Science.gov

Sample records for ion implantation energies

  1. Molecular ion sources for low energy semiconductor ion implantation (invited)

    NASA Astrophysics Data System (ADS)

    Hershcovitch, A.; Gushenets, V. I.; Seleznev, D. N.; Bugaev, A. S.; Dugin, S.; Oks, E. M.; Kulevoy, T. V.; Alexeyenko, O.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Vizir, A.; Yushkov, G. Yu.

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described.

  2. Molecular ion sources for low energy semiconductor ion implantation (invited).

    PubMed

    Hershcovitch, A; Gushenets, V I; Seleznev, D N; Bugaev, A S; Dugin, S; Oks, E M; Kulevoy, T V; Alexeyenko, O; Kozlov, A; Kropachev, G N; Kuibeda, R P; Minaev, S; Vizir, A; Yushkov, G Yu

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4(+) ion beams were extracted. Results from devices and some additional concepts are described.

  3. Ion sources for energy extremes of ion implantation.

    PubMed

    Hershcovitch, A; Johnson, B M; Batalin, V A; Kropachev, G N; Kuibeda, R P; Kulevoy, T V; Kolomiets, A A; Pershin, V I; Petrenko, S V; Rudskoy, I; Seleznev, D N; Bugaev, A S; Gushenets, V I; Litovko, I V; Oks, E M; Yushkov, G Yu; Masunov, E S; Polozov, S M; Poole, H J; Storozhenko, P A; Svarovski, A Ya

    2008-02-01

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques that meet the two energy extreme range needs of meV and hundreads of eV ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of antimony and phosphorus ions: P(2+) [8.6 pmA (particle milliampere)], P(3+) (1.9 pmA), and P(4+) (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb(3+)Sb(4+), Sb(5+), and Sb(6+) respectively. For low energy ion implantation, our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA (electrical milliampere) of positive decaborane ions was extracted at 10 keV and smaller currents of negative decaborane ions were also extracted. Additionally, boron current fraction of over 70% was extracted from a Bernas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  4. ION SOURCES FOR ENERGY EXTREMES OF ION IMPLANTATION.

    SciTech Connect

    HERSCHCOVITCH,A.; JOHNSON, B.M.; BATALIN, V.A.; KROPACHEV, G.N.; KUIBEDA, R.P.; KULEVOY, T.V.; KOLOMIETS, A.A.; PERSHIN, V.I.; PETRENKO, S.V.; RUDSKOY, I.; SELEZNEV, D.N.; BUGAEV, A.S.; GUSHENETS, V.I.; LITOVKO, I.V.; OKS, E.M.; YUSHKOV, G. YU.; MASEUNOV, E.S.; POLOZOV, S.M.; POOLE, H.J.; STOROZHENKO, P.A.; SVAROVSKI, YA.

    2007-08-26

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques, which meet the two energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of Antimony and Phosphorous ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive Decaborane ions were extracted at 10 keV and smaller currents of negative Decaborane ions were also extracted. Additionally, Boron current fraction of over 70% was extracted from a Bemas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  5. Improved wear properties of high energy ion-implanted polycarbonate

    SciTech Connect

    Rao, G.R.; Lee, E.H. ); Bhattacharya, R.; McCormick, A.W. )

    1995-01-01

    Polycarbonate (Lexan[sup TM]) (PC) was implanted with 2 MeV B[sup +] and O[sup +] ions separately to fluences of 5[times]10[sup 17], 1[times]10[sup 18], and 5[times]10[sup 18] ions/m[sup 2], and characterized for changes in surface hardness and tribological properties. Results of tests showed that hardness values of all implanted specimens increased over those of the unirradiated material, and the O[sup +] implantation was more effective in improving hardness for a given fluence than the B[sup +] implantation. Reciprocating sliding wear tests using a nylon ball counterface yielded significant improvements for all implanted specimens except for the 5[times]10[sup 17] ions/m[sup 2] B[sup +]-implanted PC. Wear tests conducted with a 52100 steel ball yielded significant improvements for the highest fluence of 5[times]10[sup 18] ions/m[sup 2] for both ions, but not for the two lower fluences. The improvements in properties were related to Linear Energy Transfer (LET) mechanisms, where it was shown that the O[sup +] implantation caused greater ionization, thereby greater cross-linking at the surface corresponding to much better improvements in properties. The results were also compared with a previous study on PC using 200 keV B[sup +] ions. The present study indicates that high energy ion irradiation produces thicker, more cross-linked, harder, and more wear-resistant surfaces on polymers and thereby improves properties to a greater extent and more efficiently than lower energy ion implantation.

  6. Energy loss of ions implanted in MOS dielectric films

    NASA Astrophysics Data System (ADS)

    Shyam, Radhey

    Energy loss measurements of ions in the low kinetic energy regime have been made on as-grown SiO2(170-190nm) targets. Singly charged Na + ions with kinetic energies of 2-5 keV and highly charged ions Ar +Q (Q=4, 8 and 11) with a kinetic energy of 1 keV were used. Excitations produced by the ion energy loss in the oxides were captured by encapsulating the irradiated oxide under a top metallic contact. The resulting Metal-Oxide-Semiconductor (MOS) devices were probed with Capacitance-Voltage (C V) measurements and extracted the flatband voltages from the C-V curves. The C-V results for singly charged ion experiments reveal that the changes in the flatband voltage and slope for implanted devices relative to the pristine devices can be used to delineate effects due to implanted ions only and ion induced damage. The data shows that the flatband voltage shifts and C-V slope changes are energy dependent. The observed changes in flatband voltage which are greater than those predicted by calculations scaled for the ion dose and implantation range (SRIM). These results, however, are consistent with a columnar recombination model, where electron-hole pairs are created due to the energy deposited by the implanted ions within the oxide. The remaining holes left after recombination losses are diffused through the oxide at the room temperature and remain present as trapped charges. Comparison of the data with the total number of the holes generated gives a fractional yield of 0.0124 which is of the same order as prior published high energy irradiation experiments. Additionally, the interface trap density, extracted from high and low frequency C-V measurements is observed to increase by one order of magnitude over our incident beam energy. These results confirm that dose- and kinetic energy -dependent effects can be recorded for singly charged ion irradiation on oxides using this method. Highly charged ion results also confirm that dose as well as and charge-dependent effects can

  7. High yield antibiotic producing mutants of Streptomyces erythreus induced by low energy ion implantation

    NASA Astrophysics Data System (ADS)

    Yu, Chen; Zhixin, Lin; Zuyao, Zou; Feng, Zhang; Duo, Liu; Xianghuai, Liu; Jianzhong, Tang; Weimin, Zhu; Bo, Huang

    1998-05-01

    Conidia of Streptomyces erythreus, an industrial microbe, were implanted by nitrogen ions with energy of 40-60 keV and fluence from 1 × 10 11 to 5 × 10 14 ions/cm 2. The logarithm value of survival fraction had good linear relationship with the logarithm value of fluence. Some mutants with a high yield of erythromycin were induced by ion implantation. The yield increment was correlated with the implantation fluence. Compared with the mutation results induced by ultraviolet rays, mutation effects of ion implantation were obvious having higher increasing erythromycin potency and wider mutation spectrum. The spores of Bacillus subtilis were implanted by arsenic ions with energy of 100 keV. The distribution of implanted ions was measured by Rutherford Backscattering Spectrometry (RBS) and calculated in theory. The mechanism of mutation induced by ion implantation was discussed.

  8. Dose Control System in the Optima XE Single Wafer High Energy Ion Implanter

    SciTech Connect

    Satoh, Shu; Yoon, Jongyoon; David, Jonathan

    2011-01-07

    Photoresist outgassing can significantly compromise accurate dosimetry of high energy implants. High energy implant even at a modest beam current produces high beam powers which create significantly worse outgassing than low and medium energy implants and the outgassing continues throughout the implant due to the low dose in typical high energy implant recipes. In the previous generation of high energy implanters, dose correction by monitoring of process chamber pressure during photoresist outgassing has been used. However, as applications diversify and requirements change, the need arises for a more versatile photoresist correction system to match the versatility of a single wafer high energy ion implanter. We have successfully developed a new dosimetry system for the Optima XE single wafer high energy ion implanter which does not require any form of compensation due to the implant conditions. This paper describes the principles and performance of this new dose system.

  9. Mass and energy deposition effects of implanted ions on solid sodium formate

    NASA Astrophysics Data System (ADS)

    Wang, Xiangqin; Shao, Chunlin; Yao, Jianming; Yu, Zengliang

    2000-07-01

    Solid sodium formate was implanted by low energy N +, H +, and Ar + ions. Measured with electron paramagnetic resonance (EPR) and Fourier-transform infrared (FT-IR), it was observed that new CH 2, CH 3 groups and COO - radical ion were produced in the implanted sodium formate. Analyzing with the highly sensitive ninhydrin reaction, it was found that a new NH 2 functional group was formed upon N + ion implantation, and its yield increased along with implantation dose but decreased with the ion's energy.

  10. Study on the Growth and the Photosynthetic Characteristics of Low Energy C+ Ion Implantation on Peanut

    PubMed Central

    Han, Yuguo; Xu, Lei; Yang, Peiling; Ren, Shumei

    2013-01-01

    Employing the Nonghua 5 peanut as experimental material, the effects of low energy C+ ion implantation on caulis height, root length, dry weight, photosynthetic characteristics and leaf water use efficiency (WUE) of Peanut Ml Generation were studied. Four fluences were observed in the experiment. The results showed that ion implantation harmed the peanut seeds because caulis height, root length and dry weight all were lower in the treatments than in CK, and the harm was aggravated with the increase of ion fluence. Both Pn and Tr show a saddle-shape curve due to midday depression of photosynthesis. Low fluence of low energy C+ ion implantation could increase the diurnal average Pn of peanut. The diurnal variation of Tr did not change as significantly as Pn. The light saturation point (LSP) was restrained by the ions. After low energy C+ ion implantation, WUE was enhanced. When the fluence increased to a certain level, the WUE began to decrease. PMID:23861939

  11. Optima XE Single Wafer High Energy Ion Implanter

    SciTech Connect

    Satoh, Shu; Ferrara, Joseph; Bell, Edward; Patel, Shital; Sieradzki, Manny

    2008-11-03

    The Optima XE is the first production worthy single wafer high energy implanter. The new system combines a state-of-art single wafer endstation capable of throughputs in excess of 400 wafers/hour with a production-proven RF linear accelerator technology. Axcelis has been evolving and refining RF Linac technology since the introduction of the NV1000 in 1986. The Optima XE provides production worthy beam currents up to energies of 1.2 MeV for P{sup +}, 2.9 MeV for P{sup ++}, and 1.5 MeV for B{sup +}. Energies as low as 10 keV and tilt angles as high as 45 degrees are also available., allowing the implanter to be used for a wide variety of traditional medium current implants to ensure high equipment utilization. The single wafer endstation provides precise implant angle control across wafer and wafer to wafer. In addition, Optima XE's unique dose control system allows compensation of photoresist outgassing effects without relying on traditional pressure-based methods. We describe the specific features, angle control and dosimetry of the Optima XE and their applications in addressing the ever-tightening demands for more precise process controls and higher productivity.

  12. Investigation of Mn-implanted n-Si by low-energy ion beam deposition

    NASA Astrophysics Data System (ADS)

    Liu, Lifeng; Chen, Nuofu; Song, Shulin; Yin, Zhigang; Yang, Fei; Chai, Chunlin; Yang, Shaoyan; Liu, Zhikai

    2005-01-01

    Mn ions were implanted to n-type Si(0 0 1) single crystal by low-energy ion beam deposition technique with an energy of 1000 eV and a dose of 7.5×10 17 cm -2. The samples were held at room temperature and at 300 °C during implantation. Auger electron spectroscopy depth profiles of samples indicate that the Mn ions reach deeper in the sample implanted at 300 °C than in the sample implanted at room temperature. X-ray diffraction measurements show that the structure of the sample implanted at room temperature is amorphous while that of the sample implanted at 300 °C is crystallized. There are no new phases found except silicon both in the two samples. Atomic force microscopy images of samples indicate that the sample implanted at 300 °C has island-like humps that cover the sample surface while there is no such kind of characteristic in the sample implanted at room temperature. The magnetic properties of samples were investigated by alternating gradient magnetometer (AGM). The sample implanted at 300 °C shows ferromagnetic behavior at room temperature.

  13. Ion implantation in polymers

    NASA Astrophysics Data System (ADS)

    Wintersgill, M. C.

    1984-02-01

    An introductory overview will be given of the effects of ion implantation on polymers, and certain areas will be examined in more detail. Radiation effects in general and ion implantation in particular, in the field of polymers, present a number of contrasts with those in ionic crystals, the most obvious difference being that the chemical effects of both the implanted species and the energy transfer to the host may profoundly change the nature of the target material. Common effects include crosslinking and scission of polymer chains, gas evolution, double bond formation and the formation of additional free radicals. Research has spanned the chemical processes involved, including polymerization reactions achievable only with the use of radiation, to applied research dealing both with the effects of radiation on polymers already in commercial use and the tailoring of new materials to specific applications. Polymers are commonly divided into two groups, in describing their behavior under irradiation. Group I includes materials which form crosslinks between molecules, whereas Group II materials tend to degrade. In basic research, interest has centered on Group I materials and of these polyethylene has been studied most intensively. Applied materials research has investigated a variety of polymers, particularly those used in cable insulation, and those utilized in ion beam lithography of etch masks. Currently there is also great interest in enhancing the conducting properties of polymers, and these uses would tend to involve the doping capabilities of ion implantation, rather than the energy deposition.

  14. Sources and transport systems for low energy extreme of ion implantation

    SciTech Connect

    Hershcovitch, A.; Batalin, V.A.; Bugaev, A.S.; Gushenets, V.I.; Alexeyenko, O.; Gurkova, E.; Johnson, B.M.; Kolomiets, A.A.; Kropachev, G.N.; Kuibeda, R.P.; Kulevoy, T.V.; Masunov, E.S.; Oks, E.M.; Pershin, V.I.; Polozov, S.M.; Poole, H.J.; Seleznev, D.N.; Storozhenko, P.A.; Vizir, A.; Svarovski, A.Ya.; Yakushin, P.; Yushkov, G.Yu.

    2010-06-06

    For the past seven years a joint research and development effort focusing on the design of steady state, intense ion sources has been in progress with the ultimate goal being to meet the two, energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. However, since the last Fortier is low energy ion implantation, focus of the endeavor has shifted to low energy ion implantation. For boron cluster source development, we started with molecular ions of decaborane (B{sub 10}H{sub 14}), octadecaborane (B{sub 18}H{sub 22}), and presently our focus is on carborane (C{sub 2}B{sub 10}H{sub 12}) ions developing methods for mitigating graphite deposition. Simultaneously, we are developing a pure boron ion source (without a working gas) that can form the basis for a novel, more efficient, plasma immersion source. Our Calutron-Berna ion source was converted into a universal source capable of switching between generating molecular phosphorous P{sub 4}{sup +}, high charge state ions, as well as other types of ions. Additionally, we have developed transport systems capable of transporting a very large variety of ion species, and simulations of a novel gasless/plasmaless ion beam deceleration method were also performed.

  15. Use of low-energy hydrogen ion implants in high-efficiency crystalline-silicon solar cells

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.; Sigh, R.; Mu, H. C.

    1986-01-01

    The use of low-energy hydrogen implants in the fabrication of high-efficiency crystalline silicon solar cells was investigated. Low-energy hydrogen implants result in hydrogen-caused effects in all three regions of a solar cell: emitter, space charge region, and base. In web, Czochralski (Cz), and floating zone (Fz) material, low-energy hydrogen implants reduced surface recombination velocity. In all three, the implants passivated the space charge region recombination centers. It was established that hydrogen implants can alter the diffusion properties of ion-implanted boron in silicon, but not ion-implated arsenic.

  16. Use of low energy hydrogen ion implants in high efficiency crystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.; Singh, R.

    1985-01-01

    This program is a study of the use of low energy hydrogen ion implantation for high efficiency crystalline silicon solar cells. The first quarterly report focuses on two tasks of this program: (1) an examination of the effects of low energy hydrogen implants on surface recombination speed; and (2) an examination of the effects of hydrogen on silicon regrowth and diffusion in silicon. The first part of the project focussed on the measurement of surface properties of hydrogen implanted silicon. Low energy hydrogen ions when bombarded on the silicon surface will create structural damage at the surface, deactivate dopants and introduce recombination centers. At the same time the electrically active centers such as dangling bonds will be passivated by these hydrogen ions. Thus hydrogen is expected to alter properties such as the surface recombination velocity, dopant profiles on the emitter, etc. In this report the surface recombination velocity of a hydrogen emplanted emitter was measured.

  17. Low-energy ion implantation: Large mass fractionation of argon

    NASA Technical Reports Server (NTRS)

    Ponganis, K. V.; Graf, TH.; Marti, K.

    1993-01-01

    The isotropic signatures of noble gases in the atmospheres of the Earth and other planets are considerably evolved when compared to signatures observed in the solar wind. The mechanisms driving the evolution of planetary volatiles from original compositions in the solar accretion disk are currently poorly understood. Modeling of noble-gas compositional histories requires knowledge of fractionating processes that may have operated through the evolutionary stages. Since these gases are chemically inert, information on noble-gas fractionation processes can be used as probes. The importance of understanding these processes extends well beyond 'noble-gas planetology.' Trapped argon acquired by low-energy implantation (approximately less than 100 eV) into solids is strongly mass fractionated (approximately greater than or equal to 3 percent/amu). This has potential implications for the origin and evolution of terrestrial planet atmospheres.

  18. Controlled removal of ceramic surfaces with combination of ions implantation and ultrasonic energy

    DOEpatents

    Boatner, Lynn A.; Rankin, Janet; Thevenard, Paul; Romana, Laurence J.

    1995-01-01

    A method for tailoring or patterning the surface of ceramic articles is provided by implanting ions to predetermined depth into the ceramic material at a selected surface location with the ions being implanted at a fluence and energy adequate to damage the lattice structure of the ceramic material for bi-axially straining near-surface regions of the ceramic material to the predetermined depth. The resulting metastable near-surface regions of the ceramic material are then contacted with energy pulses from collapsing, ultrasonically-generated cavitation bubbles in a liquid medium for removing to a selected depth the ion-damaged near-surface regions containing the bi-axially strained lattice structure from the ceramic body. Additional patterning of the selected surface location on the ceramic body is provided by implanting a high fluence of high-energy, relatively-light ions at selected surface sites for relaxing the bi-axial strain in the near-surface regions defined by these sites and thereby preventing the removal of such ion-implanted sites by the energy pulses from the collapsing ultrasonic cavitation bubbles.

  19. Surface engineering of a Zr-based bulk metallic glass with low energy Ar- or Ca-ion implantation.

    PubMed

    Huang, Lu; Zhu, Chao; Muntele, Claudiu I; Zhang, Tao; Liaw, Peter K; He, Wei

    2015-02-01

    In the present study, low energy ion implantation was employed to engineer the surface of a Zr-based bulk metallic glass (BMG), aiming at improving the biocompatibility and imparting bioactivity to the surface. Ca- or Ar-ions were implanted at 10 or 50 keV at a fluence of 8 × 10(15)ions/cm(2) to (Zr0.55Al0.10Ni0.05Cu0.30)99Y1 (at.%) BMG. The effects of ion implantation on material properties and subsequent cellular responses were investigated. Both Ar- and Ca-ion implantations were suggested to induce atom displacements on the surfaces according to the Monte-Carlo simulation. The change of atomic environment of Zr in the surface regions as implied by the alteration in X-ray absorption measurements at Zr K-edge. X-ray photoelectron spectroscopy revealed that the ion implantation process has modified the surface chemical compositions and indicated the presence of Ca after Ca-ion implantation. The surface nanohardness has been enhanced by implantation of either ion species, with Ca-ion implantation showing more prominent effect. The BMG surfaces were altered to be more hydrophobic after ion implantation, which can be attributed to the reduced amount of hydroxyl groups on the implanted surfaces. Higher numbers of adherent cells were found on Ar- and Ca-ion implanted samples, while more pronounced cell adhesion was observed on Ca-ion implanted substrates. The low energy ion implantation resulted in concurrent modifications in atomic structure, nanohardness, surface chemistry, hydrophobicity, and cell behavior on the surface of the Zr-based BMG, which were proposed to be mutually correlated with each other. PMID:25492195

  20. Monitoring of Ion Purity in High-energy Implant via RBS

    NASA Astrophysics Data System (ADS)

    Haberl, Arthur W.; Skala, Wayne G.; Bakhru, Hassaram

    The UAlbany Dynamitron is used for high-energy ion implantation as well as for routine materials analysis. Its ion source can be run using any one of fourteen different gases, leading to concerns of contamination during an implantation. The system has the usual well-calibrated mass-separation using a magnetic analyzer. A pre- or post-implant mass spectrum through this analyzer can give a useful understanding of unintended ions within the source beam, but it does not provide direct identification for such ions as CO or diatomic nitrogen-14 when implanting silicon-28. Since these possible components have the same momentum and charge (i.e. +1), the beamline mass separator will transmit them all. Because backscattered ions from the mass-separated beam will have only atomic scattering, this allows for element detection following the breakup of any molecular ion components. The verification system consists of a back-angle particle detector along with a movable temporary target consisting of a very thin film of gold on a carbon or silicon substrate. The backscattered spectrum can then be analyzed for the presence of unwanted elements. While this does not provide for removal of the unwanted components, it does provide for the identification and measurement of the problem. We show the physical layout, software and extra details necessary for successful use of the technique.

  1. Study of Biological Effects of Low Energy Ion Implantation on Tomato and Radish Breeding

    NASA Astrophysics Data System (ADS)

    Liang, Qiuxia; Huang, Qunce; Cao, Gangqiang; Ying, Fangqing; Liu, Yanbo; Huang, Wen

    2008-04-01

    Biological effects of 30 keV low energy nitrogen ion implantation on the seeds of five types of tomato and one type of radish were investigated. Results showed that low energy ions have different effects on different vegetables. The whole dose-response curve of the germination ratio did not take on "the shape of saddle", but was a rising and falling waveform with the increase or decrease in ion implantation. In the vegetable of Solanaceae, two outstanding aberrant plants were selected from M1 of Henan No.4 tomato at a dose of 7 × 1017 nitrogen ions/cm2, which had thin-leaves, long-petal and nipple tip fruit stably inherited to M7. Furthermore the analysis of the isozyme showed that the activity of the mutant tomato seedling was distinct in quantity and color. In Raphanus sativus L., the aberrances were obvious in the mutant of radish 791 at a dose of 5 × 1017 nitrogen ions/cm2, and the weight of succulent root and the volume of growth were over twice the control's. At present, many species for breeding have been identified in the field and only stable species have been selected for the experiment of production. It is evident that the low energy ion implantation technology has clear effects on vegetables' genetic improvement.

  2. Development of Linear Mode Detection for Top-down Ion Implantation of Low Energy Sb Donors

    NASA Astrophysics Data System (ADS)

    Pacheco, Jose; Singh, Meenakshi; Bielejec, Edward; Lilly, Michael; Carroll, Malcolm

    2015-03-01

    Fabrication of donor spin qubits for quantum computing applications requires deterministic control over the number of implanted donors and the spatial accuracy to within which these can be placed. We present an ion implantation and detection technique that allows us to deterministically implant a single Sb ion (donor) with a resulting volumetric distribution of <10 nm. This donor distribution is accomplished by implanting 30keV Sb into Si which yields a longitudinal straggle of <10 nm and combined with a <50 nm spot size using the Sandia NanoImplanter (nI). The ion beam induced charge signal is collected using a MOS detector that is integrated with a Si quantum dot for transport measurments. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  3. Low flux and low energy helium ion implantation into tungsten using a dedicated plasma source

    NASA Astrophysics Data System (ADS)

    Pentecoste, Lucile; Thomann, Anne-Lise; Melhem, Amer; Caillard, Amael; Cuynet, Stéphane; Lecas, Thomas; Brault, Pascal; Desgardin, Pierre; Barthe, Marie-France

    2016-09-01

    The aim of this work is to investigate the first stages of defect formation in tungsten (W) due to the accumulation of helium (He) atoms inside the crystal lattice. To reach the required implantation conditions, i.e. low He ion fluxes (1011-1014 ions.cm2.s-1) and kinetic energies below the W atom displacement threshold (about 500 eV for He+), an ICP source has been designed and connected to a diffusion chamber. Implantation conditions have been characterized by means of complementary diagnostics modified for measurements in this very low density helium plasma. It was shown that lowest ion fluxes could only be reached for the discharge working in capacitive mode either in α or γ regime. Special attention was paid to control the energy gained by the ions by acceleration through the sheath at the direct current biased substrate. At very low helium pressure, in α regime, a broad ion energy distribution function was evidenced, whereas a peak centered on the potential difference between the plasma and the biased substrate was found at higher pressures in the γ mode. Polycrystalline tungsten samples were exposed to the helium plasma in both regimes of the discharge and characterized by positron annihilation spectroscopy in order to detect the formed vacancy defects. It was found that W vacancies are able to be formed just by helium accumulation and that the same final implanted state is reached, whatever the operating mode of the capacitive discharge.

  4. Collisional energy deposition threshold for extended damage depths in ion-implanted silicates

    SciTech Connect

    Arnold, G.W.; Battaglin, G.; Boscolo-Boscoletto, A.; Caccavalle, F.; De Marchi, G.; Mazzoldi, P.; Miotello, A.

    1991-12-31

    Many properties of implanted fused silica (e.g., surface stress, hardness) exhibit maximum implantation-induced changes for collisional energy deposition values of {approximately}10{sup 20} keV/cm{sup 3}. We have observed a second critical energy deposition threshold value of about 10{sup 22} keV/cm{sup 3} in stress and hardness measurements as well as in many other experiments on silicate glasses (leaching, alkali depletion, etching rate, gaseous implant redistribution). The latter show evidence for damage depths exceeding TRIM ranges by about a factor of 2. For crystalline quartz, a similar threshold value has been found for extended damage depths (greater than TRIM) for 250 kev ions (H-Au) as measured by RBS and interference fringes. This phenomenon at high damage deposition energy may involve the large stress gradients between damaged and undamaged regions and the much increased diffusion coefficient for defect transport. 13 refs., 6 figs.

  5. Collisional energy deposition threshold for extended damage depths in ion-implanted silicates

    SciTech Connect

    Arnold, G.W. ); Battaglin, G. ); Boscolo-Boscoletto, A. ); Caccavalle, F.; De Marchi, G.; Mazzoldi, P. ); Miotello, A. (Consorzio INFM, Dipartiment

    1991-01-01

    Many properties of implanted fused silica (e.g., surface stress, hardness) exhibit maximum implantation-induced changes for collisional energy deposition values of {approximately}10{sup 20} keV/cm{sup 3}. We have observed a second critical energy deposition threshold value of about 10{sup 22} keV/cm{sup 3} in stress and hardness measurements as well as in many other experiments on silicate glasses (leaching, alkali depletion, etching rate, gaseous implant redistribution). The latter show evidence for damage depths exceeding TRIM ranges by about a factor of 2. For crystalline quartz, a similar threshold value has been found for extended damage depths (greater than TRIM) for 250 kev ions (H-Au) as measured by RBS and interference fringes. This phenomenon at high damage deposition energy may involve the large stress gradients between damaged and undamaged regions and the much increased diffusion coefficient for defect transport. 13 refs., 6 figs.

  6. Improving low-energy boron/nitrogen ion implantation in graphene by ion bombardment at oblique angles

    NASA Astrophysics Data System (ADS)

    Bai, Zhitong; Zhang, Lin; Liu, Ling

    2016-04-01

    Ion implantation is a widely adopted approach to structurally modify graphene and tune its electrical properties for a variety of applications. Further development of the approach requires a fundamental understanding of the mechanisms that govern the ion bombardment process as well as establishment of key relationships between the controlling parameters and the dominant physics. Here, using molecular dynamics simulations with adaptive bond order calculations, we demonstrate that boron and nitrogen ion bombardment at oblique angles (particularly at 70°) can improve both the productivity and quality of perfect substitution by over 25%. We accomplished this by systematically analyzing the effects of the incident angle and ion energy in determining the probabilities of six distinct types of physics that may occur in an ion bombardment event, including reflection, absorption, substitution, single vacancy, double vacancy, and transmission. By analyzing the atomic trajectories from 576 000 simulations, we identified three single vacancy creation mechanisms and four double vacancy creation mechanisms, and quantified their probability distributions in the angle-energy space. These findings further open the door for improved control of ion implantation towards a wide range of applications of graphene.Ion implantation is a widely adopted approach to structurally modify graphene and tune its electrical properties for a variety of applications. Further development of the approach requires a fundamental understanding of the mechanisms that govern the ion bombardment process as well as establishment of key relationships between the controlling parameters and the dominant physics. Here, using molecular dynamics simulations with adaptive bond order calculations, we demonstrate that boron and nitrogen ion bombardment at oblique angles (particularly at 70°) can improve both the productivity and quality of perfect substitution by over 25%. We accomplished this by systematically

  7. Effect of low-energy hydrogen ion implantation on dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Meier, D. L.; Rai-Choudhury, P.; Fonash, S. J.; Singh, R.

    1986-01-01

    The effect of a low-energy (0.4 keV), short-time (2-min), heavy-dose (10 to the 18th/sq cm) hydrogen ion implant on dendritic web silicon solar cells and material was investigated. Such an implant was observed to improve the cell open-circuit voltage and short-circuit current appreciably for a number of cells. In spite of the low implant energy, measurements of internal quantum efficiency indicate that it is the base of the cell, rather than the emitter, which benefits from the hydrogen implant. This is supported by the observation that the measured minority-carrier diffusion length in the base did not change when the emitter was removed. In some cases, a threefold increase of the base diffusion length was observed after implantation. The effects of the hydrogen implantation were not changed by a thermal stress test at 250 C for 111 h in nitrogen. It is speculated that hydrogen enters the bulk by traveling along dislocations, as proposed recently for edge-defined film-fed growth silicon ribbon.

  8. Nitrogen mass transfer models for plasma-based low-energy ion implantation

    SciTech Connect

    Zheng, Bocong; Wang, Kesheng; Zhang, Zhipeng; Che, Honglong; Lei, Mingkai

    2015-03-15

    The nitrogen mass transfer process in plasma-based low-energy ion implantation (PBLEII) is theoretically and experimentally studied in order to explore the process mechanism of PBLEII and therefore to optimize the apparatus design and the process conditions. An electron cyclotron resonance (ECR) microwave discharge generates the nitrogen plasma with a high density of 10{sup 11}–10{sup 12} ions/cm{sup 3}, which diffuses downstream to the process chamber along the divergent magnetic field. The nitrogen ions in the plasma implant into the surface and transport to the matrix of an austenitic stainless steel under the low negative pulsed bias of −2 kV at a process temperature of 400 °C. A global plasma model is used to simulate the ECR microwave plasma discharge for a range of working pressures and microwave powers. The fluid models are adopted to calculate the plasma downstream diffusion, the sheath expansion and the low-energy ion implantation on the surface. A nonlinear kinetic discrete model is established to describe the nitrogen transport in the austenitic stainless steel and the results are compared with the experimental measurements. Under an average implantation current density of 0.3–0.6 mA/cm{sup 2}, the surface nitrogen concentration in the range from 18.5 to 29 at. % is a critical factor for the nitrogen transport in the AISI 304 austenitic stainless steel by PBLEII, which accelerates the implanted nitrogen diffusion inward up to 6–12 μm during a nitriding time of 4 h.

  9. Radiation damage in urania crystals implanted with low-energy ions

    NASA Astrophysics Data System (ADS)

    Nguyen, Tien Hien; Garrido, Frédérico; Debelle, Aurélien; Mylonas, Stamatis; Nowicki, Lech; Thomé, Lionel; Bourçois, Jérôme; Moeyaert, Jérémy

    2014-05-01

    Implantations with low-energy ions (470-keV Xe and 500-keV La with corresponding ion range Rp ∼ 85 nm and range straggling ΔRp ∼ 40 nm) have been performed to investigate both radiation and chemical effects due to the incorporation of different species in UO2 (urania) crystals. The presence of defects was monitored in situ after each implantation fluence step by the RBS/C technique. Channelling data were analysed afterwards by Monte-Carlo simulations with a model of defects involving (i) randomly displaced atoms (RDA) and (ii) distorted rows, i.e. bent channels (BC). While increasing the ion fluence, the accumulation of RDA leads to a steep increase of the defect fraction in the range from 4 to 7 dpa regardless of the nature of bombarding ions followed by a saturation plateau over a large dpa range. A clear difference of 6% in the yield of saturation plateaus between irradiation with Xe and La ions was observed. Conversely, the evolutions of the fraction of BC showed a similar regular increase with increasing ion fluence for both ions. Moreover, this increase is shifted to a larger fluence in comparison to the sharp increase step of RDA. This phenomenon indicates a continuous structural modification of UO2 crystals under irradiation unseen by the measurement of RDA.

  10. Low-energy plasma immersion ion implantation to induce DNA transfer into bacterial E. coli

    NASA Astrophysics Data System (ADS)

    Sangwijit, K.; Yu, L. D.; Sarapirom, S.; Pitakrattananukool, S.; Anuntalabhochai, S.

    2015-12-01

    Plasma immersion ion implantation (PIII) at low energy was for the first time applied as a novel biotechnology to induce DNA transfer into bacterial cells. Argon or nitrogen PIII at low bias voltages of 2.5, 5 and 10 kV and fluences ranging from 1 × 1012 to 1 × 1017 ions/cm2 treated cells of Escherichia coli (E. coli). Subsequently, DNA transfer was operated by mixing the PIII-treated cells with DNA. Successes in PIII-induced DNA transfer were demonstrated by marker gene expressions. The induction of DNA transfer was ion-energy, fluence and DNA-size dependent. The DNA transferred in the cells was confirmed functioning. Mechanisms of the PIII-induced DNA transfer were investigated and discussed in terms of the E. coli cell envelope anatomy. Compared with conventional ion-beam-induced DNA transfer, PIII-induced DNA transfer was simpler with lower cost but higher efficiency.

  11. Enhanced nitrogen and phosphorus removal from eutrophic lake water by Ipomoea aquatica with low-energy ion implantation.

    PubMed

    Li, Miao; Wu, Yue-Jin; Yu, Zeng-Liang; Sheng, Guo-Ping; Yu, Han-Qing

    2009-03-01

    Ipomoea aquatica with low-energy N+ ion implantation was used for the removal of both nitrogen and phosphorus from the eutrophic Chaohu Lake, China. The biomass growth, nitrate reductase and peroxidase activities of the implanted I. aquatica were found to be higher than those of I. aquatica without ion implantation. Higher NO3-N and PO4-P removal efficiencies were obtained for the I. aquatica irradiation at 25 keV, 3.9 x 10(16) N+ ions/cm(2) and 20 keV 5.2 x 10(16) N+ ions/cm(2), respectively (p < 0.05). Moreover, the nitrogen and phosphorus contents in the plant biomass with ion implantation were also greater than those of the controls. I. aquatica with ion implantation was directly responsible for 51-68% N removal and 54-71% P removal in the three experiments. The results further confirm that the ion implantation could enhance the growth potential of I. aquatica in real eutrophic water and increase its nutrient removal efficiency. Thus, the low-energy ion implantation for aquatic plants could be considered as an approach for in situ phytoremediation and bioremediation of eutrophic waters.

  12. Broad beam ion implanter

    DOEpatents

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  13. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  14. Controlled ion implant damage profile for etching

    DOEpatents

    Arnold, Jr., George W.; Ashby, Carol I. H.; Brannon, Paul J.

    1990-01-01

    A process for etching a material such as LiNbO.sub.3 by implanting ions having a plurality of different kinetic energies in an area to be etched, and then contacting the ion implanted area with an etchant. The various energies of the ions are selected to produce implant damage substantially uniformly throughout the entire depth of the zone to be etched, thus tailoring the vertical profile of the damaged zone.

  15. Doping of Graphene by Low-Energy Ion Beam Implantation: Structural, Electronic, and Transport Properties.

    PubMed

    Willke, Philip; Amani, Julian A; Sinterhauf, Anna; Thakur, Sangeeta; Kotzott, Thomas; Druga, Thomas; Weikert, Steffen; Maiti, Kalobaran; Hofsäss, Hans; Wenderoth, Martin

    2015-08-12

    We investigate the structural, electronic, and transport properties of substitutional defects in SiC-graphene by means of scanning tunneling microscopy and magnetotransport experiments. Using ion incorporation via ultralow energy ion implantation, the influence of different ion species (boron, nitrogen, and carbon) can directly be compared. While boron and nitrogen atoms lead to an effective doping of the graphene sheet and can reduce or raise the position of the Fermi level, respectively, (12)C(+) carbon ions are used to study possible defect creation by the bombardment. For low-temperature transport, the implantation leads to an increase in resistance and a decrease in mobility in contrast to undoped samples. For undoped samples, we observe in high magnetic fields a positive magnetoresistance that changes to negative for the doped samples, especially for (11)B(+)- and (12)C(+)-ions. We conclude that the conductivity of the graphene sheet is lowered by impurity atoms and especially by lattice defects, because they result in weak localization effects at low temperatures. PMID:26120803

  16. Biological effects of low energy nitrogen ion implantation on Jatropha curcas L. seed germination

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Wang, Xiao-teng; Gan, Cai-ling; Fang, Yan-qiong; Zhang, Meng

    2012-09-01

    To explore the biological effects of nitrogen ion beam implantation on dry Jatropha curcas seed, a beam of N+ with energy of 25 keV was applied to treat the dry seed at six different doses. N+ beam implantation greatly decreased germination rate and seedling survival rate. The doses within the range of 12 × 1016 to 15 × 1016 ions cm-2 severely damaged the seeds: total antioxidant capacity (TAC), germination rate, seedling survival rate, reduced ascorbate acid (HAsA) and reduced glutathione (GSH) contents, and most of the tested antioxidases activity (i.e. catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD)) reached their lowest levels. At a dose of 18 × 1016 ion cm-2, biological repair took place: moderate increases were found in TAC, germination rate, seedling survival rate, HAsA and GSH contents, and some antioxidant enzyme activities (i.e. CAT, APX, SOD and GPX). The dose of 18 × 1016 ions cm-2 may be the optimum dose for use in dry J. curcas seed mutation breeding. CAT, HAsA and GSH contributed to the increase of TAC, but CAT was the most important. POD performed its important role as seed was severely damaged. The main role of the HAsA-GSH cycle appeared to be for regeneration of HAsA.

  17. Defect diffusion during annealing of low-energy ion-implanted silicon

    SciTech Connect

    Bedrossian, P J; Caturla, M-J; Diaz de la Rubia, T

    2000-03-08

    We present a new approach for investigating the kinetics of defect migration during annealing of low-energy, ion-implanted silicon, employing a combination of computer simulations and atomic-resolution tunneling microscopy. Using atomically-clean Si(111)-7x7 as a sink for bulk point defects created by 5 keV Xe and Ar irradiation, we observe distinct, temperature-dependent surface arrival rates for vacancies and interstitials. A combination of simulation tools provides a detailed description of the processes that underly the observed temperature-dependence of defect segregation, and the predictions of the simulations agree closely with the experimental observations.

  18. Beam energy tracking system on Optima XEx high energy ion implanter

    SciTech Connect

    David, Jonathan; Satoh, Shu; Wu Xiangyang; Geary, Cindy; Deluca, James

    2012-11-06

    The Axcelis Optima XEx high energy implanter is an RF linac-based implanter with 12 RF resonators for beam acceleration. Even though each acceleration field is an alternating, sinusoidal RF field, the well known phase-focusing principle produces a beam with a sharp quasi-monoenergetic energy spectrum. A magnetic energy filter after the linac further attenuates the low energy continuum in the energy spectrum often associated with RF acceleration. The final beam energy is a function of the phase and amplitude of the 12 resonators in the linac. When tuning a beam, the magnetic energy filter is set to the desired energy, and each linac parameter is tuned to maximize the transmission through the filter. Once a beam is set up, all the parameters are stored in a recipe, which can be easily tuned and has proven to be quite repeatable. The magnetic field setting of the energy filter selects the beam energy from the RF Linac accelerator, and in-situ verification of beam energy in addition to the magnetic energy filter setting has long been desired. An independent energy tracking system was developed for this purpose, using the existing electrostatic beam scanner as a deflector to construct an in-situ electrostatic energy analyzer. This paper will describe the system and performance of the beam energy tracking system.

  19. Solutions to Defect-Related Problems in Implanted Silicon by Controlled Injection of Vacancies by High-Energy Ion Irradiation

    SciTech Connect

    Duggan, J.L.; Holland, O.W.; Roth, E.

    1998-11-04

    Amorphization and a dual implant technique have been used to manipulate residual defects that persist following implantation and post-implant thermal treatments. Residual defects can often be attributed to ion-induced defect excesses. A defect is considered to be excess when it occurs in a localized region at a concentration greater than its complement. Sources of excess defects include spatially separated Frenkel pairs, excess interstitials resulting from the implanted atoms, and sputtering. Pre-amorphizing prior to dopant implantation has been proposed to eliminate dopant broadening due to ion channeling as well as dopant diffusion during subsequent annealing. However, transient-enhanced diffusion (TED) of implanted boron has been observed in pre-amorphized Si. The defects driving this enhanced boron diffusion are thought to be the extended interstitial-type defects that form below the amorphous-crystalline interface during implantation. A dual implantation process was applied in an attempt to reduce or eliminate this interfacial defect band. High-energy, ion implantation is known to inject a vacancy excess in this region. Vacancies were implanted at a concentration coincident with the excess interstitials below the a-c interface to promote recombination between the two defect species. Preliminary results indicate that a critical fluence, i.e., a sufficient vacancy concentration, will eliminate the interstitial defects. The effect of the reduction or elimination of these interfacial defects upon TED of boron will be discussed. Rutherford backscattering/channeling and cross section transmission electron microscopy analyses were used to characterize the defect structure within the implanted layer. Secondary ion mass spectroscopy was used to profile the dopant distributions.

  20. Fabrication and characterization of a co-planar detector in diamond for low energy single ion implantation

    NASA Astrophysics Data System (ADS)

    Abraham, J. B. S.; Aguirre, B. A.; Pacheco, J. L.; Vizkelethy, G.; Bielejec, E.

    2016-08-01

    We demonstrate low energy single ion detection using a co-planar detector fabricated on a diamond substrate and characterized by ion beam induced charge collection. Histograms are taken with low fluence ion pulses illustrating quantized ion detection down to a single ion with a signal-to-noise ratio of approximately 10. We anticipate that this detection technique can serve as a basis to optimize the yield of single color centers in diamond. The ability to count ions into a diamond substrate is expected to reduce the uncertainty in the yield of color center formation by removing Poisson statistics from the implantation process.

  1. Ion implantation in silicate glasses

    SciTech Connect

    Arnold, G.W.

    1993-12-01

    This review examines the effects of ion implantation on the physical properties of silicate glasses, the compositional modifications that can be brought about, and the use of metal implants to form colloidal nanosize particles for increasing the nonlinear refractive index.

  2. Semiconductor Ion Implanters

    NASA Astrophysics Data System (ADS)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at 7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at 6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing `only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around 2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  3. Semiconductor Ion Implanters

    SciTech Connect

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  4. Ion implantation at elevated temperatures

    SciTech Connect

    Lam, N.Q.; Leaf, G.K.

    1985-11-01

    A kinetic model has been developed to investigate the synergistic effects of radiation-enhanced diffusion, radiation-induced segregation and preferential sputtering on the spatial redistribution of implanted solutes during implantation at elevated temperatures. Sample calculations were performed for Al and Si ions implanted into Ni. With the present model, the influence of various implantation parameters on the evolution of implant concentration profiles could be examined in detail.

  5. Creation of High-Yield Polyhydroxyalkanoates Engineered Strains by Low Energy Ion Implantation

    NASA Astrophysics Data System (ADS)

    Qian, Shiquan; Cheng, Ying; Zhu, Suwen; Cheng, Beijiu

    2008-12-01

    Polyhydroxyalkanoates (PHAs), as a candidate for biodegradable plastic materials, can be synthesized by numerous microorganisms. However, as its production cost is high in comparison with those of chemically synthesized plastics, a lot of research has been focused on the efficient production of PHAs using different methods. In the present study, the mutation effects of PHAs production in strain pCB4 were investigated with implantation of low energy ions. It was found that under the implantation conditions of 7.8 × 1014 N+/cm2 at 10 keV, a high-yield PHAs strain with high genetic stability was generated from many mutants. After optimizing its fermentation conditions, the biomass, PHAs concentration and PHAs content of pCBH4 reached 2.26 g/L, 1.81 g/L, and 80.08% respectively, whereas its wild type controls were about 1.24 g/L, 0.61 g/L, and 49.20%. Moreover, the main constituent of PHAs was identified as poly-3-hydroxybutyrates (PHB) in the mutant stain and the yield of this compound was increased up to 41.33% in contrast to that of 27.78% in the wild type strain.

  6. Effect of Implantation Machine Parameters on N+ ion Implantation for Upland Cotton(Gossypium hirsutum L.) Pollen

    NASA Astrophysics Data System (ADS)

    Yue, Jieyu; Yu, Lixiang; Wu, Yuejin; Tang, Canming

    2008-10-01

    Effect of parameters of ion implantation machine, including ion energy, total dose, dose rate, impulse energy and implantation interval on the pollen grains of upland cotton implanted with nitrogen ion beam were studied. The best parameters were screened out. The results also showed that the vacuum condition before the nitrogen ion implantation does not affect the pollen viability.

  7. Optical and electrical properties of polycarbonate layers implanted by high energy Cu ions

    NASA Astrophysics Data System (ADS)

    Resta, V.; Calcagnile, L.; Quarta, G.; Maruccio, L.; Cola, A.; Farella, I.; Giancane, G.; Valli, L.

    2013-10-01

    1 MeV copper ions were implanted in polycarbonate (PC) matrices with fluences ranging from 5 × 1013 ions cm-2 to 1 × 1017 ions cm-2 in order to modify the optical and electrical properties of the polymer host. Increasing the ion fluence, an increase of the overall absorption and a redshift of the optical band gap were observed, from the initial value of 3.40 eV for the pristine PC to 0.80 eV measured for 1 × 1017 ions cm-2. For fluences above 5 × 1014 ions cm-2 a broad optical absorption bands at 450-475 nm and 520 nm were observed and, from 1 × 1016 ions cm-2, an additional band appeared at 570 nm. Both bands redshift when the fluence is increased. On the contrary, the optical response of the highest fluence sample is characterized by an overall band at 580 nm. The chemical modifications observed in the polymer ranges from induced -OH stretching, Cdbnd O and -Cdbnd C- double bonds and -Ctbnd C and tbnd CH triple bonds formation, as the ion fluence increases. The implantation process affects the electrical properties of the polymer inducing a strong reduction in sheet resistance when ion fluence exceeds 5 × 1016 ions cm-2. A value of ˜7.1 × 107 Ω/sq has been obtained for the highest fluence, i.e. about 10 order of magnitude lower than the pristine PC.

  8. Ion sources for use in ion implantation

    NASA Astrophysics Data System (ADS)

    White, Nicholas R.

    1989-02-01

    This paper reviews high current ion sources suitable for commercial use. Although the production of high currents of a variety of ions is a vital consideration, this paper focuses on other aspects of ion source performance. The modern ion implanter is a major item of expensive capital equipment, with the ion source being its least reliable component. So, the most critical issues today are reliability and lifetime, as well as safety, flexibility, and ease of service. The Freeman ion source has clearly dominated the field, yet a number of alternative sources have found commercial acceptance, including microwave sources. Factors affecting the ultimate usefulness of various sources in different implantation applications are discussed.

  9. Highly Stripped Ion Sources for MeV Ion Implantation

    SciTech Connect

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  10. Ion sources for ion implantation technology (invited)

    SciTech Connect

    Sakai, Shigeki Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  11. Method for ion implantation induced embedded particle formation via reduction

    DOEpatents

    Hampikian, Janet M; Hunt, Eden M

    2001-01-01

    A method for ion implantation induced embedded particle formation via reduction with the steps of ion implantation with an ion/element that will chemically reduce the chosen substrate material, implantation of the ion/element to a sufficient concentration and at a sufficient energy for particle formation, and control of the temperature of the substrate during implantation. A preferred embodiment includes the formation of particles which are nano-dimensional (<100 m-n in size). The phase of the particles may be affected by control of the substrate temperature during and/or after the ion implantation process.

  12. Mechanical properties improvement of pulsed laser-deposited hydroxyapatite thin films by high energy ion-beam implantation

    NASA Astrophysics Data System (ADS)

    Nelea, V.; Pelletier, H.; Müller, D.; Broll, N.; Mille, P.; Ristoscu, C.; Mihailescu, I. N.

    2002-01-01

    Major problems in the hydroxyapatite (HA), Ca 5(PO 4) 3OH, thin films processing still keep the poor mechanical properties and the lack in density. We present a study on the feasibility of high energy ion-beam implantation technique to densify HA bioceramic films. Crystalline HA films were grown by pulsed laser deposition (PLD) method using an excimer KrF ∗ laser ( λ=248 nm, τ FWHM≥20 ns). The films were deposited on Ti-5Al-2.5Fe alloys substrates previously coated with a ceramic TiN buffer layer. After deposition the films were implanted with Ar + ions at high energy. Optical microscopy (OM), white light confocal microscopy (WLCM), grazing incidence X-ray diffraction (GIXRD) and Berkovich nanoindentation in normal and scratch options have been applied for the characterization of the obtained structures. We put into evidence an enhancement of the mechanical characteristics after implantation, while GIXRD measurements confirm that the crystalline structure of HA phase is preserved. The improvement in mechanical properties is an effect of a densification after ion treatment as a result of pores elimination and grains regrowth.

  13. Ion implantations of oxide dispersion strengthened steels

    NASA Astrophysics Data System (ADS)

    Sojak, S.; Simeg Veternikova, J.; Slugen, V.; Petriska, M.; Stacho, M.

    2015-12-01

    This paper is focused on a study of radiation damage and thermal stability of high chromium oxide dispersion strengthened steel MA 956 (20% Cr), which belongs to the most perspective structural materials for the newest generation of nuclear reactors - Generation IV. The radiation damage was simulated by the implantation of hydrogen ions up to the depth of about 5 μm, which was performed at a linear accelerator owned by Slovak University of Technology. The ODS steel MA 956 was available for study in as-received state after different thermal treatments as well as in ions implanted state. Energy of the hydrogen ions chosen for the implantation was 800 keV and the implantation fluence of 6.24 × 1017 ions/cm2. The investigated specimens were measured by non-destructive technique Positron Annihilation Lifetime Spectroscopy in order to study the defect behavior after different thermal treatments in the as-received state and after the hydrogen ions implantation. Although, different resistance to defect production was observed in individual specimens of MA 956 during the irradiation, all implanted specimens contain larger defects than the ones in as-received state.

  14. Study of the amorphization of surface silicon layers implanted by low-energy helium ions

    NASA Astrophysics Data System (ADS)

    Lomov, A. A.; Myakon'kikh, A. V.; Oreshko, A. P.; Shemukhin, A. A.

    2016-03-01

    The structural changes in surface layers of Si(001) substrates subjected to plasma-immersion implantation by (2-5)-keV helium ions to a dose of D = 6 × 1015-5 × 1017 cm-2 have been studied by highresolution X-ray diffraction, Rutherford backscattering, and spectral ellipsometry. It is found that the joint application of these methods makes it possible to determine the density depth distribution ρ( z) in an implanted layer, its phase state, and elemental composition. Treatment of silicon substrates in helium plasma to doses of 6 × 1016 cm-2 leads to the formation of a 20- to 30-nm-thick amorphized surface layer with a density close to the silicon density. An increase in the helium dose causes the formation of an internal porous layer.

  15. Ion implanted dielectric elastomer circuits

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  16. Ion implantation of boron in germanium

    SciTech Connect

    Jones, K.S.

    1985-05-01

    Ion implantation of /sup 11/B/sup +/ into room temperature Ge samples leads to a p-type layer prior to any post implant annealing steps. Variable temperature Hall measurements and deep level transient spectroscopy experiments indicate that room temperature implantation of /sup 11/B/sup +/ into Ge results in 100% of the boron ions being electrically active as shallow acceptor, over the entire dose range (5 x 10/sup 11//cm/sup 2/ to 1 x 10/sup 14//cm/sup 2/) and energy range (25 keV to 100 keV) investigated, without any post implant annealing. The concentration of damage related acceptor centers is only 10% of the boron related, shallow acceptor center concentration for low energy implants (25 keV), but becomes dominant at high energies (100 keV) and low doses (<1 x 10/sup 12//cm/sup 2/). Three damage related hole traps are produced by ion implantation of /sup 11/B/sup +/. Two of these hole traps have also been observed in ..gamma..-irradiated Ge and may be oxygen-vacancy related defects, while the third trap may be divacancy related. All three traps anneal out at low temperatures (<300/sup 0/C). Boron, from room temperature implantation of BF/sub 2//sup +/ into Ge, is not substitutionally active prior to a post implant annealing step of 250/sup 0/C for 30 minutes. After annealing additional shallow acceptors are observed in BF/sub 2//sup +/ implanted samples which may be due to fluorine or flourine related complexes which are electrically active.

  17. Ion implantation and laser annealing

    NASA Astrophysics Data System (ADS)

    Three ion implantation and laser annealing projects have been performed by ORNL through the DOE sponsored Seed Money Program. The research has contributed toward improving the characteristics of wear, hardness, and corrosion resistance of some metals and ceramics, as well as the electrical properties of semiconductors. The work has helped to spawn related research, at ORNL and elsewhere, concerning the relationships between microstructure and materials properties. ORNL research has resulted in major advances in extended life and non-corrosive artificial joints (hip and knee), high performance semiconductors, failure resistant ceramics (with potential energy applications), and solar cells. The success of the seed money projects was instrumental in the formation of ORNL's Surface Modification and Characterization Facility (SMAC). More than 60 universities and companies have participated in SMAC programs.

  18. Formation of Si/SiC multilayers by low-energy ion implantation and thermal annealing

    NASA Astrophysics Data System (ADS)

    Dobrovolskiy, S.; Yakshin, A. E.; Tichelaar, F. D.; Verhoeven, J.; Louis, E.; Bijkerk, F.

    2010-03-01

    Si/SiC multilayer systems for XUV reflection optics with a periodicity of 10-20 nm were produced by sequential deposition of Si and implantation of 1 keV CHx+ ions. Only about 3% of the implanted carbon was transferred into the SiC, with a thin, 0.5-1 nm, buried SiC layer being formed. We investigated the effect of thermal annealing on further completion of the carbide layer. For the annealing we used a vacuum furnace, a rapid thermal annealing system in argon atmosphere, and a scanning e-beam, for different temperatures, heating rates, and annealing durations. Annealing to a temperature as low as 600 °C resulted in the formation of a 4.5 nm smooth, amorphous carbide layer in the carbon-implanted region. However, annealing at a higher temperature, 1000 °C, lead to the formation of a rough poly-crystalline carbide layer. The multilayers were characterized by grazing incidence X-ray reflectometry and cross section TEM.

  19. Hardness of ion implanted ceramics

    SciTech Connect

    Oliver, W.C.; McHargue, C.J.; Farlow, G.C.; White, C.W.

    1985-01-01

    It has been established that the wear behavior of ceramic materials can be modified through ion implantation. Studies have been done to characterize the effect of implantation on the structure and composition of ceramic surfaces. To understand how these changes affect the wear properties of the ceramic, other mechanical properties must be measured. To accomplish this, a commercially available ultra low load hardness tester has been used to characterize Al/sub 2/O/sub 3/ with different implanted species and doses. The hardness of the base material is compared with the highly damaged crystalline state as well as the amorphous material.

  20. Fabrication of surface magnetic nanoclusters using low energy ion implantation and electron beam annealing

    NASA Astrophysics Data System (ADS)

    Kennedy, J.; Leveneur, J.; Williams, G. V. M.; Mitchell, D. R. G.; Markwitz, A.

    2011-03-01

    Magnetic nanoclusters have novel applications as magnetic sensors, spintronic and biomedical devices, as well as applications in more traditional materials such as high-density magnetic storage media and high performance permanent magnets. We describe a new synthesis protocol which combines the advantages of ion implantation and electron beam annealing (EBA) to produce surface iron nanoclusters. We compare the structure, composition and magnetic properties of iron nanoclusters fabricated by low dose 15 keV Fe implantation into SiO2 followed by 1000 °C EBA or furnace annealing. Atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM) images together with superconducting quantum interference device (SQUID) magnetometry measurements show that only EBA leads to the rapid formation of surface crystalline Fe spherical nanoclusters, showing magnetic moments per Fe atom comparable to that of bulk bcc Fe and superparamagnetic properties. We propose a fabrication mechanism which includes e-beam enhanced desorption of SiO2. This method has potential for fabricating nanoscale magnetic sensors integrated in microelectronic devices.

  1. Contamination Control in Ion Implantation

    SciTech Connect

    Eddy, R.; Doi, D.; Santos, I.; Wriggins, W.

    2011-01-07

    The investigation and elimination or control of metallic contamination in ion implanters has been a leading, continuous effort at implanter OEMs and in fabs/IDMs alike. Much of the efforts have been in the area of control of sputtering through material and geometry changes in apertures, beamline and target chamber components. In this paper, we will focus on an area that has not, heretofore, been fully investigated or controlled. This is the area of lubricants and internal and external support material such as selected cleaning media. Some of these materials are designated for internal use (beamline/vacuum) only while others are for internal and/or external use. Many applications for selected greases, for example, are designated for or are used for platens, implant disks/wheels and for wafer handling components. We will present data from popular lubricants (to be unnamed) used worldwide in ion implanters. This paper will review elements of concern in many lubricants that should be tracked and monitored by all fabs.Proper understanding of the characteristics, risks and the control of these potential contaminants can provide for rapid return to full process capability following major PMs or parts changes. Using VPD-ICPMS, Glow Discharge Mass Spectrometry and Ion Chromatography (IC) data, we will review the typical cleaning results and correlation to ''on wafer'' contamination by elements of concern--and by some elements that are otherwise barred from the fab.

  2. Mechanical stresses and amorphization of ion-implanted diamond

    NASA Astrophysics Data System (ADS)

    Khmelnitsky, R. A.; Dravin, V. A.; Tal, A. A.; Latushko, M. I.; Khomich, A. A.; Khomich, A. V.; Trushin, A. S.; Alekseev, A. A.; Terentiev, S. A.

    2013-06-01

    Scanning white light interferometry and Raman spectroscopy were used to investigate the mechanical stresses and structural changes in ion-implanted natural diamonds with different impurity content. The uniform distribution of radiation defects in implanted area was obtained by the regime of multiple-energy implantation of keV He+ ions. A modification of Bosia's et al. (Nucl. Instrum. Meth. B 268 (2010) 2991) method for determining the internal stresses and the density variation in an ion-implanted diamond layer was proposed that suggests measuring, in addition to the surface swelling of a diamond plate, the radius of curvature of the plate. It is shown that, under multiple-energy implantation of He+, mechanical stresses in the implanted layer may be as high as 12 GPa. It is shown that radiation damage reaches saturation for the implantation fluence characteristic of amorphization of diamond but is appreciably lower than the graphitization threshold.

  3. Implantation of sodium ions into germanium

    SciTech Connect

    Korol', V. M.; Kudriavtsev, Yu.

    2012-02-15

    The donor properties of Na atoms introduced by ion implantation into p-Ge with the resistivity 20-40 {Omega} cm are established for the first time. Na profiles implanted into Ge (the energies 70 and 77 keV and the doses (0.8, 3, 30) Multiplication-Sign 10{sup 14} cm{sup -2}) are studied. The doses and annealing temperatures at which the thermoprobe detects n-type conductivity on the sample surface are established. After implantation, the profiles exhibit an extended tail. The depth of the concentration maximum is in good agreement with the calculated mean projected range of Na ions R{sub p}. Annealing for 30 min at temperatures of 250-700 Degree-Sign C brings about a redistribution of Na atoms with the formation of segregation peaks at a depth, which is dependent on the ion dose, and is accompanied by the diffusion of Na atoms to the surface with subsequent evaporation. After annealing at 700 Degree-Sign C less than 7% of the implanted ions remain in the matrix. The shape of the profile tail portions measured after annealing at temperatures 300-400 Degree-Sign C is indicative of the diffusion of a small fraction of Na atoms into the depth of the sample.

  4. Optical and electrical properties of heavily carbon-doped GaAs fabricated by high-energy ion-implantation

    SciTech Connect

    Shima, Takayuki |; Makita, Yunosuke; Kimura, Shinji

    1996-12-31

    High-energy (400 keV) implantation of carbon (C) ions was made into LEC-GaAs substrates with C concentration ([C]) of 10{sup 19}--10{sup 22} cm{sup {minus}3}. 2 K photoluminescence (PL) and Hall effect measurements indicated that activation rate of C in LEC GaAs is both optically and electrically extremely low even after furnace-annealing at 850 C for 20 min. For [C] = 1 {times} 10{sup 22} cm{sup {minus}3}, two novel strong emissions were obtained and PL measurements as a function of excitation power and sample temperature suggested that the two emissions one at 1.485 eV and the other at 1.305 eV should reflect the formation of a new alloy between GaAs and C. Dual implantation of C{sup +} and Ga{sup +} ions was carried out to improve the activation or substitution rate. The authors found that nearly 90% activation rate can be achieved for C dose of 2.2 {times} 10{sup 13} cm{sup {minus}2}.

  5. Effect of the ion-energy loss rate on defect formation during implantation in silicon nanocrystals

    SciTech Connect

    Kachurin, G. A. Cherkova, S. G.; Marin, D. V.; Gutakovskii, A. K.; Cherkov, A. G.; Volodin, V. A.

    2008-09-15

    The effect of irradiation with He{sup +}, F{sup +}, and P{sup +} ions with various energies on photoluminescence and structure of Si nanocrystals is studied. It is established that, at low intensities of ion losses, quenching of photoluminescence is provided by individual atomic displacement. However, as this intensity is increased, quenching is accompanied by an increase in nuclear losses. It is believed that, in low-density displacement cascades, mobile defects predominantly drain to the surface, where they form the centers of nonradiative recombination. In contrast, mobile defects partially form stable structural defects within the nanocrystals in dense cascades. It is sufficient to accumulate {approx}0.06 dpa for amorphization of Si nanocrystals at 20{sup o}C; dependence of this effect on the intensity of the ion energy loss was not observed. It was also noted that there is a low probability of annihilation of vacancies and interstitials within Si nanocrystals; this effect is attributed to the presence of an energy barrier.

  6. Single ion implantation for solid state quantum computer development

    SciTech Connect

    Schenkel, Thomas; Meijers, Jan; Persaud, Arun; McDonald, Joseph W.; Holder, Joseph P.; Schneider, Dieter H.

    2001-12-18

    Several solid state quantum computer schemes are based on the manipulation of electron and nuclear spins of single donor atoms in a solid matrix. The fabrication of qubit arrays requires the placement of individual atoms with nanometer precision and high efficiency. In this article we describe first results from low dose, low energy implantations and our development of a low energy (<10 keV), single ion implantation scheme for {sup 31}P{sup q+} ions. When {sup 31}P{sup q+} ions impinge on a wafer surface, their potential energy (9.3 keV for P{sup 15+}) is released, and about 20 secondary electrons are emitted. The emission of multiple secondary electrons allows detection of each ion impact with 100% efficiency. The beam spot on target is controlled by beam focusing and collimation. Exactly one ion is implanted into a selected area avoiding a Poissonian distribution of implanted ions.

  7. Activation Mechanisms in Ion-Implanted Gallium -

    NASA Astrophysics Data System (ADS)

    Morris, Neil

    Available from UMI in association with The British Library. Rapid Thermal Annealing has been used to study the electrical activation of a range of donor and acceptor species in ion-implanted GaAs. By varying the time and temperature of the post implant anneal, it was found that the activation processes for most implants can be characterised in terms of two distinct regions. The first of these occurs at short annealing times, where the electrical activity is seen to follow a time-dependent behaviour. At longer annealing times, however, a time-independent saturation value is reached, this value being dependent on the annealing temperature. By analysing the data from Be, Mg, S and Se implants in GaAs, a comprehensive model has been evolved for the time and temperature dependence of the sheet electrical properties. Application of this model to each of the ions studied suggests that the activation processes may be dominated by the extent to which ions form impurity-vacancy complexes. An analysis of the time-dependent regime also shows that, at short annealing times, the mobile species is more likely to be the substrate atoms (or vacancies) rather than the implanted impurities. In the time-dependent region, the values of diffusion energy were found to be between 2.3 to 3.0 eV for all ions, these values corresponding to a diffusion of Ga or As vacancies (or atoms). In the saturation region, activation energies of 0.3 to 0.4 eV and 1.0 to 1.2 eV were obtained for the activation processes of interstitial or complexed impurities respectively.

