests that velocity rather than the temporal window contributed more to controlling the interceptive movements.

  5. Ion transport membrane reactor systems and methods for producing synthesis gas

    SciTech Connect

    Repasky, John Michael

    2015-05-12

    Embodiments of the present invention provide cost-effective systems and methods for producing a synthesis gas product using a steam reformer system and an ion transport membrane (ITM) reactor having multiple stages, without requiring inter-stage reactant injections. Embodiments of the present invention also provide techniques for compensating for membrane performance degradation and other changes in system operating conditions that negatively affect synthesis gas production.

  6. Automated control and data acquisition system for lithium-ion accumulators test bench

    NASA Astrophysics Data System (ADS)

    Mizrah, E. A.; Balakirev, R. V.; Shtabel, N. V.

    2015-10-01

    In the article authors describe architecture of an automated data acquisition system for lithium ion accumulators lifetime test bench. The system is based on high performance data acquisition modules and allows acquisition of data in the process of simultaneous testing of 12 accumulators, including current, voltage and temperature of each accumulator. LabView based software is used to control testing, registration of data and loading of test program into system modules.

  7. Ion extraction capabilities of two-grid accelerator systems. [for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. A large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current is presented. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high.

  8. Effective progression of nuclear magnetic resonance-detected fragment hits.

    PubMed

    Eaton, Hugh L; Wyss, Daniel F

    2011-01-01

    Fragment-based drug discovery (FBDD) has become increasingly popular over the last decade as an alternate lead generation tool to HTS approaches. Several compounds have now progressed into the clinic which originated from a fragment-based approach, demonstrating the utility of this emerging field. While fragment hit identification has become much more routine and may involve different screening approaches, the efficient progression of fragment hits into quality lead series may still present a major bottleneck for the broadly successful application of FBDD. In our laboratory, we have extensive experience in fragment-based NMR screening (SbN) and the subsequent iterative progression of fragment hits using structure-assisted chemistry. To maximize impact, we have applied this approach strategically to early- and high-priority targets, and those struggling for leads. Its application has yielded a clinical candidate for BACE1 and lead series in about one third of the SbN/FBDD projects. In this chapter, we will give an overview of our strategy and focus our discussion on NMR-based FBDD approaches. PMID:21371601

  9. 42 CFR 495.332 - State Medicaid health information technology (HIT) plan requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false State Medicaid health information technology (HIT... HEALTH RECORD TECHNOLOGY INCENTIVE PROGRAM Requirements Specific to the Medicaid Program § 495.332 State Medicaid health information technology (HIT) plan requirements. Each State Medicaid HIT plan must...

  10. Teachers' Perspectives on Hitting Back in School: Between Inexcusable Violence and Self-Defense

    ERIC Educational Resources Information Center

    Fleischmann, Amos

    2015-01-01

    Israeli schools expressly forbid a student to hit back after being attacked. In semistructured interviews, 71 Israeli educators were asked for their views on the hitting-back tactic. The interviews compared their attitude toward hitting back as teachers with their take on the matter as parents. The results, analyzed using grounded theory, show…

  11. Ion source development for a photoneutralization based NBI system for fusion reactors

    NASA Astrophysics Data System (ADS)

    Simonin, A.; de Esch, H. P. L.; Garibaldi, P.; Grand, C.; Bechu, S.; Bès, A.; Lacoste, A.

    2015-04-01

    The next step after ITER is to demonstrate the viability and generation of electricity by a future fusion reactor (DEMO). The specifications required to operate an NBI system on DEMO are very demanding. The system has to provide a very high level of power and energy, ~100MW of D° beam at 1MeV, including high wall-plug efficiency (η > 60%). For this purpose, a new injector concept, called Siphore, is under investigation between CEA and French universities. Siphore is based on the stripping of the accelerated negative ions by photo-detachment provided by several Fabry-Perot cavities (3.5MW of light power per cavity) implemented along the D- beam. The beamline is designed to be tall and narrow in order that the photon flux overlaps the entire negative ion beam. The paper will describe the present R&D at CEA which addresses the development of an ion source and pre-accelerator prototypes for Siphore, the main goal being to produce an intense negative ion beam sheet. The negative ion source Cybele is based on a magnetized plasma column where hot electrons are emitted from the source center. Parametric studies of the source are performed using Langmuir probes in order to characterize the plasma and to compare with numerical models being developed in French universities.

  12. Ion source development for a photoneutralization based NBI system for fusion reactors

    SciTech Connect

    Simonin, A.; Esch, H. P. L. de; Garibaldi, P.; Grand, C.; Bechu, S.; Bès, A.; Lacoste, A.

    2015-04-08

    The next step after ITER is to demonstrate the viability and generation of electricity by a future fusion reactor (DEMO). The specifications required to operate an NBI system on DEMO are very demanding. The system has to provide a very high level of power and energy, ~100MW of D° beam at 1MeV, including high wall-plug efficiency (η > 60%). For this purpose, a new injector concept, called Siphore, is under investigation between CEA and French universities. Siphore is based on the stripping of the accelerated negative ions by photo-detachment provided by several Fabry-Perot cavities (3.5MW of light power per cavity) implemented along the D{sup −} beam. The beamline is designed to be tall and narrow in order that the photon flux overlaps the entire negative ion beam. The paper will describe the present R and D at CEA which addresses the development of an ion source and pre-accelerator prototypes for Siphore, the main goal being to produce an intense negative ion beam sheet. The negative ion source Cybele is based on a magnetized plasma column where hot electrons are emitted from the source center. Parametric studies of the source are performed using Langmuir probes in order to characterize the plasma and to compare with numerical models being developed in French universities.

  13. A "Hit and Run" Approach to Inducible Direct Reprogramming of Astrocytes to Neural Stem Cells.

    PubMed

    Poulou, Maria; Mandalos, Nikolaos P; Karnavas, Theodoros; Saridaki, Marannia; McKay, Ronald D G; Remboutsika, Eumorphia

    2016-01-01

    Temporal and spatial control of gene expression can be achieved using an inducible system as a fundamental tool for regulated transcription in basic, applied and eventually in clinical research. We describe a novel "hit and run" inducible direct reprogramming approach. In a single step, 2 days post-transfection, transiently transfected Sox2(FLAG) under the Leu3p-αIPM inducible control (iSox2) triggers the activation of endogenous Sox2, redirecting primary astrocytes into abundant distinct nestin-positive radial glia cells. This technique introduces a unique novel tool for safe, rapid and efficient reprogramming amendable to regenerative medicine. PMID:27148066

  14. Integration of a rapid automated solubility classification into early validation of hits obtained by high throughput screening.

    PubMed

    Fligge, Thilo A; Schuler, Andrea

    2006-10-11

    Besides the structural verification of hits generated by high throughput screening also the determination of physicochemical properties is essential for an efficient lead identification. Especially solubility is fundamental for the correct planning and interpretation of experiments. We describe the set up of a fast automated solubility test within our existing workflow for hit validation to assure compound identity and purity. 384-Well plates with hit validation compound solution are used for analysis employing liquid chromatography and mass spectrometry (LC/MS). The remaining compound solution was used for a fast automated solubility classification employing a nephelometer integrated into a Tecan robotic workstation. Thereby 9000 compounds were classified as poorly- and well-soluble. This rapid and simple test does not require any additional amount of sample or sample processing than before but provides additional information on the hits at an early stage of lead identification. Validated by a more detailed nephelometric analysis for 500 out of the 9000 compounds in different buffer systems this simple test has shown to produce relevant data.

  15. Metal ions affecting the pulmonary and cardiovascular systems.

    PubMed

    Corradi, Massimo; Mutti, Antonio

    2011-01-01

    Some metals, such as copper and manganese, are essential to life and play irreplaceable roles in, e.g., the functioning of important enzyme systems. Other metals are xenobiotics, i.e., they have no useful role in human physiology and, even worse, as in the case of lead, may be toxic even at trace levels of exposure. Even those metals that are essential, however, have the potential to turn harmful at very high levels of exposure, a reflection of a very basic tenet of toxicology--"the dose makes the poison." Toxic metal exposure may lead to serious risks to human health. As a result of the extensive use of toxic metals and their compounds in industry and consumer products, these agents have been widely disseminated in the environment. Because metals are not biodegradable, they can persist in the environment and produce a variety of adverse effects. Exposure to metals can lead to damage in a variety of organ systems and, in some cases, metals also have the potential to be carcinogenic. Even though the importance of metals as environmental health hazards is now widely appreciated, the specific mechanisms by which metals produce their adverse effects have yet to be fully elucidated. The unifying factor in determining toxicity and carcinogenicity for most metals is the generation of reactive oxygen and nitrogen species. Metal-mediated formation of free radicals causes various modifications to nucleic acids, enhanced lipid peroxidation, and altered calcium and sulfhydryl homeostasis. Whilst copper, chromium, and cobalt undergo redox-cycling reactions, for metals such as cadmium and nickel the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. This chapter attempts to show that the toxic effects of different metallic compounds may be manifested in the pulmonary and cardiovascular systems. The knowledge of health effects due to metal exposure is necessary for practising physicians, and should be assessed by inquiring

  16. [Interphase distribution of divalent metal ions in aqueous casein-containing systems with variable mineral composition].

    PubMed

    Genkina, N K; Koltysheva, G I; Manakov, M N

    2000-01-01

    The influence of the salt composition of casein-water-Cd(NO3)2 and defatted milk-Cd(NO3)2 systems on the partition of Cd2+ during acidic precipitation of casein was studied. The conditions that minimize the content of the toxicant ion in the isolated protein (pH and salt composition) are determined. PMID:10994194

  17. Estimating the binding ability of onium ions with CO₂ and π systems: a computational investigation.

    PubMed

    Hussain, M Althaf; Mahadevi, A Subha; Sastry, G Narahari

    2015-01-21

    Density functional theory (DFT) calculations have been employed on 165 complexes of onium ions (NH4(+), PH4(+), OH3(+), SH3(+)) and methylated onium ions with CO2, aromatic (C6H6) and heteroaromatic (C5H5X, X = N, P; C4H5Y, Y = N, P; C4H4Z, Z = O, S) systems. The stability of CO2···onium, CO2···π and onium···π complexes was shown to be mediated through various noncovalent interactions such as hydrogen bonding, NH-π, PH-π, OH-π, SH-π, CH-π and π-π. We have discussed 17 complexes wherein the proton transfer occurs between the onium ion and the heteroaromatic system. The binding energy is found to decrease with increasing methyl substitution of the complexes containing onium ions. Binding energy components of all the noncovalent complexes were explored using localized molecular orbital energy decomposition analysis (LMO-EDA). The CO2···π complexes were primarily stabilized by the dispersion term followed by contributions from electrostatic and polarization components. In general, for onium ion complexes with CO2 or π systems, the electrostatic and polarization terms primarily contribute to stabilize the complex. As the number of methyl groups increases on the onium ion, the dispersion term is seen to have a key role in the stabilization of the complex. Quantum theory of atoms in molecules (QTAIM) analysis and charges based on natural population analysis (NPA) in various complexes have also been reported in order to determine the nature of noncovalent interactions in different complexes.

  18. Final design of thermal diagnostic system in SPIDER ion source

    NASA Astrophysics Data System (ADS)

    Brombin, M.; Dalla Palma, M.; Pasqualotto, R.; Pomaro, N.

    2016-11-01

    The prototype radio frequency source of the ITER heating neutral beams will be first tested in SPIDER test facility to optimize H- production, cesium dynamics, and overall plasma characteristics. Several diagnostics will allow to fully characterise the beam in terms of uniformity and divergence and the source, besides supporting a safe and controlled operation. In particular, thermal measurements will be used for beam monitoring and system protection. SPIDER will be instrumented with mineral insulated cable thermocouples, both on the grids, on other components of the beam source, and on the rear side of the beam dump water cooled elements. This paper deals with the final design and the technical specification of the thermal sensor diagnostic for SPIDER. In particular the layout of the diagnostic, together with the sensors distribution in the different components, the cables routing and the conditioning and acquisition cubicles are described.