  8. Synthesis of Fe16N2 compound Free-Standing Foils with 20 MGOe Magnetic Energy Product by Nitrogen Ion-Implantation

    NASA Astrophysics Data System (ADS)

    Jiang, Yanfeng; Mehedi, Md Al; Fu, Engang; Wang, Yongqiang; Allard, Lawrence F.; Wang, Jian-Ping

    2016-05-01

    Rare-earth-free magnets are highly demanded by clean and renewable energy industries because of the supply constraints and environmental issues. A promising permanent magnet should possess high remanent magnetic flux density (Br), large coercivity (Hc) and hence large maximum magnetic energy product ((BH)max). Fe16N2 has been emerging as one of promising candidates because of the redundancy of Fe and N on the earth, its large magnetocrystalline anisotropy (Ku > 1.0 × 107 erg/cc), and large saturation magnetization (4πMs > 2.4 T). However, there is no report on the formation of Fe16N2 magnet with high Br and large Hc in bulk format before. In this paper, we successfully synthesize free-standing Fe16N2 foils with a coercivity of up to 1910 Oe and a magnetic energy product of up to 20 MGOe at room temperature. Nitrogen ion implantation is used as an alternative nitriding approach with the benefit of tunable implantation energy and fluence. An integrated synthesis technique is developed, including a direct foil-substrate bonding step, an ion implantation step and a two-step post-annealing process. With the tunable capability of the ion implantation fluence and energy, a microstructure with grain size 25–30 nm is constructed on the FeN foil sample with the implantation fluence of 5 × 1017/cm2.

  9. Mechanical properties of pulsed laser-deposited hydroxyapatite thin film implanted at high energy with N + and Ar + ions. Part I: nanoindentation with spherical tipped indenter

    NASA Astrophysics Data System (ADS)

    Pelletier, H.; Nelea, V.; Mille, P.; Muller, D.

    2004-02-01

    We report here a comparison between the effects of ion beam implantation treatment using nitrogen and argon ions, on the mechanical characteristics of HA films grown by pulsed laser deposition, using a KrF ∗ excimer laser. Crystalline and stoichiometric HA films were grown on Ti-5Al-2.5Fe alloy substrate, previously coated with a TiN buffer layer. After deposition, the film were implanted with ions of N + and Ar + of high energy (1-1.5 MeV range) and dose set at 10 16 at cm -2. From the load-displacement curves determined by nanoindentation tests using a spherical tipped nanoindenter ( R=5 μm), we put into evidence an enhancement of the mechanical characteristics (hardness and elastic modulus) of the HA films after implantation, especially for those implanted with N + ions. Moreover, using various applied normal loads (ranging from 1 to 100 mN) in different implanted areas, a good reproducibility of nitrogen implantation effect are observed.

  10. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm2. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  11. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source.

    PubMed

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm(2). The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  12. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source.

    PubMed

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm(2). The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research. PMID:26931931

  13. Ozone and carbon trioxide synthesis by low energy ion implantation onto solid carbon dioxide and implications to astrochemistry

    NASA Astrophysics Data System (ADS)

    Sivaraman, Bhalamurugan; Raja Sekhar, B. N.; Fulvio, Daniele; Hunniford, Adam; McCullough, Bob; Palumbo, Maria Elisabetta; Mason, Nigel

    2013-08-01

    Ion implantation experiments were carried out on amorphous (30 K) and crystalline (80 K) solid CO2 using both reactive (D+, H+) and non-reactive (He+) ions, simulating different irradiation environments on satellite and dust grain surfaces. Such ion irradiation synthesized several new species in the ice including ozone (O3), carbon trioxide (CO3), and carbon monoxide (CO) the main dissociation product of carbon dioxide. The yield of these products was found to be strongly dependent upon the ion used for irradiation and the sample temperature. Ion implantation changes the chemical composition of the ice with recorded infrared spectra clearly showing the coexistence of D3h and C2v isomers of CO3, for the first time, in ion irradiated CO2 ice.

  14. A Study of Mutation Breeding of High-Yielding Tryptophanase Escherichia coli by Low-Energy N+ Ion Beam Implantation

    NASA Astrophysics Data System (ADS)

    Pang, Min; Yao, Jianming; Wang, Dongmei

    2009-12-01

    Low energy ion beam has been widely applied in microbe breeding, plant breeding, gene transfer and cell modification. In this study, the Escherichia coli (E.coli) strain producing tryptophanase was irradiated by a low energy nitrogen ion beam with an energy of 10 keV at a fluence of 13 × 1014 N+/cm2 when glycerin at a 15% concentration was used as a protector. The effect on the biomass of E. coli after N+ implantation was analyzed in detail by statistic methods. The screening methods used in this study were proven to be effective. After continuous mutagenicity, a high-yield tryptophanase strain was selected and both its biomass and enzymatic activity were higher than those of the parent strain. The results of scale-up production showed that the biomass could reach wet weight 8.2 g/L and 110 g L-tryptophan could be formed in the volume of the 1l enzymatic reaction system.

  15. Production of Endohedral Fullerenes by Ion Implantation

    SciTech Connect

    Diener, M.D.; Alford, J. M.; Mirzadeh, S.

    2007-05-31

    The empty interior cavity of fullerenes has long been touted for containment of radionuclides during in vivo transport, during radioimmunotherapy (RIT) and radioimaging for example. As the chemistry required to open a hole in fullerene is complex and exceedingly unlikely to occur in vivo, and conformational stability of the fullerene cage is absolute, atoms trapped within fullerenes can only be released during extremely energetic events. Encapsulating radionuclides in fullerenes could therefore potentially eliminate undesired toxicity resulting from leakage and catabolism of radionuclides administered with other techniques. At the start of this project however, methods for production of transition metal and p-electron metal endohedral fullerenes were completely unknown, and only one method for production of endohedral radiofullerenes was known. They therefore investigated three different methods for the production of therapeutically useful endohedral metallofullerenes: (1) implantation of ions using the high intensity ion beam at the Oak Ridge National Laboratory (ORNL) Surface Modification and Characterization Research Center (SMAC) and fullerenes as the target; (2) implantation of ions using the recoil energy following alpha decay; and (3) implantation of ions using the recoil energy following neutron capture, using ORNL's High Flux Isotope Reactor (HFIR) as a thermal neutron source. While they were unable to obtain evidence of successful implantation using the ion beam at SMAC, recoil following alpha decay and neutron capture were both found to be economically viable methods for the production of therapeutically useful radiofullerenes. In this report, the procedures for preparing fullerenes containing the isotopes {sup 212}Pb, {sup 212}Bi, {sup 213}Bi, and {sup 177}Lu are described. None of these endohedral fullerenes had ever previously been prepared, and all of these radioisotopes are actively under investigation for RIT. Additionally, the chemistry for

  16. High-energy ion implantation of polymeric fibers for modification of reinforcement-matrix adhesion

    NASA Astrophysics Data System (ADS)

    Grummon, D. S.; Schalek, R.; Ozzello, A.; Kalantar, J.; Drzal, L. T.

    1991-07-01

    We have previously reported on the effect of high-energy ion irradiation of ultrahigh molecular weight polyethylene (UHMW-PE), and Kevlar-49 polyaramid fibers, on fiber-matrix adhesion and interfacial shear strength (ISS) in epoxy matrix composites. Irradiation of UHMW-PE fibers produced large improvements in interfacial shear strength, without degrading fiber tensile strength. ISS was not generally affected in irradiated Kevlar-49, and fiber tensile strength decreased. The divergence in response between polyaramid and polyethylene relates both to differences in the mesoscopic structure of the individual fibers, and to the different forms of beam induced structural modification favored by the individual polymer chemistries. Here we report results of surface energy measurements, infrared spectroscopy analysis, and X-ray photoelectron spectroscopy studies on UHMW-PE and polyaramid fibers, irradiated to fluences between 2 × 10 12 and 5 × 10 15 cm -2 with N +, Ar +, Ti +, Na +, and He + at energies between 30 and 400 keV. UHMW-PE fibers showed a pronounced increase in the polar component of surface energy which could be associated with carbonyl, hydroxyl and hydroperoxide groups at the surface. Kevlar, on the other hand, tended toward carbonization and showed a decrease in nitrogen and oxygen concentrations and a sharp drop in polar surface energy.

  17. Boron-enhanced diffusion of boron from ultralow-energy ion implantation

    NASA Astrophysics Data System (ADS)

    Agarwal, Aditya; Gossmann, H.-J.; Eaglesham, D. J.; Herner, S. B.; Fiory, A. T.; Haynes, T. E.

    1999-04-01

    We have investigated the diffusion enhancement mechanism of boron-enhanced diffusion (BED), wherein boron diffusivity is enhanced four to five times over the equilibrium diffusivity at 1050 °C in the proximity of a silicon layer containing a high boron concentration. It is demonstrated that BED is driven by excess interstitials injected from the high boron concentration layer during annealing. For evaporated layers, BED is observed above a threshold boron concentration between 1% and 10%, though it appears to be closer to 1% for B-implanted layers. For sub-keV B implants above the threshold, BED dominates over the contribution from transient-enhanced diffusion to junction depth. For 0.5 keV B, this threshold implantation dose lies between 3×1014 and 1×1015 cm-2. It is proposed that the excess interstitials responsible for BED are produced during the formation of a silicon boride phase in the high B concentration layers.

  18. Photosensitivity enhancement of PLZT ceramics by positive ion implantation

    DOEpatents

    Peercy, P.S.; Land, C.E.

    1980-06-13

    The photosensitivity of lead lanthanum zirconate titanate (PLZT) ceramic material used in high resolution, high contrast, and non-volatile photoferroelectric image storage and display devices is enhanced significantly by positive ion implantation of the PLZT near its surface. Ions that are implanted include H/sup +/, He/sup +/, Ar/sup +/, and a preferred co-implant of Ar/sup +/ and Ne/sup +/. The positive ion implantation advantageously serves to shift the band gap energy threshold of the PLZT material from near-uv light to visible blue light. As a result, photosensitivity enhancement is such that the positive ion implanted PLZT plate is sensitive even to sunlight and conventional room lighting, such as fluorescent and incandescent light sources. The method disclosed includes exposing the PLZT plate to these positive ions of sufficient density and with sufficient energy to provide an image. The PLZT material may have a lanthanum content ranging from 5 to 10%; a lead zirconate content ranging from 62 to 70 mole %; and a lead titanate content ranging from 38 to 30%. The region of ion implantation is in a range from 0.1 to 2 microns below the surface of the PLZT plate. Density of ions is in the range from 1 x 10/sup 12/ to 1 x 10/sup 17/ ions/cm/sup 2/ and having an energy in the range from 100 to 500 keV.

  19. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, K.N.

    1996-09-24

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted. 16 figs.

  20. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted.

  1. Emission Characteristics of Ion-Implanted Silicon Emitter Tips

    NASA Astrophysics Data System (ADS)

    Hirano, Takayuki; Kanemaru, Seigo; Tanoue, Hisao; Itoh, Junji

    1995-12-01

    An ion implantation technique has been applied to control the energy band structure of Si field-emitter tip surface. B+ or P+ ions were implanted after fabrication of a gated emitter structure. No changes in emitter structure were observed after ion implantation and successive annealing at 800° C. Current-voltage ( I-V ) characteristics of n, p, p/n and n/p emitter tips were measured: p/n indicates an n-type tip with B+ ions implanted into the tip surface. It was found from the experimental results that n and p/n tips had I-V characteristics in agreement with the Fowler-Nordheim theory. The p and n/p tips, on the other hand, exhibited a current saturation property in high electric field. The present saturation mechanism is explained by considering the energy band structure of the tip surface.

  2. Ion implantation induced nanotopography on titanium and bone cell adhesion

    NASA Astrophysics Data System (ADS)

    Braceras, Iñigo; Vera, Carolina; Ayerdi-Izquierdo, Ana; Muñoz, Roberto; Lorenzo, Jaione; Alvarez, Noelia; de Maeztu, Miguel Ángel

    2014-08-01

    Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40-80 keV), fluence (1-2 e17 ion/cm2) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted surfaces, without surface chemistry modification, are in the same range and that such modifications, in certain conditions, do have a statistically significant effect on bone tissue forming cell adhesion.

  3. Microstructure evolution in carbon-ion implanted sapphire

    SciTech Connect

    Orwa, J. O.; McCallum, J. C.; Jamieson, D. N.; Prawer, S.; Peng, J. L.; Rubanov, S.

    2010-01-15

    Carbon ions of MeV energy were implanted into sapphire to fluences of 1x10{sup 17} or 2x10{sup 17} cm{sup -2} and thermally annealed in forming gas (4% H in Ar) for 1 h. Secondary ion mass spectroscopy results obtained from the lower dose implant showed retention of implanted carbon and accumulation of H near the end of range in the C implanted and annealed sample. Three distinct regions were identified by transmission electron microscopy of the implanted region in the higher dose implant. First, in the near surface region, was a low damage region (L{sub 1}) composed of crystalline sapphire and a high density of plateletlike defects. Underneath this was a thin, highly damaged and amorphized region (L{sub 2}) near the end of range in which a mixture of i-carbon and nanodiamond phases are present. Finally, there was a pristine, undamaged sapphire region (L{sub 3}) beyond the end of range. In the annealed sample some evidence of the presence of diamond nanoclusters was found deep within the implanted layer near the projected range of the C ions. These results are compared with our previous work on carbon implanted quartz in which nanodiamond phases were formed only a few tens of nanometers from the surface, a considerable distance from the projected range of the ions, suggesting that significant out diffusion of the implanted carbon had occurred.

  4. Bacterial adhesion on ion-implanted stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Q.; Liu, Y.; Wang, C.; Wang, S.; Peng, N.; Jeynes, C.

    2007-08-01

    Stainless steel disks were implanted with N +, O + and SiF 3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF 3+-implanted stainless steel performed much better than N +-implanted steel, O +-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions.

  5. Synthesis of Fe16N2 compound Free-Standing Foils with 20 MGOe Magnetic Energy Product by Nitrogen Ion-Implantation.

    PubMed

    Jiang, Yanfeng; Mehedi, Md Al; Fu, Engang; Wang, Yongqiang; Allard, Lawrence F; Wang, Jian-Ping

    2016-05-05

    Rare-earth-free magnets are highly demanded by clean and renewable energy industries because of the supply constraints and environmental issues. A promising permanent magnet should possess high remanent magnetic flux density (Br), large coercivity (Hc) and hence large maximum magnetic energy product ((BH)max). Fe16N2 has been emerging as one of promising candidates because of the redundancy of Fe and N on the earth, its large magnetocrystalline anisotropy (Ku > 1.0 × 10(7) erg/cc), and large saturation magnetization (4πMs > 2.4 T). However, there is no report on the formation of Fe16N2 magnet with high Br and large Hc in bulk format before. In this paper, we successfully synthesize free-standing Fe16N2 foils with a coercivity of up to 1910 Oe and a magnetic energy product of up to 20 MGOe at room temperature. Nitrogen ion implantation is used as an alternative nitriding approach with the benefit of tunable implantation energy and fluence. An integrated synthesis technique is developed, including a direct foil-substrate bonding step, an ion implantation step and a two-step post-annealing process. With the tunable capability of the ion implantation fluence and energy, a microstructure with grain size 25-30 nm is constructed on the FeN foil sample with the implantation fluence of 5 × 10(17)/cm(2).

  6. Synthesis of Fe16N2 compound Free-Standing Foils with 20 MGOe Magnetic Energy Product by Nitrogen Ion-Implantation

    PubMed Central

    Jiang, Yanfeng; Mehedi, Md Al; Fu, Engang; Wang, Yongqiang; Allard, Lawrence F.; Wang, Jian-Ping

    2016-01-01

    Rare-earth-free magnets are highly demanded by clean and renewable energy industries because of the supply constraints and environmental issues. A promising permanent magnet should possess high remanent magnetic flux density (Br), large coercivity (Hc) and hence large maximum magnetic energy product ((BH)max). Fe16N2 has been emerging as one of promising candidates because of the redundancy of Fe and N on the earth, its large magnetocrystalline anisotropy (Ku > 1.0 × 107 erg/cc), and large saturation magnetization (4πMs > 2.4 T). However, there is no report on the formation of Fe16N2 magnet with high Br and large Hc in bulk format before. In this paper, we successfully synthesize free-standing Fe16N2 foils with a coercivity of up to 1910 Oe and a magnetic energy product of up to 20 MGOe at room temperature. Nitrogen ion implantation is used as an alternative nitriding approach with the benefit of tunable implantation energy and fluence. An integrated synthesis technique is developed, including a direct foil-substrate bonding step, an ion implantation step and a two-step post-annealing process. With the tunable capability of the ion implantation fluence and energy, a microstructure with grain size 25–30 nm is constructed on the FeN foil sample with the implantation fluence of 5 × 1017/cm2. PMID:27145983

  7. Synthesis of Fe16N2 compound Free-Standing Foils with 20 MGOe Magnetic Energy Product by Nitrogen Ion-Implantation.

    PubMed

    Jiang, Yanfeng; Mehedi, Md Al; Fu, Engang; Wang, Yongqiang; Allard, Lawrence F; Wang, Jian-Ping

    2016-01-01

    Rare-earth-free magnets are highly demanded by clean and renewable energy industries because of the supply constraints and environmental issues. A promising permanent magnet should possess high remanent magnetic flux density (Br), large coercivity (Hc) and hence large maximum magnetic energy product ((BH)max). Fe16N2 has been emerging as one of promising candidates because of the redundancy of Fe and N on the earth, its large magnetocrystalline anisotropy (Ku > 1.0 × 10(7) erg/cc), and large saturation magnetization (4πMs > 2.4 T). However, there is no report on the formation of Fe16N2 magnet with high Br and large Hc in bulk format before. In this paper, we successfully synthesize free-standing Fe16N2 foils with a coercivity of up to 1910 Oe and a magnetic energy product of up to 20 MGOe at room temperature. Nitrogen ion implantation is used as an alternative nitriding approach with the benefit of tunable implantation energy and fluence. An integrated synthesis technique is developed, including a direct foil-substrate bonding step, an ion implantation step and a two-step post-annealing process. With the tunable capability of the ion implantation fluence and energy, a microstructure with grain size 25-30 nm is constructed on the FeN foil sample with the implantation fluence of 5 × 10(17)/cm(2). PMID:27145983

  8. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, Bill R.; Ashley, Paul R.; Buchal, Christopher J.

    1989-01-01

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO.sub.3 crystals are implanted with high concentrations of Ti dopant at ion energies of about 350 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000.degree. C. produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality single crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguides properties.

  9. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, B.R.; Ashley, P.R.; Buchal, C.J.

    1987-03-24

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO/sub 3/ crystals are implanted with high concentrations of Ti dopant at ion energies of about 360 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000/degree/C produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguiding properties.

  10. H{sup +} ion-implantation energy dependence of electronic transport properties in the MeV range in n-type silicon wafers using frequency-domain photocarrier radiometry

    SciTech Connect

    Wang Chinhua; Mandelis, Andreas; Tolev, Jordan; Burchard, Bernd; Meijer, Jan

    2007-06-15

    Industrial n-type Si wafers (resistivity of 5-10 {omega} cm) were H{sup +} ion implanted with energies between 0.75 and 2.00 MeV, and the electronic transport properties of the implanted layer (recombination lifetime, carrier diffusion coefficient, and front-surface and implanted-interface recombination velocities s{sub 1} and s{sub 2}) were studied using photocarrier radiometry (PCR). A quantitative fitting procedure to the diffusing photoexcited free-carrier density wave was introduced using a relatively simple two-layer PCR model in lieu of the more realistic but substantially more complicated three-layer model. The experimental trends in the transport properties of H{sup +}-implanted Si layers extracted from the PCR amplitude and phase data as functions of implantation energy corroborate a physical model of the implanted layer in which (a) overlayer damage due to the light H{sup +} ions decreases with increased depth of implantation at higher energies (b) the implanted region damage close to the interface is largely decoupled from the overlayer crystallinity, and (c) the concentration of implanted H{sup +} ions decreases at higher implantation energies at the interface, thus decreasing the degree of implantation damage at the interface proper.

  11. Ion implantation effects in 'cosmic' dust grains

    NASA Technical Reports Server (NTRS)

    Bibring, J. P.; Langevin, Y.; Maurette, M.; Meunier, R.; Jouffrey, B.; Jouret, C.

    1974-01-01

    Cosmic dust grains, whatever their origin may be, have probably suffered a complex sequence of events including exposure to high doses of low-energy nuclear particles and cycles of turbulent motions. High-voltage electron microscope observations of micron-sized grains either naturally exposed to space environmental parameters on the lunar surface or artificially subjected to space simulated conditions strongly suggest that such events could drastically modify the mineralogical composition of the grains and considerably ease their aggregation during collisions at low speeds. Furthermore, combined mass spectrometer and ionic analyzer studies show that small carbon compounds can be both synthesized during the implantation of a mixture of low-energy D, C, N ions in various solids and released in space by ion sputtering.

  12. Synthesis of unattainable ion implantation profiles — 'Pseudo-implantation'

    NASA Astrophysics Data System (ADS)

    Brown, I. G.; Anders, A.; Anders, S.; Castro, R. A.; Dickinson, M. R.; MacGill, R. A.; Wang, Z.

    1995-12-01

    Metal implantation provides a powerful tool for the formation of non-equilibrium alloy layers for a wide variety of basic and applied materials applications, but the technique is fundamentally limited in two important ways: (i) the implanted species concentration is limited by sputtering of the modified layer by the incident ion beam itself, and the sputter-limited retained dose is often disappointingly low; (ii) the thickness of the modified layer is limited by the maximum ion energy available, and for practical reasons (implanter voltage) the layer thickness is often just a few hundred ångströms. We describe here a metal-plasma-immersion-based method for synthesizing non-equilibrium alloy layers of arbitrarily high dopant concentration and of arbitrary thickness. By repetitively pulse biasing the substrate to high negative voltage while it is immersed in the metal plasma from a vacuum arc plasma gun, a layer can be synthesized that is atomically mixed into the substrate with an interface width determined by the early-time bias voltage and with a thickness determined by the overall duration of the process. The species is that of the vacuum arc cathode material, which for this purpose can be a mixture of the substrate metal and the wanted dopant metal. We have used the method to form a high concentration Ta layer on the copper rails of an electromagnetic rail gun, with total surface area treated about 3000 cm 2; the Ta depth profile was flat at about 50 at.% Ta in Cu to a depth of about 1000 Å.

  13. Vibrational spectroscopy of Ga+ ion implanted ta-C films

    NASA Astrophysics Data System (ADS)

    Berova, M.; Sandulov, M.; Tsvetkova, T.; Bischoff, L.; Boettger, R.; Abrashev, M.

    2016-02-01

    In the present work, low energy Ga+ ion beam implantation was used for the structural and optical properties modification of tetrahedral amorphous carbon (ta-C) thin films, using gallium (Ga+) as the ion species. Thin film samples (d∼40nm) of ta-C, deposited by filtered cathodic vacuum arc (FCVA), have been implanted with Ga+ at ion energy E = 20 keV and ion doses D=3.1014÷3.1015 cm-2. The Ga+ ion beam induced structural modification of the implanted material results in a considerable change of its optical properties, displayed in a significant shift of the optical absorption edge to lower photon energies as obtained from optical transmission measurements. This shift is accompanied by a considerable increase of the absorption coefficient (photo-darkening effect) in the measured photon energy range (0.5÷3.0 eV). These effects could be attributed both to additional defect introduction and increased graphitisation, as well as to accompanying formation of bonds between the implanted ions and the host atoms of the target, as confirmed by infra-red (IR) and Raman measurements. The optical contrast thus obtained (between implanted and unimplanted film material) could be made use of for information archiving, in the area of high-density optical data storage, while using focused Ga+ ion beams.

  14. Breeding of Coenzyme Q10 Produced Strain by Low-Energy Ion Implantation and Optimization of Coenzyme Q10 Fermentation

    NASA Astrophysics Data System (ADS)

    Xu, Dejun; Zheng, Zhiming; Wang, Peng; Wang, Li; Yuan, Hang; Yu, Zengliang

    2008-12-01

    In order to increase the production efficiency of coenzyme Q10, the original strain Agrobacterium tumefaciens ATCC 4452 was mutated by means of Nitrogen ions implantation. A mutant strain, ATX 12, with high contents of coenzyme Q10 was selected. Subsequently, the conditions such as carbohydrate concentration, nitrogen source concentration, inoculum's size, seed age, aeration and temperature which might affect the production of CoQ10 were investigated in detail. Under optimal conditions, the maximum concentration of the intracellular CoQ10 reached 200.3 mg/L after 80 h fed-batch fermentation, about 245% increasing in CoQ10 production after ion implantation, compared to the original strain.

  15. Ion Implantation with Scanning Probe Alignment

    SciTech Connect

    Persaud, A.; Liddle, J.A.; Schenkel, T.; Bokor, J.; Ivanov, Tzv.; Rangelow, I.W.

    2005-07-12

    We describe a scanning probe instrument which integrates ion beams with the imaging and alignment function of a piezo-resistive scanning probe in high vacuum. The beam passes through several apertures and is finally collimated by a hole in the cantilever of the scanning probe. The ion beam spot size is limited by the size of the last aperture. Highly charged ions are used to show hits of single ions in resist, and we discuss the issues for implantation of single ions.

  16. Fabrication and characterization of a co-planar detector in diamond for low energy single ion implantation

    DOE PAGESBeta

    Abraham, John Bishoy Sam; Pacheco, Jose L.; Aguirre, Brandon Adrian; Vizkelethy, Gyorgy; Bielejec, Edward S.

    2016-08-09

    We demonstrate low energy single ion detection using a co-planar detector fabricated on a diamond substrate and characterized by ion beam induced charge collection. Histograms are taken with low fluence ion pulses illustrating quantized ion detection down to a single ion with a signal-to-noise ratio of approximately 10. We anticipate that this detection technique can serve as a basis to optimize the yield of single color centers in diamond. In conclusion, the ability to count ions into a diamond substrate is expected to reduce the uncertainty in the yield of color center formation by removing Poisson statistics from the implantationmore » process.« less

  17. Depth profile reconstructions of electronic transport properties in H{sup +} MeV-energy ion-implanted n-Si wafers using photocarrier radiometry

    SciTech Connect

    Tai, Rui; Wang, Chinhua Hu, Jingpei; Mandelis, Andreas

    2014-07-21

    A depth profiling technique using photocarrier radiometry (PCR) is demonstrated and used for the reconstruction of continuously varying electronic transport properties (carrier lifetime and electronic diffusivity) in the interim region between the ion residence layer and the bulk crystalline layer in H{sup +} implanted semiconductor wafers with high implantation energies (∼MeV). This defect-rich region, which is normally assumed to be part of the homogeneous “substrate” in all existing two- and three-layer models, was sliced into many virtual thin layers along the depth direction so that the continuously and monotonically variable electronic properties across its thickness can be considered uniform within each virtual layer. The depth profile reconstruction of both carrier life time and diffusivity in H{sup +} implanted wafers with several implantation doses (3 × 10{sup 14}, 3 × 10{sup 15}, and 3 × 10{sup 16} cm{sup −2}) and different implantation energies (from 0.75 to 2.0 MeV) is presented. This all-optical PCR method provides a fast non-destructive way of characterizing sub-surface process-induced electronic defect profiles in devices under fabrication at any intermediate stage before final metallization and possibly lead to process correction and optimization well before electrical testing and defect diagnosis becomes possible.

  18. Optimization of the ion implantation process

    NASA Astrophysics Data System (ADS)

    Maczka, D.; Latuszynski, A.; Kuduk, R.; Partyka, J.

    This work is devoted to the optimization of the ion implantation process in the implanter Unimas of the Institute of Physics, Maria Curie-Sklodowska University, Lublin. The results obtained during several years of operation allow us to determine the optimal work parameters of the device [1-3].

  19. Application of ion implantation to electrochemical studies

    SciTech Connect

    Vallet, C.E.; White, C.W.

    1990-01-01

    The application of ion implantation to electrochemical studies is illustrated with a study of electrocatalysis of the chlorine evolution reaction at RuO{sub 2}, IrO{sub 2}, TiO{sub 2} mixed oxide anodes in chloride solutions. Electrode/solution interfaces of well defined catalyst composition are generated in a reproducible manner by implantation of Ru (or Ir) into Ti followed by in situ oxidation of the near surface titanium alloys. Ion implantation enables the tailoring on an atomic scale of an electrochemical interface. Analysis by Rutherford backscattering adds the ability of quantitative mechanistic study in terms of actual ion concentration at the interface. In addition, ion implantation, as a processing technique, creates new materials with improved properties which may have future practical use in catalytic materials.

  20. Improving Alpha Spectrometry Energy Resolution by Ion Implantation with ICP-MS

    SciTech Connect

    Dion, Michael P.; Liezers, Martin; Farmer, Orville T.; Miller, Brian W.; Morley, Shannon M.; Barinaga, Charles J.; Eiden, Gregory C.

    2015-01-01

    We report results of a novel technique using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) as a method of source preparation for alpha spectrometry. This method produced thin, contaminant free 241Am samples which yielded extraordinary energy resolution which appear to be at the lower limit of the detection technology used in this research.

  1. SEM analysis of ion implanted SiC

    NASA Astrophysics Data System (ADS)

    Malherbe, Johan B.; van der Berg, N. G.; Botha, A. J.; Friedland, E.; Hlatshwayo, T. T.; Kuhudzai, R. J.; Wendler, E.; Wesch, W.; Chakraborty, P.; da Silveira, E. F.

    2013-11-01

    SiC is a material used in two future energy production technologies, firstly as a photovoltaic layer to harness the UV spectrum in high efficient power solar cells, and secondly as a diffusion barrier material for radioactive fission products in the fuel elements of the next generation of nuclear power plants. For both applications, there is an interest in the implantation of reactive and non-reactive ions into SiC and their effects on the properties of the SiC. In this study 360 keV Ag+, I+ and Xe+ ions were separately implanted into 6H-SiC and in polycrystalline SiC at various substrate temperatures. The implanted samples were also annealed in vacuum at temperatures ranging from 900 °C to 1600 °C for various times. In recent years, there had been significant advances in scanning electron microscopy (SEM) with the introduction of an in-lens detector combined with field emission electron guns. This allows defects in solids, such as radiation damage created by the implanted ions, to be detected with SEM. Cross-sectional SEM images of 6H-SiC wafers implanted with 360 keV Ag+ ions at room temperature and at 600 °C and then vacuum annealed at different temperatures revealed the implanted layers and their thicknesses. A similar result is shown of 360 keV I+ ions implanted at 600 °C into 6H-SiC and annealed at 1600 °C. The 6H-SiC is not amorphized but remained crystalline when implanting at 600 °C. There are differences in the microstructure of 6H-SiC implanted with silver at the two temperatures as well as with reactive iodine ions. Voids (bubbles) are created in the implanted layers into which the precipitation of silver and iodine can occur after annealing of the samples. The crystallinity of the substrate via implantation temperature caused differences in the distribution and size of the voids. Implantation of xenon ions in polycrystalline SiC at 350 °C does not amorphize the substrate as is the case with room temperature heavy ion bombardment. Subsequent

  2. PLEPS study of ions implanted RAFM steels

    NASA Astrophysics Data System (ADS)

    Sojak, S.; Slugeň, V.; Egger, W.; Ravelli, L.; Petriska, M.; Veterníková, J.; Stacho, M.; Sabelová, V.

    2014-04-01

    Current nuclear power plants (NPP) require radiation, heat and mechanical resistance of their structural materials with the ability to stay operational during NPP planned lifetime. Radiation damage much higher, than in the current NPP, is expected in new generations of nuclear power plants, such as Generation IV and fusion reactors. Investigation of perspective structural materials for new generations of nuclear power plants is among others focused on study of reduced activation ferritic/martensitic (RAFM) steels. These steels have good characteristics as reduced activation, good resistance to volume swelling, good radiation, and heat resistance. Our experiments were focused on the study of microstructural changes of binary Fe-Cr alloys with different chromium content after irradiation, experimentally simulated by ion implantations. Fe-Cr alloys were examined, by Pulsed Low Energy Positron System (PLEPS) at FRM II reactor in Garching (Munich), after helium ion implantations at the dose of 0.1 C/cm2. The investigation was focused on the chromium effect and the radiation defects resistivity. In particular, the vacancy type defects (monovacancies, vacancy clusters) have been studied. Based on our previous results achieved by conventional lifetime technique, the decrease of the defects size with increasing content of chromium is expected also for PLEPS measurements.

  3. Evaluation of the use of sputter profiling with XPS or AES for the study of surface carburization resulting from high energy (>20 keV) ion implantation

    SciTech Connect

    Clayton, C.R.

    1983-10-29

    Auger depth profiling was used previously with Xe ion etching to determine the extent of carburization resulting from ion implantation. In this report, the possibility of surface carburization resulting from the low-energy ion bombardment associated with sputter profiling was investigated. When a sample is analyzed by AES or XPS, a surface-contaminant layer of carbonaceous material is always observed. The source of the contamination may be external and/or vacuum-related. The following are likely sources: atmospheric, cleaning solvents, rotary pump oil during initial pump down, diffusion pump fluid (polyether), and out-gassing of anodes and filaments. The carbon contamination layer was examined as a source of carbide formation at the near surface region of the substrate of a high-purity Cr sample. The influence of the Xe ion acceleration potential, the amount of carbon contamination, and the thickness of the surface oxide layer on the amount of carbide formed was determined.

  4. Physical and Tribological Characteristics of Ion-Implanted Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Heidger, S.; Korenyi-Both, A. L.; Jayne, D. T.; Herrera-Fierro, P.; Shogrin, B.; Wilbur, P. J.; Wu, R. L. C.; Garscadden, A.; Barnes, P. N.

    1994-01-01

    Unidirectional sliding friction experiments were conducted with a natural, polished diamond pin in contact with both as-deposited and carbon-ion-implanted diamond films in ultrahigh vacuum. Diamond films were deposited on silicon, silicon carbide, and silicon nitride by microwave-plasma-assisted chemical vapor deposition. The as-deposited diamond films were impacted with carbon ions at an accelerating energy of 60 keV and a current density of 50 micron A/cm(exp 2) for approximately 6 min, resulting in a dose of 1.2 x 10(exp 17) carbon ions/cm(exp 2). The results indicate that the carbon ion implantation produced a thin surface layer of amorphous, nondiamond carbon. The nondiamond carbon greatly decreased both friction and wear of the diamond films. The coefficients of friction for the carbon-ion-implanted, fine-grain diamond films were less than 0.1, factors of 20 to 30 lower than those for the as-deposited, fine-grain diamond films. The coefficients of friction for the carbon-ion-implanted, coarse-grain diamond films were approximately 0.35, a factor of five lower than those for the as-deposited, coarse-grain diamond films. The wear rates for the carbon-ion-implanted, diamond films were on the order of 10(exp -6) mm(exp 3)/Nm, factors of 30 to 80 lower than that for the as-deposited diamond films, regardless of grain size. The friction of the carbon-ion-implanted diamond films was greatly reduced because the amorphous, nondiamond carbon, which had a low shear strength, was restricted to the surface layers (less than 0.1 micron thick) and because the underlying diamond materials retained their high hardness. In conclusion, the carbon-ion-implanted, fine-grain diamond films can be used effectively as wear resistant, self-lubricating coatings for ceramics, such as silicon nitride and silicon carbide, in ultrahigh vacuum.

  5. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    SciTech Connect

    Feng, Kai; Wang, Yibo; Li, Zhuguo; Chu, Paul K.

    2015-08-15

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 10{sup 17} ions-cm{sup −} {sup 2}, 2.4 × 10{sup 17} ions-cm{sup −} {sup 2}, and 4.8 × 10{sup 17} ions-cm{sup −} {sup 2}. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enriched region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation.

  6. Key issues in plasma source ion implantation

    SciTech Connect

    Rej, D.J.; Faehl, R.J.; Matossian, J.N.

    1996-09-01

    Plasma source ion implantation (PSII) is a scaleable, non-line-of-sight method for the surface modification of materials. In this paper, we consider three important issues that should be addressed before wide-scale commercialization of PSII: (1) implant conformality; (2) ion sources; and (3) secondary electron emission. To insure uniform implanted dose over complex shapes, the ion sheath thickness must be kept sufficiently small. This criterion places demands on ion sources and pulsed-power supplies. Another limitation to date is the availability of additional ion species beyond B, C, N, and 0. Possible solutions are the use of metal arc vaporization sources and plasma discharges in high-vapor-pressure organometallic precursors. Finally, secondary electron emission presents a potential efficiency and x-ray hazard issue since for many metallurgic applications, the emission coefficient can be as large as 20. Techniques to suppress secondary electron emission are discussed.

  7. Photosensitivity enhancement of PLZT ceramics by positive ion implantation

    DOEpatents

    Land, Cecil E.; Peercy, Paul S.

    1983-01-01

    The photosensitivity of lead lanthanum zirconate titanate (PLZT) ceramic material used in high resolution, high contrast, and non-volatile photoferroelectric image storage and display devices is enhanced significantly by positive ion implantation of the PLZT near its surface. Implanted ions include H.sup.+, He.sup.+, Ne.sup.+, Ar.sup.+, as well as chemically reactive ions from Fe, Cr, and Al. The positive ion implantation advantageously serves to shift the absorption characteristics of the PLZT material from near-UV light to visible light. As a result, photosensitivity enhancement is such that the positive ion implanted PLZT plate is sensitive even to sunlight and conventional room lighting, such as fluorescent and incandescent light sources. The method disclosed includes exposing the PLZT plate to the positive ions at sufficient density, from 1.times.10.sup.12 to 1.times.10.sup.17, and with sufficient energy, from 100 to 500 KeV, to provide photosensitivity enhancement. The PLZT material may have a lanthanum content ranging from 5 to 10%, a lead zirconate content of 62 to 70 mole %, and a lead titanate content of 38 to 30%. The ions are implanted at a depth of 0.1 to 2 microns below the surface of the PLZT plate.

  8. PARMELA simulations of RF linear accelerators for ion implantation

    SciTech Connect

    Swenson, D. R.; Wan Zhimin; Di Vergilio, W. F.; Saadatmand, K.

    1999-06-10

    RF linear accelerators (LINACs) offer the highest beam energies and currents available to the high-energy segment of the ion-implantation industry. We are using the computer code PARMELA to simulate a variety of beam parameters. The simulations are used to generate beam tunes, optimize LINAC performance, and to design new LINACs.

  9. Preliminary Studies on Base Substitutions and Repair of DNA Mismatch Damage Stimulated by Low Energy N+ Ion Beam Implantation in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Xie, Chuan-xiao; Guo, Jin-hua; Cheng, Bei-jiu; Yu, Zeng-liang

    2003-02-01

    Ever since the low energy N+ ion beam has been accepted that the mutation effects of ionizing radiation are attributed mainly to direct or indirect damage to DNA. Evidences based on naked DNA irradiation in support of a mutation spectrum appears to be consistent, but direct proof of such results in vivo are limited. Using mutS, dam and/or dcm defective Eschericha coli mutator strains, an preliminary experimental system on induction of in vivo mutation spectra of low energy N+ ion beam has been established in this study. It was observed that the mutation rates of rifampicin resistance induced by N+ implantation were quite high, ranging from 9.2 × 10-8 to 4.9 × 10-5 at the dosage of 5.2 × 1014 ions/cm2. Strains all had more than 90-fold higher mutation rate than its spontaneous mutation rate determined by this method. It reveals that base substitutions involve in induction of mutation of low energy nitrogen ion beam implantation. The mutation rates of mutator strains were nearly 500-fold (GM2929), 400-fold (GM5864) and 6-fold larger than that of AB1157. The GM2929 and GM5864 both lose the ability of repair DNA mismatch damage by virtue of both dam and dcm pathways defective (GM2929) or failing to assemble the repair complex (GM5864) respectively. It may explain the both strains had a similar higher mutation rate than GM124 did. It indicated that DNA cytosine methylase might play an important role in mismatch repair of DNA damage induced by N+ implantation. The further related research were also discussed.

  10. Influence of Oxygen Ion Implantation on the Damage and Annealing Kinetics of Iron-Implanted Sapphire

    SciTech Connect

    Hunn, J.D.; McHargue, C.J.

    1999-11-14

    The effects of implanted oxygen on the damage accumulation in sapphire which was previously implanted with iron was studied for (0001) sapphire implanted with iron and then with oxygen. The energies were chosen to give similar projected ranges. One series was implanted with a 1:l ratio (4x10{sup 16} ions/cm{sup 2} each) and another with a ratio of 2:3 (4x10{sup 16} fe{sup +}/cm{sup 2}; 6x10{sup 16} O{sup +}/cm{sup 2}). Retained damage, X, in the Al-sublattice, was compared to that produced by implantation of iron alone. The observed disorder was less for the dual implantations suggesting that implantation of oxygen enhanced dynamic recovery during implantation. Samples were annealed for one hour at 800 and 1200 C in an oxidizing and in a reducing atmosphere. No difference was found in the kinetics of recovery in the Al-sublattice between the two dual implant conditions. However, the rate of recovery was different for each from samples implanted with iron alone.

  11. [Improve wear resistance of UHMWPE by O+ ion implanted].

    PubMed

    Xiong, Dangsheng

    2003-12-01

    Ultra high molecular weight polyethylene (UHMWPE) was implanted with 450 keV and 100 keV O+ ions at dosage of 1 x 10(15)/cm2, 5 x 10(15)/cm2, 3 x 10(14)/cm2, respectively. Its wear behaviors were studied under dry friction condition and lubrication by means of distilled water using a pin-on-disk tribometer with a Si3N4 ceramic ball as a counterface. The wear surfaces were examined with SEM. The experimental results showed that the wear rate of implanted UHMWPE is lower than that of un-implanted UHMWPE under both dry and distilled friction conditions, especially for 450 keV energy and 5 x 10(15)/cm2 dose implantation. The friction coefficient of O+ ions implanted UHMWPE is higher than that of un-implanted UHMWPE under both dry and distilled friction conditions. The adhesive, plow and plastic deformation are the wearing mechanism for un-implanted UHMWPE; the fatigue and abrasive wear are that for implanted UHMWPE.

  12. Enhanced patterning by tilted ion implantation

    NASA Astrophysics Data System (ADS)

    Kim, Sang Wan; Zheng, Peng; Kato, Kimihiko; Rubin, Leonard; Liu, Tsu-Jae King

    2016-03-01

    Tilted ion implantation (TII) is proposed as a lower-cost alternative to self-aligned double patterning (SADP) for pitch halving. This new approach is based on an enhancement in etch rate of a hard-mask layer by implant-induced damage. Ar+ implantation into a thin layer of silicon dioxide (SiO2) is shown to enhance its etch rate in dilute hydrofluoric acid (HF) solution, by up to 9× for an implant dose of 3×1014 cm-2. The formation of sub-lithographic features defined by masked tilted Ar+ implantation into a SiO2 hard-mask layer is experimentally demonstrated. Features with sizes as small as ~21 nm, self-aligned to the lithographically patterned mask, are achieved. As compared with SADP, enhanced patterning by TII requires far fewer and lower-cost process steps and hence is expected to be much more cost-effective.

  13. More-reliable SOS ion implantations

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1980-01-01

    Conducting layer prevents static charges from accumulating during implantation of silicon-on-sapphire MOS structures. Either thick conducting film or thinner film transparent to ions is deposited prior to implantation, and gaps are etched in regions to be doped. Grounding path eliminates charge flow that damages film or cracks sapphire wafer. Prevention of charge buildup by simultaneously exposing structure to opposite charges requires equipment modifications less practical and more expensive than deposition of conducting layer.

  14. P-type Gate Electrode Formation Using B18H22 Ion Implantation

    NASA Astrophysics Data System (ADS)

    Henke, Dietmar; Jakubowski, Frank; Deichler, Josef; Venezia, Vincent C.; Ameen, M. S.; Harris, M. A.

    2006-11-01

    We have investigated the use of octadecaborane (B18H22) cluster ion implantation to form highly active p-type gate electrodes in a 90 nm CMOS process. As device dimensions scale, the influence of poly-depletion and short channel effect control on device performance continues to become more significant. Increasing gate electrode doping via high dose ion implantation is a standard method for reducing poly-depletion. Poly-silicon gate doping with the molecular ion B18H22 offers throughput advantages over monatomic B ion implantation. For instance each molecular ion introduces 18-B atoms, thereby reducing the implant dose. In addition, each B constituent of the molecular ion is implanted with 1/20th the ion energy, making it possible to achieve low energy dopant distribution while taking advantage of higher beam energy currents. In this work, B18H22 implantation conditions (energy, dose) were matched to those of the standard B+ process of record (POR) used for gate electrode doping. We show that the poly-depletion, threshold voltage, and yield of devices implanted with B18H22 are comparable to those implanted with the POR. We combine this device results with materials data to demonstrate that the high dose implants necessary to form p-type gate electrodes with minimum poly-depletion can be achieved with B18H22 ion implants without impacting the device performance.

  15. Ion implantation induced modification of a-SiC : H

    NASA Astrophysics Data System (ADS)

    Tzenov, N.; Tzolov, M.; Dimova-Malinovska, D.; Tsvetkova, T.; Angelov, C.; Adriaenssens, G.; Pattyn, H.

    1994-02-01

    Optical transmission measurements have been carried out on thin a-SiC:H alloy films, implanted with ions of group IV elements. High doses of the order of 10 17 cm -2 have been used leading to a considerable shift of the absorption edge to lower photon energies. This shift may be attributed both to additional defect introduction and to accompanying formation of bonds between implanted ions and the atoms of the alloy, as confirmed by IR and Raman measurements. The observed chemical modification results from the high concentration of introduced atoms which is of the order of those for the host elements.

  16. Concepts and designs of ion implantation equipment for semiconductor processing

    NASA Astrophysics Data System (ADS)

    Rose, Peter H.; Ryding, Geoffrey

    2006-11-01

    Manufacturing ion implantation equipment for doping semiconductors has grown into a two billion dollar business. The accelerators developed for nuclear physics research and isotope separation provided the technology from which ion implanters have been developed but the unique requirements of the semiconductor industry defined the evolution of the architecture of these small accelerators. Key elements will be described including ion generation and beam transport systems as well as the techniques used to achieve uniform doping over large wafers. The wafers are processed one at a time or in batches and are moved in and out of the vacuum by automated handling systems. The productivity of an implanter is of economic importance and there is continuing need to increase the usable beam current especially at low energies.

  17. Pulse height defect of energetic heavy ions in ion-implanted Si detectors

    NASA Astrophysics Data System (ADS)

    Pasquali, G.; Casini, G.; Bini, M.; Calamai, S.; Olmi, A.; Poggi, G.; Stefanini, A. A.; Saint-Laurent, F.; Steckmeyer, J. C.

    1998-02-01

    The pulse height defect in ion-implanted silicon detectors for elastically scattered 93Nb, 100Mo, 116Sn, 120Sn and 129Xe ions, at energies ranging from about 4 to 25 A MeV has been measured. The results are compared with two widely used parametrizations taken from the literature.

  18. Improving Sustainability of Ion Implant Modules

    NASA Astrophysics Data System (ADS)

    Mayer, Jim

    2011-01-01

    Semiconductor fabs have long been pressured to manage capital costs, reduce energy consumption and increasingly improve efforts to recycle and recover resources. Ion implant tools have been high-profile offenders on all three fronts. They draw such large volumes of air for heat dissipation and risk reduction that historically, they are the largest consumer of cleanroom air of any process tool—and develop energy usage and resource profiles to match. This paper presents a documented approach to reduce their energy consumption and dramatically downsize on-site facilities support for cleanroom air manufacture and abatement. The combination produces significant capital expenditure savings. The case entails applying SAGS Type 1 (sub-atmospheric gas systems) toxic gas packaging to enable engineering adaptations that deliver the energy savings and cost benefits without any reduction in environmental health and safety. The paper also summarizes benefits as they relate to reducing a fabs carbon emission footprint (and longer range advantages relative to potential cap and trade programs) with existing technology.

  19. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  20. Surface modification of SKD-61 steel by ion implantation technique

    SciTech Connect

    Wen, F. L.; Lo, Y.-L.; Yu, Y.-C.

    2007-07-15

    The purpose of this study is to investigate how ion implantation affects the surface characteristics and nitrogenizing depth of the thin film by the use of a NEC 9SDH-2 3 MV Pelletron accelerator that implants nitrogen ions into SKD-61 tool steels for surface modification. Nitrogen ions were implanted into the surface layer of materials so that the hardness of modified films could be improved. Also, the nitride film stripping problems of the traditional nitrogenizing treatment could be overcome by a new approach in surface process engineering. As nitrogen ions with high velocity impacted on the surface of the substrate, the ions were absorbed and accumulated on the surface of the substrate. The experiments were performed with two energies (i.e., 1 and 2 MeV) and different doses (i.e., 2.5x10{sup 15}, 7.5x10{sup 15}, and 1.5x10{sup 16} ions/cm{sup 2}). Nitrogen ions were incorporated into the interface and then diffused through the metal to form a nitride layer. Analysis tools included the calculation of stopping and range of ions in matter (SRIM), the detection of a secondary ion mass spectrometry (SIMS), and nanoindentation testing. Through the depth analysis of SIMS, the effects of the ion-implanted SKD-61 steels after heating at 550 deg. C in a vacuum furnace were examined. The nanoindenting results indicate the variation of hardness of SKD-61 steels with the various ion doses. It reaches two to three times the original hardness of SKD-61 steels.

  1. Single Ion Implantation and Deterministic Doping

    SciTech Connect

    Schenkel, Thomas

    2010-06-11

    The presence of single atoms, e.g. dopant atoms, in sub-100 nm scale electronic devices can affect the device characteristics, such as the threshold voltage of transistors, or the sub-threshold currents. Fluctuations of the number of dopant atoms thus poses a complication for transistor scaling. In a complementary view, new opportunities emerge when novel functionality can be implemented in devices deterministically doped with single atoms. The grand price of the latter might be a large scale quantum computer, where quantum bits (qubits) are encoded e.g. in the spin states of electrons and nuclei of single dopant atoms in silicon, or in color centers in diamond. Both the possible detrimental effects of dopant fluctuations and single atom device ideas motivate the development of reliable single atom doping techniques which are the subject of this chapter. Single atom doping can be approached with top down and bottom up techniques. Top down refers to the placement of dopant atoms into a more or less structured matrix environment, like a transistor in silicon. Bottom up refers to approaches to introduce single dopant atoms during the growth of the host matrix e.g. by directed self-assembly and scanning probe assisted lithography. Bottom up approaches are discussed in Chapter XYZ. Since the late 1960's, ion implantation has been a widely used technique to introduce dopant atoms into silicon and other materials in order to modify their electronic properties. It works particularly well in silicon since the damage to the crystal lattice that is induced by ion implantation can be repaired by thermal annealing. In addition, the introduced dopant atoms can be incorporated with high efficiency into lattice position in the silicon host crystal which makes them electrically active. This is not the case for e.g. diamond, which makes ion implantation doping to engineer the electrical properties of diamond, especially for n-type doping much harder then for silicon. Ion

  2. Ion Implanted Passivated Contacts for Interdigitated Back Contacted Solar Cells

    SciTech Connect

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo; Reedy, Robert; Bateman, Nicholas; Stradins, Pauls

    2015-06-14

    We describe work towards an interdigitated back contacted (IBC) solar cell utilizing ion implanted, passivated contacts. Formation of electron and hole passivated contacts to n-type CZ wafers using tunneling SiO2 and ion implanted amorphous silicon (a-Si) are described. P and B were ion implanted into intrinsic amorphous Si films at several doses and energies. A series of post-implant anneals showed that the passivation quality improved with increasing annealing temperatures up to 900 degrees C. The recombination parameter, Jo, as measured by a Sinton lifetime tester, was Jo ~ 14 fA/cm2 for Si:P, and Jo ~ 56 fA/cm2 for Si:B contacts. The contact resistivity for the passivated contacts, as measured by TLM patterns, was 14 milliohm-cm2 for the n-type contact and 0.6 milliohm-cm2 for the p-type contact. These Jo and pcontact values are encouraging for forming IBC cells using ion implantation to spatially define dopants.

  3. Hybrid quantum circuit with implanted erbium ions

    SciTech Connect

    Probst, S.; Rotzinger, H.; Tkalčec, A.; Kukharchyk, N.; Wieck, A. D.; Wünsch, S.; Siegel, M.; Ustinov, A. V.; Bushev, P. A.

    2014-10-20

    We report on hybrid circuit quantum electrodynamics experiments with focused ion beam implanted Er{sup 3+} ions in Y{sub 2}SiO{sub 5} coupled to an array of superconducting lumped element microwave resonators. The Y{sub 2}SiO{sub 5} crystal is divided into several areas with distinct erbium doping concentrations, each coupled to a separate resonator. The coupling strength is varied from 5 MHz to 18.7 MHz, while the linewidth ranges between 50 MHz and 130 MHz. We confirm the paramagnetic properties of the implanted spin ensemble by evaluating the temperature dependence of the coupling. The efficiency of the implantation process is analyzed and the results are compared to a bulk doped Er:Y{sub 2}SiO{sub 5} sample. We demonstrate the integration of these engineered erbium spin ensembles with superconducting circuits.

  4. Characterization of an RF plasma ion source for ion implantation

    SciTech Connect

    Kopalidis, Peter M.; Wan Zhimin

    2012-11-06

    A novel inductively coupled RF plasma ion source has been developed for use in a beamline ion implanter. Ion density data have been taken with an array of four Langmuir probes spaced equally at the source extraction arc slit. These provide ion density uniformity information as a function of source pressure, RF power and gas mixture composition. In addition, total extracted ion beam current data are presented for the same conditions. The comparative advantages of the RF source in terms of higher beam current, reduced maintenance and overall productivity improvement compared to a hot cathode source are discussed.

  5. Mechanical properties of pulsed laser-deposited hydroxyapatite thin films implanted at high energy with N + and Ar + ions. Part II: nano-scratch tests with spherical tipped indenter

    NASA Astrophysics Data System (ADS)

    Pelletier, H.; Nelea, V.; Mille, P.; Muller, D.

    2004-02-01

    In this study we report a method to improve the adherence of hydroxyapatite (HA) thin films, using an ion beam implantation treatment. Crystalline HA films were grown by pulsed laser deposition technique (PLD), using an excimer KrF * laser. The films were deposited at room temperature in vacuum on Ti-5Al-2.5Fe alloy substrates previously coated with a ceramic TiN buffer layer and then annealed in ambient air at (500-600) °C. After deposition the films were implanted with N + and Ar + ions accelerated at high energy (1-1.5 MeV range) at a fixed dose of 10 16 cm -2. The intrinsic mechanical resistance and adherence to the TiN buffer layer of the implanted HA films have been evaluated by nano-scratch tests. We used for measurements a spherical indenter with a tip radius of 5 μm. Different scratch tests have been performed on implanted and unimplanted areas of films to put into evidence the effects of N + and Ar + ion implantation process on the films properties. Results show an enhancement of the dynamic mechanical properties in the implanted zones and influence of the nature of the implanted species. The best results are obtained for films implanted with nitrogen.

  6. Improved ion implant fluence uniformity in hydrogen enhanced glow discharge plasma immersion ion implantation into silicon

    SciTech Connect

    Luo, J.; Li, L. H. E-mail: paul.chu@cityu.edu.hk; Liu, H. T.; Xu, Y.; Zuo, X. J.; Zhu, P. Z.; Ma, Y. F.; Yu, K. M.; Fu, Ricky K. Y.; Chu, Paul K. E-mail: paul.chu@cityu.edu.hk

    2014-06-15

    Enhanced glow discharge plasma immersion ion implantation does not require an external plasma source but ion focusing affects the lateral ion fluence uniformity, thereby hampering its use in high-fluence hydrogen ion implantation for thin film transfer and fabrication of silicon-on-insulator. Insertion of a metal ring between the sample stage and glass chamber improves the ion uniformity and reduces the ion fluence non-uniformity as the cathode voltage is raised. Two-dimensional multiple-grid particle-in-cell simulation confirms that the variation of electric field inside the chamber leads to mitigation of the ion focusing phenomenon and the results are corroborated experimentally by hydrogen forward scattering.

  7. Rhenium ion beam for implantation into semiconductors

    SciTech Connect

    Kulevoy, T. V.; Seleznev, D. N.; Alyoshin, M. E.; Kraevsky, S. V.; Yakushin, P. E.; Khoroshilov, V. V.; Gerasimenko, N. N.; Smirnov, D. I.; Fedorov, P. A.; Temirov, A. A.

    2012-02-15

    At the ion source test bench in Institute for Theoretical and Experimental Physics the program of ion source development for semiconductor industry is in progress. In framework of the program the Metal Vapor Vacuum Arc ion source for germanium and rhenium ion beam generation was developed and investigated. It was shown that at special conditions of ion beam implantation it is possible to fabricate not only homogenous layers of rhenium silicides solid solutions but also clusters of this compound with properties of quantum dots. At the present moment the compound is very interesting for semiconductor industry, especially for nanoelectronics and nanophotonics, but there is no very developed technology for production of nanostructures (for example quantum sized structures) with required parameters. The results of materials synthesis and exploration are presented.

  8. Plasma immersion ion implantation for reducing metal ion release

    SciTech Connect

    Diaz, C.; Garcia, J. A.; Maendl, S.; Pereiro, R.; Fernandez, B.; Rodriguez, R. J.

    2012-11-06

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  9. Enhanced life ion source for germanium and carbon ion implantation

    SciTech Connect

    Hsieh, Tseh-Jen; Colvin, Neil; Kondratenko, Serguei

    2012-11-06

    Germanium and carbon ions represent a significant portion of total ion implantation steps in the process flow. Very often ion source materials that used to produce ions are chemically aggressive, especially at higher temperatures, and result in fast ion source performance degradation and a very limited lifetime [B.S. Freer, et. al., 2002 14th Intl. Conf. on Ion Implantation Technology Proc, IEEE Conf. Proc., p. 420 (2003)]. GeF{sub 4} and CO{sub 2} are commonly used to generate germanium and carbon beams. In the case of GeF{sub 4} controlling the tungsten deposition due to the de-composition of WF{sub 6} (halogen cycle) is critical to ion source life. With CO{sub 2}, the materials oxidation and carbon deposition must be controlled as both will affect cathode thermionic emission and anti-cathode (repeller) efficiencies due to the formation of volatile metal oxides. The improved ion source design Extended Life Source 3 (Eterna ELS3) together with its proprietary co-gas material implementation has demonstrated >300 hours of stable continuous operation when using carbon and germanium ion beams. Optimizing cogas chemistries retard the cathode erosion rate for germanium and carbon minimizes the adverse effects of oxygen when reducing gas is introduced for carbon. The proprietary combination of hardware and co-gas has improved source stability and the results of the hardware and co-gas development are discussed.

  10. Accelerating degradation rate of pure iron by zinc ion implantation.

    PubMed

    Huang, Tao; Zheng, Yufeng; Han, Yong

    2016-12-01

    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications. PMID:27482462

  11. Accelerating degradation rate of pure iron by zinc ion implantation

    PubMed Central

    Huang, Tao; Zheng, Yufeng; Han, Yong

    2016-01-01

    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications. PMID:27482462

  12. Engineering single photon emitters by ion implantation in diamond

    PubMed Central

    Naydenov, B.; Kolesov, R.; Batalov, A.; Meijer, J.; Pezzagna, S.; Rogalla, D.; Jelezko, F.; Wrachtrup, J.

    2009-01-01

    Diamond provides unique technological platform for quantum technologies including quantum computing and communication. Controlled fabrication of optically active defects is a key element for such quantum toolkit. Here we report the production of single color centers emitting in the blue spectral region by high energy implantation of carbon ions. We demonstrate that single implanted defects show sub-poissonian statistics of the emitted photons and can be explored as single photon source in quantum cryptography. Strong zero phonon line at 470.5 nm allows unambiguous identification of this defect as interstitial-related TR12 color center. PMID:19956415

  13. Engineering single photon emitters by ion implantation in diamond.

    PubMed

    Naydenov, B; Kolesov, R; Batalov, A; Meijer, J; Pezzagna, S; Rogalla, D; Jelezko, F; Wrachtrup, J

    2009-11-01

    Diamond provides unique technological platform for quantum technologies including quantum computing and communication. Controlled fabrication of optically active defects is a key element for such quantum toolkit. Here we report the production of single color centers emitting in the blue spectral region by high energy implantation of carbon ions. We demonstrate that single implanted defects show sub-poissonian statistics of the emitted photons and can be explored as single photon source in quantum cryptography. Strong zero phonon line at 470.5 nm allows unambiguous identification of this defect as interstitial-related TR12 color center. PMID:19956415

  14. Engineering single photon emitters by ion implantation in diamond

    NASA Astrophysics Data System (ADS)

    Naydenov, B.; Kolesov, R.; Batalov, A.; Meijer, J.; Pezzagna, S.; Rogalla, D.; Jelezko, F.; Wrachtrup, J.

    2009-11-01

    Diamond provides unique technological platform for quantum technologies including quantum computing and communication. Controlled fabrication of optically active defects is a key element for such quantum toolkit. Here we report the production of single color centers emitting in the blue spectral region by high energy implantation of carbon ions. We demonstrate that single implanted defects show sub-poissonian statistics of the emitted photons and can be explored as single photon source in quantum cryptography. Strong zero phonon line at 470.5 nm allows unambiguous identification of this defect as interstitial-related TR12 color center.

  15. Engineering single photon emitters by ion implantation in diamond.

    PubMed

    Naydenov, B; Kolesov, R; Batalov, A; Meijer, J; Pezzagna, S; Rogalla, D; Jelezko, F; Wrachtrup, J

    2009-11-01

    Diamond provides unique technological platform for quantum technologies including quantum computing and communication. Controlled fabrication of optically active defects is a key element for such quantum toolkit. Here we report the production of single color centers emitting in the blue spectral region by high energy implantation of carbon ions. We demonstrate that single implanted defects show sub-poissonian statistics of the emitted photons and can be explored as single photon source in quantum cryptography. Strong zero phonon line at 470.5 nm allows unambiguous identification of this defect as interstitial-related TR12 color center.

  16. Diffusion mechanism and the thermal stability of fluorine ions in GaN after ion implantation

    SciTech Connect

    Wang, M. J.; Yuan, L.; Chen, K. J.; Xu, F. J.; Shen, B.

    2009-04-15

    The diffusion mechanisms of fluorine ions in GaN are investigated by means of time-of-flight secondary ion mass spectrometry. Instead of incorporating fluorine ions close to the sample surface by fluorine plasma treatment, fluorine ion implantation with an energy of 180 keV is utilized to implant fluorine ions deep into the GaN bulk, preventing the surface effects from affecting the data analysis. It is found that the diffusion of fluorine ions in GaN is a dynamic process featuring an initial out-diffusion followed by in- diffusion and the final stabilization. A vacancy-assisted diffusion model is proposed to account for the experimental observations, which is also consistent with results on molecular dynamic simulation. Fluorine ions tend to occupy Ga vacancies induced by ion implantation and diffuse to vacancy rich regions. The number of continuous vacancy chains can be significantly reduced by a dynamic thermal annealing process. As a result, strong local confinement and stabilization of fluorine ions can be obtained in GaN crystal, suggesting excellent thermal stability of fluorine ions for device applications.

  17. Proposed mechanism to represent the suppression of dark current density by four orders with low energy light ion (H{sup −}) implantation in quaternary alloy-capped InAs/GaAs quantum dot infrared photodetectors

    SciTech Connect

    Mandal, A.; Ghadi, H.; Mathur, K.L.; Basu, A.; Subrahmanyam, N.B.V.; Singh, P.; Chakrabarti, S.

    2013-08-01

    Graphical abstract: - Abstract: Here we propose a carrier transport mechanism for low energy H{sup −} ions implanted InAs/GaAs quantum dot infrared photodetectors supportive of the experimental results obtained. Dark current density suppression of up to four orders was observed in the implanted quantum dot infrared photodetectors, which further demonstrates that they are effectively operational. We concentrated on determining how defect-related material and structural changes attributed to implantation helped in dark current density reduction for InAs/GaAs quantum dot infrared photodetectors. This is the first study to report the electrical carrier transport mechanism of H{sup −} ion-implanted InAs/GaAs quantum dot infrared photodetectors.

  18. Change in equilibrium position of misfit dislocations at the GaN/sapphire interface by Si-ion implantation into sapphire. II. Electron energy loss spectroscopic study

    SciTech Connect

    Lee, Sung Bo Han, Heung Nam; Kim, Young-Min

    2015-07-15

    In Part I, we have shown that the addition of Si into sapphire by ion implantationmakes the sapphire substrate elastically softer than for the undoped sapphire. The more compliant layer of the Si-implanted sapphire substrate can absorb the misfit stress at the GaN/sapphire interface, which produces a lower threading-dislocation density in the GaN overlayer. Here in Part II, based on experimental results by electron energy loss spectroscopy and a first-principle molecular orbital calculation in the literature, we suggest that the softening effect of Si results from a reduction of ionic bonding strength in sapphire (α-Al{sub 2}O{sub 3}) with the substitution of Si for Al.

  19. Broad-beam, high current, metal ion implantation facility

    SciTech Connect

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-07-01

    We have developed a high current metal ion implantation facility with which high current beams of virtually all the solid metals of the Periodic Table can be produced. The facility makes use of a metal vapor vacuum arc ion source which is operated in a pulsed mode, with pulse width 0.25 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion charge state multiplicity; beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we describe the facility and some of the implants that have been carried out using it, including the seeding' of silicon wafers prior to CVD with titanium, palladium or tungsten, the formation of buried iridium silicide layers, and actinide (uranium and thorium) doping of III-V compounds. 16 refs., 6 figs.

  20. Miniaturized EAPs with compliant electrodes fabricated by ion implantation

    NASA Astrophysics Data System (ADS)

    Shea, H.

    2011-04-01

    Miniaturizing dielectric electroactive polymer (EAP) actuators will lead to highly-integrated mechanical systems on a chip, combining dozens to thousands of actuators and sensors on a few cm2. We present here µm to mm scale electroactive polymer (EAP) devices, batch fabricated on the chip or wafer scale, based on ion-implanted electrodes. Low-energy (2-10 keV) implantation of gold ions into a silicone elastomer leads to compliant stretchable electrodes consisting of a buried 20 nm thick layer of gold nanoparticles in a silicone matrix. These electrodes: 1) conduct at strains up to 175%, 2) are patternable on the µm scale, 3) have stiffness similar to silicone, 4) have good conductivity, and 5) excellent adhesion since implanted in the silicone. The EAP devices consist of 20 to 30 µm thick silicone membranes with µm to mm-scale ion-implanted electrodes on both sides, bonded to a holder. Depending on electrode shape and membrane size, several actuation modes are possible. Characterization of 3mm diameter bi-directional buckling mode actuators, mm-scale tunable lens arrays, 2-axis beam steering mirrors, as well as arrays of 72 cell-size (100x200 µm2) actuators to apply mechanical strain to single cells are reported. Speeds of up to several kHz are observed.

  1. Simulation of ion beam transport through the 400 Kv ion implanter at Michigan Ion Beam Laboratory

    NASA Astrophysics Data System (ADS)

    Naab, F. U.; Toader, O. F.; Was, G. S.

    2013-04-01

    The Michigan Ion Beam Laboratory houses a 400 kV ion implanter. An application that simulates the ion beam trajectories through the implanter from the ion source to the target was developed using the SIMION® code. The goals were to have a tool to develop an intuitive understanding of abstract physics phenomena and diagnose ion trajectories. Using this application, new implanter users of different fields in science quickly understand how the machine works and quickly learn to operate it. In this article we describe the implanter simulation application and compare the parameters of the implanter components obtained from the simulations with the measured ones. The overall agreement between the simulated and measured values of magnetic fields and electric potentials is ˜10%.

  2. Surface stiffening and enhanced photoluminescence of ion implanted cellulose - polyvinyl alcohol - silica composite.

    PubMed

    Shanthini, G M; Sakthivel, N; Menon, Ranjini; Nabhiraj, P Y; Gómez-Tejedor, J A; Meseguer-Dueñas, J M; Gómez Ribelles, J L; Krishna, J B M; Kalkura, S Narayana

    2016-11-20

    Novel Cellulose (Cel) reinforced polyvinyl alcohol (PVA)-Silica (Si) composite which has good stability and in vitro degradation was prepared by lyophilization technique and implanted using N(3+) ions of energy 24keV in the fluences of 1×10(15), 5×10(15) and 1×10(16)ions/cm(2). SEM analysis revealed the formation of microstructures, and improved the surface roughness on ion implantation. In addition to these structural changes, the implantation significantly modified the luminescent, thermal and mechanical properties of the samples. The elastic modulus of the implanted samples has increased by about 50 times compared to the pristine which confirms that the stiffness of the sample surface has increased remarkably on ion implantation. The photoluminescence of the native cellulose has improved greatly due to defect site, dangling bonds and hydrogen passivation. Electric conductivity of the ion implanted samples was improved by about 25%. Hence, low energy ion implantation tunes the mechanical property, surface roughness and further induces the formation of nano structures. MG63 cells seeded onto the scaffolds reveals that with the increase in implantation fluence, the cell attachment, viability and proliferation have improved greatly compared to pristine. The enhancement of cell growth of about 59% was observed in the implanted samples compared to pristine. These properties will enable the scaffolds to be ideal for bone tissue engineering and imaging applications. PMID:27561534

  3. Surface stiffening and enhanced photoluminescence of ion implanted cellulose - polyvinyl alcohol - silica composite.

    PubMed

    Shanthini, G M; Sakthivel, N; Menon, Ranjini; Nabhiraj, P Y; Gómez-Tejedor, J A; Meseguer-Dueñas, J M; Gómez Ribelles, J L; Krishna, J B M; Kalkura, S Narayana

    2016-11-20

    Novel Cellulose (Cel) reinforced polyvinyl alcohol (PVA)-Silica (Si) composite which has good stability and in vitro degradation was prepared by lyophilization technique and implanted using N(3+) ions of energy 24keV in the fluences of 1×10(15), 5×10(15) and 1×10(16)ions/cm(2). SEM analysis revealed the formation of microstructures, and improved the surface roughness on ion implantation. In addition to these structural changes, the implantation significantly modified the luminescent, thermal and mechanical properties of the samples. The elastic modulus of the implanted samples has increased by about 50 times compared to the pristine which confirms that the stiffness of the sample surface has increased remarkably on ion implantation. The photoluminescence of the native cellulose has improved greatly due to defect site, dangling bonds and hydrogen passivation. Electric conductivity of the ion implanted samples was improved by about 25%. Hence, low energy ion implantation tunes the mechanical property, surface roughness and further induces the formation of nano structures. MG63 cells seeded onto the scaffolds reveals that with the increase in implantation fluence, the cell attachment, viability and proliferation have improved greatly compared to pristine. The enhancement of cell growth of about 59% was observed in the implanted samples compared to pristine. These properties will enable the scaffolds to be ideal for bone tissue engineering and imaging applications.

  4. Develop techniques for ion implantation of PLZT for adaptive optics

    NASA Astrophysics Data System (ADS)

    Craig, R. A.; Batishko, C. R.; Brimhall, J. L.; Pawlewicz, W. T.; Stahl, K. A.

    1989-11-01

    Battelle Pacific Northwest Laboratory (PNL) conducted research into the preparation and characterization of ion-implanted adaptive optic elements based on lead-lanthanum-zirconate-titanate (PLZT). Over the 4-yr effort beginning FY 1985, the ability to increase the photosensitivity of PLZT and extend it to longer wavelengths was developed. The emphasis during the last two years was to develop a model to provide a basis for choosing implantation species and parameters. Experiments which probe the electronic structure were performed on virgin and implanted PLZT samples. Also performed were experiments designed to connect the developing conceptual model with the experimental results. The emphasis in FY 1988 was to extend the photosensitivity out to diode laser wavelengths. The experiments and modelling effort indicate that manganese will form appropriate intermediate energy states to achieve the longer wavelength photosensitivity. Preliminary experiments were also conducted to deposit thin film PLZT.

  5. Deep Trench Doping by Plasma Immersion Ion Implantation in Silicon

    SciTech Connect

    Nizou, S.; Vervisch, V.; Etienne, H.; Torregrosa, F.; Roux, L.; Ziti, M.; Alquier, D.; Roy, M.

    2006-11-13

    The realization of three dimensional (3D) device structures remains a great challenge in microelectronics. One of the main technological breakthroughs for such devices is the ability to control dopant implantation along silicon trench sidewalls. Plasma Immersion Ion Implantation (PIII) has shown its wide efficiency for specific doping processing in semiconductor applications. In this work, we propose to study the capability of PIII method for large scale silicon trench doping. Ultra deep trenches with high aspect ratio were etched on 6'' N type Si wafers. Wafers were then implanted with a PIII Pulsion system using BF3 gas source at various pressures and energies. The obtained results evidence that PIII can be used and are of grateful help to define optimized processing conditions to uniformly dope silicon trench sidewalls through the wafers.

  6. Biodegradable radioactive implants for glaucoma filtering surgery produced by ion implantation

    NASA Astrophysics Data System (ADS)

    Assmann, W.; Schubert, M.; Held, A.; Pichler, A.; Chill, A.; Kiermaier, S.; Schlösser, K.; Busch, H.; Schenk, K.; Streufert, D.; Lanzl, I.

    2007-04-01

    A biodegradable, β-emitting implant has been developed and successfully tested which prevents fresh intraocular pressure increase after glaucoma filtering surgery. Ion implantation has been used to load the polymeric implants with the β-emitter 32P. The influence of ion implantation and gamma sterilisation on degradation and 32P-fixation behavior has been studied by ion beam and chemical analysis. Irradiation effects due to the applied ion fluence (1015 ions/cm2) and gamma dose (25 kGy) are found to be tolerable.

  7. Computational stochastic model of ions implantation

    SciTech Connect

    Zmievskaya, Galina I. Bondareva, Anna L.; Levchenko, Tatiana V.; Maino, Giuseppe

    2015-03-10

    Implantation flux ions into crystal leads to phase transition /PT/ 1-st kind. Damaging lattice is associated with processes clustering vacancies and gaseous bubbles as well their brownian motion. System of stochastic differential equations /SDEs/ Ito for evolution stochastic dynamical variables corresponds to the superposition Wiener processes. The kinetic equations in partial derivatives /KE/, Kolmogorov-Feller and Einstein-Smolukhovskii, were formulated for nucleation into lattice of weakly soluble gases. According theory, coefficients of stochastic and kinetic equations uniquely related. Radiation stimulated phase transition are characterized by kinetic distribution functions /DFs/ of implanted clusters versus their sizes and depth of gas penetration into lattice. Macroscopic parameters of kinetics such as the porosity and stress calculated in thin layers metal/dielectric due to Xe{sup ++} irradiation are attracted as example. Predictions of porosity, important for validation accumulation stresses in surfaces, can be applied at restoring of objects the cultural heritage.

  8. Carbon, nitrogen, and oxygen ion implantation of stainless steel

    SciTech Connect

    Rej, D.J.; Gavrilov, N.V.; Emlin, D.

    1995-12-31

    Ion implantation experiments of C, N, and O into stainless steel have been performed, with beam-line and plasma source ion implantation methods. Acceleration voltages were varied between 27 and 50 kV, with pulsed ion current densities between 1 and 10 mA/cm{sup 2}. Implanted doses ranged from 0.5 to 3 {times} 10{sup 18}cm{sup -2}, while workpiece temperatures were maintained between 25 and 800 C. Implant concentration profiles, microstructure, and surface mechanical properties of the implanted materials are reported.

  9. Aluminum ion implantation under backfilling oxygen

    NASA Astrophysics Data System (ADS)

    Hausner, R. M.; Baumann, H.; Bethge, K.

    1996-06-01

    High dose ion implantation ( F ≥ 2 × 10 18 ions/cm 2) of 40 keV Al ions into stainless steel (AISI 321) under increased partial pressure of oxygen and oxygen compounds ( P ≥ 1 × 10 -8 hPa O 2, CO 2, N 2O) leads to the formation of a homogenous Al film on the sample surface due to a reduced self-sputtering yield of Al. The depth distribution of the implanted aluminum and the thickness of the Al film grown up on the sample were measured using the resonant nuclear reaction 27Al(p, γ) 28Si at 992 keV and by the (α, α) elastic backscattering at 3.05 MeV. The concentrations of the low- Z impurity oxygen and carbon were determined with the extremely strong resonances of the (α, α) elastic scattering under backward angles at 7.6 MeV for 16O and at 5.75 MeV for 12C. Furthermore the properties of the formed Al film were investigated by SEM, surface profile and microhardness measurements. The self-sputtering yield of Al was measured under normal vacuum conditions and under increased O 2 partial pressure, and the results were compared with the data obtained from calculations using the computer code T-DYN.

  10. Shallow nitrogen ion implantation: Evolution of chemical state and defect structure in titanium

    NASA Astrophysics Data System (ADS)

    Manojkumar, P. A.; Chirayath, V. A.; Balamurugan, A. K.; Krishna, Nanda Gopala; Ilango, S.; Kamruddin, M.; Amarendra, G.; Tyagi, A. K.; Raj, Baldev

    2016-09-01

    Evolution of chemical states and defect structure in titanium during low energy nitrogen ion implantation by Plasma Immersion Ion Implantation (PIII) process is studied. The underlying process of chemical state evolution is investigated using secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The implantation induced defect structure evolution as a function of dose is elucidated using variable energy positron annihilation Doppler broadening spectroscopy (PAS) and the results were corroborated with chemical state. Formation of 3 layers of defect state was modeled to fit PAS results.

  11. Ion implantation, a method for fabricating light guides in polymers

    NASA Astrophysics Data System (ADS)

    Kulish, J. R.; Franke, H.; Singh, Amarjit; Lessard, Roger A.; Knystautas, Emile J.

    1988-04-01

    Li+ and N+ ions were implanted into aliphatic polymethylmethacrylate (PMMA), polyvinylalcohol (PVA), and aromatic polyimide (PI) polycarbonate (PC) polymers in the energy range of 100-130 keV. Planar optical waveguides guiding between one and three modes were formed. For low implantation doses (≤ 1014 ions/cm2), total waveguide loss values at λ=633 nm were found to be less than 2 dB/cm. The changes in the refractive index were found to be very large (Δn≥0.05) in the case of PMMA and PVA. We interpret this change in refractive index as being due to the formation of aromatic compounds in the regions of electronic scattering.

  12. Ion implanted GaAs microwave FET's

    NASA Astrophysics Data System (ADS)

    Gill, S. S.; Blockley, E. G.; Dawsey, J. R.; Foreman, B. J.; Woodward, J.; Ball, G.; Beard, S. J.; Gaskell, J. M.; Allenson, M. B.

    1988-06-01

    The combination of ion implantation and photolithographic patterning techniques was applied to the fabrication of GaAs microwave FETs to provide a large number of devices having consistently predictable dc and high frequency characteristics. To validate the accuracy and repeatability of the high frequency device parameters, an X-band microwave circuit was designed and realized. The performance of this circuit, a buffered amplifier, is very close to the design specification. The availability of a large number of reproducible, well-characterized transistors enabled work to commence on the development of a large signal model for FETs. Work in this area is also described.

  13. Experimental investigation of plasma-immersion ion implantation treatment for biocompatible polyurethane implants production

    NASA Astrophysics Data System (ADS)

    Iziumov, R. I.; Beliaev, A. Y.; Kondyurina, I. V.; Shardakov, I. N.; Kondyurin, A. V.; Bilek, M. M.; McKenzie, D. R.

    2016-04-01

    Modification of the surface layer of polyurethane with plasma-immersion ion implantation (PIII) and studying its physical and chemical changes have been discussed in this paper. The goal of the research was to obtain carbonized layer allowing creating biocompatible polyurethane implants. The experiments of PIII treatment in various modes were performed. The investigation of the modified surface characteristics was carried out by observing the kinetics of free surface energy for two weeks after treatment. The regularities between treatment time and the level of free surface energy were detected. The explanation of high energy level was given through the appearance of free radicals in the surface layer of material. The confirmation of the chemical activation of the polyurethane surface after PIII treatment was obtained.

  14. Influence of the chemical nature of implanted ions on the structure of a silicon layer damaged by implantation

    SciTech Connect

    Shcherbachev, K. D. Voronova, M. I.; Bublik, V. T.; Mordkovich, V. N. Pazhin, D. M.; Zinenko, V. I.; Agafonov, Yu. A.

    2013-12-15

    The influence of the implantation of silicon single crystals by fluorine, nitrogen, oxygen, and neon ions on the distribution of strain and the static Debye-Waller factor in the crystal lattice over the implanted-layer depth has been investigated by high-resolution X-ray diffraction. The density depth distribution in the surface layer of native oxide has been measured by X-ray reflectometry. Room-temperature implantation conditions have ensured the equality of the suggested ranges of ions of different masses and the energies transferred by them to the target. It is convincingly shown that the change in the structural parameters of the radiation-damaged silicon layer and the native oxide layer depend on the chemical activity of the implanted ions.

  15. Temperature behavior of damage in sapphire implanted with light ions

    NASA Astrophysics Data System (ADS)

    Alves, E.; Marques, C.; Sáfrán, G.; McHargue, Carl J.

    2009-05-01

    In this study, we compare and discuss the defect behavior of sapphire single crystals implanted with different fluences (1 × 1016-1 × 1017 cm-2) of carbon and nitrogen with 150 keV. The implantation temperatures were RT, 500 °C and 1000 °C to study the influence of temperature on the defect structures. For all the ions the Rutherford backscattering-channeling (RBS-C) results indicate a surface region with low residual disorder in the Al-sublattice. Near the end of range the channeled spectrum almost reaches the random indicating a high damage level for fluences of 1 × 1017 cm-2. The transmission electron microscopy (TEM) photographs show a layered contrast feature for the C implanted sample where a buried amorphous region is present. For the N implanted sample the Electron Energy Loss Spectroscopy (EELS) elemental mapping give evidence for the presence of a buried damage layer decorated with bubbles. Samples implanted at high temperatures (500 °C and 1000 °C) show a strong contrast fluctuation indicating a defective crystalline structure of sapphire.

  16. Hydrophilic property by contact angle change of ion implanted polycarbonate

    SciTech Connect

    Lee, Chan Young; Kil, Jae Keun

    2008-02-15

    In this study, ion implantation was performed onto a polymer, polycarbonate (PC), in order to investigate surface hydrophilic property through contact angle measurement. PC was irradiated with N, Ar, and Xe ions at the irradiation energy of 20-50 keV and the dose range of 5x10{sup 15}, 1x10{sup 16}, 7x10{sup 16} ions/cm{sup 2}. The contact angle of water was estimated by means of the sessile drop method and was reduced with increasing fluence and ion mass but increased with increasing implanted energy. The changes of chemical and structural properties are discussed in view of Furier transform infrared and x-ray photoelectron spectroscopy, which shows increasing C-O bonding and C-C bonding. The surface roughness examined by atomic force microscopy measurement changed smoothly from 3.59 to 2.22 A as the fluence increased. It is concluded that the change in wettability may be caused by surface carbonization and oxidation as well as surface roughness.

  17. Ion irradiation of 37Cl implanted nuclear graphite: Effect of the energy deposition on the chlorine behavior and consequences for the mobility of 36Cl in irradiated graphite

    NASA Astrophysics Data System (ADS)

    Toulhoat, N.; Moncoffre, N.; Bérerd, N.; Pipon, Y.; Blondel, A.; Galy, N.; Sainsot, P.; Rouzaud, J.-N.; Deldicque, D.

    2015-09-01

    Graphite is used in many types of nuclear reactors due to its ability to slow down fast neutrons without capturing them. Whatever the reactor design, the irradiated graphite waste management has to be faced sooner or later regarding the production of long lived or dose determining radioactive species such as 14C, 3H or 36Cl. The first carbon dioxide cooled, graphite moderated nuclear reactors resulted in a huge quantity of irradiated graphite waste for which the management needs a previous assessment of the radioactive inventory and the radionuclide's location and speciation. As the detection limits of usual spectroscopic methods are generally not adequate to detect the low concentration levels (<1 ppm) of the radionuclides, we used an indirect approach based on the implantation of 37Cl, to simulate the presence of 36Cl. Our previous studies show that temperature is one of the main factors to be considered regarding the structural evolution of nuclear graphite and chlorine mobility during reactor operation. However, thermal release of chlorine cannot be solely responsible for the depletion of the 36Cl inventory. We propose in this paper to study the impact of irradiation and its synergetic effects with temperature on chlorine release. Indeed, the collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic collisions. However, a small part of the recoil carbon atom energy is also transferred to the lattice through electronic excitation. This paper aims at elucidating the effects of the different irradiation regimes (ballistic and electronic) using ion irradiation, on the mobility of implanted 37Cl, taking into account the initial disorder level of the nuclear graphite.

  18. Surface hardness changes induced by O-, Ca- or P-ion implantation into titanium.

    PubMed

    Ikeyama; Nakao; Morikawa; Yokogawa; Wielunski; Clissold; Bell

    2000-12-30

    Titanium or titanium alloys are very attractive biomedical materials. Biocompatible elements of oxygen, calcium and phosphorus were implanted into titanium and changes of surface hardness were measured using an ultra micro indenter (UMIS-2000). A multiple load-partial unload procedure that can reveal a hardness versus depth profile was adopted. Depth profiles of concentration of implanted ions were obtained by SIMS measurement. For O and P implantation, it is observed that the hardness increases with the increases in the dose. O implantation produced the largest increase in hardness, up to 2.2 times higher than the unimplanted titanium. On the other hand, Ca implantation produced only a small increase in the hardness that was independent of the ion dose. The surface oxide layer of a Ca implanted titanium sample was much thicker than the unimplanted samples or those implanted with O and P ions. The depth of maximum hardness increases with increasing energy of implanted ions. The depths of the maximum hardness occur at indentation depths of one-third to one-eighth of the mean ranges of implanted ions.

  19. Estimation of Protein Absorption on Polymer Material by Carbon-Negative Ion Implantation

    NASA Astrophysics Data System (ADS)

    Yamada, Tetsuya; Tsuji, Hiroshi; Hattori, Mitsutaka; Sommani, Piyanuch; Sato, Hiroko; Gotoh, Yasuhito; Ishikawa, Junzo

    Selective cell attachment on carbon-negative-ion implanted region of polystyrene was already reported by the authors. However, the selectivity and adhesion strength in the cell pattering were partially insufficient. The adhesive proteins called extracellular matrix (ECM), in general, intervene between cell and substrate surface in the cell attachment on the solid surface. Therefore, we considered to obtain clearer selective cell attachment with tighter binding strength on the implanted region of polystyrene when these adhesive proteins precedently adsorbed on the implanted region of polystyrene. In this paper, we have investigated adsorption properties of three kinds of adhesive proteins (gelatin, fibronectin, laminin) and cell attachment properties on precedent protein adsorbed surface of polystyrene modified by carbon negative-ion implantation. Carbon negative ions were implanted into polystyrene at energy of 10 keV with dose in a range of 1×1014~1×1016 ions/cm2. After implantation, the samples were dipped in the protein solutions for 2 hours. Then, the protein adsorption ratio between implanted and unimplanted regions was evaluated by detecting amount of nitrogen atoms on the surface by X-ray photoelectron spectroscopy (XPS). As a result, the protein-precedently-absorbed sample implanted at dose more than 3×1015 ions/cm2 showed the large gelatin adsorption ratio of more than 2, where the much densely populated cell-attachment was observed more than that on the implanted region of polystyrene without precedent adsorption of protein after cell culture.

  20. Susceptor Assisted Microwave Annealing Of Ion Implanted Silicon

    NASA Astrophysics Data System (ADS)

    Vemuri, Rajitha

    This thesis discusses the use of low temperature microwave anneal as an alternative technique to recrystallize materials damaged or amorphized due to implantation techniques. The work focuses on the annealing of high- Z doped Si wafers that are incapable of attaining high temperatures required for recrystallizing the damaged implanted layers by microwave absorption The increasing necessity for quicker and more efficient processing techniques motivates study of the use of a single frequency applicator microwave cavity along with a Fe2O3 infused SiC-alumina susceptor/applicator as an alternative post implantation process. Arsenic implanted Si samples of different dopant concentrations and implantation energies were studied pre and post microwave annealing. A set of as-implanted Si samples were also used to assess the effect of inactive dopants against presence of electrically active dopants on the recrystallization mechanisms. The extent of damage repair and Si recrystallization of the damage caused by arsenic and Si implantation of Si is determined by cross-section transmission electron microscopy and Raman spectroscopy. Dopant activation is evaluated for the As implanted Si by sheet resistance measurements. For the same, secondary ion mass spectroscopy analysis is used to compare the extent of diffusion that results from such microwave annealing with that experienced when using conventional rapid thermal annealing (RTA). Results show that compared to susceptor assisted microwave annealing, RTA caused undesired dopant diffusion. The SiC-alumina susceptor plays a predominant role in supplying heat to the Si substrate, and acts as an assistor that helps a high-Z dopant like arsenic to absorb the microwave energy using a microwave loss mechanism which is a combination of ionic and dipole losses. Comparisons of annealing of the samples were done with and without the use of the susceptor, and confirm the role played by the susceptor, since the samples donot recrystallize

  1. Long-range effect of ion implantation of Raex and Hardox steels

    NASA Astrophysics Data System (ADS)

    Budzyński, P.; Kamiński, M.; Droździel, A.; Wiertel, M.

    2016-09-01

    Ion implantation involves introduction of ionized atoms of any element (nitrogen) to metals thanks to the high kinetic energy that they acquired in the electric field. The distribution of nitrogen ions implanted at E = 65 keV energy and D = 1.1017 N+ /cm2 fluence in the steel sample and vacancies produced by them was calculated using the SRIM program. This result was confirmed by RBS measurements. The initial maximum range of the implanted nitrogen ions is ∼⃒0.17 μm. This value is relatively small compared to the influence of nitriding on the thickness surface layer of modified steel piston rings. Measurements of the friction coefficient during the pin-on-disc tribological test were performed under dry friction conditions. The friction coefficient of the implanted sample increased to values characteristic of an unimplanted sample after ca. 1500 measurement cycles. The depth of wear trace is ca. 2.4 μm. This implies that the thickness of the layer modified by the implantation process is ∼⃒2.4 μm and exceeds the initial range of the implanted ions by an order of magnitude. This effect, referred to as a long-range implantation effect, is caused by migration of vacancies and nitrogen atoms into the sample. This phenomenon makes ion implantation a legitimate process of modification of the surface layer in order to enhance the tribological properties of critical components of internal combustion engines such as steel piston rings.

  2. Effect of phosphorus-ion implantation on the corrosion resistance and biocompatibility of titanium.

    PubMed

    Krupa, D; Baszkiewicz, J; Kozubowski, J A; Barcz, A; Sobczak, J W; Biliński, A; Lewandowska-Szumieł, M; Rajchel, B

    2002-08-01

    This work presents data on the structure and corrosion resistance of titanium after phosphorus-ion implantation with a dose of 10(17)P/cm2. The ion energy was 25keV. Transmission electron microscopy was used to investigate the microstructure of the implanted layer. The chemical composition of the surface layer was examined by X-ray photoelectron spectroscopy and secondary ion mass spectrometry. The corrosion resistance was examined by electrochemical methods in a simulated body fluid at a temperature of 37 C. Biocompatibility tests in vitro were performed in a culture of human derived bone cells in direct contact with the materials tested. Both, the viability of the cells determined by an XTT assay and activity of the cells evaluated by alkaline phosphatase activity measurements in contact with implanted and non-implanted titanium samples were detected. The morphology of the cells spread on the surface of the materials examined was also observed. The results confirmed the biocompatibility of both phosphorus-ion-implanted and non-implanted titanium under the conditions of the experiment. As shown by transmission electron microscope results, the surface layer formed during phosphorus-ion implantation was amorphous. The results of electrochemical examinations indicate that phosphorus-ion implantation increases the corrosion resistance after short-term as well as long-term exposures.

  3. Leaky mode suppression in planar optical waveguides written in Er:TeO2-WO3 glass and CaF2 crystal via double energy implantation with MeV N+ ions

    NASA Astrophysics Data System (ADS)

    Bányász, I.; Zolnai, Z.; Fried, M.; Berneschi, S.; Pelli, S.; Nunzi-Conti, G.

    2014-05-01

    Ion implantation proved to be an universal technique for producing waveguides in most optical materials. Tellurite glasses are good hosts of rare-earth elements for the development of fibre and integrated optical amplifiers and lasers covering all the main telecommunication bands. Er3+-doped tellurite glasses are good candidates for the fabrication of broadband amplifiers in wavelength division multiplexing around 1.55 μm, as they exhibit large stimulated cross sections and broad emission bandwidth. Calcium fluoride is an excellent optical material, due to its perfect optical characteristics from UV wavelengths up to near IR. It has become a promising laser host material (doped with rare earth elements). Ion implantation was also applied to optical waveguide fabrication in CaF2 and other halide crystals. In the present work first single-energy implantations at 3.5 MeV at various fluences were applied. Waveguide operation up to 1.5 μm was observed in Er:Te glass, and up to 980 nm in CaF2. Then double-energy implantations at a fixed upper energy of 3.5 MeV and lower energies between 2.5 and 3.2 MeV were performed to suppress leaky modes by increasing barrier width.

  4. Integration of Ion Implantation with Scanning ProbeAlignment

    SciTech Connect

    Persaud, A.; Rangelow, I.W.; Schenkel, T.

    2005-03-01

    We describe a scanning probe instrument which integrates ion beams with imaging and alignment functions of a piezo resistive scanning probe in high vacuum. Energetic ions (1 to a few hundred keV) are transported through holes in scanning probe tips [1]. Holes and imaging tips are formed by Focused Ion Beam (FIB) drilling and ion beam assisted thin film deposition. Transport of single ions can be monitored through detection of secondary electrons from highly charged dopant ions (e. g., Bi{sup 45+}) enabling single atom device formation. Fig. 1 shows SEM images of a scanning probe tip formed by ion beam assisted Pt deposition in a dual beam FIB. Ion beam collimating apertures are drilled through the silicon cantilever with a thickness of 5 {micro}m. Aspect ratio limitations preclude the direct drilling of holes with diameters well below 1 {micro}m, and smaller hole diameters are achieved through local thin film deposition [2]. The hole in Fig. 1 was reduced from 2 {micro}m to a residual opening of about 300 nm. Fig. 2 shows an in situ scanning probe image of an alignment dot pattern taken with the tip from Fig. 1. Transport of energetic ions through the aperture in the scanning probe tip allows formation of arbitrary implant patterns. In the example shown in Fig. 2 (right), a 30 nm thick PMMA resist layer on silicon was exposed to 7 keV Ar{sup 2+} ions with an equivalent dose of 10{sup 14} ions/cm{sup 2} to form the LBL logo. An exciting goal of this approach is the placement of single dopant ions into precise locations for integration of single atom devices, such as donor spin based quantum computers [3, 4]. In Fig. 3, we show a section of a micron size dot area exposed to a low dose (10{sup 11}/cm{sup 2}) of high charge state dopant ions. The Bi{sup 45+} ions (200 keV) were extracted from a low emittance highly charged ions source [5]. The potential energy of B{sup 45+}, i. e., the sum of the binding energies required to remove the electrons, amounts to 36 ke

  5. Phosphorous ion implantation in C{sub 60} for the photovoltaic applications

    SciTech Connect

    Narayanan, K. L.; Yamaguchi, M.

    2001-06-15

    Thin films of C{sub 60} deposited on p-type Si(100) wafer are implanted with low energy phosphorous ions for the photovoltaic applications. An attempt has been made on the device fabrication with phosphorous ion implanted C{sub 60} films grown on the p-type Si wafer. The photovoltaic properties of the solar cell structure are discussed with the dark and illuminated J{endash}V characteristics. The efficiency of the structure in the multiple energy phosphorous ion implanted C{sub 60} film/p-Si heterojunction is found to be 0.01% under air mass 1.5 conditions. The low efficiency is attributed to the ion implantation induced damage effects and subsequent larger series resistance values. {copyright} 2001 American Institute of Physics.

  6. Microstructure of Co-doped TiO{sub 2}(110) rutile by ion implantation

    SciTech Connect

    Wang, C.M.; Shutthanandan, V.; Thevuthasan, S.; Droubay, T.; Chambers, S.A.

    2005-04-01

    Co-doped rutile TiO{sub 2} was synthesized by injecting Co ions into single crystal rutile TiO{sub 2} using high energy ion implantation. Microstructures of the implanted specimens were studied in detail using high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray spectroscopy, electron diffraction, and HRTEM image simulations. The spatial distribution and conglomeration behavior of the implanted Co ions, as well as the point defect distributions induced by ion implantation, show strong dependences on implantation conditions. Uniform distribution of Co ions in the rutile TiO{sub 2} lattice was obtained by implanting at 1075 K with a Co ion fluence of 1.25x10{sup 16} Co/cm{sup 2}. Implanting at 875 K leads to the formation of Co metal clusters. The precipitated Co metal clusters and surrounding TiO{sub 2} matrix exhibit the orientation relationships Co<110> parallel TiO{sub 2}[001] and Co{l_brace}111{r_brace} parallel TiO{sub 2}(110). A structural model representing the interface between Co metal clusters and TiO{sub 2} is developed based on HRTEM imaging and image simulations.

  7. Microstructure of Co-doped TiO₂ (110) Rutile by Ion Implantation

    SciTech Connect

    Wang, Chong M.; Shutthanandan, V.; Thevuthasan, Suntharampillai; Droubay, Timothy C.; Chambers, Scott A.

    2005-04-01

    Co-doped rutile TiO₂ was synthesized by injecting Co ions into single crystal rutile TiO₂ using high energy ion implantation. Microstructures of the implanted specimens were studied in detail using high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray spectroscopy (EDS), electron diffraction, and HRTEM image simulations. The spatial distribution and conglomeration behavior of the implanted Co ions, as well as the point defect distributions induced by ion implantation, show strong dependences on implantation conditions. Uniform distribution of Co ions in the rutile TiO₂ lattice was obtained by implanting at 1075 K with a Co ion fluence of 1.25x10¹⁶ Co/cm². Implanting at 875 K leads to the formation of Co metal clusters. The precipitated Co metal clusters and surrounding TiO₂ matrix exhibit the orientation relationships Co<110>//TiO₂[001] and Co{111}//TiO₂(110). A structural model representing the interface between Co metal clusters and TiO₂ is developed based on HRTEM imaging and image simulations.

  8. Metal ion implantation for large scale surface modification

    SciTech Connect

    Brown, I.G.

    1992-10-01

    Intense energetic beams of metal ions can be produced by using a metal vapor vacuum arc as the plasma discharge from which the ion beam is formed. We have developed a number of ion sources of this kind and have built a metal ion implantation facility which can produce repetitively pulsed ion beams with mean ion energy up to several hundred key, pulsed beam current of more than an ampere, and time averaged current of several tens of milliamperes delivered onto a downstream target. We've also done some preliminary work on scaling up this technology to very large size. For example, a 50-cm diameter (2000 cm[sup 2]) set of beam formation electrodes was used to produce a pulsed titanium beam with ion current over 7 amperes at a mean ion energy of 100 key. Separately, a dc embodiment has been used to produce a dc titanium ion beam with current over 600 mA, power supply limited in this work, and up to 6 amperes of dc plasma ion current was maintained for over an hour. In a related program we've developed a plasma immersion method for applying thin metallic and compound films in which the added species is atomically mixed to the substrate. By adding a gas flow to the process, well-bonded compound films can also be formed; metallic films and multilayers as well as oxides and nitrides with mixed transition zones some hundreds of angstroms thick have been synthesized. Here we outline these parallel metal-plasma-based research programs and describe the hardware that we've developed and some of the surface modification research that we've done with it.

  9. Self-organized surface ripple pattern formation by ion implantation

    NASA Astrophysics Data System (ADS)

    Hofsäss, Hans; Zhang, Kun; Bobes, Omar

    2016-10-01

    Ion induced ripple pattern formation on solid surfaces has been extensively studied in the past and the theories describing curvature dependent ion erosion as well as redistribution of recoil atoms have been very successful in explaining many features of the pattern formation. Since most experimental studies use noble gas ion irradiation, the incorporation of the ions into the films is usually neglected. In this work we show that the incorporation or implantation of non-volatile ions also leads to a curvature dependent term in the equation of motion of a surface height profile. The implantation of ions can be interpreted as a negative sputter yield; and therefore, the effect of ion implantation is opposite to the one of ion erosion. For angles up to about 50°, implantation of ions stabilizes the surface, whereas above 50°, ion implantation contributes to the destabilization of the surface. We present simulations of the curvature coefficients using the crater function formalism and we compare the simulation results to the experimental data on the ion induced pattern formation using non-volatile ions. We present several model cases, where the incorporation of ions is a crucial requirement for the pattern formation.

  10. A commercial plasma source ion implantation facility

    SciTech Connect

    Scheuer, J.T.; Adler, R.A.; Horne, W.G.

    1996-10-01

    Empire Hard Chrome has recently installed commercial plasma source ion implantation (PSU) equipment built by North Star Research Corporation. Los Alamos National Laboratory has assisted in this commercialization effort via two Cooperative Research and Development Agreements to develop the plasma source for the equipment and to identify low-risk commercial PSII applications. The PSII system consists of a 1 m x 1 m cylindrical vacuum chamber with a rf plasma source. The pulse modulator is capable of delivering pulses kV and peak currents of 300 A at maximum repetition rate of 400 Hz. thyratron tube to switch a pulse forming network which is tailored to match the dynamic PSII load. In this paper we discuss the PSII system, process facility, and early commercial applications to production tooling.

  11. Neutron activation analysis for reference determination of the implantation dose of cobalt ions

    SciTech Connect

    Garten, R.P.H.; Bubert, H.; Palmetshofer, L.

    1992-05-15

    The authors prepared depth profilling reference materials by cobalt ion implantation at an ion energy of 300 keV into n-type silicon. The implanted Co dose was then determined by instrumental neutron activation analysis (INAA) giving an analytical dynamic range of almost 5 decades and uncertainty of 1.5%. This form of analysis allows sources of error (beam spreading, misalignment) to be corrected. 70 refs., 3 tabs.

  12. Stoichiometric disturbances in compound semiconductors due to ion implantation

    NASA Technical Reports Server (NTRS)

    Avila, R. E.; Fung, C. D.

    1986-01-01

    A method is developed to calculate the depth distribution of the local stoichiometric disturbance (SD) resulting from ion implantation in binary-compound substrates. The calculation includes first-order recoils considering projected range straggle of projectiles and recoils and lateral straggle of recoils. The method uses tabulated final-range statistics to infer the projectile range distributions at intermediate energies. This approach greatly simplifies the calculation with little compromise on accuracy as compared to existing procedures. As an illustration, the SD profile is calculated for implantation of boron, silicon, and aluminum in silicon carbide. The results for the latter case suggest that the SD may be responsible for otherwise unexplained distortions in the annealed aluminum profile. A comparison with calculations by other investigators using the Boltzmann transport equation shows good agreement.

  13. Effect of dual ion implantation of calcium and phosphorus on the properties of titanium.

    PubMed

    Krupa, D; Baszkiewicz, J; Kozubowski, J A; Barcz, A; Sobczak, J W; Biliński, A; Lewandowska-Szumieł, M; Rajchel, B

    2005-06-01

    This study is concerned with the effect of dual implantation of calcium and phosphorus upon the structure, corrosion resistance and biocompatibility of titanium. The ions were implanted in sequence, first Ca and then P, both at a dose of 10(17) ions/cm2 at a beam energy of 25 keV. Transmission electron microscopy was used to investigate the microstructure of the implanted layer. The chemical composition of the implanted layer was examined by XPS and SIMS. The corrosion resistance was determined by electrochemical methods in a simulated body fluid (SBF) at a temperature of 37 degrees C. The biocompatibility tests were performed in vitro in a culture of human-derived bone cells (HDBC) in contact with the tested materials. The viability of the cells was determined by an XTT assay and their activity by the measurements of the alkaline phosphatase activity in contact with implanted and non-implanted titanium samples. The in vitro examinations confirmed that, under the conditions prevailing during the experiments, the biocompatibility of Ca + P ion-implanted titanium was satisfactory. TEM results show that the surface layer formed by the Ca + P implantation is amorphous. The corrosion resistance of titanium, examined by the electrochemical methods, appeared to be increased after the Ca + P ion implantation.

  14. Surface modification of poly(propylene carbonate) by oxygen ion implantation

    NASA Astrophysics Data System (ADS)

    Zhang, Jizhong; Kang, Jiachen; Hu, Ping; Meng, Qingli

    2007-04-01

    Poly(propylene carbonate) (PPC) was implanted by oxygen ion with energy of 40 keV. The influence of experimental parameters was investigated by varying ion fluence from 1 × 10 12 to 1 × 10 15 ions/cm 2. XPS, SEM, surface roughness, wettability, hardness, and modulus were employed to investigate structure and properties of the as-implanted PPC samples. Eight chemical groups, i.e., carbon, C sbnd H, C sbnd O sbnd C, C sbnd O, O sbnd C sbnd O, C dbnd O, ?, and ? groups were observed on surfaces of the as-implanted samples. The species and relative intensities of the chemical groups changed with increasing ion fluence. SEM images displayed that irradiation damage was related strongly with ion fluence. Both surface-recovering and shrunken behavior were observed on surface of the PPC sample implanted with fluence of 1 × 10 15 ions/cm 2. As increasing ion fluence, the surface roughness of the as-implanted PPC samples increased firstly, reached the maximum value of 159 nm, and finally decreased down the minimum value. The water droplet contact angle of the as-implanted PPC samples changed gradually with fluence, and reached the minimum value of 70° with fluence of 1 × 10 15 ions/cm 2. The hardness and modulus of the as-implanted PPC samples increased with increasing ion fluence, and reached their corresponding maximum values with fluence of 1 × 10 15 ions/cm 2. The experimental results revealed that oxygen ion fluence closely affected surface chemical group, morphology, surface roughness, wettability, and mechanical properties of the as-implanted PPC samples.

  15. Dopant profile engineering of advanced Si MOSFET's using ion implantation

    NASA Astrophysics Data System (ADS)

    Stolk, P. A.; Ponomarev, Y. V.; Schmitz, J.; van Brandenburg, A. C. M. C.; Roes, R.; Montree, A. H.; Woerlee, P. H.

    1999-01-01

    Ion implantation has been used to realize non-uniform, steep retrograde (SR) dopant profiles in the active channel region of advanced Si MOSFET's. After defining the transistor configuration, SR profiles were formed by dopant implantation through the polycrystalline Si gate and the gate oxide (through-the-gate, TG, implantation). The steep nature of the as-implanted profile was retained by applying rapid thermal annealing for dopant activation and implantation damage removal. For NMOS transistors, TG implantation of B yields improved transistor performance through increased carrier mobility, reduced junction capacitances, and reduced susceptibility to short-channel effects. Electrical measurements show that the gate oxide quality is not deteriorated by the ion-induced damage, demonstrating that transistor reliability is preserved. For PMOS transistors, TG implantation of P or As leads to unacceptable source/drain junction broadening as a result of transient enhanced dopant diffusion during thermal activation.

  16. Diffusion of ion implanted aluminum in silicon carbide

    SciTech Connect

    Tajima, Y.; Kijima, K.; Kingery, W.D.

    1982-09-01

    Diffusion of aluminum in silicon carbide was studied by Al implantation into single crystal SiC and subsequent profile analyses by secondary ion mass spectrometry (SIMS). The bulk diffusion coefficient of Al at temperatures between 1350 and 1800 /sup 0/C was determined to be D(cm/sup 2//s) = 1.3 x 10/sup -8/ exp (-231 kJ/mol/RT). The results were characterized by a low activation energy and a low pre-exponential constant compared with previously reported results. Dislocation enhanced diffusion was suggested from the appearance of the tails observed in the annealed concentration profiles.

  17. The effects of ion implantation on the fatigue behavior of metals

    SciTech Connect

    Wang, Jih-Jong.

    1989-01-01

    The effects of ion implanatation on the fatigue behavior of metals were investigated. High stacking fault energy FCC materials of aluminum and copper, low stacking fault energy FCC material of austenitic stainless steel and HCP material of titanium were ion implanted by boron or nitrogen at energies of 50 KeV to 3 MeV. The doses were from 10{sup 15} ions/cm{sup 2} to 10{sup 17} ions/cm{sup 2}. Flexural bending fatigue experiments were conducted on both the implanted and unimplanted specimens. After fatiguing the surface topography was examined by optical microscopy and SEM, and the microstructure of the surface layer was investigated by TEM. At relatively small amplitudes, close to the fatigue limit, the ion-implanted surface layer suppresses the formation of persistent slip bands (PSB's). At higher stress-amplitudes the implanted layer is penetrated by dislocation-channels which develop into the equivalent of PSB's. For constant fatigue testing parameters the density of PSB's decreased with increasing implant dose, but the intensity of slip in the few dislocation-channel PSB's was increased. Cracks nucleated at these slip bands and propagated along them. A composite model is presented to qualitatively analyze the effect of ion implantation on fatigue strength.

  18. Immobilization of extracellular matrix on polymeric materials by carbon-negative-ion implantation

    NASA Astrophysics Data System (ADS)

    Tsuji, Hiroshi; Sommani, Piyanuch; Muto, Takashi; Utagawa, Yoshiyuki; Sakai, Shun; Sato, Hiroko; Gotoh, Yasuhito; Ishikawa, Junzo

    2005-08-01

    Effects of ion implantation into polystyrene (PS), silicone rubber (SR) and poly-L-lactic acid (PLA) have been investigated for immobilization of extracellular matrix. Carbon negative ions were implanted into PS and SR sheets at various energies between 5-30 keV and various doses between 1.0 × 1014-1.0 × 1016 ions/cm2. Contact angles of pure water on C-implanted surfaces of PS and SR were decreased as increase in ion energy and in dose due to formation of functional groups such as OH and C-O. Selective attachment of nerve cells was observed on C-implanted them at 10 keV and 3 × 1015 ions/cm2 after in vitro cell culture of nerve cells of PC-12 h. Neurite outgrowth also extended over the implanted area. After dipping in a serum medium and in a fibronectin solution for 2 h, the detection of N 1s electrons by X-ray induced photoelectron spectroscopic (XPS) revealed a significant distinction of protein adhesion on the implanted area. Thus, immobilization of proteins on surface is used for considering the selective cell-attachment. For PLA, the selective attachment of cells and protein depended on the implantation conditions.

  19. Temperature-dependant study of phosphorus ion implantation in germanium

    NASA Astrophysics Data System (ADS)

    Razali, M. A.; Smith, A. J.; Jeynes, C.; Gwilliam, R. M.

    2012-11-01

    We present experimental results on shallow junction formation in germanium by phosphorus ion implantation and standard rapid thermal processing. An attempt is made to improve phosphorus activation by implanting phosphorus at high and low temperature. The focus is on studying the germanium damage and phosphorus activation as a function of implant temperature. Rutherford backscattering spectrometry with channelling and Hall Effect measurements are employed for characterisation of germanium damage and phosphorus activation, respectively. High and low temperature implants were found to be better compared to room temperature implant.

  20. Parallel Simulation of Ion Implantation for Multi-Component Targets Using Boltzmann Transport Equation

    NASA Astrophysics Data System (ADS)

    Wang, Shyh-Wei; Guo, Shuang-Fa

    1998-07-01

    A stepwise Boltzmann transport equation (BTE) simulation using non-uniform energy grid momentum matrix and exact nuclear scattering cross-section is successfully parallelized to simulate the ion implantation of multi-component targets. Assuming that the interactions of ion with different target atoms are independent, the scattering of ions with different components can be calculated concurrently by different processors. It is developed on CONVEX SPP-1000 and the software environment of parallel virtual machine (PVM) with a master-slave paradigm. A speedup of 3.3 has been obtained for the simulation of As ions implanted into AZ1350 (C6.2H6O1N0.15S0.06) which is composed of five components. In addition, our new scheme gives better agreement with the experimental results for heavy ion implantation than the conventional method using a uniform energy grid and approximated scattering function.

  1. Ion-implanted planar-buried-heterostructure diode laser

    DOEpatents

    Brennan, Thomas M.; Hammons, Burrell E.; Myers, David R.; Vawter, Gregory A.

    1991-01-01

    A Planar-Buried-Heterostructure, Graded-Index, Separate-Confinement-Heterostructure semiconductor diode laser 10 includes a single quantum well or multi-quantum well active stripe 12 disposed between a p-type compositionally graded Group III-V cladding layer 14 and an n-type compositionally graded Group III-V cladding layer 16. The laser 10 includes an ion implanted n-type region 28 within the p-type cladding layer 14 and further includes an ion implanted p-type region 26 within the n-type cladding layer 16. The ion implanted regions are disposed for defining a lateral extent of the active stripe.

  2. Precipitation in As-Ion-Implanted and Annealed InAs

    NASA Astrophysics Data System (ADS)

    Kim, Seon-Ju; Han, Haewook

    2001-11-01

    Low-energy As-ion-implanted InAs was examined using double-crystal X-ray diffraction and transmission electron microscopy. For uniform defect distribution, multiple implantations were made at 0.05-0.4 MeV with 4 × 1014-5× 1015 ions/cm2. After annealing at 600°C for 20 min, As precipitates were observed, and the implantation-induced strain was significantly reduced, showing the recovery of crystallinity. The density of the As precipitates was 7.4 × 1016 cm-3 and the mean diameter was 55 Å, which corresponds to a volume fraction of 1.1%.

  3. Development of vertical compact ion implanter for gemstones applications

    NASA Astrophysics Data System (ADS)

    Intarasiri, S.; Wijaikhum, A.; Bootkul, D.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.; Singkarat, S.

    2014-08-01

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented.

  4. Effect of calcium and phosphorus ion implantation on the corrosion resistance and biocompatibility of titanium.

    PubMed

    Krupa, D; Baszkiewicz, J; Kozubowski, J A; Lewandowska-Szumieł, M; Barcz, A; Sobczak, J W; Biliński, A; Rajchel, A

    2004-01-01

    This paper is concerned with the corrosion resistance and biocompatibility of titanium after surface modification by the ion implantation of calcium or phosphorus or calcium + phosphorus. Calcium and phosphorus ions were implanted in a dose of 10(17) ions/cm(2). The ion beam energy was 25 keV. The microstructure of the implanted layers was examined by TEM. The chemical composition of the surface layers was determined by XPS and SIMS. The corrosion resistance was examined by electrochemical methods in a simulated body fluid (SBF) at a temperature of 37 degrees C. The biocompatibility was evaluated in vitro. As shown by TEM results, the surface layers formed during calcium, phosphorus and calcium + phosphorus implantation were amorphous. The results of the electrochemical examinations (Stern's method) indicate that the calcium, phosphorus and calcium + phosphorus implantation into the surface of titanium increases its corrosion resistance in stationary conditions after short- and long-term exposures in SBF. Potentiodynamic tests show that the calcium-implanted samples undergo pitting corrosion during anodic polarisation. The breakdown potentials measured are high (2.5 to 3 V). The good biocompatibility of all the investigated materials was confirmed under the specific conditions of the applied examination, although, in the case of calcium implanted titanium it was not as good as that of non-implanted titanium.

  5. Software for goniometer control in the Triple Ion Implantation Facility

    SciTech Connect

    Allen, W.R.

    1994-02-01

    A computer program is described tat controls the goniometer employed in the ion scattering chamber of the Triple Ion Implantation Facility (TIF) in the Metals and Ceramics Division at Oak Ridge National Laboratory. Details of goniometer operation and its incorporation into the ion scattering setup specific to the TIF are also discussed.

  6. Modification of titanium and titanium dioxide surfaces by ion implantation: Combined XPS and DFT study

    NASA Astrophysics Data System (ADS)

    Boukhvalov, D. W.; Korotin, D. M.; Efremov, A. V.; Kurmaev, E. Z.; Borchers, Ch.; Zhidkov, I. S.; Gunderov, D. V.; Valiev, R. Z.; Gavrilov, N. V.; Cholakh, S. O.

    2015-04-01

    The results of XPS measurements (core levels and valence bands) of P+, Ca+, P+Ca+ and Ca+P+ ion implanted (E=30 keV, D=1x1017 cm-2) commercially pure titanium (cp-Ti) and first-principles density functional theory (DFT) calculations demonstrates formation of various structural defects in titanium dioxide films formed on the surface of implanted materials. We have found that for double implantation (Ti:P+,Ca+ and Ti:Ca+,P+) the outermost surface layer formed mainly by Ca and P, respectively, i.e. the implantation sequence is very important. The DFT calculations show that under P+ and Ca+P+ ion implantation the formation energies for both cation (P-Ti) and anion (P-O) substitutions are comparable which can induce the creation of [PO4]3- and Ti-P species. For Ca+ and P+Ca+-ion implantation the calculated formation energies correspond to Ca2+-Ti4+ cation substitution. This conclusion is in agreement with XPS Ca 2p and Ti 2p core levels and valence band measurements and DFT calculations of electronic structure of related compounds. The conversion of implanted ions to Ca2+ and [PO4]3- species provides a good biocompatibility of cp-Ti for further formation of hydroxyapatite.

  7. Optical properties of surface modified polypropylene by plasma immersion ion implantation technique

    SciTech Connect

    Ahmed, Sk. Faruque; Moon, Myoung-Woon; Kim, Chansoo; Lee, Kwang-Ryeol; Jang, Yong-Jun; Han, Seonghee; Choi, Jin-Young; Park, Won-Woong

    2010-08-23

    The optical band gap and activation energy of polypropylene (PP) induced by an Ar plasma immersion ion implantation technique were studied in detail. It was revealed that the structural alternation with an increase in polymer chain cross-linking in the ion beam affected layer enhanced the optical properties of PP. The optical band gap, calculated from the transmittance spectra, decreased from 3.44 to 2.85 eV with the Ar plasma ion energy from 10 to 50 keV. The activation energy, determined from the band tail of the transmittance spectra, decreased while the electrical conductivity increased with the Ar plasma ion energy.

  8. Metal ion implantation in inert polymers for strain gauge applications

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Giovanni; Massaro, Marcello; Piscopiello, Emanuela; Tapfer, Leander

    2010-10-01

    Metal ion implantation in inert polymers may produce ultra-thin conducting films below the polymer surface. These subsurface films are promising structures for strain gauge applications. To this purpose, polycarbonate substrates were irradiated at room temperature with low-energy metal ions (Cu + and Ni +) and with fluences in the range between 1 × 10 16 and 1 × 10 17 ions/cm 2, in order to promote the precipitation of dispersed metal nanoparticles or the formation of a continuous thin film. The nanoparticle morphology and the microstructural properties of polymer nanocomposites were investigated by glancing-incidence X-ray diffraction and transmission electron microscopy (TEM) measurements. At lower fluences (<5 × 10 16 ions/cm 2) a spontaneous precipitation of spherical-shaped metal nanoparticles occurred below the polymer top-surface (˜50 nm), whereas at higher fluences the aggregation of metal nanoparticles produced the formation of a continuous polycrystalline nanofilm. Furthermore, a characteristic surface plasmon resonance peak was observed for nanocomposites produced at lower ion fluences, due to the presence of Cu nanoparticles. A reduced electrical resistance of the near-surface metal-polymer nanocomposite was measured. The variation of electrical conductivity as a function of the applied surface load was measured: we found a linear relationship and a very small hysteresis.

  9. Shallow drain extension by angled ion implantation

    SciTech Connect

    Alvis, R.; Luning, S.; Griffin, P.

    1996-12-31

    In this work, we describe the construction and microstructural characterization of a simple spacerless metal-oxide semiconductor (MOS) transistor with a self-aligned shallow drain extension. Transistor structures were fabricated at Stanford University`s Center for Integrated Systems using a single masking step to pattern the gate mask for the self-aligned structures. A 200{angstrom} gate oxide was grown and a 3000{angstrom} polysilicon blanket film was subsequently deposited on the wafer. The polysilicon was patterned into an array of 2.0{mu}m lines and 3.0{mu}m spaces. Arsenic was implanted at 120keV with a nominal dose of 1e15 ions/cm{sup 2} at 20{degrees} from normal incidence and rapid thermal annealed at 1000{degrees}C for 30 seconds. Cross-sectional transmission electron microscopy and atomic force microscopy (TEM, XAFM) samples were prepared using standard metallographic procedures with the doped regions delineated by chemical etching. A one-dimensionally calibrated process simulation was performed using Athena v2.0.13, a commercial derivative of SUPREM IV.

  10. Industrial applications of ion implantation into metal surfaces

    SciTech Connect

    Williams, J.M.

    1987-07-01

    The modern materials processing technique, ion implantation, has intriguing and attractive features that stimulate the imaginations of scientists and technologists. Success of the technique for introducing dopants into semiconductors has resulted in a stable and growing infrastructure of capital equipment and skills for use of the technique in the economy. Attention has turned to possible use of ion implantation for modification of nearly all surface related properties of materials - optical, chemical and corrosive, tribological, and several others. This presentation provides an introduction to fundamental aspects of equipment, technique, and materials science of ion implantation. Practical and economic factors pertaining to the technology are discussed. Applications and potential applications are surveyed. There are already available a number of ion-implanted products, including ball-and-roller bearings and races, punches-and-dies, injection screws for plastics molding, etc., of potential interest to the machine tool industry.

  11. Deformation characteristics of the near-surface layers of zirconia ceramics implanted with aluminum ions

    NASA Astrophysics Data System (ADS)

    Ghyngazov, S. A.; Vasiliev, I. P.; Frangulyan, T. S.; Chernyavski, A. V.

    2015-10-01

    The effect of ion treatment on the phase composition and mechanical properties of the near-surface layers of zirconium ceramic composition 97 ZrO2-3Y2O3 (mol%) was studied. Irradiation of the samples was carried out by accelerated ions of aluminum with using vacuum-arc source Mevva 5-Ru. Ion beam had the following parameters: the energy of the accelerated ions E = 78 keV, the pulse current density Ji = 4mA / cm2, current pulse duration equal τ = 250 mcs, pulse repetition frequency f = 5 Hz. Exposure doses (fluence) were 1016 и 1017 ion/cm2. The depth distribution implanted ions was studied by SIMS method. It is shown that the maximum projected range of the implanted ions is equal to 250 nm. Near-surface layers were investigated by X-ray diffraction (XRD) at fixed glancing incidence angle. It is shown that implantation of aluminum ions into the ceramics does not lead to a change in the phase composition of the near-surface layer. The influence of implanted ions on mechanical properties of ceramic near-surface layers was studied by the method of dynamic nanoindentation using small loads on the indenter P=300 mN. It is shown that in ion- implanted ceramic layer the processes of material recovery in the deformed region in the unloading mode proceeds with higher efficiency as compared with the initial material state. The deformation characteristics of samples before and after ion treatment have been determined from interpretation of the resulting P-h curves within the loading and unloading sections by the technique proposed by Oliver and Pharr. It was found that implantation of aluminum ions in the near-surface layer of zirconia ceramics increases nanohardness and reduces the Young's modulus.

  12. Ion-implanted high microwave power indium phosphide transistors

    NASA Technical Reports Server (NTRS)

    Biedenbender, Michael D.; Kapoor, Vik J.; Messick, Louis J.; Nguyen, Richard

    1989-01-01

    Encapsulated rapid thermal annealing (RTA) has been used in the fabrication of InP power MISFETs with ion-implanted source, drain, and active-channel regions. The MISFETs had a gate length of 1.4 microns. Six to ten gate fingers per device, with individual gate finger widths of 100 or 125 microns, were used to make MISFETs with total gate widths of 0.75, 0.8, or 1 mm. The source and drain contact regions and the channel region of the MISFETs were fabricated using Si implants in InP at energies from 60 to 360 keV with doses of (1-560) x 10 to the 12th/sq cm. The implants were activated using RTA at 700 C for 30 sec in N2 or H2 ambients using an Si3N4 encapsulant. The high-power high-efficiency MISFETs were characterized at 9.7 GHz, and the output microwave power density for the RTA conditions used was as high as 2.4 W/mm. For a 1-W input at 9.7 GHz gains up to 3.7 dB were observed, with an associated power-added efficiency of 29 percent and output power density 70 percent greater than that of GaAs MESFETs.

  13. Influence of Si ion implantation on structure and morphology of g-C3N4

    NASA Astrophysics Data System (ADS)

    Varalakshmi, B.; Sreenivasulu, K. V.; Asokan, K.; Srikanth, V. V. S. S.

    2016-07-01

    Effect of Si ion implantation on structural and morphological features of graphite-like carbon nitride (g-C3N4) was investigated. g-C3N4 was prepared by using a simple atmospheric thermal decomposition process. The g-C3N4 pellets were irradiated with a Si ion beam of energy 200 keV with different fluencies. Structural, morphological and elemental, and phase analysis of the implanted samples in comparison with the pristine samples was carried out by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) with energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques, respectively. The observations revealed that Si ion implantation results in a negligible change in the crystallite size and alteration of the network-like to the sheet-like morphology of g-C3N4 and Si ions in the g-C3N4 network.

  14. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells

    NASA Astrophysics Data System (ADS)

    Reichel, Christian; Feldmann, Frank; Müller, Ralph; Reedy, Robert C.; Lee, Benjamin G.; Young, David L.; Stradins, Paul; Hermle, Martin; Glunz, Stefan W.

    2015-11-01

    Passivated contacts (poly-Si/SiOx/c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF2), the ion implantation dose (5 × 1014 cm-2 to 1 × 1016 cm-2), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells. Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iVoc) of 725 and 720 mV, respectively. For p-type passivated contacts, BF2 implantations into intrinsic a-Si yield well passivated contacts and allow for iVoc of 690 mV, whereas implanted B gives poor passivation with iVoc of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved Voc of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF2 implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Finally, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with Voc of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts.

  15. Voltage dependence of cluster size in carbon films using plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    McKenzie, D. R.; Tarrant, R. N.; Bilek, M. M. M.; Pearce, G.; Marks, N. A.; McCulloch, D. G.; Lim, S. H. N.

    2003-05-01

    Carbon films were prepared using a cathodic arc with plasma immersion ion implantation (PIII). Using Raman spectroscopy to determine cluster size, a comparison is made between cluster sizes at high voltage and a low duty cycle of pulses with the cluster sizes produced at low voltage and a higher duty cycle. We find that for ion implantation in the range 2-20 kV, the cluster size depends more on implantation energy ( E) than implantation frequency ( f), unlike stress relief, which we have previously shown [M.M.M. Bilek, et al., IEEE Trans. in Plasma Sci., Proceedings 20th ISDEIV 1-5 July 2002, Tours, France, Cat. No. 02CH37331, IEEE, Piscataway, NJ, USA, p. 95] to be dependent on the product Ef. These differences are interpreted in terms of a model in which the ion impacts create thermal spikes.

  16. Low erosion behavior of polystyrene films under erbium ion implantation

    SciTech Connect

    Bhattacharya, M.; Sanyal, M.K.; Chini, T.K.; Chakraborty, P.

    2006-02-13

    Erbium ion implantation in polystyrene (PS) thin films has been performed with 40 and 60 keV ions to a dose range between 1x10{sup 14} and 1x10{sup 16} ions/cm{sup 2}. The x-ray reflectivity technique was applied to determine the ion-induced eroded layer thickness and interestingly, the erosion rate is found to decrease with increasing ion doses exhibiting simple power law behavior of the form {approx}(dose){sup -b}. We propose the formation of a carbonaceous network at the top surface, which seems to prevent further erosion of the polymer with increasing the duration of implantation time. These findings may open up a possibility of loading a large amount of erbium in a polymer matrix by the implantation technique to make it suitable for various optoelectronic applications.

  17. Surface Engineering of Nanostructured Titanium Implants with Bioactive Ions.

    PubMed

    Kim, H-S; Kim, Y-J; Jang, J-H; Park, J-W

    2016-05-01

    Surface nanofeatures and bioactive ion chemical modification are centrally important in current titanium (Ti) oral implants for enhancing osseointegration. However, it is unclear whether the addition of bioactive ions definitively enhances the osteogenic capacity of a nanostructured Ti implant. We systematically investigated the osteogenesis process of human multipotent adipose stem cells triggered by bioactive ions in the nanostructured Ti implant surface. Here, we report that bioactive ion surface modification (calcium [Ca] or strontium [Sr]) and resultant ion release significantly increase osteogenic activity of the nanofeatured Ti surface. We for the first time demonstrate that ion modification actively induces focal adhesion development and expression of critical adhesion–related genes (vinculin, talin, and RHOA) of human multipotent adipose stem cells, resulting in enhanced osteogenic differentiation on the nanofeatured Ti surface. It is also suggested that fibronectin adsorption may have only a weak effect on early cellular events of mesenchymal stem cells (MSCs) at least in the case of the nanostructured Ti implant surface incorporating Sr. Moreover, results indicate that Sr overrides the effect of Ca and other important surface factors (i.e., surface area and wettability) in the osteogenesis function of various MSCs (derived from human adipose, bone marrow, and murine bone marrow). In addition, surface engineering of nanostructured Ti implants using Sr ions is expected to exert additional beneficial effects on implant bone healing through the proper balancing of the allocation of MSCs between adipogenesis and osteogenesis. This work provides insight into the future surface design of Ti dental implants using surface bioactive ion chemistry and nanotopography. PMID:26961491

  18. The Behavior of Ion-Implanted Hydrogen in Gallium Nitride

    SciTech Connect

    Myers, S.M.; Headley, T.J.; Hills, C.R.; Han, J.; Petersen, G.A.; Seager, C.H.; Wampler, W.R.

    1999-01-07

    Hydrogen was ion-implanted into wurtzite-phase GaN, and its transport, bound states, and microstructural effects during annealing up to 980 C were investigated by nuclear-reaction profiling, ion-channeling analysis, transmission electron microscopy, and infrared (IR) vibrational spectroscopy. At implanted concentrations 1 at.%, faceted H{sub 2} bubbles formed, enabling identification of energetically preferred surfaces, examination of passivating N-H states on these surfaces, and determination of the diffusivity-solubility product of the H. Additionally, the formation and evolution of point and extended defects arising from implantation and bubble formation were characterized. At implanted H concentrations 0.1 at.%, bubble formation was not observed, and ion-channeling analysis indicated a defect-related H site located within the [0001] channel.

  19. Charge neutralization apparatus for ion implantation system

    DOEpatents

    Leung, Ka-Ngo; Kunkel, Wulf B.; Williams, Malcom D.; McKenna, Charles M.