  19. Mixed Pierce-two-stream instability development in an extraction system of a negative ion source.

    PubMed

    Barminova, H Y; Chikhachev, A S

    2016-02-01

    Mixed Pierce-two-stream instability may occur in an extraction system of a negative ion source based on a volume-produced plasma. The reasons for instability development are discussed. Analytically the conditions of unstable beam propagation are determined. The instability threshold is shown to be increased compared with the pure Pierce instability. The influence of inclined perturbations on the instability behavior is investigated. The numerical calculations are performed in COMSOL Multiphysics. The simulation results confirm the existence of such a mixed instability appearance that develops due to both the electrons of the external circuit and the background positive ions. PMID:26931917

  20. Use of a minimum-ellipse criterion in the study of ion-beam extraction systems

    SciTech Connect

    Keller, R.; Sherman, J.D.; Allison, P.

    1985-01-01

    Ion-beam extraction systems may be optimized by ray-tracing codes. As a general criterion for comparing the geometry-dependent phase-space distributions, we first calculate the minimum-area ellipse that encloses all particles of any given two-dimensional phase-space distribution. Then, the relation between ellipse area and contained beam fraction is established by systematically finding and eliminating those particles that contribute most heavily to the emittance. Prescriptions for finding the minimum ellipse and beam fractions will be presented. The minimum and rms ellipses are compared for two code-calculated distributions that represent ion-beam extraction geometries. 5 refs., 6 figs.

  1. Ion transport membrane module and vessel system with directed internal gas flow

    SciTech Connect

    Holmes, Michael Jerome; Ohrn, Theodore R.; Chen, Christopher Ming-Poh

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  2. Method and system for producing hydrogen using sodium ion separation membranes

    SciTech Connect

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M; Frost, Lyman

    2013-05-21

    A method of producing hydrogen from sodium hydroxide and water is disclosed. The method comprises separating sodium from a first aqueous sodium hydroxide stream in a sodium ion separator, feeding the sodium produced in the sodium ion separator to a sodium reactor, reacting the sodium in the sodium reactor with water, and producing a second aqueous sodium hydroxide stream and hydrogen. The method may also comprise reusing the second aqueous sodium hydroxide stream by combining the second aqueous sodium hydroxide stream with the first aqueous sodium hydroxide stream. A system of producing hydrogen is also disclosed.

  3. Charge exchange spectroscopy system calibration for ion temperature measurement in KSTARa)

    NASA Astrophysics Data System (ADS)

    Ko, Won-Ha; Lee, Hyungho; Seo, Dongcheol; Kwon, Myeun

    2010-10-01

    The charge exchange spectroscopy (CES) system including collection assemblies, lens design, and cassettes for the KSTAR experiment was installed to obtain profiles of the ion temperature and the toroidal rotation velocity from charge exchange emission between plasma ions and beam neutrals near the plasma axis by using a modulated neutral beam and a background system. We can measure the charge exchange spectra of an impurity line such as the 529 nm line of carbon VI to get ion temperature and rotation profiles in KSTAR. The CES and background systems will have absolute intensity and spectral calibrations using a calibrated source and various spectral lamps. The calibration was done inside the tokamak after all CES systems are installed and the optical systems are slid into the cassettes. This requires that the diagnostic systems are installed near the vacuum vessel inside the cryostat maintaining the superconducting state of the superconducting coils. Repeated spectral calibrations of the spectrometer and charge coupled device for CES will be made in the diagnostic room during the experimental campaign. We show a detailed description of the KSTAR CES system, how to calibrate, and the results of calibration.

  4. Stimulatory effects of maitotoxin on insulin release in insulinoma HIT cells: Role of calcium uptake and phosphoinositide breakdown

    SciTech Connect

    Soergel, D.G.; Gusovsky, F.; Yasumoto, T.; Daly, J.W. )

    1990-12-01

    In hamster insulinoma (HIT) cells, maitotoxin (MTX) induces a time-dependent and concentration-dependent release of insulin that requires the presence of extracellular calcium. The response is nearly completely blocked by cinnarizine and cadmium, but is not inhibited by the L-type calcium channel blocker nifedipine or by manganese. MTX induces 45Ca+ uptake in these cells in a dose-dependent mode, and the uptake is blocked with cinnarizine, nifedipine and cadmium, and is partially inhibited by manganese. MTX induces phosphoinositide breakdown in HIT cells, and the response is partially blocked by cadmium, but is not affected by nifedipine, cinnarizine or manganese. High concentrations of potassium ions also induce insulin release and calcium uptake in HIT cells. Both effects of potassium are blocked partially by nifedipine, cadmium and cinnarizine. High concentrations of potassium do not induce phosphoinositide breakdown in HIT cells. The results suggest that MTX-elicited release of insulin is attained by two mechanisms: (1) a nifedipine-sensitive action, which results from MTX-induced activation of L-type calcium channels, which can be mimicked with high potassium concentrations; and (2) a nifedipine-insensitive action, which may be initiated by the activation of phosphoinositide breakdown by MTX. Such an activation of phospholipase C would result in the formation of 1,4,5-inositol trisphosphate, a release of intracellular calcium and then release of insulin to the extracellular space. Cinnarizine is proposed to block both MTX-elicited mechanisms, the first by blockade of calcium channels and the second by blocking 1,4,5-inositol trisphosphate-induced release of internal calcium. Either mechanism alone appears capable of eliciting release of insulin.

  5. Characterization of microRNA expression profiles in blood and saliva using the Ion Personal Genome Machine(®) System (Ion PGM™ System).

    PubMed

    Wang, Zheng; Zhou, Di; Cao, Yandong; Hu, Zhen; Zhang, Suhua; Bian, Yingnan; Hou, Yiping; Li, Chengtao

    2016-01-01

    MicroRNA (miRNA) expression profiling is gaining interest in the forensic community because the intrinsically short fragment and tissue-specific expression pattern enable miRNAs as a useful biomarker for body fluid identification. Measuring the quantity of miRNAs in forensically relevant body fluids is an important step to screen specific miRNAs for body fluid identification. The recent introduction of massively parallel sequencing (MPS) has the potential for screening miRNA biomarkers at the genome-wide level, which allows both the detection of expression pattern and miRNA sequences. In this study, we employed the Ion Personal Genome Machine(®) System (Ion PGM™ System, Thermo Fisher) to characterize the distribution and expression of 2588 human mature miRNAs (miRBase v21) in 5 blood samples and 5 saliva samples. An average of 1,885,000 and 1,356,000 sequence reads were generated in blood and saliva respectively. Based on miRDong, a Perl-based tool developed for semi-automated miRNA distribution designations, and manually ascertained, 6 and 19 miRNAs were identified respectively as potentially blood and saliva-specific biomarkers. Herein, this study describes a complete and reliable miRNA workflow solution based on Ion PGM™ System, starting from efficient RNA extraction, followed by small RNA library construction and sequencing. With this workflow solution and miRDong analysis it will be possible to measure miRNA expression pattern at the genome-wide level in other forensically relevant body fluids.

  6. Orbital Experiment of Nano-satellite "HIT-SAT" as a Sub-payload of M-V Rocket

    NASA Astrophysics Data System (ADS)

    Sato, Tatsuhiro; Mitsuhashi, Ryuichi; Satori, Shin; Ishimura, Kosei; Totani, Tsuyoshi; Nakamura, Akihiro; Hori, Kotaro; Yasunaka, Toshihiko; HIT-SAT Development Team

    A small satellite named Hokkaido Satellite “TAIKI” has been designed by NPO Frontier Incubation center for space applications and intellectual activities in Hokkaido. The missions of TAIKI are an agricultural remote sensing using a hyper-spectral sensor and a hi-vision video image filming. As the first step of the Hokkaido satellite project, a space experiment using a 2.7kg nano-satellite was executed. To demonstrate the performance of the bus system of the small satellite, a cube-sat “HIT-SAT” was developed as a scale model of the Hokkaido Satellite. This paper describes the development and results of launch and operation. The HIT-SAT is 2.7 kg in weight and 12cm cubed sizes. The bus system of the satellite consists of five subsystems; power generation system, structure system, data handling system, communication system and attitude control system. The HIT-SAT was launched successfully on Sep. 23, 2006 (JST) as a sub-payload of M-V-7 rocket. The CW telemetry has been received around the world by many radio amateurs.

  7. Evolution of anisotropy of a partonic system from relativistic heavy-ion collisions

    SciTech Connect

    Jas, Weronika; Mrowczynski, Stanislaw

    2007-10-15

    The evolution of anisotropy in momentum and coordinate space of the parton system produced in relativistic heavy-ion collisions is discussed within the free-streaming approximation. The momentum distribution evolves from the prolate shape (elongated along the beam) to the oblate one (squeezed along the beam). At the same time, the eccentricity in coordinate space, which occurs at finite values of impact parameter, decreases. It is argued that the parton system reaches local thermodynamic equilibrium before the momentum distribution becomes oblate.

  8. On the flux and the energy spectrum of interstellar ions in the solar system

    NASA Technical Reports Server (NTRS)

    Vasyliunas, V. M.; Siscoe, G. L.

    1976-01-01

    The flux density of ions created by ionization of interstellar neutral particles in the solar system and picked up by the solar wind is calculated as a function of the neutral particles. For atomic hydrogen the flux density is estimated to exceed 10,000/sq cm/sec over the distance range from a few to nearly 100 AU. The velocity space distribution of the interstellar ions is calculated under the assumption of no significant energy diffusion but with inclusion of adiabatic effects as well as a possible strong pitch angle diffusion. The energy spectrum is highly nonthermal and much broader than that of the solar wind ions; interstellar protons are easily distinguishable from solar wind protons by their location in velocity space. If charge exchange is an important contributor to the ionization of hydrogen, the observed local intensity of interstellar protons should exhibit time variations correlated with the density changes of the solar wind stream structure.

  9. Spatial variation of plasma parameters and ion acceleration in an inductive plasma system

    SciTech Connect

    Volynets, V.N.; Park, Wontaek; Tolmachev, Yu.N.; Pashkovsky, V.G.; Yoo, Jinwoo

    2006-02-15

    Plasma parameters of inductively coupled plasma system with an annular plasma source have been studied experimentally. At low pressures (about 1 mTorr), electron temperature inside the plasma source is rather high (8-13 eV) and is much greater than in the diffusion (main) chamber (4-5 eV). The plasma potential inside the source is also much higher than in the main chamber. There is a rapid drop of the electron temperature and plasma potential at the boundary between the plasma source and the main chamber. The drop of the plasma potential at the boundary (about 20 V) means the existence of a strong axial electric field, which retards the electrons inside the plasma source and accelerates the ions from the source into the main chamber. Measurements of ion energy distributions in the main chamber volume reveal the existence of ions with kinetic energies about 15 eV.

  10. Development of ion beam figuring system with electrostatic deflection for ultraprecise X-ray reflective optics

    SciTech Connect

    Yamada, Jumpei; Matsuyama, Satoshi Sano, Yasuhisa; Yamauchi, Kazuto

    2015-09-15

    We developed an ion beam figuring system that utilizes electrostatic deflection. The system can produce an arbitrary shape by deterministically scanning the ion beam. The scan of the ion beam, which can be precisely controlled using only an electrical signal, enables us to avoid degradation of the mirror shape caused by imperfect acceleration or deceleration of a mechanically scanning stage. Additionally, this surface figuring method can easily be combined with X-ray metrology because the workpiece remains fixed during the figuring. We evaluated the figuring accuracy of the system by fabricating a plano-elliptical mirror for X-ray focusing. A mirror with a shape error of 1.4 nm root mean square (RMS) with a maximum removal depth of 992 nm, which corresponds to figuring accuracy of 0.14% RMS, was achieved. After the second shape corrections, an elliptical shape with a shape error of approximately 1 nm peak-to-valley, 0.48 nm RMS could be fabricated. Then, the mirror surface was smoothed by a low-energy ion beam. Consequently, a micro-roughness of 0.117 nm RMS, measured by atomic force microscopy, was achieved over an area of 1 × 1 μm{sup 2}.