    1992-01-01

    Methods and apparatus for neutralization of a workpiece such as a semiconductor wafer in a system wherein a beam of positive ions is applied to the workpiece. The apparatus includes an electron source for generating an electron beam and a magnetic assembly for generating a magnetic field for guiding the electron beam to the workpiece. The electron beam path preferably includes a first section between the electron source and the ion beam and a second section which is coincident with the ion beam. The magnetic assembly generates an axial component of magnetic field along the electron beam path. The magnetic assembly also generates a transverse component of the magnetic field in an elbow region between the first and second sections of the electron beam path. The electron source preferably includes a large area lanthanum hexaboride cathode and an extraction grid positioned in close proximity to the cathode. The apparatus provides a high current, low energy electron beam for neutralizing charge buildup on the workpiece.

  20. A Hip Implant Energy Harvester

    NASA Astrophysics Data System (ADS)

    Pancharoen, K.; Zhu, D.; Beeby, S. P.

    2014-11-01

    This paper presents a kinetic energy harvester designed to be embedded in a hip implant which aims to operate at a low frequency associated with body motion of patients. The prototype is designed based on the constrained volume available in a hip prosthesis and the challenge is to harvest energy from low frequency movements (< 1 Hz) which is an average frequency during free walking of a patient. The concept of magnetic-force-driven energy harvesting is applied to this prototype considering the hip movements during routine activities of patients. The magnetic field within the harvester was simulated using COMSOL. The simulated resonant frequency was around 30 Hz and the voltage induced in a coil was predicted to be 47.8 mV. A prototype of the energy harvester was fabricated and tested. A maximum open circuit voltage of 39.43 mV was obtained and the resonant frequency of 28 Hz was observed. Moreover, the power output of 0.96 μW was achieved with an optimum resistive load of 250Ω.

  1. Ion implantation in semiconductors studied by Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Langouche, G.

    1989-03-01

    The application of Mössbauer spectroscopy as an extremely sensitive characterization technique for ion-implanted semiconductors, is illustrated. Factors influencing the final landing site of implanted ions are first reviewed, as well as ion beam induced material modifications. Recent applications of Mössbauer spectroscopy in this field are then discussed including the study of supersaturated solutions of Sb and Sn in Si, the formation of epitaxial and buried silicides and the search for the DX-center in GaAs.

  2. Photoreflectance Study of Boron Ion-Implanted (100) Cadmium Telluride

    NASA Technical Reports Server (NTRS)

    Amirtharaj, P. M.; Odell, M. S.; Bowman, R. C., Jr.; Alt, R. L.

    1988-01-01

    Ion implanted (100) cadmium telluride was studied using the contactless technique of photoreflectance. The implantations were performed using 50- to 400-keV boron ions to a maximum dosage of 1.5 x 10(16)/sq cm, and the annealing was accomplished at 500 C under vacuum. The spectral measurements were made at 77 K near the E(0) and E(1) critical points; all the spectra were computer-fitted to Aspnes' theory. The spectral line shapes from the ion damaged, partially recovered and undamaged, or fully recovered regions could be identified, and the respective volume fraction of each phase was estimated.

  3. Method For Silicon Surface Texturing Using Ion Implantation

    SciTech Connect

    Kadakia, Nirag; Naczas, Sebastian; Bakhru, Hassaram; Huang Mengbing

    2011-06-01

    As the semiconductor industry continues to show more interest in the photovoltaic market, cheaper and readily integrable methods of silicon solar cell production are desired. One of these methods - ion implantation - is well-developed and optimized in all commercial semiconductor fabrication facilities. Here we have developed a silicon surface texturing technique predicated upon the phenomenon of surface blistering of H-implanted silicon, using only ion implantation and thermal annealing. We find that following the H implant with a second, heavier implant markedly enhances the surface blistering, causing large trenches that act as a surface texturing of c-Si. We have found that this method reduces total broadband Si reflectance from 35% to below 5percent;. In addition, we have used Rutherford backscattering/channeling measurements investigate the effect of ion implantation on the crystallinity of the sample. The data suggests that implantation-induced lattice damage is recovered upon annealing, reproducing the original monocrystalline structure in the previously amorphized region, while at the same time retaining the textured surface.

  4. Optimised Charging Performance On Quantum X Ion Implanters

    NASA Astrophysics Data System (ADS)

    Kirkwood, David A.; Sakase, Takao; Miura, Ryuichi; Goldberg, Richard D.; Murrell, Adrian J.

    2006-11-01

    A key parameter in the optimisation of CMOS device yield is the minimisation of charging-induced damage and/or breakdown of the gate dielectric material during ion implantation. In typical ion beams used for transistor doping applications, beam potentials can charge up the wafer surface if not controlled, and hence this potential must be neutralised to avoid damage to devices. MOS capacitor TEG (Test Element Group) wafers are an industry standard metric for determining the charging performance of ion implanters. By optimising the performance of the High Density Plasma Flood System (HDPFS) of the Applied Materials Quantum X ion implanter, TEG device yields of >90% at antenna ratios of 1E5:1 for a gate dielectric thickness of 3.5 nm on 300 mm wafers have been demonstrated.

  5. Method and apparatus for plasma source ion implantation

    DOEpatents

    Conrad, John R.

    1988-01-01

    Ion implantation into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber. Ions from the plasma are driven into the target object surfaces from all sides simultaneously without the need for manipulation of the target object. Repetitive pulses of high voltage, typically 20 kilovolts or higher, causes the ions to be driven deeply into the target. The plasma may be formed of a neutral gas introduced into the evacuated chamber and ionized therein with ionizing radiation so that a constant source of plasma is provided which surrounds the target object during the implantation process. Significant increases in the surface hardness and wear characteristics of various materials are obtained with ion implantation in this manner.

  6. Method and apparatus for plasma source ion implantation

    DOEpatents

    Conrad, J.R.

    1988-08-16

    Ion implantation into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber. Ions from the plasma are driven into the target object surfaces from all sides simultaneously without the need for manipulation of the target object. Repetitive pulses of high voltage, typically 20 kilovolts or higher, causes the ions to be driven deeply into the target. The plasma may be formed of a neutral gas introduced into the evacuated chamber and ionized therein with ionizing radiation so that a constant source of plasma is provided which surrounds the target object during the implantation process. Significant increases in the surface hardness and wear characteristics of various materials are obtained with ion implantation in this manner. 7 figs.

  7. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    NASA Astrophysics Data System (ADS)

    Baumann, H.; Bethge, K.; Bilger, G.; Jones, D.; Symietz, I.

    2002-11-01

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (α,α) backscattering and the resonant nuclear reaction 1H( 15N,αγ) 12C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of marrow bone cells on the implanted sample surface with that of titanium.

  8. Nitrogen and boron ion implantation into electrodeposited hard chrome

    SciTech Connect

    Walter, K.C.; Tesmer, J.R.; Scarborough, W.K.; Woodring, J.S.; Nastasi, M.; Kern, K.T.

    1996-10-01

    Electrodeposited hard chrome was ion implanted with N alone, B alone, and a combination. Separate N and B implantation was done at 75 keV and incident doses of 2, 4, and 8x10{sup 17} at/cm{sup 2}. Samples with both N/B implants used 75 keV and incident dose levels of 4x10{sup 17} N- and B-at/cm{sup 2}. Beam-line system was used. Retained dose was measured using ion beam analysis, which indicated most of the incident dose was retained. Surface hardness, wear coefficient, and friction coefficient were determined by nanohardness indentation and pin-on-disk wear. At a depth of 50 nm, surface hardness increased from 18{+-}1 GPa (unimplanted) to a max of 23{+-}4 GPa for B implant and 26{+-}1 GPa for N implant. the wear coefficient was reduced by 1.3x to 7.4x, depending on implantation. N implant results in lower wear coefficients than B implant.

  9. Impact of Ion Implantation on Licorice (Glycyrrhiza uralensis Fisch) Growth and Antioxidant Activity Under Drought Stress

    NASA Astrophysics Data System (ADS)

    Liu, Jingnan; Tong, Liping; Shen, Tongwei; Li, Jie; Wu, Lijun; Yu, Zengliang

    2007-06-01

    Low energy ion beams are known to have stimulation effects on plant generation and to improve plants' intrinsic quality. In the present study, the growth and physiological index of licorice implanted with 0, 8, 10, 12 and 14× (2.6×1015) ions/cm2 were investigated under well-watered and drought-stress conditions. The results showed that a proper dose of ion implantation was particularly efficient in stimulating the licorice growth and improving the plant biomass significantly in both the well-watered and drought-stress conditions. The physiological results of licorice measured by leaf water potential, lipid oxidation, soluble protein and antioxidant system showed a significant correlation between ion implantation and water regime except for leaf water potential. Therefore, the study indicated that ion implantation can enhance licorice's drought tolerance by increasing the activity of superoxide dismutase (SOD), catalase (CAT) and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging ability to lower oxidative damage to lipids in plants. Ion beam implantation, therefore, provides an alternative method to enhance licorice drought tolerance.

  10. Improved hardness and wear properties of B-ion implanted polycarbonate

    SciTech Connect

    Lee, E.H.; Rao, G.R.; Mansur, L.K. )

    1992-07-01

    Polycarbonate (Lexan) was implanted with 100 and 200 keV B{sup +} ions to doses of 0.26, 0.78, and 2.6{times}10{sup 15} ions/cm{sup 2} at room temperature ({lt}100 {degree}C). Mechanical characterization of implanted materials was carried out by nanoindentation and sliding wear tests. The results showed that the hardness of implanted polycarbonate increased with increasing ion energy and dose, attaining hardness up to 3.2 GPa at a dose of 2.6{times}10{sup 15} ions/cm{sup 2} for 200 keV ions, which is more than 10 times that of the unimplanted polymer. Wear properties were characterized using a reciprocating tribometer with nylon, brass, and SAE 52100 Cr-steel balls with 0.5 and 1 N normal forces for 10 000 cycles. The wear mode varied widely as a function of ion energy, dose, wear ball type, and normal load. For given ion energy, load, and ball type conditions, there was an optimum dose that produced the greatest wear resistance and lowest friction coefficient. For polycarbonate implanted with 0.78{times}10{sup 15} ions/cm{sup 2}, the nylon ball produced no wear after 10 000 cycles. Moreover, the overall friction coefficient was reduced by over 40% by implantation. The results suggest that the potential of ion-beam technology for improving polycarbonate is significant, and that surface-sensitive mechanical properties can be tailored to meet the requirements for applications demanding hardness, wear, and abrasion resistance.

  11. Critical issues in the formation of quantum computer test structures by ion implantation

    SciTech Connect

    Schenkel, T.; Lo, C. C.; Weis, C. D.; Schuh, A.; Persaud, A.; Bokor, J.

    2009-04-06

    The formation of quantum computer test structures in silicon by ion implantation enables the characterization of spin readout mechanisms with ensembles of dopant atoms and the development of single atom devices. We briefly review recent results in the characterization of spin dependent transport and single ion doping and then discuss the diffusion and segregation behaviour of phosphorus, antimony and bismuth ions from low fluence, low energy implantations as characterized through depth profiling by secondary ion mass spectrometry (SIMS). Both phosphorus and bismuth are found to segregate to the SiO2/Si interface during activation anneals, while antimony diffusion is found to be minimal. An effect of the ion charge state on the range of antimony ions, 121Sb25+, in SiO2/Si is also discussed.

  12. Critical issues in the formation of quantum computer test structures by ion implantation

    NASA Astrophysics Data System (ADS)

    Schenkel, T.; Lo, C. C.; Weis, C. D.; Schuh, A.; Persaud, A.; Bokor, J.

    2009-08-01

    The formation of quantum computer test structures in silicon by ion implantation enables the characterization of spin readout mechanisms with ensembles of dopant atoms and the development of single atom devices. We briefly review recent results in the characterization of spin dependent transport and single ion doping and then discuss the diffusion and segregation behaviour of phosphorus, antimony and bismuth ions from low fluence, low energy implantations as characterized through depth profiling by secondary ion mass spectrometry (SIMS). Both phosphorus and bismuth are found to segregate to the SiO 2/Si interface during activation anneals, while antimony diffusion is found to be minimal. An effect of the ion charge state on the range of antimony ions, 121Sb 25+, in SiO 2/Si is also discussed.

  13. Fe ion-implanted TiO2 thin film for efficient visible-light photocatalysis

    NASA Astrophysics Data System (ADS)

    Impellizzeri, G.; Scuderi, V.; Romano, L.; Sberna, P. M.; Arcadipane, E.; Sanz, R.; Scuderi, M.; Nicotra, G.; Bayle, M.; Carles, R.; Simone, F.; Privitera, V.

    2014-11-01

    This work shows the application of metal ion-implantation to realize an efficient second-generation TiO2 photocatalyst. High fluence Fe+ ions were implanted into thin TiO2 films and subsequently annealed up to 550 °C. The ion-implantation process modified the TiO2 pure film, locally lowering its band-gap energy from 3.2 eV to 1.6-1.9 eV, making the material sensitive to visible light. The measured optical band-gap of 1.6-1.9 eV was associated with the presence of effective energy levels in the energy band structure of the titanium dioxide, due to implantation-induced defects. An accurate structural characterization was performed by Rutherford backscattering spectrometry, transmission electron microscopy, Raman spectroscopy, X-ray diffraction, and UV/VIS spectroscopy. The synthesized materials revealed a remarkable photocatalytic efficiency in the degradation of organic compounds in water under visible light irradiation, without the help of any thermal treatments. The photocatalytic activity has been correlated with the amount of defects induced by the ion-implantation process, clarifying the operative physical mechanism. These results can be fruitfully applied for environmental applications of TiO2.

  14. High temperature annealing studies of strontium ion implanted glassy carbon

    NASA Astrophysics Data System (ADS)

    Odutemowo, O. S.; Malherbe, J. B.; Prinsloo, L.; Langa, D. F.; Wendler, E.

    2016-03-01

    Glassy carbon samples were implanted with 200 keV strontium ions to a fluence of 2 × 1016 ions/cm2 at room temperature. Analysis with Raman spectroscopy showed that ion bombardment amorphises the glassy carbon structure. Partial recovery of the glassy carbon structure was achieved after the implanted sample was vacuum annealed at 900 °C for 1 h. Annealing the strontium ion bombarded sample at 2000 °C for 5 h resulted in recovery of the glassy carbon substrate with the intensity of the D peak becoming lower than that of the pristine glassy carbon. Rutherford backscattering spectroscopy (RBS) showed that the implanted strontium diffused towards the surface of the glassy carbon after annealing the sample at 900 °C. This diffusion was also accompanied by loss of the implanted strontium. Comparison between the as-implanted and 900 °C depth profiles showed that less than 30% of the strontium was retained in the glassy carbon after heat treatment at 900 °C. The RBS profile after annealing at 2000 °C indicated that no strontium ions were retained after heat treatment at this temperature.

  15. High concentration of deuterium in palladium from plasma ion implantation

    SciTech Connect

    Uhm, H.S.; Lee, W.M. )

    1991-11-01

    Based on a theoretical calculation, a new scheme to increase deuterium density in palladium over its initial value is presented. This deuterium enrichment scheme makes use of plasma ion implantation. A cylindrical palladium rod (target) preloaded with deuterium atoms, coated with a diffusion-barrier material, is immersed in a deuterium plasma. The palladium rod is connected to a high-power modulator which provides a series of negative-voltage pulses. During these negative pulses, deuterium ions fall into the target, penetrate the diffusion barrier, and are implanted inside the palladium. For reasonable system parameters allowed by present technology, it is found from theoretical calculations that the saturation deuterium density after prolonged ion implantation can be several times the palladium atomic number density. Assuming an initial deuterium density, {ital n}{sub 0}=4{times}10{sup 22} cm{sup {minus}3}, it is also found that the deuterium density in palladium can triple its original value within a few days of the ion implantation for a reasonable target size. Because of the small diffusion coefficient in palladium, the incoming ions do not diffuse quickly inward, thereby accumulating near the target surface at the beginning of the implantation.

  16. Ion/water channels for embryo implantation barrier.

    PubMed

    Liu, Xin-Mei; Zhang, Dan; Wang, Ting-Ting; Sheng, Jian-Zhong; Huang, He-Feng

    2014-05-01

    Successful implantation involves three distinct processes, namely the embryo apposition, attachment, and penetration through the luminal epithelium of the endometrium to establish a vascular link to the mother. After penetration, stromal cells underlying the epithelium differentiate and surround the embryo to form the embryo implantation barrier, which blocks the passage of harmful substances to the embryo. Many ion/water channel proteins were found to be involved in the process of embryo implantation. First, ion/water channel proteins play their classical role in establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane. Second, most of ion/water channel proteins are regulated by steroid hormone (estrogen or progesterone), which may have important implications to the embryo implantation. Last but not least, these proteins do not limit themselves as pure channels but also function as an initiator of a series of consequences once activated by their ligand/stimulator. Herein, we discuss these new insights in recent years about the contribution of ion/water channels to the embryo implantation barrier construction during early pregnancy. PMID:24789983

  17. Osteoconductivity of hydrophilic microstructured titanium implants with phosphate ion chemistry.

    PubMed

    Park, Jin-Woo; Jang, Je-Hee; Lee, Chong Soo; Hanawa, Takao

    2009-07-01

    This study investigated the surface characteristics and bone response of titanium implants produced by hydrothermal treatment using H(3)PO(4), and compared them with those of implants produced by commercial surface treatment methods - machining, acid etching, grit blasting, grit blasting/acid etching or spark anodization. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, contact angle measurement and stylus profilometry. The osteoconductivity of experimental implants was evaluated by removal torque testing and histomorphometric analysis after 6 weeks of implantation in rabbit tibiae. Hydrothermal treatment with H(3)PO(4) and subsequent heat treatment produced a crystalline phosphate ion-incorporated oxide (titanium oxide phosphate hydrate, Ti(2)O(PO(4))(2)(H(2)O)(2); TiP) surface approximately 5microm in thickness, which had needle-like surface microstructures and superior wettability compared with the control surfaces. Significant increases in removal torque forces and bone-to-implant contact values were observed for TiP implants compared with those of the control implants (p<0.001). After thorough cleaning of the implants removed during the removal torque testing, a considerable quantity of attached bone was observed on the surfaces of the TiP implants. PMID:19332400

  18. Surface modification of Natural Rubber by ion implantation: Evidence for implant doping

    NASA Astrophysics Data System (ADS)

    Predeep, P.; Najidha, S.; Sreeja, R.; Saxena, N. S.

    2005-12-01

    Ion implantation is one of the most powerful and well-known technique for surface modification in polymers. Thin films of Natural Rubber were modified by the implantation of 60 keV N + ions to the fluences of 10 11-10 15 cm -2. The electrical conductivity measurements of irradiated sample show 10 orders of magnitude compared to pristine state. Along with conductivity change there was a noticeable change in color to a dense shiny black for the most highly conducting films. The analysis of temperature dependence of dc electrical conductivity data reveals a three-dimensional variable range hopping mechanism. The microstructural evolution of the virgin and ion-beam modified samples was investigated by spectroscopic analysis such as UV/Vis & FTIR. These spectral studies gave evidence for the production of conjugate double bonds, which is a clear cut indication of implant doping. This is an important result since ion implantation usually does not produce doping in polymeric materials and only a few reports about the possibility of implant doping in polymers are available. The significant aspect of this study is that this confirms, the Natural Rubber's potential to be used as a microelectronic device material. Also an attempt has been made to compare the conductivity enhancement in Natural Rubber by chemical and implant doping.

  19. The formation of silver metal nanoparticles by ion implantation in silicate glasses

    NASA Astrophysics Data System (ADS)

    Vytykacova, S.; Svecova, B.; Nekvindova, P.; Spirkova, J.; Mackova, A.; Miksova, R.; Böttger, R.

    2016-03-01

    It has been shown that glasses containing silver metal nanoparticles are promising photonics materials for the fabrication of all-optical components. The resulting optical properties of the nanocomposite glasses depend on the composition and structure of the glass, as well as on the type of metal ion implanted and the experimental procedures involved. The main aim of this article was to study the influence of the conditions of the ion implantation and the composition of the glass on the formation of metal nanoparticles in such glasses. Four various types of silicate glasses were implanted with Ag+ ions with different energy (330 keV, 1.2 MeV and 1.7 MeV), with the fluence being kept constant (1 × 1016 ions cm-2). The as-implanted samples were annealed at 600 °C for 1 h. The samples were characterised in terms of: the nucleation of metal nanoparticles (linear optical absorption), the migration of silver through the glass matrix during the implantation and post-implantation annealing (Rutherford backscattering spectroscopy), and the oxidation state of silver (photoluminescence in the visible region).

  20. Preparation of phosphorus-containing silica glass microspheres for radiotherapy of cancer by ion implantation.

    PubMed

    Kawashita, M; Miyaji, F; Kokubo, T; Suzuki, Y; Kajiyama, K

    1999-08-01

    A chemically durable glass microsphere containing a large amount of phosphorus is useful for in situ irradiation of cancers, since they can be activated to be a beta-emitter with a half-life of 14.3 d by neutron bombardment. When the activated microspheres are injected to the tumors, they can irradiate the tumors directly with beta-rays without irradiating neighboring normal tissues. In the present study, P+ ion was implanted into silica glass microspheres of 25 microm in average diameter at 50 keV with nominal doses of 2.5 x 10(16) and 3.35 x 10(1)6 cm(-2). The glass microspheres were put into a stainless container and the container was continuously shaken during the ion implantation so that P+ ion was implanted into them uniformly. The implanted phosphorus was localized in deep regions of the glass microsphere with the maximum concentration at about 50 nm depth without distributing up to the surface even for a nominal dose of 3.35 x 10(16) cm(-2). Both samples released phosphorus and silicon into water at 95 degrees C for 7 d. On the basis of the previous study on P+-implanted silica glass plates, the silica glass microspheres containing more phosphorus which is desired for actual treatment could be obtained, without losing high chemical durability, if P+ ion would be implanted at higher energy than 50 keV to be localized in deeper region.

  1. On carbon nitride synthesis at high-dose ion implantation

    NASA Astrophysics Data System (ADS)

    Romanovsky, E. A.; Bespalova, O. V.; Borisov, A. M.; Goryaga, N. G.; Kulikauskas, V. S.; Sukharev, V. G.; Zatekin, V. V.

    1998-04-01

    Rutherford backscattering spectrometry was used for the study of high dose 35 keV nitrogen ions implantation into graphites and glassy carbon. Quantitative data on depth profiles and its dependencies on irradiation fluence and ion beam density were obtained. The stationary dome-shaped depth profile with maximum nitrogen concentration 22-27 at.% and half-width more than twice exceeding projected range of ions is reached at fluence Φ ˜10 18 cm -2. The dependence of the maximum concentration in the profile on ion current density was studied. The largest concentration was obtained at reduced ion current density.

  2. GaAs Hall devices produced by local ion implantation

    NASA Astrophysics Data System (ADS)

    Pettenpaul, E.; Huber, J.; Weidlich, H.; Flossmann, W.; von Borcke, U.

    1981-08-01

    GaAs Hall devices were produced by complete planar technology using two selective silicon ion implantation steps. The fundamental characteristics of these devices with respect to reproducible implantation dose and geometry of cross-shaped elements are obtained both by experiment and calculation. The prominent properties of the GaAs Hall elements presented are high sensitivity and linearity, small temperature dependence of sensitivity and resistance, and low residual voltage.

  3. Investigation of Donor and Acceptor Ion Implantation in AlN

    SciTech Connect

    Osinsky, Andrei

    2015-09-16

    AlGaN alloys with high Al composition and AlN based electronic devices are attractive for high voltage, high temperature applications, including microwave power sources, power switches and communication systems. AlN is of particular interest because of its wide bandgap of ~6.1eV which is ideal for power electronic device applications in extreme environments which requires high dose ion implantation. One of the major challenges that need to be addressed to achieve full utilization of AlN for opto and microelectronic applications is the development of a doping strategy for both donors and acceptors. Ion implantation is a particularly attractive approach since it allows for selected-area doping of semiconductors due to its high spatial and dose control and its high throughput capability. Active layers in the semiconductor are created by implanting a dopant species followed by very high temperature annealing to reduce defects and thereby activate the dopants. Recovery of implant damage in AlN requires excessively high temperature. In this SBIR program we began the investigation by simulation of ion beam implantation profiles for Mg, Ge and Si in AlN over wide dose and energy ranges. Si and Ge are implanted to achieve the n-type doping, Mg is investigated as a p-type doping. The simulation of implantation profiles were performed in collaboration between NRL and Agnitron using a commercial software known as Stopping and Range of Ions in Matter (SRIM). The simulation results were then used as the basis for ion implantation of AlN samples. The implanted samples were annealed by an innovative technique under different conditions and evaluated along the way. Raman spectroscopy and XRD were used to determine the crystal quality of the implanted samples, demonstrating the effectiveness of annealing in removing implant induced damage. Additionally, SIMS was used to verify that a nearly uniform doping profile was achieved near the sample surface. The electrical characteristics

  4. Method For Silicon Surface Texturing Using Ion Implantation

    NASA Astrophysics Data System (ADS)

    Kadakia, Nirag; Naczas, Sebastian; Bakhru, Hassaram; Huang, Mengbing

    2011-06-01

    As the semiconductor industry continues to show more interest in the photovoltaic market, cheaper and readily integrable methods of silicon solar cell production are desired. One of these methods—ion implantation—is well-developed and optimized in all commercial semiconductor fabrication facilities. Here we have developed a silicon surface texturing technique predicated upon the phenomenon of surface blistering of H-implanted silicon, using only ion implantation and thermal annealing. We find that following the H implant with a second, heavier implant markedly enhances the surface blistering, causing large trenches that act as a surface texturing of c-Si. We have found that this method reduces total broadband Si reflectance from 35% to below 5percent;. In addition, we have used Rutherford backscattering/channeling measurements investigate the effect of ion implantation on the crystallinity of the sample. The data suggests that implantation-induced lattice damage is recovered upon annealing, reproducing the original monocrystalline structure in the previously amorphized region, while at the same time retaining the textured surface.

  5. Quantitative photothermal characterization of ion-implanted layers in Si

    NASA Astrophysics Data System (ADS)

    Salnick, Alex; Opsal, Jon

    2002-03-01

    Quantitative analysis of ion-implanted layers in Si using the damage-based theoretical modeling and experimental results obtained with the photomodulated reflectance (PMR) technique are described. Our theoretical approach combines the conventional quantum mechanics based calculations of the ion-induced damage depth profiles in semiconductors with the corresponding scaling of the thermal and carrier plasma parameters followed by the calculation of the photothermal response from a multilayered sample. The theoretical limit of the photothermal signal sensitivity to the implantation dose in the absence of optical and carrier plasma-wave interference effects is estimated. Simulations of the photothermal amplitude and phase dose dependencies allow us to follow the dynamics of the thermal- and carrier plasma waves in an ion-implanted semiconductor. The validity of the proposed damage-based modeling approach to the problem of quantitative analysis of surface-modified semiconductors is analyzed. It is shown that the results of the photothermal damage-based modeling are in a very good agreement with experimentally observed PMR signal implantation dose behavior for B+-implanted Si across the entire range of practically important implantation doses: 109-1015 cm-2.

  6. Influence of ion implantation on titanium surfaces for medical applications

    NASA Astrophysics Data System (ADS)

    Krischok, Stefan; Blank, Claudia; Engel, Michael; Gutt, Richard; Ecke, Gernot; Schawohl, Jens; Spieß, Lothar; Schrempel, Frank; Hildebrand, Gerhard; Liefeith, Klaus

    2007-09-01

    The implantation of ions into the near surface layer is a new approach to improve the osseointegration of metallic biomaterials like titanium. Meanwhile it is well known that surface topography and surface physico-chemistry as well as visco-elastic properties influence the cell response after implantation of implants into the human body. To optimize the cell response of titanium, ion implantation techniques have been used to integrate calcium and phosphorus, both elements present in the inorganic bone phase. In this context, the concentration profile of the detected elements and their chemical state have been investigated using X-ray photoelectron spectroscopy and Auger electron spectroscopy depth profiling. Ion implantation leads to strong changes of the chemical composition of the near surface region, which are expected to modify the biofunctionality as observed in previous experiments on the cell response. The co-implantation of calcium and phosphorus samples, which showed best results in the performed tests (biological and physical), leads to a strong modification of the chemical surface composition.

  7. Observations of Ag diffusion in ion implanted SiC

    NASA Astrophysics Data System (ADS)

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; Hunter, Jerry L.; Giordani, Andrew J.; Allen, Todd R.

    2015-06-01

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500-1625 °C, were investigated by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated, including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.

  8. Observations of Ag diffusion in ion implanted SiC

    SciTech Connect

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; Jerry L. Hunter, Jr.; Giordani, Andrew J.; Allen, Todd R.

    2015-03-17

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated, including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.

  9. Ion implantation for manufacturing bent and periodically bent crystals

    SciTech Connect

    Bellucci, Valerio; Camattari, Riccardo; Guidi, Vincenzo Mazzolari, Andrea; Paternò, Gianfranco; Lanzoni, Luca

    2015-08-10

    Ion implantation is proposed to produce self-standing bent monocrystals. A Si sample 0.2 mm thick was bent to a radius of curvature of 10.5 m. The sample curvature was characterized by interferometric measurements; the crystalline quality of the bulk was tested by X-ray diffraction in transmission geometry through synchrotron light at ESRF (Grenoble, France). Dislocations induced by ion implantation affect only a very superficial layer of the sample, namely, the damaged region is confined in a layer 1 μm thick. Finally, an elective application of a deformed crystal through ion implantation is here proposed, i.e., the realization of a crystalline undulator to produce X-ray beams.

  10. Chromium plating pollution source reduction by plasma source ion implantation

    SciTech Connect

    Chen, A.; Sridharan, K.; Dodd, R.A.; Conrad, J.R.; Qiu, X.; Hamdi, A.H.; Elmoursi, A.A.; Malaczynski, G.W.; Horne, W.G.

    1995-12-31

    There is growing concern over the environmental toxicity and workers` health issues due to the chemical baths and rinse water used in the hard chromium plating process. In this regard the significant hardening response of chromium to nitrogen ion implantation can be environmentally beneficial from the standpoint of decreasing the thickness and the frequency of application of chromium plating. In this paper the results of a study of nitrogen ion implantation of chrome plated test flats using the non-line-of-sight Plasma Source Ion Implantation (PSII) process, are discussed. Surface characterization was performed using Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), and Electron Spectroscopy for Chemical Analysis (ESCA). The surface properties were evaluated using a microhardness tester, a pin-on-disk wear tester, and a corrosion measurement system. Industrial field testing of nitrogen PSII treated chromium plated parts showed an improvement by a factor of two compared to the unimplanted case.

  11. Oxygen ion implantation induced microstructural changes and electrical conductivity in Bakelite RPC detector material

    NASA Astrophysics Data System (ADS)

    Kumar, K. V. Aneesh; Ranganathaiah, C.; Kumarswamy, G. N.; Ravikumar, H. B.

    2016-05-01

    In order to explore the structural modification induced electrical conductivity, samples of Bakelite Resistive Plate Chamber (RPC) detector materials were exposed to 100 keV Oxygen ion in the fluences of 1012, 1013, 1014 and 1015 ions/cm2. Ion implantation induced microstructural changes have been studied using Positron Annihilation Lifetime Spectroscopy (PALS) and X-Ray Diffraction (XRD) techniques. Positron lifetime parameters viz., o-Ps lifetime and its intensity shows the deposition of high energy interior track and chain scission leads to the formation of radicals, secondary ions and electrons at lower ion implantation fluences (1012 to1014 ions/cm2) followed by cross-linking at 1015 ions/cm2 fluence due to the radical reactions. The reduction in electrical conductivity of Bakelite detector material is correlated to the conducting pathways and cross-links in the polymer matrix. The appropriate implantation energy and fluence of Oxygen ion on polymer based Bakelite RPC detector material may reduce the leakage current, improves the efficiency, time resolution and thereby rectify the aging crisis of the RPC detectors.

  12. Oxide formation on NbAl{sub 3} and TiAl due to ion implantation of {sup 18}O

    SciTech Connect

    Hanrahan, R.J. Jr.; Verink, E.D. Jr.; Withrow, S.P.; Ristolainen, E.O.

    1993-12-31

    Surface modification by ion implantation of {sup 18}O ions was investigated as a technique for altering the high-temperature oxidation of aluminide intermetallic compounds and related alloys. Specimens of NbAl{sub 3} and TiAl were implanted to a dose of 1 {times} 10{sup 18} ions/cm{sup 2} at 168 keV. Doses and accelerating energies were calculated to obtain near-stoichiometric concentrations of oxygen. Use of {sup 18}O allowed the implanted oxygen profiles to be measured using secondary ion mass spectroscopy (SIMS). The near surface oxides formed were studied using x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy. Specimens were also examined using x-ray diffraction and SEM. This paper presents results for specimens examined in the as-implanted state. The oxide formed due to implantation is a layer containing a mixture of Nb or Ti and amorphous Al oxides.

  13. The history of uniformity mapping in ion implantation

    NASA Astrophysics Data System (ADS)

    Yarling, C. B.; Keenan, W. A.; Larson, L. A.

    1991-04-01

    In the early days of semiconductor manufacturing, the four-point probe became established as the tool-of-choice for monitoring diffusion processes. The application of the four-point probe to ion implantation in the early 1960s was basically limited to the single-point measurement of dose, since the equipment did not have the necessary precision or repeatability to provide useful uniformity results. As a result, implanter uniformity was determined by either a visual observation of a heavily doped wafer or by a mylar bum. Unfortunately, these techniques were either subject to interpretation by the user or could not provide a parameter that could be statistically tracked or characterized. During the last 30 years, the commercial ion implanter as well as the dose and uniformity characterization equipment used to characterize this production tool have progressed significantly. Indeed, several generations of electrical and optical equipment have been developed to measure both the dose and uniformity of the increasingly advanced and complex ion implanter. This paper will review all of the techniques and equipment used to measure the uniformity of ion implantation. In addition, various graphical techniques developed to present early measurement results will be discussed.

  14. Single-walled carbon nanotube growth from ion implanted Fe catalyst

    SciTech Connect

    Choi, Yongho; Sippel-Oakley, Jennifer; Ural, Ant

    2006-10-09

    The authors present experimental evidence that single-walled carbon nanotubes can be grown by chemical vapor deposition from ion implanted iron catalyst. They systematically characterize the effect of ion implantation dose and energy on the catalyst nanoparticles and nanotubes formed at 900 deg. C. They also fabricate a micromachined silicon grid for direct transmission electron microscopy characterization of the as-grown nanotubes. This work opens up the possibility of controlling the origin of single-walled nanotubes at the nanometer scale and of integrating them into nonplanar three-dimensional device structures with precise dose control.

  15. Temperature dependences of the photoluminescence intensities of centers in silicon implanted with erbium and oxygen ions

    SciTech Connect

    Sobolev, N. A. Shtel’makh, K. F.; Kalyadin, A. E.; Shek, E. I.

    2015-12-15

    Low-temperature photoluminescence in n-Cz-Si after the implantation of erbium ions at an elevated temperature and subsequent implantation of oxygen ions at room temperature is studied. So-called X and W centers formed from self-interstitial silicon atoms, H and P centers containing oxygen atoms, and Er centers containing Er{sup 3+} ions are observed in the photoluminescence spectra. The energies of enhancing and quenching of photoluminescence for these centers are determined. These energies are determined for the first time for X and H centers. In the case of P and Er centers, the values of the energies practically coincide with previously published data. For W centers, the energies of the enhancing and quenching of photoluminescence depend on the conditions of the formation of these centers.

  16. The Influence of Ion Implantation on cell Attachment to Glassy Polymeric Carbon

    SciTech Connect

    Zimmerman, R.; Ila, D.; Gurhan, I.; Ozdal-Kurt, F.; Sen, B. H.; Rodrigues, M.

    2006-11-13

    In vitro biocompatibility tests have been carried out with model cell lines to demonstrate that near surface implantation of silver in Glassy Polymeric Carbon (GPC) can completely inhibit cell attachment on implanted areas while leaving adjacent areas unaffected. Patterned ion implantation permits precise control of tissue growth on medical applications of GPC. We have shown that silver ion implantation or argon ion assisted surface deposition of silver inhibits cell growth on GPC, a desirable improvement of current cardiac implants.

  17. Empirical modeling of the cross section of damage formation in ion implanted III-V semiconductors

    SciTech Connect

    Wendler, E.; Wendler, L.

    2012-05-07

    In this letter, the cross section of damage formation per individual ion is measured for III-V compound semiconductors ion implanted at 15 K, applying Rutherford backscattering spectrometry. An empirical model is proposed that explains the measured cross sections in terms of quantities representing the primary energies deposited in the displacement of lattice atoms and in electronic interactions. The resulting formula allows the prediction of damage formation for low temperatures and low ion fluences in these materials and can be taken as a starting point for further quantitative modeling of damage formation including secondary effects such as temperature and ion flux.

  18. Radiation damage in KTiOPO 4 by ion implantation of light elements

    NASA Astrophysics Data System (ADS)

    Opfermann, Thomas; Höche, Thomas; Wesch, Werner

    2000-05-01

    The radiation damage in KTiOPO4 (KTP) single crystals caused by He+, Li+ and B+ ion implantation was investigated by means of cross-sectional transmission electron microscopy (XTEM) and Rutherford backscattering spectrometry (RBS). Z-cut flux grown KTP crystals were implanted with ion fluences between 5×1013 and 2×1016 cm-2 at 300 and 100 K using implantation energies between 1 and 3 MeV. For high ion fluences, XTEM investigations of the He+ and Li+ implantations revealed buried amorphous layers in the region where nuclear energy deposition dominates. For samples prepared at room temperature, the critical number of displacements per atom (dpa), which is necessary for amorphisation amounts ∼0.5 dpa for He+ implantation and ∼0.22 dpa for Li+ implantation. At 100 K, the thickness of the amorphous layer is increased and the critical number of dpa for achieving amorphisation is considerably lower (0.27 dpa (He+) and 0.15 dpa (Li+), respectively). For both implantation regimes buried amorphous layers are covered by an almost perfect crystalline KTP layer. Between these two regions, the crystalline structure is gradually decomposing with depth due to the presence of amorphous clusters of increasing size. In the superficial crystalline layer, where the nuclear energy deposition is small in comparison to the region of maximum nuclear energy deposition, no defects were found by means of XTEM. Nevertheless, RBS investigations showed a higher dechanelling in this surface layer compared to the virgin crystal thus indicating the presence of point defects. For He+ and Li+ implantation, the electronic excitation does not seem to be connected with the formation of higher-dimensional defects. However, RBS spectra of a B+-implanted sample show a significant damaging in the depth of dominating electronic excitation even at an ion fluence of 5×1013 cm-2. The results confirm the existence of a threshold value of the electronic energy deposition of about 100 eV per ion and Å (W

  19. Ion implantation induced swelling in 6H-SiC

    SciTech Connect

    Nipoti, R.; Albertazzi, E.; Bianconi, M.; Lotti, R.; Lulli, G.; Cervera, M.; Carnera, A.

    1997-06-01

    Ion implantation induced surface expansion (swelling) of 6H-SiC was investigated through the measurement of the step height between implanted and unimplanted areas. The samples were irradiated at room temperature with 500 keV Al{sup +} ions in the dose range 1.25{times}10{sup 14}{endash}3{times}10{sup 15}ionscm{sup {minus}2}. Swelling was related to dose and the area density of ion-induced damage measured by Rutherford backscattering channeling technique. The observed trend is consistent with the hypothesis that the volume expansion of the ion damaged crystal is proportional to the area density of displaced atoms, plus an additional relaxation occurring at the onset of the crystalline to amorphous transition. {copyright} {ital 1997 American Institute of Physics.}

  20. Simulated plasma immersion ion implantation processing of thin wires

    SciTech Connect

    Lejars, A.; Duday, D.; Wirtz, T.; Manova, D.; Maendl, S.

    2010-09-15

    In plasma immersion ion implantation, the dependencies of sheath expansion and ion flux density on substrate geometry are well established. However, effects of extreme diameter variations have not been investigated explicitly. Using an analytical simulation code assuming an infinite mean free path, the sheath expansion, ion flux density, and resulting substrate temperature are explored down to wire diameters of 150 {mu}m. Comparing the results for planar substrates and cylindrical, thin wires, a reduction in the sheath width up to a factor of 10, a faster establishing of a new equilibrium sheath position, and an increase in the ion fluence by a factor of 100 is encountered. The smaller plasma sheath allows for a denser packing of wires during the treatment than for planar substrates. Additionally, the implantation time is reduced, allowing a fast wire transport through the chamber, further increasing the throughput.

  1. Biologic stability of plasma ion-implanted miniscrews

    PubMed Central

    Cho, Young-Chae; Cha, Jung-Yul; Hwang, Chung-Ju; Park, Young-Chel; Jung, Han-Sung

    2013-01-01

    Objective To gain basic information regarding the biologic stability of plasma ion-implanted miniscrews and their potential clinical applications. Methods Sixteen plasma ion-implanted and 16 sandblasted and acid-etched (SLA) miniscrews were bilaterally inserted in the mandibles of 4 beagles (2 miniscrews of each type per quadrant). Then, 250 - 300 gm of force from Ni-Ti coil springs was applied for 2 different periods: 12 weeks on one side and 3 weeks contralaterally. Thereafter, the animals were sacrificed and mandibular specimens including the miniscrews were collected. The insertion torque and mobility were compared between the groups. The bone-implant contact and bone volume ratio were calculated within 800 µm of the miniscrews and compared between the loading periods. The number of osteoblasts was also quantified. The measurements were expressed as percentages and analyzed by independent t-tests (p < 0.05). Results No significant differences in any of the analyzed parameters were noted between the groups. Conclusions The preliminary findings indicate that plasma ion-implanted miniscrews have similar biologic characteristics to SLA miniscrews in terms of insertion torque, mobility, bone-implant contact rate, and bone volume rate. PMID:23814706

  2. MAGNESIUM PRECIPITATION AND DIFUSSION IN Mg+ ION IMPLANTED SILICON CARBIDE

    SciTech Connect

    Jiang, Weilin; Jung, Hee Joon; Kovarik, Libor; Wang, Zhaoying; Roosendaal, Timothy J.; Zhu, Zihua; Edwards, Danny J.; Hu, Shenyang Y.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2015-03-02

    As a candidate material for fusion reactor applications, silicon carbide (SiC) undergoes transmutation reactions under high-energy neutron irradiation with magnesium as the major metallic transmutant; the others include aluminum, beryllium and phosphorus in addition to helium and hydrogen gaseous species. Calculations by Sawan et al. predict that at a dose of ~100 dpa (displacements per atom), there is ~0.5 at.% Mg generated in SiC. The impact of these transmutants on SiC structural stability is currently unknown. This study uses ion implantation to introduce Mg into SiC. Multiaxial ion-channeling analysis of the as-produced damage state indicates a lower dechanneling yield observed along the <100> axis. The microstructure of the annealed sample was examined using high-resolution scanning transmission electron microscopy. The results show a high concentration of likely non-faulted tetrahedral voids and possible stacking fault tetrahedra near the damage peak. In addition to lattice distortion, dislocations and intrinsic and extrinsic stacking faults are also observed. Magnesium in 3C–SiC prefers to substitute for Si and it forms precipitates of cubic Mg2Si and tetragonal MgC2. The diffusion coefficient of Mg in 3C–SiC single crystal at 1573 K has been determined to be 3.8 ± 0.4E-19 m2/s.

  3. A Case Study of Ion Implant In-Line Statistical Process Control

    NASA Astrophysics Data System (ADS)

    Zhao, Zhiyong; Ramczyk, Kenneth; Hall, Darcy; Wang, Linda

    2005-09-01

    Ion implantation is one of the most critical processes in the front-end-of-line for ULSI manufacturing. With more complexity in device layout, the fab cycle time can only be expected to be longer. To ensure yield and consistent device performance it is very beneficial to have a Statistical Process Control (SPC) practice that can detect tool issues to prevent excursions. Also, implanters may abort a process due to run-time issues. It requires human intervention to dispose of the lot. Since device wafers have a fixed flow plan and can only do anneal at certain points in the manufacturing process, it is not practical to use four-point probe to check such implants. Pattern recognition option on some of the metrology tools, such as ThermaWave (TWave), allows user to check an open area on device wafers for implant information. The two cited reasons prompted this work to look into the sensitivity of TWave with different implant processes and the possibility of setting up an SPC practice in a high-volume manufacturing fab. In this work, the authors compare the test wafer result with that of device wafers with variations in implant conditions such as dose, implant angle, energy, etc. The intention of this work is to correlate analytical measurement such as sheet resistance (Rs) and Secondary Ion Mass Spectrometry (SIMS) with device data such as electrical testing and sort yield. For a ± 1.5% TWave control limit with the tested implant processes in this work, this translates to about 0.5° in implant angle control or 2% to 8% dose change, respectively. It is understood that the dose sensitivity is not good since the tested processes are deep layer implants. Based on the statistics calculation, we assess the experimental error bar is within 1% of the measured values.

  4. Formation of titanium carbide by high-fluence carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Wenzel, A.; Hammerl, C.; Königer, A.; Rauschenbach, B.

    1997-08-01

    Titanium carbide has been prepared by high fluence carbon ion implantation in titanium at temperatures between -70°C and 450°C. The carbon ion dose has been varied between 1.2 and 36 × 10 17 C +-ions/cm 2 and the ion energy between 30 and 180 keV. The carbon concentration distribution, the structure, the morphology and the microhardness have been examined with Rutherford backscattering, transmission electron microscopy, X-ray diffraction and nanoindentation, respectively. The concentration distribution of carbon is characterized by a symmetric Gaussian profile for doses up to 12×10 17C +-ions/cm 2 and a more and more asymmetrical profile for higher fluences. The evolution of the concentration distribution is discussed on basis of swelling and sputtering. Precipitates of the titanium carbide phase can be observed after implantation at -70°C with doses ⩾3×10 17C +-ions/cm 2. The average diameter of the TiC precipitates is a function of ion dose, temperature and duration of annealing. A significant increase of the hardness in the near surface region of implanted samples can be detected. The measured hardness values depend strongly on ion dose, annealing conditions and the hardness of the unimplanted titanium.

  5. Charging and discharging in ion implanted dielectric films used for capacitive radio frequency microelectromechanical systems switch

    SciTech Connect

    Li Gang; Chen Xuyuan; San Haisheng

    2009-06-15

    In this work, metal-insulator-semiconductor (MIS) capacitor structure was used to investigate the dielectric charging and discharging in the capacitive radio frequency microelectromechanical switches. The insulator in MIS structure is silicon nitride films (SiN), which were deposited by either low pressure chemical vapor deposition (LPCVD) or plasma enhanced chemical vapor deposition (PECVD) processes. Phosphorus or boron ions were implanted into dielectric layer in order to introduce impurity energy levels into the band gap of SiN. The relaxation processes of the injected charges in SiN were changed due to the ion implantation, which led to the change in relaxation time of the trapped charges. In our experiments, the space charges were introduced by stressing the sample electrically with dc biasing. The effects of implantation process on charge accumulation and dissipation in the dielectric are studied by capacitance-voltage (C-V) measurement qualitatively and quantitatively. The experimental results show that the charging and discharging behavior of the ion implanted silicon nitride films deposited by LPCVD is quite different from the one deposited by PECVD. The charge accumulation in the dielectric film can be reduced by ion implantation with proper dielectric deposition method.

  6. Deuterium-incorporated gate oxide of MOS devices fabricated by using deuterium ion implantation

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Sung; Lear, Kevin L.

    2012-04-01

    In the aspect of metal-oxide-semiconductor (MOS) device reliability, deuterium-incorporated gate oxide could be utilized to suppress the wear-out that is combined with oxide trap generation. An alternative deuterium process for the passivation of oxide traps or defects in the gate oxide of MOS devices has been suggested in this study. The deuterium ion is delivered to the location where the gate oxide resides by using an implantation process and subsequent N2 annealing process at the back-end of metallization process. A conventional MOS field-effect transistor (MOSFET) with a 3-nm-thick gate oxide and poly-to-ploy capacitor sandwiched with 20-nm-thick SiO2 were fabricated in order to demonstrate the deuterium effect in our process. An optimum condition of ion implantation was necessary to account for the topography of the overlaying layers in the device structure and to minimize the physical damage due to the energy of the implanted ion. Device parameter variations, the gate leakage current, and the dielectric breakdown phenomenon were investigated in the deuterium-ion-implanted devices. We found the isotope effect between hydrogen- and deuterium-implanted devices and an improved electrical reliability in the deuterated gate oxide. This implies that deuterium bonds are generated effectively at the Si/SiO2 interface and in the SiO2 bulk.

  7. Modification of the optical properties of glass by sequential ion implantation

    SciTech Connect

    Magruder, R.H. III; Osborne, D.H. Jr.; Zuhr, R.A.

    1994-12-31

    The linear and nonlinear optical properties of a series of samples formed by the sequential implantation of Ti, O and Au are examined. Energies of implantation for each ion were chosen using TRIM calculations to insure overlap of the ion distributions. The Ti was implanted with nominal doses of 1.2 and 2 {times} 10{sup 17} ions/cm{sup 2}. The samples were implanted with oxygen to the same nominal dose as the Ti. Au was then implanted with a nominal dose of 6 {times} 10{sup 16} ions/cm{sup 2}. The samples were subsequently annealed in oxygen at 900 C for two hours. The Ti and O are incorporated into the host network, while the Au forms nanosize colloids. The presence of the Ti in the substrate causes a shift in the surface plasmon resonance frequency of the Au metal colloids as well as an increase in the nonlinear response of the composites. The results are interpreted in terms of effective medium theory.

  8. Ion implantation and annealing studies in III-V nitrides

    SciTech Connect

    Zolper, J.C.; Pearton, S.J.; Williams, J.S.; Tan, H.H.; Karlicek, R.J. Jr.; Stall, R.A.

    1996-12-31

    Ion implantation doping and isolation is expected to play an enabling role for the realization of advanced III-Nitride based devices. In fact, implantation has already been used to demonstrate n- and p-type doping of GaN with Si and Mg or Ca, respectively, as well as to fabricate the first GaN junction field effect transistor. Although these initial implantation studies demonstrated the feasibility of this technique for the III-Nitride materials, further work is needed to realize its full potential. After reviewing some of the initial studies in this field, the authors present new results for improved annealing sequences and defect studies in GaN. First, sputtered AlN is shown by electrical characterization of Schottky and Ohmic contacts to be an effect encapsulant of GaN during the 1,100 C implant activation anneal. The AlN suppresses N-loss from the GaN surface and the formation of a degenerate n{sup +}-surface region that would prohibit Schottky barrier formation after the implant activation anneal. Second, they examine the nature of the defect generation and annealing sequence following implantation using both Rutherford Backscattering (RBS) and Hall characterization. They show that for a Si-dose of 1 x 10{sup 16} cm{sup {minus}2} 50% electrical donor activation is achieved despite a significant amount of residual implantation-induced damage in the material.

  9. Nanocomposite formed by titanium ion implantation into alumina

    SciTech Connect

    Spirin, R. E.; Salvadori, M. C. Teixeira, F. S.; Sgubin, L. G.; Cattani, M.; Brown, I. G.

    2014-11-14

    Composites of titanium nanoparticles in alumina were formed by ion implantation of titanium into alumina, and the surface electrical conductivity measured in situ as the implantation proceeded, thus generating curves of sheet conductivity as a function of dose. The implanted titanium self-conglomerates into nanoparticles, and the spatial dimensions of the buried nanocomposite layer can thus be estimated from the implantation depth profile. Rutherford backscattering spectrometry was performed to measure the implantation depth profile, and was in good agreement with the calculated profile. Transmission electron microscopy of the titanium-implanted alumina was used for direct visualization of the nanoparticles formed. The measured conductivity of the buried layer is explained by percolation theory. We determine that the saturation dose, φ{sub 0}, the maximum implantation dose for which the nanocomposite material still remains a composite, is φ{sub 0} = 2.2 × 10{sup 16 }cm{sup −2}, and the corresponding saturation conductivity is σ{sub 0} = 480 S/m. The percolation dose φ{sub c}, below which the nanocomposite still has basically the conductivity of the alumina matrix, was found to be φ{sub c} = 0.84 × 10{sup 16 }cm{sup −2}. The experimental results are discussed and compared with a percolation theory model.

  10. Surface induced reactivity for titanium by ion implantation.

    PubMed

    Pham, M T; Reuther, H; Matz, W; Mueller, R; Steiner, G; Oswald, S; Zyganov, I

    2000-06-01

    Calcium and phosphorus storage in a thin layer of titanium surface was achieved by ion implantation. We study the reactivity of this surface in response to a hydrothermal treatment. The incipient implanted species are observed to convert to Ca(2+) and PO(4)(3-), the precursors for generating calcium phosphate polymorphs. Hydroxyapatite is formed from these precursors by an interface-liquid mediated mineralization preceded by the hydrolysis of oxygen compounds of Ca and P from the solid phase. The morphology and organization of apatite mineral is controlled by the fluid dynamics reflecting the surface remodeling to adapt to the available local environment. Exposed to calcium and phosphate ion containing solution, the hydrothermally treated surface templates hydroxyapatite deposition. Ca and P implanted Ti surface was shown to be chemically and morphologically actively involved in the interfacial reactions.

  11. Magnetic and Transport Properties of Mn-ion implanted Si

    NASA Astrophysics Data System (ADS)

    Preisler, V.; Ogawa, M.; Han, X.; Wang, K. L.

    2010-01-01

    We investigate the magnetic and transport properties of Mn-ion implanted Si. Both temperature dependent and field dependent measurements of the samples using a SQUID magnometer reveal ferromagnetic properties at room temperature. Magnetotransport measurements show a large positive magnetoresistance up to 4.5 T with no signs of saturation.

  12. Performance improvement of silicon nitride ball bearings by ion implantation. CRADA final report

    SciTech Connect

    Williams, J.M.; Miner, J.

    1998-03-01

    The present report summarizes technical results of CRADA No. ORNL 92-128 with the Pratt and Whitney Division of United Technologies Corporation. The stated purpose of the program was to assess the 3effect of ion implantation on the rolling contact performance of engineering silicon nitride bearings, to determine by post-test analyses of the bearings the reasons for improved or reduced performance and the mechanisms of failure, if applicable, and to relate the overall results to basic property changes including but not limited to swelling, hardness, modulus, micromechanical properties, and surface morphology. Forty-two control samples were tested to an intended runout period of 60 h. It was possible to supply only six balls for ion implantation, but an extended test period goal of 150 h was used. The balls were implanted with C-ions at 150 keV to a fluence of 1.1 {times} 10{sup 17}/cm{sup 2}. The collection of samples had pre-existing defects called C-cracks in the surfaces. As a result, seven of the control samples had severe spalls before reaching the goal of 60 h for an unacceptable failure rate of 0.003/sample-h. None of the ion-implanted samples experienced engineering failure in 150 h of testing. Analytical techniques have been used to characterize ion implantation results, to characterize wear tracks, and to characterize microstructure and impurity content. In possible relation to C-cracks. It is encouraging that ion implantation can mitigate the C-crack failure mode. However, the practical implications are compromised by the fact that bearings with C-cracks would, in no case, be acceptable in engineering practice, as this type of defect was not anticipated when the program was designed. The most important reason for the use of ceramic bearings is energy efficiency.

  13. Electrical and optical properties of nitrile rubber modified by ion implantation

    SciTech Connect

    S, Najidha; Predeep, P.

    2014-10-15

    Implantation of N{sup +} ion beams are performed on to a non-conjugated elastomer, acrylonirtle butadiene rubber (NBR) with energy 60 keV in the fluence range of 10{sup 14} to 10{sup 16} ions/cm{sup 2}. A decrease in the resistivity of the sample by about eight orders of magnitude is observed in the implanted samples along with color changes. The ion exposed specimens were characterized by means of UV/Vis spectroscopy which shows a shift in the absorption edge value for the as deposited polymer towards higher wavelengths. The band gap is evaluated from the absorption spectra and is found to decrease with increasing fluence. This study can possibly throw light on ion induced changes in the polymer surface.

  14. Gettering of transition metals by cavities in silicon formed by helium ion implantation

    SciTech Connect

    Petersen, G.A.; Myers, S.M.; Follstaedt, D.M.

    1996-09-01

    We have recently completed studies which quantitatively characterize the ability of nanometer-size cavities formed by He ion implantation to getter detrimental metal impurities in Si. Cavity microstructures formed in Si by ion implantation of He and subsequent annealing have been found to capture metal impurities by two mechanisms: (1) chemisorption on internal walls at low concentrations and (2) silicide precipitation at concentrations exceeding the solid solubility. Experiments utilizing ion-beam analysis, cross-sectional transmission electron microscopy, and secondary ion mass spectrometry were performed to quantitatively characterize the gettering effects and to determine the free energies associated with the chemisorbed metal atoms as a function of temperature. Mathematical models utilizing these results have been developed to predict gettering behavior.

  15. Electrical and optical properties of nitrile rubber modified by ion implantation

    NASA Astrophysics Data System (ADS)

    S, Najidha; Predeep, P.

    2014-10-01

    Implantation of N+ ion beams are performed on to a non-conjugated elastomer, acrylonirtle butadiene rubber (NBR) with energy 60 keV in the fluence range of 1014 to 1016 ions/cm2. A decrease in the resistivity of the sample by about eight orders of magnitude is observed in the implanted samples along with color changes. The ion exposed specimens were characterized by means of UV/Vis spectroscopy which shows a shift in the absorption edge value for the as deposited polymer towards higher wavelengths. The band gap is evaluated from the absorption spectra and is found to decrease with increasing fluence. This study can possibly throw light on ion induced changes in the polymer surface.

  16. Absorption in the visible region of YSZ implanted with Ag ions.

    PubMed

    Saito; Imamura; Kitahara

    2000-12-30

    Ag ions were implanted into YSZ (yttrium-stabilized (cubic) zirconia) single crystals in two different energy regimes: kiloelectron volt and megaelectron volt. Optical absorption spectra were measured in the visible region at each stage in the annealing process of the sample. Depth profiles of Ag for the samples implanted at the energy of 20 keV were measured by X-ray photoelectron spectroscopy (XPS). For the samples implanted with Ag at the low energy of 20 keV, one large absorption peak appeared in the wavelength ranging from 470 to 536 nm, depending on the dose of Ag ions. As the sample was heated to 1000 degrees C, the intensity of the absorption peak decreased gradually, but a small, broad peak remains even at the temperature of 1000 degrees C. For the samples implanted with 2.8x10(16) Ag ion cm(-2) at the high energy of 3 MeV, one broad absorption peak was observed at around 470 nm. As the sample was heated sequentially to high temperatures, the peak gradually decreased and almost disappeared at 400 degrees C. When the sample was further heated to even higher temperatures, the absorption peak at 514 nm reappeared at 1000 degrees C and grew with heating time.

  17. Versatile, high-sensitivity faraday cup array for ion implanters

    DOEpatents

    Musket, Ronald G.; Patterson, Robert G.

    2003-01-01

    An improved Faraday cup array for determining the dose of ions delivered to a substrate during ion implantation and for monitoring the uniformity of the dose delivered to the substrate. The improved Faraday cup array incorporates a variable size ion beam aperture by changing only an insertable plate that defines the aperture without changing the position of the Faraday cups which are positioned for the operation of the largest ion beam aperture. The design enables the dose sensitivity range, typically 10.sup.11 -10.sup.18 ions/cm.sup.2 to be extended to below 10.sup.6 ions/cm.sup.2. The insertable plate/aperture arrangement is structurally simple and enables scaling to aperture areas between <1 cm.sup.2 and >750 cm.sup.2, and enables ultra-high vacuum (UHV) applications by incorporation of UHV-compatible materials.

  18. The damaging effects of nitrogen ion beam implantation on upland cotton ( Gossypium hirsutum L.) pollen grains

    NASA Astrophysics Data System (ADS)

    Yu, Yanjie; Wu, Lijun; Wu, Yuejin; Wang, Qingya; Tang, Canming

    2008-09-01

    With the aim to study the effects of an ion beam on plant cells, upland cotton (Gossypium hirsutum L.) cultivar "Sumian 22" pollen grains were irradiated in vacuum (7.8 × 10-3 Pa) by low-energy nitrogen ions with an energy of 20 keV at various fluences ranging from 0.26 × 1016 to 0.78 × 1016 N+/cm2. The irradiation effects on pollen grains were tested, considering the ultrastructural changes in the exine and interior walls of pollen grains, their germination rate, the growth speed of the pollen tubes in the style, fertilization and boll development after the pistils were pollinated by the pollen grains which had been implanted with nitrogen ions. Nitrogen ions entered the pollen grains by etching and penetrating the exine and interior walls and destroying cell structures. A greater percentage of the pollen grains were destroyed as the fluence of N+ ions increased. Obviously, the nitrogen ion beam penetrated the exine and interior walls of the pollen grains and produced holes of different sizes. As the ion fluence increased, the amount and the density of pollen grain inclusions decreased and the size of the lacuna and starch granules increased. Pollen grain germination rates decreased with increasing ion fluence. The number of pollen tubes in the style declined with increased ion implantation into pollen grains, but the growth speed of the tubes did not change. All of the pollen tubes reached the end of the style at 13 h after pollination. This result was consistent with that of the control. Also, the weight and the diameter of the ovary decreased and shortened with increased ion beam implantation fluence. No evident change in the fecundation time of the ovule was observed. These results indicate that nitrogen ions can enter pollen grains and cause a series of biological changes in pollen grains of upland cotton.

  19. A spectroscopic study of the near-surface layers of a glass modified by ion implantation

    SciTech Connect

    Deshkovskaya, A.A.; Komar, V.P.; Skornyakov, I.V.

    1985-07-01

    The mechanism of the complex physiocochemical processes leading to the structural changes in glass under ion implantation is discussed in this paper. Specimens of Pyrex-type silicate glasses manufactured in the form of polished, plane-parallel plates 10 x 10 x 1 mm were studied. As the doping impurities singly charged ions B/sup +/, N/sup +/, O/sup +/, P/sup +/, Ar/sup +/, BF/sub 2//sup +/, As/sup +/, Sb/sup +/, and Pb/sup +/ were used and also the double charged P/sup + +/ ions. The implantation was done at room temperature on a ''Vesuvius-1'' type of equipment with an attachment that makes it possible to obtain high-energy ions beams. When studying the structural damage, the implanted glasses and the mechanism by which it is caused, the authors used infrared spectroscopy of the multiple frustrated total internal reflection (MFTIR) which makes it possible to analyze the deeper surface layers of the material in addition to the use of IR spectroscopy which gives information on the surface of the glass. Of all the possible reasons for the structural damage in a Pyrex glass caused by ion implantation, the dominant role is shown to itself is not so important as its capacity for interaction with its environment.

  20. Influence of irradiation spectrum and implanted ions on the amorphization of ceramics

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.

    1995-12-31

    Polycrystalline Al2O3, magnesium aluminate spinel (MgAl2O4), MgO, Si3N4, and SiC were irradiated with various ions at 200-450 K, and microstructures were examined following irradiation using cross-section TEM. Amorphization was not observed in any of the irradiated oxide ceramics, despsite damage energy densities up to {similar_to}7 keV/atom (70 displacements per atom). On the other hand, SiC readily amorphized after damage levels of {similar_to}0.4 dpa at room temperature (RT). Si3N4 exhibited intermediate behavior; irradiation with Fe{sup 2+} ions at RT produced amorphization in the implanted ion region after damage levels of {similar_to}1 dpa. However, irradiated regions outside the implanted ion region did not amorphize even after damage levels > 5 dpa. The amorphous layer in the Fe-implanted region of Si3N4 did not appear if the specimen was simultaneoulsy irradiated with 1-MeV He{sup +} ions at RT. By comparison with published results, it is concluded that the implantation of certain chemical species has a pronounced effect on the amorphization threshold dose of all five materials. Intense ionizing radiation inhibits amorphization in Si3N4, but does not appear to significantly influence the amorphization of SiC.

  1. Plasma immersion ion implantation for SOI synthesis: SIMOX and ion-cut

    SciTech Connect

    Lu, X.; Iyer, S.S.K.; Hu, C.; Cheung, N.W.; Lee, J.; Doyle, B.; Fan, Z.; Chu, P.K.

    1998-09-01

    The authors have demonstrated feasibility to form silicon-on-insulator (SOI) substrates using plasma immersion ion implantation (PIII) for both separation by implantation of oxygen and ion-cut. This high throughput technique can substantially lower the high cost of SOI substrates due to the simpler implanter design as well as ease of maintenance. For separation by plasma implantation of oxygen wafers, secondary ion mass spectrometry analysis and cross-sectional transmission electron micrographs show continuous buried oxide formation under a single-crystal silicon overlayer with sharp Si/SiO{sub 2} interfaces after oxygen plasma implantation and high-temperature (1,300 C) annealing. Ion-cut SOI wafer fabrication technique is implemented for the first time using PIII. The hydrogen plasma can be optimized so that only one ion species is dominant in concentration and there are minimal effects by other residual ions on the ion-cut process. The physical mechanism of hydrogen induced silicon surface layer cleavage has been investigated. An ideal gas law model of the microcavity internal pressure combined with a two-dimensional finite element fracture mechanics model is used to approximate the fracture driving force which is sufficient to overcome the silicon fracture resistance.

  2. Resonance ionization of holmium for ion implantation in microcalorimeters

    NASA Astrophysics Data System (ADS)

    Schneider, F.; Chrysalidis, K.; Dorrer, H.; Düllmann, Ch. E.; Eberhardt, K.; Haas, R.; Kieck, T.; Mokry, C.; Naubereit, P.; Schmidt, S.; Wendt, K.