  11. Development of ion beam figuring system with electrostatic deflection for ultraprecise X-ray reflective optics

    NASA Astrophysics Data System (ADS)

    Yamada, Jumpei; Matsuyama, Satoshi; Sano, Yasuhisa; Yamauchi, Kazuto

    2015-09-01

    We developed an ion beam figuring system that utilizes electrostatic deflection. The system can produce an arbitrary shape by deterministically scanning the ion beam. The scan of the ion beam, which can be precisely controlled using only an electrical signal, enables us to avoid degradation of the mirror shape caused by imperfect acceleration or deceleration of a mechanically scanning stage. Additionally, this surface figuring method can easily be combined with X-ray metrology because the workpiece remains fixed during the figuring. We evaluated the figuring accuracy of the system by fabricating a plano-elliptical mirror for X-ray focusing. A mirror with a shape error of 1.4 nm root mean square (RMS) with a maximum removal depth of 992 nm, which corresponds to figuring accuracy of 0.14% RMS, was achieved. After the second shape corrections, an elliptical shape with a shape error of approximately 1 nm peak-to-valley, 0.48 nm RMS could be fabricated. Then, the mirror surface was smoothed by a low-energy ion beam. Consequently, a micro-roughness of 0.117 nm RMS, measured by atomic force microscopy, was achieved over an area of 1 × 1 μm2.

  12. Development of ion beam figuring system with electrostatic deflection for ultraprecise X-ray reflective optics.

    PubMed

    Yamada, Jumpei; Matsuyama, Satoshi; Sano, Yasuhisa; Yamauchi, Kazuto

    2015-09-01

    We developed an ion beam figuring system that utilizes electrostatic deflection. The system can produce an arbitrary shape by deterministically scanning the ion beam. The scan of the ion beam, which can be precisely controlled using only an electrical signal, enables us to avoid degradation of the mirror shape caused by imperfect acceleration or deceleration of a mechanically scanning stage. Additionally, this surface figuring method can easily be combined with X-ray metrology because the workpiece remains fixed during the figuring. We evaluated the figuring accuracy of the system by fabricating a plano-elliptical mirror for X-ray focusing. A mirror with a shape error of 1.4 nm root mean square (RMS) with a maximum removal depth of 992 nm, which corresponds to figuring accuracy of 0.14% RMS, was achieved. After the second shape corrections, an elliptical shape with a shape error of approximately 1 nm peak-to-valley, 0.48 nm RMS could be fabricated. Then, the mirror surface was smoothed by a low-energy ion beam. Consequently, a micro-roughness of 0.117 nm RMS, measured by atomic force microscopy, was achieved over an area of 1 × 1 μm(2).

  13. An Overview of the Nuclear Electric Xenon Ion System (NEXIS) Activity

    NASA Technical Reports Server (NTRS)

    Randolph, Thomas M.; Polk, James E., Jr.

    2004-01-01

    The Nuclear Electric Xenon Ion System (NEXIS) research and development activity within NASA's Project Prometheus, was one of three proposals selected by NASA to develop thruster technologies for long life, high power, high specific impulse nuclear electric propulsion systems that would enable more robust and ambitious science exploration missions to the outer solar system. NEXIS technology represents a dramatic improvement in the state-of-the-art for ion propulsion and is designed to achieve propellant throughput capabilities >= 2000 kg and efficiencies >= 78% while increasing the thruster power to >= 20 kW and specific impulse to >= 6000 s. The NEXIS technology uses erosion resistant carbon-carbon grids, a graphite keeper, a new reservoir hollow cathode, a 65-cm diameter chamber masked to produce a 57-cm diameter ion beam, and a shared neutralizer architecture to achieve these goals. The accomplishments of the NEXIS activity so far include performance testing of a laboratory model thruster, successful completion of a proof of concept reservoir cathode 2000 hour wear test, structural and thermal analysis of a completed development model thruster design, fabrication of most of the development model piece parts, and the nearly complete vacuum facility modifications to allow long duration wear testing of high power ion thrusters.

  14. Power System Electronics Accommodation for a Lithium Ion Battery on the Space Technology 5 (ST5) Mission

    NASA Technical Reports Server (NTRS)

    Castell, Karen; Day, John H. (Technical Monitor)

    2001-01-01

    ST5 mission requirements include validation of Lithium-ion battery in orbit. Accommodation in the power system for Li-ion battery can be reduced with smaller amp-hour size, highly matched cells when compared to the larger amp-hour size approach. Result can be lower system mass and increased reliability.

  15. Heavy-ion microbeams and bystander effect studies at JAEA-Takasaki

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Funayama, T.; Sakashita, T.; Furusawa, Y.; Wada, S.; Yokota, Y.; Kakizaki, T.; Hamada, N.; Ni, M.

    During a long-term space mission astronauts are constantly exposed to space radiation especially of various kinds of heavy charged particles energetic heavy ions at low dose and low dose rate Heavy charged particles transfer their energy to biological organisms through high-density ionization along the particle trajectories The population of cells exposed to a very low dose of high-LET heavy particles contains a few cells hit by a particle while the majority of the cells receive no radiation damage At somewhat higher doses some of the cells receive two or more events according to the Poisson distribution of ion injections This fluctuation of particle trajectories through individual cells makes interpretation of radiological effects of heavy ions difficult Therefore we have established a single cell irradiation system which allows selected cells to be individually hit with defined number of heavy charged particles using a collimated heavy-ion microbeam apparatus at JAEA-Takasaki This system has been developed to study radiobiological processes in hit cells and bystander cells exposed to low dose and low dose-rate high-LET radiations in ways that cannot be achieved using conventional broad-field exposures Individual cultured cells grown in special dishes were irradiated in the atmosphere with a single or defined numbers of 18 3 MeV amu 12 C 13 0 or 17 5 MeV amu 20 Ne and 11 5 MeV amu 40 Ar ions Targeting and irradiation of the cells were performed automatically according to the positional data of the target cells

  16. Contribution of Visual Information about Ball Trajectory to Baseball Hitting Accuracy

    PubMed Central

    Higuchi, Takatoshi; Nagami, Tomoyuki; Nakata, Hiroki; Watanabe, Masakazu; Isaka, Tadao; Kanosue, Kazuyuki

    2016-01-01

    The contribution of visual information about a pitched ball to the accuracy of baseball-bat contact may vary depending on the part of trajectory seen. The purpose of the present study was to examine the relationship between hitting accuracy and the segment of the trajectory of the flying ball that can be seen by the batter. Ten college baseball field players participated in the study. The systematic error and standardized variability of ball-bat contact on the bat coordinate system and pitcher-to-catcher direction when hitting a ball launched from a pitching machine were measured with or without visual occlusion and analyzed using analysis of variance. The visual occlusion timing included occlusion from 150 milliseconds (ms) after the ball release (R+150), occlusion from 150 ms before the expected arrival of the launched ball at the home plate (A-150), and a condition with no occlusion (NO). Twelve trials in each condition were performed using two ball speeds (31.9 m·s-1 and 40.3 m·s-1). Visual occlusion did not affect the mean location of ball-bat contact in the bat’s long axis, short axis, and pitcher-to-catcher directions. Although the magnitude of standardized variability was significantly smaller in the bat’s short axis direction than in the bat’s long axis and pitcher-to-catcher directions (p < 0.001), additional visible time from the R+150 condition to the A-150 and NO conditions resulted in a further decrease in standardized variability only in the bat’s short axis direction (p < 0.05). The results suggested that there is directional specificity in the magnitude of standardized variability with different visible time. The present study also confirmed the limitation to visual information is the later part of the ball trajectory for improving hitting accuracy, which is likely due to visuo-motor delay. PMID:26848742

  17. Contribution of Visual Information about Ball Trajectory to Baseball Hitting Accuracy.

    PubMed

    Higuchi, Takatoshi; Nagami, Tomoyuki; Nakata, Hiroki; Watanabe, Masakazu; Isaka, Tadao; Kanosue, Kazuyuki

    2016-01-01

    The contribution of visual information about a pitched ball to the accuracy of baseball-bat contact may vary depending on the part of trajectory seen. The purpose of the present study was to examine the relationship between hitting accuracy and the segment of the trajectory of the flying ball that can be seen by the batter. Ten college baseball field players participated in the study. The systematic error and standardized variability of ball-bat contact on the bat coordinate system and pitcher-to-catcher direction when hitting a ball launched from a pitching machine were measured with or without visual occlusion and analyzed using analysis of variance. The visual occlusion timing included occlusion from 150 milliseconds (ms) after the ball release (R+150), occlusion from 150 ms before the expected arrival of the launched ball at the home plate (A-150), and a condition with no occlusion (NO). Twelve trials in each condition were performed using two ball speeds (31.9 m·s-1 and 40.3 m·s-1). Visual occlusion did not affect the mean location of ball-bat contact in the bat's long axis, short axis, and pitcher-to-catcher directions. Although the magnitude of standardized variability was significantly smaller in the bat's short axis direction than in the bat's long axis and pitcher-to-catcher directions (p < 0.001), additional visible time from the R+150 condition to the A-150 and NO conditions resulted in a further decrease in standardized variability only in the bat's short axis direction (p < 0.05). The results suggested that there is directional specificity in the magnitude of standardized variability with different visible time. The present study also confirmed the limitation to visual information is the later part of the ball trajectory for improving hitting accuracy, which is likely due to visuo-motor delay.

  18. Contribution of Visual Information about Ball Trajectory to Baseball Hitting Accuracy.

    PubMed

    Higuchi, Takatoshi; Nagami, Tomoyuki; Nakata, Hiroki; Watanabe, Masakazu; Isaka, Tadao; Kanosue, Kazuyuki

    2016-01-01

    The contribution of visual information about a pitched ball to the accuracy of baseball-bat contact may vary depending on the part of trajectory seen. The purpose of the present study was to examine the relationship between hitting accuracy and the segment of the trajectory of the flying ball that can be seen by the batter. Ten college baseball field players participated in the study. The systematic error and standardized variability of ball-bat contact on the bat coordinate system and pitcher-to-catcher direction when hitting a ball launched from a pitching machine were measured with or without visual occlusion and analyzed using analysis of variance. The visual occlusion timing included occlusion from 150 milliseconds (ms) after the ball release (R+150), occlusion from 150 ms before the expected arrival of the launched ball at the home plate (A-150), and a condition with no occlusion (NO). Twelve trials in each condition were performed using two ball speeds (31.9 m·s-1 and 40.3 m·s-1). Visual occlusion did not affect the mean location of ball-bat contact in the bat's long axis, short axis, and pitcher-to-catcher directions. Although the magnitude of standardized variability was significantly smaller in the bat's short axis direction than in the bat's long axis and pitcher-to-catcher directions (p < 0.001), additional visible time from the R+150 condition to the A-150 and NO conditions resulted in a further decrease in standardized variability only in the bat's short axis direction (p < 0.05). The results suggested that there is directional specificity in the magnitude of standardized variability with different visible time. The present study also confirmed the limitation to visual information is the later part of the ball trajectory for improving hitting accuracy, which is likely due to visuo-motor delay. PMID:26848742

  19. Static testing system for optical disks with an argon ion laser

    NASA Astrophysics Data System (ADS)

    Zhang, Guoxuan; Xu, Wendong; Ge, Hezong; Men, Liqiu Q.; Gan, Baihui; Yu, Dunhe

    1996-09-01

    We have developed a testing system with 514.5 nm argon ion laser to test the static properties of optical disks. The whole testing system is controlled by a computer. The laser power, pulse duration time and external applied magnetic field can be adjusted in a wide range. The focused spot size is less than 1 micrometers on the recording layer which allows high laser power irradiation, up to 30 mW. This testing system can evaluate the writing and erasing characteristics of phase-changes and magneto-optical disks. The design idea and experimental results of this testing system are presented.