    2016-06-01

    The determination of the electron neutrino mass by calorimetric measurement of the 163 Ho electron capture spectrum requires ultra-pure samples. Several collaborations, like ECHo or HOLMES, intend to employ microcalorimeters into which 163 Ho is implanted as an ion beam. This makes a selective and additionally very efficient ion source for holmium mandatory. For this purpose, laser resonance ionization of stable holmium 165 Ho was studied, using a three step excitation scheme driven by pulsed Ti:sapphire lasers. Five measurements with sample sizes of 1014 and 1015 atoms were performed for the efficiency investigation. In average, an excellent ionization efficiency of 32(5) % could be shown, demonstrating the suitability for ion beam implantation.

  3. Fabrication of waveguides in Yb:YCOB crystal by MeV oxygen ion implantation

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Chen, Feng; Wang, Xue-Lin; Wang, Ke-Ming; Wang, Lei; Wang, Liang-Ling; Zhang, Huai-Jin; Lu, Qing-Ming; Ma, Hong-Ji; Nie, Rui

    2007-07-01

    Oxygen ions with energies of 6.0 or 3.0 MeV were implanted into y-cut Yb:YCOB crystals at fluences ranging from 5.0 × 10 13 to 2.0 × 10 15 ions/cm 2 at room temperature, forming optical planar waveguide structures. Dark-mode line spectroscopy was applied at two wavelengths, 633 and 1539 nm, in various excitation configurations, showing strong enhancement of one of the indices ( nx) in the implanted near surface. The nx refractive index profile is reconstructed by a reflectivity calculation method and compared to the ion energy losses profiles deduced from SRIM-code simulation. Moreover, the near-field patterns were imaged by an end-fire coupling arrangement.

  4. Note: An ion source for alkali metal implantation beneath graphene and hexagonal boron nitride monolayers on transition metals

    SciTech Connect

    Lima, L. H. de; Cun, H. Y.; Hemmi, A.; Kälin, T.; Greber, T.

    2013-12-15

    The construction of an alkali-metal ion source is presented. It allows the acceleration of rubidium ions to an energy that enables the penetration through monolayers of graphene and hexagonal boron nitride. Rb atoms are sublimated from an alkali-metal dispenser. The ionization is obtained by surface ionization and desorption from a hot high work function surface. The ion current is easily controlled by the temperature of ionizer. Scanning Tunneling Microscopy measurements confirm ion implantation.

  5. Activation-efficiency modeling of silicon-ion implantation in undoped, LEC-grown GaAs

    SciTech Connect

    Bindal, A.

    1988-01-01

    Constructing an accurate GaAs MESFET modeling largely depends on a complete understanding of material properties by various characterization technique sand being able to obtain reproducible device parameters. In this work, the implanted material was evaluated with respect to various implantation and annealing conditions in detail. In investigating the activation efficiency of implanted silicon in LEC-grown GaAs, atomic and carrier distributions of the implant were obtained using Secondary Ion Mass Spectroscopy (SIMS), the conventional and steo-etch C-V techniques, respectively. Based on these experimental observations, the Si activation efficiency is found to be strong functions of the implantation fluence and annealing temperature, and weak functions of the implantation energy and annealing time. In understanding the effects of various implantation and annealing conditions on Si activation, the second part of this work is devoted to Photoluminescence (PL) and Deep Level Transient Spectroscopy (DLTS) experiments. The shallow defects were investigated by photoluminescence experiments.

  6. Interaction between Low Energy Ions and the Complicated Organism

    NASA Astrophysics Data System (ADS)

    Yu, Zeng-liang

    1999-12-01

    Low energy ions exist widely in natural world, but people pay a little attention on the interaction between low energy ions and matter, it is even more out of the question of studying on the relation of low energy ions and the complicated organism. The discovery of bioeffect induced by ion implantation has, however, opened a new branch in the field of ion beam application in life sciences. This paper reports recent advances in research on the role of low energy ions in chemical synthesis of the biomolecules and application in genetic modification.

  7. Microwave annealing of ion implanted 6H-SiC

    SciTech Connect

    Gardner, J.A.; Rao, M.V.; Tian, Y.L.; Holland, O.W.; Kelner, G.; Freitas, J.A. Jr.; Ahmad, I.

    1996-05-01

    Microwave rapid thermal annealing has been utilized to remove the lattice damage caused by nitrogen (N) ion-implantation as well as to activate the dopant in 6H-SiC. Samples were annealed at temperatures as high as 1,400 C, for 10 min. Van der Pauw Hall measurements indicate an implant activation of 36%, which is similar to the value obtained for the conventional furnace annealing at 1,600 C. Good lattice quality restoration was observed in the Rutherford backscattering and photoluminescence spectra.

  8. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells

    SciTech Connect

    Reichel, Christian; Feldmann, Frank; Müller, Ralph; Hermle, Martin; Glunz, Stefan W.; Reedy, Robert C.; Lee, Benjamin G.; Young, David L.; Stradins, Paul

    2015-11-28

    Passivated contacts (poly-Si/SiO{sub x}/c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF{sub 2}), the ion implantation dose (5 × 10{sup 14 }cm{sup −2} to 1 × 10{sup 16 }cm{sup −2}), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells. Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iV{sub oc}) of 725 and 720 mV, respectively. For p-type passivated contacts, BF{sub 2} implantations into intrinsic a-Si yield well passivated contacts and allow for iV{sub oc} of 690 mV, whereas implanted B gives poor passivation with iV{sub oc} of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved V{sub oc} of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF{sub 2} implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Finally, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with V{sub oc} of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts.

  9. Adaptation of the 70 kV INP ion implanter to the IBAD technique

    NASA Astrophysics Data System (ADS)

    Rajchel, B.; Drwiega, M.; Lipińska, E.; Wierba, M.

    1994-05-01

    The ion implanter facility of the Institute of Nuclear Physics in Cracow was used during many years in different fields of research and technical application. This laboratory type machine equipped with a mass analyzer gives the possibility to accelerate single charged ions of almost all the elements up to the energy of 70 keV with the beam current reaching (e.g. for N 2+) several mA. Mass resolution of the implanter is about 350, and the typical current density during implantation is in the range of 0.1 {μA}/{cm 2} to 100 {μA}/{cm 2}. Adaptation works at the INP implanter to the Ion Beam Assisted Deposition technique were performed. The present research activity due to the modified implanter includes: investigation of high temperature corrosion resistant surfaces (alloys of the type Al-Mo); investigation of special (e.g. ceramics, composites) thin layers produced on crystal surfaces; production of the surfaces of improved mechanical properties. Targets produced by the IBAD technique are investigated next by the RBS method using a 3 MV Van de Graaff setup at the Institute of Nuclear Physics in Cracow.

  10. Nonlinear effects in defect production by atomic and molecular ion implantation

    SciTech Connect

    David, C. Dholakia, Manan; Chandra, Sharat; Nair, K. G. M.; Panigrahi, B. K.; Amirthapandian, S.; Amarendra, G.; Varghese Anto, C.; Santhana Raman, P.; Kennedy, John

    2015-01-07

    This report deals with studies concerning vacancy related defects created in silicon due to implantation of 200 keV per atom aluminium and its molecular ions up to a plurality of 4. The depth profiles of vacancy defects in samples in their as implanted condition are carried out by Doppler broadening spectroscopy using low energy positron beams. In contrast to studies in the literature reporting a progressive increase in damage with plurality, implantation of aluminium atomic and molecular ions up to Al{sub 3}, resulted in production of similar concentration of vacancy defects. However, a drastic increase in vacancy defects is observed due to Al{sub 4} implantation. The observed behavioural trend with respect to plurality has even translated to the number of vacancies locked in vacancy clusters, as determined through gold labelling experiments. The impact of aluminium atomic and molecular ions simulated using MD showed a monotonic increase in production of vacancy defects for cluster sizes up to 4. The trend in damage production with plurality has been explained on the basis of a defect evolution scheme in which for medium defect concentrations, there is a saturation of the as-implanted damage and an increase for higher defect concentrations.

  11. Microstructure and oxidation behavior of high strength steel AISI 410 implanted with nitrogen ion

    NASA Astrophysics Data System (ADS)

    Bandriyana, Ismoyo, Agus Hadi; Sujitno, Tjipto; Dimyati, A.

    2016-04-01

    Surface treatment by implantation with nitrogen-ion was performed on the commercial feritic high strength steel AISI 410 which is termed for high temperature applications. The aim of this research was focused on the surface modification to improve its high temperature oxidation property in the early stages. Ion implantation was carried out at acceleration energy of 100 KeV and ion current 10 mA for 30, 60 and 90 minutes. The samples were subjected to the high temperature oxidation test by means of thermogravimetry in a magnetic suspension balance (MSB) at 500 °C for 5 hours. The scanning electron microscopy (SEM), X-ray diffraction spectrometry (XRD) and Vickers Hardness measurement were used for sample characterization. The formation of ferro-nitride phase after implantation did not occur, however a thin layer considered to contain nitrogen interstitials was detected. The oxidation of both samples before and after implantation followed parabolic kinetics indicating inward growth of oxide scale characteristically due to diffusion of oxygen anions towards matrix surface. After oxidation test relativelly stable oxide scales were observed. Oxidation rates decreased proportionally with the increasing of implantation time due to the formation of oxide layer which is considered to be effectiv inhibitor for the oxygen diffusion.

  12. Material synthesis for silicon integrated-circuit applications using ion implantation

    NASA Astrophysics Data System (ADS)

    Lu, Xiang

    of microscopic images. The underlying hydrogen profiles for between 250sp°C and 500sp°C annealing are characterized by SIMS and HFS experiments. An ideal gas law model calculation suggests that the internal pressure of molecular hydrogen filled microcavities is in the range of Giga-Pascal, high enough to break the silicon crystal bond. A dose threshold which prevents cleavage is observed at 1.6× 10sp{17} cmsp{-2} for 40 kV hydrogen implantation. A initial defect, in a silicon substrate, induced by a hydrogen microcavity is modeled as a circular crack which is embedded at a certain depth from the top silicon surface. A two-dimensional finite element model is made to calculate energy release rate along the crack surfaces. This numerical model predicts that the energy release rate is sufficient to overcome the silicon fracture toughness. The model further identifies the factors that can enhance the energy release rate. Ion-Cut SOI wafer fabrication technique is implemented using Pm. The hydrogen implantation rate, which is independent of the wafer size, is considerably higher than that of conventional implantation. The simple Pm reactor setup and its compatibility with cluster-tool IC manufacturing system offer other Ion-Cut process optimization opportunities. The feasibility of Pm Ion-Cut process has been demonstrated with successful fabrication of SOI structures. The hydrogen plasma can be optimized so that only one ion species is dominant in concentration, with minimal effect on the Ion-Cut process by the residual ion components. We have also demonstrated the feasibility of performing Ion-Cut using Pm in helium plasma.

  13. Analysis and evalaution in the production process and equipment area of the low-cost solar array project. [including modifying gaseous diffusion and using ion implantation

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1979-01-01

    The manufacturing methods for photovoltaic solar energy utilization are assessed. Economic and technical data on the current front junction formation processes of gaseous diffusion and ion implantation are presented. Future proposals, including modifying gaseous diffusion and using ion implantation, to decrease the cost of junction formation are studied. Technology developments in current processes and an economic evaluation of the processes are included.

  14. Upgraded vacuum arc ion source for metal ion implantation

    SciTech Connect

    Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu.; Brown, I. G.

    2012-02-15

    Vacuum arc ion sources have been made and used by a large number of research groups around the world over the past twenty years. The first generation of vacuum arc ion sources (dubbed ''Mevva,'' for metal vapor vacuum arc) was developed at Lawrence Berkeley National Laboratory in the 1980s. This paper considers the design, performance parameters, and some applications of a new modified version of this kind of source which we have called Mevva-V.Ru. The source produces broad beams of metal ions at an extraction voltage of up to 60 kV and a time-averaged ion beam current in the milliampere range. Here, we describe the Mevva-V.Ru vacuum arc ion source that we have developed at Tomsk and summarize its beam characteristics along with some of the applications to which we have put it. We also describe the source performance using compound cathodes.

  15. Ion-implantation studies of nuclear-waste forms

    NASA Astrophysics Data System (ADS)

    Northrup, C. J. M., Jr.; Arnold, G. W.; Headley, T. J.

    1981-11-01

    The first observations of physical and chemical changes induced by lead implantation damage and leaching are reported for two proposed US nuclear waste forms for commercial wastes. To simulate the effects of recoil nuclei due to alpha decay, the materials were implanted with lead ions at equivalent doses. In the titanate waste form, the zirconolite, perovskite, hollandite, and rutile phases all exhibited a mottled appearance in the transmission electron microscopy (TEM) typical of defect clusters in radiation damaged, crystalline solids. One titanate phase containing uranium was found by TEM to be amorphous after implantation at the highest dose. No enhanced leaching (deionized water, room temperature, 24 hours) of the irradiated titanate waste form, including the amorphous phase, was detected by TEM, but Rutherford backscattering (RBS) suggested a loss of cesium and calcium after 21 hours of leaching.

  16. Comparison of observed and calculated implanted ion distributions outside comet Halley's bow shock

    SciTech Connect

    Gombosi, T.I. ); Neugebauer, M. ); Johnstone, A.D.; Coates, A.J.; Huddleston, D.E. )

    1991-06-01

    This paper compares calculated and measured energy spectra of implanted H{sup +} and O{sup +} ions on the assumption that the pickup geometry is quasi-parallel and about 1% of the waves generated by the cometray pickup process propagate backward (toward the comet). The model provides a good description of the implaneted O{sup +} and H{sup +} energy distribution near the pickup energies. The thickness of the implanted ion velocity distribution shells was nearly constant between 2.50 {times} 10{sup 6} km and 1.20 {times} 10{sup 6} km (just outside the shock) along the inbound Giotto trajectory. The explanation is that the velocity diffusion coefficient and characteristic diffusion time vary approximately as 1/r and r, respectively, and therefore their product (which determines the velocity shell thickness) remains nearly constant.

  17. Temperature Activated Diffusion of Radicals through Ion Implanted Polymers.

    PubMed

    Wakelin, Edgar A; Davies, Michael J; Bilek, Marcela M M; McKenzie, David R

    2015-12-01

    Plasma immersion ion implantation (PIII) is a promising technique for immobilizing biomolecules on the surface of polymers. Radicals generated in a subsurface layer by PIII treatment diffuse throughout the substrate, forming covalent bonds to molecules when they reach the surface. Understanding and controlling the diffusion of radicals through this layer will enable efficient optimization of this technique. We develop a model based on site to site diffusion according to Fick's second law with temperature activation according to the Arrhenius relation. Using our model, the Arrhenius exponential prefactor (for barrierless diffusion), D0, and activation energy, EA, for a radical to diffuse from one position to another are found to be 3.11 × 10(-17) m(2) s(-1) and 0.31 eV, respectively. The model fits experimental data with a high degree of accuracy and allows for accurate prediction of radical diffusion to the surface. The model makes useful predictions for the lifetime over which the surface is sufficiently active to covalently immobilize biomolecules and it can be used to determine radical fluence during biomolecule incubation for a range of storage and incubation temperatures so facilitating selection of the most appropriate parameters.

  18. On the characteristics of ion implanted metallic surfaces inducing dropwise condensation of steam.

    PubMed

    Rausch, Michael H; Leipertz, Alfred; Fröba, Andreas P

    2010-04-20

    The present work provides new information on the characteristics of ion implanted metallic surfaces responsible for the adjustment of stable dropwise condensation (DWC) of steam. The results are based on condensation experiments and surface analyses via contact angle (CA) and surface free energy (SFE) measurements as well as scanning electron microscopy (SEM). For studying possible influences of the base material and the implanted ion species, commercially pure titanium grade 1, aluminum alloy Al 6951, and stainless steel AISI 321 were treated with N(+), C(+), O(+), or Ar(+) using ion beam implantation technology. The studies suggest that chemically inhomogeneous surfaces are instrumental in inducing DWC. As this inhomogeneity is apparently caused by particulate precipitates bonded to the metal surface, the resulting nanoscale surface roughness may also influence the condensation form. On such surfaces nucleation mechanisms seem to be capable of maintaining DWC even when CA and SFE measurements indicate increased wettability. The precipitates are probably formed due to the supersaturation of ion implanted metal surfaces with doping elements. For high-alloyed materials like AISI 321 or Hastelloy C-276, oxidation stimulated by the condensation process obviously tends to produce similar surfaces suitable for DWC.

  19. Photoluminescence study of self-interstitial clusters and extended defects in ion-implanted silicon

    NASA Astrophysics Data System (ADS)

    Giri, P. K.

    2003-12-01

    We report on the photoluminescence (PL) studies of self-interstitial (I) clustering in ion-implanted Si at various stages of post-implantation annealing. Low-temperature PL measurements on as-implanted and low-temperature annealed (up to 450°C) samples show sharp X and W bands at 1200 and 1218 nm which are attributed to I4 and I3 clusters, respectively. Annealing at 600°C shows a drastic change in the PL spectra. In case of high-energy self-ion-implanted samples, 600°C annealing produces several peaks in the range 1250-1400 nm. For longer duration annealing, two broad bands form at 1322 and 1392 nm irrespective of the ion fluence. These PL signatures are attributed to I8 clusters and/or (1 0 0) I-chains, and they are believed to be the precursor of {3 1 1} rod-like defects. For annealing above 600°C and for fluence ⩾1×1013 cm-2, a sharp PL band is observed at 1376 nm and it is attributed to {3 1 1} rod-like defects. At higher fluences, an additional broad band appears in the PL spectrum at ∼1576 nm which is related to residual ion-damage or extended defect formation. These results illustrate the potential of silicon I-clusters as a possible source of light emission from Si.

  20. The influence of nitrogen ion implantation on microhardness of the Stellite 6 alloy

    NASA Astrophysics Data System (ADS)

    Budzyński, P.; Kamiński, M.; Pałka, K.; Droździel, A.; Wiertel, M.

    2016-09-01

    Cobalt alloys known as Stellite used to produce or surfacing machine elements subjected to combustion gases and heat. They are used a currently in the manufacture of valves and valve seats in internal combustion engines. Because of the small thermal conductivity, stellite may not be subjected heat treatment. In order to improve the mechanical properties of cobalt alloys, samples were implanted with nitrogen ions with 65 keV energy and ion dose of 1·1016, 5·1016, 1·1017 N+/cm2. The influence of ion implantation on properties of strength was determined by measuring microhardness using a Vickers hardness test. The measurement results allowed to determine the increase in the microhardness of 20% with dose 5·1016 N+/cm2 compared to the sample not implanted. Implantation of nitrogen ions can increase the strength of the valves and the valve seats having Stellite without changing the external dimensions of the final element, and without interfering with its inner structure by low-temperature of modification the surface layer.

  1. Beam dynamics of a double-gap acceleration cell for ion implantation with multiple atomic species

    SciTech Connect

    Wadlinger, E.A.; Lysenko, W.P.; Rusnak, B.; Saadatmand, K.

    1997-02-01

    As a result of our work on ion implantation, we derived equations for the beam dynamics of a two-gap-resonator cavity for accelerating and bunching various ion species of varying energies with the cavity designed for one particular ion species of a given energy (the design-reference particle). A two gap structure is useful at low resonant frequencies where lumped circuit elements (inductors) can be used and the structure kept small. A single gap structure has the advantage that each gap can be independently phased to produce the desired beam dynamics behavior for various ion species and ion energies. However at low frequencies, single gap resonant structures can be large. We find that the two-gap structure, where the phase difference between gaps, for the design reference particle, is fixed at {pi} radians can give acceptable performance provided that the individual two gap cells in the entire accelerator are optimized for the ion species having the largest mass to charge ratio and having the maximum required output energy. Our equations show how to adjust the cavity phases and electric fields to obtain equivalent first-order accelerator performance for various ion species and energies. These equations allow for the effective evaluation of various accelerator concepts and can facilitate the tuning of a linac when changing energies and ion species. Extensive simulations have confirmed the efficacy of our equations. {copyright} {ital 1997 American Institute of Physics.}

  2. Pitting behavior of aluminum ion implanted with nitrogen

    SciTech Connect

    McCafferty, E.; Natishan, P.M.; Hubler, G.K.

    1997-07-01

    Ion implantation of {approx} 2 at% N into aluminum increased the pitting potential in 0.1 M sodium chloride by an average of 0.35 V. Surface analysis by x-ray photoelectron spectroscopy showed implanted nitrogen was present as several species: NH{sub 4}{sup +}, NO or NH{sub 3} (as a ligand), AIN, and weakly bound or interstitial nitrogen. With anodic polarization, there was an increase in the total amount of nitrogen in the near-surface region, a decrease in the relative amount of nitride, and an increase in the relative amount of NO or NH{sub 3}. These changes resulted from migration of implanted nitrogen from the substrate into the near-surface region with partial conversion of the AIN species to NO or NH{sub 3}. It was suggested that the effect of implanted nitrogen on pitting behavior of aluminum is similar to that in nitrogen-containing stainless steels, where nitrogen at the metal surface inhibits the dissolution kinetics or aids the repassivation process in the pit by forming NH{sub 4}{sup +} ions that buffer the pit electrolyte.

  3. Surface microanalytical studies of nitrogen ion-implanted steel

    NASA Astrophysics Data System (ADS)

    Dodd, Charles G.; Meeker, G. P.; Baumann, Scott M.; Norberg, James C.; Legg, Keith O.

    1985-03-01

    Five types of industrial steels, 1018, 52100, M-2, 440C, and 304 were ion implanted with nitrogen and subjected to surface microanalysis by three independent surface techniques: AES, RBS, and SIMS. The results provided understanding for earlier observations of the properties of various types of steel after nitrogen implantation. The steels that retained the most nitrogen and that have been reported to benefit the most in improved tribological properties from ion implantation were ferritic carbon and austenitic stainless steels, such as soft 1018 and 304, respectively. Heat-treated martensitic carbon steels such as 52100 and M-2 tool steel were found to retain the least nitrogen, and they have been reported to benefit less from nitrogen implantation; however, the interaction of transition metal carbides in M-2 with nitrogen has not been clarified. The data showed that 440C steel retained as much nitrogen as 1018 and 304, but treatment benefits may be limited to improvements in properties related to toughness and impact resistance.

  4. Effect of ion implantation on subsequent erosion and wear behavior of solids

    SciTech Connect

    McHargue, C.J.

    1985-01-01

    The removal of material from a solid surface by mechanical forces is influenced by material properties (hardness, fracture toughness, yield strength, surface free energy) as well as system parameters (force, velocity of loading, environment). Ion implantation can modify many of the material properties either by directly affecting the deformation characteristics or indirectly by affecting the chemical or phase composition at the surface. The various forms of wear and erosion are analyzed to determine the material and system parameters which control material removal. The effects of implantation on these critical parameters are noted and examples of changes in surface topography under various test conditions are discussed. 18 figs.

  5. Characterization of PEEK, PET and PI implanted with Mn ions and sub-sequently annealed

    NASA Astrophysics Data System (ADS)

    Mackova, A.; Malinsky, P.; Miksova, R.; Pupikova, H.; Khaibullin, R. I.; Slepicka, P.; Gombitová, A.; Kovacik, L.; Svorcik, V.; Matousek, J.

    2014-04-01

    ) and energies used in our former experiments. Interesting differences were found in Mn concentration distribution, Mn nano-particle creation and structural changes comparing to Ni, Co ions implantation into the same polymers.

  6. The enhanced anticoagulation for graphene induced by COOH(+) ion implantation.

    PubMed

    Liu, Xiaoqi; Cao, Ye; Zhao, Mengli; Deng, Jianhua; Li, Xifei; Li, Dejun

    2015-01-01

    Graphene may have attractive properties for some biomedical applications, but its potential adverse biological effects, in particular, possible modulation when it comes in contact with blood, require further investigation. Little is known about the influence of exposure to COOH(+)-implanted graphene (COOH(+)/graphene) interacting with red blood cells and platelets. In this paper, COOH(+)/graphene was prepared by modified Hummers' method and implanted by COOH(+) ions. The structure and surface chemical and physical properties of COOH(+)/graphene were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle measurement. Systematic evaluation of anticoagulation, including in vitro platelet adhesion assays and hemolytic assays, proved that COOH(+)/graphene has significant anticoagulation. In addition, at the dose of 5 × 10(17) ions/cm(2), COOH(+)/graphene responded best on platelet adhesion, aggregation, and platelet activation.

  7. FIM/IAP/TEM studies of ion implanted nickel emitters

    SciTech Connect

    Walck, S.D.; Hren, J.J.

    1985-01-01

    Accurate depth profiling of implanted hydrogen and its isotopes in metals is extremely important. Field ion microscopy and atom-probe techniques provide the most accurate depth profiling analytical method of any available. In addition, they are extremely sensitive to hydrogen. This paper reports our early work on hydrogen trapping at defects in metals using the Field Ion Microscope/Imaging Atom Probe (FIM/IAP). Our results deal primarily with the control experiments required to overcome instrumental difficulties associated with in situ implantation and the influence of a high electric field. Transmission Electron Microscopy (TEM) has been used extensively to independently examine the influence of high electric fields on emitters. 11 references, 7 figures.

  8. Control of microelectromechanical systems membrane curvature by silicon ion implantation

    NASA Astrophysics Data System (ADS)

    Jin, S.; Mavoori, H.; Kim, J.; Aksyuk, V. A.

    2003-09-01

    Thin silicon membranes in microelectromechanical systems (MEMS) optical devices such as beam-steering, movable mirrors may exhibit undesirable curvature when their surface is metallized with light-reflecting metals to enhance optical performance. We have applied Si+ ion implantations at dose levels of 0.4-5×1016/cm2 into the gold metallization layer to successfully reduce the mirror curvature as well as the degree of its temperature-dependent changes. The curvature change as well as the temperature dependence is found to be dependent on the implantation dose. The mechanism of the observed curvature flattening effect is attributed mostly to the induced compressive stress in gold metallization caused by the insertion of foreign implanted atoms of silicon. Such a Si implantation approach can be useful as a means for post-fabrication correction of unwanted curvature in MEMS membranes, as well as a technique to intentionally introduce a desired degree of curvature if needed. A convenient blanket implantation process can be utilized with minimal contamination problems as Si is a common element already present in the MEMS.

  9. HRTEM and XPS study of nanoparticle formation in Zn{sup +} ion implanted Si

    SciTech Connect

    Privezentsev, Vladimir V.; Tabachkova, Natalya Yu.; Lebedinskii, Yurii Yu.

    2014-02-21

    The results of investigations of nanoparticles (NPs) formation in a near surface layer of Si substrate after {sup 64}Zn{sup +} ion implantation and thermal annealing are presented. The implantation energy and dose were correspondently E=100keV and D = 2×10{sup 16} cm{sup −2}. Than the samples were subsequently isochronously subjected to furnace annealing during 1h in neutral atmosphere at 400°C and in oxygen atmosphere at 600, 700 and 800°C. The visualization of near surface layer was carried out by transmission electron microscopy with addition of electron diffraction. The energy dispersive spectroscopy was used for value of impurity concentration. The charge state of implanted zinc, silicon matrix atom and oxygen and were carried out by X-ray photoelectron spectroscopy and Auger electron spectroscopy.

  10. Elastic properties of sub-stoichiometric nitrogen ion implanted silicon

    NASA Astrophysics Data System (ADS)

    Sarmanova, M. F.; Karl, H.; Mändl, S.; Hirsch, D.; Mayr, S. G.; Rauschenbach, B.

    2015-04-01

    Elastic properties of sub-stoichiometric nitrogen implanted silicon were measured with nanometer-resolution using contact resonance atomic force microscopy (CR-AFM) as function of ion fluence and post-annealing conditions. The determined range of indentation moduli was between 100 and 180 GPa depending on the annealing duration and nitrogen content. The high indentation moduli can be explained by formation of Si-N bonds, as verified by X-ray photoelectron spectroscopy.

  11. Urinary catheter with polyurethane coating modified by ion implantation

    NASA Astrophysics Data System (ADS)

    Kondyurina, I.; Nechitailo, G. S.; Svistkov, A. L.; Kondyurin, A.; Bilek, M.

    2015-01-01

    A low friction urinary catheter that could be used without a lubricant is proposed in this work. A polyurethane coating was synthesised on the surface of a metal guide wire catheter. Ion implantation was applied to surface modify the polyurethane coating. FTIR ATR, wetting angle, AFM and friction tests were used for analysis. Low friction was found to be provided by the formation of a hard carbonised layer on the polyurethane surface.

  12. Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function

    PubMed Central

    Wang, Guifang; Li, Jinhua; Zhang, Wenjie; Xu, Lianyi; Pan, Hongya; Wen, Jin; Wu, Qianju; She, Wenjun; Jiao, Ting; Liu, Xuanyong; Jiang, Xinquan

    2014-01-01

    As one of the important ions associated with bone osseointegration, magnesium was incorporated into a micro/nanostructured titanium surface using a magnesium plasma immersion ion-implantation method. Hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 30 minutes (Mg30) and hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 60 minutes (Mg60) were used as test groups. The surface morphology, chemical properties, and amount of magnesium ions released were evaluated by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, field-emission transmission electron microscopy, and inductively coupled plasma-optical emission spectrometry. Rat bone marrow mesenchymal stem cells (rBMMSCs) were used to evaluate cell responses, including proliferation, spreading, and osteogenic differentiation on the surface of the material or in their medium extraction. Greater increases in the spreading and proliferation ability of rBMMSCs were observed on the surfaces of magnesium-implanted micro/nanostructures compared with the control plates. Furthermore, the osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP) genes were upregulated on both surfaces and in their medium extractions. The enhanced cell responses were correlated with increasing concentrations of magnesium ions, indicating that the osteoblastic differentiation of rBMMSCs was stimulated through the magnesium ion function. The magnesium ion-implanted micro/nanostructured titanium surfaces could enhance the proliferation, spreading, and osteogenic differentiation activity of rBMMSCs, suggesting they have potential application in improving bone-titanium integration. PMID:24940056

  13. The Development of In-Situ Ion Implant Cleaning Processes

    NASA Astrophysics Data System (ADS)

    Bishop, Steve; Kaim, Robert; Yedave, Sharad; Arnó, Josep; DiMeo, Frank; Wodjenski, Mike

    2006-11-01

    Considerable gains in implanter utilization efficiency can be attained with in-situ cleaning of deposited material, particularly in and around the ion source. Different methods of in-situ cleaning are described, and we discuss the relative merits of several chemical reagents. We introduce XeF2, a new and promising reagent for in-situ cleaning and present some preliminary experiments showing its ability to etch dopant materials. We also show that in some cases etching by XeF2 can be selective with respect to ion source construction materials such as tungsten.

  14. The effect of ion implantation on cellular adhesion.

    PubMed

    Howlett, C R; Evans, M D; Wildish, K L; Kelly, J C; Fisher, L R; Francis, G W; Best, D J

    1993-01-01

    As there are only a finite number of materials suitable for orthopaedic reconstruction, considerable effort has been devoted recently to investigating ways of altering the surface chemistry of prosthetic materials without altering their bulk properties. Ion beam implantation is one such technique which is appropriate for orthopaedic reconstructive materials. This paper investigates the early effect of ion beam modification on cellular attachment of bone derived cells using a prototype device which measures the strength of attachment of individual cells to a silicon substratum. The results point to several conclusions. (1) There is no evidence that ion beam implantation with nitrogen, phosphorus, manganese or magnesium produces increased adhesion of human bone derived cells. (2) Surface etching with hydrofluoric acid, electron bombardment and thermal oxidation increases the strength of attachment between cells and substrata. (3) There is a correlation between wettability and rate of cellular attachment to oxygen implanted substrata during the first 2 h after cellular seeding. However, the increase in cellular attachment cannot be entirely explained by the change in critical surface tension or via increased fibronectin attachment to the substrata.

  15. Defect engineering in the MOSLED structure by ion implantation

    NASA Astrophysics Data System (ADS)

    Prucnal, S.; Wójtowicz, A.; Pyszniak, K.; Drozdziel, A.; Zuk, J.; Turek, M.; Rebohle, L.; Skorupa, W.

    2009-05-01

    When amorphous SiO2 films are bombarded with energetic ions, various types of defects are created as a consequence of ion-solid interaction (peroxy radicals POR, oxygen deficient centres (ODC), non-bridging oxygen hole centres (NBOHC), E‧ centres, etc.). The intensity of the electroluminescence (EL) from oxygen deficiency centres at 2.7 eV, non-bridging oxygen hole centres at 1.9 eV and defect centres with emission at 2.07 eV can be easily modified by the ion implantation of the different elements (H, N, O) into the completely processed MOSLED structure. Nitrogen implanted into the SiO2:Gd layer reduces the concentration of the ODC and NBOHC while the doping of the oxygen increases the EL intensity observed from POR defect and NBOHC. Moreover, after oxygen or hydrogen implantation into the SiO2:Ge structure fourfold or fifth fold increase of the germanium related EL intensity was observed.

  16. Observations of Ag diffusion in ion implanted SiC

    DOE PAGESBeta

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; Jerry L. Hunter, Jr.; Giordani, Andrew J.; Allen, Todd R.

    2015-03-17

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated,more » including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.« less

  17. High-level damage saturation below amorphisation in ion implanted β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Wendler, Elke; Treiber, Enrico; Baldauf, Julia; Wolf, Steffen; Ronning, Carsten

    2016-07-01

    Ion implantation induced effects were studied in single crystalline <0 1 0> oriented bulk β-Ga2O3 at room temperature using P, Ar and Sn ions with ion fluences ranging from 1 × 1011 up to 2 × 1015 cm-2. Rutherford backscattering spectrometry in channelling configuration (RBS) using He ions of various ion energies was applied for damage analysis. Clear damage peaks are visible in the RBS spectra. The concentration of displaced lattice atoms in the maximum of the distribution (as deduced from the channelling spectra) increases with increasing ion fluence up to a saturation value of about 90%. Once this level is reached, further implantation only leads to a broadening of the distribution, while the concentration remains at 90%. The ion fluence dependence of maximum damage concentration is represented by a common model assuming two types of defects: point defects (which can recombine with those already existing from previous ion impacts) and non-recombinable damage clusters. The damage produced dominantly consists of randomly displaced lattice atoms, which indicates point defects and point defect complexes. For higher damage levels also a contribution of correlated displaced lattice atoms can be identified. This suggests that the damage clusters are not amorphous. A possible explanation of the observed results could be the formation of another phase of Ga2O3.

  18. Ion implantation for corrosion inhibition of aluminum alloys in saline media

    NASA Astrophysics Data System (ADS)

    Williams, J. M.; Gonzales, A.; Quintana, J.; Lee, I.-S.; Buchanan, R. A.; Burns, F. C.; Culbertson, R. J.; Levy, M.; Treglio, J. R.

    1991-07-01

    The effects of ion implantation treatments on corrosion of 2014 and 1100 aluminum in saline media were investigated. Implanted constituents were N, Si, Ti, and Cr. Techniques included salt spray testing, electrochemical studies, Rutherford backscattering spectrometry, and profilometry. The principal conclusion was that ion implantation of Cr is of potential practical benefit for corrosion inhibition of 2014 Al in salt environments.

  19. Mechanical properties of ion-beam-textured surgical implant alloys

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.

    1977-01-01

    An electron-bombardment Hg ion thruster was used as an ion source to texture surfaces of materials used to make orthopedic and/or dental prostheses or implants. The materials textured include 316 stainless steel, titanium-6% aluminum, 4% vanadium, and cobalt-20% chromium, 15% tungsten. To determine the effect of ion texturing on the ultimate strength and yield strength, stainless steel and Co-Cr-W alloy samples were tensile tested to failure. Three types of samples of both materials were tested. One type was ion-textured (the process also heats each sample to 300 C), another type was simply heated to 300 C in an oven, and the third type was untreated. Stress-strain diagrams, 0.2% offset yield strength data, total elongation data, and area reduction data are presented. Fatigue specimens of ion textured and untextured 316 stainless steel and Ti-6% Al-4% V were tested. Included as an ion textured sample is a Ti-6% Al-4% V sample which was ion machined by means of Ni screen mask so as to produce an array of 140 mu m x 140 mu m x 60 mu m deep pits. Scanning electron microscopy was used to characterize the ion textured surfaces.

  20. Experimental results of a dual-beam ion source for 200 keV ion implanter

    SciTech Connect

    Chen, L. H. Cui, B. Q.; Ma, R. G.; Ma, Y. J.; Tang, B.; Huang, Q. H.; Jiang, W. S.; Zheng, Y. N.

    2014-02-15

    A dual beam ion source for 200 keV ion implanter aimed to produce 200 keV H{sub 2}{sup +} and He{sup +} beams simultaneously has been developed. Not suitable to use the analyzing magnet, the purity of beam extracted from the source becomes important to the performance of implanter. The performance of ion source was measured. The results of experiments show that the materials of inlet tube of ion source, the time of arc ionization in ion source, and the amount of gas flow have significant influence on the purity of beam. The measures by using copper as inlet tube material, long time of arc ionization, and increasing the inlet of gas flow could effectively reduce the impurity of beam. And the method using the gas mass flow controller to adjust the proportion of H{sub 2}{sup +} and He{sup +} is feasible.

  1. Corrosion behaviors of Mo coating on stainless steel 316 substrates implanted by different nitrogen ion fluences

    NASA Astrophysics Data System (ADS)

    Mojtahedzadeh Larijani, Madjid; Bafandeh, Nastaran

    2014-03-01

    The molybdenum nitride coating was produced by nitrogen ion implantation of the molybdenum layer deposited on the stainless steel 316 (SS) substrates. At first, molybdenum layers were deposited on the substrates by ion beam sputtering method, then nitrogen ions with an energy of 30 keV and a fluence between 1×1017 and 12×1017 N+ cm-2 were implanted in Mo/SS system. Crystal structure and topography of the surface are investigated by grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM) image respectively. XRD patterns showed the formation of molybdenum nitride phases in all implanted samples. Corrosion tests showed that the corrosion resistance of the samples strongly depends on the nitrogen applied fluences. A considerable improvement of corrosion performance by increasing ions fluences was observed. The lowest corrosion current density with amount of 0.1 μA/cm2 was obtained at 12×1017 ions/cm2 fluence in our case.

  2. Titanium and zirconium based alloys modified by intensive plastic deformation and nitrogen ion implantation for biocompatible implants.

    PubMed

    Byeli, A V; Kukareko, V A; Kononov, A G

    2012-02-01

    Titanium and zirconium alloys are considered to be promising materials for orthopaedics because of their biocompatibility with tissues. Their main drawbacks for application as implants have generally been considered to be insufficient levels of mechanical and tribological properties. In this research the influence of equal channel angular pressing and nitrogen ion implantation on the structure and properties of Ti and Zr alloys has been investigated to ensure the optimum combination of the bulk material and surface layer properties. The data obtained showed that equal channel angular pressing and nitrogen ion implantation can be efficiently used to improve bulk and surface properties of Ti and Zr based implants.

  3. The generation, detection and measurement of laser-induced carbon plasma ions and their implantation effects on brass substrate

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahbaz; Bashir, Shazia; Shahid Rafique, M.; Yousaf, Daniel; Ahmad, Riaz

    2016-05-01

    The generation, detection and measurement of laser-induced carbon plasma ions and their implantation effects on brass substrate have been investigated. Thomson parabola technique was employed to measure the energy and flux of carbon ions. The magnetic field of strength 80 mT was applied on the graphite plasma plume to provide an appropriate trajectory to the generated ions. The energy of carbon ions is 678 KeV for laser fluence of 5.1 J/cm2 which was kept constant for all exposures. The flux of ions varies from 32 × 1011 to 72 × 1014 ions/cm2 for varying numbers of laser pulses from 3000 to 12,000. In order to explore the ion irradiation effects on brass, four brass substrates were irradiated by carbon ions of different flux. Scanning electron microscope (SEM) and X-ray diffractometer (XRD) are used to analyze the surface morphology and crystallographic structure of ion-implanted brass, respectively. SEM analysis reveals the formation and growth of nano-/micro-sized cavities, pores and pits for the various ion flux for varying numbers of laser pulses from 3000 to 12,000. By increasing ion flux by increasing the number of pulses up to 9000 shots, the dendritic structures initiate to grow along with cavities and pores. At the maximum ion flux for 12,000 shots, the unequiaxed dendritic structures become distinct and the distance between the dendrites is decreased, whereas cavities, pores and pits are completely finished. The XRD analysis reveals that a new phase of ZnC (0012) is formed in the brass substrate after ion implantation. Universal tensile testing machine and Vickers microhardness tester are used to explore the yield stress, ultimate tensile strength and microhardness of ion-implanted brass substrate. The mechanical properties monotonically increase by increasing the ion flux. Variations in mechanical properties are correlated with surface and structural modifications of brass.

  4. Proteome Changes in Maize Embryo (Zea mays L) Induced by Ion Beam Implantation Treatment

    NASA Astrophysics Data System (ADS)

    Li, Yongliang; Tang, Jihua; Qin, Guangyong; Huo, Yuping; Tian, Shuangqi

    2009-08-01

    Low energy ion beam implantation was applied to the maize (Zea mays L) embryo proteome using two-dimensional gel electrophoresis. Protein profile analysis detected more than 1100 protein spots, 72 of which were determined to be expressed differently in the treated and control (not exposed to ion beam implantation) embryos. Of the 72 protein spots, 53 were up-regulated in the control and 19 were more abundantly expressed in the ion beam-treated embryos. The spots of up- or down-regulated proteins were identified by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). Among the identified proteins, 11 were up-regulated in the treated embryos. Four of these up-regulated proteins were antioxidant molecules, three were related to stress response, two to sugar metabolism and two were associated with heat shock response. Of the five proteins up-regulated in the control embryos, three were functionally related to carbohydrate metabolism; the functions of the remaining two proteins were unknown. The data collected during this study indicate that treatment of maize embryos with low energy ion beam implantation induces changes in stress tolerance enzymes/proteins, possibly as a result of alterations in metabolism.

  5. Two-dimensional boltzmann transport equation approach to simulation of local ion implantation

    NASA Astrophysics Data System (ADS)

    Komarov, F. F.; Mozolevski, I. E.; Rogach, V. P.

    1995-05-01

    A new theoretical model and software tool is proposed for simulation of two-dimensional local ion implantation in a target of arbitrary geometry. The program uses an algorithm of numerical solution of the boundary value problem for Boltzmann transport equation in two dimensions and permits to calculate the angular and energy distribution function of the particles moving in a multilayered multicomponent target. The program is essentially time saving and can be implemented on an IBM PC AT standard configuration computer.

  6. The influence of nitrogen ion implantation on the tribological properties of piston rings made of Hardox and Raex steels

    NASA Astrophysics Data System (ADS)

    Budzyński, P.; Kamiński, M.; Pyszniak, K.

    2016-09-01

    The implantation of nitrogen, carbon, and oxygen can be used for enhancing the tribological properties of critical components for internal combustion engines. Hardox and Raex steels have very similar strength parameters as for steel used for piston rings in internal combustion engines. An essential criterion when selecting material for the production of piston rings is a low friction factor and a low wear index. The aim of this study was to determine the extent to which these parameters can be enhanced by nitrogen ion implantation. Samples were implanted with nitrogen ions with 65 keV energy and the fluence of implanted ions set to 1.1017 N + /cm2. Friction and wear measurements were performed on a pin-on disc stand. The results demonstrate that implantation with nitrogen ions significantly reduces the friction factor and wear of Hardox 450 and Raex 400 steels. Implantation can and should be used for enhancing the tribological properties of steel used for friction elements in internal combustion engines, particularly when heat treatment is excluded. Final elements can be subjected to implantation, as the process does not change their dimensions.

  7. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    NASA Astrophysics Data System (ADS)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-12-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO2 implanted AISI 304 - examined for different implantation and annealing parameters - is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 1016 cm-2 (Ti+) and 1 × 1017 cm-2 (O+) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 1015 cm-2 (Ti+) and 1 × 1016 cm-2 (O+). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  8. Ion implantation effects on surface-mechanical properties of metals and polymers

    SciTech Connect

    Rao, G.R.

    1993-04-01

    Fatigue of 8 complex alloys based on Fe-13Cr-15Ni-2Mo-2Mn-0.2Ti-0.8Si- 0.06C, and single-crystal Fe-15Cr-15Ni, implanted with 400-keV B[sup +] and 550-keV N[sup +] (total dose 2.3[times]10[sup 16] ions/cm[sup 2]) was examined. 600 C creep was also examined. The dual implantation increased hardness but decreased fatigue life of the 8 complex alloys. An optimum strengthening level and a shift to grain boundary cracking were determined. The single crystals also showed reduced fatigue life after implantation. High temperature creep of E1 and B1 alloys were improved by the dual implantation. Four polymers (PE, polypropylene, polystyrene, polyethersulfone) were implanted with 200keV B[sup +] to 3 different doses. PS was also implanted with both B[sup +] and Ar[sup +]. Near-surface hardness and tribological properties were measured. The hardness increased with dose and energy; wear also improved, with an optimum dose. (DLC)

  9. Ion implantation effects on surface-mechanical properties of metals and polymers

    SciTech Connect

    Rao, G.R.

    1993-04-01

    Fatigue of 8 complex alloys based on Fe-13Cr-15Ni-2Mo-2Mn-0.2Ti-0.8Si- 0.06C, and single-crystal Fe-15Cr-15Ni, implanted with 400-keV B{sup +} and 550-keV N{sup +} (total dose 2.3{times}10{sup 16} ions/cm{sup 2}) was examined. 600 C creep was also examined. The dual implantation increased hardness but decreased fatigue life of the 8 complex alloys. An optimum strengthening level and a shift to grain boundary cracking were determined. The single crystals also showed reduced fatigue life after implantation. High temperature creep of E1 and B1 alloys were improved by the dual implantation. Four polymers (PE, polypropylene, polystyrene, polyethersulfone) were implanted with 200keV B{sup +} to 3 different doses. PS was also implanted with both B{sup +} and Ar{sup +}. Near-surface hardness and tribological properties were measured. The hardness increased with dose and energy; wear also improved, with an optimum dose. (DLC)

  10. FeN foils by nitrogen ion-implantation

    SciTech Connect

    Jiang, Yanfeng; Wang, Jian-Ping; Al Mehedi, Md; Fu, Engang; Wang, Yongqiang

    2014-05-07

    Iron nitride samples in foil shape (free standing, 500 nm in thickness) were prepared by a nitrogen ion-implantation method. To facilitate phase transformation, the samples were bonded on the substrate followed by a post-annealing step. By using two different substrates, single crystal Si and GaAs, structural and magnetic properties of iron nitride foil samples prepared with different nitrogen ion fluences were characterized. α″-Fe{sub 16}N{sub 2} phase in iron nitride foil samples was obtained and confirmed by the proposed approach. A hard magnetic property with coercivity up to 780 Oe was achieved for the FeN foil samples bonded on Si substrate. The feasibility of using nitrogen ion implantation techniques to prepare FeN foil samples up to 500 nm thickness with a stable martensitic phase under high ion fluences has been demonstrated. A possible mechanism was proposed to explain this result. This proposed method could potentially be an alternative route to prepare rare-earth-free FeN bulk magnets by stacking and pressing multiple free-standing thick α″-Fe{sub 16}N{sub 2} foils together.

  11. Plasma source ion implantation technology for engineering surfaces of materials

    NASA Astrophysics Data System (ADS)

    Wilson, E. H.; Lawrence, D. F.; Sridharan, K.; Sandstrom, P. W.

    2001-07-01

    Plasma Source Ion Implantation* (PSII) is a non-line-of-sight technique for energetic ion surface modification of materials. At the University of Wisconsin there are presently three PSII systems two of which measure about 1 m3 and a third that measures 0.1 m3. Plasma generation is achieved in vacuum through filamentary, RF, DC-pulsed, or glow discharge. High voltage pulsing is achieved using a tetrode modulator that pulses at up to 60kV or by a solid-state pulser that can supply 20kV. Recently, a crossatron modulator capable of 40kV and 1kA peak anode current was built in-house. Surface properties of a wide range of materials have been beneficially modified using PSII in ion implantation, film deposition, energetic ion mixing, and sputtering modes. Industrial field testing of PSII-treated parts has yielded promising results but successful commercialization requires judicious selection of applications which effectively exploit the unique aspects of PSII as a surface modification tool.*J.R. Conrad U.S. Patent#4764394, 1988

  12. Evaluation of the ion implantation process for production of solar cells from silicon sheet materials

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.

    1983-01-01

    For the ion implantation tooling was fabricated with which to hold dendritic web samples. This tooling permits the expeditious boron implantation of the back to form the back surface field (BSF). Baseline BSF web cells were fabricated.

  13. Study of the corrosion rate behavior of ion implanted Fe-based alloys

    SciTech Connect

    Cai Weiping; Tian Wei; Wu Run ); Godechot, X.; Brown, I. )

    1991-06-01

    We report on some studies we have made of the time evolution of the corrosion behavior of ion implanted samples of pure iron, medium carbon steel, and 18-8 Cr-Ni stainless steel. Ti, Cr, Ni, Cu, Mo and Yb were implanted at mean ion energies near 100 keV and at doses up to 1 {times} 10{sup 17} cm{sup {minus}2} using a Mevva metal ion implantation facility. A novel feature of this experiment was the simultaneous implantation with several different implanted species. The implanted samples were immersed in sulfuric acid solution at 40{degrees}C and the corrosion monitored as a function of time. The loss in mass was accurately measured using atomic absorption spectroscopy. The functional dependence of the corrosion behavior was established for all samples. The cumulative mass loss Q is given as a function of time t by Q = At{sup N}, where A and N are parameters; thus the corrosion rate V is given by V = ANt{sup N-1}. A is dominated by the initial mass loss and N reflects the long-time corrosion behavior. The values of the parameters A and N were obtained by a least-squares regression for all the samples investigated. We determined that for the samples investigated here, N > 1 always and V increases with time throughout the experimental duration. In this paper we summarize the experimental results and discuss the effect of A and N on corrosion rate and the relationship between the corrosion current density and the parameters A and N. 11 refs., 4 figs.

  14. High- Tc superconductor characteristics control by ion implantation

    NASA Astrophysics Data System (ADS)

    Matsui, S.; Matsutera, H.; Yoshitake, T.; Fujita, J.; Satoh, T.

    1989-03-01

    Transition temperature ( Tc) control and annealing effects of YBa 2Cu 3O x and Bi 2Sr 1.4 Ca 1.8Cu 2.2O y superconductor thin films implanted by 200 keV Ne + have been investigated. YBa 2Cu 3 O xTc end points for 0, 1 × 10 14, 1 × 10 15 and 1 × 10 16 ions/cm 2 doses are 75, 71, 62 and 16 K, respectively. On the other hand, Bi 2Sr 1.4Ca 1.8Cu 2.2O y, Tc end points for 0, 1 × 10 12 and 1 × 10 13 ions/cm 2 doses are 78, 76 and 54 K, respectively, c lattice constant increases were observed for the implanted films. It is confirmed that the superconducting characteristics for films, are recovered by anneaing in O 2 atomosphere. Moreover, microcrystal growth caused by annealing the implanted YBa 2Cu 3O x film was observed on the surface.

  15. Development of high productivity medium current ion implanter 'EXCEED 3000AH Evo2'

    SciTech Connect

    Ikejiri, T.; Hamamoto, N.; Hisada, S.; Iwasawa, K.; Kawakami, K.; Kokuryu, K.; Miyamoto, N.; Nogami, T.; Sakamoto, T.; Sasada, Y.; Tanaka, K.; Yamamoto, Y.; Yamashita, T.

    2011-01-07

    High productivity medium current ion implanter 'EXCEED 3000AH Evo2' is developed. In semiconductor manufacturing field, improvement of the productivity is continuously required. Especially mass production lines recently tend to use low energy beam and 2 pass implant for higher throughput. The 'Evo2' has been developed in an effort to fulfill these requirements. The 'Evo2' increases low energy beam current by 150 to 250% by applying electrostatic einzel lens called 'V-lens' installed at the exit of the Collimator magnet. This lens is also able to control the beam incident angle by adjusting the upper and lower electrode's voltages independently. Besides, mechanical scanning speed is enhanced to minimize process time of 2 pass implant, while also frequency of the fast beam scanning is enhanced to keep dose uniformity. In addition, a vacuum pumping capability at the target chamber is enhanced to reduce a vacuum waiting time during processing photo-resist wafers. This improvement achieved to reduce process time by 40% for a specific recipe. Furthermore, a modified Indirectly Heated Cathode with electron active Reflection 2 (IHC-R2) ion source which has a long life time filament has been installed. These new elements and/or functions have realized typically 25% improvement of productivity compared to standard EXCEED, and also improve a precise implantation capability.

  16. A nuclear reaction analysis and optical microscopy study on controlled growth of large SiC nanocrystals on Si formed by low-energy ion implantation and electron beam annealing

    NASA Astrophysics Data System (ADS)

    Markwitz, A.; Lucas, F.; Rusterucci, J.; Kennedy, J.; Trompetter, W. J.; Rudolphi, M.; Ryan, M.; White, V.; Johnson, S.

    2006-08-01

    Ion implantation of 20 keV 12C+ ions into (1 0 0), p-type silicon with ion fluence of 8 × 1016 at. cm-2 followed by an electron beam annealing under high vacuum conditions has been performed to investigate the formation of crystalline nano-scale SiC features on the silicon surface. Depending on the implantation and annealing conditions, the SiC nanocrystal numbers and average spacing can be controlled by adjusting the implantation and annealing conditions. Typically 300-1000 SiC nanocrystals are produced per 1000 μm2 spaced 0.7-1.2 ± 0.1 μm. Nuclear reaction analysis measurements using the deuterium induced 12C(d, p)13C reaction show that carbon is present in the implanted and annealed samples and varies only to a small degree by the annealing time. However, by not using a liquid nitrogen trap surrounding the targets during implantation, the carbon contamination on the surface reduces the number of SiC nanocrystals and increases their average distance. Specific results are discussed.

  17. Trapping of interstitials during ion implantation in silicon

    SciTech Connect

    Culbertson, R.J.; Pennycook, S.J.

    1984-01-01

    The solid phase epitaxial regrowth of silicon implanted with a group V dopant, such as antimony, results in excellent incorporation of the dopant atoms into silicon lattice sites. However, annealing at higher temperatures or longer times results in transient dopant precipitation with a diffusion coefficient up to five orders of magnitude above that of tracer diffusion and with a reduced activation energy. This precipitation is accompanied by the nucleation of dislocation loops that are interstitial in nature, and the transient ceases as the dislocation loops develop. It is believed that Si interstitials are trapped in a stable defect complex during the implantation process. Although they survive SPE these complexes dissolve at higher temperatures and release a large supply of interstitials which serve to promote dopant migration via an interstitialcy mechanism until they condense to form the observed dislocation loops. By following the Sb implantation with an implantation of B to an equivalent concentration profile the loop formation is efficiently suppressed. For higher B concentrations the Sb precipitation is no longer observed. Results for As implantation are similar to Sb except that As precipitates cannot be directly observed. Calculations of the dopant and interstitial concentration depth distributions were also performed.

  18. Plasma-based ion implantation and deposition: A review of physics,technology, and applications

    SciTech Connect

    Pelletier, Jacques; Anders, Andre

    2005-05-16

    After pioneering work in the 1980s, plasma-based ion implantation (PBII) and plasma-based ion implantation and deposition (PBIID) can now be considered mature technologies for surface modification and thin film deposition. This review starts by looking at the historical development and recalling the basic ideas of PBII. Advantages and disadvantages are compared to conventional ion beam implantation and physical vapor deposition for PBII and PBIID, respectively, followed by a summary of the physics of sheath dynamics, plasma and pulse specifications, plasma diagnostics, and process modeling. The review moves on to technology considerations for plasma sources and process reactors. PBII surface modification and PBIID coatings are applied in a wide range of situations. They include the by-now traditional tribological applications of reducing wear and corrosion through the formation of hard, tough, smooth, low-friction and chemically inert phases and coatings, e.g. for engine components. PBII has become viable for the formation of shallow junctions and other applications in microelectronics. More recently, the rapidly growing field of biomaterial synthesis makes used of PBII&D to produce surgical implants, bio- and blood-compatible surfaces and coatings, etc. With limitations, also non-conducting materials such as plastic sheets can be treated. The major interest in PBII processing originates from its flexibility in ion energy (from a few eV up to about 100 keV), and the capability to efficiently treat, or deposit on, large areas, and (within limits) to process non-flat, three-dimensional workpieces, including forming and modifying metastable phases and nanostructures. We use the acronym PBII&D when referring to both implantation and deposition, while PBIID implies that deposition is part of the process.

  19. Effect of plasma immersion ion implantation in TiNi implants on its interaction with animal subcutaneous tissues

    NASA Astrophysics Data System (ADS)

    Lotkov, Aleksandr I.; Kashin, Oleg A.; Kudryavtseva, Yuliya A.; Shishkova, Darya K.; Krukovskii, Konstantin V.; Kudryashov, Andrey N.

    2016-08-01

    Here we investigated in vivo interaction of Si-modified titanium nickelide (TiNi) samples with adjacent tissues in a rat subcutaneous implant model to assess the impact of the modification on the biocompatibility of the implant. Modification was performed by plasma immersion ion processing, which allows doping of different elements into surface layers of complex-shaped articles. The aim of modification was to reduce the level of toxic Ni ions on the implant surface for increasing biocompatibility. We identified a thin connective tissue capsule, endothelial cells, and capillary-like structures around the Si-modified implants both 30 and 90 days postimplantation. No signs of inflammation were found. In conclusion, modification of TiNi samples with Si ions increases biocompatibility of the implant.

  20. Xenon doping of glow discharge polymer by ion implantation

    NASA Astrophysics Data System (ADS)

    Shin, Swanee J.; Kucheyev, Sergei O.; Orme, Christine A.; Youngblood, Kelly P.; Nikroo, Abbas; Moreno, Kari A.; Chen, Bryan; Hamza, Alex V.

    2012-05-01

    We demonstrate controlled doping of a glow discharge polymer by implantation with 500 keV Xe ions at room temperature. The Xe retention exhibits a threshold behavior, with a threshold dose of ˜2 × 1014 cm-2. Doping is accompanied by irradiation-induced changes in the polymer composition, including gradual H loss and a more complex non-monotonic behavior of the O concentration. The matrix composition saturates at C0.77H0.22O0.01 for Xe doses above ˜5 × 1014 cm-2 and up to the maximum dose studied (5 × 1015 cm-2). The retention mechanism is attributed to the modification of the polymer from a chain-like to clustered ring structure. The dopant profile and the elemental composition of the implanted polymer exhibit good stability upon thermal annealing up to 305 °C.

  1. The influence of silver-ion doping using ion implantation on the luminescence properties of Er-Yb silicate glasses

    NASA Astrophysics Data System (ADS)

    Stanek, S.; Nekvindova, P.; Svecova, B.; Vytykacova, S.; Mika, M.; Oswald, J.; Mackova, A.; Malinsky, P.; Spirkova, J.

    2016-03-01

    A set of zinc-silicate glasses with different ratios of erbium and ytterbium was fabricated. To achieve Ag-rich thin films in a sub-surface layer, ion-implantation technique at an energy of 1.2 MeV and 1.7 MeV with a fluence of 1 × 1016 cm-2 was used. Post-implantation annealing was also applied. Changes in the spectroscopic and lasing properties of erbium ions as a function of implantation fluence of silver were studied with the aim to assess the positive effect of silver as a sensitiser of erbium luminescence. Therefore, absorption spectra in the visible range as well as luminescence spectra in the near-infrared range were measured and partially also the 4I11/2-4I15/2 transition of the erbium ion was studied. The results showed that silver positively influenced luminescence intensity at 1530 nm by increasing it almost three times. The biggest increase was achieved in glass with the highest concentration of erbium. Luminescence lifetime was not significantly influenced by the presence of silver and still remained around 10 ms.

  2. Single ion implantation for single donor devices using Geiger mode detectors

    NASA Astrophysics Data System (ADS)

    Bielejec, E.; Seamons, J. A.; Carroll, M. S.

    2010-02-01

    Electronic devices that are designed to use the properties of single atoms such as donors or defects have become a reality with recent demonstrations of donor spectroscopy, single photon emission sources, and magnetic imaging using defect centers in diamond. Ion implantation, an industry standard for atom placement in materials, requires augmentation for single ion capability including a method for detecting a single ion arrival. Integrating single ion detection techniques with the single donor device construction region allows single ion arrival to be assured. Improving detector sensitivity is linked to improving control over the straggle of the ion as well as providing more flexibility in lay-out integration with the active region of the single donor device construction zone by allowing ion sensing at potentially greater distances. Using a remotely located passively gated single ion Geiger mode avalanche diode (SIGMA) detector we have demonstrated 100% detection efficiency at a distance of >75 µm from the center of the collecting junction. This detection efficiency is achieved with sensitivity to ~600 or fewer electron-hole pairs produced by the implanted ion. Ion detectors with this sensitivity and integrated with a thin dielectric, for example a 5 nm gate oxide, using low energy Sb implantation would have an end of range straggle of <2.5 nm. Significant reduction in false count probability is, furthermore, achieved by modifying the ion beam set-up to allow for cryogenic operation of the SIGMA detector. Using a detection window of 230 ns at 1 Hz, the probability of a false count was measured as ~10-1 and 10-4 for operation temperatures of ~300 K and ~77 K, respectively. Low temperature operation and reduced false, 'dark', counts are critical to achieving high confidence in single ion arrival. For the device performance in this work, the confidence is calculated as a probability of >98% for counting one and only one ion for a false count probability of 10-4 at

  3. Defect trapping of ion-implanted deuterium in nickel

    SciTech Connect

    Besenbacher, F.; Bottiger, J.; Myers, S.M.

    1982-05-01

    Trapping of ion-implanted deuterium by lattice defects in nickel has been studied by ion-beam-analysis techniques in the temperature range between 30 and 380 K. The deuterium-depth profiles were determined by measuring either the ..cap alpha.. particles or the protons from the /sup 3/He-excited nuclear reaction D(/sup 3/He,..cap alpha..)p, and the deuterium lattice location was obtained by means of ion channeling. Linear-ramp annealing (1 K/min) following a 10-keV D/sup +/ implantation in nickel produced two annealing stages at 275 and 320 K, respectively. The release-vs-temperature data were analyzed by solving the diffusion equation with appropriate trapping terms, yielding 0.24 and 0.43 eV for the trap-binding enthalpies associated with the two stages, referred to as an untrapped solution site. The 0.24-eV trap corresponds to deuterium close to the octahedral interstitial site where it is believed to be trapped at a vacancy, whereas it is suggested that the defect correlated with the 0.43-eV trap is a multiple-vacancy defect. The previously air-exposed and electropolished nickel surface was essentially permeable; the surface-recombination coefficient was determined to be K> or approx. =10/sup -19/ cm/sup 4//s at 350 K.

  4. Ion implantation: surface treatment for improving the bone integration of titanium and Ti6Al4V dental implants.

    PubMed

    De Maeztu, Miguel A; Alava, J Iñaki; Gay-Escoda, Cosme

    2003-02-01

    Dental implants subjected to surface treatment have shown better bone integration than implants which have only been turned (machined). Three main types of treatment are presently available: the addition of material or coating, the removal of material, and surface modification. Ion implantation corresponds to the third approach. A histomorphometric study is made following the rabbit tibial bone placement of 88 commercial dental implants of pure titanium and Ti6AI4V subjected to surface treatment in the form of different ion implants (C+, CO+, N+, Ne+). Light microscopic, scanning electron microscopic (SEM), electron microsonde (EDS) and X-ray photoelectron spectroscopy (XPS) studies were made. The results indicate improved bone integration (expressed as percentage bone-implant contact) in those specimens subjected to ion implantation versus the non-treated controls, the difference being statistically significant for the groups treated with C+ and CO+. In these groups, XPS showed a Ti-O-C junction (bone-implant interface) involving covalent type bonds, these being stronger and more stable than the ion-type bonds usually established between the titanium oxide and bone.

  5. Quenching of surface-exciton emission from ZnO nanocombs by plasma immersion ion implantation

    SciTech Connect

    Yang, Y.; Tay, B. K.; Sun, X. W.; Sze, J. Y.; Han, Z. J.; Wang, J. X.; Zhang, X. H.; Li, Y. B.; Zhang, S.

    2007-08-13

    Surface modification of ZnO nanocombs was performed through a Ti plasma immersion ion implantation (PIII) with low bias voltages ranging from 0 to 5 kV to quench surface-originated exciton emission. The ion energy dependent surface modification on ZnO was investigated using transmission electron microscopy and temperature-dependent photoluminescence (PL). The surface exciton (SX) was clearly identified for the as-grown sample at 4.5 K, and complete quenching was observed for sample treated with 5 kV PIII due to surface state passivation. The SX related surface states were located within 5 nm in depth from the surface corresponding to the implantation depth of 5 kV PIII. Room-temperature PL enhancement of these surface-modified ZnO nanocombs was observed and discussed. The results show that PIII can become a viable technique for nanostructure surface passivation.

  6. Ion implanted and laser processed solar cells made from EFG ribbon

    SciTech Connect

    Ladd, L. A.; Ravi, K. V.; Narayan, J.