  20. System modeling for the longitudinal beam dynamics control problem in heavy ion induction accelerators

    SciTech Connect

    Payne, A.N.

    1993-05-17

    We address the problem of developing system models that are suitable for studying the control of the longitudinal beam dynamics in induction accelerators for heavy ions. In particular, we present the preliminary results of our efforts to devise a general framework for building detailed, integrated models of accelerator systems consisting of pulsed power modular circuits, induction cells, beam dynamics, and control system elements. Such a framework will permit us to analyze and design the pulsed power modulators and the control systems required to effect precise control over the longitudinal beam dynamics.

  1. Dose Control System in the Optima XE Single Wafer High Energy Ion Implanter

    SciTech Connect

    Satoh, Shu; Yoon, Jongyoon; David, Jonathan

    2011-01-07

    Photoresist outgassing can significantly compromise accurate dosimetry of high energy implants. High energy implant even at a modest beam current produces high beam powers which create significantly worse outgassing than low and medium energy implants and the outgassing continues throughout the implant due to the low dose in typical high energy implant recipes. In the previous generation of high energy implanters, dose correction by monitoring of process chamber pressure during photoresist outgassing has been used. However, as applications diversify and requirements change, the need arises for a more versatile photoresist correction system to match the versatility of a single wafer high energy ion implanter. We have successfully developed a new dosimetry system for the Optima XE single wafer high energy ion implanter which does not require any form of compensation due to the implant conditions. This paper describes the principles and performance of this new dose system.

  2. Estimated Radiation on Mars, Hits per Cell Nucleus

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This global map of Mars shows estimates for amounts of high-energy-particle cosmic radiation reaching the surface, a serious health concern for any future human exploration of the planet.

    The estimates are based on cosmic-radiation measurements made on the way to Mars by the Mars radiation environment experiment, an instrument on NASA's 2001 Mars Odyssey spacecraft, plus information about Mars' surface elevations from the laser altimeter instrument on NASA's Mars Global Surveyor. The areas of Mars expected to have least radiation are where elevation is lowest, because those areas have more atmosphere above them to block out some of the radiation. Earth's thick atmosphere shields us from most cosmic radiation, but Mars has a much thinner atmosphere than Earth does.

    Colors in the map refer to the estimated average number of times per year each cell nucleus in a human there would be hit by a high-energy cosmic ray particle. The range is generally from two hits (color-coded green), a moderate risk level, to eight hits (coded red), a high risk level.

    NASA's Jet Propulsion Laboratory, Pasadena, Calif. manages the 2001 Mars Odyssey and Mars Global Surveyor missions for NASA's Office of Space Science, Washington D.C. The Mars radiation environment experiment was developed by NASA's Johnson Space Center. Lockheed Martin Astronautics, Denver, is the prime contractor for Odyssey, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Li-Ion Electrolytes with Improved Safety and Tolerance to High-Voltage Systems

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.; Prakash, Surya; Krause, Frederick C.

    2013-01-01

    Given that lithium-ion (Li-ion) technology is the most viable rechargeable energy storage device for near-term applications, effort has been devoted to improving the safety characteristics of this system. Therefore, extensive effort has been devoted to developing nonflammable electrolytes to reduce the flammability of the cells/battery. A number of promising electrolytes have been developed incorporating flame-retardant additives, and have been shown to have good performance in a number of systems. However, these electrolyte formulations did not perform well when utilizing carbonaceous anodes with the high-voltage materials. Thus, further development was required to improve the compatibility. A number of Li-ion battery electrolyte formulations containing a flame-retardant additive [i.e., triphenyl phosphate (TPP)] were developed and demonstrated in high-voltage systems. These electrolytes include: (1) formulations that incorporate varying concentrations of the flame-retardant additive (from 5 to 15%), (2) the use of mono-fluoroethylene carbonate (FEC) as a co-solvent, and (3) the use of LiBOB as an electrolyte additive intended to improve the compatibility with high-voltage systems. Thus, improved safety has been provided without loss of performance in the high-voltage, high-energy system.

  4. Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems

    SciTech Connect

    Kim, G. H.; Smith, K.; Ireland, J.; Pesaran, A.

    2012-07-15

    A fault leading to a thermal runaway in a lithium-ion battery is believed to grow over time from a latent defect. Significant efforts have been made to detect lithium-ion battery safety faults to proactively facilitate actions minimizing subsequent losses. Scaling up a battery greatly changes the thermal and electrical signals of a system developing a defect and its consequent behaviors during fault evolution. In a large-capacity system such as a battery for an electric vehicle, detecting a fault signal and confining the fault locally in the system are extremely challenging. This paper introduces a fail-safe design methodology for large-capacity lithium-ion battery systems. Analysis using an internal short circuit response model for multi-cell packs is presented that demonstrates the viability of the proposed concept for various design parameters and operating conditions. Locating a faulty cell in a multiple-cell module and determining the status of the fault's evolution can be achieved using signals easily measured from the electric terminals of the module. A methodology is introduced for electrical isolation of a faulty cell from the healthy cells in a system to prevent further electrical energy feed into the fault. Experimental demonstration is presented supporting the model results.

  5. Fail-safe design for large capacity lithium-ion battery systems

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Heon; Smith, Kandler; Ireland, John; Pesaran, Ahmad

    2012-07-01

    A fault leading to a thermal runaway in a lithium-ion battery is believed to grow over time from a latent defect. Significant efforts have been made to detect lithium-ion battery safety faults to proactively facilitate actions minimizing subsequent losses. Scaling up a battery greatly changes the thermal and electrical signals of a system developing a defect and its consequent behaviors during fault evolution. In a large-capacity system such as a battery for an electric vehicle, detecting a fault signal and confining the fault locally in the system are extremely challenging. This paper introduces a fail-safe design methodology for large-capacity lithium-ion battery systems. Analysis using an internal short circuit response model for multi-cell packs is presented that demonstrates the viability of the proposed concept for various design parameters and operating conditions. Locating a faulty cell in a multiple-cell module and determining the status of the fault's evolution can be achieved using signals easily measured from the electric terminals of the module. A methodology is introduced for electrical isolation of a faulty cell from the healthy cells in a system to prevent further electrical energy feed into the fault. Experimental demonstration is presented supporting the model results.

  6. Development of a Waste Water Regenerative System - Using Sphagnum Moss Ion-exchange

    NASA Astrophysics Data System (ADS)

    McKeon, M.; Wheeler, R.; Leahy, Jj

    The use of inexpensive, light weight and regenerative systems in an enclosed environment is of great importance to sustained existence in such habitats as the International Space Station, Moon or even Mars. Many systems exist which utilise various synthetic ion exchangers to complete the process of waste water clean-up. These systems do have a very good exchange rate for cations but a very low exchange rate for anions. They also have a maximum capacity before they need regeneration. This research proposes a natural alternative to these synthetic ion-exchangers that utilises one of natures greatest ion-exchangers, that of Sphagnum Moss. Sphagna can be predominantly found in the nutrient poor environment of Raised Bogs, a type of isolated wetland with characteristic low pH and little interaction with the surrounding water table. All nutrients come from precipitation. The sphagna have developed as the bog's sponges, soaking up all available nutrients (both cation & anion) from the precipitation and eventually distributing them to the surrounding flora and fauna, through the water. The goal of this research is to use this ability in the processing of waste water from systems similar to isolated microgravity environments, to produce clean water for reuse in these environments. The nutrients taken up by the sphagna will also be utilised as a growth medium for cultivar growth, such as those selected for hydroponics' systems.

  7. Dynamic stereoacuity: a test for hitting a baseball?

    PubMed

    Solomon, H; Zinn, W J; Vacroux, A

    1988-07-01

    Vision is a critical ingredient in professional sports such as baseball. It would, therefore, be logical to assume that vision testing should be able to discriminate between good and bad performance. Past attempts to establish this vision/performance relationship have not been successful. We believe the fault is anchored in the fact that all routine vision testing is static and unable to measure motion parameters. Using an instrument of our design to test dynamic stereoacuity, we have been able to detect subtle differences among individuals. The data show a segregation between major league hitters and pitchers. Such information could be used as one clue to predict hitting performance. PMID:3403900

  8. The groin hit: complications of intravenous drug abuse.

    PubMed

    Roszler, M H; McCarroll, K A; Donovan, K R; Rashid, T; Kling, G A

    1989-05-01

    We are seeing an increased number of complications in intravenous drug abusers who resort to injecting the groin for vascular access (the "groin hit"). Vascular complications include venous thrombosis, arteriovenous fistula, mycotic aneurysm, ruptured pseudoaneurysm, and dissecting hematoma. Soft tissue complications include cellulitis and abscess. The latter may dissect into the extraperitoneal space. Skeletal complications include osteomyelitis and septic arthritis. This paper illustrates the radiographic spectrum of these complications. An algorithm will illustrate the radiographic evaluation of a groin mass in a drug addict. PMID:2727357

  9. Hit efficiency study of CMS prototype forward pixel detectors

    SciTech Connect

    Kim, Dongwook; /Johns Hopkins U.

    2006-01-01

    In this paper the author describes the measurement of the hit efficiency of a prototype pixel device for the CMS forward pixel detector. These pixel detectors were FM type sensors with PSI46V1 chip readout. The data were taken with the 120 GeV proton beam at Fermilab during the period of December 2004 to February 2005. The detectors proved to be highly efficient (99.27 {+-} 0.02%). The inefficiency was primarily located near the corners of the individual pixels.

  10. Proteolytic Cleavage of Notch: “HIT and RUN”

    PubMed Central

    van Tetering, G.; Vooijs, M.

    2014-01-01

    The Notch pathway is a highly conserved signaling pathway in multicellular eukaryotes essential in controlling spatial patterning, morphogenesis and homeostasis in embryonic and adult tissues. Notch proteins coordinate cell-cell communication through receptor-ligand interactions between adjacent cells. Notch signaling is frequently deregulated by oncogenic mutation or overexpression in many cancer types. Notch activity is controlled by three sequential cleavage steps leading to ectodomain shedding and transcriptional activation. Here we review the key regulatory steps in the activation of Notch, from receptor maturation to receptor activation (HIT) via a rate-limiting proteolytic cascade (RUN) in the context of species-specific differences. PMID:21506924

  11. Dynamic stereoacuity: a test for hitting a baseball?

    PubMed

    Solomon, H; Zinn, W J; Vacroux, A

    1988-07-01

    Vision is a critical ingredient in professional sports such as baseball. It would, therefore, be logical to assume that vision testing should be able to discriminate between good and bad performance. Past attempts to establish this vision/performance relationship have not been successful. We believe the fault is anchored in the fact that all routine vision testing is static and unable to measure motion parameters. Using an instrument of our design to test dynamic stereoacuity, we have been able to detect subtle differences among individuals. The data show a segregation between major league hitters and pitchers. Such information could be used as one clue to predict hitting performance.

  12. The beam bunching and transport system of the Argonne positive ion injector

    SciTech Connect

    Den Hartog, P.K.; Bogaty, J.M.; Bollinger, L.M.; Clifft, B.E.; Pardo, R.C.; Shepard, K.W.