    1980-01-01

    The use of ion implantation and laser processing has a number of conceptual advantages which could result in a low-cost process for manufacturing high performance solar cells from EFG ribbon. Samples were phosphorus ion implanted, laser processed using either a pulse large area ruby laser or a scanned YAG laser with a second harmonic generator, and then processed into solar cells. Many of the samples had high reverse leakage and it was determined that this was due to too high a laser processing power. This effect was determined to be more severe for the scanned YAG laser, and is thought to be due to point defects. Cells were made from EFG ribbon with a low laser energy density which had efficiencies of up to 10% at AMI demonstrating the feasibility of this approach. High efficiencies should be attainable by optimizing the laser processing parameters.

  7. Low-temperature technique of thin silicon ion implanted epitaxial detectors

    NASA Astrophysics Data System (ADS)

    Kordyasz, A. J.; Le Neindre, N.; Parlog, M.; Casini, G.; Bougault, R.; Poggi, G.; Bednarek, A.; Kowalczyk, M.; Lopez, O.; Merrer, Y.; Vient, E.; Frankland, J. D.; Bonnet, E.; Chbihi, A.; Gruyer, D.; Borderie, B.; Ademard, G.; Edelbruck, P.; Rivet, M. F.; Salomon, F.; Bini, M.; Valdré, S.; Scarlini, E.; Pasquali, G.; Pastore, G.; Piantelli, S.; Stefanini, A.; Olmi, A.; Barlini, S.; Boiano, A.; Rosato, E.; Meoli, A.; Ordine, A.; Spadaccini, G.; Tortone, G.; Vigilante, M.; Vanzanella, E.; Bruno, M.; Serra, S.; Morelli, L.; Guerzoni, M.; Alba, R.; Santonocito, D.; Maiolino, C.; Cinausero, M.; Gramegna, F.; Marchi, T.; Kozik, T.; Kulig, P.; Twaróg, T.; Sosin, Z.; Gaşior, K.; Grzeszczuk, A.; Zipper, W.; Sarnecki, J.; Lipiński, D.; Wodzińska, H.; Brzozowski, A.; Teodorczyk, M.; Gajewski, M.; Zagojski, A.; Krzyżak, K.; Tarasiuk, K. J.; Khabanowa, Z.; Kordyasz, Ł.

    2015-02-01

    A new technique of large-area thin ion implanted silicon detectors has been developed within the R&D performed by the FAZIA Collaboration. The essence of the technique is the application of a low-temperature baking process instead of high-temperature annealing. This thermal treatment is performed after B+ ion implantation and Al evaporation of detector contacts, made by using a single adjusted Al mask. Extremely thin silicon pads can be therefore obtained. The thickness distribution along the X and Y directions was measured for a prototype chip by the energy loss of α-particles from 241Am (< E α > = 5.5 MeV). Preliminary tests on the first thin detector (area ≈ 20 × 20 mm2) were performed at the INFN-LNS cyclotron in Catania (Italy) using products emitted in the heavy-ion reaction 84Kr ( E = 35 A MeV) + 112Sn. The ΔE - E ion identification plot was obtained using a telescope consisting of our thin ΔE detector (21 μm thick) followed by a typical FAZIA 510 μm E detector of the same active area. The charge distribution of measured ions is presented together with a quantitative evaluation of the quality of the Z resolution. The threshold is lower than 2 A MeV depending on the ion charge.

  8. Structure analysis of bimetallic Co-Au nanoparticles formed by sequential ion implantation

    NASA Astrophysics Data System (ADS)

    Chen, Hua-jian; Wang, Yu-hua; Zhang, Xiao-jian; Song, Shu-peng; chen, Hong; Zhang, Ke; Xiong, Zu-zhao; Ji, Ling-ling; Dai, Hou-mei; Wang, Deng-jing; Lu, Jian-duo; Wang, Ru-wu; Zheng, Li-rong

    2016-08-01

    Co-Au alloy Metallic nanoparticles (MNPs) are formed by sequential ion implantation of Co and Au into silica glass at room temperature. The ion ranges of Au ions implantation process have been displayed to show the ion distribution. We have used the atomic force microscopy (AFM) and transmission electron microscopy (TEM) to investigate the formation of bimetallic nanoparticles. The extended X-ray absorption fine structure (EXAFS) has been used to study the local structural information of bimetallic nanoparticles. With the increase of Au ion implantation, the local environments of Co ions are changed enormously. Hence, three oscillations, respectively, Co-O, Co-Co and Co-Au coordination are determined.

  9. Surface modification of titanium and titanium alloys by ion implantation.

    PubMed

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation.

  10. Pulsed-electron-beam annealing of ion-implantation damage

    NASA Technical Reports Server (NTRS)

    Greenwald, A. C.; Kirkpatrick, A. R.; Little, R. G.; Minnucci, J. A.

    1979-01-01

    Short-duration high-intensity pulsed electron beams have been used to anneal ion-implantation damage in silicon and to electrically activate the dopant species. Lattice regrowth and dopant activation were determined using He(+)-4 backscattering, SEM, TEM, and device performance characteristics as diagnostic techniques. The annealing mechanism is believed to be liquid-phase epitaxial regrowth initiating from the substrate. The high-temperature transient pulse produced by the electron beam causes the dopant to diffuse rapidly in the region where the liquid state is achieved.

  11. Magnetic insulation of secondary electrons in plasma source ion implantation

    SciTech Connect

    Rej, D.J.; Wood, B.P.; Faehl, R.J.; Fleischmann, H.H.

    1993-09-01

    The uncontrolled loss of accelerated secondary electrons in plasma source ion implantation (PSII) can significantly reduce system efficiency and poses a potential x-ray hazard. This loss might be reduced by a magnetic field applied near the workpiece. The concept of magnetically-insulated PSII is proposed, in which secondary electrons are trapped to form a virtual cathode layer near the workpiece surface where the local electric field is essentially eliminated. Subsequent electrons that are emitted can then be reabsorbed by the workpiece. Estimates of anomalous electron transport from microinstabilities are made. Insight into the process is gained with multi-dimensional particle-in-cell simulations.

  12. Productivity Improvement for the SHX--SEN's Single-Wafer High-Current Ion Implanter

    SciTech Connect

    Ninomiya, Shiro; Ochi, Akihiro; Kimura, Yasuhiko; Yumiyama, Toshio; Kudo, Tetsuya; Kurose, Takeshi; Kariya, Hiroyuki; Tsukihara, Mitsukuni; Ishikawa, Koji; Ueno, Kazuyoshi

    2011-01-07

    Equipment productivity is a critical issue for device fabrication. For ion implantation, productivity is determined both by ion current at the wafer and by utilization efficiency of the ion beam. Such improvements not only result in higher fabrication efficiency but also reduce consumption of both electrical power and process gases. For high-current ion implanters, reduction of implant area is a key factor to increase efficiency. SEN has developed the SAVING system (Scanning Area Variation Implantation with Narrower Geometrical pattern) to address this opportunity. In this paper, three variations of the SAVING system are introduced along with discussion of their effects on fab productivity.

  13. The ion implantation-induced properties of one-dimensional nanomaterials

    PubMed Central

    2013-01-01

    Nowadays, ion implantation is an extensively used technique for material modification. Using this method, we can tailor the properties of target materials, including morphological, mechanical, electronic, and optical properties. All of these modifications impel nanomaterials to be a more useful application to fabricate more high-performance nanomaterial-based devices. Ion implantation is an accurate and controlled doping method for one-dimensional nanomaterials. In this article, we review recent research on ion implantation-induced effects in one-dimensional nanostructure, such as nanowires, nanotubes, and nanobelts. In addition, the optical property of single cadmium sulfide nanobelt implanted by N+ ions has been researched. PMID:23594476

  14. Research and Technology Transfer Ion Implantation Technology for Specialty Materials: Proceedings of a joint workshop

    NASA Astrophysics Data System (ADS)

    Reeber, Robert R.

    1991-02-01

    The ion implantation research and technology transfer workshop brought together a diverse group of academic, industrial, and government participants. Several key issues highlighted were: (1) a need exists for new technology transfer infrastructures between universities, research labs and industry; (2) ion implantation technology has promise for several Army and industry applications because of environmental concerns and technological benefits; (3) the U.S. ion implantation industry is primarily service oriented; and (4) the cost of ion implantation technology could be significantly reduced if larger scale production equipment was available for on-line processing. A need exists in the U.S. for mechanisms and funds to develop such equipment.

  15. Fe ion-implanted TiO{sub 2} thin film for efficient visible-light photocatalysis

    SciTech Connect

    Impellizzeri, G. Scuderi, V.; Sanz, R.; Privitera, V.; Romano, L.; Sberna, P. M.; Arcadipane, E.; Scuderi, M.; Nicotra, G.; Bayle, M.; Carles, R.; Simone, F.

    2014-11-07

    This work shows the application of metal ion-implantation to realize an efficient second-generation TiO{sub 2} photocatalyst. High fluence Fe{sup +} ions were implanted into thin TiO{sub 2} films and subsequently annealed up to 550 °C. The ion-implantation process modified the TiO{sub 2} pure film, locally lowering its band-gap energy from 3.2 eV to 1.6–1.9 eV, making the material sensitive to visible light. The measured optical band-gap of 1.6–1.9 eV was associated with the presence of effective energy levels in the energy band structure of the titanium dioxide, due to implantation-induced defects. An accurate structural characterization was performed by Rutherford backscattering spectrometry, transmission electron microscopy, Raman spectroscopy, X-ray diffraction, and UV/VIS spectroscopy. The synthesized materials revealed a remarkable photocatalytic efficiency in the degradation of organic compounds in water under visible light irradiation, without the help of any thermal treatments. The photocatalytic activity has been correlated with the amount of defects induced by the ion-implantation process, clarifying the operative physical mechanism. These results can be fruitfully applied for environmental applications of TiO{sub 2}.

  16. Ion beam technology applications study. [ion impact, implantation, and surface finishing

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Zafran, S.; Komatsu, G. K.

    1978-01-01

    Specific perceptions and possible ion beam technology applications were obtained as a result of a literature search and contact interviews with various institutions and individuals which took place over a 5-month period. The use of broad beam electron bombardment ion sources is assessed for materials deposition, removal, and alteration. Special techniques examined include: (1) cleaning, cutting, and texturing for surface treatment; (2) crosslinking of polymers, stress relief in deposited layers, and the creation of defect states in crystalline material by ion impact; and (3) ion implantation during epitaxial growth and the deposition of neutral materials sputtered by the ion beam. The aspects, advantages, and disadvantages of ion beam technology and the competitive role of alternative technologies are discussed.

  17. Etching and structural changes in nitrogen plasma immersion ion implanted polystyrene films

    NASA Astrophysics Data System (ADS)

    Gan, B. K.; Bilek, M. M. M.; Kondyurin, A.; Mizuno, K.; McKenzie, D. R.

    2006-06-01

    Plasma immersion ion implantation (PIII), with nitrogen ions of energy 20 keV in the fluence range of 5 × 1014-2 × 1016 ions cm-2, is used to modify 100 nm thin films of polystyrene on silicon wafer substrates. Ellipsometry is used to study changes in thickness with etching and changes in optical constants. Two distinctly different etch rates are observed as the polymer structure is modified. FTIR spectroscopy data reveals the structural changes, including changes in aromatic and aliphatic groups and oxidation and carbonisation processes, occurring in the polystyrene film as a function of the ion fluence. The transformation to a dense amorphous carbon-like material was observed to progress through an intermediate structural form containing a high concentration of Cdbnd C and Cdbnd O bonds.

  18. Transient enhanced diffusion in ion-implanted silicon

    SciTech Connect

    Pennycook, S.J.; Culbertson, R.J.

    1987-03-01

    We discuss the transient-enhanced diffusion of Sb, As, P, In, Ga, and B in ion-implanted Si, where the near-surface region has been amorphized by the dopant or by a self-implantation process. With Sb, a large transient diffusion enhancement is observed proportional to dopant concentration. For Sb, As, P, and In, the enhancement follows the relative interstitialcy diffusion coefficient. We believe this behavior is caused by stable implantation-induced point defects present in the amorphous surface layer, which decay during thermal processing to release high concentrations of self-interstitials. This process occurs in competition with the solid phase epitaxial (SPE) growth process, and for high dopant concentrations can occur in the amorphous phase ahead of the crystallization front. We believe this may be the origin of the dopant redistribution which can occur during SPE growth, which sets the upper limit to the dopant concentration which can be incorporated in the lattice by SPE growth. These effects are reduced for Ga and are absent for B, although transient enhanced diffusion of these species can still occur from defects emitted from the damaged crystal underlying the original amorphous/crystalline interface.

  19. Ion Implant Technology for Intermediate Band Solar Cells

    NASA Astrophysics Data System (ADS)

    Olea, Javier; Pastor, David; Luque, María Toledano; Mártil, Ignacio; Díaz, Germán González

    This chapter describes the creation of an Intermediate Band (IB) on single crystal silicon substrates by means of high-dose Ti implantation and subsequent Pulsed Laser Melting (PLM). The Ti concentration over the Mott limit is confirmed by Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) measurements and the recovery of the crystallinity after annealing by means of Glancing Incidence X Ray Diffraction (GIXRD) and Transmission Electron Microscopy (TEM). Rutherford Backscattering Spectroscopy (RBS) measurements show that most of the atoms are located interstitially. Analysis of the sheet resistance and mobility measured using the van der Pauw geometry shows a temperature-dependent decoupling between the implanted layer and the substrate. This decoupling and the high laminated conductivity of the implanted layer could not be explained except if we assume that an IB has been formed in the semiconductor. A specific model for the bilayer electrical behaviour has been developed. The fitting of this model and also the simulation of the sheet resistance with the ATLAS code allow to determine that the IB energetic position is located around 0.36-0.38 eV below the conduction band. Carriers at the IB have a density very similar to the Ti concentration and behave as holes with mobilities as low as 0.4 cm2 Vs- 1.

  20. Effects of nitrogen ion implantation time on tungsten films deposited by DC magnetron sputtering on AISI 410 martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Malau, Viktor; Ilman, Mochammad Noer; Iswanto, Priyo Tri; Jatisukamto, Gaguk

    2016-03-01

    Nitrogen ion implantation time on tungsten thin film deposited on surface of AISI 410 steel has been performed. Tungsten thin film produced by dc magnetron sputtering method was deposited on AISI 410 martensitic stainless steel substrates, and then the nitrogen ions were implanted on tungsten thin film. The objective of this research is to investigate the effects of implantation deposition time on surface roughness, microhardness, specific wear and corrosion rate of nitrogen implanted on tungsten film. Magnetron sputtering process was performed by using plasma gas of argon (Ar) to bombardier tungsten target (W) in a vacuum chamber with a pressure of 7.6 x 10-2 torr, a voltage of 300 V, a sputter current of 80 mA for sputtered time of 10 minutes. Nitrogen implantation on tungsten film was done with an initial pressure of 3x10-6 mbar, a fluence of 2 x 1017 ions/cm2, an energy of 100 keV and implantation deposition times of 0, 20, 30 and 40 minutes. The surface roughness, microhardness, specific wear and corrosion rate of the films were evaluated by surfcorder test, Vickers microhardness test, wear test and potentiostat (galvanostat) test respectively. The results show that the nitrogen ions implanted deposition time on tungsten film can modify the surface roughness, microhardness, specific wear and corrosion rate. The minimum surface roughness, specific wear and corrosion rate can be obtained for implantation time of 20 minutes and the maximum microhardness of the film is 329 VHN (Vickers Hardness Number) for implantation time of 30 minutes. The specific wear and corrosion rate of the film depend directly on the surface roughness.

  1. Damage recovery in ion-implanted TiO 2 at low temperatures

    NASA Astrophysics Data System (ADS)

    Khubeis, I.; Fromknecht, R.; Massing, S.; Meyer, O.

    1998-05-01

    Radiation damage was produced in <0 0 1> and <1 0 0> oriented TiO 2 single crystals by low dose (<10 14/cm 2) high energy (260 keV) Hg-ion-implantation at 77 K and Xe-ion-implantation at 6 K. The Rutherford Backscattering-Channeling (RBS-C) technique was used to measure the damage peak areas of both sublattices as a function of time at 77 K and of temperature in the region between 77 and 293 K. For moderate damage peak heights (less than 30% of the random level), annealing of about 80% of the defects occured within 3 recovery stages: (i) at 77 K (˜35%); (ii) at 160 K (˜25%); and (iii) at 280 K (20%). In stage (i) at 77 K, a time dependent recovery was observed. This has been attributed to a process that has an activation energy which increases with decreasing defect concentration. Stage (ii) is rather broad, indicating substages with different activation energies. Stage (iii) seems to occur in the Ti sublattice only, while the other stages reveal recovery in both sublattices. The Xe implants did not reveal pronounced annealing between 6 and 62 K. The recovery stages at higher temperatures have been reproduced, indicating that intrinsic defect annealing prevails.

  2. Metallic contamination in hydrogen plasma immersion ion implantation of silicon

    NASA Astrophysics Data System (ADS)

    Chu, Paul K.; Fu, Ricky K. Y.; Zeng, Xuchu; Kwok, Dixon T. K.

    2001-10-01

    In plasma immersion ion implantation (PIII), ions bombard all surfaces inside the PIII vacuum chamber, especially the negatively pulsed biased sample stage and to a lesser extent the interior of the vacuum chamber. As a result, contaminants sputtered from these exposed surfaces can be reimplanted into or adsorb on the silicon wafer. Using particle-in-cell theoretical simulation, we determine the relative ion doses incident on the top, side, and bottom surfaces of three typical sample chuck configurations: (i) a bare conducting stage with the entire sample platen and high-voltage feedthrough/supporting rod exposed and under a high voltage, (ii) a stage with only the sample platen exposed to the plasma but the high-voltage feedthrough protected by an insulating quartz shroud, and (iii) a bare stage with a silicon extension or guard ring to reduce the number of ions bombarding the side and bottom of the sample platen. Our simulation results reveal that the ratio of the incident dose impacting the top of the sample platen to that impacting the side and bottom of the sample stage can be improved to 49% using a guard ring. To corroborate our theoretical results, we experimentally determine the amounts of metallic contaminants on 100 mm silicon wafers implanted using a bare chuck and with a 150 mm silicon wafer inserted between the 100 mm wafer and sample stage to imitate the guard ring. We also discuss the effectiveness of a replaceable all-silicon liner inside the vacuum chamber to address the second source of contamination, that from the interior wall of the vacuum chamber. Our results indicate a significant improvement when an all-silicon liner and silicon guard ring are used simultaneously.

  3. Dose dependence of the production yield of endohedral 133Xe-fullerene by ion implantation

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Ishioka, N. S.; Shimomura, H.; Muramatsu, H.; Sekine, T.

    2003-05-01

    The production yield of endohedral 133Xe-fullerene by ion implantation has been studied by taking advantage of the radioactivity of 133Xe. Fullerene targets, which were produced by vacuum evaporation of C 60 or C 70 on a Ni backing, were bombarded with 30-38 keV 133Xe ions by using an isotope separator at doses ranging from 1 × 10 12 to 1 × 10 14 cm -2. The production yield of endohedral 133Xe-fullerene was determined by an high performance liquid chromatography analysis following the dissolution of the targets in o-dichlorobenzene. It was found that the production yield decreased with increasing dose and incident energy, and the production yield of 133Xe@C 70 was higher than that of 133Xe@C 60 for the same dose and incident energy. Those production yields are discussed in connection with amorphization of fullerene molecules in collisions with 133Xe ions.

  4. Friction and Wear Properties of As-Deposited and Carbon Ion-Implanted Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1996-01-01

    Recent work on the friction and wear properties of as-deposited and carbon ion-implanted diamond films was reviewed. Diamond films were produced by the microwave plasma chemical vapor deposition (CVD) technique. Diamond films with various grain sizes and surface roughnesses were implanted with carbon ions at 60 keV ion energy, resulting in a dose of 1.2 x 10(exp 17) carbon ions per cm(exp 2). Various analytical techniques, including Raman spectroscopy, proton recoil analysis, Rutherford backscattering, transmission and scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction, were utilized to characterize the diamond films. Sliding friction experiments were conducted with a polished natural diamond pin in contact with diamond films in the three environments: humid air (40% relative humidity), dry nitrogen (less than 1 percent relative humidity), and ultrahigh vacuum (10(exp -7) Pa). The CVD diamond films indeed have friction and wear properties similar to those of natural diamond in the three environments. The as-deposited, fine-grain diamond films can be effectively used as self-lubricating, wear-resistant coatings that have low coefficients of friction (0.02 to 0.04) and low wear rates (10(exp -7) to lO(exp -8) mm(exp 3) N(exp -1) m(exp -1)) in both humid air and dry nitrogen. However, they have high coefficients of friction (1.5 to 1.7) and a high wear rate (10(exp -4) mm(exp 7) N(exp -1) m(exp -1)) in ultrahigh vacuum. The carbon ion implantation produced a thin surficial layer (less than 0.1 micron thick) of amorphous, non-diamond carbon on the diamond films. In humid air and dry nitrogen, the ion-implanted, fine and coarse-grain diamond films have a low coefficient of friction (around 0.1) and a low wear rate (10(exp -7) mm(exp 3) N(exp -1) m(exp-1)). Even in ultrahigh vacuum, the presence of the non-diamond carbon layer reduced the coefficient of friction of fine-grain diamond films to 0.1 or lower and the wear rate to 10(exp -6

  5. Improvement of Vitamin K2 Production by Escherichia sp. with Nitrogen Ion Beam Implantation Induction

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Wang, Li; Zheng, Zhiming; Wang, Peng; Zhao, Genhai; Liu, Hui; Gong, Guohong; Wu, Hefang; Liu, Hongxia; Tan, Mu; Li, Zhemin

    2015-02-01

    Low-energy ion implantation as a novel mutagen has been increasingly applied in the microbial mutagenesis for its higher mutation frequency and wider mutation spectra. In this work, N+ ion beam implantation was used to enhance Escherichia sp. in vitamin K2 yield. Optimization of process parameters under submerged fermentation was carried out to improve the vitamin K2 yield of mutant FM5-632. The results indicate that an excellent mutant FM5-632 with a yield of 123.2±1.6 μg/L, that is four times that of the original strain, was achieved by eight successive implantations under the conditions of 15 keV and 60×2.6×1013 ions/cm2. A further optimization increased the yield of the mutant by 39.7%, i.e. 172.1±1.2 μg/L which occurred in the mutant cultivated in the optimal fermentation culture medium composed of (per liter): 15.31 g glycerol, 10 g peptone, 2.89 g yeast extract, 5 g K2HPO4, 1 g NaCl, 0.5 g MgSO4·7H2O and 0.04 g cedar wood oil, incubated at 33 °C, pH 7.0 and 180 rpm for 120 h.

  6. Damage formation in SiC ion implanted at 625 K

    NASA Astrophysics Data System (ADS)

    Wendler, E.; Schöppe, Ph.; Bierschenk, Th.; Milz, St.; Wesch, W.; van der Berg, N. G.; Friedland, E.; Malherbe, J. B.

    2012-09-01

    Damage formation in 4H-SiC during ion implantation at 625 K is studied applying Rutherford backscattering spectrometry (RBS) in channeling configuration. For comparison two selected samples are analyzed by cross section transmission electron microscopy (TEM). The results for dual implantation of the self-ions Si and C are compared with those obtained for Ag ion implantation. It is found that the evolution of damage as a function of the number of displacements per lattice atom proceeds in two steps and is almost independent of the ion species implanted. The second significant increase of the damage concentration starts obviously when the relative volume increase introduced by the implanted ions exceeds a critical value of about 6 × 10-3. The damage produced at high ion fluences consists of point defect clusters, and probably, extended defects.

  7. Characterization and control of wafer charging effects during high-current ion implantation

    SciTech Connect

    Current, M.I.; Lukaszek, W.; Dixon, W.; Vella, M.C.; Messick, C.; Shideler, J.; Reno, S.

    1994-02-01

    EEPROM-based sense and memory devices provide direct measures of the charge flow and potentials occurring on the surface of wafers during ion beam processing. Sensor design and applications for high current ion implantation are discussed.

  8. Preparation of radiotherapy glass by phosphorus ion implantation at 100 keV.

    PubMed

    Kawashita, M; Miyaji, F; Kokubo, T; Takaoka, G H; Yamada, I; Suzuki, Y; Kajiyama, K

    1997-01-01

    A chemically durable glass containing a large amount of phosphorus is useful for in situ irradiation of cancers. It can be activated to be a beta emitter (half-life of 14.3 days) by neutron bombardment. Microspheres of the activated glass injected into the tumors can irradiate the tumors directly with beta rays without irradiating neighboring normal tissues. In the present study a P+ ion was implanted into a pure silica glass in a plate form at 100 keV in order to find the fundamental conditions for obtaining such a glass. Little phosphorus was present in the surface region, at least to a depth of 2.4 nm for doses of 5 x 10(16) and 1 x 10(17) cm-2, whereas an appreciable amount of it was distributed on the glass surface and a part of it was oxidized for doses above 5 x 10(17) cm-2. The glasses implanted with doses of 5 x 10(16) and 1 x 10(17) cm-2 hardly released the P and Si into water at 95 degrees C, even after 7 days, whereas the glasses implanted with doses above 5 x 10(17) cm-2 released appreciable amounts of these elements. Implantation energies of 20 and 50 keV (even at doses of 5 x 10(16) and 1 x 10(17) cm-2, respectively), formed oxidized phosphorus on the glass surfaces and gave appreciable release of the P and Si into the hot water. This indicates that a chemically durable glass containing a larger amount of phosphorus could be obtained if a P+ ion is implanted at higher energies to localize in a deeper region of the glass surface.

  9. The diffusion properties of ion implanted species in selected target materials

    SciTech Connect

    Alton, G.D.; Dellwo, J.; Carter, H.K.; Kormicki, J.; Bartolo, G. di; Batchelder, J.C.; Breitenbach, J.; Chediak, J.A.; Jentoff-Nilsen, K.; Ichikawa, S.

    1995-02-01

    Experiments important to the future success of the Holifield Radioactive Ion Beam Facility (HRIBF) are in progress at the Oak Ridge National Laboratory which are designed to select the most appropriate target material for generating a particular radioactive ion beam (RIB). The 25-MV HHIRF tandem accelerator is used to implant stable complements of interesting radioactive elements into refractory targets mounted in a high-temperature FEBIAD ion source which is {open_quotes}on-line{close_quotes} at the UNISOR facility. The intensity versus time of implanted species, which diffuse from the high-temperature target material ({approximately}1700{degrees}C) and are ionized in the FEBIAD ion source, is used to determine release times for a particular projectile/target material combination. From such release data, diffusion coefficients can be derived by fitting the theoretical results obtained by computational solution of Fick`s second equation to experimental data. The diffusion coefficient can be used subsequently to predict the release properties of the particular element from the same material in other target geometries and at other temperatures, provided that the activation energy is also known. Diffusion coefficients for Cl implanted into and diffused from CeS and Zr{sub 5}Si{sub 3} and As, Br, and Se implanted into and diffused from Zr{sub 5}Ge{sub 3} have been derived from the resulting intensity versus time profiles. Brief descriptions of the experimental apparatus and procedures utilized in the present experiments and plans for future related experiments are presented.

  10. Impurity/defect interactions during MeV Si{sup +} ion implantation annealing

    SciTech Connect

    Agarwal, A.; Koveshnikov, S.; Christensen, K.

    1995-08-01

    Ion implantation of dopant atoms at MeV energies is currently being explored in several integrated circuit device manufacturing processes. MeV implantation offers immediate advantages such as vertical well modulation, latch-up protection, device structure isolation, and reduced temperature processing. Simultaneously, it presents an opportunity to achieve {open_quotes}proximity{close_quotes} gettering of impurities from the active device region by placing high impurity solubility and/or secondary defect gettering sites within microns of the surface. If the MeV implanted species is a dopant ion, all three gettering mechanisms, i.e, segregation, relaxation and injection, can be involved in the gettering process, complicating the analysis and optimization of the process. However, investigation of gettering using non-dopant Si{sup +} ion damage allows the relaxation component of the gettering process to be isolated and examined separately. In general, gettering is verified by a reduction in impurity concentration in the region of interest, usually the device region, and/or a build-up of concentration/precipitation in a non-device sink region. An alternate and more meaningful approach is to use simple devices as materials characterization probes via changes in the electrical activity of the gettering sites. Device space charge probes also allow the evolution of the defect sites upon contamination to be tracked. We report here results of the electrical, structural, and chemical characterization of MeV implanted Si{sup +} damage using Deep Level Transient Spectroscopy (DLTS), Transmission Electron Microscopy (TEM), and Secondary Ion Mass Spectroscopy (SIMS). The damage has been characterized both as a function of annealing from 600 to 1100{degrees}C for 1 hr, and after contamination with Fe followed by low temperature gettering annealing.

  11. Peripheral nerve regeneration through a silicone chamber implanted with negative carbon ions: Possibility to clinical application

    NASA Astrophysics Data System (ADS)

    Ikeguchi, Ryosuke; Kakinoki, Ryosuke; Tsuji, Hiroshi; Yasuda, Tadashi; Matsuda, Shuichi

    2014-08-01

    We investigated whether a tube with its inner surface implanted with negative-charged carbon ions (C- ions) would enable axons to extend over a distance greater than 10 mm. The tube was found to support nerves regenerating across a 15-mm-long inter-stump gap. We also investigated whether a C- ion-implanted tube pretreated with basic fibroblast growth factor (bFGF) promotes peripheral nerve regeneration. The C- ion implanted tube accelerated nerve regeneration, and this effect was enhanced by bFGF. Silicone treated with C- ions showed increased hydrophilic properties and cellular affinity, and axon regeneration was promoted with this increased biocompatibility.

  12. Fabrication of porous TiO2 nanorod array photoelectrodes with enhanced photoelectrochemical water splitting by helium ion implantation.

    PubMed

    Liu, Yichao; Shen, Shaohua; Ren, Feng; Chen, Jianan; Fu, Yanming; Zheng, Xudong; Cai, Guangxu; Xing, Zhuo; Wu, Hengyi; Jiang, Changzhong

    2016-05-19

    Porous photoelectrodes show high efficiency in hydrogen production by water splitting. However, fabrication of porous nanorods is usually difficult. Here, we report a simple approach to fabricate a kind of novel porous rutile titanium dioxide nanorod array by an advanced ion implantation method using multiple-energy helium ion implantation and subsequent annealing. The porous nanostructure enhances the photoelectrochemical performance of the titanium dioxide nanorod array photoelectrodes under Uv-visible light illumination, where the highest photocurrent density was relatively about 10 times higher than that of the pristine titanium dioxide nanorod array. The formation of nanocavities mainly contributes to the enhancement of the photocurrent density by trapping holes inside to separate the charge carriers. The study demonstrates that ion implantation could be an effective approach to develop novel porous nanostructural photoelectrodes for the application of hydrogen production.

  13. Passive mechanisms of surfaces produced by ion-beam mixing and ion implantation. Annual report, October 1988-November 1989

    SciTech Connect

    Natishan, P.M.; McCafferty, E.; Hubler, G.K.

    1990-05-01

    The corrosion behavior of Mo-Al, Cr-Al and Cr-Mo-Al surface alloys produced by ion implantation and ion beam mixing was examined in deaerated, 0.1M NaC1. The polarization behavior of the ion implanted samples was similar to that of Al and the pitting potentials of the ion implanted samples were 115 to 155 mV higher than that of Al. From the standpoint of the Ph sub pzc model this behavior would be explained by the presence of the implanted cations in the stable oxide lattice. There was incomplete mixing of the coating and substrate for the ion beam mixed samples, and the mixed elements remained almost entirely in the metallic state so that the desired mixed oxide films were not formed. Ion beam mixing did impart additional stability compared to as-deposited samples since themixing process produced more compact coatings.

  14. In situ ion irradiation/implantation studies in the HVEM-Tandem Facility at Argonne National Laboratory

    SciTech Connect

    Allen, C.W.; Funk, L.L.; Ryan, E.A.; Taylor, A.

    1988-09-01

    The HVEM-Tandem User Facility at Argonne National Laboratory interfaces two ion accelerators, a 2 MV tandem accelerator and a 650 kV ion implanter, to a 1.2 MV high voltage electron microscope. This combination allows experiments involving simultaneous ion irradiation/ion implantation, electron irradiation and electron microscopy/electron diffraction to be performed. In addition the availability of a variety of microscope sample holders permits these as well as other types of in situ experiments to be performed at temperatures ranging from 10-1300 K, with the sample in a stressed state or with simultaneous determination of electrical resistivity of the specimen. This paper summarizes the details of the Facility which are relevant to simultaneous ion beam material modification and electron microscopy, presents several current applications and briefly describes the straightforward mechanism for potential users to access this US Department of Energy supported facility. 7 refs., 1 fig., 1 tab.

  15. Annealing of PEEK, PET and PI implanted with Co ions at high fluencies

    NASA Astrophysics Data System (ADS)

    Mackova, A.; Malinsky, P.; Miksova, R.; Pupikova, H.; Khaibullin, R. I.; Valeev, V. F.; Svorcik, V.; Slepicka, P.

    2013-07-01

    The properties of implanted polymers strongly depend on the implantation ion fluence and on the properties of the implanted atoms. The stability of synthesized nano-structures during further technological steps like annealing is of importance for their possible applications. Polyimide (PI), polyetheretherketone (PEEK), and polyethyleneterephtalate (PET) were implanted with 40 keV Co+ ions at room temperature at fluences ranging from 0.2 × 1016 cm-2 to 1.0 × 1017 cm-2 and annealed at a temperature of 200 °C. The implanted depth profiles of as-implanted and annealed samples, determined by the RBS method, were compared with the results of SRIM 2012 simulations. The structural and compositional changes of the implanted and subsequently annealed polymers were characterized by RBS and UV-vis spectroscopy. The surface morphology of as-implanted and annealed samples was examined by the AFM method and their electrical properties by sheet resistance measurement.

  16. Structural and optical properties of Mn-doped CdS thin films prepared by ion implantation

    SciTech Connect

    Chandramohan, S.; Tripathi, J. K.; Sarangi, S. N.; Som, T.; Kanjilal, A.; Sathyamoorthy, R.

    2009-06-15

    We report on structural and optical properties of Mn-doped CdS thin films prepared by 190 keV Mn-ion implantation at different temperatures. Mn-ion implantation in the fluence range of 1x10{sup 13}-1x10{sup 16} ions cm{sup -2} does not lead to the formation of any secondary phase. However, it induces structural disorder, causing a decrease in the optical band gap. This is addressed on the basis of band tailing due to creation of localized energy states and Urbach energy calculations. Mn-doped samples exhibit a new band in their photoluminescence spectra at 2.22 eV, which originates from the d-d({sup 4}T{sub 1}->{sup 6}A{sub 1}) transition of tetrahedrally coordinated Mn{sup 2+} ions.

  17. Metal-oxide nanoclusters in Fe-10%Cr alloy by ion implantation

    NASA Astrophysics Data System (ADS)

    Zheng, Ce; Gentils, Aurélie; Ribis, Joël; Borodin, Vladimir A.; Kaïtasov, Odile; Garrido, Frédérico

    2015-12-01

    High contents of Al+ and O+ ions were implanted sequentially into high purity Fe-10%Cr alloy thin foils at room temperature. The as-implanted foils were then studied by transmission electron microscopy (TEM) using the conventional TEM, energy dispersive X-ray (EDX), energy-filtered TEM (EFTEM) and high-resolution TEM (HRTEM) methods. In contrast to the conventional precipitate ensemble synthesis by implantation/annealing, the synthesis of clusters took place already at the implantation stage without requiring any subsequent thermal annealing in our case. The observed precipitates with diameters in the range of 3-25 nm were enriched in Al and O. The crystal lattice of precipitates corresponded to a cubic crystallographic structure of aluminium-rich oxide. The precipitate lattice alignment with the matrix was revealed for at least a part of precipitates. The early stage of nucleation outside thermal treatment is discussed in terms of point defect enhanced diffusion ensuring sufficient atomic transport to allow solute atom precipitation.

  18. The biomedical properties of polyethylene terephthalate surface modified by silver ion implantation

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Li, Jianxin; Shen, Liru; Ling, Ren; Xu, Zejin; Zhao, Ansha; Leng, Yongxiang; Huang, Nan

    2007-04-01

    Polyethylene terephthalate (PET) film is modified by Ag ion implantation with a fluence 1 × 1016 ions/cm2. The results of X-Ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) indicate that silver has been successfully implanted into the surface of PET. The PET samples modified by silver ion implantation have significantly bactericidal property. The capacity of the staphylococcus epidermidis (SE) adhered on the Ag+ implanted PET surface is 5.3 × 106 CFU/ml, but the capacity of the SE adhered on the untreated PET film is 2.23 × 107 CFU/ml. The thromboembolic property is evaluated by in vitro platelet adhesion test, and there is not statistically difference between the untreated PET and the Ag+ implanted PET for the number of adhered and activated platelets. The PET implanted by silver ion has not acute toxicity to endothelial cell (EC) which was evaluated by the release of lactate dehydrogenase (LDH) test.

  19. Recrystallization and reactivation of dopant atoms in ion-implanted silicon nanowires.

    PubMed

    Fukata, Naoki; Takiguchi, Ryo; Ishida, Shinya; Yokono, Shigeki; Hishita, Shunichi; Murakami, Kouichi

    2012-04-24

    Recrystallization of silicon nanowires (SiNWs) after ion implantation strongly depends on the ion doses and species. Full amorphization by high-dose implantation induces polycrystal structures in SiNWs even after high-temperature annealing, with this tendency more pronounced for heavy ions. Hot-implantation techniques dramatically suppress polycrystallization in SiNWs, resulting in reversion to the original single-crystal structures and consequently high reactivation rate of dopant atoms. In this study, the chemical bonding states and electrical activities of implanted boron and phosphorus atoms were evaluated by Raman scattering and electron spin resonance, demonstrating the formation of p- and n-type SiNWs.

  20. Estimate of the concentration of implanted ions in solid substrates using a web application

    NASA Astrophysics Data System (ADS)

    Rivera, F. H. Vera; Pérez Gutiérrez, B. R.; Dulce-Moreno, H. J.; Duran-Flórez, F.; Niño, E. D. V.

    2016-08-01

    The three-dimensional ionic implantation technique (3DII) is used to modify the surface of solid metal by electric discharges pulsed of high voltage at low pressures. Knowing the density of ions implanted in the surface of a functional element, in a faster and estimated way, will help to optimize the surface treatment technique. Therefore, a web application was developed which from experimental parameters established in a process 3DII estimates the concentration of ions implanted in solid metal substrates. The results obtained in this research work demonstrate the feasibility of the computational web tool to perfect the experiments of surface modification by ion implantation.

  1. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. G.; Yushkov, G. Yu.; Oks, E. M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E. S.; Brown, I. G.

    2014-08-01

    Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal-gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the "inverse" concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  2. Plasma immersion ion implantation of boron for ribbon silicon solar cells

    NASA Astrophysics Data System (ADS)

    Derbouz, K.; Michel, T.; De Moro, F.; Spiegel, Y.; Torregrosa, F.; Belouet, C.; Slaoui, A.

    2013-09-01

    In this work, we report for the first time on the solar cell fabrication on n-type silicon RST (for Ribbon on Sacrificial Template) using plasma immersion ion implantation. The experiments were also carried out on FZ silicon as a reference. Boron was implanted at energies from 10 to 15 kV and doses from 1015 to 1016 cm-2, then activated by a thermal annealing in a conventional furnace at 900 and 950 °C for 30 min. The n+ region acting as a back surface field was achieved by phosphorus spin-coating. The frontside boron emitter was passivated either by applying a 10 nm deposited SiOX plasma-enhanced chemical vapor deposition (PECVD) or with a 10 nm grown thermal oxide. The anti-reflection coating layer formed a 60 nm thick SiNX layer. We show that energies less than 15 kV and doses around 5 × 1015 cm-2 are appropriate to achieve open circuit voltage higher than 590 mV and efficiency around 16.7% on FZ-Si. The photovoltaic performances on ribbon silicon are so far limited by the bulk quality of the material and by the quality of the junction through the presence of silicon carbide precipitates at the surface. Nevertheless, we demonstrate that plasma immersion ion implantation is very promising for solar cell fabrication on ultrathin silicon wafers such as ribbons.

  3. Near-surface recrystallization of the amorphous implanted layer of ion implanted 6H-SiC

    NASA Astrophysics Data System (ADS)

    Kuhudzai, R. J.; van der Berg, N. G.; Malherbe, J. B.; Hlatshwayo, T. T.; Theron, C. C.; Buys, A. V.; Botha, A. J.; Wendler, E.; Wesch, W.

    2014-08-01

    The recrystallization and subsequent crystal growth during annealing of amorphous surface layers on 6H-SiC produced by ion implantation is investigated. Amorphous surface layers were produced by ion implantation of 360 keV ions of iodine, silver, xenon, cesium and strontium into single crystalline 6H-silicon carbide samples. The ion fluence for all the implantations were in the order of 1016 cm-2. Vacuum annealing of the damaged silicon carbide samples was then performed. The microstructure of SiC surfaces before and after annealing was investigated using a high resolution field emission scanning electron microscope (SEM). SEM analysis was complimented by Atomic Force Microscopy (AFM). SEM images acquired by an in-lens detector using an accelerating voltage of 2 kV show nano-crystallites developed for all implanted samples after annealing. Larger and more faceted crystallites along with elongated thin crystallites were observed for iodine and xenon implanted 6H-SiC. Crystallites formed on surfaces implanted with strontium and cesium were smaller and less faceted. Strontium, silver and cesium implanted samples also exhibited more cavities on the surface. AFM was used to evaluate the effect of annealing on the surface roughness. For all the amorphous surfaces which were essentially featureless, the root mean square (rms) roughness was approximately 1 nm. The roughness increased to approximately 17 nm for the iodine implanted sample after annealing with the surface roughness below this value for all the other samples. AFM also showed that the largest crystals grew to heights of about 17, 20, 45, 50 and 65 nm for Sr, Cs, Ag, Xe and I implanted samples after annealing at 1200 °C for 5 h respectively. SEM images and AFM analysis suggest that iodine is more effective in promoting crystal growth during the annealing of bombardment-induced amorphous SiC layers than the rest of the ions we implanted. In samples of silicon carbide co-implanted with iodine and silver, few

  4. Electronic transport and localization in nitrogen-doped graphene devices using hyperthermal ion implantation

    NASA Astrophysics Data System (ADS)

    Friedman, Adam L.; Cress, Cory D.; Schmucker, Scott W.; Robinson, Jeremy T.; van 't Erve, Olaf M. J.

    2016-04-01

    Hyperthermal ion implantation offers a controllable method of producing high-quality substitutionally doped graphene with nitrogen, an n -type dopant that has great potential for graphene electronics and spintronics applications where high carrier concentration, uniform doping, and minimal vacancy defect concentration is desired. Here we examine the transport properties of monolayer graphene sheets as a function of implantation beam energy and dose. We observe a transition from weak to strong localization that varies as a function of carrier concentration. For nominally equivalent doses, increased N ion energy results in an increasing magnetoresistance magnitude, reaching a value of approximately -5.5% at 5000 Oe, which we discuss in the context of dopant concentration and defect formation. We use a model for the temperature dependence of the conductivity that takes into account both temperature activation, due to the formation of a transport gap, and Mott variable-range hopping, due to the formation of defects, to further study the electronic properties of the doped films as a function of dose and N ion energy. We find that the temperature activation component dominates the behavior.

  5. Effects of He + ion implantation on surface properties of UV-cured Bis-GMA/TEGDMA bio-compatible resins

    NASA Astrophysics Data System (ADS)

    Fuentes, G. G.; Esparza, J.; Rodríguez, R. J.; Manso-Silván, M.; Palomares, J.; Juhasz, J.; Best, S.; Mattilla, R.; Vallittu, P.; Achanta, S.; Giazzon, M.; Weder, G.; Donati, I.

    2011-01-01

    This work reports on the surface characterisation of 2,2-bis[4-(2-hydroxy-3-methacryloxyl-oxypropoxy)phenyl]propane/triethylene glycol dimethacrylate bio-compatible resins after high energy He + ion implantation treatments. The samples have been characterised by diffuse reflectance FT-IR, X-ray photo-electron spectroscopy, ultramicro-hardness and nano-scratch wear tests. In addition, osteblast cell assays MG-63 have been used to test the bio-compatibility of the resin surfaces after the ion implantation treatments. It has been observed that the maximum surface hardening of the resin surfaces is achieved at He-ion implantation energies of around 50 keV and fluences of 1 × 10 16 cm -2. At 50 keV of He-ion bombardment, the wear rate of the resin surface decreases by a factor 2 with respect to the pristine resin. Finally, in vitro tests indicate that the He-ion implantation does not affect to the cell-proliferation behaviour of the UV-cured resins. The enhancement of the surface mechanical properties of these materials can have beneficial consequences, for instance in preventing wear and surface fatigue of bone-fixation prostheses, whose surfaces are continuously held to sliding and shearing contacts of sub-millimetre scale lengths.

  6. Thermal Behaviour of W+C Ion Implanted Ultra High Molecular Weight Polyethylene (UHMWPE)

    SciTech Connect

    Urkac, E. Sokullu; Oztarhan, A.; Tihminlioglu, F.; Ila, D.; Chhay, B.; Muntele, C.; Budak, S.; Oks, E.; Nikolaev, A.

    2009-03-10

    The aim of this work was to examine thermal behavior of the surface modified Ultra High Molecular Weight Poly Ethylene (UHMWPE ) in order to understand the effect of ion implantation on the properties of this polymer which is widely used especially for biomedical applications. UHMWPE samples were Tungsten and Carbon (W+C) hybrid ion implanted by using Metal Vapour Vacuum Arc (MEVVA) ion implantation technique with a fluence of 10 17 ions/cm2 and extraction voltage of 30 kV. Untreated and surface-treated samples were investigated by Rutherford Back Scattering (RBS) Analysis, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectrometry, Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). This study has shown that ion implantation represents a powerful tool on modifying thermal properties of UHMWPE surfaces. This combination of properties can make implanted UHMWPE a preferred material for biomedical applications.

  7. Gas-induced swelling of beryllium implanted with deuterium ions

    NASA Astrophysics Data System (ADS)

    Chernikov, V. N.; Alimov, V. Kh.; Markin, A. V.; Gorodetsky, A. E.; Kanashenko, S. L.; Zakharov, A. P.; Kupriyanov, I. B.

    1996-10-01

    An extensive TEM study of the microstructure of Be TIP-30 irradiated with 3 and 10 keV D ions up to fluences, Φ, in the range from 3 × 10 20 to 8 × 10 21 D/m 2 at temperatures, Tirr = 300, 500 and 700 K has been carried out. Depth distributions of deuterium in a form of separate D atoms and D 2 molecules have been investigated by means of SIMS (secondary ion mass spectrometry) and RGA (residual gas analysis) methods, correspondingly. D ion implantation is accompanied by blistering and gives rise to processes of gas-induced cavitation which are very sensitive to the irradiation temperature. At Tirr = 300 K tiny gas bubbles (about 1 nm in size) pressurized with molecular deuterium are developed with parameters resembling those of helium bubbles in Be. Irradiation at Tirr ≥ 500 K leads to the appearance of coarse deuterium-filled cavities which can form in sub-surface layers different kinds of oblate labyrinth structures. Questions of reemission, thermal desorption and trapping of deuterium in Be have been discussed.

  8. Microstructure of spinel islands on the sapphire surface grown by ion implantation and annealing.

    PubMed

    Wang, Y; Liu, X P; Qin, G W

    2014-09-01

    Fe ions were implanted into α-Al2O3 single crystals (sapphire) at energy of 50 keV and annealed in an oxidizing environment. Transmission electron microscopy (TEM) investigation indicated that Fe ions in the near surface region precipitated as α-Fe2O3 islands and spinel islands on the specimen surface, at the same time, Fe ions in the region away from the surface precipitated as α-Fe particles in the interior region of specimen. Two orientation relationships (ORs) between the spinel islands and sapphire substrate were discovered as follows: (111)spinel∥(0001)sapphire, [1 1 2¯]spinel∥[1 1 2¯ 0]sapphire and (1 1 2¯)spinel∥(0 0 0 1)sapphire, [1 1 1]spinel∥[1 1 2¯ 0]sapphire. The first OR was frequently observed in the spinel/sapphire system, however, the second OR has never been reported before. The interfaces between the spinel islands and sapphire substrate are a type-3 incoherent interface (i.e. low-index OR in at least one direction with an ill-matched low-index habit planes). The formation of spinel islands on the specimen surface can be attributed to the oxidizing atmosphere and the low accelerating voltage for ion implantation.

  9. Friction and Wear Properties of As-deposited and Carbon Ion-implanted Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1994-01-01

    Recent work on the friction and wear properties of as-deposited and carbon ion-implanted diamond films was reviewed. Diamond films were produced by the microwave plasma chemical vapor deposition (CVD) technique. Diamond films with various grain sizes and surface roughnesses were implanted with carbon ions at 60 ke V ion energy, resulting in a dose of 1.2310(exp 17) carbon ions/cm(exp 2). Various analytical techniques, including Raman spectroscopy, proton recoil analysis, Rutherford backscattering, transmission and scanning electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction, were utilized to characterize the diamond films. Sliding friction experiments were conducted with a polished natural diamond pin in contact with diamond films in the three environments: humid air (40 percent relative humidity), dry nitrogen (less than 1 percent relative humidity), and ultrahigh vacuum (10(exp -7) Pa). The CVD diamond films indeed have friction and were properties similar to those of natural diamond in the three environments. The as-deposited, fine-grain diamond films can be effectively used as self-lubricating, wear-resistant coatings that have low coefficients of friction (0.02 to 0.04) and low wear rates (10(exp -7) to 10(exp -8)mm(exp 3)/N-m) in both humid air and dry nitrogen. However, they have high coefficients of friction (1.5 to 1.7) and a high wear rate (10(exp -4)mm(exp 3/N-m) in ultrahigh vacuum. The carbon ion implanation produced a thin surficial layer (less than 0.1 micron thick) of amorphous, nondiamond carbon on the diamond films. In humid air and dry nitrogen, the ion-implanted, fine- and coarse-grain diamond films have a low coefficient of friction (around 0.1) and a low wear rate (10(exp -7)mm(exp 3/N-m). Even in ultrahigh vacuum, the presence of the nondiamond carbon layer reduced the coefficient of friction of fine-grain diamond films to 0.1 or lower and the wear rate to 10(exp -6)mm(exp 3)/N-m. Thus, the carbon ion-implanted, fine

  10. Ion implantation of erbium into polycrystalline cadmium telluride

    SciTech Connect

    Ushakov, V. V. Klevkov, Yu. V.; Dravin, V. A.

    2015-05-15

    The specific features of the ion implantation of polycrystalline cadmium telluride with grains 20–1000 μm in dimensions are studied. The choice of erbium is motivated by the possibility of using rare-earth elements as luminescent “probes” in studies of the defect and impurity composition of materials and modification of the composition by various technological treatments. From the microphotoluminescence data, it is found that, with decreasing crystal-grain dimensions, the degree of radiation stability of the material is increased. Microphotoluminescence topography of the samples shows the efficiency of the rare-earth probe in detecting regions with higher impurity and defect concentrations, including regions of intergrain boundaries.

  11. Intravascular brachytherapy with radioactive stents produced by ion implantation

    NASA Astrophysics Data System (ADS)

    Golombeck, M.-A.; Heise, S.; Schloesser, K.; Schuessler, B.; Schweickert, H.

    2003-05-01

    About 1 million patients are treated for stenosis of coronary arteries by percutaneous balloon angioplasty annually worldwide. In many cases a so called stent is inserted into the vessel to keep it mechanically open. Restenosis is observed in about 20-30% of these cases, which can be treated by irradiating the stented vessel segment. In our approach, we utilized the stent itself as radiation source by ion implanting 32P. Investigations of the surface properties were performed with special emphasis on activity retention. Clinical data of about 400 patients showed radioactive stents can suppress instent restenosis, but a so called edge effect appeared, which can be avoided by the new "drug eluting stents".

  12. Ion beam sputter modification of the surface morphology of biological implants

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Banks, B. A.

    1976-01-01

    The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion beam sputtered surfaces.

  13. Ion-beam-sputter modification of the surface morphology of biological implants

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Banks, B. A.

    1977-01-01

    The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion-beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron-bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion-beam-sputtered surfaces.

  14. Open questions in electronic sputtering of solids by slow highly charged ions with respect to applications in single ion implantation

    SciTech Connect

    Schenkel, T.; Rangelow, I.W.; Keller, R.; Park, S.J.; Nilsson, J.; Persaud, A.; Radmilivitc, V.R.; Liddle, J.A.; Grabiec, P.; Bokor, J.; Schneider, D.H.

    2003-07-16

    In this article we discuss open questions in electronic sputtering of solids by slow, highly charged ions in the context of their application in a single ion implantation scheme. High yields of secondary electrons emitted when highly charged dopant ions impinge on silicon wafers allow for formation of non-Poissonian implant structures such as single atom arrays. Control of high spatial resolution and implant alignment require the use of nanometer scale apertures. We discuss electronic sputtering issues on mask lifetimes, and damage to silicon wafers.

  15. The effect of platform switching on the levels of metal ion release from different implant-abutment couples.

    PubMed

    Alrabeah, Ghada O; Knowles, Jonathan C; Petridis, Haralampos

    2016-01-01

    The improved peri-implant bone response demonstrated by platform switching may be the result of reduced amounts of metal ions released to the surrounding tissues. The aim of this study was to compare the levels of metal ions released from platform-matched and platform-switched implant-abutment couples as a result of accelerated corrosion. Thirty-six titanium alloy (Ti-6Al-4V) and cobalt-chrome alloy abutments were coupled with titanium cylinders forming either platform-switched or platform-matched groups (n=6). In addition, 18 unconnected samples served as controls. The specimens were subjected to accelerated corrosion by static immersion in 1% lactic acid for 1 week. The amount of metal ions ion of each test tube was measured using inductively coupled plasma mass spectrometry. Scanning electron microscope (SEM) images and energy dispersive spectroscopy X-ray analyses were performed pre- and post-immersion to assess corrosion at the interface. The platform-matched groups demonstrated higher ion release for vanadium, aluminium, cobalt, chrome, and molybdenum compared with the platform-switched groups (P<0.05). Titanium was the highest element to be released regardless of abutment size or connection (P<0.05). SEM images showed pitting corrosion prominent on the outer borders of the implant and abutment platform surfaces. In conclusion, implant-abutment couples underwent an active corrosion process resulting in metal ions release into the surrounding environment. The highest amount of metal ions released was recorded for the platform-matched groups, suggesting that platform-switching concept has a positive effect in reducing the levels of metal ion release from the implant-abutment couples. PMID:27357323

  16. Ni ion release, osteoblast-material interactions, and hemocompatibility of hafnium-implanted NiTi alloy.

    PubMed

    Zhao, Tingting; Li, Yan; Zhao, Xinqing; Chen, Hong; Zhang, Tao

    2012-04-01

    Hafnium ion implantation was applied to NiTi alloy to suppress Ni ion release and enhance osteoblast-material interactions and hemocompatibility. The auger electron spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscope results showed that a composite TiO(2)/HfO(2) nanofilm with increased surface roughness was formed on the surface of NiTi, and Ni concentration was reduced in the superficial surface layer. Potentiodynamic polarization tests displayed that 4 mA NiTi sample possessed the highest E(br) - E(corr), 470 mV higher than that of untreated NiTi, suggesting a significant improvement on pitting corrosion resistance. Inductively coupled plasma mass spectrometry tests during 60 days immersion demonstrated that Ni ion release rate was remarkably decreased, for example, a reduction of 67% in the first day. The water contact angle increased and surface energy decreased after Hf implantation. Cell culture and methyl-thiazol-tetrazolium indicated that Hf-implanted NiTi expressed enhanced osteoblasts adhesion and proliferation, especially after 7 days culture. Hf implantation decreased fibrinogen adsorption, but had almost no effect on albumin adsorption. Platelets adhesion and activation were suppressed significantly (97% for 4 mA NiTi) and hemolysis rate was decreased by at least 57% after Hf implantation. Modified surface composition and morphology and decreased surface energy should be responsible for the improvement of cytocompatibility and hemocompatibility.

  17. Single Phosphorus Ion Implantation into Prefabricated Nanometre Cells of Silicon Devices for Quantum Bit Fabrication

    NASA Astrophysics Data System (ADS)

    Yang, Changyi; Jamieson, David N.; Pakes, Chris; Prawer, Steven; Dzurak, Andrew; Stanley, Fay; Spizziri, Paul; Macks, Linda; Gauja, Eric; Clark, Robert G.

    2003-06-01

    In the near future, devices that employ single atoms to store or manipulate information will be constructed. For example, a solid-state quantum computer has been proposed that encodes information in the nuclear spin of shallow arrays of single 31P atoms (quantum bits or qubits) in a matrix of pure silicon. Construction of these devices presents formidable challenges. One strategy is to use single ion implantation, with the energy range of 10 to 20 keV, to load the qubits into prefabricated cells of the device with a period of a few tens of nanometres. We have developed a method of single ion implantation that employs detector electrodes adjacent to the prefabricated qubit cells that can detect on-line single keV ion strikes appropriate for the fabrication of shallow arrays. Our method of the sub-20 keV single ion detection utilizes a pure silicon substrate with a very high resistivity, a thin (5 nm) SiO2 surface layer, biased electrodes applied to the surface and sensitive electronics that can detect the charge transient from single keV ion strikes. We show that our detectors have a near 100% efficiency for keV ions, extremely thin dead layer thickness (˜5 nm) and a wide sensitive region extending laterally from the electrodes (greater than 15 μm) where the nanometre cells can be constructed. We compare the method with the other methods, such as those of measuring the secondary electrons or phonons induced by single ion impacts.

  18. A simple ion implanter for material modifications in agriculture and gemmology

    NASA Astrophysics Data System (ADS)

    Singkarat, S.; Wijaikhum, A.; Suwannakachorn, D.; Tippawan, U.; Intarasiri, S.; Bootkul, D.; Phanchaisri, B.; Techarung, J.; Rhodes, M. W.; Suwankosum, R.; Rattanarin, S.; Yu, L. D.

    2015-12-01

    In our efforts in developing ion beam technology for novel applications in biology and gemmology, an economic simple compact ion implanter especially for the purpose was constructed. The designing of the machine was aimed at providing our users with a simple, economic, user friendly, convenient and easily operateable ion implanter for ion implantation of biological living materials and gemstones for biotechnological applications and modification of gemstones, which would eventually contribute to the national agriculture, biomedicine and gem-industry developments. The machine was in a vertical setup so that the samples could be placed horizontally and even without fixing; in a non-mass-analyzing ion implanter style using mixed molecular and atomic nitrogen (N) ions so that material modifications could be more effective; equipped with a focusing/defocusing lens and an X-Y beam scanner so that a broad beam could be possible; and also equipped with a relatively small target chamber so that living biological samples could survive from the vacuum period during ion implantation. To save equipment materials and costs, most of the components of the machine were taken from decommissioned ion beam facilities. The maximum accelerating voltage of the accelerator was 100 kV, ideally necessary for crop mutation induction and gem modification by ion beams from our experience. N-ion implantation of local rice seeds and cut gemstones was carried out. Various phenotype changes of grown rice from the ion-implanted seeds and improvements in gemmological quality of the ion-bombarded gemstones were observed. The success in development of such a low-cost and simple-structured ion implanter provides developing countries with a model of utilizing our limited resources to develop novel accelerator-based technologies and applications.

  19. Influence of irradiation spectrum and implanted ions on the amorphization of ceramics

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.

    1996-04-01

    Amorphization cannot be tolerated in ceramics proposed for fusion energy applications due to the accompanying large volume change ({approx} 15% in SiC) and loss of strength. Ion beam irradiations at temperatures between 200 K and 450 K were used to examine the likelihood of amorphization in ceramics being considered for the structure (SiC) and numerous diagnostic and plasma heating systems (MgAl{sub 2}O{sub 4}, Al{sub 2}O{sub 3}, MgO, Si{sub 3}N{sub 4}) in fusion energy systems. The microstructures were examined following irradiation using cross-section transmission electron microscopy. The materials in this study included ceramics with predominantly covalent bonding (SiC, Si{sub 3}N{sub 4}) and predominantely ionic bonding (MgAl{sub 2}O{sub 4}, Al{sub 2}O{sub 3}, MgO). The samples were irradiated with a variety of ion beams (including some simultaneous dual ion beam irradiations) in order to investigate possible irradiation spectrum effects. The ion energies were >0.5 MeV in all cases, so that the displacement damage effects could be examined in regions well separated from the implanted ion region.

  20. Mossbauer effect in the ion-implanted iron-carbon alloys

    NASA Technical Reports Server (NTRS)

    Han, K. S.

    1976-01-01

    The concentration dependence of Mossbauer effect in four carbon ion-implanted iron absorbers, which contain carbon as the solute atoms, has been investigated over the range of concentration 0.05 through 1 atomic percent. The specimens were prepared by implanting carbon atoms on each reference iron foil with four different bombarding energies of 250 keV, 160 keV, 140 keV and 80 keV, respectively. Thus, the specimen contains a uniform dosage of carbon atoms which penetrated up to 3,000 A depth of the reference iron. In the measurement of Mossbauer spectra, the backscattering conversion electron counting geometry was used. Typical results of Mossbauer parameters of iron-carbon alloys show that the isomer shift, quadrupole shift, the effective hyperfine splitting of Fe-57, and the intensity ratio exhibit a large variation with the increase of carbon concentration in the environment of iron atoms.

  1. Electron conductivity in GeTe and GeSe upon ion implantation of Bi

    SciTech Connect

    Fedorenko, Ya. G.

    2015-12-15

    This paper presents results on ion implantation of bismuth in GeTe and GeSe films. The conductivity and the thermopower of amorphous chalcogenide films are investigated. Electron conductivity in the films is attained at the Bi implantation doses higher than (1.5–2) × 10{sup 16} cm{sup −2}. In conjunction with the structural modification in the films as revealed Raman spectroscopy, the results suggest the structural re-arrangement of the amorphous network occurs via weakening the bonds of a lower energy. The onset of electron conductivity is hindered by a stronger bond in an alloy. In GeTe, this is the Ge-Ge bond.

  2. Comparison of oxide leakage currents induced by ion implantation and high field electric stress

    NASA Astrophysics Data System (ADS)

    Goguenheim, D.; Bravaix, A.; Monserie, C.; Moragues, J. M.; Lambert, P.; Boivin, P.

    2001-08-01

    We compare in this work the electrical properties of gate leakage currents induced through the thin SiO2 oxide layer of metal-oxide-semiconductor structures by high-energy ion implantation (Boron B2+) and high field electrical stresses where electrons are injected from the gate in the Fowler-Nordheim regime. Even if the high-frequency capacitance-voltage characteristics are very different after both treatments, comparable increases and similar shapes are found at low field in static gate current-voltage curves, typical of equivalent oxide damage. Moreover, these stress or implantation induced leakage currents are both removed in a similar way by a thermal anneal under forming gas at 430°C. We conclude that similar defects could be induced through the oxide by both processes and generate those excess currents by a defect assisted tunneling mechanism.

  3. Silver migration and trapping in ion implanted ZnO single crystals

    NASA Astrophysics Data System (ADS)

    Azarov, Alexander; Vines, Lasse; Rauwel, Protima; Monakhov, Edouard; Svensson, Bengt G.

    2016-05-01

    Potentially, group-Ib elements (Cu, Ag, and Au) incorporated on Zn sites can be used for p-type doping of ZnO, and in the present paper, we use ion implantation to introduce Ag atoms in wurtzite ZnO single crystals. Monitoring the Li behavior, being a residual impurity in the crystals, as a tracer, we demonstrate that Zn interstitials assist the Ag diffusion and lead to Ag pile-up behind the implanted region after annealing above 800 °C. At even higher temperatures, a pronounced Ag loss from the sample surface occurs and concurrently the Ag atoms exhibit a trap-limited diffusion into the crystal bulk with an activation energy of ˜2.6 eV. The dominant traps are most likely Zn vacancies and substitutional Li atoms, yielding substitutional Ag atoms. In addition, formation of an anomalous multipeak Ag distribution in the implanted near-surface region after annealing can be attributed to local implantation-induced stoichiometry disturbances leading to trapping of the Ag atoms by O and Zn vacancies in the vicinity of the surface and in the end-of-range region, respectively.

  4. Biofilm formation on titanium implants counteracted by grafting gallium and silver ions.

    PubMed

    Cochis, Andrea; Azzimonti, Barbara; Della Valle, Cinzia; Chiesa, Roberto; Arciola, Carla Renata; Rimondini, Lia

    2015-03-01

    Biofilm-associated infections remain the leading cause of implant failure. Thanks to its established biocompatibility and biomechanical properties, titanium has become one of the most widely used materials for bone implants. Engineered surface modifications of titanium able to thwart biofilm formation while endowing a safe anchorage to eukaryotic cells are being progressively developed. Here surfaces of disks of commercial grade 2 titanium for bone implant were grafted with gallium and silver ions by anodic spark deposition. Scanning electron microscopy of the surface morphology and energy dispersive X-ray spectroscopy were used for characterization. Gallium-grafted titanium was evaluated in comparison with silver-grafted titanium for both in vivo and in vitro antibiofilm properties and for in vitro compatibility with human primary gingival fibroblasts. Surface-modified materials showed: (i) homogeneous porous morphology, with pores of micrometric size; (ii) absence of cytotoxic effects; (iii) ability to support in vitro the adhesion and spreading of gingival fibroblasts; and (iv) antibiofilm properties. Although both silver and gallium exhibited in vitro strong antibacterial properties, in vivo gallium was significantly more effective than silver in reducing number and viability of biofilm bacteria colonies. Gallium-based treatments represent promising titanium antibiofilm coatings to develop new bone implantable devices for oral, maxillofacial, and orthopedic applications.