    1989-01-01

    A new positive ion injector (PII) is currently under construction at Argonne that will replace the existing 9-MV tandem electrostatic accelerator as an injector into ATLAS. It consists of an electron-cyclotron resonance-ion source on a 350-kV platform injecting into a superconducting linac optimized for very slow (..beta.. less than or equal to .007 c) ions. This combination can potentially produce even higher quality heavy-ion beams than are currently available from the tandem since the emittance growth within the linac is largely determined by the quality of the bunching and beam transport. The system we have implemented uses a two-stage bunching system, composed of a 4-harmonic gridded buncher located on the ECR high-voltage platform and a room temperature spiral-loaded buncher of novel design. A sinusoidal beam chopper is used for removal of tails. The beam transport is designed to provide mass resolution of M/..delta..M > 250 and a doubly-isochronous beamline is used to minimize time spread due to path length differences. 4 refs., 2 figs.

  13. On the stability of ion water clusters at atmospheric conditions: Open system Monte Carlo simulation.

    PubMed

    Zidi, Zouhaier S

    2012-09-28

    The formation of water clusters on Li(+), Na(+), K(+), Cl(-), and I(-) ions from water vapor at atmospheric conditions have been studied using Monte Carlo simulations. The extended simple point charge model has been employed for water molecules. The polarization of ions in the field of molecules and the polarization of molecules in the field of ions have been considered explicitly in the total Hamiltonian of the molecular system. The cluster formation work and the Gibbs free energy and enthalpy of attachment reactions of one water molecule to the cluster have been calculated via the bicanonical ensemble method. Our results reveal the formation of stable clusters in equilibrium with the moist atmosphere in a wide range of vapor pressure values, with largest clusters are formed around cations. Decreasing the temperature, from 293 K to 253 K, leads to the formation of larger equilibrium clusters, and enhances the stability of systems as whole. According to clusters' molecular structures, negative ions are expected to be more active in atmospheric processes, including chemical reactions and cloud formation, than positive ones.

  14. Bis-benzimidazole hits against Naegleria fowleri discovered with new high-throughput screens.

    PubMed

    Rice, Christopher A; Colon, Beatrice L; Alp, Mehmet; Göker, Hakan; Boykin, David W; Kyle, Dennis E

    2015-04-01

    Naegleria fowleri is a pathogenic free-living amoeba (FLA) that causes an acute fatal disease known as primary amoebic meningoencephalitis (PAM). The major problem for infections with any pathogenic FLA is a lack of effective therapeutics, since PAM has a case mortality rate approaching 99%. Clearly, new drugs that are potent and have rapid onset of action are needed to enhance the treatment regimens for PAM. Diamidines have demonstrated potency against multiple pathogens, including FLA, and are known to cross the blood-brain barrier to cure other protozoan diseases of the central nervous system. Therefore, amidino derivatives serve as an important chemotype for discovery of new drugs. In this study, we validated two new in vitro assays suitable for medium- or high-throughput drug discovery and used these for N. fowleri. We next screened over 150 amidino derivatives of multiple structural classes and identified two hit series with nM potency that are suitable for further lead optimization as new drugs for this neglected disease. These include both mono- and diamidino derivatives, with the most potent compound (DB173) having a 50% inhibitory concentration (IC50) of 177 nM. Similarly, we identified 10 additional analogues with IC50s of <1 μM, with many of these having reasonable selectivity indices. The most potent hits were >500 times more potent than pentamidine. In summary, the mono- and diamidino derivatives offer potential for lead optimization to develop new drugs to treat central nervous system infections with N. fowleri. PMID:25605363

  15. Bis-Benzimidazole Hits against Naegleria fowleri Discovered with New High-Throughput Screens

    PubMed Central

    Rice, Christopher A.; Colon, Beatrice L.; Alp, Mehmet; Göker, Hakan; Boykin, David W.

    2015-01-01

    Naegleria fowleri is a pathogenic free-living amoeba (FLA) that causes an acute fatal disease known as primary amoebic meningoencephalitis (PAM). The major problem for infections with any pathogenic FLA is a lack of effective therapeutics, since PAM has a case mortality rate approaching 99%. Clearly, new drugs that are potent and have rapid onset of action are needed to enhance the treatment regimens for PAM. Diamidines have demonstrated potency against multiple pathogens, including FLA, and are known to cross the blood-brain barrier to cure other protozoan diseases of the central nervous system. Therefore, amidino derivatives serve as an important chemotype for discovery of new drugs. In this study, we validated two new in vitro assays suitable for medium- or high-throughput drug discovery and used these for N. fowleri. We next screened over 150 amidino derivatives of multiple structural classes and identified two hit series with nM potency that are suitable for further lead optimization as new drugs for this neglected disease. These include both mono- and diamidino derivatives, with the most potent compound (DB173) having a 50% inhibitory concentration (IC50) of 177 nM. Similarly, we identified 10 additional analogues with IC50s of <1 μM, with many of these having reasonable selectivity indices. The most potent hits were >500 times more potent than pentamidine. In summary, the mono- and diamidino derivatives offer potential for lead optimization to develop new drugs to treat central nervous system infections with N. fowleri. PMID:25605363

  16. Bis-benzimidazole hits against Naegleria fowleri discovered with new high-throughput screens.

    PubMed

    Rice, Christopher A; Colon, Beatrice L; Alp, Mehmet; Göker, Hakan; Boykin, David W; Kyle, Dennis E

    2015-04-01

    Naegleria fowleri is a pathogenic free-living amoeba (FLA) that causes an acute fatal disease known as primary amoebic meningoencephalitis (PAM). The major problem for infections with any pathogenic FLA is a lack of effective therapeutics, since PAM has a case mortality rate approaching 99%. Clearly, new drugs that are potent and have rapid onset of action are needed to enhance the treatment regimens for PAM. Diamidines have demonstrated potency against multiple pathogens, including FLA, and are known to cross the blood-brain barrier to cure other protozoan diseases of the central nervous system. Therefore, amidino derivatives serve as an important chemotype for discovery of new drugs. In this study, we validated two new in vitro assays suitable for medium- or high-throughput drug discovery and used these for N. fowleri. We next screened over 150 amidino derivatives of multiple structural classes and identified two hit series with nM potency that are suitable for further lead optimization as new drugs for this neglected disease. These include both mono- and diamidino derivatives, with the most potent compound (DB173) having a 50% inhibitory concentration (IC50) of 177 nM. Similarly, we identified 10 additional analogues with IC50s of <1 μM, with many of these having reasonable selectivity indices. The most potent hits were >500 times more potent than pentamidine. In summary, the mono- and diamidino derivatives offer potential for lead optimization to develop new drugs to treat central nervous system infections with N. fowleri.

  17. Challenges in ethics, safety, best practices, and oversight regarding HIT vendors, their customers, and patients: a report of an AMIA special task force.

    PubMed

    Goodman, Kenneth W; Berner, Eta S; Dente, Mark A; Kaplan, Bonnie; Koppel, Ross; Rucker, Donald; Sands, Daniel Z; Winkelstein, Peter

    2011-01-01

    The current commercial health information technology (HIT) arena encompasses a number of competing firms that provide electronic health applications to hospitals, clinical practices, and other healthcare-related entities. Such applications collect, store, and analyze patient information. Some vendors incorporate contract language whereby purchasers of HIT systems, such as hospitals and clinics, must indemnify vendors for malpractice or personal injury claims, even if those events are not caused or fostered by the purchasers. Some vendors require contract clauses that force HIT system purchasers to adopt vendor-defined policies that prevent the disclosure of errors, bugs, design flaws, and other HIT-software-related hazards. To address this issue, the AMIA Board of Directors appointed a Task Force to provide an analysis and insights. Task Force findings and recommendations include: patient safety should trump all other values; corporate concerns about liability and intellectual property ownership may be valid but should not over-ride all other considerations; transparency and a commitment to patient safety should govern vendor contracts; institutions are duty-bound to provide ethics education to purchasers and users, and should commit publicly to standards of corporate conduct; and vendors, system purchasers, and users should encourage and assist in each others' efforts to adopt best practices. Finally, the HIT community should re-examine whether and how regulation of electronic health applications could foster improved care, public health, and patient safety.

  18. Challenges in ethics, safety, best practices, and oversight regarding HIT vendors, their customers, and patients: a report of an AMIA special task force

    PubMed Central

    Berner, Eta S; Dente, Mark A; Kaplan, Bonnie; Koppel, Ross; Rucker, Donald; Sands, Daniel Z; Winkelstein, Peter

    2010-01-01

    The current commercial health information technology (HIT) arena encompasses a number of competing firms that provide electronic health applications to hospitals, clinical practices, and other healthcare-related entities. Such applications collect, store, and analyze patient information. Some vendors incorporate contract language whereby purchasers of HIT systems, such as hospitals and clinics, must indemnify vendors for malpractice or personal injury claims, even if those events are not caused or fostered by the purchasers. Some vendors require contract clauses that force HIT system purchasers to adopt vendor-defined policies that prevent the disclosure of errors, bugs, design flaws, and other HIT-software-related hazards. To address this issue, the AMIA Board of Directors appointed a Task Force to provide an analysis and insights. Task Force findings and recommendations include: patient safety should trump all other values; corporate concerns about liability and intellectual property ownership may be valid but should not over-ride all other considerations; transparency and a commitment to patient safety should govern vendor contracts; institutions are duty-bound to provide ethics education to purchasers and users, and should commit publicly to standards of corporate conduct; and vendors, system purchasers, and users should encourage and assist in each others' efforts to adopt best practices. Finally, the HIT community should re-examine whether and how regulation of electronic health applications could foster improved care, public health, and patient safety. PMID:21075789

  19. Modeling of early age loss of lithium ions from pore solution of cementitious systems treated with lithium nitrate

    SciTech Connect

    Kim, Taehwan Olek, Jan

    2015-01-15

    Addition of lithium nitrate admixture to the fresh concrete mixture helps to minimize potential problems related to alkali-silica reaction. For this admixture to function as an effective ASR control measure, it is imperative that the lithium ions remain in the pore solution. However, it was found that about 50% of the originally added lithium ions are removed from the pore solution during early stages of hydration. This paper revealed that the magnitude of the Li{sup +} ion loss is highly dependent on the concentration of Li{sup +} ions in the pore solution and the hydration rate of the cementitious systems. Using these findings, an empirical model has been developed which can predict the loss of Li{sup +} ions from the pore solution during the hydration period. The proposed model can be used to investigate the effects of mixture parameters on the loss of Li{sup +} ions from the pore solution of cementitious system.

  20. Galactic cosmic rays and cell-hit frequencies outside the magnetosphere.

    PubMed

    Curtis, S B; Letaw, J R

    1989-01-01

    An evaluation of the exposure of space travelers to galactic cosmic radiation outside the earth's magnetosphere is made by calculating fluences of high-energy primary and secondary particles with various charges traversing a sphere of area 100 microns2. Calculations relating to two shielding configurations are presented: the center of a spherical aluminum shell of thickness 1 g/cm2, and the center of a 4 g/cm2 thick aluminum spherical shell within which there is a 30 g/cm2 diameter spherical water phantom with the point of interest 5 g/cm2 from the surface. The area of 100 microns2 was chosen to simulate the nucleus of a cell in the body. The frequencies as a function of charge component in both shielding configurations reflects the odd-even disparity of the incident particle abundances. For a three-year mission, 33% of the cells in the more heavily shielded configuration would be hit by at least one particle with Z greater than 10. Six percent would be hit by at least two such particles. This emphasizes the importance of studying single high-Z particle effects both on cells which might be "at risk" for cancer induction and on critical neural cells or networks which might be vulnerable to inactivation by heavy charged particle tracks. Synergistic effects with the more numerous high-energy protons and helium ions cannot be ruled out. In terms of more conventional radiation risk assessment, the dose equivalent decreased by a factor of 2.85 from free space to that in the more heavily shielded configuration. Roughly half of this was due to the decrease in energy deposition (absorbed dose) and half to the decrease in biological effectiveness (quality factor).

  1. ON THE FORMATION OF OZONE IN SOLAR SYSTEM OXYGEN ICES EXPOSED TO HEAVY IONS

    SciTech Connect

    Ennis, Courtney; Kaiser, Ralf I.