  5. High Curie temperature drive layer materials for ion-implanted magnetic bubble devices

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Wolfe, R.; Blank, S. L.; Nelson, T. J.

    1984-01-01

    Ion implantation of bubble garnets can lower the Curie temperature by 70 C or more, thus limiting high temperature operation of devices with ion-implanted propagation patterns. Therefore, double-layer materials were made with a conventional 2-micron bubble storage layer capped by an ion-implantable drive layer of high Curie temperature, high magnetostriction material. Contiguous disk test patterns were implanted with varying doses of a typical triple implant. Quality of propagation was judged by quasistatic tests on 8-micron period major and minor loops. Variations of magnetization, uniaxial anisotropy, implant dose, and magnetostriction were investigated to ensure optimum flux matching, good charged wall coupling, and wide operating margins. The most successful drive layer compositions were in the systems (SmDyLuCa)3(FeSi)5O12 and (BiGdTmCa)3(FeSi)5O12 and had Curie temperatures 25-44 C higher than the storage layers.

  6. Swelling or erosion on the surface of patterned GaN damaged by heavy ion implantation

    SciTech Connect

    Gao, Yuan; Lan, Chune; Xue, Jianming; Yan, Sha; Wang, Yugang; Xu, Fujun; Shen, Bo; Zhang, Yanwen

    2010-06-08

    Wurtzite undoped GaN epilayers (0 0 0 1) was implanted with 500 keV Au+ ions at room temperature under different doses, respectively. Ion implantation was performed through photoresist masks on GaN to produce alternating strips. The experimental results showed that the step height of swelling and decomposition in implanted GaN depended on ion dose and annealing temperature, i.e., damage level and its evolution. This damage evolution is contributed to implantation-induced defect production, and defect migration/accumulation occurred at different levels of displacement per atom. The results suggest that the swelling is due to the formation of porous structures in the amorphous region of implanted GaN. The decomposition of implanted area can be attributed to the disorder saturation and the diffusion of surface amorphous layer.

  7. Processing of silicon solar cells by ion implantation and laser annealing

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.; Matthei, K. W.; Greenwald, A. C.

    1981-01-01

    Methods to improve the radiation tolerance of silicon cells for spacecraft use are described. The major emphasis of the program was to reduce the process-induced carbon and oxygen impurities in the junction and base regions of the solar cell, and to measure the effect of reduced impurity levels on the radiation tolerance of cells. Substrates of 0.1, 1.0 and 10.0 ohm-cm float-zone material were used as starting material in the process sequence. High-dose, low-energy ion implantation was used to form the junction in n+p structures. Implant annealing was performed by conventional furnace techniques and by pulsed laser and pulsed electron beam annealing. Cells were tested for radiation tolerance at Spire and NASA-LeRC. After irradiation by 1 MeV electrons to a fluence of 10 to the 16th power per sq cm, the cells tested at Spire showed no significant process induced variations in radiation tolerance. However, for cells tested at Lewis to a fluence of 10 to the 15th power per sq cm, ion-implanted cells annealed in vacuum by pulsed electron beam consistently showed the best radiation tolerance for all cell resistivities.

  8. N and Cr ion implantation of natural ruby surfaces and their characterization

    NASA Astrophysics Data System (ADS)

    Rao, K. Sudheendra; Sahoo, Rakesh K.; Dash, Tapan; Magudapathy, P.; Panigrahi, B. K.; Nayak, B. B.; Mishra, B. K.

    2016-04-01

    Energetic ions of N and Cr were used to implant the surfaces of natural rubies (low aesthetic quality). Surface colours of the specimens were found to change after ion implantation. The samples without and with ion implantation were characterized by diffuse reflectance spectra in ultra violet and visible region (DRS-UV-Vis), field emission scanning electron microscopy (FESEM), selected area electron diffraction (SAED) and nano-indentation. While the Cr-ion implantation produced deep red surface colour (pigeon eye red) in polished raw sample (without heat treatment), the N-ion implantation produced a mixed tone of dark blue, greenish blue and violet surface colour in the heat treated sample. In the case of heat treated sample at 3 × 1017 N-ions/cm2 fluence, formation of colour centres (F+, F2, F2+ and F22+) by ion implantation process is attributed to explain the development of the modified surface colours. Certain degree of surface amorphization was observed to be associated with the above N-ion implantation.

  9. Three-layer photocarrier radiometry model of ion-implanted silicon wafers

    NASA Astrophysics Data System (ADS)

    Li, Bincheng; Shaughnessy, Derrick; Mandelis, Andreas; Batista, Jerias; Garcia, Jose

    2004-06-01

    A three-dimensional three-layer model is presented for the quantitative understanding of the infrared photocarrier radiometry (PCR) response of ion-implanted semiconductors, specifically Si. In addition to the implanted layer and intact substrate normally assumed in all existing two-layer theoretical models to describe the photothermal response of ion-implanted semiconductors, a surface layer is considered in this three-layer model to represent a thin, less severally damaged region close to the surface. The effects on the PCR signal of several structural, transport, and optical properties of ion-implanted silicon wafers affected significantly by the ion implantation process (minority carrier lifetime, diffusion coefficient, optical absorption coefficient, thickness of the implanted layer, and front surface recombination velocity) are discussed. The dependence of the PCR signal on the ion implantation dose is theoretically calculated and compared to experimental results. Good agreement between experimental data and theoretical calculations is obtained. Both theoretical and experimental results show the PCR dependence on dose can be separated into four regions with the transition across each region defined by the implantation-induced electrical and optical degrees of damage, respectively, as the electrical and optical damage occurs at different dose ranges. It is also shown that the PCR amplitude decreases monotonically with increasing implantation dose. This monotonic dependence provides the potential of the PCR technique for industrial applications in semiconductor metrology.

  10. Implantation in interplanetary dust of rare-gas ions from solar flares.

    PubMed

    Tilles, D

    1966-08-26

    Measurements of excess Ar(36) + Ar(38) ( released mainly at 1200 degrees C) in magnetic concentrates of Pacific sediments and in a dense concentrate of Greenland dust agree within an order of magnitude with expected concentrations implanted by solar-flare ion streams of energy less than 10 Mev per atomic-mass unit. The agreement implies that more than 10 percent of each concentrate may be extraterrestrial, depending on size distribution and flare spectra. Rare-gas measurements on fine-grained dust can provide data on: solar-flare "paleo-ion" fluxes, energy spectra, and isotopic abundances; identification, mineralogy, and chemistry of interplanetary dust; influx rates to Earth and sedimentation rates of oceanic cores; and lunar-surface residence and mixing times.

  11. Stress influenced trapping processes in Si based multi-quantum well structures and heavy ions implanted Si

    SciTech Connect

    Ciurea, Magdalena Lidia Lazanu, Sorina

    2014-10-06

    Multi-quantum well structures and Si wafers implanted with heavy iodine and bismuth ions are studied in order to evaluate the influence of stress on the parameters of trapping centers. The experimental method of thermostimullatedcurrents without applied bias is used, and the trapping centers are filled by illumination. By modeling the discharge curves, we found in multilayered structures the parameters of both 'normal' traps and 'stress-induced' ones, the last having a Gaussian-shaped temperature dependence of the cross section. The stress field due to the presence of stopped heavy ions implanted into Si was modeled by a permanent electric field. The increase of the strain from the neighborhood of I ions to the neighborhood of Bi ions produces the broadening of some energy levels and also a temperature dependence of the cross sections for all levels.

  12. Ion-implanted PLZT ceramics: a new high-sensitivity image storage medium

    SciTech Connect

    Peercy, P.S.; Land, C.E.

    1980-01-01

    Results were presented of our studies of photoferroelectric (PFE) image storage in H- and He-ion implanted PLZT (lead lanthanum zirconate titanate) ceramics which demonstrate that the photosensitivity of PLZT can be significantly increased by ion implantation in the ceramic surface to be exposed to image light. More recently, implantations of Ar and Ar + Ne into the PLZT surface have produced much greater photosensitivity enhancement. For example, the photosensitivity after implantation with 1.5 x 10/sup 14/ 350 keV Ar/cm/sup 2/ + 1 x 10/sup 15/ 500 keV Ne/cm/sup 2/ is increased by about four orders of magnitude over that of unimplanted PLZT. Measurements indicate that the photosensitivity enhancement in ion-implanted PLZT is controlled by implantation-produced disorder which results in marked decreases in dielectric constant and dark conductivity and changes in photoconductivity of the implanted layer. The effects of Ar- and Ar + Ne-implantation are presented along with a phenomenological model which describes the enhancement in photosensitivity obtained by ion implantation. This model takes into account both light- and implantation-induced changes in conductivity and gives quantitative agreement with the measured changes in the coercive voltage V/sub c/ as a function of near-uv light intensity for both unimplanted and implanted PLZT. The model, used in conjunction with calculations of the profiles of implantation-produced disorder, has provided the information needed for co-implanting ions of different masses, e.g., Ar and Ne, to improve photosensitivity.

  13. Surface, electrical and mechanical modifications of PMMA after implantation with laser produced iron plasma ions

    NASA Astrophysics Data System (ADS)

    Ahmed, Qazi Salman; Bashir, Shazia; Jalil, Sohail Abdul; Shabbir, Muhammad Kaif; Mahmood, Khaliq; Akram, Mahreen; Khalid, Ayesha; Yaseen, Nazish; Arshad, Atiqa

    2016-07-01

    Laser Produced Plasma (LPP) was employed as an ion source for the modifications in surface, electrical and mechanical properties of poly methyl (methacrylate) PMMA. For this purpose Nd:YAG laser (532 nm, 6 ns, 10 Hz) at a fluence of 12.7 J/cm2 was employed to generate Fe plasma. The fluence and energy measurements of laser produced Fe plasma ions were carried out by employing Thomson Parabola Technique in the presence of magnetic field strength of 0.5 T, using CR-39 as Solid State Nuclear Track Detector (SSNTD). It has been observed that ion fluence ejecting from ablated plasma was maximum at an angle of 5° with respect to the normal to the Fe target surface. PMMA substrates were irradiated with Fe ions of constant energy of 0.85 MeV at various ion fluences ranging from 3.8 × 106 ions/cm2 to 1.8 × 108 ions/cm2 controlled by varying laser pulses from 3000 to 7000. Optical microscope and Scanning Electron Microscope (SEM) were utilized for the analysis of surface features of irradiated PMMA. Results depicted the formation of chain scission, crosslinking, dendrites and star like structures. To explore the electrical behavior, four probe method was employed. The electrical conductivity of ion irradiated PMMA was increased with increasing ion fluence. The surface hardness was measured by shore D hardness tester and results showed the monotonous increment in surface hardness with increasing ion fluence. The increasing trend of surface hardness and electrical conductivity with increasing Fe ion fluence has been well correlated with the surface morphology of ion implanted PMMA. The temperature rise of PMMA surface due to Fe ion irradiation is evaluated analytically and comes out to be in the range of 1.72 × 104 to 1.82 × 104 K. The values of total Linear Energy Transfer (LET) or stopping power of 0.8 MeV Fe ions in PMMA is 61.8 eV/Å and their range is 1.34 μm evaluated by SRIM simulation.

  14. Swift and heavy ion implanted chalcogenide laser glass waveguides and their different refractive index distributions

    SciTech Connect

    Qiu Feng; Narusawa, Tadashi; Zheng Jie

    2011-02-10

    Planar waveguides have been fabricated in Nd- or Ho-doped gallium lanthanum sulfide laser glasses by 60 MeV Ar or 20 MeV N ion implantation. The refractive index profiles were reconstructed based on the results of prism coupling. The Ar implanted waveguides exhibit an approximate steplike distribution, while the N implanted ones show a ''well + barrier'' type. This difference can be attributed to the much lower dose of Ar ions. After annealing, the N implanted waveguides can support two modes at 1539 nm and have low propagation loss, which makes them candidates for novel waveguide lasers.

  15. Deuterium retention after deuterium plasma implantation in tungsten pre-damaged by fast C+ ions

    NASA Astrophysics Data System (ADS)

    Efimov, V. S.; Gasparyan, Yu M.; Pisarev, A. A.; Khripunov, B. I.; Koidan, V. S.; Ryazanov, A. I.; Semenov, E. V.

    2016-09-01

    Thermal desorption of deuterium from W was investigated. Virgin samples and samples damaged by 10 MeV C 3+ ions were implanted from plasma in the LENTA facility at 370 K and 773 K. In comparison with the undamaged sample, deuterium retention in the damaged sample slightly increased in the case of deuterium implantation at RT, but decreased in the case of deuterium implantation at 773 K. At 773 K, deuterium was concluded to diffuse far behind the D ion range in the virgin sample, while C implantation region was concluded to be a barrier for D diffusion in the damaged sample.

  16. Effect of phosphorous ion implantation on the mechanical properties and bioactivity of hydroxyapatite.

    PubMed

    Kobayashi, Satoshi; Muramatsu, Takehiro; Teranishi, Yoshikazu

    2015-01-01

    Hydroxyapatite (HA) has ability of bone-like apatite formation, which consists with chemical interaction between the surface of HA and ions included in body fluid. Thus, proper surface modification might enhance the function. In the present study, the effect of phosphorous ion implantation on mechanical properties and bioactivity of HA was investigated. In order to clarify the effect of ion implantation dose, ion dose of 1 × 10(12), 1 × 10(13) and 1 × 10(14) ions/cm(2) were selected. Mechanical properties and bioactivity were evaluated in 4-point bending tests and immersion test in simulated body fluid. Bending strength was reduced due to ion implantation. The amount of decreasing strength was similar regardless of ion implantation dose. Bone-like apatite formation was slightly delayed with ion implantation, however, improvement in interfacial strength between bone-like apatite layer and the base HA was indicated. From the results, the possibility of phosphorous ion implantation for enhancement of bioactivity of HA was proved.

  17. Near-surface density of ion-implanted Si studied by Rutherford backscattering and total-reflection x-ray fluorescence

    SciTech Connect

    Klockenkaemper, R.; Becker, M.; Bohlen, A. von; Becker, H.W.; Krzyzanowska, H.; Palmetshofer, L.

    2005-08-01

    The implantation of ions in solids is of high technical relevance. The different effects within the solid target caused by the ion bombardment can be investigated by depth profiling of near-surface layers. As and Co ions were implanted in Si wafers: As ions with a fluence of 1x10{sup 17}/cm{sup 2} and an energy of 100 keV and Co ions with 1x10{sup 16}/cm{sup 2} at 25 keV. Subsequently depth profiling was carried out by Rutherford backscattering spectrometry as well as by total-reflection x-ray fluorescence analysis which was combined with differential weighing and interferometry after repeated large-surface sputter etching. Over and above the amorphization of the Si crystal, two other essential effects were observed: (i) a swelling or expansion of the original Si crystal in the near-surface region, in particular in the case of the As implantation, and (ii) a shrinking or compression of the Si crystal for deeper sublayers especially distinct for the Co implantation. On the other hand, a high surface enrichment of implanted ions was found for the As implantation while only a low surface concentration was detected for the Co implantation.

  18. Ion-implantation-induced damage and resonant levels in Pb/sub 1-x/Sn/sub x/Te

    SciTech Connect

    Gresslehner, K.H.; Palmetshofer, L.

    1980-09-01

    The dependence of the carrier concentration on the implantation dose and on the temperature was investigated in ion-implanted thin films of Pb/sub 1-x/Sn/sub x/Te (0< or =x<0.1). By assuming a twofold defect level in the conduction band we are able to fit the experimental results. With increasing tin content the energy of the defect level shifts towards the conduction-band edge. By extending the results to SnTe a general model for the understanding of the electrical properties of ion-implanted Pb/sub 1-x/Sn/sub x/Te (0< or =x< or =1) is suggested.

  19. Effective dopant activation via low temperature microwave annealing of ion implanted silicon

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; David Theodore, N.; Vemuri, Rajitha N. P.; Das, Sayantan; Lu, Wei; Lau, S. S.; Alford, T. L.

    2013-11-01

    Susceptor-assisted microwave annealing enables effective dopant activation, at low temperatures, in ion-implanted Si. Given similar thermal budgets for microwave annealing and rapid thermal annealing (RTA), sheet resistances of microwave annealed Si, with either B+ or P+ implants, are lower than the values obtained using RTA. The fraction of dopants activated is as high as 18% for B+ implants and 64% for P+ implants. Dopant diffusion is imperceptible after microwave annealing, but significant after RTA, for P+ implanted Si samples with the same dopant activation. Microwave annealing achieves such properties using shorter anneal times and lower peak temperatures compared to RTA.

  20. Implantation of nitrogen: Effects of hydrogen and implantation energy

    NASA Technical Reports Server (NTRS)

    Sugiura, Naoji; Futagami, Tsuneji; Nagai, Siro

    1993-01-01

    To solve the question on solar nitrogen in lunar soils, i.e. variation in isotopic composition and apparently high retentivity compared with rare gases, nitrogen implantation experiments were conducted. At the Meteoritical Society Meeting in Copenhagen, the results of stepped combustion of implanted nitrogen in ilmenite and olivine were presented. The degassing behavior of nitrogen (and also Ar) was quite different from that observed in the case of lunar soils. Extraction temperatures are higher (greater than 1100 C for ilmenite and 1500 C for olivine) than that for lunar soils. Both nitrogen and Ar seem to be retained at the same efficiency. Therefore, additional experiments were conducted to make degassing behavior of nitrogen more close to that observed in the case of lunar soils.

  1. Report on the workshop on Ion Implantation and Ion Beam Assisted Deposition

    NASA Astrophysics Data System (ADS)

    Dearnaley, G.

    1992-03-01

    This workshop was organized by the Corpus Christi Army Depot (CCAD), the major helicopter repair base within AVSCOM. Previous meetings had revealed a strong interest throughout DoD in ion beam technology as a means of extending the service life of military systems by reducing wear, corrosion, fatigue, etc. The workshop opened with an account by Dr. Bruce Sartwell of the successful application of ion implantation to bearings and gears at NRL, and the checkered history of the MANTECH Project at Spire Corporation. Dr. James Hirvonen (AMTL) continued with a summary of successful applications to reduce wear in biomedical components, and he also described the processes of ion beam-assisted deposition (IBAD) for a variety of protective coatings, including diamond-like carbon (DLC).

  2. Ion implantation effects in insulators and the long-term stability of radioactive waste storage materials

    NASA Astrophysics Data System (ADS)

    Dran, J. C.; Langevin, Y.; Maurette, M.; Petit, J. C.; Vassent, B.

    1981-05-01

    Most insulator materials so far proposed for storing high-level radioactive wastes, such as glass and and the constituent minerals of ceramics are nuclear track detectors. Lead ion implantation experiments show that such materials should be transformed into "giant" nuclear tracks, when the internal fluence of heavy recoils emitted during the α-decay of actinide elements stored in them exceeds a critical value, which corresponds to an equivalent storage period of a few thousand years for the wastes expected from a pressurized water reactor. In contrast, actinide bearing minerals are much more stable against α-recoil damage. As nuclear tracks are extremely chemical reactive, α-recoil damage is expected to shorten the lifetime of storage materials such as glass and ceramics against dissolution in ground waters. Fortunately new nuclear track concepts are already yielding guidelines for predicting and improving the long-term stability of storage materials. The results of the present studies also bear on the physics of ion implantation phenomena an insulator targets exposed to high fluences of low energy ions.

  3. Optical characteristics of Cu-nanocluster layers assembled by ion implantation

    SciTech Connect

    Haglund, R.F. Jr.; Yang, L. . Dept. of Physics and Astronomy); Magruder, R.H. III; Wittig, J.E. . Dept. of Materials Science and Engineering); Zuhr, R.A. )

    1991-01-01

    We have generated cluster layers in solid insulating substrates by implanting Cu ions into fused silica, creating thin layers ({approximately} 150 nm) of nonoclusters over a diameter of order 2 cm. Transmission electron microscopy shows that the size and size distribution can be controlled by the parameters of the ion implantation. We report measurements of the optical properties and nonlinear index of the refraction on these unusual solid-phase cluster materials as a function of total implanted-ion dose. 7 refs., 8 figs.

  4. Vacancy-related defects in n-type Si implanted with a rarefied microbeam of accelerated heavy ions in the MeV range

    NASA Astrophysics Data System (ADS)

    Capan, I.; Pastuović, Ž.; Siegele, R.; Jaćimović, R.

    2016-04-01

    Deep level transient spectroscopy (DLTS) has been used to study vacancy-related defects formed in bulk n-type Czochralski-grown silicon after implantation of accelerated heavy ions: 6.5 MeV O, 10.5 MeV Si, 10.5 MeV Ge, and 11 MeV Er in the single ion regime with fluences from 109 cm-2 to 1010 cm-2 and a direct comparison made with defects formed in the same material irradiated with 0.7 MeV fast neutron fluences up to 1012 cm-2. A scanning ion microprobe was used as the ion implantation tool of n-Cz:Si samples prepared as Schottky diodes, while the ion beam induced current (IBIC) technique was utilized for direct ion counting. The single acceptor state of the divacancy V2(-/0) is the most prominent defect state observed in DLTS spectra of n-CZ:Si samples implanted by selected ions and the sample irradiated by neutrons. The complete suppression of the DLTS signal related to the double acceptor state of divacancy, V2(=/-) has been observed in all samples irradiated by ions and neutrons. Moreover, the DLTS peak associated with formation of the vacancy-oxygen complex VO in the neutron irradiated sample was also completely suppressed in DLTS spectra of samples implanted with the raster scanned ion microbeam. The reason for such behaviour is twofold, (i) the local depletion of the carrier concentration in the highly disordered regions, and (ii) the effect of the microprobe-assisted single ion implantation. The activation energy for electron emission for states assigned to the V2(-/0) defect formed in samples implanted by single ions follows the Meyer-Neldel rule. An increase of the activation energy is strongly correlated with increasing ion mass.

  5. Controlled fabrication of Si nanocrystal delta-layers in thin SiO{sub 2} layers by plasma immersion ion implantation for nonvolatile memories

    SciTech Connect

    Bonafos, C.; Ben-Assayag, G.; Groenen, J.; Carrada, M.; Spiegel, Y.; Torregrosa, F.; Normand, P.; Dimitrakis, P.; Kapetanakis, E.; Sahu, B. S.; Slaoui, A.

    2013-12-16

    Plasma Immersion Ion Implantation (PIII) is a promising alternative to beam line implantation to produce a single layer of nanocrystals (NCs) in the gate insulator of metal-oxide semiconductor devices. We report herein the fabrication of two-dimensional Si-NCs arrays in thin SiO{sub 2} films using PIII and rapid thermal annealing. The effect of plasma and implantation conditions on the structural properties of the NC layers is examined by transmission electron microscopy. A fine tuning of the NCs characteristics is possible by optimizing the oxide thickness, implantation energy, and dose. Electrical characterization revealed that the PIII-produced-Si NC structures are appealing for nonvolatile memories.

  6. In-situ observation of sputtered particles for carbon implanted tungsten during energetic isotope ion implantation

    SciTech Connect

    Oya, Y.; Sato, M.; Uchimura, H.; Okuno, K.; Ashikawa, N.; Sagara, A.; Yoshida, N.; Hatano, Y.

    2015-03-15

    Tungsten is a candidate for plasma facing materials in future fusion reactors. During DT plasma operations, carbon as an impurity will bombard tungsten, leading to the formation of tungsten-carbon (WC) layer and affecting tritium recycling behavior. The effect of carbon implantation for the dynamic recycling of deuterium, which demonstrates tritium recycling, including retention and sputtering, has been investigated using in-situ sputtered particle measurements. The C{sup +} implanted W, WC and HOPG were prepared and dynamic sputtered particles were measured during H{sub 2}{sup +} irradiation. It has been found that the major hydrocarbon species for C{sup +} implanted tungsten is CH{sub 3}, while for WC and HOPG (Highly Oriented Pyrolytic Graphite) it is CH{sub 4}. The chemical state of hydrocarbon is controlled by the H concentration in a W-C mixed layer. The amount of C-H bond and the retention of H trapped by carbon atom should control the chemical form of hydrocarbon sputtered by H{sub 2}{sup +} irradiation and the desorption of CH{sub 3} and CH{sub 2} are due to chemical sputtering, although that for CH is physical sputtering. The activation energy for CH{sub 3} desorption has been estimated to be 0.4 eV, corresponding to the trapping process of hydrogen by carbon through the diffusion in W. It is concluded that the chemical states of hydrocarbon sputtered by H{sub 2}{sup +} irradiation for W is determined by the amount of C-H bond on the W surface. (authors)

  7. Blistering and cracking of LiTaO3 single crystal under helium ion implantation

    NASA Astrophysics Data System (ADS)

    Ma, Changdong; Lu, Fei; Ma, Yujie

    2015-03-01

    Blistering and cracking in LiTaO3 surface are investigated after 200-keV helium ion implantation and subsequent post-implantation annealing. Rutherford backscattering/channeling is used to examine the lattice damage caused by ion implantation. Blistering is observed through optical microscopy in a dynamic heating process. Atomic force microscopy and scanning electron microscopy measurements are used to detect the LiTaO3 surface morphology. Experimental results show that blistering and flaking are dependent on implantation fluence, beam current, and also annealing temperature. We speculate that the surface cracking of He+-implanted LiTaO3 results from the implantation-induced stress and compression.

  8. Raman study of As outgassing and damage induced by ion implantation in Zn-doped GaAs

    SciTech Connect

    Barba, D.; Aimez, V.; Beauvais, J.; Beerens, J.; Drouin, D.; Chicoine, M.; Schiettekatte, F.

    2004-11-01

    Room temperature micro-Raman investigations of LO phonon and LO phonon-plasmon coupling is used to study the As outgassing mechanism and the disordering effects induced by ion implantation in Zn-doped GaAs with nominal doping level p=7x10{sup 18} cm{sup -3}. The relative intensity of these two peaks is measured right after rapid vacuum thermal annealings (RVTA) between 200 and 450 deg. C, or after ion implantations carried out at energies of 40 keV with P{sup +}, and at 90 and 170 keV with As{sup +}. These intensities provide information regarding the Schottky barrier formation near the sample surface. Namely, the Raman signature of the depletion layer formation resulting from As desorption is clearly observed in samples submitted to RVTA above 300 deg. C, and the depletion layer depths measured in ion implanted GaAs:Zn are consistent with the damage profiles obtained through Monte Carlo simulations. Ion channeling effects, maximized for a tilt angle set to 45 deg. during implantation, are also investigated. These results show that the Raman spectroscopy is a versatile tool to study the defects induced by postgrowth processes in multilayered heterostructures, with probing range of about 100 nm in GaAs-based materials.

  9. Plasma-based ion implantation: a valuable technology for the elaboration of innovative materials and nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Vempaire, D.; Pelletier, J.; Lacoste, A.; Béchu, S.; Sirou, J.; Miraglia, S.; Fruchart, D.

    2005-05-01

    Plasma-based ion implantation (PBII), invented in 1987, can now be considered as a mature technology for thin film modification. After a brief recapitulation of the principle and physics of PBII, its advantages and disadvantages, as compared to conventional ion beam implantation, are listed and discussed. The elaboration of thin films and the modification of their functional properties by PBII have already been achieved in many fields, such as microelectronics (plasma doping/PLAD), biomaterials (surgical implants, bio- and blood-compatible materials), plastics (grafting, surface adhesion) and metallurgy (hard coatings, tribology), to name a few. The major advantages of PBII processing lie, on the one hand, in its flexibility in terms of ion implantation energy (from 0 to 100 keV) and operating conditions (plasma density, collisional or non-collisional ion sheath), and, on the other hand, in the easy transferrability of processes from the laboratory to industry. The possibility of modifying the composition and physical nature of the films, or of drastically changing their physical properties over several orders of magnitude makes this technology very attractive for the elaboration of innovative materials, including metastable materials, and the realization of micro- or nanostructures. A review of the state of the art in these domains is presented and illustrated through a few selected examples. The perspectives opened up by PBII processing, as well as its limitations, are discussed.

  10. Nanoporosity induced by ion implantation in deposited amorphous Ge thin films

    SciTech Connect

    Romano, L.; Impellizzeri, G.; Ruffino, F.; Miritello, M.; Grimaldi, M. G.; Bosco, L.

    2012-06-01

    The formation of a nano-porous structure in amorphous Ge thin film (sputter-deposited on SiO{sub 2}) during ion irradiation at room temperature with 300 keV Ge{sup +} has been observed. The porous film showed a sponge-like structure substantially different from the columnar structure reported for ion implanted bulk Ge. The voids size and structure resulted to be strongly affected by the material preparation, while the volume expansion turned out to be determined only by the nuclear deposition energy. In SiGe alloys, the swelling occurs only if the Ge concentration is above 90%. These findings rely on peculiar characteristics related to the mechanism of voids nucleation and growth, but they are crucial for future applications of active nanostructured layers such as low cost chemical and biochemical sensing devices or electrodes in batteries.

  11. C ion-implanted TiO{sub 2} thin film for photocatalytic applications

    SciTech Connect

    Impellizzeri, G. Scuderi, V.; Sanz, R.; Privitera, V.; Romano, L.; Napolitani, E.; Carles, R.

    2015-03-14

    Third-generation TiO{sub 2} photocatalysts were prepared by implantation of C{sup +} ions into 110 nm thick TiO{sub 2} films. An accurate structural investigation was performed by Rutherford backscattering spectrometry, secondary ion mass spectrometry, X-ray diffraction, Raman-luminescence spectroscopy, and UV/VIS optical characterization. The C doping locally modified the TiO{sub 2} pure films, lowering the band-gap energy from 3.3 eV to a value of 1.8 eV, making the material sensitive to visible light. The synthesized materials are photocatalytically active in the degradation of organic compounds in water under both UV and visible light irradiation, without the help of any additional thermal treatment. These results increase the understanding of the C-doped titanium dioxide, helpful for future environmental applications.

  12. Inhibitive formation of nanocavities by introduction of Si atoms in Ge nanocrystals produced by ion implantation

    SciTech Connect

    Cai, R. S.; Shang, L.; Liu, X. H.; Zhang, Y. J.; Wang, Y. Q. E-mail: barba@emt.inrs.ca; Ross, G. G.; Barba, D. E-mail: barba@emt.inrs.ca

    2014-05-28

    Germanium nanocrystals (Ge-nc) were successfully synthesized by co-implantation of Si and Ge ions into a SiO{sub 2} film thermally grown on (100) Si substrate and fused silica (pure SiO{sub 2}), respectively, followed by subsequent annealing at 1150 °C for 1 h. Transmission electron microscopy (TEM) examinations show that nanocavities only exist in the fused silica sample but not in the SiO{sub 2} film on a Si substrate. From the analysis of the high-resolution TEM images and electron energy-loss spectroscopy spectra, it is revealed that the absence of nanocavities in the SiO{sub 2} film/Si substrate is attributed to the presence of Si atoms inside the formed Ge-nc. Because the energy of Si-Ge bonds (301 kJ·mol{sup −1}) are greater than that of Ge-Ge bonds (264 kJ·mol{sup −1}), the introduction of the Si-Ge bonds inside the Ge-nc can inhibit the diffusion of Ge from the Ge-nc during the annealing process. However, for the fused silica sample, no crystalline Si-Ge bonds are detected within the Ge-nc, where strong Ge outdiffusion effects produce a great number of nanocavities. Our results can shed light on the formation mechanism of nanocavities and provide a good way to avoid nanocavities during the process of ion implantation.

  13. Radio frequency sustained ion energy

    DOEpatents

    Jassby, Daniel L.; Hooke, William M.

    1977-01-01

    Electromagnetic (E.M.) energy injection method and apparatus for producing and sustaining suprathermal ordered ions in a neutral, two-ion-species, toroidal, bulk equilibrium plasma. More particularly, the ions are produced and sustained in an ordered suprathermal state of existence above the average energy and velocity of the bulk equilibrium plasma by resonant rf energy injection in resonance with the natural frequency of one of the ion species. In one embodiment, the electromagnetic energy is injected to clamp the energy and velocity of one of the ion species so that the ion energy is increased, sustained, prolonged and continued in a suprathermal ordered state of existence containing appreciable stored energy that counteracts the slowing down effects of the bulk equilibrium plasma drag. Thus, selective deuteron absorption may be used for ion-tail creation by radio-frequency excitation alone. Also, the rf can be used to increase the fusion output of a two-component neutral injected plasma by selective heating of the injected deuterons.

  14. Dilute ferromagnetic semiconductors prepared by the combination of ion implantation with pulse laser melting

    NASA Astrophysics Data System (ADS)

    Zhou, Shengqiang

    2015-07-01

    Combining semiconducting and ferromagnetic properties, dilute ferromagnetic semiconductors (DFS) have been under intensive investigation for more than two decades. Mn doped III-V compound semiconductors have been regarded as the prototype of DFS from both experimental and theoretic investigations. The magnetic properties of III-V:Mn can be controlled by manipulating free carriers via electrical gating, as for controlling the electrical properties in conventional semiconductors. However, the preparation of DFS presents a big challenge due to the low solubility of Mn in semiconductors. Ion implantation followed by pulsed laser melting (II-PLM) provides an alternative to the widely used low-temperature molecular beam epitaxy (LT-MBE) approach. Both ion implantation and pulsed-laser melting occur far enough from thermodynamic equilibrium conditions. Ion implantation introduces enough dopants and the subsequent laser pulse deposit energy in the near-surface region to drive a rapid liquid-phase epitaxial growth. Here, we review the experimental study on preparation of III-V:Mn using II-PLM. We start with a brief description about the development of DFS and the physics behind II-PLM. Then we show that ferromagnetic GaMnAs and InMnAs films can be prepared by II-PLM and they show the same characteristics of LT-MBE grown samples. Going beyond LT-MBE, II-PLM is successful to bring two new members, GaMnP and InMnP, into the family of III-V:Mn DFS. Both GaMnP and InMnP films show the signature of DFS and an insulating behavior. At the end, we summarize the work done for Ge:Mn and Si:Mn using II-PLM and present suggestions for future investigations. The remarkable advantage of II-PLM approach is its versatility. In general, II-PLM can be utilized to prepare supersaturated alloys with mismatched components.

  15. Bio-functionalisation of polyether ether ketone using plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Wakelin, Edgar; Yeo, Giselle; Kondyurin, Alexey; Davies, Michael; McKenzie, David; Weiss, Anthony; Bilek, Marcela

    2015-12-01

    Plasma immersion ion implantation (PIII) is used here to improve the surface bioactivity of polyether ether ketone (PEEK) by modifying the chemical and mechanical properties and by introducing radicals. Modifications to the chemical and mechanical properties are characterised as a function of ion fluence (proportional to treatment time) to determine the suitability of the treated surfaces for biological applications. Radical generation increases with treatment time, where treatments greater than 400 seconds result in a high concentration of long-lived radicals. Radical reactions are responsible for oxidation of the surface, resulting in a permanent increase in the polar surface energy. The nano-scale reduced modulus was found to increase with treatment time at the surface from 4.4 to 5.2 GPa. The macromolecular Young's modulus was also found to increase, but by an amount corresponding to the volume fraction of the ion implanted region. The treated surface layer exhibited cracking under cyclical loads, associated with an increased modulus due to dehydrogenation and crosslinking, however it did not show any sign of delamination, indicating that the modified layer is well integrated with the substrate - a critical factor for bioactive surface coatings to be used in-vivo. Protein immobilisation on the PIII treated surfaces was found to saturate after 240 seconds of treatment, indicating that there is room to tune surface mechanical properties for specific applications without affecting the protein coverage. Our findings indicate that the modification of the chemical and mechanical properties by PIII treatments as well as the introduction of radicals render PEEK well suited for use in orthopaedic implantable devices.

  16. Elimination of carbon vacancies in 4H-SiC epi-layers by near-surface ion implantation: Influence of the ion species

    NASA Astrophysics Data System (ADS)

    Ayedh, H. M.; Hallén, A.; Svensson, B. G.

    2015-11-01

    The carbon vacancy (VC) is a prevailing point defect in high-purity 4H-SiC epitaxial layers, and it plays a decisive role in controlling the charge carrier lifetime. One concept of reducing the VC-concentration is based on carbon self-ion implantation in a near surface layer followed by thermal annealing. This leads to injection of carbon interstitials (Ci's) and annihilation of VC's in the epi-layer "bulk". Here, we show that the excess of C atoms introduced by the self-ion implantation plays a negligible role in the VC annihilation. Actually, employing normalized implantation conditions with respect to displaced C atoms, other heavier ions like Al and Si are found to be more efficient in annihilating VC's. Concentrations of VC below ˜2 × 1011 cm-3 can be reached already after annealing at 1400 °C, as monitored by deep-level transient spectroscopy. This corresponds to a reduction in the VC-concentration by about a factor of 40 relative to the as-grown state of the epi-layers studied. The negligible role of the implanted species itself can be understood from simulation results showing that the concentration of displaced C atoms exceeds the concentration of implanted species by two to three orders of magnitude. The higher efficiency for Al and Si ions is attributed to the generation of collision cascades with a sufficiently high energy density to promote Ci-clustering and reduce dynamic defect annealing. These Ci-related clusters will subsequently dissolve during the post-implant annealing giving rise to enhanced Ci injection. However, at annealing temperatures above 1500 °C, thermodynamic equilibrium conditions start to apply for the VC-concentration, which limit the net effect of the Ci injection, and a competition between the two processes occurs.

  17. Ion Implantation Angle Variation to Device Performance and the Control in Production

    SciTech Connect

    Zhao, Z.Y.; Hendrix, D.; Wu, L.Y.; Cusson, B.K.

    2003-08-26

    As the device features get smaller and aspect ratios of photoresist openings get steeper, shadowing effect has more impact on the performance of devices. Many of the traditional 7 deg. tilt implants have progressed to 0 deg. implants. But shadowing may still occur if the tilt angle deviates from normal direction. Some implants, such as halo implants, demand even more stringent angle control to reduce device performance variation. The demand for implant angle control and monitoring thus becomes more obvious and important. However, statistical process control (SPC) cannot be done on shadowing effect without special test structures. Channeling, on the other hand, provides good sensitivity in regard to implant angle changes. It is the authors' intention to introduce channeling implant in different channels to monitor the implant angle variation. The incoming <100> silicon wafers have a cut-angle spec of +/- 1.0 deg. This poses a difficulty if one wants to control the implant angle's accuracy within +/- 0.5 deg. Other measures have to be taken to ensure the consistency of test wafers and to have prompt diagnosis feedback when needed. This paper will discuss the effect of implant tilt angle on device parameters and how to control the angle variation in production. Correlations of implant tilt angle variation to ThermaWave, sheet resistance (Rs), Secondary Ion Mass Spectrometry (SIMS) and device parameters will be covered with certain implant conditions.

  18. Ion Implantation Angle Variation to Device Performance and the Control in Production

    NASA Astrophysics Data System (ADS)

    Zhao, Z. Y.; Hendrix, D.; Wu, L. Y.; Cusson, B. K.

    2003-08-01

    As the device features get smaller and aspect ratios of photoresist openings get steeper, shadowing effect has more impact on the performance of devices. Many of the traditional 7° tilt implants have progressed to 0° implants. But shadowing may still occur if the tilt angle deviates from normal direction. Some implants, such as halo implants, demand even more stringent angle control to reduce device performance variation. The demand for implant angle control and monitoring thus becomes more obvious and important. However, statistical process control (SPC) cannot be done on shadowing effect without special test structures. Channeling, on the other hand, provides good sensitivity in regard to implant angle changes. It is the authors' intention to introduce channeling implant in different channels to monitor the implant angle variation. The incoming <100> silicon wafers have a cut-angle spec of +/- 1.0°. This poses a difficulty if one wants to control the implant angle's accuracy within +/- 0.5°. Other measures have to be taken to ensure the consistency of test wafers and to have prompt diagnosis feedback when needed. This paper will discuss the effect of implant tilt angle on device parameters and how to control the angle variation in production. Correlations of implant tilt angle variation to ThermaWave™, sheet resistance (Rs), Secondary Ion Mass Spectrometry (SIMS) and device parameters will be covered with certain implant conditions.

  19. Rapid thermal annealing of Si 1- xGe x layers formed by germanium ion implantation

    NASA Astrophysics Data System (ADS)

    Xia, Z.; Saarilahti, J.; Ronkainen, H.; Eränen, S.; Suni, I.; Molarius, J.; Kuivalainen, P.; Ristolainen, E.; Tuomi, T.

    1994-05-01

    (100) Si samples, amorphized by implanting with 50, 70 and 100 keV 74Ge + ions at doses of the order of 1 × 10 16cm -2, have been recrystallized by rapid thermal annealing (RTA) with different temperature-time ( T- t) combinations. Monte Carlo calculations using TRIM-91 computer program were performed to estimate the depth of amorphized regions, implanted Ge distributions and recoil-implanted O depth profiles. The RBS channeling measurements show that fully epitaxial regrowth of implanted layers can be reached with proper rapid thermal processing. An empirical guide is presented for regrowing the implanted SiGe layers with RTA. The recoil-implanted oxygen in the implanted layers was measured by 16O(α,α) 16O RBS resonance channeling and SIMS.

  20. Effects of Ion Implantation on in Vitro Pollen Germination and Cellular Organization of Pollen Tube in Pinus thunbergii Parl. (Japanese Black Pine)

    NASA Astrophysics Data System (ADS)

    Li, Guoping; Huang, Qunce; Yang, Lusheng; Dai, Ximei; Qin, Guangyong; Huo, Yuping

    2006-09-01

    Low-energy ion implantation, as a new technology to produce mutation in plant breeding, has been widely applied in agriculture in China. But so far there is a little understanding of the underlying mechanisms responsible for its biological effects at the cellular level. Here we report the biological effects of a nitrogen ion beams of 30 keV on the pollen grains of Pinus thunbergii Parl. In general, ion implantation inhibited pollen germination. The dose-response curve presented a particular saddle-like pattern. Ion implantation also changed the dimension of the elongated tubes and significantly induced tip swelling. Confocal microscopy indicated that the pollen tube tips in P. thunbergii contained an enriched network of microtubules. Ion implantation led to the disruption of microtubules especially in swollen tips. Treatment with colchicine demonstrated that tip swelling was caused by the disruption of microtubules in the tip, indicating a unique role for microtubules in maintaining the tip integrality of the pollen tube in conifer. Our results suggest that ion implantation induce the disruption of microtubule organization in pollen and pollen tubes and subsequently cause morphological abnormalities in the pollen tubes. This study may provide a clue for further investigation on the interaction between low-energy ion beams and pollen tube growth.

  1. Laser-induced fluorescence and nonlinear optical properties of ion-implanted fused silica

    SciTech Connect

    Becker, K.; Yang, L.; Haglund, R.F. Jr. . Dept. of Physics and Astronomy); Magruder, R.H.; Weeks, R.A. . Dept. of Materials Science and Engineering); Zuhr, R.A. )

    1990-01-01

    We report absorption, fluorescence and nonlinear optical properties of fused silica implanted with Ti, Cu and Bi and doses of 1{center dot}10{sup 15} ions/cm{sup 2} to 6{center dot}10{sup 16} ions/cm{sup 2} when irradiated with 532 nm laser light. The fluorescence spectrum is a broad band around 640 nm shows little variation for all ion species. Absorption as function of implanted dose shows a threshold for Ti between 1{center dot}10{sup 16} ions/cm{sup 2} and 6{center dot}10{sup 16} ions/cm{sup 2}. The nonlinear optical index is large, n{sub 2} > 10{sup {minus}5} esu. All measured quantities show a strong dependence on the implanted ion dose. The source of the nonlinearity, whether electronic or thermal, remains to be more completely determined. 9 refs., 4 figs.

  2. The effect of boron implant energy on transient enhanced diffusion in silicon

    SciTech Connect

    Liu, J.; Krishnamoorthy, V.; Gossman, H.; Rubin, L.; Law, M.E.; Jones, K.S.

    1997-02-01

    Transient enhanced diffusion (TED) of boron in silica after low energy boron implantation and annealing was investigated using boron-doping superlattices (DSLs) grown by low temperature molecular beam epitaxy. Boron ions were implanted at 5, 10, 20, and 40 keV at a constant dose of 2{times}10{sup 14}/cm{sup 2}. Subsequent annealing was performed at 750{degree}C for times of 3 min, 15 min, and 2 h in a nitrogen ambient. The broadening of the boron spikes was measured by secondary ion mass spectroscopy and simulated. Boron diffusivity enhancement was quantified as a function of implant energy. Transmission electron microscopy results show that {l_angle}311{r_angle} defects are only seen for implant energies {ge}10 keV at this dose and that the density increases with energy. DSL studies indicate the point defect concentration in the background decays much slower when {l_angle}311{r_angle} defects are present. These results imply there are at least two sources of TED for boron implants (B-I): short time component that decays rapidly consistent with nonvisible B-I pairs and a longer time component consistent with interstitial release from the {l_angle}311{r_angle} defects. {copyright} {ital 1997 American Institute of Physics.}

  3. Operations manual for the plasma source ion implantation economics program

    SciTech Connect

    Bibeault, M.L.; Thayer, G.R.

    1995-10-01

    Plasma Source Ion Implantation (PSII) is a surface modification technique for metal. PSIICOSTMODEL95 is an EXCEL-based program that estimates the cost for implementing a PSII system in a manufacturing setting where the number of parts to be processed is over 5,000 parts per day and the shape of each part does not change from day to day. Overall, the manufacturing process must be very well defined and should not change. This document is a self-contained manual for PSIICOSTMODEL95. It assumes the reader has some general knowledge of the technical requirements for PSII. Configuration of the PSII process versus design is used as the methodology in PSIICOSTMODEL95. The reason behind this is twofold. First, the design process cannot be programmed into a computer when the relationships between design variables are not understood. Second, the configuration methodology reduces the number of assumptions that must be programmed into our software. Misuse of results are less likely to occur if the user has fewer assumptions to understand.

  4. Synthesis of endohedral iron-fullerenes by ion implantation

    SciTech Connect

    Minezaki, H.; Ishihara, S.; Uchida, T.; Muramatsu, M.; Kitagawa, A.; Rácz, R.; Biri, S.; Kato, Y.; Yoshida, Y.

    2014-02-15

    In this paper, we discuss the results of our study of the synthesis of endohedral iron-fullerenes. A low energy Fe{sup +} ion beam was irradiated to C{sub 60} thin film by using a deceleration system. Fe{sup +}-irradiated C{sub 60} thin film was analyzed by high performance liquid chromatography and laser desorption/ ionization time-of-flight mass spectrometry. We investigated the performance of the deceleration system for using a Fe{sup +} beam with low energy. In addition, we attempted to isolate the synthesized material from a Fe{sup +}-irradiated C{sub 60} thin film by high performance liquid chromatography.

  5. Spin-dependent recombination at arsenic donors in ion-implanted silicon

    SciTech Connect

    Franke, David P. Brandt, Martin S.; Otsuka, Manabu; Matsuoka, Takashi; Itoh, Kohei M.; Vlasenko, Leonid S.; Vlasenko, Marina P.

    2014-09-15

    Spin-dependent transport processes in thin near-surface doping regions created by low energy ion implantation of arsenic in silicon are detected by two methods, spin-dependent recombination using microwave photoconductivity and electrically detected magnetic resonance monitoring the direct current through the sample. The high sensitivity of these techniques allows the observation of the magnetic resonance, in particular, of As in weak magnetic fields and at low resonance frequencies (40–1200 MHz), where high-field-forbidden transitions between the magnetic sublevels can be observed due to the mixing of electron and nuclear spin states. Several implantation-induced defects are present in the samples studied and act as spin readout partner. We explicitly demonstrate this by electrically detected electron double resonance experiments and identify a pair recombination of close pairs formed by As donors and oxygen-vacancy centers in an excited triplet state (SL1) as the dominant spin-dependent process in As-implanted Czochralski-grown Si.

  6. Structural defects induced by Fe-ion implantation in TiO2

    NASA Astrophysics Data System (ADS)

    Leedahl, B.; Zatsepin, D. A.; Boukhvalov, D. W.; Green, R. J.; McLeod, J. A.; Kim, S. S.; Kurmaev, E. Z.; Zhidkov, I. S.; Gavrilov, N. V.; Cholakh, S. O.; Moewes, A.

    2014-02-01

    X-ray photoelectron spectroscopy and resonant x-ray emission spectroscopy measurements of pellet and thin film forms of TiO2 with implanted Fe ions are presented and discussed. The findings indicate that Fe-implantation in a TiO2 pellet sample induces heterovalent cation substitution (Fe2+ → Ti4+) beneath the surface region. But in thin film samples, the clustering of Fe atoms is primarily detected. In addition to this, significant amounts of secondary phases of Fe3+ are detected on the surface of all doped samples due to oxygen exposure. These experimental findings are compared with density functional theory calculations of formation energies for different configurations of structural defects in the implanted TiO2:Fe system. According to our calculations, the clustering of Fe-atoms in TiO2:Fe thin films can be attributed to the formation of combined substitutional and interstitial defects. Further, the differences due to Fe doping in pellet and thin film samples can ultimately be attributed to different surface to volume ratios.

  7. Structural defects induced by Fe-ion implantation in TiO{sub 2}

    SciTech Connect

    Leedahl, B. Green, R. J.; McLeod, J. A.; Moewes, A.; Zatsepin, D. A.; Zhidkov, I. S.; Boukhvalov, D. W.; Kim, S. S.; Kurmaev, E. Z.; Gavrilov, N. V.; Cholakh, S. O.

    2014-02-07

    X-ray photoelectron spectroscopy and resonant x-ray emission spectroscopy measurements of pellet and thin film forms of TiO{sub 2} with implanted Fe ions are presented and discussed. The findings indicate that Fe-implantation in a TiO{sub 2} pellet sample induces heterovalent cation substitution (Fe{sup 2+} → Ti{sup 4+}) beneath the surface region. But in thin film samples, the clustering of Fe atoms is primarily detected. In addition to this, significant amounts of secondary phases of Fe{sup 3+} are detected on the surface of all doped samples due to oxygen exposure. These experimental findings are compared with density functional theory calculations of formation energies for different configurations of structural defects in the implanted TiO{sub 2}:Fe system. According to our calculations, the clustering of Fe-atoms in TiO{sub 2}:Fe thin films can be attributed to the formation of combined substitutional and interstitial defects. Further, the differences due to Fe doping in pellet and thin film samples can ultimately be attributed to different surface to volume ratios.

  8. Direction-dependent RBS channelling studies in ion implanted LiNbO3

    NASA Astrophysics Data System (ADS)

    Wendler, E.; Becker, G.; Rensberg, J.; Schmidt, E.; Wolf, S.; Wesch, W.

    2016-07-01

    Damage formation in ion implanted LiNbO3 was studied by Rutherford backscattering spectrometry (RBS) along various directions of the LiNbO3 crystal. From the results obtained it can be unambiguously concluded that Nb atoms being displaced during ion implantation preferably occupy the free octahedron sites of the LiNbO3 lattice structure and most likely also form NbLi antisite defects.

  9. Optical absorption in ion-implanted lead lanthanum zirconate titanate ceramics

    NASA Astrophysics Data System (ADS)

    Seager, C. H.; Land, C. E.

    1984-08-01

    Optical absorption measurements have been performed on unmodified and on ion-implanted lead lanthanum zirconate titanate ceramics using the photothermal deflection spectroscopy technique. Bulk absorption coefficients depend on the average grain size of the material while the absorption associated with the ion-damaged layers does not. The damage-induced surface absorptance correlates well with the photosensitivity observed in implanted PLZT devices, supporting earlier models for the enhanced imaging efficiency of the materials.

  10. Modelisation of boron diffusion from ultra-low-energy implantation in crystalline silicon

    NASA Astrophysics Data System (ADS)

    Ihaddadene-Le Coq, L.; Marcon, J.; Dush-Nicolini, A.; Masmoudi, K.; Ketata, K.

    2003-12-01

    We have investigated and modeled the boron diffusion in silicon following ultra-low-energy implantation (500 eV). It is well known that reducing implant energies is an effective way to eliminate transient enhanced diffusion due to the excess of interstitials from the implant. However, for sub-keV B implants diffusion remains enhanced. This enhancement is linked to the presence of a silicon boride layer located at the silicon surface which creates interstitials. This phenomenon is named "boron enhanced diffusion" (BED). The BED effect is of obvious interest since it counteracts the advantage obtained by reducing the ion implantation energy. For these reasons, we have investigated the diffusion of low-energy boron implanted in crystalline silicon and tested a complete simulation program, which takes into account the effect of boron precipitation and the effect of the silicon boride layer as a source of self-interstitials. Experimental results have been simulated and consistent parameters have been found to fit the data. BED effect has been studied. Model parameters extractions have been discussed.

  11. Scanning-electron-microscopy observations and mechanical characteristics of ion-beam-sputtered surgical implant alloys

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Meyer, M. L.; Ling, J. S.

    1977-01-01

    An electron bombardment ion thruster was used as an ion source to sputter the surfaces of orthopedic prosthetic metals. Scanning electron microscopy photomicrographs were made of each ion beam textured surface. The effect of ion texturing an implant surface on its bond to bone cement was investigated. A Co-Cr-W alloy and surgical stainless steel were used as representative hard tissue implant materials to determine effects of ion texturing on bulk mechanical properties. Work was done to determine the effect of substrate temperature on the development of an ion textured surface microstructure. Results indicate that the ultimate strength of the bulk materials is unchanged by ion texturing and that the microstructure will develop more rapidly if the substrate is heated prior to ion texturing.

  12. Processing of Silver-Implanted Aluminum Nitride for Energy Harvesting Devices

    NASA Astrophysics Data System (ADS)

    Alleyne, Fatima Sierre

    One of the more attractive sources of green energy has roots in the popular recycling theme of other green technologies, now known by the term "energy scavenging." In its most promising conformation, energy scavenging converts cyclic mechanical vibrations in the environment or random mechanical pressure pulses, caused by sources ranging from operating machinery to human footfalls, into electrical energy via piezoelectric transducers. While commercial piezoelectrics have evolved to favor lead zirconate titanate (PZT) for its combination of superior properties, the presence of lead in these ceramic compounds raises resistance to their application in anything "green" due to potential health implications during their manufacturing, recycling, or in-service application, if leaching occurs. Therefore in this study we have pursued the application of aluminum nitride (AlN) as a non-toxic alternative to PZT, seeking processing pathways to augment the modest piezoelectric performance of AlN and exploit its compatibility with complementary-metal-oxide semiconductor (CMOS) manufacturing. Such piezoelectric transducers have been categorized as microelectromechanical systems (MEMS), which despite more than a decade of research in this field, is plagued by delamination at the electrode/piezoelectric interface. Consequently the electric field essential to generate and sustain the piezoelectric response of these devices is lost, resulting in device failure. Working on the hypothesis that buried conducting layers can both mitigate the delamination problem and generate sufficient electric field to engage the operation of resonator devices, we have undertaken a study of silver ion implantation to experimentally assess its feasibility. As with most ion implantation procedures employed in semiconductor fabrication, the implanted sample is subjected to a thermal treatment, encouraging diffusion-assisted precipitation of the implanted species at high enough concentrations. The objective

  13. Processing of Silver-Implanted Aluminum Nitride for Energy Harvesting Devices

    NASA Astrophysics Data System (ADS)

    Alleyne, Fatima Sierre

    One of the more attractive sources of green energy has roots in the popular recycling theme of other green technologies, now known by the term "energy scavenging." In its most promising conformation, energy scavenging converts cyclic mechanical vibrations in the environment or random mechanical pressure pulses, caused by sources ranging from operating machinery to human footfalls, into electrical energy via piezoelectric transducers. While commercial piezoelectrics have evolved to favor lead zirconate titanate (PZT) for its combination of superior properties, the presence of lead in these ceramic compounds raises resistance to their application in anything "green" due to potential health implications during their manufacturing, recycling, or in-service application, if leaching occurs. Therefore in this study we have pursued the application of aluminum nitride (AlN) as a non-toxic alternative to PZT, seeking processing pathways to augment the modest piezoelectric performance of AlN and exploit its compatibility with complementary-metal-oxide semiconductor (CMOS) manufacturing. Such piezoelectric transducers have been categorized as microelectromechanical systems (MEMS), which despite more than a decade of research in this field, is plagued by delamination at the electrode/piezoelectric interface. Consequently the electric field essential to generate and sustain the piezoelectric response of these devices is lost, resulting in device failure. Working on the hypothesis that buried conducting layers can both mitigate the delamination problem and generate sufficient electric field to engage the operation of resonator devices, we have undertaken a study of silver ion implantation to experimentally assess its feasibility. As with most ion implantation procedures employed in semiconductor fabrication, the implanted sample is subjected to a thermal treatment, encouraging diffusion-assisted precipitation of the implanted species at high enough concentrations. The objective

  14. Effect of implanted species on thermal evolution of ion-induced defects in ZnO

    SciTech Connect

    Azarov, A. Yu.; Rauwel, P.; Kuznetsov, A. Yu.; Svensson, B. G.; Hallén, A.; Du, X. L.

    2014-02-21

    Implanted atoms can affect the evolution of ion-induced defects in radiation hard materials exhibiting a high dynamic annealing and these processes are poorly understood. Here, we study the thermal evolution of structural defects in wurtzite ZnO samples implanted at room temperature with a wide range of ion species (from {sup 11}B to {sup 209}Bi) to ion doses up to 2 × 10{sup 16} cm{sup −2}. The structural disorder was characterized by a combination of Rutherford backscattering spectrometry, nuclear reaction analysis, and transmission electron microscopy, while secondary ion mass spectrometry was used to monitor the behavior of both the implanted elements and residual impurities, such as Li. The results show that the damage formation and its thermal evolution strongly depend on the ion species. In particular, for F implanted samples, a strong out-diffusion of the implanted ions results in an efficient crystal recovery already at 600 °C, while co-implantation with B (via BF{sub 2}) ions suppresses both the F out-diffusion and the lattice recovery at such low temperatures. The damage produced by heavy ions (such as Cd, Au, and Bi) exhibits a two-stage annealing behavior where efficient removal of point defects and small defect clusters occurs at temperatures ∼500 °C, while the second stage is characterized by a gradual and partial annealing of extended defects. These defects can persist even after treatment at 900 °C. In contrast, the defects produced by light and medium mass ions (O, B, and Zn) exhibit a more gradual annealing with increasing temperature without distinct stages. In addition, effects of the implanted species may lead to a nontrivial defect evolution during the annealing, with N, Ag, and Er as prime examples. In general, the obtained results are interpreted in terms of formation of different dopant-defect complexes and their thermal stability.

  15. Enhancement of the Gibberella zeae growth inhibitory lipopeptides from a Bacillus subtilis mutant by ion beam implantation.

    PubMed

    Liu, J; Liu, M; Wang, J; Yao, J M; Pan, R R; Yu, Z L

    2005-11-01

    Bacillus subtilis JA antagonized the growth of Gibberella zeae. In order to reduce growth of this fungi pathogen to a greater extent, low-energy ion beam implantation was applied in mutant breeding. We studied the effects of different energies and different doses of nitrogen ion implantation. The mutant strain designated as JA026 was obtained showing higher inhibition activity in the screening plate. Its inhibition zone against indicator organism increased by 14.3% compared to the original strain. The electrospray ionization mass spectrometry (ESI/MS) analysis indicated that the antifungal lipopeptides produced by the mutant were identical to those produced by the wild-type strain. The mutant strain exhibited favorable properties including the high yield of antifungal lipopeptides production and faster growth over the parent strain, which suggested that this strain would be a promising biocontrol candidate in agriculture.

  16. Effective dopant activation by susceptor-assisted microwave annealing of low energy boron implanted and phosphorus implanted silicon

    SciTech Connect

    Zhao, Zhao; Vemuri, Rajitha N. P.; Alford, T. L.; David Theodore, N.; Lu, Wei; Lau, S. S.; Lanz, A.

    2013-12-28

    Rapid processing and reduced end-of-range diffusion result from susceptor-assisted microwave (MW) annealing, making this technique an efficient processing alternative for electrically activating dopants within ion-implanted semiconductors. Sheet resistance and Hall measurements provide evidence of electrical activation. Susceptor-assisted MW annealing, of ion-implanted Si, enables more effective dopant activation and at lower temperatures than required for rapid thermal annealing (RTA). Raman spectroscopy and ion channeling analyses are used to monitor the extent of ion implantation damage and recrystallization. The presence and behavior of extended defects are monitored by cross-section transmission electron microscopy. Phosphorus implanted Si samples experience effective electrical activation upon MW annealing. On the other hand, when boron implanted Si is MW annealed, the growth of extended defects results in reduced crystalline quality that hinders the electrical activation process. Further comparison of dopant diffusion resulting from MW annealing and rapid thermal annealing is performed using secondary ion mass spectroscopy. MW annealed ion implanted samples show less end-of-range diffusion when compared to RTA samples. In particular, MW annealed P{sup +} implanted samples achieve no visible diffusion and equivalent electrical activation at a lower temperature and with a shorter time-duration of annealing compared to RTA. In this study, the peak temperature attained during annealing does not depend on the dopant species or dose, for susceptor-assisted MW annealing of ion-implanted Si.

  17. Effective dopant activation by susceptor-assisted microwave annealing of low energy boron implanted and phosphorus implanted silicon

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; David Theodore, N.; Vemuri, Rajitha N. P.; Lu, Wei; Lau, S. S.; Lanz, A.; Alford, T. L.

    2013-12-01

    Rapid processing and reduced end-of-range diffusion result from susceptor-assisted microwave (MW) annealing, making this technique an efficient processing alternative for electrically activating dopants within ion-implanted semiconductors. Sheet resistance and Hall measurements provide evidence of electrical activation. Susceptor-assisted MW annealing, of ion-implanted Si, enables more effective dopant activation and at lower temperatures than required for rapid thermal annealing (RTA). Raman spectroscopy and ion channeling analyses are used to monitor the extent of ion implantation damage and recrystallization. The presence and behavior of extended defects are monitored by cross-section transmission electron microscopy. Phosphorus implanted Si samples experience effective electrical activation upon MW annealing. On the other hand, when boron implanted Si is MW annealed, the growth of extended defects results in reduced crystalline quality that hinders the electrical activation process. Further comparison of dopant diffusion resulting from MW annealing and rapid thermal annealing is performed using secondary ion mass spectroscopy. MW annealed ion implanted samples show less end-of-range diffusion when compared to RTA samples. In particular, MW annealed P+ implanted samples achieve no visible diffusion and equivalent electrical activation at a lower temperature and with a shorter time-duration of annealing compared to RTA. In this study, the peak temperature attained during annealing does not depend on the dopant species or dose, for susceptor-assisted MW annealing of ion-implanted Si.

  18. A structural and electrical comparison of BCl and BF/sub 2/ ion-implanted silicon

    SciTech Connect

    Delfino, M.; Lunnon, M.E.

    1985-02-01

    The molecular ions BCl/sup +/ and BF/sub 2//sup +/ are implanted into <100> silicon at an energy of 16 keV per boron atom in the dose range of 6 X 10/sup 14/-1.2 X 10/sup 15/ cm/sup -2/ to form shallow p/sup +//n junctions. Cross-sectional transmission electron microscopy shows that chlorine is at least four times as effective as fluorine in amorphizing silicon. The increase in thickness of the amorphous layer, however, has a small effect in the reduction of axial channeling of boron as measured by secondary ion mass spectrometry. After annealing for 30 min at 900/sup 0/C, diffusion of interstitial boron is enhanced by chlorine relative to fluorine, whereas the electrical activity of boron is inhibited. Diodes made with both BCl/sup +/ and BF/sub 2//sup +/ implantations have comparable I-V characteristics with low reverse-bias junction leakage currents that are not affected by a band of dislocation loops which remain near the original amorphous-crystalline interface.

  19. Array of lenses with individually tunable focal-length based on transparent ion-implanted EAPs

    NASA Astrophysics Data System (ADS)

    Niklaus, Muhamed; Rosset, Samuel; Shea, Herbert

    2010-04-01

    We report on the fabrication and characterization of 2x2 arrays of mm-diameter PDMS lenses whose focal length can be electrically tuned. Dielectric elastomer actuators generally rely on carbon powder or carbon grease electrodes, which are not transparent, precluding the polymer actuator from also being a lens. However compliant electrodes fabricated by low-energy ion implantation are over 50% transparent in the visible, enabling the polymer lens to simultaneously be an actuator. We have developed a chip-scale process to microfabricate lens arrays, consisting of a molded socket bonded to a Pyrex chip supporting 4 membrane actuators. The actuators are interconnected via an incompressible fluid. The Pyrex chip has four through-holes, 1 to 3 mm in diameter, on which a 30 μm thick Polydimethysiloxane (PDMS) layer is bonded. The PDMS layer is implanted on both sides with 5 keV gold ions to define the transparent electrodes for EAP actuation. Applying a voltage to one of the lens/actuators leads to an area expansion and hence to a change in radius of curvature, varying the focal length. We report tuning the focal length from 4 mm to 8 mm at 1.7 kV, and present changes in optical transmission and membrane stiffness following gamma and proton irradiation.