    2012-02-01

    Mimicking the bombardment of icy surfaces with heavy ions from solar system radiation fields, solid-phase molecular oxygen ({sup 32}O{sub 2}) and its isotope labeled analogue ({sup 36}O{sub 2}) were irradiated with monoenergetic carbon (C{sup +}), nitrogen (N{sup +}), and oxygen (O{sup +}) ions in laboratory experiments simulating the interaction of ions from the solar wind and those abundant in planetary magnetospheres. Online Fourier-transform infrared spectroscopy of the irradiated oxygen ices (12 K) showed that the yields of molecular ozone monomer (O{sub 3} {approx} 2 Multiplication-Sign 10{sup -3} molecules eV{sup -1} in {sup 32}O{sub 2}) were independent of the mass of the implanted C{sup +}, N{sup +}, and O{sup +} ions ({Phi}{sub max} = 4.0 Multiplication-Sign 10{sup 14} ions cm{sup -2}). The production of oxygen atoms in the solid was observed in the mid-IR stabilized via the [O{sub 3}...O] van der Waals complex. We expand on this inference by comparing the ozone yields induced by light particles (e{sup -}, H{sup +}, and He{sup +}) to the heavy ions (C{sup +}, N{sup +}, and O{sup +}) to provide compelling evidence that the abundance of radiolytic products in an oxygen-bearing solid is primarily dependent on electronic stopping regimes, which supersedes the contribution of nuclear stopping processes irrespective of the mass of the particle irradiation in the kinetic energy regime of solar wind and magnetospheric particles.

  2. The high-ion content and kinematics of low-redshift Lyman limit systems

    SciTech Connect

    Fox, Andrew J.; Tumlinson, Jason; Bordoloi, Rongmon; Lehner, Nicolas; Howk, J. Christopher; Tripp, Todd M.; Katz, Neal; Prochaska, J. Xavier; Werk, Jessica K.; Oppenheimer, Benjamin D.; Davé, Romeel

    2013-12-01

    We study the high-ion content and kinematics of the circumgalactic medium around low-redshift galaxies using a sample of 23 Lyman limit systems (LLSs) at 0.08 < z < 0.93 observed with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. In Lehner et al., we recently showed that low-z LLSs have a bimodal metallicity distribution. Here we extend that analysis to search for differences between the high-ion and kinematic properties of the metal-poor and metal-rich branches. We find that metal-rich LLSs tend to show higher O VI columns and broader O VI profiles than metal-poor LLSs. The total H I line width (Δv {sub 90} statistic) in LLSs is not correlated with metallicity, indicating that the H I kinematics alone cannot be used to distinguish inflow from outflow and gas recycling. Among the 17 LLSs with O VI detections, all but two show evidence of kinematic sub-structure, in the form of O VI-H I centroid offsets, multiple components, or both. Using various scenarios for how the metallicities in the high-ion and low-ion phases of each LLS compare, we constrain the ionized hydrogen column in the O VI phase to lie in the range log N(H II) ∼ 17.6-20. The O VI phase of LLSs is a substantial baryon reservoir, with M(high-ion) ∼ 10{sup 8.5-10.9} (r/150 kpc){sup 2} M {sub ☉}, similar to the mass in the low-ion phase. Accounting for the O VI phase approximately doubles the contribution of low-z LLSs to the cosmic baryon budget.

  3. The Cus efflux system removes toxic ions via a methionine shuttle.

    PubMed

    Su, Chih-Chia; Long, Feng; Yu, Edward W

    2011-01-01

    Gram-negative bacteria, such as Escherichia coli, frequently utilize tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel diverse toxic compounds from the cell. These efflux systems span the entire cell envelope to mediate the phenomenon of bacterial multidrug resistance. The three parts of the efflux complexes are: (1) a membrane fusion protein (MFP) connecting (2) a substrate-binding inner membrane transporter to (3) an outer membrane-anchored channel in the periplasmic space. One such efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions. We recently determined the crystal structures of both the inner membrane transporter CusA and MFP CusB of the CusCBA tripartite efflux system from E. coli. These are the first structures of the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here, we summarize the structural information of these two efflux proteins and present the accumulated evidence that this efflux system utilizes methionine residues to bind and export Cu(I)/Ag(I). Genetic and structural analyses suggest that the CusA pump is capable of picking up the metal ions from both the periplasm and cytoplasm. We propose a stepwise shuttle mechanism for this pump to extrude metal ions from the cell.

  4. Improvement of trace element analysis system using RIKEN electron cyclotron resonance ion source and linear accelerator

    SciTech Connect

    Kidera, M.; Nakagawa, T.; Takahashi, K.; Enomoto, S.; Igarashi, K.; Fujimaki, M.; Ikezawa, E.; Kamigaito, O.; Kase, M.; Goto, A.; Yano, Y.

    2006-03-15

    We have developed a new analytical system that consists of an electron cyclotron resonance ion source (RIKEN 18 GHz ECRIS) and a RIKEN heavy ion linear accelerator (RILAC). This system is called trace element analysis using electron cyclotron resonance ion source and RILAC (ECRIS-RILAC-TEA). ECRIS-RILAC-TEA has several advantages as described in the work of Kidera et al. [AIP Conf. Proc. 749, 85 (2005)]. However, many experimental results during the last several years revealed a few problems: (1) large background contamination in the ECRIS, particularly at the surface of the plasma chamber wall, (2) high counting of the ionization chamber and the data taking system that is monitored by the direct beam from the accelerator, and (3) difficulty in the selection of the pilot sample and pilot beam production from the ECRIS for the purpose of normalization. In order to overcome these problems, we conducted several test experiments over the past year. In this article, we report the experimental results in detail and future plans for improving this system.

  5. Plasma characteristics of single- and dual-electrode ion source systems utilized in low-energy ion extraction

    SciTech Connect

    Vasquez, M. R.; Tokumura, S.; Kasuya, T.; Wada, M.

    2014-02-15

    Discharge characteristics in the upstream as well as in the downstream regions of a 50-eV positive ion beam were measured along the beam axis. Single- and dual-electrode configurations made of 0.1-mm diameter tungsten wires were tested. By varying the upstream discharge parameters, the shape of the sheath edge around the extractors, which can either be “planar” or “cylindrical,” can be controlled. The sheath eventually affected the simultaneous extraction of ions and neutralizing electrons. The dual-electrode configuration at the lower discharge current, revealed a homogeneous discharge downstream. At this condition, the edge of the sheath can be inferred to be “planar” which allowed the uniform extraction and propagation of low-energy ions at longer distances. The dual-electrode configuration was capable of transmitting low-energy ions up to 70 mm downstream.

  6. Instrumentation: Ion Chromatography.

    ERIC Educational Resources Information Center

    Fritz, James S.

    1987-01-01

    Discusses the importance of ion chromatography in separating and measuring anions. The principles of ion exchange are presented, along with some applications of ion chromatography in industry. Ion chromatography systems are described, as well as ion pair and ion exclusion chromatography, column packings, detectors, and programming. (TW)

  7. [Diagnosis and treatment of heparin-induced thrombocytopenia (HIT) based on its atypical immunological features].

    PubMed

    Miyata, Shigeki; Maeda, Takuma

    2016-03-01

    Heparin-induced thrombocytopenia (HIT) is a prothrombotic side effect of heparin therapy caused by HIT antibodies, i.e., anti-platelet factor 4 (PF4)/heparin IgG with platelet-activating properties. For serological diagnosis, antigen immunoassays are commonly used worldwide. However, such assays do not indicate their platelet-activating properties, leading to low specificity for the HIT diagnosis. Therefore, over-diagnosis is currently the most serious problem associated with HIT. The detection of platelet-activating antibodies using a washed platelet activation assay is crucial for appropriate HIT diagnosis. Recent advances in our understanding of the pathogenesis of HIT include it having several clinical features atypical for an immune-mediated disease. Heparin-naïve patients can develop IgG antibodies as early as day 4, as in a secondary immune response. Evidence for an anamnestic response on heparin re-exposure is lacking. In addition, HIT antibodies are relatively short-lived, unlike those in a secondary immune response. These lines of evidence suggest that the mechanisms underlying HIT antibody formation may be compatible with a non-T cell-dependent immune reaction. These atypical clinical and serological features should be carefully considered while endeavoring to accurately diagnose HIT, which leads to appropriate therapies such as immediate administration of an alternative anticoagulant to prevent thromboembolic events and re-administration of heparin during surgery involving cardiopulmonary bypass when HIT antibodies are no longer detectable.

  8. Development of a portable preconcentrator/ion mobility spectrometer system for the trace detection of narcotics

    SciTech Connect

    Parmeter, J.E.; Custer, C.A.

    1997-08-01

    This project was supported by LDRD funding for the development and preliminary testing of a portable narcotics detection system. The system developed combines a commercial trace detector known as an ion mobility spectrometer (IMS) with a preconcentrator originally designed by Department 5848 for the collection of explosives molecules. The detector and preconcentrator were combined along with all necessary accessories onto a push cart, thus yielding a fully portable detection unit. Preliminary testing with both explosives and narcotics molecules shown that the system is operational, and that it can successfully detect drugs as marijuana, methamphetamine (speed), and cocaine based on their characteristics IMS signatures.

  9. Adiabatic condition and the quantum hitting time of Markov chains

    SciTech Connect

    Krovi, Hari; Ozols, Maris; Roland, Jeremie

    2010-08-15

    We present an adiabatic quantum algorithm for the abstract problem of searching marked vertices in a graph, or spatial search. Given a random walk (or Markov chain) P on a graph with a set of unknown marked vertices, one can define a related absorbing walk P{sup '} where outgoing transitions from marked vertices are replaced by self-loops. We build a Hamiltonian H(s) from the interpolated Markov chain P(s)=(1-s)P+sP{sup '} and use it in an adiabatic quantum algorithm to drive an initial superposition over all vertices to a superposition over marked vertices. The adiabatic condition implies that, for any reversible Markov chain and any set of marked vertices, the running time of the adiabatic algorithm is given by the square root of the classical hitting time. This algorithm therefore demonstrates a novel connection between the adiabatic condition and the classical notion of hitting time of a random walk. It also significantly extends the scope of previous quantum algorithms for this problem, which could only obtain a full quadratic speedup for state-transitive reversible Markov chains with a unique marked vertex.

  10. Promiscuous 2-aminothiazoles (PrATs): a frequent hitting scaffold.

    PubMed

    Devine, Shane M; Mulcair, Mark D; Debono, Cael O; Leung, Eleanor W W; Nissink, J Willem M; Lim, San Sui; Chandrashekaran, Indu R; Vazirani, Mansha; Mohanty, Biswaranjan; Simpson, Jamie S; Baell, Jonathan B; Scammells, Peter J; Norton, Raymond S; Scanlon, Martin J

    2015-02-12

    We have identified a class of molecules, known as 2-aminothiazoles (2-ATs), as frequent-hitting fragments in biophysical binding assays. This was exemplified by 4-phenylthiazol-2-amine being identified as a hit in 14/14 screens against a diverse range of protein targets, suggesting that this scaffold is a poor starting point for fragment-based drug discovery. This prompted us to analyze this scaffold in the context of an academic fragment library used for fragment-based drug discovery (FBDD) and two larger compound libraries used for high-throughput screening (HTS). This analysis revealed that such "promiscuous 2-aminothiazoles" (PrATs) behaved as frequent hitters under both FBDD and HTS settings, although the problem was more pronounced in the fragment-based studies. As 2-ATs are present in known drugs, they cannot necessarily be deemed undesirable, but the combination of their promiscuity and difficulties associated with optimizing them into a lead compound makes them, in our opinion, poor scaffolds for fragment libraries. PMID:25559643

  11. Preliminary study on development of 300 Kv compact focused gaseous ion beam system

    SciTech Connect

    Ohkubo, T.; Ishii, Y.; Kamiya, T.; Miyake, Y.

    2013-04-19

    A new 300 kV compact focused gaseous ion beam (gas-FIB) system with three-stage acceleration lens was constructed at JAEA. The preliminary experiments of formation of the focused gaseous ion beams were carried out to show the availability of the gas-FIB system as a writing tool for 3D proton lithography. As a result of the experiments, it was proved that the focal point was kept at the same position under changing the kinetic energy but with keeping the kinetic energy ratio constant, which was defined as the ratio of kinetic energy in object side to that in image side for the third acceleration lens. This characteristic of the gas-FIB is a good point to advance the 3D proton lithography changing penetration depth in a sample by varying the beam energy.

  12. Development of spectrally selective imaging system for negative hydrogen ion source

    SciTech Connect

    Ikeda, K. Nakano, H.; Tsumori, K.; Kisaki, M.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.

    2014-02-15

    A spectrally selective imaging system has been developed to obtain a distribution of H{sub α} emissions at the extraction region in a hydrogen negative ion source. The diagnostic system consisted of an aspherical lens, optical filters, a fiber image conduit, and a charge coupled device detector was installed on the 1/3-scaled hydrogen negative ion source in the National Institute for Fusion Science. The center of sight line passes beside the plasma grid (PG) surface with the distance of 11 mm, and the viewing angle has coverage 35 mm from the PG surface. Two dimensional H{sub α} distribution in the range up to 20 mm from the PG surface was clearly observed. The reduction area for H{sub α} emission caused by beam extraction was widely distributed in the extraction region near the PG surface.

  13. Design of an ion cyclotron resonance heating system for the Compact Ignition Tokamak

    SciTech Connect

    Yugo, J.J.; Goranson, P.L.; Swain, D.W.; Baity, F.W.; Vesey, R.

    1987-01-01

    The Compact Ignition Tokamak (CIT) requires 10-20 MW of ion cyclotron resonance heating (ICRH) power to raise the plasma temperature to ignition. The initial ICRH system will provide 10 MW of power to the plasma, utilizing a total of six rf power units feeding six current straps in three ports. The systems may be expanded to 20 MW with additional rf power units, antennas, and ports. Plasma heating will be achieved through coupling to the fundamental ion cyclotron resonance of a /sup 3/He minority species (also the second harmonic of tritium). The proposed antenna is a resonant double loop (RDL) structure with vacuum, shorted stubs at each end for tuning and impedance matching. The antennas are of modular, compact construction for installation and removal through the midplane port. Remote maintainability and the reactorlike operating environment have a major impact on the design of the launcher for this machine. 6 refs., 7 figs., 5 tabs.

  14. Versatile microwave-driven trapped ion spin system for quantum information processing.

    PubMed

    Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S; Wölk, Sabine; Wunderlich, Christof

    2016-07-01

    Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform-an essential building block for many quantum algorithms-is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer. PMID:27419233

  15. Ion-acoustic compressive and rarefactive solitons in an electron-beam plasma system

    SciTech Connect

    Yadav, L.L.; Tiwari, R.S.; Sharma, S.R. )

    1994-03-01

    Using the general formulation of reductive perturbation method, the Korteweg--de Vries (KdV) equation is derived for an electron-beam plasma with hot isothermal beam and plasma electrons and warm ions. The soliton solution of the KdV equation is discussed in detail. It is found that above a critical velocity of electron-beam two additional ion-acoustic soliton branches appear. It is found that corresponding to two linear modes, the system supports the existence of compressive as well as rarefactive solitons depending upon the plasma parameters, while corresponding to other two wave modes, the system supports only rarefactive solitons. The effect of different parameters on the characteristics of solitons have been investigated in detail.

  16. Versatile microwave-driven trapped ion spin system for quantum information processing.

    PubMed

    Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S; Wölk, Sabine; Wunderlich, Christof

    2016-07-01

    Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform-an essential building block for many quantum algorithms-is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer.

  17. Versatile microwave-driven trapped ion spin system for quantum information processing

    PubMed Central

    Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S.; Wölk, Sabine; Wunderlich, Christof

    2016-01-01

    Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform—an essential building block for many quantum algorithms—is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer. PMID:27419233

  18. Requirements for negative ion based systems from users' point of view

    SciTech Connect

    Stewart, L.D.

    1984-01-01

    This paper reviews the projected requirements of tokamak and mirror confinement devices for negative ion based neutral beam systems. The physics bases for the requirements are reviewed; the stated requirements are summarized for various mirror and tokamak devices, including MFTF-..cap alpha..+T, MARS, FED-A, and FED-R; and changes in those stated requirements, based on improved calculations of beam-stopping cross sections, are estimated.

  19. Multicomponent analysis of mixed rare-earth metal ion solutions by the electronic tongue sensor system

    SciTech Connect

    Legin, A.; Kirsanov, D.; Rudnitskaya, A.; Rovny, S.; Logunov, M.

    2007-07-01

    Novel electrochemical sensors based on well-known extracting agents are developed. Sensors have shown high sensitivity towards a variety of rear earth metal ions in acidic media at pH=2. Multi-sensor system (electronic tongue) comprising newly developed sensors was successfully applied for the analysis of binary and ternary mixtures of Ce{sup 3+}, Nd{sup 3+}, Sm{sup 3+} and Gd{sup 3+} cations in different combinations. (authors)

  20. The Transition to Collisionless Ion-temperature-gradient-driven Plasma Turbulence: A Dynamical Systems Approach

    SciTech Connect

    R.A. Kolesnikov; J.A. Krommes

    2004-10-21

    The transition to collisionless ion-temperature-gradient-driven plasma turbulence is considered by applying dynamical systems theory to a model with ten degrees of freedom. Study of a four-dimensional center manifold predicts a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows and establishes the exact value of that shift in terms of physical parameters. For insight into fundamental physical mechanisms, the method provides a viable alternative to large simulations.

  1. Ion irradiation: its relevance to the evolution of complex organics in the outer solar system.

    PubMed

    Strazzulla, G

    1997-01-01

    Ion irradiation of carbon containing ices produces several effects among which the formation of complex molecules and even refractory organic materials whose spectral color and molecular complexity both depend on the amount of deposited energy. Here results from laboratory experiments are summarized. Their relevance for the formation and evolution of simple molecules and complex organic materials on planetary bodies in the external Solar System is outlined. PMID:11541336

  2. Ion irradiation: its relevance to the evolution of complex organics in the outer solar system.

    PubMed

    Strazzulla, G

    1997-01-01

    Ion irradiation of carbon containing ices produces several effects among which the formation of complex molecules and even refractory organic materials whose spectral color and molecular complexity both depend on the amount of deposited energy. Here results from laboratory experiments are summarized. Their relevance for the formation and evolution of simple molecules and complex organic materials on planetary bodies in the external Solar System is outlined.

  3. Discovery of HIV Type 1 Aspartic Protease Hit Compounds through Combined Computational Approaches.

    PubMed

    Xanthopoulos, Dimitrios; Kritsi, Eftichia; Supuran, Claudiu T; Papadopoulos, Manthos G; Leonis, Georgios; Zoumpoulakis, Panagiotis

    2016-08-01

    A combination of computational techniques and inhibition assay experiments was employed to identify hit compounds from commercial libraries with enhanced inhibitory potency against HIV type 1 aspartic protease (HIV PR). Extensive virtual screening with the aid of reliable pharmacophore models yielded five candidate protease inhibitors. Subsequent molecular dynamics and molecular mechanics Poisson-Boltzmann surface area free-energy calculations for the five ligand-HIV PR complexes suggested a high stability of the systems through hydrogen-bond interactions between the ligands and the protease's flaps (Ile50/50'), as well as interactions with residues of the active site (Asp25/25'/29/29'/30/30'). Binding-energy calculations for the three most promising compounds yielded values between -5 and -10 kcal mol(-1) and suggested that van der Waals interactions contribute most favorably to the total energy. The predicted binding-energy values were verified by in vitro inhibition assays, which showed promising results in the high nanomolar range. These results provide structural considerations that may guide further hit-to-lead optimization toward improved anti-HIV drugs. PMID:27411556

  4. Discovery of HIV Type 1 Aspartic Protease Hit Compounds through Combined Computational Approaches.

    PubMed

    Xanthopoulos, Dimitrios; Kritsi, Eftichia; Supuran, Claudiu T; Papadopoulos, Manthos G; Leonis, Georgios; Zoumpoulakis, Panagiotis

    2016-08-01

    A combination of computational techniques and inhibition assay experiments was employed to identify hit compounds from commercial libraries with enhanced inhibitory potency against HIV type 1 aspartic protease (HIV PR). Extensive virtual screening with the aid of reliable pharmacophore models yielded five candidate protease inhibitors. Subsequent molecular dynamics and molecular mechanics Poisson-Boltzmann surface area free-energy calculations for the five ligand-HIV PR complexes suggested a high stability of the systems through hydrogen-bond interactions between the ligands and the protease's flaps (Ile50/50'), as well as interactions with residues of the active site (Asp25/25'/29/29'/30/30'). Binding-energy calculations for the three most promising compounds yielded values between -5 and -10 kcal mol(-1) and suggested that van der Waals interactions contribute most favorably to the total energy. The predicted binding-energy values were verified by in vitro inhibition assays, which showed promising results in the high nanomolar range. These results provide structural considerations that may guide further hit-to-lead optimization toward improved anti-HIV drugs.

  5. [Double-Hit Follicular Lymphoma with BCL2 and MYC Translocations].

    PubMed

    Horiuchi, Mirei; Fuseya, Hoyuri; Tsutsumi, Minako; Hayashi, Yoshiki; Hagihara, Kiyoyuki; Kanashima, Hiroshi; Nakao, Takafumi; Fukushima, Yuko; Inoue, Takeshi; Yamane, Takahisa

    2016-09-01

    Double-hit lymphomas are rare tumors that are defined by a chromosomal breakpoint affecting the MYC/8q24 locus in combination with another recurrent breakpoint, mainly a t(14; 18)(q32;q21)involving BCL2. We report a case of a 38-yearold woman with a 2-month history of abdominaldistention. 18F-FDG PET showed multiple positive systemic lymph nodes, positive peritoneum, and multiple positive intra-abdominal masses. Histopathology results of the cervical lymph node were compatible with double-hit follicular lymphoma(Grade 3A)because fluorescence in situ hybridization(FISH)demonstrated both MYC rearrangement and BCL2 gene fusion. She was initially started on R-CHOP(rituximab and doxorubicin, vincristine, cyclophosphamide, and prednisolone), but after one course the regimen was changed to dose-adjusted EPOCH-R(rituximab and doxorubicin, etoposide, vincristine, cyclophosphamide, and prednisolone). However, she showed no response to this chemotherapy regimen or haploidentical stem cell transplantation. The treatment strategy included salvage chemothera- py. An autologous and/or allogeneic hematopoietic transplantation is important for non-responders to DA-EPOCH-R. PMID:27628560

  6. The Ion Propulsion System on NASA's Space Technology 4/Champollion Comet Rendezvous Mission

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Garner, Charles E.; Weiss, Jeffery M.

    1999-01-01

    The ST4/Champollion mission is designed to rendezvous with and land on the comet Tempel 1 and return data from the first-ever sampling of a comet surface. Ion propulsion is an enabling technology for this mission. The ion propulsion system on ST4 consists of three ion engines each essentially identical to the single engine that flew on the DS1 spacecraft. The ST4 propulsion system will operate at a maximum input power of 7.5 kW (3.4 times greater than that demonstrated on DS1), will produce a maximum thrust of 276 mN, and will provide a total (Delta)V of 11.4 km/s. To accomplish this the propulsion system will carry 385 kg of xenon. All three engines will be operated simultaneously for the first 168 days of the mission. The nominal mission requires that each engine be capable of processing 118 kg. If one engine fails after 168 days, the remaining two engines can perform the mission, but must be capable of processing 160 kg of xenon, or twice the original thruster design requirement. Detailed analyses of the thruster wear-out failure modes coupled with experience from long-duration engine tests indicate that the thrusters have a high probability of meeting the 160-kg throughput requirement.