  20. Non-mass-analyzed ion implantation from a solid phosphorus source

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Bunker, S. N.

    1982-01-01

    A phosphorus ion beam, extracted from a Freeman ion source charged with elemental phosphorus, has been investigated for use in solar cell fabrication. Mass spectroscopy of the beam indicates the absence of both minority-carrier lifetime degrading impurities and hydrogen. The ion beam, without mass analysis, was used for ion implantation of solar cells, and performance for all cells was found to be equivalent to mass-analyzed controls.

  1. Damage growth in Si during self-ion irradiation: A study of ion effects over an extended energy range

    SciTech Connect

    Holland, O.W.; El-Ghor, M.K.; White, C.W.

    1989-01-01

    Damage nucleation/growth in single-crystal Si during ion irradiation is discussed. For MeV ions, the rate of growth as well as the damage morphology are shown to vary widely along the track of the ion. This is attributed to a change in the dominant, defect-related reactions as the ion penetrates the crystal. The nature of these reactions were elucidated by studying the interaction of MeV ions with different types of defects. The defects were introduced into the Si crystal prior to high-energy irradiation by self-ion implantation at a medium energy (100 keV). Varied damage morphologies were produced by implanting different ion fluences. Electron microscopy and ion-channeling measurements, in conjunction with annealing studies, were used to characterize the damage. Subtle changes in the predamage morphology are shown to result in markedly different responses to the high-energy irradiation, ranging from complete annealing of the damage to rapid growth. These divergent responses occur over a narrow range of dose (2--3 /times/ 10/sup 14/ cm/sup /minus/2/) of the medium-energy ions; this range also marks a transition in the growth behavior of the damage during the predamage implantation. A model is proposed which accounts for these observations and provides insight into ion-induced growth of amorphous layers in Si and the role of the amorphous/crystalline interface in this process. 15 refs, 9 figs.

  2. Deterioration mechanisms of joint prosthesis materials. Several solutions by ion implantation surface treatments.

    PubMed

    Rieu, J; Pichat, A; Rabbe, L M; Chabrol, C; Robelet, M

    1990-07-01

    Materials for orthopaedic implants can fail for several combined reasons: corrosion, fatigue and wear for metals, wear and creep for polymers, fracture for ceramics. Some typical cases are analysed and it is demonstrated that ion implantation improves metals and polymers used for joint prosthesis. Implantations of nitrogen, oxygen and argon ions modify the structure of a 2-500 nm thick layer in the materials. The results of friction tests on the couple metal-polymer are correlated with the surface properties. PMID:2397260

  3. Method of making an ion-implanted planar-buried-heterostructure diode laser

    DOEpatents

    Brennan, Thomas M.; Hammons, Burrell E.; Myers, David R.; Vawter, Gregory A.

    1992-01-01

    Planar-buried-heterostructure, graded-index, separate-confinement-heterostructure semiconductor diode laser 10 includes a single quantum well or multi-quantum well active stripe 12 disposed between a p-type compositionally graded Group III-V cladding lever 14 and an n-type compositionally graded Group III-V cladding layer 16. The laser 10 includes an iion implanted n-type region 28 within the p-type cladding layer 14 and further includes an ion implanted p-type region 26 within the n-type cladding layer 16. The ion implanted regions are disposed for defining a lateral extent of the active stripe.

  4. Damaging Effect of Low Energy N+ Implantation on Aspergillus niger Spores

    NASA Astrophysics Data System (ADS)

    Wang, Lisheng; Cai, Kezhou; Cheng, Maoji; Chen, Lijuan; Liu, Xuelan; Zhang, Shuqing; Yu, Zengliang

    2007-06-01

    The mutant effects of a keV range nitrogen ion (N+) beam on enzyme-producing probiotics were studied, particularly with regard to the induction in the genome. The electron spin resonance (ESR) results showed that the signal of ESR spectrum existed in both implanted and non-implanted spores, and the yields of free radicals increased in a dose-dependent manner. The ionic etching and dilapidation of cell wall could be observed distinctly through the scanning electron microscope (SEM). The mutagenic effect on genome indicated that N+ implantation could make base mutation. This study provided an insight into the roles low-energy ions might play in inducing mutagenesis of micro-organisms.

  5. Effect of MeV nitrogen ion implantation on the resistivity transition in Czochralski silicon wafers

    NASA Astrophysics Data System (ADS)

    Moon, Byeong-Sam; Lee, In-Ji; Park, Jea-Gun

    2012-12-01

    We investigated how MeV nitrogen ion implantation affects the resistivity transition in Czochralski (CZ) silicon wafers. After annealing at 800 °C for 20 h and again at 1000 °C for 10 h, the implanted nitrogen atoms accumulated in the projected range (R P ) for ion doses less than 5 × 1014 cm-2 whereas they accumulated at both R P /2 and R P at ion doses above 3 × 1015 cm-2. These results indicate that no resistivity transition was found at nitrogen ion doses less than 5 × 1013 cm-2 whereas n-/p or n+/p resistivity transition was shown at ion doses higher than 5 × 1014 cm-2. Many fewer than 1% of the implanted nitrogen atoms were ionized after the heat treatment. Thus, the resistivity of nitrogen-doped silicon wafers is more than 100 times higher than that of phosphorous-doped silicon wafers.

  6. Measurement of lattice damage caused by ion-implantation doping of semiconductors.

    NASA Technical Reports Server (NTRS)

    Hunsperger, R. G.; Wolf, E. D.; Shifrin, G. A.; Marsh, O. J.; Jamba, D. M.

    1971-01-01

    Discussion of two new techniques used to measure the lattice damage produced in GaAs by the implantation of 60 keV cadmium ions. In the first method, optical reflection spectra of the ion-implanted samples were measured in the wavelength range from 2000 to 4600 A. The decrease in reflectivity resulting from ion-implantation was used to determine the relative amount of lattice damage as a function of ion dose. The second technique employed the scanning electron microscope. Patterns very similar in appearance to Kikuchi electron diffraction patterns are obtained when the secondary and/or backscattered electron intensity is displayed as a function of the angle of incidence of the electron beam on a single crystal surface. The results of measurements made by both methods are compared with each other and with data obtained by the method of measuring lattice damage by Rutherford scattering of 1 MeV helium ions.

  7. Planar optical waveguides in Nd:BSO crystals fabricated by He and C ion implantation

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Guo, Sha-Sha; Zhao, Jin-Hua; Guan, Jing; Wang, Xue-Lin

    2011-01-01

    Planar optical waveguides in Nd:BSO crystals were fabricated by the implantation of 500 keV He ions and 6.0 MeV C ions at two different substrate temperatures. The guiding modes were measured by the prism-coupling method with a He-Ne beam at 633 nm. The intensity calculation method (ICM) and reflectivity calculation method (RCM) were used for reconstructing refractive index profiles. The near-field intensity distribution of the waveguide, formed by He and C ions implanted after annealing at 300 °C, was measured by the end-face coupling setup. It was in reasonable agreement with the intensity of the waveguide mode simulated by the finite-difference beam propagation method (FD-BPM). The absorption spectra of the sample with He ions implanted at fluences of 3 × 1016 ions/cm2 were measured using a spectrophotometer.

  8. Effect of Ar Ion Beam Implantation on Morphological and Physiological Characteristics of Liquorice (Glycyrrhiza uralensis Fisch) Under Short-Term Artificial Drought Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangsheng; Wu, Lijun; Yu, Lixiang; Wei, Shenglin; Liu, Jingnan; Yu, Zengliang

    2007-04-01

    Ar+ ion beam with low energy of 30 keV was implanted into liquorice (Glycyrrhiza uralensis Fisch) seeds at the doses of 0, 600, 900 and 1200 × (2.6 × 1013) ions/cm2, respectively. The seeds were sowed in pots and after one month the plants were subjected to different drought conditions for two months. Then the plants' morphological and physiological characteristics, anti-oxidation enzymes and levels of endogenous hormones were investigated. The results showed that ion implantation at a proper dose can greatly enhance the liquorice seedlings' resistance against drought stress.

  9. Decrease of Staphylococcal adhesion on surgical stainless steel after Si ion implantation

    NASA Astrophysics Data System (ADS)

    Braceras, Iñigo; Pacha-Olivenza, Miguel A.; Calzado-Martín, Alicia; Multigner, Marta; Vera, Carolina; Broncano, Luis Labajos-; Gallardo-Moreno, Amparo M.; González-Carrasco, José Luis; Vilaboa, Nuria; González-Martín, M. Luisa

    2014-08-01

    316LVM austenitic stainless steel is often the material of choice on temporal musculoskeletal implants and surgical tools as it combines good mechanical properties and acceptable corrosion resistance to the physiologic media, being additionally relatively inexpensive. This study has aimed at improving the resistance to bacterial colonization of this surgical stainless steel, without compromising its biocompatibility and resistance. To achieve this aim, the effect of Si ion implantation on 316LVM has been studied. First, the effect of the ion implantation parameters (50 keV; fluence: 2.5-5 × 1016 ions/cm2; angle of incidence: 45-90°) has been assessed in terms of depth profiling of chemical composition by XPS and nano-topography evaluation by AFM. The in vitro biocompatibility of the alloy has been evaluated with human mesenchymal stem cells. Finally, bacterial adhesion of Staphylococcus epidermidis and Staphylococcus aureus on these surfaces has been assessed. Reduction of bacterial adhesion on Si implanted 316LVM is dependent on the implantation conditions as well as the features of the bacterial strains, offering a promising implantable biomaterial in terms of biocompatibility, mechanical properties and resistance to bacterial colonization. The effects of surface composition and nano-topography on bacterial adhesion, directly related to ion implantation conditions, are also discussed.

  10. Synergistic Effects of Iodine and Silver Ions Co-Implanted in 6H-SiC

    SciTech Connect

    Kuhudzai, Remeredzai J.; Malherbe, Johan; Hlatshwayo, T. T.; van der Berg, N. G.; Devaraj, Arun; Zhu, Zihua; Nandasiri, Manjula I.

    2015-10-23

    Motivated by the aim of understanding the release of fission products through the SiC coating of fuel kernels in modern high temperature nuclear reactors, a fundamental investigation is conducted to understand the synergistic effects of implanted silver (Ag) and iodine (I) in 6H-SiC. The implantation of the individual species, as well as the co-implantation of 360 keV ions of I and Ag at room temperature in 6H-SiC and their subsequent annealing behavior has been investigated by Secondary Ion Mass Spectrometry (SIMS), Atom Probe Tomography (APT) and X-ray Photoelectron Spectroscopy (XPS). SIMS and APT measurements indicated the presence of Ag in the co-implanted samples after annealing at 1500 ºC for 30 hours in sharp contrast to the samples implanted with Ag only. In samples implanted with Ag only, complete loss of the implanted Ag was observed. However, for I only implanted samples, some iodine was retained. APT of annealed co-implanted 6H-SiC showed clear spatial association of Ag and I clusters in SiC, which can be attributed to the observed I assisted retention of Ag after annealing. Such detailed studies will be necessary to identify the fundamental mechanism of fission products migration through SiC coatings.

  11. Synergistic effects of iodine and silver ions co-implanted in 6H-SiC

    NASA Astrophysics Data System (ADS)

    Kuhudzai, R. J.; Malherbe, J. B.; Hlatshwayo, T. T.; van der Berg, N. G.; Devaraj, A.; Zhu, Z.; Nandasiri, M.

    2015-12-01

    Motivated by the aim of understanding the release of fission products through the SiC coating of fuel kernels in modern high temperature nuclear reactors, a fundamental investigation is conducted to understand the synergistic effects of implanted silver (Ag) and iodine (I) in 6H-SiC. The implantation of the individual species, as well as the co-implantation of 360 keV ions of I and Ag at room temperature in 6H-SiC and their subsequent annealing behaviour has been investigated by Secondary Ion Mass Spectrometry (SIMS), Atom Probe Tomography (APT) and X-ray Photoelectron Spectroscopy (XPS). SIMS and APT measurements indicated the presence of Ag in the co-implanted samples after annealing at 1500 °C for 30 h in sharp contrast to the samples implanted with Ag only. In samples implanted with Ag only, complete loss of the implanted Ag was observed. However, for I only implanted samples, some iodine was retained. APT of annealed co-implanted 6H-SiC showed clear spatial association of Ag and I clusters in SiC, which can be attributed to the observed I assisted retention of Ag after annealing. Such detailed studies will be necessary to identify the fundamental mechanism of fission products migration through SiC coatings.

  12. Suppression of ion-implantation induced porosity in germanium by a silicon dioxide capping layer

    NASA Astrophysics Data System (ADS)

    Tran, Tuan T.; Alkhaldi, Huda S.; Gandhi, Hemi H.; Pastor, David; Huston, Larissa Q.; Wong-Leung, Jennifer; Aziz, Michael J.; Williams, J. S.

    2016-08-01

    Ion implantation with high ion fluences is indispensable for successful use of germanium (Ge) in the next generation of electronic and photonic devices. However, Ge readily becomes porous after a moderate fluence implant ( ˜1 ×1015 ion cm-2 ) at room temperature, and for heavy ion species such as tin (Sn), holding the target at liquid nitrogen (LN2) temperature suppresses porosity formation only up to a fluence of 2 ×1016 ion cm-2 . We show, using stylus profilometry and electron microscopy, that a nanometer scale capping layer of silicon dioxide significantly suppresses the development of the porous structure in Ge during a S n - implant at a fluence of 4.5 ×1016 ion cm-2 at LN2 temperature. The significant loss of the implanted species through sputtering is also suppressed. The effectiveness of the capping layer in preventing porosity, as well as suppressing sputter removal of Ge, permits the attainment of an implanted Sn concentration in Ge of ˜15 at.% , which is about 2.5 times the maximum value previously attained. The crystallinity of the Ge-Sn layer following pulsed-laser-melting induced solidification is also greatly improved compared with that of uncapped material, thus opening up potential applications of the Ge-Sn alloy as a direct bandgap material fabricated by an ion beam synthesis technique.

  13. Effects of implantation temperature and thermal annealing on the Ga+ ion beam induced optical contrast formation in a-SiC:H

    NASA Astrophysics Data System (ADS)

    Tsvetkova, T.; Wright, C. D.; Kitova, S.; Bischoff, L.; Zuk, J.

    2013-07-01

    The effects of implantation temperature and post-implantation thermal annealing on the Ga+ ion beam induced optical contrast formation in hydrogenated silicon-carbon alloy films have been studied. As a result of the implantation a well-expressed "darkening" effect (i.e. absorption edge shift to the longer-wavelength/lower-photon-energy region) has been registered. It is accompanied by a remarkable increase of the absorption coefficient up to 2 orders of magnitude in the measured photon energy range (1.5-3.1 eV). The optical contrast thus obtained (between implanted and unimplanted regions of the film material) has been made use of in the form of optical pattern formation by computer-operated Ga+-focused ion beam. Possible applications of this effect in the area of submicron lithography and high-density optical data storage have been suggested with regard to the most widely spread focused micro-beam systems based on Ga+ liquid metal ion sources. The fact that Ga has a very low melting point (Tm = 29.8 °C) and an unusual feature of volume contraction on melting are factors which favour Ga incorporation upon ion-implantation as dispersed clusters, or small nanoparticles. It has been previously noted that Ga precipitation into nanoparticles can vary dramatically (in terms of particle size) with Ga concentration and small changes in surface implant temperature, thus affecting the optical properties of the target. The precise role of implantation temperature effects, i.e. the target temperature during Ga+ ion irradiation, on the optical contrast obtainable, has been therefore a key part of this study. Appropriate post-implantation annealing treatments were also studied, since these are expected to offer further benefits in reducing the required ion dose and enhancing contrast, thus increasing the cost-effectiveness of the bit-writing method.

  14. Temperature dependent surface modification of T91 steel under 3.25 MeV Fe-ion implantation

    NASA Astrophysics Data System (ADS)

    Zhu, Huiping; Wang, Zhiguang; Cui, Minghuan; Li, Bingsheng; Gao, Xing; Sun, Jianrong; Yao, Cunfeng; Wei, Kongfang; Shen, Tielong; Pang, Lilong; Zhu, Yabin; Li, Yuanfei; Wang, Ji; Xie, Erqing

    2015-01-01

    Ion implantation is an established technique for modifying the surface properties of a wide range of materials. In this research, temperature dependent surface modification induced by Fe-ion implantation in T91 steel was investigated. The T91 samples were implanted with 3.25 MeV Fe-ions to fluence of 1.7 × 1016 ions/cm2 at room temperature, 300 and 450 °C, respectively. After implantation, the T91 samples were characterized by means of positron annihilation Doppler broadening spectroscopy (PADBS) and nano-indention technology (NIT). It was found that the concentration of open-volume defects in T91 samples decreased with increasing implantation temperature. From NIT analysis, it was found that all the samples were hardened after implantation and the hardness of the implanted T91 samples increased with increasing implantation temperature.

  15. X-ray emission and photoluminescence spectroscopy of nanostructured silica with implanted copper ions

    NASA Astrophysics Data System (ADS)

    Zatsepin, D. A.; Kortov, V. S.; Kurmaev, É. Z.; Gavrilov, N. V.; Wilks, R. G.; Moewes, A.

    2008-12-01

    Quartz glass samples and compacted SiO2 nanopowders have been studied by x-ray emission (Cu L 2, 3 transition 3 d4 s → 2 p 1/2, 3/2) and photoluminescence spectroscopy following pulsed Cu+ ion implantation (energy, 30 keV; pulse current up to 0.5 A; pulse duration, 400 μs; irradiation doses, 1015, 1016, and 2 × 1017 cm-2). It has been established that ion irradiation gives rise to the formation of glassy and compacted SiO2 samples of nanosized metallic and oxide phases in the structure. An analysis of Cu L x-ray emission spectra has shown that copper nanoparticles are thermodynamically metastable and chemically active because ion beam bombardment transfers them readily to the oxide form. This results from the radiation-stimulated fracture of regular Si-O-Si bonds in amorphous SiO2 and the formation of defective Si-Si bonds, followed by capture of oxygen by copper atoms. The enhanced degree of oxidation of copper ions in SiO2 nanostructured pellets can be reduced by coimplantation and thermal annealing. Optical spectroscopy studies suggest that, in glasses and SiO2 nanostructured pellets, there exist metallic Cu{/n 0} nanoclusters, which at low temperatures exhibit quantum-confined photoluminescence with a characteristic stepped excitation spectrum.

  16. Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten

    SciTech Connect

    Armstrong, D. E. J.; Edmondson, P. D.; Roberts, S. G.

    2013-06-24

    To simulate neutron and helium damage in a fusion reactor first wall sequential self-ion implantation up to 13 dpa followed by helium-ion implantation up to 3000 appm was performed to produce damaged layers of {approx}2 {mu}m depth in pure tungsten. The hardness of these layers was measured using nanoindentation and was studied using transmission electron microscopy. Substantial hardness increases were seen in helium implanted regions, with smaller hardness increases in regions which had already been self-ion implanted, thus, containing pre-existing dislocation loops. This suggests that, for the same helium content, helium trapped in distributed vacancies gives stronger hardening than helium trapped in vacancies condensed into dislocation loops.

  17. Formation of Wear Resistant Steel Surfaces by Plasma Immersion Ion Implantation

    NASA Astrophysics Data System (ADS)

    Mändl, S.; Rauschenbach, B.

    2003-08-01

    Plasma immersion ion implantation (PIII) is a versatile and fast method for implanting energetic ions into large and complex shaped three-dimensional objects where the ions are accelerated by applying negative high voltage pulses to a substrate immersed in a plasma. As the line-of-sight restrictions of conventional implanters are circumvented, it results in a fast and cost-effective technology. Implantation of nitrogen at 30 - 40 keV at moderate temperatures of 200 - 400 °C into steel circumvents the diminishing thermal nitrogen activation encountered, e.g., in plasma nitriding in this temperature regime, thus enabling nitriding of additional steel grades. Nitride formation and improvement of the mechanical properties after PIII are presented for several steel grades, including AISI 316Ti (food industry), AISI D2 (used for bending tools) and AISI 1095 (with applications in the textile industry).

  18. Formation of Wear Resistant Steel Surfaces by Plasma Immersion Ion Implantation

    SciTech Connect

    Maendl, S.; Rauschenbach, B.

    2003-08-26

    Plasma immersion ion implantation (PIII) is a versatile and fast method for implanting energetic ions into large and complex shaped three-dimensional objects where the ions are accelerated by applying negative high voltage pulses to a substrate immersed in a plasma. As the line-of-sight restrictions of conventional implanters are circumvented, it results in a fast and cost-effective technology. Implantation of nitrogen at 30 - 40 keV at moderate temperatures of 200 - 400 deg. C into steel circumvents the diminishing thermal nitrogen activation encountered, e.g., in plasma nitriding in this temperature regime, thus enabling nitriding of additional steel grades. Nitride formation and improvement of the mechanical properties after PIII are presented for several steel grades, including AISI 316Ti (food industry), AISI D2 (used for bending tools) and AISI 1095 (with applications in the textile industry)

  19. Surface treatment of silicone rubber by carbon negative-ion implantation for nerve regeneration

    NASA Astrophysics Data System (ADS)

    Tsuji, Hiroshi; Izukawa, Masayoshi; Ikeguchi, Ryosuke; Kakinoki, Ryosuke; Sato, Hiroko; Gotoh, Yasuhito; Ishikawa, Junzo

    2004-07-01

    Surface treatment of silicone rubber by carbon negative ion-implantation was investigated for nerve regeneration by "tubulation". Silicone rubber had its surface property altered to be more hydrophilic by carbon negative-ion implantation. The extracellular matrices of proteins in culture medium adsorbed on the implanted surface rather than unimplanted ones. These improvements in wettability and adsorption properties of proteins were respected to contribute to the regeneration of a nerve-lacking system. An in vivo regeneration test of rat sciatic nerves with silicone-rubber tubes was performed. Using a tube in which the inner surface was implanted with carbon negative ions, the sciatic nerve was regenerated through the inter-stump gap of 15 mm between the proximal and distal nerve stumps and electrical stimulation was transported through the regenerated nerve. Thus, the nerve system was recovered. However, with the unimplanted tube, the nerve was not regenerated at all.

  20. Synthesis of (SiC){sub 3}N{sub 4} thin films by ion implantation

    SciTech Connect

    Uslu, C.; Lee, D.H.; Berta, Y.; Park, B.; Thadhani, N.N.; Poker, D.B.

    1993-12-31

    We have investigated the synthesis of carbon-silicon-nitride compounds by ion implantation. In these experiments, 100 keV nitrogen ions were implanted into polycrystalline {beta}-SiC (cubic phase) at various substrate temperatures and ion doses. These thin films were characterized by x-ray diffraction with a position-sensitive detector, transmission electron microscopy with chemical analysis, and Rutherford backscattering spectroscopy. The as-implanted samples show a buried amorphous layer at a depth of 170 nm. Peak concentration of nitrogen saturates at approximately 45 at. % with doses above {approximately} 9.0 {times} 10{sup 17} N/cm{sup 2} at 860{degree}C. These results suggest formation of a new phase by nitrogen implantation into {beta}-SiC.

  1. Fabrication of highly homogeneous surface-enhanced Raman scattering substrates using Ag ion implantation

    NASA Astrophysics Data System (ADS)

    Li, Wenqing; Xiao, Xiangheng; Dai, Zhigao; Wu, Wei; Cheng, Li; Mei, Fei; Zhang, Xingang; Jiang, Changzhong

    2016-06-01

    In recent times, surface-enhanced Raman scattering (SERS) has attracted attention for its excellent potential application in chemical and biological detection. In this work, we demonstrate that a highly homogeneous SERS substrate can be realized by Ag ion implantation and the subsequent annealing process. Both the implantation and annealing parameters have been optimized for a high sensitivity SERS substrate. The SERS measurement indicates that a sample implanted by 20 kV Ag ions with a dosage of 3  ×  1016 ions cm-2 exhibits the highest SERS activity. In addition, the SERS activity of the Ag-implanted substrates depends highly on the annealing temperature and time. Since none of the fabrication processes contain chemical reactions, our substrate is a clean system without any chemical residues.

  2. Selective nucleation induced by defect nanostructures: A way to control cobalt disilicide precipitation during ion implantation

    SciTech Connect

    Fortuna, F.; Nguyen, M.-A.; Ruault, M.-O.; Kirk, M. A.; Borodin, V. A.; Ganchenkova, M. G.

    2012-12-15

    In this paper, we show a way to control cobalt disilicide precipitation during Co ion implantation at high temperatures (650 Degree-Sign C) by affecting radiation defects involved in precipitate nucleation and growth. We demonstrate that the relative shares of different precipitate types nucleated by implantation are strongly affected by defect microstructures deliberately created in investigated samples prior to cobalt implantation. Especially interesting is the effect of a dense ensemble of extremely small (1-3 nm) cavities, which promotes the formation of a relatively uniform layer of coherent cobalt disilicide precipitates with a narrow size distribution. In order to better understand the mechanism of the microstructural influence on the precipitate nucleation modes during Co implantation, we investigate the disilicide precipitation using different implantation setups and compare the results with those for cavity-free Si specimens implanted in similar conditions.

  3. Resonance ultrasonic vibrations in Cz-Si wafers as a possible diagnostic technique in ion implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Z. Y.; Ostapenko, S.; Anundson, R.; Tvinnereim, M.; Belyaev, A.; Anthony, M.

    2001-07-01

    The semiconductor industry does not have effective metrology for well implants. The ability to measure such deep level implants will become increasingly important as we progress along the technology road map. This work explores the possibility of using the acoustic whistle effect on ion implanted silicon wafers. The technique detects the elastic stress and defects in silicon wafers by measuring the sub-harmonic f/2 resonant vibrations on a wafer induced via backside contact to create standing waves, which are measured by a non-contact ultrasonic probe. Preliminary data demonstrates that it is sensitive to implant damage, and there is a direct correlation between this sub-harmonic acoustic mode and some of the implant and anneal conditions. This work presents the results of a feasibility study to assess and quantify the correspondent whistle effect to implant damage, residual damage after annealing and intrinsic defects.

  4. Fabrication and Characterization of Thin Film Ion Implanted Composite Materials for Integrated Nonlinear Optical Devices

    NASA Technical Reports Server (NTRS)

    Sarkisov, S.; Curley, M.; Williams, E. K.; Wilkosz, A.; Ila, D.; Poker, D. B.; Hensley, D. K.; Smith, C.; Banks, C.; Penn, B.; Clark, R.

    1998-01-01

    Ion implantation has been shown to produce a high density of metal colloids within the layer regions of glasses and crystalline materials. The high-precipitate volume fraction and small size of metal nanoclusters formed leads to values for the third-order susceptibility much greater than those for metal doped solids. This has stimulated interest in use of ion implantation to make nonlinear optical materials. On the other side, LiNbO3 has proved to be a good material for optical waveguides produced by MeV ion implantation. Light confinement in these waveguides is produced by refractive index step difference between the implanted region and the bulk material. Implantation of LiNbO3 with MeV metal ions can therefore result into nonlinear optical waveguide structures with great potential in a variety of device applications. We describe linear and nonlinear optical properties of a waveguide structure in LiNbO3-based composite material produced by silver ion implantation in connection with mechanisms of its formation.

  5. The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties

    SciTech Connect

    Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu; Iz, Sultan Gulce; Tihminlioglu, Funda; Oks, Efim; Nikolaev, Alexey; Ila, Daryush

    2009-03-10

    Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Ag and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.

  6. The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties

    NASA Astrophysics Data System (ADS)

    Urkac, Emel Sokullu; Oztarhan, Ahmet; Tihminlioglu, Funda; Gurhan, Ismet Deliloglu; Iz, Sultan Gulce; Oks, Efim; Nikolaev, Alexey; Ila, Daryush

    2009-03-01

    Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Ag and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.

  7. The Effect of Annealing at 1500 C on Migration and Release of Ion Implanted Silver in CVD Silicon Carbide

    SciTech Connect

    HJ MacLean; RG Ballinger; LE Kolaya; SA Simonson; N Lewis; M Hanson

    2004-10-07

    The transport of silver in CVD {beta}-SiC has been studied using ion implantation. Silver ions were implanted in {beta}-SiC using the ATLAS accelerator facility at the Argonne National Laboratory. Ion beams with energies of 93 and 161 MeV were used to achieve deposition with peak concentrations at depths of approximately 9 and 13 {micro}m, respectively. As-implanted samples were then annealed at 1500 C for 210 or 480 hours. XPS, SEM, TEM, STEM, and optical methods were used to analyze the material before and after annealing. Silver concentration profiles were determined using XPS before and after annealing. STEM and SEM equipped with quantitative chemical analysis capability were used to more fully characterize the location and morphology of the silver before and after annealing. The results show that, within the uncertainty of measurement techniques, there is no silver migration, via either inter- or intragrannular paths, for the times and temperature studied. Additionally, the silver was observed to phase separate within the SiC after annealing. The irradiation damage from the implantation process resulted in a three-layer morphology in the as-implanted condition: (1) a layer of unaltered SiC, followed by (2) a layer of crystallized SiC, followed by (3) an amorphized layer which contained essentially all of the implanted silver. After annealing the layer structure changed. Layer 1 was unaltered. The grains in layer 2 recrystallized to form an epitaxial (columnar) layer. Layer 3 recrystallized to form a fine grain equiaxed layer. The results of this work do not support the long held assumption that silver release from CVD SiC, used for gas-reactor coated particle fuel, is dominated by grain boundary diffusion.

  8. Quantitative secondary ion mass spectrometric analysis of secondary ion polarity in GaN films implanted with oxygen

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Minako; Sakaguchi, Isao; Adachi, Yutaka; Ohashi, Naoki

    2016-10-01

    Quantitative analyses of N and O ions in GaN thin films implanted with oxygen ions (16O+) were conducted by secondary ion mass spectrometry (SIMS). Positive (CsM+) and negative secondary ions extracted by Cs+ primary ion bombardment were analyzed for oxygen quantitative analysis. The oxygen depth profiles were obtained using two types of primary ion beams: a Gaussian-type beam and a broad spot beam. The oxygen peak concentrations in GaN samples were from 3.2 × 1019 to 7.0 × 1021 atoms/cm3. The depth profiles show equivalent depth resolutions in the two analyses. The intensity of negative oxygen ions was approximately two orders of magnitude higher than that of positive ions. In contrast, the O/N intensity ratio measured using CsM+ molecular ions was close to the calculated atomic density ratio, indicating that the SIMS depth profiling using CsM+ ions is much more effective for the measurements of O and N ions in heavy O-implanted GaN than that using negative ions.

  9. Study of the changes in the infrared transmission of SiO sub 2 spin-on-glass due to ion implantation

    SciTech Connect

    Shacham-Diamand, Y. ); Finkman, E.; Pinkas, Y. ); Moriya, N. )

    1991-12-02

    The ion implantation of phosphorus into spin-on-glass (SOG) SiO{sub 2} thin-film films modified the infrared transmission spectrum of the films. Two SOG types, polysiloxane and silicate, were ion implanted with doses in the 1{times}10{sup 14}--1{times}10{sup 15} cm{sup {minus}2} range and an energy of 40 keV. The Fourier-transform infrared spectrum of such films on silicon substrates was measured and the results are presented as a function of the implanted dose. The effect of the ion implantation on the silicate SOG was minute while significant changes were observed in the polysiloxane SOG. The major absorption peaks in the transmission spectrum were numerically analyzed and fitted to a set of Lorentzian functions. The peak heights, width, and area were measured. The ion implantation reduces the number of CH{sub 3} groups while the location of the Si-O absorption peak is shifted towards a shorter wavelength, i.e., a denser material. A physical interpretation of the absorption peak dependence on the ion-implanted dose is presented.

  10. The effects of ion implantation on the interdiffusion coefficients in InxGa1 - xAs/GaAs quantum well structures

    NASA Astrophysics Data System (ADS)

    Bradley, I. V.; Gillin, W. P.; Homewood, K. P.; Webb, R. P.

    1993-02-01

    Photoluminescence coupled with repetitive thermal annealing has been used to determine the diffusion coefficients for intermixing in InxGa1-xAs/GaAs quantum wells and to study the subsequent effects of ion implantation on the intermixing. It is shown that following ion implantation there is a very fast interdiffusion process, which is independent of the implanted ion and that is thought to be due to the rapid diffusion of interstitials created during the implantation. Following this rapid process, it was found that neither gallium nor krypton ions had any effect on the subsequent interdiffusion coefficient. Following arsenic implantation in addition to the initial damage related process, an enhanced region of interdiffusion was observed with a diffusion coefficient that was an order of magnitude greater than that of an unimplanted control wafer. This enhanced process is thought to be due to the creation of group III vacancies by the arsenic atoms moving onto group V lattice sites. This fast process was present until the structure had broadened by about 75 Å when the diffusion coefficient returned to the unimplanted control value. The activation energy for the interdiffusion was measured over the temperature range 1050-750°C and a value of 3.7±0.1 eV was measured. This was found to be independent of the implanted ion.

  11. Optical Properties of p-type ZnO Doped by As Ion Implantation

    SciTech Connect

    Jeong, T.S.; Youn, C.J.; Han, M.S.; Park, Y. S.; Lee, W.S.

    2005-06-30

    As-doped p-type ZnO has been achieved by ion implantation. The As-related optical properties were analyzed by using secondary ion mass spectrometry, the Raman scattering, and the photoluminescence experiments. From the I-V measurement, the behavior of rectifying on these samples is confirmed.

  12. Structural and Thermal Characterization of Ti+O Ion Implanted UltraHigh Molecular Weight Polyethylene (UHMWPE)

    SciTech Connect

    Oztarhan, A.; Urkac, E. Sokullu; Kaya, N.; Tihminlioglu, F.; Ila, D.; Chhay, B.; Muntele, C.; Budak, S.; Oks, E.; Nikolaev, A.

    2009-03-10

    In this work, Metal-Gas Hybrid Ion Implantation technique was used as a tool for the surface modification of Ultra High Molecular Weight Polyethylene (UHMWPE). Samples were Ti+O ion implanted by using Metal-Vapour Vacuum Arc (MEVVA) ion implanter to a fluence of 5x10{sup 16} ion/cm{sup 2} for each species and extraction voltage of 30 kV. Untreated and surface treated samples were investigated by Rutherford Back Scattering (RBS) Spectrometry, Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy, Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). Results indicate that Ti+O ion implantation can be applied on UHMWPE surfaces successfully. ATR-FTIR spectra indicate that the C-H concentration on the surface decreased after Ti+O implantation. Thermal characterization with TGA and DSC shows that polymeric decomposition temperature is shifted after ion implantation.

  13. Fe-ions implantation to modify TiO2 trilayer films for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Pang, Pan; Liao, Bin; Xianying, Wu; Zhang, Xu

    2016-06-01

    A series of Fe-doped TiO2 trilayer films were prepared successfully by using the ion-implantation technique. The aim of the ion implantation was to enhance charge transfer and to reduce charge recombination. A maximum conversion efficiency of 4.86% was achieved in cells using Fe-ion-implanted electrodes with the illumination of 6×1015 atom/cm2. It is 14.1% higher than that of the cells without ion implantations. The significant improvement in conversion efficiency by Fe-ion implantation could be contributed to the enhancement of dye uptake and charge transfer, as indicated from the incident photon-to-collected electron conversion efficiency and ultraviolet-visible measurements. Furthermore, the implanted Fe-ions introduce impurity levels in the bandgap of TiO2, and this improves the electron injection efficiency from lowest unoccupied molecular orbital of excited N719 into the conduction band of TiO2.

  14. Planar and channel waveguides on Na:CBN formed by oxygen ion implantation

    NASA Astrophysics Data System (ADS)

    Guo, Sha-Sha; Zhao, Jin-Hua; Huang, Qing; Liu, Peng; Liu, Tao; Zhang, Lian; Wang, Xue-Lin

    2012-09-01

    We reported the fabrication of the planar and channel waveguides in Na-doped calcium barium niobate (CBN) with multiple-energy oxygen-ion implantation. Multiple-energy implants can broaden the barrier width to reduce light leakage from the waveguide to the substrate through the barrier wall. The guiding modes and the near-field intensity distribution of the light were measured by the prism-coupling method and the end-facing coupling arrangement separately. The refractive index profiles of planar and channel waveguides were both typical "well + barrier" distribution, and we used the finite-difference beam propagation method (FD-BPM) to simulate the light propagation. After annealing at 200 °C for 30 min, the waveguide propagation loss of the planar and channel waveguides could be reduced down to ˜3.7 dB/cm and ˜3.5 dB/cm. The calculated results were in excellent agreement with the measured waveguide modes, indicating the feasibility of designing these devices.

  15. Relationship between wave energy and free energy from pickup ions in the Comet Halley environment

    NASA Technical Reports Server (NTRS)

    Huddleston, D. E.; Johnstone, A. D.

    1992-01-01

    The free energy available from the implanted heavy ion population at Comet Halley is calculated by assuming that the initial unstable velocity space ring distribution of the ions evolves toward a bispherical shell. Ultimately this free energy adds to the turbulence in the solar wind. Upstream and downstream free energies are obtained separately for the conditions observed along the Giotto spacecraft trajectory. The results indicate that the waves are mostly upstream propagating in the solar wind frame. The total free energy density always exceeds the measured wave energy density because, as expected in the nonlinear process of ion scattering, the available energy is not all immediately released. An estimate of the amount which has been released can be obtained from the measured oxygen ion distributions and again it exceeds that observed. The theoretical analysis is extended to calculate the k spectrum of the cometary-ion-generated turbulence.

  16. Investigation into Methods to Improve Ion Source Life for Germanium Implantation

    NASA Astrophysics Data System (ADS)

    Sweeney, Joseph; Sergi, Steven; Tang, Ying; Byl, Oleg; Yedave, Sharad; Kaim, Robert; Bishop, Steve

    2011-01-01

    Germanium tetrafluoride has long been the standard dopant gas of choice for germanium implantation processes. While this material maintains several positive attributes (e.g., it is a nonflammable gas that is easily delivered to an ion source), its use can result in extremely short ion source lifetimes. This is especially the case for the situation when an ion implanter runs solely or predominantly GeF4. Presented here is an examination of various potential solutions to the short source life problem, some of which enable significant improvement.

  17. Au Colloids Formed by Ion Implantation in Muscovite Mica Studied by Vibrational and Electronic Spectroscopes and Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Tung, Y. S.; Henderson, D. O.; Mu, R.; Ueda, A.; Collins, W. E.; White, C. W.; Zuhr, R. A.; Zhu, Jane G.

    1997-01-01

    Au was implanted into the (001) surface of Muscovite mica at an energy of 1.1 MeV and at doses of 1, 3, 6, and 10 x 10(exp 16) ions/cu cm. Optical spectra of the as-implanted samples revealed a peak at 2.28 eV (545 nm) which is attributed to the surface plasmon absorption of Au colloids. The infrared reflectance measurements show a decreasing reflectivity with increasing ion dose in the Si-O stretching region (900-1200 /cm). A new peak observed at 967 /cm increases with the ion dose and is assigned to an Si-O dangling bond. Atomic force microscopy images of freshly cleaved samples implanted with 6 and 10 x 10(exp 16) ions/sq cm indicated metal colloids with diameters between 0.9- 1.5 nm. AFM images of the annealed samples showed irregularly shaped structures with a topology that results from the fusion of smaller colloids.

  18. The Effect of Thermal Annealing on Structural-phase Changes in the Ni-Ti Alloy Implanted with Krypton Ions

    NASA Astrophysics Data System (ADS)

    Poltavtseva, V. P.; Kislitsin, S. B.; Ghyngazov, S. A.

    2016-06-01

    The influence of thermal annealing within the temperature range 100-300°C on the structural-phase state of a Ni-Ti alloy with shape memory effect (SME) implanted with 84Kr ions at the energies E = 280 keV and 1.75 MeV/nucl and the fluences within 5·1012-1·1020 ion/m2 is investigated. For the samples modified by 84Kr ions at E = 1.75 MeV/nucl up to the fluences 1·1020 and 5·1012 ion/m2, the formation of a martensitic NiTi phase with the B19 ' structure, responsible for the SME, is revealed at the annealing temperatures 100 and 300°C, respectively, in the near-surface region corresponding to the outrange area. This is accompanied by the formation of nanosized NiTi particles in the R-phase. As the implantation fluence increases, the probability of their formation decreases. It is shown that annealing of the implanted structures can increase the strength of the Ni-Ti alloy. The degree of hardening is determined by the value of annealing temperature, and an increase in strength is primarily due to ordering of the radiation-induced defect structures (phases). A correlation between the onset temperature of a forward martensitic transition and the structural-phase state of the thermally annealed Ni-Ti alloy is established.

  19. Biofunctionalization of surfaces by energetic ion implantation: Review of progress on applications in implantable biomedical devices and antibody microarrays

    NASA Astrophysics Data System (ADS)

    Bilek, Marcela M. M.

    2014-08-01

    Despite major research efforts in the field of biomaterials, rejection, severe immune responses, scar tissue and poor integration continue to seriously limit the performance of today's implantable biomedical devices. Implantable biomaterials that interact with their host via an interfacial layer of active biomolecules to direct a desired cellular response to the implant would represent a major and much sought after improvement. Another, perhaps equally revolutionary, development that is on the biomedical horizon is the introduction of cost-effective microarrays for fast, highly multiplexed screening for biomarkers on cell membranes and in a variety of analyte solutions. Both of these advances will rely on effective methods of functionalizing surfaces with bioactive molecules. After a brief introduction to other methods currently available, this review will describe recently developed approaches that use energetic ions extracted from plasma to facilitate simple, one-step covalent surface immobilization of bioactive molecules. A kinetic theory model of the immobilization process by reactions with long-lived, mobile, surface-embedded radicals will be presented. The roles of surface chemistry and microstructure of the ion treated layer will be discussed. Early progress on applications of this technology to create diagnostic microarrays and to engineer bioactive surfaces for implantable biomedical devices will be reviewed.

  20. Estimation of diffusion coefficient by photoemission electron microscopy in ion-implanted nanostructures

    NASA Astrophysics Data System (ADS)

    Batabyal, R.; Patra, S.; Roy, A.; Roy, S.; Bischoff, L.; Dev, B. N.

    2009-10-01

    We have fabricated parallel stripes of nanostructures in an n-type Si substrate by implanting 30 keV Ga + ions from a focused ion beam (FIB) source. Two sets of implantation were carried out. In one case, during implantation the substrate was held at room temperature and in the other case at 400 °C. Photoemission electron microscopy (PEEM) was carried out on these samples. The implanted parallel stripes, each with a nominal dimension of 4000 nm × 100 nm, appear as bright regions in the PEEM image. Line scans of the intensities from the PEEM image were recorded along and across these stripes. The intensity profile at the edges of a line scan is broader for the implantation carried out at 400 °C compared to room temperature. From the analysis of this intensity profile, the lateral diffusion coefficient of Ga in silicon was estimated assuming that the PEEM intensity is proportional to Ga concentration. The diffusion coefficient at 400 °C has been estimated to be ˜1.3 × 10 -15 m 2/s. Across the stripes an asymmetric diffusion profile has been observed, which has been related to the sequence of implantation of these stripes and the associated defect distribution due to lateral straggling of the implanted ions.

  1. Wettability conversion of an aluminum-hydroxide nanostructure by ion implantation

    NASA Astrophysics Data System (ADS)

    Jeon, Jihoon; Choi, Dukhyun; Kim, Hyungdae; Park, Yong Tae; Choi, Min-Jun; Chung, Kwun-Bum

    2016-04-01

    This work presents a method for controlling the wettability of an aluminum-hydroxide (Al(OH)3) nanostructure by using ion implantation. We implant Xe ions into Al(OH)3 nanostructures at dosages between 5 × 1014 to 1 × 1016 ions/cm2. The microscopic surface morphology of the nanostructure after implantation does not change under our dosing conditions. However, a drastic increase in the surface contact angle (CA) from 0° to 100° is observed at a dosage of 5 × 1015 ions/cm2. We attribute this significant change in CA to the composition and chemical bonding states of carbon contained within the Al(OH)3 nanostructure.

  2. Multiple ion implantation effects on hardness and fatigue properties of Fe13Cr15Ni alloys

    NASA Astrophysics Data System (ADS)

    Rao, G. R.; Lee, E. H.; Boatner, L. A.; Chin, B. A.; Mansur, L. K.

    1992-09-01

    Eight complex alloys based on the composition Fe13Cr15Ni2Mo2Mn0.2Ti0.8Si0.06C were implanted simultaneously with 400 keV boron and 550 keV nitrogen, and investigated for microhardness changes and bending fatigue life. The dual implantation was found to decrease the fatigue life of all eight alloys although the implantation increased near-surface hardness of all eight alloys. This result was in contrast to the significant improvements found in the fatigue life of four B, N implanted simple Fe13Cr15Ni alloys. It was determined that the implantation suppressed surface slip band formation, the usual crack initiation site, but in the complex alloys, this suppression promoted a shift to grain boundary cracking. A similar phenomenon was also observed when the simple Fe13Cr15Ni alloys were simultaneously implanted with boron, nitrogen and carbon wherein fatigue life decreased, and gain, grain boundary cracks were observed. To test the hypothesis that ion implantation made the overall surface more fatigue resistant but led to a shift to grain boundary cracking, single crystal specimens of the ternary Fe15Cr15Ni were also implanted with boron and nitrogen ions. The fatigue life decreased for the single crystal specimens also, due to concentration of applied stress along fewer slip bands as compared to the control single crystal specimens were applied stress was relieved by slip band formation over the entire gauge region.

  3. Ion implantation and dynamic recovery of tin-doped indium oxide films

    SciTech Connect

    Shigesato, Yuzo; Paine, D.C.; Haynes, T.E.

    1993-09-01

    The effect of O{sup +} on implantation on the electronic (carrier density, mobility), resistivity and microstructural properties of thin film Sn-doped In{sub 2}O{sub 3} (ITO) was studied. Both polycrystalline (c-) and amorphous (a-) ITO thin films, 200 nm thick, were implanted at substrate temperatures ranging from {minus}196 to 300{degrees} C with 80 keV O{sup +} at doses ranging from 0 to 4.0{times}10{sup 15} cm{sup {minus}2}. X-ray diffraction studies show that polycrystalline ITO remains crystalline even after implantation with 80 keV O{sup +} at {minus}196{degrees}C to a dose of 4.0{times}10{sup 15} cm{sup {minus}2} which suggests that dynamic recovery processes are active in ITO at this low temperature. Although the x-ray diffraction pattern of the polycrystalline ITO remains unchanged with implant dose, the electrical properties were seen to degrade when implanted to a dose of 1.0{times}10{sup 15}cm{sup {minus}2} below 200{degrees}C. In contrast, amorphous ITO films remains amorphous upon ion implantation and shows almost no degradation in resistivity when implanted below 16{degrees}C. The recrystallization temperature of amorphous ITO is about 150{degrees}C in the absence of ion implantation.

  4. Nanostructure and Properties of Corrosion Resistance in C+Ti Multi-Ion-Implanted Steel

    NASA Astrophysics Data System (ADS)

    Zhang, Tong-He; Wu, Yu-Guang; Liu, An-Dong; Zhang, Xu; Wang, Xiao-Yan

    2003-09-01

    The corrosion and pitting corrosion resistance of C+Ti dual and C+Ti+C ternary implanted H13 steel were studied by using a multi-sweep cyclic voltammetry and a scanning electron microscope. The effects of phase formation on corrosion and pitting corrosion resistance were explored. The x-ray diffraction analysis shows that the nanometer-sized precipitate phases consist of compounds of Fe2Ti, TiC, Fe2C and Fe3C in dual implanted layer and even in ternary implanted layer. The passivation layer consists of these nanometer phases. It has been found that the corrosion and pitting corrosion resistance of dual and ternary implanted H13 steel are improved extremely. The corrosion resistance of ternary implanted layer is better than that of dual implantations and is enhanced with the increasing ion dose. When the ion dose of Ti is 6×1017/cm2 in the ternary implantation sample, the anodic peak current density is 95 times less than that of the H13 steel. The pitting corrosion potential of dual and ternary implantation samples is in the range from 55 mV to 160 mV which is much higher than that of the H13 steel. The phases against the corrosion and pitting corrosion are nanometer silkiness phases.

  5. Germanium ion implantation to Improve Crystallinity during Solid Phase Epitaxy and the effect of AMU Contamination

    NASA Astrophysics Data System (ADS)

    Lee, K. S.; Yoo, D. H.; Son, G. H.; Lee, C. H.; Noh, J. H.; Han, J. J.; Yu, Y. S.; Hyung, Y. W.; Yang, J. K.; Song, D. G.; Lim, T. J.; Kim, Y. K.; Lee, S. C.; Lee, H. D.; Moon, J. T.

    2006-11-01

    Germanium ion implantation was investigated for crystallinity enhancement during solid phase epitaxial regrowth (SPE) using high current implantation equipment. Electron back-scatter diffraction(EBSD) measurement showed numerical increase of 19 percent of <100> signal, which might be due to pre-amorphization effect on silicon layer deposited by LPCVD process with germanium ion implantation. On the other hand, electrical property such as off-leakage current of NMOS transistor degraded in specific regions of wafers, which implied non-uniform distribution of donor-type impurities into channel area. It was confirmed that arsenic atoms were incorporated into silicon layer during germanium ion implantation. Since the equipment for germanium pre-amorphization implantation(PAI) was using several source gases such as BF3 and AsH3, atomic mass unit(AMU) contamination during PAI of germanium with AMU 74 caused the incorporation of arsenic with AMU 75 which resided in arc-chamber and other parts of the equipment. It was effective to use germanium isotope of AMU 72 to suppress AMU contamination, however it led serious reduction of productivity because of decrease in beam current by 30 percent as known to be difference in isotope abundance. It was effective to use enriched germanium source gas with AMU 72 in order to improve productivity. Spatial distribution of arsenic impurities in wafers was closely related to hardware configuration of ion implantation equipment.

  6. First order Raman scattering analysis of transition metal ions implanted GaN

    NASA Astrophysics Data System (ADS)

    Majid, Abdul; Rana, Usman Ali; Shakoor, Abdul; Ahmad, Naeem; Hassan, Najam al; Khan, Salah Ud-Din

    2016-03-01

    Transition Metal (TM) ions V, Cr, Mn and Co were implanted into GaN/sapphire films at fluences 5×1014, 5×1015 and 5×1016 cm-2. First order Raman Scattering (RS) measurements were carried out to study the effects of ion implantation on the microstructure of the materials, which revealed the appearance of disorder and new phonon modes in the lattice. The variations in characteristic modes 1GaN i.e. E2(high) and A1(LO), observed for different implanted samples is discussed in detail. The intensity of nitrogen vacancy related vibrational modes appearing at 363 and 665 cm-1 was observed for samples having different fluences. A gallium vacancy related mode observed at 277/281 cm-1 for TM ions implanted at 5×1014 cm-2 disappeared for all samples implanted with rest of fluences. The fluence dependent production of implantation induced disorder and substitution of TM ions on cationic sites is discussed, which is expected to provide necessary information for the potential use of these materials as diluted magnetic semiconductors in future spintronic devices.

  7. Comparative study of metal and non-metal ion implantation in polymers: Optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Resta, V.; Quarta, G.; Farella, I.; Maruccio, L.; Cola, A.; Calcagnile, L.

    2014-07-01

    The implantation of 1 MeV metal (63Cu+, 107Ag+, 197Au+) and non-metal (4He+, 12C+) ions in a polycarbonate (PC) matrix has been studied in order to evaluate the role of ion species in the modification of optical and electrical properties of the polymer. When the ion fluence is above ∼1 × 1013 ions cm-2, the threshold for latent tracks overlapping is overcome and π-bonded carbon clusters grow and aggregate forming a network of conjugated Cdbnd C bonds. For fluences around 1 × 1017 ions cm-2, the aggregation phenomena induce the formation of amorphous carbon and/or graphite like structures. At the same time, nucleation of metal nanoparticles (NPs) from implanted species can take place when the supersaturation threshold is overcome. The optical absorption of the samples increases in the visible range and the optical band gap redshifts from 3.40 eV up to 0.70 eV mostly due to the carbonization process and the formation of C0x clusters and cluster aggregates. Specific structures in the extinction spectra are observed when metal ions are selected in contrast to the non-metal ion implanted PC, thus revealing the possible presence of noble metal based NPs interstitial to the C0x cluster network. The corresponding electrical resistance decreases much more when metal ions are implanted with at least a factor of 2 orders of magnitude difference than the non-metal ions based samples. An absolute value of ∼107 Ω/sq has been measured for implantation with metals at doses higher than 5 × 1016 ions cm-2, being 1017 Ω/sq the corresponding sheet resistance for pristine PC.

  8. Ion implantation of silicon in gallium arsenide: Damage and annealing characterizations

    NASA Astrophysics Data System (ADS)

    Pribat, D.; Dieumegard, D.; Croset, M.; Cohen, C.; Nipoti, R.; Siejka, J.; Bentini, G. G.; Correra, L.; Servidori, M.

    1983-05-01

    The purpose of this work is twofold: (i) to study the damage induced by ion implantation, with special attention to low implanted doses; (ii) to study the efficiency of annealing techniques — particularly incoherent light annealing — in order to relate the electrical activity of implanted atoms to damage annealing. We have used three methods to study the damage induced by ion implantation: (1) RBS (or nuclear reactions) in random or in channeling geometry (2) RX double crystal diffractometry and (3) electrical measurements (free carrier profiling). Damage induced by silicon implantation at doses >10 14at/cm 2 can be monitored by all three techniques. However, the sensitivity of RBS is poor and hence this technique is not useful for low implantation doses. As device technology requires dopant levels in the range of 5 × 10 12 atoms/cm 2, we are particularly interested to the development of analytical techniques able to detect the damage at this implantation level. The sensitivity of such techniques was checked by studying homogeneously doped (5 × 10 16 e -/cm 3) and semi-insulating GaAs samples implanted with 3 × 10 12 silicon atoms/cm 2 at 150 keV. The substrate temperature during implantation was 200°C. The damage produced in these samples and its subsequent annealing are evidenced by strong changes in X-ray double crystal diffraction spectra. This method hence appears as a good monitoring technique. Annealing of the implanted layers has been performed using incoherent light sources (xenon lamps) either in flash or continuous conditions. Reference samples have also been thermally annealed (850°C, 20 min in capless conditions). The results are compared, and the electrical carrier profiles obtained after continuous incoherent light irradiation indicate that the implanted silicon atoms are almost dully activated. The advantages and disadvantages of incoherent light irradiation are discussed (surface oxidation, surface damage) in comparison with standard

  9. Passive Q-switching of diode-pumped Yb:YAG microchip laser with ion-implanted GaAs

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Ma, Xiaoyu; Zhong, Bin; Wang, Desong; Zhang, Qiulin; Feng, Baohua

    2004-01-01

    We reported a passive Q-switched diode laser pumped Yb:YAG microchip laser with an ion-implanted semi-insulating GaAs wafer. The wafer was implanted with 400-keV As^(+) in the concentration of 10^(16) ions/cm^(2). To decrease the non-saturable loss, we annealed the ion-implanted GaAs at 500 oC for 5 minutes and coated both sides of the ion-implanted GaAs with antireflection (AR) and highreflection (HR) films, respectively. Using GaAs wafer as an absorber and an output coupler, we obtained 52-ns pulse duration of single pulse.

  10. Ion temperature and gas pressure effects on the magnetized sheath dynamics during plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Khoram, M.; Ghomi, H.; Navab Safa, N.

    2016-03-01

    Here, a collisional magnetized plasma with finite ion temperature is considered to examine the effects of the ion temperature and gas pressure on the plasma-sheath dynamics. We use the two-fluid model of plasma-sheath where the nonlinear equations of a dynamic sheath are solved using a full implicit scheme of finite difference method along with some convenient initial and boundary conditions at the plasma center and target. It is found that the ion temperature only has a significant effect on the characteristics of low voltage sheath, while the gas pressure (collision rate) seriously affects the dynamic characteristics of the low and high voltage plasma-sheath. One can see, increasing the ion temperature in low voltage plasma-sheath causes to increase the temporal curve of the ion dose and the ion impact energy on the target, reduces the temporal curve of the sheath width, and has no any effect on the temporal curve of the ion incident angle on the target. However, rising the gas pressure in low and high voltage plasma-sheath reduces all of these temporal curves.

  11. Morphologies of fibroblast cells cultured on surfaces of PHB films implanted by hydroxyl ions.

    PubMed

    Hou, T; Zhang, J Z; Kong, L J; Zhang, X E; Hu, P; Zhang, D M; Li, N

    2006-01-01

    Polyhydroxybutyrate (PHB) films were implanted with 40 keV hydroxyl ions with fluences ranging from 1 x 10(12) to 1 x 10(15) ions/cm2, respectively. The as-implanted PHB films were characterized by scanning electron microscopy (SEM), electron spectroscopy for chemical analysis (ESCA) and water contact angle measurements. The surface structures and properties of the as-implanted PHB films were closely related with hydroxyl ion fluence. They were further investigated by inoculating 3T6 fibroblasts cells on their surfaces. Morphologies of the 3T6 fibroblast cells cultured on surfaces of the as-implanted PHB films were observed by SEM. Characterization of the cultural 3T6 cells was analyzed qualitatively. The preliminary experimental results reveal that the bioactivity of the PHB films modified by hydroxyl ion implantation was improved at different levels, and the fluence of 1 x 10(13) ions/cm2 is optimal for PHB film. PMID:16909942

  12. Raman scattering probe of ion-implanted and pulse laser annealed GaAs

    NASA Astrophysics Data System (ADS)

    Verma, Prabhat; Jain, K. P.; Abbi, S. C.

    1996-04-01

    We report Raman scattering studies of phosphorus-ion-implanted and subsequently pulse laser annealed (PLA) GaAs. The threshold value of implantation fluence for the disappearance of one-phonon modes in the Raman spectrum of ion-implanted GaAs sample is found to be greater than that for the two-phonon modes by an order of magnitude. The phonon correlation length decreases with increasing disorder. The lattice reconstruction process during PLA creates microcrystallites for incomplete annealing, whose sizes can be given by the phonon correlation lengths, and are found to increase with the annealing power density. The intensity ratio of the Raman spectra corresponding to the allowed longitudinal-optical (LO)-phonon mode to the forbidden transverse-optical (TO)-phonon mode, ILO/ITO, is used as a quantitative measure of crystallinity in the implantation and PLA processes. The threshold annealing power density is estimated to be 20 MW/cm2 for 70 keV phosphorus-ion-implanted GaAs at a fluence of 5×1015 ions/cm2. The localized vibrational mode of phosphorus is observed in PLA samples for fluences above 1×1015 ions/cm2.

  13. Plasma immersion ion implantation for the efficient surface modification of medical materials

    SciTech Connect

    Slabodchikov, Vladimir A. Borisov, Dmitry P. Kuznetsov, Vladimir M.

    2015-10-27

    The paper reports on a new method of plasma immersion ion implantation for the surface modification of medical materials using the example of nickel-titanium (NiTi) alloys much used for manufacturing medical implants. The chemical composition and surface properties of NiTi alloys doped with silicon by conventional ion implantation and by the proposed plasma immersion method are compared. It is shown that the new plasma immersion method is more efficient than conventional ion beam treatment and provides Si implantation into NiTi surface layers through a depth of a hundred nanometers at low bias voltages (400 V) and temperatures (≤150°C) of the substrate. The research results suggest that the chemical composition and surface properties of materials required for medicine, e.g., NiTi alloys, can be successfully attained through modification by the proposed method of plasma immersion ion implantation and by other methods based on the proposed vacuum equipment without using any conventional ion beam treatment.

  14. Monitoring of ion implantation in microelectronics production environment using multi-channel reflectometry

    NASA Astrophysics Data System (ADS)

    Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitry; Hartig, Carsten

    2016-03-01

    Optical metrology techniques such as ellipsometry and reflectometry are very powerful for routine process monitoring and control in the modern semiconductor manufacturing industry. However, both methods rely on optical modeling therefore, the optical properties of all materials in the stack need to be characterized a priori or determined during characterization. Some processes such as ion implantation and subsequent annealing produce slight variations in material properties within wafer, wafer-to-wafer, and lot-to-lot; such variation can degrade the dimensional measurement accuracy for both unpatterned optical measurements as well as patterned (2D and 3D) scatterometry measurements. These variations can be accounted for if the optical model of the structure under investigation allows one to extract not just dimensional but also material information already residing within the optical spectra. This paper focuses on modeling of ion implanted and annealed poly Si stacks typically used in high-k technology. Monitoring of ion implantation is often a blind spot in mass production due to capability issues and other limitations of common methods. Typically, the ion implantation dose can be controlled by research-grade ellipsometers with extended infrared range. We demonstrate that multi-channel spectroscopic reflectometry can also be used for ion implant monitoring in the mass-production environment. Our findings are applicable across all technology nodes.

  15. PROGRESS IN CHARACTERIZATION OF PRECIPITATES AND DEFECT STRUCTURES IN Mg+ ION IMPLANTED CUBIC SILICON CARBIDE

    SciTech Connect

    Jiang, Weilin; Zhang, Jiandong; Zhu, Zihua; Roosendaal, Timothy J.; Hu, Shenyang Y.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2015-09-01

    This report describes the progress of our current experimental effort on Mg+ ion implanted 3C-SiC. Following our initial study [ ] that suggests possible formation of Mg2Si and MgC2 precipitates as well as tetrahedral voids in 24Mg+ ion implanted 3C-SiC, we have designed specific experiments to confirm the results and examine the inclusions and defects. Relatively low fluence (5.0×1015 24Mg+/cm2) implantation in 3C-SiC was performed to reduce defect concentrations and isolate individual defect features for characterization. In addition, 25Mg+ isotope was implanted in 3C-SiC to the same previously applied ion fluence (9.6×1016 ions/cm2) for atom probe tomography (APT) study of precipitates. Each set of the samples was annealed at 1573 K for 2, 6 and 12 h, respectively. The depth profiles of the implanted Mg were measured using secondary ion mass spectrometry (SIMS) before and after the annealing steps. The samples are currently being analyzed using transmission electron microscopy (TEM) and APT.

  16. Tailored surface modification by ion implantation and laser treatment

    NASA Astrophysics Data System (ADS)

    Picraux, S. T.; Pope, L. E.

    1984-11-01

    Techniques and applications of ion- and laser-beam treatment of surface and near surface materials to control the composition and microstructure are explored. The processes are especially useful in miniaturized electronic components with large surface/volume ratios. Laser beams permit selective, extremely short interval high energy heating of specific molecules in surfaces and studies of transient and metastable states that are otherwise unattainable. The applications affect the wear, friction, hardness, adhesion, fatigue, toughness, ductility, corrosion resistance, and electromagnetic properties of the materials. Beam treatments have been successfully applied to polymers, ceramics, metals, and microprocessors, often causing new performance characteristics to appear. The techniques are noted to relax the usual constraints of thermal equilibrium and thereby increase the understanding of materials.

  17. Method and means of directing an ion beam onto an insulating surface for ion implantation or sputtering

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.; Siskind, Barry

    1981-01-01

    A beam of ions is directed under control onto an insulating surface by supplying simultaneously a stream of electrons directed at the same surface in a quantity sufficient to neutralize the overall electric charge of the ion beam and result in a net zero current flow to the insulating surface. The ion beam is adapted particularly both to the implantation of ions in a uniform areal disposition over the insulating surface and to the sputtering of atoms or molecules of the insulator onto a substrate.

  18. Annealing Behavior of Ion-implanted Nitrogen in D9 Steel

    SciTech Connect

    Arunkumar, J.; David, C.; Nair, K. G. M.; Panigrahi, B. K.; Magudapathy, P.; Kennedy, John

    2011-07-15

    Nitrogen isotope N{sup 15} was implanted at the sub-surface of D9 steel. The resonance nuclear reaction analysis was used to probe the implanted nitrogen as a function of depth. The as-implanted D9 sample was isochronally annealed and by observing the broadening of nitrogen depth profile at various annealing junctures, activation energy for nitrogen diffusion in steel was deduced.

  19. RHEED, AES and XPS studies of the passive films formed on ion implanted stainless steel

    SciTech Connect

    Clayton, C.R.; Doss, K.G.K.; Wang, Y.F.; Warren, J.B.; Hubler, G.K.

    1981-12-01

    P-implantation (10/sup 17/ ions cm/sup -2/, 40 KeV) into 304 stainless steel (ss) has been carried out, and an amorphous surface alloy was formed. Polarization studies in deaerated 1N H/sub 2/SO/sub 4/+ 2% NaCl showed that P-implantation improved both the general and localized corrosion resistance of 304 ss. A comparative study has been carried out between the implanted and unimplanted steel to determine what influence P-implantation has upon the properties of the passive film formed 1N H/sub 2/SO/sub 4/. The influence of Cl ions on pre-formed passive films was also studied. RHEED, XPS and AES were used to evaluate the nature of the passive films formed in these studies.

  20. The formation of magnetic silicide Fe3Si clusters during ion implantation

    NASA Astrophysics Data System (ADS)

    Balakirev, N.; Zhikharev, V.; Gumarov, G.

    2014-05-01

    A simple two-dimensional model of the formation of magnetic silicide Fe3Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field.