  7. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  8. Ion extraction capabilities of two-grid accelerator systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems.

  9. Optimization and numerical simulation for the extraction system of the H- multicusp ion source

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, M.; Afarideh, H.

    2014-05-01

    A new ion source has been designed and manufactured for the CYCLONE30 accelerator, which has a much advanced performance compared with the original. It is expected that the newly designed ion source extraction system will transport a very large percentage of the beam without deteriorating the beam optics, which is designed to deliver an H- beam at 30 keV. The accelerator assembly consists of three circular aperture electrodes made of copper. The simulation study was focused on finding parameter sets that raise the beam perveance as large as possible and which reduce the beam divergence as low as possible. Ion beams of the highest quality are extracted whenever the half-angular divergence is minimum, for which the perveance current intensity and the extraction gap have optimum values. The triode extraction system is designed and optimized by using CST software (for Particle Beam Simulations). The physical design of the extraction system is given in this paper. From the simulation results, it is concluded that it is possible to achieve this goal by decreasing the thickness of the plasma electrode, shortening the first gap, and adjusting the acceleration electrode voltage.

  10. A Double-Wing Chaotic System Based on Ion Migration Memristor and Its Sliding Mode Control

    NASA Astrophysics Data System (ADS)

    Min, Guoqi; Duan, Shukai; Wang, Lidan

    The ion migration memristor is a nonlinear element with memory function and nanoscale size, it is considered as a potential candidate to reduce system power consumption and circuit size. When it works as the nonlinear part of the chaotic system, rich nonlinear curves will be produced, and at the same time, the complexity of chaotic systems and the randomness of signals will be enhanced. So in this paper, by Matlab numerical simulation, a new double-wing chaotic system based on an ion migration memristor is designed. In reality, there are many systems interfered inevitably by random noise, so in this paper the random bounded noises are also considered. The power spectrum, Lyapunov exponent spectrum, Poincaré map and bifurcation diagram are used to investigate its complex dynamic characteristics. Then, a SPICE-based analog circuit is presented to verify the feasibility of the system, for which the simulation results are consistent with the numerical simulation. Finally, the sliding mode variable structure control is applied to overcome the shortcomings of traditional control method, so that the chaotic orbits can be controlled to any fixed points or periodic orbits, and this provides an insight into chaos control in power electronics systems.

  11. First experimental-based characterization of oxygen ion beam depth dose distributions at the Heidelberg Ion-Beam Therapy Center

    NASA Astrophysics Data System (ADS)

    Kurz, C.; Mairani, A.; Parodi, K.

    2012-08-01

    Over the last decades, the application of proton and heavy-ion beams to external beam radiotherapy has rapidly increased. Due to the favourable lateral and depth dose profile, the superposition of narrow ion pencil beams may enable a highly conformal dose delivery to the tumour, with better sparing of the surrounding healthy tissue in comparison to conventional radiation therapy with photons. To fully exploit the promised clinical advantages of ion beams, an accurate planning of the patient treatments is required. The clinical treatment planning system (TPS) at the Heidelberg Ion-Beam Therapy Center (HIT) is based on a fast performing analytical algorithm for dose calculation, relying, among others, on laterally integrated depth dose distributions (DDDs) simulated with the FLUKA Monte Carlo (MC) code. Important input parameters of these simulations need to be derived from a comparison of the simulated DDDs with measurements. In this work, the first measurements of 16O ion DDDs at HIT are presented with a focus on the determined Bragg peak positions and the understanding of factors influencing the shape of the distributions. The measurements are compared to different simulation approaches aiming to reproduce the acquired data at best. A simplified geometrical model is first used to optimize important input parameters, not known a priori, in the simulations. This method is then compared to a more realistic, but also more time-consuming simulation approach better accounting for the experimental set-up and the measuring process. The results of this work contributed to a pre-clinical oxygen ion beam database, which is currently used by a research TPS for corresponding radio-biological cell experiments. A future extension to a clinical database used by the clinical TPS at HIT is foreseen. As a side effect, the performed investigations showed that the typical water equivalent calibration approach of experimental data acquired with water column systems leads to slight

  12. The CNAO dose delivery system for modulated scanning ion beam radiotherapy

    SciTech Connect

    Giordanengo, S.; Marchetto, F.; Garella, M. A.; Donetti, M.; Bourhaleb, F.; Monaco, V.; Hosseini, M. A.; Peroni, C.; Sacchi, R.; Cirio, R.; Ciocca, M.; Mirandola, A.

    2015-01-15

    Purpose: This paper describes the system for the dose delivery currently used at the Centro Nazionale di Adroterapia Oncologica (CNAO) for ion beam modulated scanning radiotherapy. Methods: CNAO Foundation, Istituto Nazionale di Fisica Nucleare and University of Torino have designed, built, and commissioned a dose delivery system (DDS) to monitor and guide ion beams accelerated by a dedicated synchrotron and to distribute the dose with a full 3D scanning technique. Protons and carbon ions are provided for a wide range of energies in order to cover a sizable span of treatment depths. The target volume, segmented in several layers orthogonally to the beam direction, is irradiated by thousands of pencil beams which must be steered and held to the prescribed positions until the prescribed number of particles has been delivered. For the CNAO beam lines, these operations are performed by the DDS. The main components of this system are two independent beam monitoring detectors, called BOX1 and BOX2, interfaced with two control systems performing the tasks of real-time fast and slow control, and connected to the scanning magnets and the beam chopper. As a reaction to any condition leading to a potential hazard, a DDS interlock signal is sent to the patient interlock system which immediately stops the irradiation. The essential tasks and operations performed by the DDS are described following the data flow from the treatment planning system through the end of the treatment delivery. Results: The ability of the DDS to guarantee a safe and accurate treatment was validated during the commissioning phase by means of checks of the charge collection efficiency, gain uniformity of the chambers, and 2D dose distribution homogeneity and stability. A high level of reliability and robustness has been proven by three years of system activity needing rarely more than regular maintenance and working with 100% uptime. Four identical and independent DDS devices have been tested showing

  13. The characterization of the antibacterial efficacy of an electrically activated silver ion-based surface system

    NASA Astrophysics Data System (ADS)

    Shirwaiker, Rohan A.

    There have been growing concerns in the global healthcare system about the eradication of pathogens in hospitals and other health-critical environments. The problem has been aggravated by the overuse of antibiotics and antimicrobial agents leading to the emergence of antibiotic-resistant superbugs such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) which are difficult to kill. Lower immunity of sick patients coupled with the escalating concurrent problem of antibiotic-resistant pathogens has resulted in increasing incidences of hospital acquired (nosocomial) infections. There is an immediate need to control the transmission of such infections, primarily in healthcare environments, by creating touch-contact and work surfaces (e.g., door knobs, push plates, countertops) that utilize alternative antibacterial materials like the heavy metal, silver. Recent research has shown that it is silver in its ionic (Ag+ ) and not elemental form that is antibacterial. Thus, silver-based antibacterial surfaces have to release silver ions directly into the pathogenic environment (generally, an aqueous media) in order to be effective. This dissertation presents the study and analysis of a new silver-based surface system that utilizes low intensity direct electric current (LIDC) for generation of silver ions to primarily inhibit indirect contact transmission of infections. The broader objective of this research is to understand the design, and characterization of the electrically activated silver ion-based antibacterial surface system. The specific objectives of this dissertation include: (1) Developing a comprehensive system design, and identifying and studying its critical design parameters and functional mechanisms. (2) Evaluating effects of the critical design parameters on the antibacterial efficacy of the proposed surface system. (3) Developing a response surface model for the surface system performance. These objectives are

  14. Ion-chamber-based loss monitor system for the Los Alamos Meson Physics Facility

    SciTech Connect

    Plum, M.A.; Brown, D.; Browman, A.; Macek, R.J.

    1995-05-01

    A new loss monitor system has been designed and installed at the Los Alamos Meson Physics Facility (LAMPF). The detectors are ion chambers filled with N{sub 2} gas. The electronics modules have a threshold range of 1:100, and they can resolve changes in beam loss of about 2% of the threshold settings. They can generate a trip signal in 2 {mu}s if the beam loss is large enough; if the response time of the Fast Protect System is included the beam will be shut off in about 37 {mu}s.

  15. Primary propulsion of electrothermal, ion and chemical systems for space-based radar orbit transfer

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Staiger, P. J.

    1985-01-01

    An orbit transfer mission concept has been studied for a Space-Based Radar (SBR) where 40 kW required for radar operation is assumed available for orbit transfer propulsion. Arcjet, pulsed electrothermal (PET), ion, and storable chemical systems are considered for the primary propulsion. Transferring two SBR per shuttle flight to 1112 km/60 deg using electrical propulsion systems offers an increased payload at the expense of increased trip time, up to 2000 kg each, which may be critical for survivability. Trade offs between payload mass, transfer time, launch site, inclination, and height of parking orbits are presented.

  16. A single axis electrostatic beam deflection system for a 5-cm diameter ion thruster

    NASA Technical Reports Server (NTRS)

    Lathem, W. C.

    1972-01-01

    A single-axis electrostatic beam deflection system has been tested on a 5-cm diameter mercury ion thruster at a thrust level of about 0.43 mlb (25 mA beam current at 1400 volts). The accelerator voltage was 500 volts. Beam deflection capability of plus or minus 10 deg was demonstrated. A life test of 1367 hours was run at the above conditions. Results of the test indicated that the system could possibly perform for upwards of 10,000 hours.

  17. Primary propulsion of electrothermal, ion, and chemical systems for space-based radar orbit transfer

    NASA Technical Reports Server (NTRS)

    Wang, S.-Y.; Staiger, P. J.

    1985-01-01

    An orbit transfer mission concept has been studied for a Space-Based Radar (SBR) where 40 kW required for radar operation is assumed available for orbit transfer propulsion. Arcjet, pulsed electrothermal (PET), ion, and storable chemical systems are considered for the primary propulsion. Transferring two SBR per shuttle flight to 1112 km/60 deg using eiectrical propulsion systems offers an increased payload at the expense of increased trip time, up to 2000 kg each, which may be critical for survivability. Trade offs between payload mass, transfer time, launch site, inclination, and height of parking orbits are presented.

  18. Operating characteristics of a new ion source for KSTAR neutral beam injection system

    SciTech Connect

    Kim, Tae-Seong Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul

    2014-02-15

    A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.

  19. A new extraction system for the Linac4 H{sup -}ion source

    SciTech Connect

    Midttun, O.; Kalvas, T.; Kronberger, M.; Lettry, J.; Pereira, H.; Schmitzer, C.; Scrivens, R.

    2012-02-15

    As part of the CERN accelerator complex upgrade, a new linear accelerator for H{sup -} (Linac4) is under construction. The ion source design is based on the non-caesiated DESY RF-driven ion source, with the goal of producing an H{sup -} beam of 80 mA beam current, 45 keV beam energy, 0.4 ms pulse length, and 2 Hz repetition rate. The source has been successfully commissioned for an extraction voltage of 35 kV, corresponding to the one used at DESY. Increasing the extraction voltage to 45 kV has resulted in frequent high voltage breakdowns in the extraction region caused by evaporating material from the electron dump, triggering a new design of the extraction and electron dumping system. Results of the ion source commissioning at 35 kV are presented as well as simulations of a new pulsed extraction system for beam extraction at 45 kV.

  20. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a subsequent human-crewed mission. The ion propulsion subsystem must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as an enabling element of an affordable beyond low-earth orbit human-crewed exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, a status on the NASA in-house thruster and power processing is provided, and an update on acquisition for flight provided.